



### Facultad de Ciencias Económicas y Empresariales Departamento de Ingeniería Industrial

### Tesis en opción del Grado Académico de Máster en Ingeniería Industrial Mención Calidad

"Mejora a la Gestión de la Fiabilidad del proceso de distribución eléctrica en Cienfuegos".

Autor: Ing. Nelson Fernández Ocampo

Tutor: MsC. Berlan Rodríguez Pérez



#### **Declaratoria del Autor**

| Hago constar que el presente trabajo fue realizado Rodríguez", como parte de la culminación de los e Mención Calidad autorizando a que el mismo sea conveniente, tanto de forma parcial como total y que publicada sin la aprobación de la Universidad de Cie | estudios de la Maestría en Ingeniería Industrial,<br>utilizado por la institución para fines que estime<br>e además no podrá ser presentada en eventos ni |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ing. Nelson Ferná                                                                                                                                                                                                                                             | ández Ocampo.                                                                                                                                             |
| Los abajo firmantes certificamos que el presente tral<br>del proceso de distribución eléctrica en Cienfuegos'<br>de nuestro centro y el mismo cumple los requisitos<br>requerido en la temática.                                                              | ', ha sido revisado según acuerdo de la dirección                                                                                                         |
|                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| <br>Tutor                                                                                                                                                                                                                                                     | Especialista ICT                                                                                                                                          |

## Pensamiento

#### Pensamiento:

En la Tierra Hacen Falta Personas:

Que trabajen más y Critiquen menos

Que contribuyan más y Destruyan menos

Que prometan menos y Resuelvan más

Que esperen recibir menos y Den más

Que digan mejor Ahora que mañana.

Ché

# Dedicatoria

#### **Dedicatoria**

#### **EN MEMORIA**

A MI QUERIDA MADRE EMMA QUE SIEMPRE

ME BRINDO SU TERNURA, AMOR Y APOYO

Y ME EDUCO COMO UN SER

A NUESTRO QUERIDO COMPAÑERO EDWIN

QUE FUE PARTE DE NUESTRO EQUIPO DE TRABAJO

Y QUE SIEMPRE ESTARÁ PRESENTE POR SUS ENSEÑANZAS

#### **EN PRESENTE**

A TODOS MIS SERES QUERIDOS POR SUS CONSTANTES ALIENTOS
MI ESPOSA DELIA ESTHER Y MIS HIJOS MAIDELY Y JAVIER ERNESTO

# Hgradecimientos

#### **Agradecimientos**

A mi tutor MsC Berlan Rodríguez Pérez, por ser mi tutor del proyecto y mi punto de partida, por su disposición y su entrega en la realización de este proyecto, sin su colaboración este trabajo hubiera sido posible.

A mi profesor Ing. Rolando Rangel Cuellar, por ser el que dio los primeros frutos para la realización de esta Maestría y que sin su aporte decisivo no se hubiera iniciado y realizado con total éxito la misma además de ser mi segundo tutor de oficio e inspirador en el proceso investigativo de la misma. A los Directivos del CIMEX y mi Empresa Eléctrica que brindaron sus instalaciones y servicio en cada etapa de la maestría.

A los queridos profesores Dr.C. Ramón Ángel Pons Murguía, Dr.C Rafael Gómez Dorta y la Dr.C Eulalia Villa González del Pino que por sus contribuciones y esfuerzos brindados incondicionalmente fueron decisivos en la realización y culminación de todos los módulos establecidos y con una calidad sin límites en cada tema abordado.

A mi equipo de trabajo de la maestría de la Empresa Eléctrica conformado por Ing. Pablo Oscar Hernández Gómez, Ing. José Ramón Sánchez Sarduy e Ing. Edwin Laza Tome que siempre trabajamos en equipos para dar respuesta exitosa a cada tarea asignada.

A mi compañero de trabajo Siul García Olite por sus constantes orientaciones y recomendaciones oportunas.

A los especialistas de la Dirección Técnica y el Despacho de Carga por colaborar con todos los datos necesarios en la investigación de este trabajo.

A mi Director de Capital Humano de nuestra Empresa MSc Ignacio D´Escoubet Pérez por su ayuda y consideración con el tiempo robado en mi desempeño ante este trabajo.

A todos gracias.

Resumen





#### Resumen:

En el presente trabajo se realiza un análisis de la fiabilidad de las redes eléctricas de distribución en la Empresa Eléctrica Cienfuegos, utilizando una adaptación del modelo de confiabilidad de PDVSA; realizando un diagnóstico de las redes de distribución incluyendo los niveles primarios, secundarios y de servicios. Los datos obtenidos se analizaron de forma probabilística y se ajustaron a distribuciones de probabilidad, a partir de las cuales se encontraron los elementos de mayor incidencia en las fallas, A partir de los análisis realizados se pudo constatar que la empresa no se encuentra en condiciones de realizar los mantenimientos centrados en fiabilidad, pues no se conocen los tiempos de trabajo de algunos de los equipos instalados en las redes eléctricas, por lo que se propone un procedimiento a seguir para la realización de las inspecciones periódicas, el que deberá quedar incluido en la empresa mediante los procedimientos diseñados en el sistema de calidad. Los datos de las fallas de los equipos más problemáticos, permitieron realizar un análisis de modos de falla y sus efectos, complementando en él esta herramienta con los árboles de falla. Se evaluó el comportamiento de los fallos de los transformadores en un término de 10 años en cada UBEM de forma mensual seleccionando la de mayor incidencia (UBEM Cienfuegos), donde se analizó cada circuito de este por medio de los indicadores de fiabilidad. Además se determinó el nivel de servicio al cliente con la respuesta a las fallas internas de los transformadores en la UBEM Cienfuegos y la medición del impacto económico ante dichas fallas.







#### **Abstract**

In the present work accomplishes an analysis of the reliability of electricity distribution networks in the Utility Cienfuegos, using an adaptation of PDVSA reliability model; making a diagnosis of distribution networks including primary, secondary and service. The data obtained were analyzed and adjusted to probabilistic probability distributions, from which the elements were found higher incidence of faults, From the analyzes it was found that the company is not able to perform reliability-centered maintenance, as there are known work times of some of the equipment installed in the power grids, so we propose a procedure for conducting periodic inspections, which must be included in the company procedures designed by the quality system. Data from equipment failure most problematic, allowed analysis of failure modes and effects, complementing it with this tool fault trees. We evaluated the behavior of failures of transformers in a term of 10 years in each monthly UBEM of selecting the highest incidence (UBEM Cienfuegos), where each circuit was analyzed using the indicators of reliability. Also determined the level of customer service with the response to internal faults in transformers UBEM Cienfuegos and measuring the economic impact to these failures.

Índice





## Índice

| Introducción                                                                                               | 4    |
|------------------------------------------------------------------------------------------------------------|------|
| Capítulo 1: Consideraciones Teóricas                                                                       | 7    |
| 1.1 Fiabilidad Generalidades                                                                               | 7    |
| 1.2 Definición matemática de fiabilidad                                                                    | 8    |
| 1.3 Funciones y modelos de la fiabilidad                                                                   | 9    |
| 1.4 Fiabilidad de sistemas                                                                                 | _ 15 |
| 1.5 Teoría de fallas                                                                                       | _ 17 |
| 1.6 Evolución del concepto Calidad                                                                         | _ 20 |
| 1.7 Gestión de la Calidad                                                                                  | _ 21 |
| 1.8 Evolución del mantenimiento                                                                            | _ 24 |
| 1.9 Análisis de Confiabilidad en Redes de Distribución                                                     | _ 28 |
| Conclusiones parciales                                                                                     | _ 33 |
| Capítulo 2: Descripción del Objeto de Estudio y Procedimiento a Seguir.                                    | _ 34 |
| 2.1 Introducción general                                                                                   | _ 34 |
| 2.2 Elementos de la organización de la producción de bienes y servicios en la Empresa Eléctrica Cienfuegos | _ 38 |
| 2.3 Organización del mantenimiento                                                                         | _ 46 |
| 2.4 Procedimiento para el análisis de fiabilidad en la distribución de la Empresa Eléctrica Cienfuegos.    |      |
| Conclusiones parciales.                                                                                    | _ 58 |
| Capítulo 3: Análisis de la Fiabilidad en la Empresa Eléctrica Cienfuegos.                                  | _ 59 |
| 3.1 Indicadores de Fiabilidad                                                                              | _ 59 |
| 3.2: Análisis de la probabilidad de fallos                                                                 | _ 68 |
| 3.3 Construcción de Árboles de fallas y generación de soluciones.                                          | _ 75 |
| 3.4 Análisis del comportamiento de los transformadores de distribución.                                    | _ 80 |
| Conclusiones parciales.                                                                                    | _ 85 |
| Conclusiones                                                                                               | _ 86 |
| Recomendaciones                                                                                            | _ 87 |
| Bibliografía                                                                                               | _ 88 |
| Tablas y anexos                                                                                            |      |





## Introducción





#### Introducción

El mundo industrial se ha visto envuelto en los últimos años en una alta competencia que obliga a las organizaciones a luchar por ocupar un lugar preponderante en las preferencias del cliente, el cual se refleje en sus ventas y utilidades. Uno de los aspectos que ha impulsado esa competencia es el fenómeno de la globalización, el cual ha inducido a las empresas a implementar formas más eficientes y eficaces de administrar sus procesos, de tal manera que la calidad y la productividad de los productos se mejore continuamente. El mejoramiento continuo de la calidad y la productividad permite a una organización ser más competitiva.

La aplicación de la fiabilidad a la ingeniería de productos y procesos ha demostrado excelentes resultados como medio de anticipar fallas de operación. Muchos de los problemas de producción pueden ser prevenidos mediante las técnicas de fiabilidad, con lo que se podrá obtener un producto acorde a las expectativas del cliente en cuanto a durabilidad y calidad, a las limitaciones tecnológicas y operativas de manufactura y al capital de trabajo. La gran competencia en mercados nacionales e internacionales obliga a las empresas a desarrollar estrategias que tomen como base el precio, la calidad, la fiabilidad y el tiempo de entrega (Robert J Latino, s.d.). Estas estrategias han tomado mucho interés en estos días, pues es una realidad que el éxito será para quienes logren llegar primero, con una calidad satisfactoria para el cliente y con un precio razonable y asequible para el nicho de mercado que se pretende capturar. Además, se quiere que estos productos tengan un rendimiento sin falla por un tiempo suficiente (vida útil), que satisfaga las expectativas del cliente.

La Empresa Eléctrica Cienfuegos se plantea como meta prevenir problemas y desarrollar estrategias de mantenimiento orientadas al mejoramiento continuo de la calidad, incremento de la productividad y reducción de los costos, en este contexto surge la necesidad de esta investigación.

#### Situación problemática:

En el año 2011 los índices de interrupciones fueron desfavorables según los indicadores propuestos por la Unión Nacional Eléctrica (UNE) en la Empresa Eléctrica, hubo más de 773 fallos en los diferentes niveles de voltaje de las redes eléctricas. Todo lo anterior representa una energía dejada de servir a los clientes con las consecuencias negativas de menor ingreso por concepto de facturación eléctrica a la entidad y el incremento de la insatisfacción al cliente por el servicio recibido.

#### En consecuencia el problema científico

¿Cómo mejorar la gestión de la fiabilidad en la distribución eléctrica?

#### La hipótesis de la investigación plantea:

Aplicando un procedimiento para la mejora de la fiabilidad, se facilitará el empleo de herramientas que darán la posibilidad de identificar oportunidades de mejora.





#### Las variables de la investigación en consecuencia quedan definidas como:

Variable independiente: Procedimiento para la mejora de la fiabilidad, el cual incluirá la forma en que se deben utilizar las técnicas de análisis.

Variable dependiente: Las oportunidades de mejora identificadas, las cuales dependen de la viabilidad de las técnicas aplicadas para este fin.

#### **Definición Conceptual:**

Procedimiento para la mejora de la fiabilidad: Forma especificada para llevar a cabo la parte de la gestión del mantenimiento centrado en la fiabilidad enfocada al cumplimiento de los objetivos de la calidad del proceso de servicio y a la mejora de sus indicadores operativos.

Las oportunidades de mejora identificadas: Mecanismo que definen los aspectos críticos del servicio brindado y las medidas técnico organizativo para elevar la satisfacción del cliente.

#### Definición operacional:

Procedimiento para la mejora de la fiabilidad: Se ha podido identificar un procedimiento que de manera estructurada posibilita el desarrollo del Mantenimiento Centrado en Fiabilidad en las redes eléctricas. Este procedimiento establece nuevos registros y define las herramientas a utilizar para poder determinar correctamente los índices de fiabilidad Tiempos Medios entre Fallos (TMEF) y los Tiempos de Trabajo hasta el Fallo (TTHF). Este procedimiento ha sido seleccionado después de la revisión de la teoría existente y su análisis crítico para la aplicación en el entorno cubano. En este caso se utiliza el procedimiento Adaptado de (Javier García González Quijano, 2004)

Las oportunidades de mejora identificadas: Se establecen indicadores para controlar el desempeño de la calidad del servicio al cliente aplicando las herramientas del software estadístico de Statgraphics Centurión XV

#### El objetivo general:

Aplicar un procedimiento para la mejora de la fiabilidad en la Empresa Eléctrica Cienfuegos logrando determinar los equipos con mayor incidencia de fallas y proponer mejoras.

#### Los **objetivos específicos** que se persiguen en este trabajo son:

- Revisar la literatura sobre el desarrollo y mejores prácticas en el análisis de la fiabilidad y las principales tendencias en la actividad de mantenimiento eléctrico contemporánea, que permita adoptar la teoría que sustente el desarrollo de la investigación
- Realizar un diagnóstico de fiabilidad al proceso de distribución eléctrica determinando los equipos con mayor índice de averías y proponer medidas para la solución de los problemas detectados.
- Insertar la gestión de la fiabilidad en el proceso de mantenimiento a las redes eléctricas y evaluar el nivel de servicio eléctrico al cliente.

El trabajo está estructurado en los siguientes capítulos:





#### Capítulo I: Consideraciones Teóricas

En este capítulo, se realiza una síntesis de los elementos necesarios para la fundamentación de la investigación. En el estudio teórico de la fiabilidad sus conceptos, ecuaciones y las herramientas informáticas así como las metodologías más relevantes para su aplicación. Además se realiza una exploración de la aplicación de la fiabilidad en las redes eléctricas.

#### Capítulo II: Descripción del Objeto de Estudio y Procedimiento a Seguir.

En el presente se desarrolla una caracterización de la Empresa Eléctrica Cienfuegos conjuntamente con un diagnóstico de fiabilidad al proceso de mantenimiento de las redes eléctricas. También se plantea la aplicación de un procedimiento de análisis de fiabilidad que se utilizará en esta investigación

#### Capítulo III: Análisis de la fiabilidad en la Empresa Eléctrica Cienfuegos.

Este capítulo recoge la aplicación del procedimiento en sus tres fases (de diagnóstico, de análisis y optimización), los resultados obtenidos así como las propuestas para la medición del nivel del servicio eléctrico al cliente por cada elemento de fallos del sistema y la evaluación económica de las fallas del proceso de distribución eléctrica.

#### Herramientas y Métodos

Se utilizan las herramientas que son consideradas como mejores prácticas dentro del análisis de la fiabilidad. Se emplean en la toma de información los registros de fallas, analizados a través de gráficas de Pareto, la utilización de Histogramas de Frecuencias, Árbol de fallas, Gráficos de frecuencia de fallas, Gráficos de tendencias, Gráficos de control, Análisis de la probabilidad de fallos, Análisis de correlación, Análisis de causa raíz (ACR), la técnica de Análisis de Modos de Fallos y sus Efectos (FMEA), Además se utilizan herramientas genéricas de gestión, para el trabajo con expertos (técnica de la multivotación, método Delphi )y software para el procesamiento de datos (el Método de Análisis de Regresión Weibull, el método de bondad de ajuste por la prueba Chi-cuadrada; Pruebas Razón de Verosimilitud y en la determinación del plan de mejora se aplica la herramienta 5W y 1H.

#### **Resultados Esperados**

La identificación de los equipos más problemáticos en las fallas de las redes de distribución eléctricas por medio del diagnóstico real al proceso de mantenimiento de las redes.

La evaluación de los indicadores establecidos y la implementación de nuevos indicadores para determinar la fiabilidad del proceso en las redes de distribución eléctrica.

La implementación del procedimiento adecuado a las características del servicio para mejorar la satisfacción del cliente y disminuir las quejas.

La propuesta de medición del nivel de servicio al cliente por causal de fallo de los transformadores y la evaluación del impacto económico de la avería del transformador.





# Capítulo 1





#### Capítulo 1: Consideraciones Teóricas.

En este capítulo se estudian aspectos generales para la aplicación de la fiabilidad en la industria, se analizan conceptos y expresiones matemáticas de fiabilidad elementales para el estudio y análisis de fallas en cualquier entidad y se expone la relación de la Gestión de la Calidad y la Fiabilidad como herramienta para el mejoramiento continuo, se consideran además los aspectos del mantenimiento que contribuyen al mejoramiento de la fiabilidad. El hilo conductor para la comprensión del marco teórico se muestra en la figura 1.1.

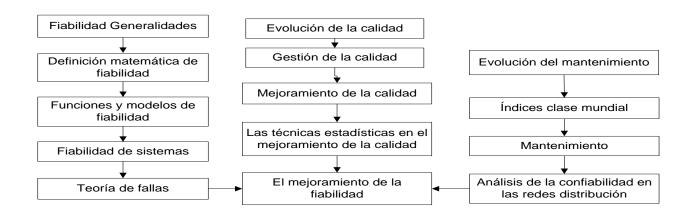



Figura 1.1 Hilo conductor del marco teórico Fuente: Elaboración propia

#### 1.1 Fiabilidad Generalidades

#### 1.1.1 Historia de la Fiabilidad

El comienzo histórico de la aplicación de las técnicas de fiabilidad se inicia en 1713 cuando Jacob Bernoulli formuló la ley de probabilidades de dos eventos independientes, posteriormente y antes de la Segunda Guerra Mundial el concepto se desarrolló y aplicó en la aviación. No obstante, fueron los servicios militares, por tener los problemas más agudos, los que dieron impulso al ordenado desarrollo de la Ingeniería de Fiabilidad. Los problemas de mantenimiento, reparación y las fallas de campo, se convirtieron en dificultades severas del equipamiento militar en la Segunda Guerra Mundial.

Entre 1945 y 1950 fueron revelados varios estudios sobre investigaciones realizadas y durante los años 50 numerosas compañías se enfrentaron con nuevos problemas en el diseño y construcción de complejos sistemas a niveles de confiabilidad sobre lo usual, motivando esto el surgimiento de un nuevo tipo de especialista conocido como Ingeniero de Fiabilidad(Dhillon, B, 2005).





El concepto de fiabilidad, al igual que muchas técnicas de calidad y productividad, tuvo su origen durante la segunda guerra mundial, pues en ese momento era una meta fundamental lograr alta fiabilidad en el material bélico a fin de disminuir al máximo la probabilidad de falla de cualquier equipo. Este concepto se ha venido depurando vertiginosamente en los últimos años, hasta convertirse en un área importante de investigación en la que se incorpora una gran variedad de conceptos matemáticos y estadísticos(Acuña, J. A., 2003).

La aplicación de la fiabilidad en la ingeniería permite anticipar fallas de operación, al realizar pruebas de campo, análisis de fallas y determinar la probabilidad de su ocurrencia; así se pueden prevenir problemas en la producción y desarrollar estrategias de mantenimiento orientadas al mejoramiento continuo de la calidad, incremento de la productividad y reducción de los costos.

La fiabilidad es la característica de calidad que mide la duración de los productos, los cuales deben operar sin fallas durante un tiempo especificado para ser confiables(Salazar & H. Gutiérrez Pulido, 2003).

En(Acuña, J. A., 2003) define el concepto de *fiabilidad* (R (t)) como la *probabilidad* de que una unidad de producto se desempeñe satisfactoriamente cumpliendo con su función durante un *período de tiempo diseñado y bajo condiciones previamente especificadas*. Donde la *probabilidad* es un resultado numérico de un evento aleatorio para el cual se conocen o no sus causas y debe ser de una magnitud comprendida entre cero y uno, el *período diseñado* significa que el funcionamiento del producto no es para siempre, si no hasta que se logre un nivel adecuado de satisfacción del cliente y las *condiciones previamente especificadas* significa que el proceso no se desarrolla bajo cualquier condición, sino bajo aquellas establecidas en el diseño y descritas muy claramente en los instructivos de uso y vida útil de producto, relacionado con cantidades físicas tales como presión, temperatura, humedad, viento, tensión o acciones humanas que imponen al producto un reto durante su funcionamiento y una probabilidad de acortar su vida útil.

Un estudio de fiabilidad busca estudiar la vida de un producto medida en unidades de tiempo (minutos, horas, días) o unidades relacionadas como son número de ciclos, distancia recorrida, piezas producidas, etc. La variable de respuesta o característica de calidad de interés en los estudios de fiabilidad es el tiempo a la falla(Salazar, H. G, 2004).

#### 1.2 Definición matemática de fiabilidad

La probabilidad y la estadística estudian modelos (abstracciones de la realidad) que permiten variaciones en la salida de un sistema, aún cuando las variables que se controlan no cambien a propósito durante el estudio. Estos modelos se emplean para comprender, describir y cuantificar aspectos importantes del sistema y predecir la respuesta del sistema a diversas entradas. La probabilidad puede interpretarse como el grado de creencia de que ocurra el resultado, es útil cuantificar la posibilidad de que se presente cierto resultado. Para ello se asigna un número del





intervalo [0,1] o un porcentaje del 0 al 100 %. Entre más grande sea el número mayor probabilidad del resultado. P (B) = 0 y P (C) = 1, son el resultado imposible y el seguro. A la asociación de un número con cada resultado de un experimento aleatorio se le conoce como variable aleatoria y el experimento aleatorio es aquel que puede proporcionar diferentes resultados, aún cuando se repita siempre de la misma manera(Salazar & H. Gutiérrez Pulido, 2003).

Las variables aleatorias discretas toman valores de un conjunto discreto de tal forma que cada posible valor x tiene asignada una probabilidad. Es por ello que su distribución viene definida por una función discreta, llamada función de probabilidad.  $P_x(x)$ .Las variables aleatorias continuas pueden tomar cualquier valor de la recta real. Es por ello por lo que su distribución viene definida por una función continua que llamamos función de densidad f  $_x(x)$ . Según el tipo de variable con que estemos trabajando la forma de la función de densidad nos dirá cuál es su comportamiento. (Carrión, 2002)(Centro de Estudios de PDVSA, 2010)

La definición matemática de fiabilidad utiliza principios de cálculo diferencial e integral que usa como variable independiente y aleatoria el tiempo y como variable dependiente la función de falla f (t). Con ello es posible determinar por medio de la integración de esa función de falla y en el período de tiempo fijado el valor de la fiabilidad que corresponde. Esto se hace de la siguiente manera(Acuña, J. A., 2003)

Sea R  $(t_1)$  = P  $(t > t_1)$  = probabilidad de que el sistema (producto o máquina) opere sin falla por un período de tiempo  $t_1$  o fiabilidad del sistema en el tiempo  $t_1$ .

Si F (t) = P (t  $\leq$  t<sub>1</sub>) entonces R (t) = 1- F (t)

$$R(t) = 1 - \int_0^{\tau_1} f(t)dt = \int_{\tau_1}^{\infty} f(t)dt$$
 (1.1)

Sea que R (t = 0) = 1 y R (t =  $\infty$ ) = 0

Por definición matemática entonces:

$$f(t) = -\frac{dR(t)}{dt} \tag{1.2}$$

#### 1.3 Funciones y modelos de la fiabilidad

Respondamos entonces la interrogante de ¿qué funciones matemáticas y a través de qué modelos se puede determinar la fiabilidad?

En general las funciones que se utilizan en fiabilidad son: función de densidad, función de distribución acumulada, función de fiabilidad, función de riesgo, función de riesgo acumulada, vida media o tiempo medio a la falla y función cuantil.

La función de densidad es una función no negativa cuya integral sobre todo su rango posible es igual a 1. Lo que significa que el área bajo la curva entre dos valores es la probabilidad de observar fallas en ese intervalo. En fiabilidad suelen interesar funciones de densidad definidas en el intervalo de cero





al infinito, puesto que los tiempos de vida no pueden ser negativos. La función f (t) es función de densidad (continua) si cumple que:

$$f(t) \ge 0 \ y \int_{-\infty}^{\infty} f(t) dt = 1; \ -\infty < t < \infty$$
 (1.3)

A partir de la función de densidad se definen otras funciones útiles en fiabilidad(Salazar & H. Gutiérrez Pulido, 2003).

La función de distribución acumulada, F (t) se define como la integral de la función de densidad hasta el tiempo t, y no es otra cosa que la probabilidad de fallar antes del tiempo t ( $P (T \le t)$ ). Limitándonos a funciones de densidad de probabilidades definidas en el intervalo de cero al infinito, la función de distribución acumulada es:

$$P(T \le t) = F(t) = \int_0^t f(x) dx \tag{1.4}$$

Con ésta función siempre creciente se obtiene directamente la probabilidad de fallar o la proporción de fallas antes del tiempo t.

La función de fiabilidad, C (t) es una función siempre decreciente, también conocida como función de supervivencia, se define como C (t) = 1 - F (t). Representa la probabilidad de sobrevivir al tiempo t. Cualquier producto falla o sobrevive a un tiempo dado t, por lo que C (t) + F (t) = 1(Salazar, H. G, 2004).

La función de riesgo es también conocida como tasa de falla instantánea o tasa de riesgo, se define como:

$$h(t) = \frac{f(t)}{C(t)} = \frac{f(t)}{1 - F(t)}$$
(1.5)

Y se puede probar (Meeker y Escobar, 1999)(Sánchez, A. C, s.d.) que es el resultado del siguiente límite:

$$h(t) = \lim_{\Delta \to 0} \frac{P(t < T < t + \Delta | T > t)}{\Lambda}$$
 (1.6)

De aquí se deduce que h (t)  $\Delta$  es aproximadamente la probabilidad condicional de, habiendo sobrevivido hasta el tiempo t, fallar en el intervalo pequeño [t, t+ $\Delta$ ]. En otras palabras es la propensión a fallar que se tiene al tiempo t. Se esperaría que la función de riesgo fuera creciente, pues a medida que transcurre el tiempo se incrementa la propensión a fallar de muchos productos. Sin embargo, existen casos de productos que al inicio de su vida su propensión a fallar disminuye, es decir, al menos en dicho período su tasa de riesgo es decreciente. Existen algunos productos que durante toda la vida útil su tasa de riesgo es decreciente y en algunos es constante, esto significa que la propensión a fallar es la misma independientemente del tiempo transcurrido(Salazar, H. G, 2004).

La función de riesgo acumulado es la integral hasta el tiempo t de la función de riesgo, es decir,





$$H(t) = \int_0^t h(x)dx \tag{1.7}$$

La vida media es el valor que en promedio dura la vida del producto, es el valor esperado o media de la variable T, es decir,

$$E(T) = \int_0^\infty t f(t) dt \tag{1.8}$$

La vida media no es muy útil cuando la distribución de los tiempos de vida es sumamente asimétrica. En general es más recomendable la vida mediana, definida como el cuantil 50 %.

La función cuantil p es el tiempo t<sub>p</sub> al cual se espera falle una fracción o proporción p de las unidades. Se puede definir en términos de la función de distribución acumulada como:

$$t_p = F^{-1}(p) (1.9)$$

Esta función es útil en fiabilidad porque contesta de manera directa la pregunta sobre el tiempo al cual falla una fracción deseada de las unidades. Típicamente interesa estimar el tiempo al cual falla un porcentaje bajo de unidades (1%, 5%, 10%, 15%).

Cada una de las funciones mencionadas caracteriza la distribución de probabilidades a la que pertenece, lo que hace posible que, dada una de ellas, se puedan deducir todas las demás. Si una distribución es un buen modelo, entonces a través de ella se encuentran las principales características del sistema (población o proceso), tales como su tendencia central y variabilidad(Charles J & Latino, R. C, 2011)

La distribuciones binomial, geométrica e hipergeométrica son modelos relacionados con el experimento de Bernoulli, que es un experimento aleatorio donde en cada realización ocurre sólo uno de dos resultados posibles. A uno de los resultados se le llama éxito y al otro fracaso. La distribución binomial (n, p) proporciona la probabilidad de observar x éxitos en una secuencia de n experimentos Bernoulli independientes con una probabilidad constante de éxito p, con x = 1, 2, 3...n. La distribución geométrica proporciona la probabilidad de realizar X experimentos Bernoulli independientes con probabilidad constante de éxito a fin de obtener el primer éxito X = 1, 2.... La distribución hipergeométrica da la probabilidad de obtener X éxitos en n experimentos Bernoulli donde no se mantiene la probabilidad de éxito constante. La distribución de Poisson caracteriza situaciones de obtener número de eventos que ocurren por unidad, tales como; número de defectos por artículo, número de defectos por metro cuadrado, número de impurezas en un líquido, número de errores de un trabajador(Carpaneto, E & Chicco., G., 2004).

#### 1.3.1 Modelos que permiten determinar la fiabilidad

Usualmente la información de datos relativos a las fallas sobre elementos de ingeniería es registrada y procesada con parámetros como el tiempo medio entre fallas y la tasa de fallas. El tiempo para fallar de cada elemento puede seguir diferentes modelos. A través de los años varias distribuciones





estadísticas han sido utilizadas para representar estos modelos, como la exponencial, Weibull, normal, gamma y Rayleigh. Las experiencias pasadas indican que generalmente el tiempo para fallar de partes electrónicas sigue la distribución exponencial y partes mecánicas la Weibull. No obstante, en la vida real para la evaluación de fiabilidad de sistemas y partes en ingeniería es usada ampliamente la distribución exponencial. Probablemente el factor más importante para esta amplia aplicación sea la simplicidad de su uso(Dhillon, B, 2005)

Las variables aleatorias se caracterizan por el hecho de seguir determinadas pautas en su comportamiento y siguen cierta distribución, que nos permite hallar las probabilidades de que ocurran determinados sucesos(Andreani, A. A., 2009)

Algunas variables aleatorias presentan comportamientos característicos que son estándares de uso frecuente. Cuando una variable aleatoria se representa en forma gráfica, es posible identificar una distribución de probabilidad de esa variable que puede ser empírica o teórica. Las distribuciones empíricas se representan utilizando distribuciones de frecuencias de datos agrupados. Las distribuciones teóricas, ya sean discretas o continuas, han sido estudiadas y definidas, lo que permite un excelente medio de ajustar el comportamiento de una variable. (Acuña, J. A., 2003)

Para determinar si un conjunto de datos se distribuyen por alguna de éstas distribuciones teóricas se utilizan las pruebas de bondad de ajustes, donde sobresalen: la prueba chicuadrado, (muestras grandes en datos agrupados)(Murguía, P. R, s.d.), Kolmogorov-Smirnov (muestras grandes en datos no agrupados) y Shapiro–Wills (muestras pequeñas en datos no agrupados) según *De Vore 1998*(Sánchez, A. C, s.d.) donde se pueden usar paquetes estadísticos, que tienen módulos para pruebas de éste tipo que evalúan estadísticamente ese ajuste(Acuña, J. A., 2003).

Existe gran diversidad de distribuciones que se han utilizado como modelos de tiempo de falla. La justificación más frecuente de un modelo es su mejor ajuste a los datos observados. En cualquier estudio de fiabilidad un aspecto fundamental es identificar cuál es la distribución que mejor modela el tiempo de falla (o vida) de los productos.

Los tiempos a la falla son valores no negativos que suelen tener un comportamiento asimétrico, con sesgo positivo. Esto hace que la variable aleatoria "tiempo a la falla" tenga comportamientos diferentes al modelo normal. Por ello, para modelar tiempos de vida no se usa con frecuencia la distribución de probabilidad normal, sino distribuciones que toman valores positivos como la Weibull, lognormal, exponencial y gamma, por mencionar algunas. Como modelos de tiempo de falla se han utilizado frecuentemente cinco distribuciones: exponencial, Weibull, valor extremo, normal y lognormal(Salazar, H. G, 2004).

La distribución exponencial se utiliza frecuentemente para modelar tiempos. Una de las características distintivas de la distribución exponencial es que su función de riesgo es constante, esto significa que los productos cuyo tiempo de falla siguen una distribución exponencial, "no





envejecen" o "no se fatigan". Pero esto no significa que no fallen, más bien lo que implica es que su tasa de riesgo o propensión a fallar se mantiene constante en el tiempo. Esta propiedad de la distribución exponencial se conoce como *falta de memoria*, en el sentido de que los productos cuya vida es exponencial no registran en su tasa de riesgo el tiempo transcurrido: sin importar que el producto tenga mucho tiempo funcionando, su riesgo de fallar es el mismo que cuando estaba nuevo. Si bien la propiedad de falta de memoria parece irreal, en la práctica existen productos cuya vida se puede modelar bien con esta distribución. Por ejemplo, se ha utilizado para describir la vida de componentes electrónicos de alta calidad que generalmente fallan por causas ajenas o extrínsecas al propio producto, y estas fallas ocurren de manera aleatoria en el tiempo. Contrariamente, la distribución exponencial no es útil para modelar la vida de productos sujetos a desgaste o fatiga de algún tipo, por ejemplo piezas metálicas como balatas, baleros, bisagras, etc., ya que en éstos productos la tasa de riesgo se incrementa con el tiempo(Sánchez, A. C, s.d.)

La distribución Weibull dada su flexibilidad, es una de las más utilizadas para describir la vida de productos, ya que permite modelar productos con tasas de riesgo creciente, constante y decrecientes. En su forma típica esta distribución está determinada por dos parámetros: el de forma ( $\beta$ ) y el de escala ( $\eta$ ). Como sus nombres lo indican el primero tiene efecto sobre la forma que toma la distribución y el segundo afecta la escala del tiempo de vida.(Allan, R. N, 1982).

La distribución Weibull es un modelo apropiado para modelar tiempos de falla de productos compuestos por muchas partes con distribuciones de vida comparables, donde el producto falla cuando una de las partes falla. Es decir, el tiempo de falla del producto es igual al tiempo de falla mínimo de las partes que lo conforman (falla de eslabón más débil). Por ejemplo, la vida de un capacitor está determinada por la porción de su dieléctrico con vida más corta.(Andreani, A. A., 2009). La distribución del valor extremo, es la distribución natural para modelar productos cuya vida es la mínima de sus componentes, en el mismo sentido que se comentó para la distribución Weibull. En la función de densidad de ésta distribución, m es un parámetro de localización y s de escala. La distribución del valor extremo está relacionada muy estrechamente con la Weibull, ya que si la variable T sigue una distribución Weibull ( $\beta$ ,  $\eta$ ), su logaritmo neperiano  $\ln(T)$  sigue una distribución valor extremo con parámetros de escala  $\sigma = 1/\beta$  y parámetro de localización  $\mu = \ln(\eta)$  (Salazar, H. G, 2004).

La distribución normal es una distribución continua cuya densidad tiene forma de campana. La distribución normal no es de las más utilizadas en los datos de vida, puesto que la variable "tiempo de falla" suele tener un comportamiento asimétrico, mientras que la normal siempre es simétrica. Sin embargo, en ocasiones es el modelo seleccionado por ajustarse mejor a los datos. En teoría, la distribución normal es el modelo apropiado cuando la falla del producto es el resultado de muchos





pequeños efectos que actúan de manera aditiva sobre el producto. En la función de distribución acumulada, F es la función de distribución acumulada de la normal estándar(Salazar, H. G, 2004).

En la distribución normal el parámetro de localización, m, coincide con la media de la distribución y el parámetro de dispersión, S, es la desviación estándar. Esta es la única distribución donde ambos parámetros tiene esta interpretación directa.

El modelo lognormal puede servir cuando los tiempos a la falla son el resultado de muchos efectos pequeños que actúan de manera multiplicativa. Esto hace que al sacar el logaritmo dichos efectos se conviertan en efectos que actúan de manera aditiva sobre el logaritmo del efecto global o logaritmo del tiempo de falla. Es por ello que el logaritmo de una variable lognormal la transforma en una variable normal. En las expresiones más usadas en fiabilidad para la distribución lognormal m es el parámetro de localización, se conoce también como log media, y s, parámetro de escala se conoce como log desviación estándar. Existe una estrecha relación entre la distribución lognormal y la normal, ya que si T sigue una distribución lognormal, su logaritmo neperiano ln (T) sigue una distribución normal. O bien, si T tiene una distribución normal,  $\gamma \equiv \exp(T)$  tiene una distribución normal. El modelo lognormal se ha utilizado para modelar los tiempos de falla de procesos de degradación, por ejemplo, de fatiga de metales y de aislantes eléctricos(Sánchez, A. C, s.d.).

La distribución de la bañera, que toma su nombre de su forma, es una distribución típica de la representación de vida útil de productos. La forma clásica que toma ésta distribución se puede observar en la figura 1.2.

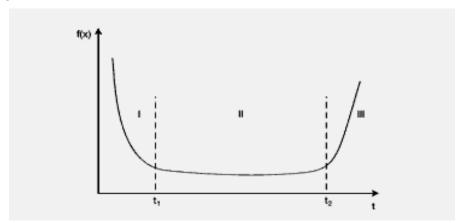



Figura 1.2 Distribución de la bañera

Fuente: (Acuña, J. A., 2003)

Existen tres períodos en el comportamiento de ésta distribución(Dhillon, B, 2005)

I. Período de mortalidad infantil: que va desde t=0 hasta  $t=t_1$ . Este segmento se caracteriza por ser un período de fallas tempranas debidas a la naturaleza novedosa del producto. Conforme el producto se ajusta a las condiciones de funcionamiento, las fallas van





- disminuyendo. La distribución que mejor se ajusta en éste período es una distribución exponencial negativa.
- II. Período de falla constante: que va de t = t<sub>1</sub> a t = t<sub>2</sub>. Este período se caracteriza por una ocurrencia casi constante de fallas. Los equipos o productos se han adaptado a su forma de funcionamiento, de tal manera que la probabilidad de fallas se mantiene aproximadamente constante. La distribución que mejor se ajusta en éste período es la distribución uniforme continua.
- III. Período de desgaste: que va de t = t₂ hasta +∞. Este período se caracteriza por un período creciente de fallas que indica que el producto está pronto a cumplir con su ciclo de vida útil. La distribución de probabilidad que mejor se ajusta en este período es la distribución exponencial positiva.

(Amendola, L., 2002) explica la distribución de la bañera con la función de riesgo y con esta caracterizan la vida de un producto. Los dos puntos de inflexión que separan las tres etapas de la vida son de interés en el estudio de fiabilidad del producto: el primero tiene relación directa con la determinación del tiempo de quemado o "burn in", y el segundo tiene relación con el tiempo al cual la unidad debe sustituirse por una nueva, o bien darle un mantenimiento mayor para alargar su vida útil. En las tablas 1.1 y 1.2 ver Anexo se resumen las funciones más usadas en fiabilidad para las distribuciones mencionadas anteriormente.

#### 1.4 Fiabilidad de sistemas

La evaluación de la fiabilidad de un sistema es representado por diagramas de bloques, a su vez un diagrama de bloque es formado por varios sub bloques, representando subsistemas, unidades, partes. La probabilidad de falla o de éxito de cada subsistema, unidad o parte es estimada para calcular la probabilidad de falla, de éxito de todo el sistema. En este caso la probabilidad de éxito o falla de los componentes no varía con el tiempo, ésta se mantiene constante. Generalmente en este tipo de análisis o evaluación de fiabilidad es asumido que los componentes, unidades, subsistemas fallan independientemente(Dhillon, B, 2005)

Con frecuencia los componentes de un sistema están conectados en serie, en paralelo o en forma mixta. Cuando están conectados en serie se requiere que todos los componentes funcionen para que el sistema funcione; cuando están en paralelo basta que uno de los componentes funcione para que el sistema funcione. Bajo el supuesto de que los componentes del sistema son independientes, es posible calcular con relativa facilidad la fiabilidad del sistema (Centro de Estudios de PDVSA, 2010).





#### 1.4.1 Conexiones en series

Un sistema en serie con k componentes, cuyas fiabilidades son  $C_1$ ,  $C_2$ ,... $C_k$ ; respectivamente. Bajo el supuesto de que trabajan de manera independiente, la fiabilidad del sistema es igual a la probabilidad de que todos funcionen, por lo tanto está dada por:

$$C_s = C_1 * C_2 * \dots C_k \tag{1.10}$$

Puesto que se requiere que todos funcionen para que el sistema funcione. Esta es la llamada *regla del producto de probabilidades*. Mientras más larga es la serie de componentes, la fiabilidad del sistema es menor, ya que 0 < C<sub>i</sub> < 1. De aquí que una forma de mejorar la fiabilidad del sistema es reducir la cantidad de componentes que están conectados en serie. Cada bloque en el diagrama representa una unidad o componente, si al menos una unidad falla, el sistema falla. En otras palabras, todas las unidades deben operar normalmente para el éxito del sistema.

#### 1.4.2 Conexiones en paralelo

Es una red ampliamente usada y representa un sistema con unidades operando simultáneamente. Al menos una unidad debe operar normalmente para que el sistema sea exitoso. En un sistema en paralelo de *k* componentes, basta que uno de ellos funcione para que el sistema funcione. O bien, se requiere que todos fallen para que el sistema falle. De aquí restando a 1 la probabilidad de que todos fallen, es igual a la fiabilidad del sistema, esto es,

$$C_s = 1 - P(todos fallen) = 1 - [(1 - C_1) * (1 - C_2) * .... * (1 - C_K)]$$
 (1.11)

A mayor cantidad de componentes en paralelo o redundantes, el sistema es más confiable(Salazar, H. G, 2004).

La configuración de un sistema en paralelo implica una decisión inicial acerca de cuáles y cuántos componentes deben ser redundantes, pero sobre todo, las razones por las cuales debe crearse esa redundancia, las cuales se refieren esencialmente a la naturaleza de la falla y sus consecuencias humanas, técnicas y económicas(Acuña, J. A., 2003).

#### 1.4.3 Conexiones en serie y en paralelo

Muchos sistemas están compuestos por subsistemas en serie y en paralelo conectados de cierta manera. En algunos de estos casos puede ser complicado obtener la fiabilidad del sistema. De hecho un problema que surge es determinar la configuración de los componentes que maximiza la fiabilidad del sistema(Salazar & H. Gutiérrez Pulido, 2003).

Para calcular la fiabilidad del sistema, éste se puede ver como un sistema en serie de cuatro componentes, dos de los cuales a su vez son sistemas en paralelo.

En la tabla 1.3 del Anexo, se muestra un resumen de las expresiones para la evaluación de la fiabilidad de las diferentes conexiones básicas y las derivadas de éstas.





#### 1.5 Teoría de fallas

El fallo es el suceso después del cual el componente o sistema deja de cumplir total o parcialmente sus funciones. Los fallos pueden ser según(Charles J & Latino, R. C, 2011)

- a. <u>Catastróficos o paramétricos</u>, atendiendo a la magnitud en que el componente o sistema pierda su capacidad de trabajo. Los fallos catastróficos inhabilitan completamente el trabajo del componente. Este es el caso de la rotura mecánica y el cortocircuito. Los fallos paramétricos son los fallos parciales que sólo degradan o limitan la capacidad de trabajo del componente.
- b. <u>Independientes o dependientes</u>, si la causa de fallo es específica del componente o sistema dado si ella es causa además del fallo de otros. En este último caso se produciría el fallo simultáneo o cuasi simultáneo de varios equipos por la misma causa, lo que podría afectar sensiblemente la seguridad.
- c. <u>Repentinos o graduales</u>, atendiendo a la forma en que aparece el fallo, súbitamente o pasando por estados degradados previos. El fallo gradual es característico de los procesos de desgaste y envejecimiento por el uso continuado.
- d. <u>Estables, temporales o intermitentes</u>, atendiendo al tiempo de permanencia del estado fallado. Existen fallos estables que impiden el trabajo del componente permanentemente hasta que no se somete al mantenimiento correctivo. Los fallos temporales a veces se "limpian" una vez que desaparece la causa que temporalmente los provocó (esto ocurre por ejemplo en los sistemas de transporte de energía eléctrica debido a fenómenos naturales). Los fallos intermitentes son los que desaparecen y vuelven a aparecer al cabo de un tiempo.
- e. <u>De interrupción o de bloqueo</u>, atendiendo al momento de la explotación en que se producen. son de interrupción cuando ocurren en el momento en que un equipo se encuentra en operación e interrumpe su trabajo, son de bloqueo cuando ocurren en el momento en que se trata de arrancar un equipo y éste se bloquea y no puede hacerlo.
- f. <u>Visibles u ocultos</u>, dependiendo de la posibilidad de detección del fallo. El fallo es visible cuando puede detectarse y ser corregido en cuanto se produce. El fallo es oculto cuando se produce en dispositivos a la espera que no pueden controlarse de forma continua y pueden estar fallados inadvertidamente.
- g. <u>Primarios, secundarios, comando o modo común</u>, atendiendo a la naturaleza de su origen y sus causas. El fallo es primario si ocurre en el propio componente o sistema, es secundario si ocurre en un sistema o componente soporte (ventilación, alimentación eléctrica, etc.) que da servicio al dispositivo, y por tal razón, éste queda funcionalmente indisponible. Es comando si se produce en la formación de la señal necesaria para el





arranque del dispositivo, el cual no llega a producirse porque el componente no se "entera" de que debe hacerlo. Por último el fallo modo común es el fallo dependiente que tiene lugar en componentes redundantes e idénticos, susceptibles de diversos factores de acoplamiento técnicos, ambientales y humanos.

#### 1.5.1 Modos de fallo de componentes

El fallo puede ocurrir de diversas formas, conocidas como *modos de fallo*. El modo de fallo se refiere a la forma en que se manifiesta el fallo de un componente. Los modos de fallos más característicos se relacionan a continuación(Mendoza, I. R, 2009)

- <u>Fallo al arranque</u>: Caracteriza el fallo de componentes a arrancar cuando son demandados. Es aplicable a todos los componentes que realizan su función arrancando y con movimiento continuo subsiguiente. Ejemplos: Bombas, Diesel, ventiladores, Compresores.
- <u>Fallo en Operación</u>: Caracteriza el fallo de un componente que trabaja en forma continua durante un tiempo de misión requerido. Es aplicable a todos los componentes que realizan su función por movimiento continuo. Ejemplos: Bombas, Diesel, ventiladores, Compresores (durante su fase de operación).
- <u>Fallo a la apertura</u>: Caracteriza el fallo de un componente a moverse a una posición nueva, abierta. Ejemplos: Válvulas, Interruptores, accionamientos de la protección del transformador.
- <u>Fallo al cierre</u>: Caracteriza el fallo de un componente a moverse a una posición nueva, cerrada. Ejemplos: Drop out, Cuchillas, Seccionalizadores, Válvulas, Interruptores.
- <u>Fallo al mantenimiento de la posición</u>: Caracteriza los fallos de componentes para mantener la posición requerida. Se refiere a componentes que tienen que mantener su posición durante el tiempo de misión o estar en posición correcta cuando son demandados. Ejemplos: Válvulas, Interruptores, cambia tap del transformador.
- <u>Fallo por rotura</u>: Caracteriza una rotura grande en el sistema o la redes eléctricas. Es
  aplicable a todos los componentes del circuito. Este fallo inhabilitaría al componente para
  realizar su función y puede presentarse durante la operación o estar presente en el
  momento que el componente se encuentra a la espera y es demandado. Ejemplos:
  Pararrayos, Shield de tierra.
- <u>Fallo en funcionamiento</u>: Es un modo de fallo general, que caracteriza el fallo de un componente para cumplir su función. Es aplicable a componentes que no se mueven (macroscópicamente) para ejecutar su función. Este fallo puede ser relativo al tiempo de





operación o a la demanda. Ejemplos: Equipos de instrumentación y control, esquemas de protecciones eléctricas.

- Obstrucción: Caracteriza cualquier forma de obstaculizar el flujo en la dirección requerida, no causada por la operación normal del componente. Es aplicable a la mayoría de los componentes a través de los cuales se mantiene o establece un flujo de líquido, vapor o gas.
- Corto a tierra, corto circuito y circuito abierto: Son aplicables a los componentes eléctricos y de instrumentación y control. Se trata de fallos relativos al tiempo de operación o de espera. Ejemplos: Barras, Centros de Control de Motores.

#### 1.5.2 Herramientas de evaluación de fallas

Para identificar las causas reales y potenciales de las fallas de un sistema en estudio (Acuña, J. A., 2003) explica algunas herramientas como el diagrama causa efecto, análisis de modo y efecto de falla (AMFE), diagramas de eventos y diagramas de árbol, considerándolas como medios que sirven para esquematizar la información y dejarla dispuesta para su análisis y para el desarrollo de mejoras. (Murguía, P. R, s.d.) Realiza una explicación detallada del árbol de eventos y el árbol de fallos.

En un diagrama causa efecto se anota en un recuadro el nombre de la falla principal, los elementos tecnológicos, ambientales, humanos, organizacionales como encabezado en cada rama y finalmente se anotan las causas de falla de cada factor, así se esquematiza la influencia de cada factor y evalúan los efectos que correspondan a la falla.

La metodología AMEF permite detectar aspectos críticos que requieren atención, es una herramienta clave en la labor de mejorar la fiabilidad de procesos y productos, proporciona la orientación y los pasos que un grupo de personas debe seguir para identificar y evaluar las fallas potenciales de un producto o un proceso, junto con el efecto que provocan éstas. A partir de lo anterior, el grupo establece prioridades y decide acciones para intentar eliminar o reducir la posibilidad de que ocurran las fallas potenciales que vulneran la fiabilidad.

El árbol de eventos es una técnica de modelado inductiva, parte de un suceso iniciador particular y se ramifica en diversos estados finales generales posibles, de éxito (OK) o daño (X), dependiendo de las respuestas de los sistemas en los encabezamientos. Los nodos son puntos de decisión del sistema que corresponda. En ellos se produce la bifurcación en dos caminos, uno hacia arriba, correspondiente al éxito del sistema y otro hacia abajo, correspondiente a su fallo. Para evaluar cuantitativamente el riesgo que representa un suceso iniciador, y sus contribuyentes, es necesario desarrollar previamente los modelos de





fiabilidad de los sistemas, pues de la probabilidad de éxito o falla de dichos sistemas dependerá que el estado final sea de éxito o daño.

El árbol de fallos es un modelo lógico deductivo, que parte del suceso tope para el cual se produce el fallo de un sistema. De una forma sistemática se va desarrollando el suceso tope en los sucesos intermedios que conducen a éste, y a su vez los sucesos intermedios en otros de menor jerarquía, hasta llegar a los sucesos primarios, determinados por el nivel de resolución del análisis posible o deseable. Este se establece atendiendo a los datos de fallos de que se dispone y/o al alcance que se pretende lograr de acuerdo con los objetivos de estudio. Los sucesos primarios e intermedios se interconectan mediante compuertas lógicas.

#### 1.6 Evolución del concepto Calidad

A lo largo del tiempo e I concepto de calidad en las empresas han ido evolucionando de manera sustancial hacia el concepto de calidad total.

Esta visión comenzó a cambiar con la Revolución Industrial, a partir de la cual se dejaron de crear productos únicos y la demanda aumentó de forma importante.

Posteriormente, factores como la minimización de costes, la aparición de economías de escala y el aumento de la competencia entre las empresas, provocaron la aparición del concepto de "control de calidad". El control de calidad se basaba en la inspección de la producción para evitar la salida de bienes defectuosos y en la actuación para que esos defectos no siguieran apareciendo. Conseguir más calidad implicaba controlar más y por tanto mayores costes

En los últimos años el concepto calidad ha seguido evolucionando, hasta llegar al concepto actual de Calidad Total, según el cual, la calidad es una fuente de beneficios. Una mayor calidad, trae consigo menores costes de no calidad, es decir, costes provocados por no hacer las cosas bien a la primera. Lo caro no es hacer bien las cosas, sino hacerlas mal para que luego haya que dejarlas bien.

La Calidad Total se basa en un sistema de gestión empresarial que involucra a toda la organización, centrándose en la satisfacción del cliente, tanto interno como externo. La Calidad Total engloba todos los aspectos de la empresa, consiguiendo la Calidad del Producto, la Calidad del Servicio, la Calidad de Gestión y la Calidad de Vida en toda la empresa y sus miembros.

Esta última etapa de la evolución de la calidad está estrechamente ligada al concepto de "mejora continua". El objetivo de la mejora continua es optimizar los resultados actuando sobre los servicios, productos, o procesos que sin poder ser considerados como deficientes ofrecen una oportunidad de mejora.





En la actualidad, la calidad se ha convertido en un factor estratégico clave, del que dependen la mayor parte de las organizaciones para mantener su posición en el mercado o incluso para asegurar su supervivencia.

Tabla 1.4- Evolución del Concepto de Calidad Fuente : Elaboración propia

| Evolución del concepto de calidad |                           |                                |                                |                                                                                       |                                                           |  |  |  |
|-----------------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
|                                   | 1ra<br>generación         | 2da<br>generación              | 3ra<br>generación              | 4ta<br>generación                                                                     | 5ta<br>generación                                         |  |  |  |
| concepto                          | Calidad por<br>Inspección | Aseguramiento<br>de la Calidad | Proceso de<br>Calidad<br>Total | Proceso de<br>Mejora<br>Continua de la<br>Calidad                                     | Reingeniería y<br>Calidad Total                           |  |  |  |
| enfoque                           | Herramienta               | Herramienta                    | Estrategia de la empresa       | Estrategia de la empresa                                                              | Rediseña la<br>empresa                                    |  |  |  |
| orientación                       | Al producto               | Al proceso                     | Al cliente                     | A mejorar<br>todas las<br>actividades de<br>la empresa<br>hacia el cliente<br>externo | A estructurar procesos completos hacia el cliente externo |  |  |  |

#### 1.7 Gestión de la Calidad.

Los clientes necesitan productos con características que satisfagan sus necesidades y expectativas. Estas necesidades y expectativas se expresan en la especificación del producto y son generalmente denominadas como requisitos del cliente. Al decir que un artículo es de alta calidad debe entenderse que cumple todas sus especificaciones, incluyendo la fiabilidad, Así, fiabilidad es calidad a lo largo del tiempo. No es suficiente que un producto cumpla las especificaciones y criterios de calidad establecidos y evaluados durante el proceso de producción, sino que además es necesario que tenga un buen desempeño durante cierto tiempo. (Ramakrishnan, S, 2011).

El enfoque a través de un sistema de gestión de la calidad anima a las organizaciones a analizar los requisitos del cliente, definir los procesos que contribuyen al logro de productos aceptables para el cliente y a mantener estos procesos bajo control´ (ISO 9001:2008).(Comité técnico de Normalización NC/CTN 56, 2008).

Con el incremento de las exigencias de los consumidores en relación con la calidad de los productos y servicios, el mantenimiento ha pasado a ser un elemento importante en el desempeño de los equipos y en los resultados de la empresa, cuyo impacto fundamental se manifiesta en los ingresos de la empresa, el comportamiento de los costos, de la productividad y de la disponibilidad de los equipos para la producción. Como parte del sistema de gestión de la calidad, los procedimientos de mantenimiento deben indicar el





objetivo de la función mantenimiento dentro de la empresa, como actividad responsable por el aumento de la disponibilidad y fiabilidad operacional de los equipos, obras e instalaciones (especialmente aquellas fundamentales a la actividad fin de la empresa), minimizando costos y garantizando el trabajo con seguridad y calidad. (Tavares, L., s.d.)

En mantenimiento productivo total el aseguramiento de la calidad se refiere a un mantenimiento apropiado de cada parte del equipo o del proceso, con el objetivo de lograr cero defectos al concentrarse en las relaciones entre condiciones del equipo y la calidad del producto.(Amendola, L., 2002)

#### 1.7.1 Mejoramiento de la calidad

Las necesidades y expectativas de los clientes son cambiantes y debido a las presiones competitivas y a los avances técnicos, las organizaciones deben mejorar continuamente sus productos y procesos. Una organización que funcione según los requisitos de un sistema de gestión de la calidad genera confianza en la capacidad de sus procesos y en la calidad de sus productos y proporciona una base para la mejora continua, lo que conduce a un aumento de la satisfacción de los clientes (R.W. Hoyer & Brooke, 2001)

El objetivo de la mejora continua es incrementar la probabilidad de aumentar la satisfacción de los clientes. La *mejora de la calidad* es la parte de la gestión de la calidad orientada a aumentar la capacidad de los requisitos de la calidad y la *mejora continua* es la acción recurrente para aumentar la capacidad de cumplir los requisitos. (Juran J.M, 1992)

El mejoramiento continuo de las prácticas de mantenimiento así como la reducción de sus costos, son resultados de la aplicación del ciclo de calidad total como base en el proceso gerencial. Los conflictos entre clientes y proveedores crean costos y consumen tiempo y energía. La gestión dinámica del mantenimiento comprende la administración de sus interfaces con otras divisiones corporativas. La coordinación en la planificación de la producción, la estrategia de mantenimiento, la adquisición de repuestos, la programación de servicios y el flujo de información entre estos subsistemas eliminan los conflictos en la obtención de metas.(Amendola, L., 2002)

#### 1.7.2 Las técnicas estadísticas en el mejoramiento de la calidad

El uso de técnicas estadísticas puede ser de ayuda para comprender la variabilidad y ayudar por lo tanto a la organización a resolver problemas y a mejorar la eficacia y la eficiencia. Asimismo estas técnicas facilitan una mejor utilización de los datos disponibles para ayudar en la toma de decisiones. La variabilidad puede observarse en el comportamiento y en los resultados de muchas actividades, incluso bajo condiciones de aparente estabilidad. Dicha variabilidad puede observarse en las características medibles de los productos y los





procesos, y su existencia puede detectarse en diferentes etapas del ciclo de vida de los productos, desde la investigación de mercado hasta el servicio al cliente y su disposición final. Las técnicas estadísticas pueden ayudar a medir, describir, analizar, interpretar y hacer modelos de dicha variabilidad, incluso con una cantidad relativamente limitada de datos. El análisis estadístico de los datos puede ayudar a proporcionar un mejor entendimiento de la naturaleza, alcance y causas de la variabilidad, contribuyendo a solucionar y prevenir los problemas que podrían derivarse de dicha variabilidad, y a promover la mejora continua. (NC/CTN 56 Gestión de la Calidad y Aseguramiento de la Calidad,, 2005)

La Fiabilidad Operacional se basa en análisis estadísticos orientados a mantener la fiabilidad de los equipos, con la activa participación del personal de la empresa. El fin último del análisis de fiabilidad es cambiar el mantenimiento correctivo, no programado y altamente costoso, por actividades preventivas planeadas que dependan del historial de los equipos, y permitan un adecuado control de costos. El comportamiento histórico de las fallas de los equipos se puede hallar utilizando las estadísticas por medio del análisis de fiabilidad. Partiendo del historial de fallas se proyecta la influencia de las actividades del mantenimiento preventivo sobre algunos índices de gestión de los equipos tales como la Fiabilidad, Mantenibilidad, Disponibilidad y Efectividad Global. ("Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes," 2009)

#### 1.7.3 El mejoramiento de la Fiabilidad

La Fiabilidad es calidad a lo largo del tiempo, al insertarse en los procesos de la organización, contribuirá a aumentar la capacidad de los requisitos de calidad de los activos de la infraestructura de producción.

El proceso de mejoramiento de la fiabilidad operacional, genera cambios en la cultura de la organización, haciendo que ésta se convierta en una organización diferente, con un amplio sentido de la productividad, con una visión clara del negocio y gobernada por hechos Cualquier hecho aislado en alguno de los cuatro bloques representados en la figura 1.3 puede traer beneficios, pero si no se tienen en cuenta los demás factores es probable que éstos sean limitados y/o diluidos en la organización y pasen a ser sólo parte del resultado de un proyecto y no de una transformación(Centro de Estudios de PDVSA, 2010).

La variación en conjunto o individual de cualquiera de los cuatro factores, afectará el comportamiento global de la fiabilidad operacional. La fiabilidad operacional es una ruta flexible y a la medida para compañías que buscan la excelencia empresarial y la gerencia de todos sus recursos





Es un proceso de mejoramiento continuo basado en hechos, alcanzado por una armonía de implantación de herramientas y técnicas basadas en riesgo en la que colaboran todas las partes de la organización.("El Análisis Causa Raíz, Estrategia de Confiabilidad Operacional.," 2005)

#### 1.8 Evolución del mantenimiento

Podemos encontrar infinidad de definiciones diferentes para el concepto de mantenimiento según los criterios de cada autor. Intentando homogeneizar diferentes criterios, podemos definir el mantenimiento como el conjunto de actividades que se realizan sobre un componente, equipo sistema para asegurar que continúe desempeñando las funciones que se esperan de él, dentro de su contexto operacional.

El objetivo fundamental del mantenimiento, por tanto, es preservarla función y la operatividad optimizar el rendimiento y aumentar la vida útil de los activos, procurando una inversión óptima de los recursos.

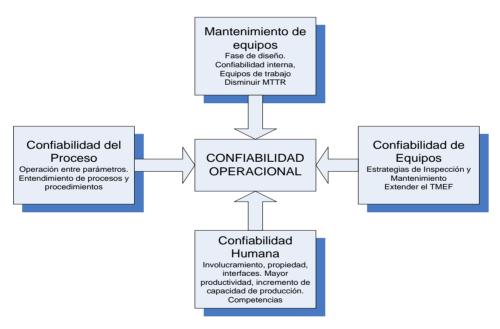



Figura 1.3. Factores que considera la Fiabilidad para mejoras integrales.

Fuente: (Centro de Estudios de PDVSA, 2010).

La historia del mantenimiento acompaña al desarrollo técnico industrial de la humanidad; a finales del siglo XIX con la mecanización de las industrias surgió la necesidad de las primeras reparaciones, hasta 1914 el mantenimiento había tenido una importancia secundaria y había sido ejecutado por los propios operarios. Con la implantación de las producciones en series durante la Primera Guerra Mundial, donde las fábricas debieron establecer programas de producción mínimos, surgió la necesidad de formar equipos que





pudiesen efectuar reparaciones en máquinas en servicio en el menor tiempo posible; éste grupo se subordinaba a la operación y su objetivo básico era ejecutar el mantenimiento, conocido en la actualidad como "mantenimiento correctivo".

Este enfoque del mantenimiento es resultado de una evolución importante a través del tiempo. John Moubray (1997) en su libro RCM II distingue entre tres generaciones diferentes de mantenimiento. Cada una de las cuales representa las mejores prácticas utilizadas en una época determinada.

#### Primera Generación

La primera generación cubre el período entre 1930 y la Segunda Guerra Mundial. En esta época la industria estaba poco mecanizada y por tanto los tiempos fuera de servicio no eran críticos, lo que llevaba a no dedicar esfuerzos en la prevención de fallos de equipos. Además al ser maquinaria muy simple y normalmente sobredimensionada, los equipos eran muy fiables y fáciles de reparar, por lo que no se hacían revisiones sistemáticas salvo las rutinarias de limpieza y lubricación. El único mantenimiento que se realizaba era el de "Reparar cuando se averíe", es decir mantenimiento correctivo.

## Segunda Generación

La Segunda Guerra Mundial provocó un fuerte aumento de la demanda de toda clase de bienes. Este cambio unido al acusado descenso en la oferta de mano de obra que causó la guerra, aceleró el proceso de mecanización de la industria.

Conforme aumentaba la mecanización, la industria comenzaba a depender de manera crítica del buen funcionamiento de la maquinaria. Esta dependencia provocó que el mantenimiento se centrara en buscar formas de prevenir los fallos y por tanto de evitar o reducir los tiempos de parada forzada de las máquinas. Con este nuevo enfoque del mantenimiento, apareció el concepto de mantenimiento preventivo. En la década de los 60, éste consistía fundamentalmente en realizar revisiones periódicas a la maquinaria a intervalos fijos. Además se comenzaron a implementar sistemas de control y planificación del mantenimiento con el objetivo de controlar el aumento de los costes de mantenimiento y planificar las revisiones a intervalos fijos.

## Tercera Generación

Se inició a mediados de la década de los setenta, cuando se aceleraron los cambios a raíz del avance tecnológico y de las nuevas investigaciones. La mecanización y la automatización siguieron aumentando, se operaba con volúmenes de producción muy elevados, cobraban mucha importancia los tiempos de parada debido a los costos por pérdida de producción. Alcanzó mayor complejidad la maquinaria y aumentaba nuestra dependencia de ellas, se exigían productos y servicios de calidad, considerando aspectos





de seguridad y medioambiente y se consolidó el desarrollo del mantenimiento preventivo.

## Nuevas tendencias del mantenimiento. La Cuarta Generación.

En los últimos años hemos vivido un crecimiento muy importante de nuevos conceptos de mantenimiento y metodologías aplicadas a la gestión del mantenimiento.

Hasta finales de la década de los 90, los desarrollos alcanzados en la tercera generación del mantenimiento incluían:

- Herramientas de ayuda a la decisión, como estudios de riesgo, modos de fallo y análisis de causas de fallo.
- Nuevas técnicas de mantenimiento, como el monitoreo de condición
- Equipos de diseño, dando mucha relevancia a la fiabilidad y mantenibilidad.
- Un cambio importante en pensamiento de la organización hacia la participación, el trabajo en equipo y la flexibilidad.

El nuevo enfoque se centra en la eliminación de fallos utilizando técnicas proactivas. Ya no basta con eliminar las consecuencias del fallo, sino que se debe encontrar la causa de ese fallo para eliminarlo y evitar así que se repita.

Así mismo, existe una preocupación creciente en la importancia de la mantenibilidad y fiabilidad de los equipos, de manera que resulta clave tomar en cuenta estos valores desde la fase de diseño del proyecto. Otro punto importante es la tendencia a implantar sistemas de mejora continua de los planes de mantenimiento preventivo y predictivo, de la organización y ejecución del mantenimiento.

## 1.8.1 Índices Clase Mundial

Los índices clase mundial son aquellos que son utilizados según la misma expresión en todos los países. De los seis índices clase mundial, cuatro se refieren al análisis de la gestión de equipos y dos a la gestión de costos.

El tiempo medio entre fallas es un índice que debe ser usado para elementos que son reparados después de una falla y se determina mediante la relación entre el producto del número de elementos por sus tiempos de operación y el número total de fallas detectadas en esos elementos, en el período observado.(Luis Amendola, P. D., & Tibaire Depool, M. I., s.d.)

El tiempo medio para la reparación es un índice que debe ser usado para elementos en los cuales el tiempo de reparación es significativo con relación al tiempo de operación. Se calcula mediante la relación entre el tiempo total de intervención correctiva en un conjunto de elementos con falla y el número total de fallas detectadas en esos elementos, en el período observado. El tiempo medio para la falla es un índice que debe ser usado para





elementos que son sustituidos después de la ocurrencia de una falla. Es la relación entre el tiempo total de operación de un conjunto de elementos no reparables y el número total de fallas detectadas en esos elementos en el período observado

La disponibilidad de equipos se determina como la relación entre la diferencia del número de horas del período considerado con el número de horas de intervención por el personal de mantenimiento (mantenimiento preventivo por tiempo o por estado, mantenimiento correctivo y otros servicios) para cada elemento observado y el número total de horas del período considerado. Este índice también puede ser calculado como la diferencia entre la unidad y la relación entre las horas de mantenimiento y la suma de esas horas con las de operación de los equipos. Otra expresión muy común, utilizada para el cálculo de la disponibilidad de equipos sometidos exclusivamente a la reparación de fallas es obtenida por la relación entre el tiempo medio entre fallas y su suma con el tiempo medio para la reparación y los tiempos ineficaces del mantenimiento (tiempos de preparación para desconexión y tiempos de espera que puedan estar contenidos en los tiempos promedios entre fallos y de reparación).(A Guide to the Reliability-Centered Maintenance (RCM) Standard, s.d.)

El costo del mantenimiento por facturación se determina como la relación entre el costo total del mantenimiento y la facturación de la empresa en el período considerado. El costo de mantenimiento por el valor de reposición es la relación entre el costo total acumulado en el mantenimiento de un determinado equipo y el valor de compra de ese mismo equipo nuevo (valor de reposición). Este índice debe ser calculado para los equipos más importantes de la empresa (que afectan la facturación, la calidad de los productos o servicios, la seguridad o el medio ambiente), ya que es personalizado para el equipo y utiliza valores acumulados, lo que torna su procesamiento más demorado que los demás, no justificando de esta forma ser utilizado por elementos secundarios.(Andreani, A. A., 2009)

## 1.8.2 Mantenimiento y Fiabilidad Operacional

Un mal mantenimiento y baja fiabilidad significan bajos ingresos, incremento de los costos de mano de obra y stocks, clientes insatisfechos y productos de mala calidad.(Tavares, L., s.d.)

El objetivo básico de cualquier gestión de Mantenimiento, consiste en incrementar la disponibilidad de los activos, a bajos costes, partiendo de la ejecución que permite que dichos activos funcionen de forma eficiente y confiable dentro de un contexto operacional. En otras palabras, el mantenimiento debe asegurar que los activos continúen cumpliendo las funciones para las cuales fueron diseñados, es decir, debe estar centrado en la fiabilidad operacional. En términos generales, el "Mantenimiento Centrado en Fiabilidad" (M.C.C),





permite distribuir de forma efectiva los recursos asignados a la gestión de mantenimiento, tomando en cuenta la importancia de los activos dentro del contexto operacional y los posibles efectos o consecuencias de los modos de fallos de estos activos, sobre la seguridad, el ambiente y las operaciones. El M.C.C sirve de guía para identificar las actividades de mantenimiento con sus respectivas frecuencias a los activos más importantes de un contexto operacional.

Esta no es una fórmula matemática y su éxito se apoya principalmente en el análisis funcional de los activos de un determinado contexto operacional realizado por un equipo de trabajo multidisciplinario. El equipo desarrolla un sistema de gestión de mantenimiento flexible, que se adapta a las necesidades reales de mantenimiento de la organización, tomando en cuenta la seguridad personal, el ambiente, las operaciones y la razón coste / beneficio; es una metodología que permite identificar las políticas de mantenimiento óptimas para garantizar el cumplimiento de los estándares requeridos por los procesos de producción. (Luis Amendola, P. D., & Tibaire Depool, M. I., s.d.)

#### 1.9 Análisis de Confiabilidad en Redes de Distribución

Los apagones que afectaron a extensas áreas del territorio norteamericano en varias ocasiones, provocando cuantiosos daños y pérdidas, se convirtieron en un incentivo para orientar los esfuerzos, en los estudios de confiabilidad, hacia la redes. Esto indicaba que, aparte de la disponibilidad de energía, también era necesario conocer los posibles puntos débiles de la red, puesto que las fallas, en tales casos, se originaron en ellos. Gaver presentó la demostración de las ecuaciones para calcular índices de confiabilidad en los puntos definidos como carga. En(Billinton R. & Bollinger K., 1968) concluyeron que los resultados obtenidos mediante las ecuaciones dadas por Gaver, eran incoherentes con los obtenidos utilizando la técnica de Markov, técnica conocida por su exactitud, a partir del hecho de que describe todos los estados posibles para el sistema. En, (Billinton R. & Grover M.S. 1975) presentaron versiones modificadas de las ecuaciones desarrolladas por Gaver. con las que se obtenían resultados similares a los entregados por la técnica markoviana los mismos autores mostraban que era posible utilizar la técnica de cortes mínimos (cut set) para identificar las fallas de los puntos de carga y la manera cómo podían calcularse los índices de confiabilidad. Estas técnicas tuvieron gran aceptación, debido a la simplicidad de su manejo y grandes facilidades de programación computacional.

Nuevos esfuerzos fueron generando metodologías que intentaban representar mejor el complejo comportamiento de una red eléctrica, es así como (Billinton R. & Grover M.S,





1975) presentan una técnica para evaluar índices de confiabilidad al considerar las maniobras que siguen a la ocurrencia de una falla,

El desarrollo de técnicas más complejas, sobre algunos parámetros de confiabilidad. por (Carpaneto, E & Chicco., G., 2004), fueron orientados a establecer técnicas para encontrar las funciones de densidad de probabilidad de índices de confiabilidad, como una manera de independizarse de los promedios; mientras que otra área de interés ha sido considerar el efecto de medios de generación local sobre tales índices, (Mao Y. & Muy K. N., 2003), dan una metodología que se ajusta muy bien a los sistemas de distribución con generación distribuida. Todos los métodos conocidos se basan en la combinación de parámetros de confiabilidad de los componentes, lo que obliga llevar un registro de fallas de cada componente del sistema eléctrico (transformadores, interruptores, líneas, alimentadores, barras, etc.).

Normalmente las empresas eléctricas llevan registro de fallas pero sin la identificación y detalle que se requiere para tales evaluaciones. En general, los métodos más utilizados para la evaluación de la confiabilidad en redes eléctricas de distribución son los siguientes.

- 1. Modelando la red: Los sistemas eléctricos radiales pueden modelarse como redes, las cuales están compuestas por elementos en serie o en paralelo, combinándose estos elementos desde la fuente de suministro o subestación hasta llegar a las cargas o consumidores.
- 2. *Probabilidad condicional*: Existen sistemas que su conexión no se puede considerar en serie ni tampoco en paralelo, a estos sistemas más complejos, la evaluación eléctrica, es más a medir la frecuencia que a medir el tiempo. En él se consideran combinaciones de elementos en serie o paralelo.

En(Bernal H.A. C.,AF, 2003)propone una metodología para la evaluación de la confiabilidad, orientada a la gestión de mantenimiento, este método parte de modelar la red, coincide con la estructura topológica de la red real confiabilidad puede realizarse por la fórmula de la probabilidad condicional.

3. Conjuntos de corte mínimos "Cut Set": Se define un mínimo "cut set" como el grupo de componentes de un sistema que cuando fallan causan que el sistema falle, pero cuando cualquiera de los componentes del grupo se mantiene operando no se produce la falla del





sistema. Es evidente que con esta definición los componentes de los "cut set" están conectados en paralelo desde el punto de vista de la confiabilidad.

- 4. Técnica de Markov: Los problemas de confiabilidad en sistemas son normalmente discretos en el espacio y continuos en el tiempo por ejemplo ellos existen continuamente en uno de los estados del sistema hasta que una transición ocurre y pasa discretamente a otro estado. Cuando la probabilidad de transición de un estado presente a otro estado futuro solo depende del presente, sin tener en cuenta la historia pasada, estamos en presencia de un simple proceso de Markov estacionario, siendo esta probabilidad de transición constante
- 5. Técnica de frecuencia y duración: En algunas ocasiones es conveniente para evaluar la confiabilidad, índices tales como la frecuencia del sistema de encontrarse en un determinado estado, así como también la duración de residir en ese estado.
- 6. Razón promedio de falla: Este método se utiliza para medir la calidad del servicio

## 1.9.1 Indicadores utilizados para caracterizar la confiabilidad de las redes de distribución

Desde el punto de vista de la confiabilidad una red de distribución puede considerarse como un sistema serie y caracterizarse por tres índices básicos, la frecuencia de interrupción *fs*, el tiempo medio de reparación MTTR y la indisponibilidad U.

La IEEE propone en 1974, mediante un reporte del Power Systems Relaying Commitee, un grupo de cuatro índices que relacionan parámetros de la red tales como, longitud, fallas por año, tiempo de reparación, con otros parámetros que tienen una incidencia directa sobre el usuario o cliente, como número de consumidores fallados y carga en kVA interrumpida.

Los cuatro índices mencionados anteriormente no tienen en cuenta el tipo de consumidor, por ejemplo si es residencial, comercial o industrial, lo cual es un aspecto de peso a la hora de seleccionar las alternativas de solución para una red, estos índices deben ser evaluados y si es posible estandarizados de forma adicional a los indicadores de confiabilidad propios de las redes eléctricas, tales como: razón de falla, razón de reparación, tiempo medio entre fallos, tiempo de reparación, tiempo total de falla anual, que se encuentran entre los más utilizados.

Esto modifica la filosofía de las Empresas de Distribución de la electricidad incorporando la calidad del servicio, en este caso particular la continuidad del mismo, al objetivo principal de





las mismas. (Billinton. R. & Wojczynski.E, 1985) presenta este grupo de indicadores definiéndolos de la forma que se presentará a continuación.

Índices relativos al sistema:

•Índice de frecuencia de falla promedio del sistema (SAIFI)

•Índice de duración de la falla promedio del sistema (SAIDI)

Estos índices del sistema o circuito, tratan con valores promedios y por tanto no consideran las afectaciones particulares que realmente tuvieron los consumidores

Índices relativos a los consumidores afectados:

•Índice de frecuencia falla promedio por consumidor (CAIFI)

Este índice pretende dar una idea de cómo es la calidad del servicio del número total de consumidores del circuito al número de consumidores que reciben una sola afectación en el período analizado. Este índice se utiliza poco pues resulta incómodo contar los consumidores que tienen una sola afectación.

•Índice duración de la falla promedio por consumidor (CAIDI)

Índices relativos a la carga en kVA:

•Índice promedio de carga interrumpida (ALII)

Índices de Disponibilidad:

•Índice promedio de disponibilidad del servicio (ASAI)

•Índice promedio de no disponibilidad de servicio (ASUI)

En 1991 Allan, Billinton y un grupo de especialistas proponen caracterizar cada punto de carga de una red, estableciendo como punto de carga cada banco de transformadores, por 6 índices:

•razón de falla: (fallas / año).

•tiempo medio de reparación: MTTR (horas / falla).

•Indisponibilidad: U (horas / año)

.•SAIFI: fallas / consumidor

SAIDI: horas / consumidor





CAIDI: horas / consumidor fallado

Y demás incorporan dos índices nuevos que son la energía no suministrada al punto de carga debido a las fallas (ENS) y la energía no suministrada por consumidor (AENS)

•ENS: kW.h / año

•AENS: kW.h / consumidor – año

Para la obtención de estos dos últimos indicadores es necesario tener un control del número de consumidores en cada punto de entrega, así como también una rigurosa caracterización del consumo de energía de cada consumidor.

En 1987, en la Segunda Reunión de Especialistas en Estadísticas de Fallas del Sub-Comité de Distribución de Energía Eléctrica de la "Comisión de Integración Eléctrica Regional" (CIER) se aborda en los análisis de la confiabilidad del servicio eléctrico de las empresas distribuidoras lo siguiente:

A) Clasificación de las fallas en la distribución en dos grandes grupos y a su vez subdividir estos grupos en sub grupos, hasta llegar a la causa primaria.

La clasificación de las fallas internas de la distribución que da el informe del Subcomité de la CIER coincidía con la que da la dirección de distribución de la Unión Nacional Eléctrica de Cuba (UNE), hasta el año 2003 en que se modifica el manual de operación para líneas aéreas de distribución, perfeccionándose la clasificación de las causas de las interrupciones y alejándose de la propuesta de la CIER.

B) Otro de los aspectos tratados en la reunión fue decidir cual base de cálculo se debía tomar para acercarse más al usuario, el número de consumidores, la carga instalada en kVA u otro tipo de base. La decisión fue optar por el número de consumidores, aunque reconocen que no todas las empresas de la región están en condiciones de hacerlo y citan textualmente en el informe: "...las empresas que no tienen información sobre la base de consumidores, utilizarán formas de cálculo según métodos aproximativos, informando los criterios utilizados en el reverso del formulario

En las Empresas Eléctricas se controlan las estadísticas de fallas en los niveles de trasmisión (110 kV y 220 kV.), sub-trasmisión y distribución en este último nivel se subdivide en primarios, secundarios y servicios. También se controlan las fallas en subestaciones, protecciones y comunicaciones.





La frecuencia de las fallas o interrupciones (término más usado, incorrectamente), se controla para el caso de líneas con relación a su longitud, por ejemplo fallas/100 kilómetros de línea.

El tiempo de reparación se obtiene como la suma del tiempo total de falla del elemento dividido por la frecuencia de falla. Esto se controla tanto para las interrupciones voluntarias como para las involuntarias.

En 1996, Urquijo propone un grupo de indicadores para medir la confiabilidad en las redes eléctricas de distribución de Cuba:

- •Duración Equivalente de la Potencia Interrumpida (DEPI)
- •Frecuencia Equivalente de la Potencia Interrumpida (FEPI)

Además de estos indicadores relacionados con la carga, la tasa de fallas y el tiempo medio de reparación, la Unión Nacional Eléctrica adoptó los siguientes indicadores.

- •TIU: Tiempo de Interrupción al usuario
- •NIU: Número de interrupciones al usuario
- •IDR: Índice de disponibilidad de las redes

## Conclusiones parciales Capitulo I

- 1. En este capitulo se especifica las expresiones matemáticas de fiabilidad aplicada en el análisis de las fallas en las redes eléctricas.
- 2. Se aborda la relación de la Gestión de la Calidad y la Fiabilidad como herramienta para el mejoramiento continuo del proceso de mantenimiento.
- 3. Se describe las tendencias actuales de la gestión del mantenimiento así como sus objetivos encaminados a lograr mayor disponibilidad y fiabilidad.
- 4. Se analiza los métodos de evaluación de la confiabilidad para las redes de distribución eléctrica desarrollada durante los últimos años y los indicadores para la aplicación en las empresas eléctricas.

Capítulo 2





# Capítulo 2: Descripción del Objeto de Estudio y Procedimiento a Seguir.

## 2.1 Introducción general

La Empresa Eléctrica Cienfuegos fue creada mediante la Resolución No. 74 de orden y fecha 23 de febrero del 2001, creación que fuera autorizada a través de la Resolución No. 14 del 2001 emitida el 3 de enero del 2001 por el Ministro de Economía y Planificación. Aplica el Perfeccionamiento Empresarial sobre la base de la autorización expedida por el Comité Ejecutivo del Consejo de Ministros a través de su Acuerdo No. 3865 de fecha 30 de enero del 2001.

La Empresa Eléctrica Cienfuegos tiene su sede en calle 33 esquina y avenida 56 muy cerca del centro histórico de la ciudad en correspondencia con los lineamientos del estado cubano es propulsora del Uso Racional de la Energía en nuestra provincia como vía para contribuir a los planes de ahorro del país y la reducción de los impactos ambientales que se producen como resultado de los procesos que se desarrollan en la organización.

El reordenamiento de la organización de la producción de bienes y servicios en la Empresa Eléctrica Cienfuegos data de fines de 1997 incluso antes de la primera aplicación del perfeccionamiento empresarial en el año 2001.

No obstante, la experiencia de trabajo después de casi 10 años de aplicación del perfeccionamiento empresarial confirma que es necesario como en todo proceso de mejora continua seguir introduciendo los cambios estructurales y organizativos en la esfera de la organización general y en especial de la producción y los servicios que prestamos, de forma que permitan a tono con las estrategias, adoptar ante cada coyuntura económica internacional y del país, seguir mejorando constantemente los indicadores claves de actuación de nuestra entidad que equivale a decir aumentos de la eficacia y eficiencia y una mejor utilización y control de los recursos materiales, financieros y humanos.

El contenido del Objeto Empresarial de la Empresa Eléctrica Cienfuegos aparece resuelto en la Resolución No. 233 de fecha 27 de Abril del 2006 del Ministro de Economía y Planificación.





El Sistema de Organización General constituye la base del Sistema de Dirección y Gestión e impacta directamente sobre el funcionamiento general de los restantes sistemas componentes del Sistema de Dirección y Gestión.

Es la razón de ser de la organización, la meta que moviliza nuestras energías y capacidades, es la base para procurar una unidad de propósitos en dirigentes y trabajadores con el fin de desarrollar un sentido de pertenencia, es el aporte más importante y significativo a la sociedad, su Misión es:

"Brindar un suministro de energía eléctrica a los consumidores privados y estatales de forma continua dentro de los parámetros de calidad establecidos según el reglamento del suministro eléctrico.

Principio o Guía, esencial y perdurable en una organización. Sistema de ideas generales que crean el marco de referencia de lo que una organización aspira a ser en el futuro. Señala el rumbo, sirve de guía en la formulación de las estrategias proporcionando un propósito a la institución. Debe reflejarse en la misión, objetivos y estrategias y se hace tangible cuando se materializa en proyectos, procesos y actividades específicos que deben ser medibles, mediante un sistema de indicadores de gestión muy bien definido. La Visón es revisada todos a los años conjuntamente con la elaboración del Plan Anual, corresponde al Consejo de Dirección, su Visión es:

"Somos líderes nacionales reconocidos por la excelencia en la prestación del servicio eléctrico, distinguiéndonos en la atención rápida y especializada a nuestros clientes".

La Empresa Eléctrica Cienfuegos opera con una estructura de dirección según Anexo 1 alineada con la visión y misión de la empresa y conectada con los objetivos estratégicos y de trabajo, su diseño responde en cierta medida al de una estructura horizontal (Plana) con un perfil de dirección que se encuadra entre consultivo y participativo aunque la tendencia es al participativo.

La empresa materializa el funcionamiento de la dirección participativa de los trabajadores en la gestión empresarial, mediante la creación y funcionamiento de los órganos colectivo de dirección, actividades de intercambios de ideas, de conjunto con la organización sindical correspondiente, comisiones internas para el autocontrol, la solución de problemas y análisis colectivo sobre la gestión entre otras.

El Director General de las empresa y está facultado para crear tantos órganos colectivos de dirección o comisiones de trabajo y autocontrol como se requieran. Los mismos se crearán y





extinguirán en correspondencia con las necesidades que surjan en el desarrollo de la gestión empresarial mediante resolución del Director General.

Los órganos que por la presente se establecen en el actual expediente son el resultado de un estudio de los órganos colectivos de dirección que son necesarios.

## Los Órganos colectivos de dirección, tendrán como principales características las siguientes:

- a) Son órganos auxiliares de evaluación colectiva sobre los principales temas sujetos a decisiones a tomar en la gestión empresarial.
- b) Los acuerdos que se adopten en los órganos colectivos de dirección se informan al Director General y sólo tienen carácter de obligatorio cumplimiento con la aprobación del Director General o el Consejo de Dirección.
- c) Estos órganos colectivos de dirección no suplantan las funciones de ninguna estructura de la empresa; ellos complementan con el análisis colectivo, dichas funciones. Su composición de miembros es impar.
- d) La ejecución de las reuniones de los órganos colectivos de dirección, deberán ser previa y correctamente preparadas; garantizar que sus participantes conozcan con anticipación los temas a tratar y los ponentes de cada tema. Es imprescindible evitar las improvisaciones en el desarrollo de las reuniones, lo que no niega la activa participación de sus integrantes en el desarrollo de los análisis que se ejecutan
- e) Como norma debe garantizarse que no exista un exceso en la creación y uso de órganos colectivos de dirección; de manera que se garantice dedicar el mayor tiempo de trabajo al desarrollo y ejecución de los procesos de producción y prestación de servicios, a la solución de los principales problemas que se presentan, al contacto directo con los trabajadores y a la proyección de nuevas medidas organizativas, técnicas y económicas a introducir.
- f) En el desarrollo de las reuniones de los órganos colectivos de dirección es importante controlar el tiempo invertido, a fin de lograr que en el menor tiempo posible se arriben a las principales conclusiones y acuerdos. Procurar desarrollar las reuniones dentro de la jornada laboral, preferentemente en horarios temprano del día. Estas reuniones son de proyección y análisis, constituyen parte del contenido de trabajo de los integrantes; por lo que requiere que sus participantes estén preparados teórico, físico y mentalmente, para luego continuar con las labores normales del trabajo diario. Como norma el tiempo de duración de las reuniones de estos órganos no excede la dos (2) horas. La fecha de las





- reuniones de los órganos de dirección está prevista según el programa anual de reuniones de la empresa.
- g) Los directivos que presiden las reuniones de los órganos colectivos de dirección, son los máximos responsables de garantizar el desarrollo de reuniones en un ambiente propicio al intercambio de ideas, deberá escucharse con atención los criterios de todos los participantes y utilizar métodos en la conducción de la reunión que garantice el máximo de respeto de los presentes y la disciplina interna de la reunión.

#### Composición de la fuerza laboral

La fuerza laboral que se requiere según la plantilla aprobada es de 1491 trabajadores, pero a pesar de los esfuerzos de la empresa solo están cubiertas 1452 plazas para un 97.4 %. De esta cantidad de trabajadores predomina el sexo masculino, el cual representa el 77 % de la fuerza laboral. En la Tabla 2.1 y el gráfico 2.1 muestran la composición de la fuerza laboral por cargos.

Tabla 2.1: Composición de la fuerza laboral por cargos. Fuente; Elaboración propia

| Trabajadores por Categoría Ocupacional y Sexo |    |     |            |    |     |          |     |     |  |  |  |  |
|-----------------------------------------------|----|-----|------------|----|-----|----------|-----|-----|--|--|--|--|
|                                               | F  | М   |            | F  | М   |          | F   | М   |  |  |  |  |
| Operarios                                     | 18 | 588 | Servicios  | 47 | 172 | Técnicos | 212 | 299 |  |  |  |  |
| Administrativos                               | 55 | 1   | Dirigentes | 3  | 57  |          |     |     |  |  |  |  |

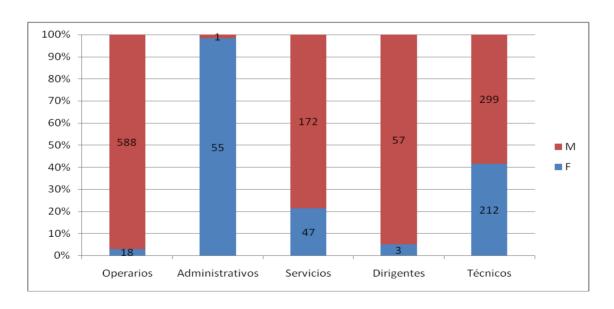



Gráfico 2.1: Composición de la fuerza laboral por cargos. Fuente Elaboración propia





El mayor por ciento de la fuerza laboral se encuentra en el grupo de edades comprendido entre 40 y 59 años de edad, como se puede apreciar en el gráfico 2.2, más de la mitad de los trabajadores tienen 40 años o más, aunque no es muy preocupante porque existe una buena incorporación de los jóvenes los que representan un 41 % del total de la fuerza de trabajo.

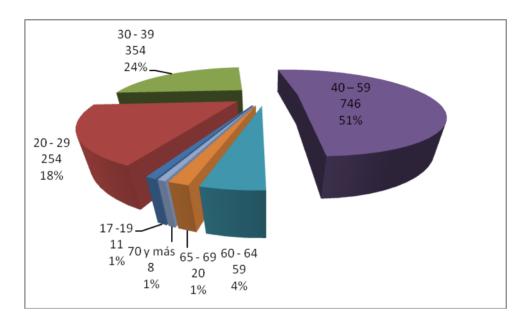



Gráfico 2.2: Composición de la fuerza laboral por edades. Fuente Elaboración propia

## 2.2 Elementos de la organización de la producción de bienes y servicios en la Empresa Eléctrica Cienfuegos.

## 2.2.1 Formas de organizar la producción o la prestación de los servicios:

<u>Al nivel de empresa</u> está integrada por las áreas de Regulación y Control las cuales brindan asesoramiento metodológico, propuestas y control de políticas, control del cumplimiento de los planes y de los procedimientos generales del sistema que atienden.

Estas áreas pueden organizarse en grupos o equipos de trabajo. Las funciones y facultades de las direcciones de Regulación y Control aparecen en el sistema de Organización General de la Empresa.

Al nivel de base están constituidas las Unidades Básicas Eléctricas Municipales (UBEM) y las Unidades Básicas Eléctricas (UBE), las mismas representan la figura empresarial a partir de la cual se organizan los procesos de producción y de prestación de servicios, estas unidades tienen autonomía controlada, en cada municipio de la provincia de Cienfuegos existen una Unidad Básica Eléctrica Municipal, cuya misión fundamental es brindar un suministro de energía eléctrica a los consumidores privados y estatales de forma continua





dentro de los parámetros de calidad establecidos según la ley eléctrica nacional. Las Unidades Básicas Eléctricas forman parte íntegra de la empresa, todos sus ingresos pertenecen a la empresa.

La empresa es un todo integral, todo lo que se produzca por sus unidades, tributa centralmente a los resultados de la empresa. A fin de garantizar el funcionamiento de la estructura organizativa se crean las unidades básicas no municipales con funciones específicas que aseguran el abastecimiento material, el servicio de almacenes, el mantenimiento a los equipos e instalaciones de la empresa, los servicios generales, el mantenimiento y reparación de los medios de transporte automotor, etc.

## 2.2.2 Estructura espacial de la producción y los servicios

La empresa en su proceso de producción de bienes y servicios que tiene una estrecha interrelación con todas las unidades básicas de conjunto con ellas analiza la situación del servicio y el cumplimiento de los planes

El flujo del proceso productivo y de servicio es diferente en cada unidad y está en función del alcance del servicio y de las especialidades que intervienen en el mismo.

## 2.2.3 Métodos de la organización de la producción y los servicios

El proceso productivo tiene como producto final un "Correcto e Integral Servicio Eléctrico el cual es posible con la participación de las diferentes unidades básicas que cuentan con la fuerza de trabajo y recursos para cada trabajo, estarán dirigidos técnicamente por un Jefe de Grupo de Distribución en las UBEM y en el resto por el Director de la Unidad Básica Eléctrica o el Jefe de Grupo.

La asignación de la fuerza de trabajo en las UBEM está en función, de la cantidad de clientes, kilómetros de líneas instalados y de otros componentes de las redes eléctricas, aunque para la determinación de la fuerza de trabajo se aplica un balance de carga y capacidad

Los aseguramientos materiales y técnicos fundamentales para el cumplimiento de los planes de trabajos en la UBEM son: los materiales clásicos asociados a las redes eléctricas y al proceso de comercialización de la energía eléctrica, además de los medios de transporte, el combustible, energía eléctrica, computadoras, los software, las normas técnicas , los procedimientos de trabajo y materiales de oficina. Para las UBEM los aseguramientos materiales y técnicos fundamentales para el cumplimiento de los planes de trabajos se corresponden con la misión asignada, destacándose entre otros, medios de transporte, el





combustible, energía eléctrica, computadora, los software, las normas técnicas , los procedimientos de trabajo, materiales de oficina y otros

Los cuellos de botella dentro del proceso productivo de las Unidades Básicas Eléctricas incluyendo las municipales (UBEM) están dados fundamentalmente por: la diferencia de capacidad productiva entre los Grupos de Trabajo y la diferencia de alcance entre los "Proyectos" que demandan más participación de una especialidad que de otra. Este segundo factor es inevitable pues no existen dos proyectos iguales.

Para contrarrestarlos los cuellos de botella, se deben realizar balances de carga-capacidad, del comportamiento de plan de producción que permite balancear el plan de los grupos de trabajo. La cantidad de producción o servicios a ejecutar por los grupos de trabajo y por las unidades está en función de la capacidad horaria que se dispone en cada unidad o grupo. Esta capacidad es directamente proporcional al número de trabajadores en cada caso.

Los principales cuellos de botella dentro del proceso productivo de las UBEM están dados por:

- a) Falta de continuidad de la entrega de materiales, o su llegada desfasada.
- b) Carencia en el mercado de materiales fundamentales en las redes eléctricas.
- c) Baja disponibilidad técnica de los medios de transporte automotor.
- d) Falta de fuerza de trabajo especializada.
- e) Insuficiente parque de equipos de transporte
- f) Roturas de los medios informáticos asignados.
- g) Falta de comunicación empresarial.
- h) Carencia de herramientas, medios de medición, así como otros elementos técnicos y productivos necesarios

Los principales cuellos de botella dentro del proceso de servicio de las UBE están dados por:

- a) Baja disponibilidad técnica de los medios de transporte automotor.
- b) Falta de fuerza de trabajo especializada.
- c) Roturas del parque de computadoras y de otros medios informáticos
- d) Falta de continuidad de la entrega de materiales, o su llegada desfasada.
- e) Carencia en el mercado de materiales fundamentales en las redes eléctricas
- f) Insuficiencia de herramientas, medios de medición, así como otros elementos técnicos y productivos necesarios





# Los principales cuellos de botella dentro del proceso productivo de las Direcciones de Regulación y Control están dados por:

- a) Falta de medios de transporte.
- b) Baja disponibilidad técnica de los medios de transporte automotor.
- c) Falta de fuerza de trabajo especializada.
- d) Insuficiente parque de computadoras y de otros medios informáticos
- e) Entrada de recursos sin secuencia para poder ejecutar sin interrupciones
- f) Poca ejecución de trabajos en caliente
- g) Dificultades con herramientas y medios de trabajo para brigadas y carros de la guardia
- h) Insuficiente uso de la termografía como medio ideal en la prevención de averías
- Respuesta lenta de la concertación de contratos económicos lo que demora la solución de problemas vitales de la organización.

## Para contrarrestar estos cuellos de botella en cada nivel de dirección se realizan:

- a) Balance de carga-capacidad integral
- b) Situación del Plan Anual.
- c) Estudios de organización
- d) Rediseños de planes de acción.
- e) Realización de diagnósticos.
- f) Análisis de las dificultades y la solución posible.
- g) Análisis de los puestos y procesos claves.
- h) Análisis de la innovación tecnológica a fin de sustituir equipos obsoletos y tecnologías.
- i) Organización de los flujos de producción y servicios

#### 2.2.4 Planificación de la producción y los servicios.

Referente a este tema es preciso garantizar sistemáticamente las consideraciones siguientes:

- a) Elaboración de la documentación (información), técnica de diseño e ingeniería necesaria para la ejecución de la producción y la prestación de servicios, con suficiente antelación a su ejecución, teniendo en cuenta la valoración de los presupuestos de gastos, normas de producción, así como la contratación necesaria de las producciones y servicios.
- b) Determinación de las capacidades disponibles y la plena utilización de las mismas haciendo un uso adecuado de los turnos de trabajo para una correcta explotación de los medios de trabajo y del personal.





- Determinación de las necesidades de personal, materiales, de herramientas, medios de medición, así como otros elementos técnicos y productivos necesarios.
- d) Organización sistemática del sistema de suministros y abastecimientos de la empresa

## 2.2.4.1 Proceso de elaboración del plan de producción y servicios de la Empresa

Abarca lo relacionado con la planificación de todos los bienes y servicios que se producen en la empresa (calidad, organización de la producción, utilización de las capacidades, etc.), aunque sólo tenga que reportar a la organización superior una nomenclatura más reducida.

Como regla, los incrementos de los niveles de actividad deben obtenerse por vía intensiva, única alternativa para el desarrollo.

#### Las principales tareas a ejecutar en este proceso son:

- Examen de los indicadores específicos de eficiencia de la actividad, incluyendo la calidad de la producción o servicios. Precisión de las acciones a seguir para su mejoría, considerando los resultados, según corresponda, en las restantes secciones del plan.
- Necesidad y posibilidad de incrementar la calidad de la producción o servicios y de las materias primas, materiales y demás insumos empleados en ella. Medidas técnico organizativas requeridas para ello.
- 3) Necesidad de sustitución de productos y servicios e introducción de nuevas producciones con mayor valor agregado o servicios de alta calificación. Diversificación.
- Análisis de la demanda existente (Estado, población, Defensa, sus clientes, la exportación y la sustitución de importaciones, la producción intermedia e inversiones con medios propios)
- 5) Los trabajos de mercadotecnia (previsiones de ventas). Posibilidad real técnica y organizativa para satisfacerlas con calidad, a tiempo y a precio competitivo.
- 6) Comparación con las capacidades de producción o servicios de que se dispondrán.
- 7) Confección del plan de producción o servicios en unidades físicas, y proyección económica.
- 8) Precisar (o suscribir, según sea el caso) los contratos económicos con los clientes para garantizar la realización de la producción.
- 9) Se calculan los requerimientos de recursos materiales y naturales necesarios para asegurar los niveles de actividad proyectados, para lo cual debe:
  - a) evaluar las normas de consumo y cartas tecnológicas, según corresponda, comprobar su validez, actualizar las que sean necesarias.





- definir las tareas y medidas de ahorro a ejecutar; efecto de la introducción de los resultados de los programas e investigaciones sobre la sustitución de materias primas y materiales;
- c) examen de los desechos tecnológicos y su reducción, así como el posible destino de los mismos, incluyendo su reciclaje;
- d) análisis y validación de las normas de inventarios y el ciclo de rotación y determinación de los niveles de inventario;
- e) examen de los inventarios de productos ociosos y de lento movimiento y establecimiento de las vías para su más rápida liquidación o para minimizarlos, respectivamente;
- el estudio del sistema de registro y control de los recursos materiales y medidas a adoptar para evitar su desvío;
- g) requerimientos de maquinarias y equipos; precisión de las necesidades de consumo, por tipo de producto, sobre la base de las normas actualizadas;
- h) precisión del aseguramiento con los suministradores a través de los contratos económicos, priorizando la compra de productos nacionales siempre que cumplan los requerimientos de calidad, precio y competitividad;
- i) determinación de los recursos monetarios (en divisas y moneda nacional) necesarios para la adquisición de los activos circulantes y su programación en el tiempo.
- j) planificación de los recursos destinados a los planes de Ciencia, tecnología y
   Medio Ambiente, Defensa, Inversiones, Seguridad y Salud de los trabajadores
- k) mejoramiento de sus condiciones de vida y trabajo.
- 10) El plan de producción y servicios se relaciona con las restantes secciones del plan:
  - a) Mercadotecnia, al nutrirse de las previsiones de ventas y fijar líneas,
  - b) Portadores Energéticos a través del balance energético;
  - c) Ciencia-tecnología y Medio Ambiente en la incorporación de los resultados de los programas científicos y la ejecución de las investigaciones y desarrollos; así como en la producción de inversiones con medios propios destinadas al Medio Ambiente;
  - d) Defensa al incorporar las necesidades de esa plan ;
  - e) *Inversiones* por los incrementos productivos derivados de la puesta en explotación de nuevas capacidades, modernizaciones y cambios tecnológicos.





## 2.2.5 Capacidad de producción

Para determinar la máxima capacidad de producción y lo servicios posible en un periodo dado en cada subdivisión (Grupo, brigada, equipo) está relacionada con el fondo de tiempo disponible de la fuerza de trabajo por unidad de producción o servicio, la capacidad instalada, y el plan de producción y servicios

## 2.2.6 Calidad de la producción

En cada segmento de dirección de la empresa se aplica el procedimiento que corresponda para controlar la calidad de la producción y de los servicios, es responsabilidad del grupo de Auditoría y Control supervisar garantizar el cumplimiento exacto de este proceso.

## 2.2.7 Organización del aseguramiento material y suministros

La empresa presta especial atención a la organización del aseguramiento material y suministros necesarios, bajo el precepto que sin materias primas, materiales, piezas, accesorios, combustible, medios de medición y otros, no es posible ejecutar los compromisos productivos y de servicio de la empresa.

La UBE Aseguramiento Logístico tiene la misión de garantizar el flujo de suministros de forma tal que se garantice la secuencia de ejecución de todas las actividades del proceso productivo, así como la calidad de cada suministro que incide en la calidad del servicio, demostrada documentalmente, estableciendo criterios de selección de proveedores en correspondencia con ISO 9001 del 2008, todo ello, sin incumplimientos de las normas de inventarios vigentes.

La UBE Aseguramiento Logístico organiza el control y despacho de los recursos al resto de las UBEM y UBE, mantiene el reordenamiento de almacenes que propicien una respuesta ágil y oportuna en función de los interés de la producción de bienes y servicios, también es de su responsabilidad optimizar el aprovechamiento de la capacidad en almacenes, mediante el uso con rigor y profesionalidad de las técnicas y normas de la economía de almacenes. Además garantiza la custodia y la conservación de los recursos.

En la concepción de la organización del aseguramiento material y suministros la empresa, aplica el precepto, que los suministros son para incorporarlos en el menor plazo de tiempo al proceso productivo o de servicios y se controla la rotación lenta del inventario. Los suministros generan inventarios, que representan recursos financieros inmovilizados, por lo que se debe permanentemente contribuir a eliminar los excesos de inventarios, evaluándose con un indicador el comportamiento de la rotación de los mismos y programar acciones





concretas en este sentido, corresponde a la Dirección de Contabilidad y Finanzas y a la UBE Aseguramiento Logístico supervisar y garantizar el estricto cumplimiento de este proceso y programar acciones concretas en este sentido.

- a) Organizar la actividad energética y su ahorro. (Determinar puestos claves, índices de gastos por puestos de trabajo, niveles de eficiencia, etc.), lograr que los trabajadores participan con sus ideas en el ahorro de energía.
- b) Determinar los plazos de entrega de la producción o la prestación de servicios.
- c) Determinar los tipos de mantenimientos a efectuar, el aseguramiento metrológico necesario en la empresa.
- d) Organizar el sistema logístico implantado en la empresa logrando la adecuada conjugación producción almacenaje y transportación para la comercialización, cumpliendo siempre con los plazos establecidos.

La empresa al diseñar la infraestructura de almacenes utiliza como premisa no caer en el exceso de almacenes y depósitos, así como lograr que estos estén en función de servir al proceso productivo. Almacenar es una actividad necesaria, pero a su vez costosa, por lo que la determinación exacta de la cantidad de almacenes a utilizar, sus dimensiones y los medios de almacenaje a utilizar constituye una tarea de primer orden desde el punto de vista organizativo, de eficiencia y de control interno.

Los almacenes se organizan en función de asegurar las necesidades de la producción y prestación de servicios para dar una respuesta ágil y oportuna a estas necesidades, garantizando:

- La utilización racional de las capacidades de almacenamiento, aplicando las técnicas de economía de almacenes que corresponda.
- La custodia permanente y condiciones de seguridad, el mantenimiento de los materiales y demás medios en depósito.
- El cumplimiento de las normas de control interno, establecidas para la recepción, inventario y despacho de las mercancías.
- Horarios de trabajo que respondan a las necesidades de la producción o la prestación de los servicios.

La empresa elabora el procedimiento para la organización del aseguramiento material y suministros, el cual entre otros elementos deberá establecer lo siguiente:

- a) Unidad organizativa encargada del abastecimiento material en la empresa.
- b) Composición y estructura.





- c) Proceso de organización de los abastecimientos. Grado de centralización o descentralización de los abastecimientos.
- d) Clasificación y características de los almacenes.
- e) Medios de almacenaje. Clasificación.
- f) Técnicas de almacenaje a emplear.
- g) Control de los inventarios en almacenes.
- h) Documentos de control y firmas autorizadas. Horario de entrega y formas para la entrega de los materiales, materias primas, herramientas, etc.

Las Direcciones de Regulación y Control y todas la Unidades Básicas de la empresa establecen sus demandas a la UBE Aseguramiento Logístico basados en el presupuesto asignado para los diferentes acápites del mismo en correspondencia a los modelos y plazos establecidos por esa dirección y en base a las normas de consumo para cada actividad.

## 2.3 Organización del mantenimiento

#### 2.3.1 Generalidades.

La utilización de un correcto sistema de mantenimiento es una inversión que a futuro garantiza la estabilidad y crecimiento de la empresa, así como continuidad, estabilidad y ritmicidad en el proceso de producción de bienes y de prestación de servicios. Es tarea de primer orden pues los mantenimientos a muebles, inmuebles, medios, equipos e instrumentos de trabajo no puede ser una actividad espontánea, que se active únicamente ante la existencia de roturas e interrupciones. Los planes de mantenimiento tendrán en cuenta el programa ambiental.

Para garantizar el cumplimiento cabal de este proceso en la empresa se actúa según el Reglamento que Organiza el Mantenimiento Sistemático de Inmuebles, Muebles, Medios y Equipos

Es importante para todo proceso de producción de bienes y servicios, donde las maquinarias, equipos e instalaciones son un factor determinante, y necesario garantizar que éstos se encuentren en óptimas condiciones de funcionamiento, por lo cual la empresa elabora su procedimiento para el mantenimiento, donde entre otros elementos establece lo siguiente:

- a) Organización estructural encargada de efectuar los mantenimientos, especificando su funcionamiento.
- b) Tipos de mantenimiento y sus características (mantenimiento preventivo planificado; pre-diagnóstico; reparaciones imprevistas; cíclicas y otros).
- c) Técnicas para el control del gasto de mantenimiento y la calidad de los trabajos.





- d) Métodos para el recibo y entrega de trabajos.
- e) Organización de cada tipo de mantenimiento. A partir de las características del sistema de mantenimiento a aplicar y de la instalación tecnológica de la empresa y sus diferentes áreas.
- f) Plan Anual de Mantenimiento. Especificaciones de la programación y control de los trabajos de mantenimiento
- g) Características del plan de piezas de repuesto. Su clasificación. técnica para su confección.
- h) Organización de la inspección técnica de las maquinarias, equipos e instalaciones.
- i) Sistemas de liquidación de averías e interrupciones.
- j) Procedimientos específicos para los trabajos de altura, excavaciones, vías libres y otros.
- k) Organización de las actividades de lubricación y conservación.

## 2.3.2 Organización de la actividad de mantenimiento a redes de distribución de energía hasta 110 kV

La Dirección Técnica, establece la política de esta actividad orientada por la UNE, a partir de dar cumplimiento a los indicadores establecidos (índice de interrupciones) en los diferentes niveles de las redes eléctricas según el mapa de proceso Anexo 2. Esta política se basa en la introducción paulatina de técnicas modernas de diagnostico como vía para la reducción de los costos y la elevación continua de su eficacia y eficiencia

La actividad de pruebas y análisis en redes se ejecuta en las 8 Unidades Básica Eléctrica Municipales (UBEM) y en la UBE Centro de Operaciones bajo la supervisión metodológica y control de la Dirección Técnica

De igual modo y bajo la misma forma de dirección metodológica queda en manos de las UBEM las decisiones relativas a los mantenimientos sobre las redes secundarias, bancos de transformadores, servicios y alumbrado público siempre y cuando cumplan con rigor los procedimientos y normativas vigentes para cada actividad, incluyendo el cumplimiento de la disciplina informativa, económica y las regulaciones establecida para el control de los recursos.

Se mantiene la aplicación del mantenimiento predictivo basado en los celajes y los análisis continuos de los índices de interrupciones como vía para la reducción de costos de la actividad de mantenimiento, la identificación oportuna de posibles averías y su solución en días y horarios que causen la menor afectación posible a nuestros clientes





Este método propicia también ahorro de recursos y evita daños mayores por ocurrencia de fallas, permite también programar reparaciones menores dentro de vías libres programadas. Todas estas ventajas conducen de forma segura a una mayor y mejor disponibilidad de nuestras redes

Se ratifica la exigencia en los partes diarios a brindar por la ejecución de acciones brindando especial atención a aquellas que propicien la:

- a) Disminución de la cantidad y tiempo de duración de las interrupciones en todos los niveles de voltaje
- b) Disminución de las pérdidas técnicas.
- c) Disminución del tiempo de atención a las interrupciones
- d) Reducción del índice de transformadores dañados
- e) Tareas de recapitalización y modernización de redes
- f) Reducción de la cantidad de interrupciones.

Se mantendrá la supervisión de la aplicación de la política de mantenimiento y los métodos de trabajo orientados por las siguientes vías:

- a) Radio conferencia diaria
- b) Análisis mensuales de planes operativos
- c) Reunión mensual de calidad
- d) Análisis diario del comportamiento de indicadores
- e) Auditorias técnicas
- f) Consejo de Dirección
- g) Supervisión de procesos por muestreo ( Alrededor del 25 % )

Como parte fundamental del mantenimiento a las redes eléctricas permanece el enrollado de transformadores

El Sistema de Gestión Comercial (SIGECO) y el Sistema de Gestión de la Distribución (SIGEDI) continúan siendo parte fundamental en el sistema.

La elaboración sistemática del diagnostico como línea de trabajo es tarea priorizada dado el avance de la sustitución de equipos en las redes por otros con mucho menor grado de requerimientos de mantenimiento e incrementar especialmente dentro de este el uso de la termografía por la incidencia de este en la prevención de averías

El Grupo Técnico de Líneas y Subestaciones tiene la responsabilidad de ejecución de actividades de mantenimiento y solución de averías en redes de Transmisión y Subtransmisión posibilitando el concentrar los esfuerzos de las UBEM en la distribución





primaria, secundaria y servicios con el consiguiente aumento de la calidad y el mejoramiento de los indicadores de interrupciones.

## 2.3.3 Organización de la actividad de mantenimiento a muebles, inmuebles, equipos y otros medios.

Es función del Director de la UBE Aseguramiento Logístico la elaboración de los planes de mantenimiento así como con la creación de las condiciones necesarias para asegurar el cumplimiento exitoso de los mismos.

Los mantenimientos se planifican para los medios y equipos según los requisitos establecidos por las instituciones u organismos rectores.es preciso garantizar la relación contractual con las empresas u organizaciones que posibiliten la adquisición de los recursos necesarios para realizar el mantenimiento con recursos propios o la ejecución según lo contratado cuando no se cuente con los recursos necesarios para dar estos mantenimientos.

Es responsabilidad del Director de la UBE Aseguramiento Logístico garantizar el plan de mantenimiento anual para cada tipo de equipo, para lo cual a ese fin elabora la propuesta de presupuesto para cada caso de forma que se garantice el cumplimiento exitoso de los mantenimientos de instalaciones y equipamiento no tecnológico de la siguiente manera.

## Equipos de Comunicación

Está a cargo del Jefe del Grupo de Informática - Comunicaciones.

## • Equipos de Cómputo y otros medios informáticos

 Los de menor complejidad está a cargo del Grupo de Informática y Comunicaciones.los de complejidad mayor se contratan a terceros.

## Electricidad General

Está a cargo de la Brigada de Servicios Edificio Central.

#### • Plomería en General

o Está a cargo de la Brigada de Servicios Edificio Central.

#### Equipos de ventilación

El mantenimiento ligero está a cargo de la Brigada de Servicios Edificio
 Central, el de mayor complejidad lo ejecuta el Taller de Transformadores

## • Equipos de climatización

El mantenimiento menor está a cargo de la Brigada de Servicios Edificio
 Central, el de mayor complejidad se contrata a terceros.

## Equipos de Iluminación (luminarias)

Está a cargo de la Brigada de Servicios Edificio Central.





- Mantenimiento civil menor a locales e instalaciones
  - Está a cargo de la Brigada de Servicios Edificio Central, el de mayor complejidad es contratado a terceros.
- Mantenimiento civil complejo a edificios e instalaciones
  - Se realiza mediante la contratación con terceros.
- Mantenimiento o reparación de buros, archivos, sillas, puertas, ventanas, falso techo y otros
  - o Está a cargo de la Brigada de Servicios Edificio Central.
- Mantenimiento o reparación del ascensor
  - El mantenimiento menor está a cargo de la Brigada de Servicios Edificio
     Central, el de mayor complejidad se contrata a terceros.

## 2.4 Procedimiento para el Análisis de Fiabilidad en la distribución de la Empresa Eléctrica Cienfuegos.

El procedimiento de fiabilidad de la distribución para la Empresa Eléctrica Cienfuegos está elaborado sobre la base del Modelo de Fiabilidad de PDVSA. En el Anexo 3 se muestra el diagrama de flujo del procedimiento.

El modelo de PDVSA tiene tres fases en las que se incluyen metodologías y herramientas de fiabilidad cuyos resultados conducen a la entidad al mejoramiento continuo. Básicamente el procedimiento adaptado para la Empresa Eléctrica mantiene las tres fases e inserta metodologías y especificidades en su aplicación.

En la fase diagnóstico del procedimiento se mantienen las metodologías y la determinación de los indicadores tal como se establece en el modelo de PDVSA; se adecúa la matriz de riesgo a las condiciones de la empresa y se incluye la metodología de las 5W y 1H para la implementación de los planes de mejora resultantes y su control.

En la fase de análisis el procedimiento incorpora las mismas metodologías del modelo de PDVSA, la diferencia está en que éste propone Mantenimiento Centrado en Fiabilidad (MCC) e Inspección Basada en Riesgo (IBR) para los equipos de criticidad alta y el procedimiento para los equipos de alta y media criticidad, pues se ha probado que un factor decisivo para variar el nivel de criticidad, es la probabilidad de falla; los restantes factores generalmente deben mantener igual condición de criticidad, es a partir de la aplicación de la IBR y el MCC que se definen las estrategias de mantenimiento e inspección para cada equipo, lo que es muy conveniente para optimizar los procesos de gestión de la infraestructura.





De igual forma se mantienen las metodologías de la fase de optimización, por lo que los datos recopilados y actualizados de las 5W y 1H, permitirán realizar el análisis costo riesgo beneficio, pues quedará registrado el costo de las acciones de mejoras propuestas para disminuir el riesgo en cada elemento de las redes eléctricas, requerido en esta fase para evaluar el impacto en el negocio. Con éste análisis se cierra el ciclo orientando cada vez a la organización hacia la mejora continua.

## 2.4.1 Fase diagnóstico

El objetivo de esta fase es lograr estabilizar el desempeño adecuado de los equipos para el cumplimiento de las funciones en las centarles o redes eléctricas. En esta fase se mitigan riesgos asociados a los problemas y/o desviaciones en los diferentes sistemas y equipos.

#### Determinación de indicadores

Una importante herramienta para prevenir las fallas es el establecimiento y control de los indicadores, un elemento fundamental es que la captura y suministro de datos sea confiable, así la toma de decisiones como resultado del análisis y evaluación tendrá un menor grado de incertidumbre. La "Toma de datos" consiste en realizar la recolección adecuada de los datos para los procesos de análisis, optimización y evaluación de los índices de gestión de fiabilidad y mantenimiento.

- a) Razón de falla: (fallas / año). Este indicador determina el número de fallas de un tipo de equipo anuales en un circuito de distribución
- b) Energía dejada de servir no suministrada al punto de carga debido a las fallas ENS: (kW.h / año)

Es la sumatoria de la energía no suministrada o dejada de facturar en cada equipo (banco de transformador) perteneciente a un circuito de distribución durante un año como consecuencia del fallo

- c) Índice de frecuencia de falla promedio del sistema (%) este es un indicador que mide la relación entre el número de equipos (transformadores) instalados en un circuito de distribución y el número de veces que fallan estos equipos durante un año.
- d) Frecuencia media de interrupción en el punto de entrega por KVA conectado o instalado

$$FMIK = \sum_{i=1}^{n} \frac{kVA fsi}{kVA max}$$

kVAfsi son los kVA instalado interrumpido en el punto de entrega

kVAmax son los KVA instalado en el punto de entrega





e) Tiempo Medio entre Fallas: es un indicador que representa la fiabilidad, se calcula según la fórmula 2.1 indicada debajo. Hoy se calcula para los transformadores de distribución. Se recomienda que se determine para los diferentes niveles de voltaje, para componentes críticos y para las diferentes subestaciones de subtrasmisión.

$$TMEF = \sum_{i=1}^{n} \frac{TO_i + TFS_i}{n}$$
 (2.1)

TO<sub>i</sub> = Tiempos operativos hasta fallar (intervalo de tiempo durante el cual un equipo está en estado operativo)

TFS<sub>i</sub>= Tiempo fuera de servicio debido a la falla i

n = Número total de fallas en el período evaluado

f) Tiempo Fuera de Servicio: indica el tiempo en el cual el equipo no se encuentra disponible por presentar una falla o una posible incapacidad para cumplir una función específica, se calcula según la fórmula 2.2. Está formado por el tiempo para reparar (TPR) y el tiempo fuera de control (TFC)

El tiempo promedio fuera de servicio representa la mantenibilidad

$$TPFS = \sum_{i=1}^{n} \frac{TFS_i}{n}$$
 (2.2)

TFS = Tiempo fuera de servicio

n = Número total de fallas en el período evaluado

Se recomienda que se determine para las diferentes clases de equipos, para componentes críticos y para los diferentes niveles de voltaje

g) Índice de Disponibilidad: capacidad de un equipo de desempeñar su función requerida bajo determinadas condiciones, en un momento determinado o durante un intervalo de tiempo específico, asumiendo que existan los recursos externos requeridos. Representa el porcentaje del tiempo disponible del uso del activo en un período determinado, la continuidad, se calcula según la ecuación 2.4. Se recomienda que se determine para las diferentes clases de equipos, para componentes críticos y para las diferentes niveles de voltaje e instalaciones.

$$D = (TPO / (TPO + TFS)) X 100\%$$
 (2.4)





## Diagnóstico integral

El diagnóstico integral por áreas e instalaciones permite determinar los problemas que están afectando en mayor proporción el desempeño de los indicadores, provocando impactos en las operaciones y riesgos asociados a la seguridad.

## 2.4.2 Fase análisis y control

En esta fase se aplican metodologías que permiten estudiar y monitorear el estado de los equipos, definir las causas de fallas y actuar sobre ellas, facilitan que se establezcan las condiciones requeridas para restablecer las condiciones de los equipos de manera eficaz.

#### Mantenimiento centrado en fiabilidad

El mantenimiento centrado en fiabilidad (MCC) es la metodología que se debe aplicar a los equipos de criticidades alta y media.

Se designa un equipo multidisciplinario de trabajo que se encarga de optimizar la fiabilidad operacional de un sistema que funciona bajo condiciones definidas, estableciendo las estrategias efectivas de mantenimiento, operación e inspección, tomando en cuenta los posibles efectos que originarán los modos de fallas de sus elementos a la seguridad, al ambiente y a las operaciones.

El objetivo de ésta metodología es garantizar los estándares de ejecución de cada activo y tiene los siguientes beneficios:

- Permite desarrollar un plan de buenas prácticas de operaciones y mantenimiento que se adapta a las necesidades actuales del negocio y a las condiciones de los activos.
- Identifica tareas predictivas y preventivas técnicamente factibles y costo efectivas.
- Reconoce las reales causas de falla y busca disminuir sus consecuencias.
- Reconoce que al menos un 70% de las causas de falla no se pueden prevenir o predecir, por lo tanto para garantizar la fiabilidad del negocio:
  - → Identifica las modificaciones al diseño requeridas
  - → Identifica los errores humanos y recomienda correcciones
  - → Identifica los requerimientos de capacitación, creación y revisión de procedimientos, supervisión, etc.
  - → Identifica planes de contingencia.
  - → Identifica repuestos críticos.
  - → Identifica situaciones donde la operación hasta la falla es lo más conveniente.
- Trata con las fallas que están ocurriendo hoy y las que podrían ocurrir mañana.

En la figura 2.6 se muestra la secuencia de pasos para implementar el mantenimiento centrado en fiabilidad.





La aplicación del MCC implica el desarrollo de actividades en el mantenimiento orientadas a la prevención, con tendencia a reducir las actividades correctivas:

## Tareas proactivas:

- Tareas a condición, inspección, monitoreo, detección de fallas potenciales para prevenir fallas funcionales y reducir las consecuencias de fallas.
- Tareas de reacondicionamiento cíclico: Equipos revisados y/o componentes reparados a frecuencias determinadas independientemente de su estado en ese momento.
- Tareas de sustitución cíclica: Reemplazo de un equipo o sus componentes a frecuencias determinadas, independientemente de su estado en ese momento.
- Búsqueda de fallas ocultas: Revisar la condición de operatividad de la función oculta, mediante pruebas a intervalos regulares.

#### Tareas Reactivas:

- Tareas "a falta de":
  - → Rediseño: Aplica si no se encuentra una tarea de búsqueda de fallas o mantenimiento preventivo que reduzca los riesgos de fallas múltiples, los niveles de alto riesgo ambiental y/o impacto en la seguridad.
  - → Ningún mantenimiento preventivo: Sólo si el mantenimiento preventivo es más costoso que el monto involucrado en las consecuencias operacionales y/o el costo de reparar la falla.

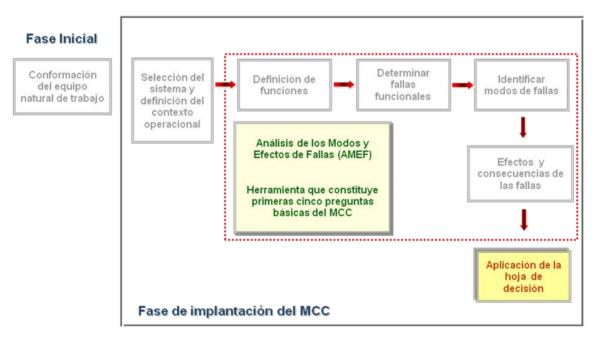



Figura 2.6. Diagrama de Bloques para el Mantenimiento Centrado en Fiabilidad Fuente: (Centro de Estudios de PDVSA, 2010).





## 2.4.3 Inspección basada en riesgo

La inspección basada en riesgos (IBR) evalúa la condición límite de los parámetros de operación para cada equipo y recomienda los niveles de inspección y mantenimiento requeridos para asegurar la integridad de los mismos. Aplica a equipos estáticos de criticidades alta y media. Está orientado a establecer los ciclos de inspección óptimos en función de la criticidad de los equipos y de la tasa de deterioro. Basado en el grado de riesgo asociado con cada activo, se desarrolla el programa de mantenimiento planificado y las interrupciones voluntarias en cada circuito o instalación.

La IBR se basa en los siguientes conceptos:

- Los activos deben ser examinados en intervalos predeterminados para asegurar la integridad mecánica del activo y del proceso.
- Los factores que influyen en la tasa de deterioro del activo se deben monitorear para determinar procedimientos de inspección eficaces y proactivos, y los intervalos de inspección.
- La combinación de los intervalos de inspección mayor, con el seguimiento apropiado de las actividades en operación constituyen la base fundamental para un programa eficaz de inspección.

La metodología IBR permite obtener los siguientes beneficios:

- a) Identificar y controlar riesgos que están presentes en las plantas.
- b) Determinar el impacto total asociado a la ocurrencia de cada evento de falla.
- c) Cuantificar los niveles de riesgo para la toma de decisiones.
- d) Recomendar los niveles de inspección y mantenimiento requeridos para asegurar la integridad mecánica de acuerdo al nivel de riesgo.
- e) Evaluar el impacto sobre el riesgo de acciones como:
  - Modificación de los esquemas de operación
  - Cambios por reparación de la estructura y el mecanismo en los equipos instalados en las redes eléctricas.
  - Instalación de nuevos equipos y tecnologías o mejoras de las existentes.
  - Instalación de sistemas de protecciones eléctricas de última generación.

## 2.4.4 Análisis causa raíz

El análisis causa raíz (ACR) permite identificar las causas raíces desconocidas que originan u originaron las fallas en los sistemas, permitiendo adoptar acciones correctivas o preventivas con el fin de mejorar la fiabilidad y reducir costos por pérdidas de oportunidad.





## Se deben aplicar ACR cuando:

- Se presentan eventos no deseados con alta frecuencia (problemas crónicos)
- Se presenta eventos esporádicos que generan altas consecuencias.
- Los costos de operación no se ajustan a la realidad.
- Los costos de mantenimiento correctivo son muy elevados.
- Se desea conocer por qué ocurre un evento indeseable (accidentes e incidentes)

## Beneficios de la aplicación de ACR:

- Mejora la eficiencia de los proceso a través de la prevención y/o eliminación de fallas frecuentes.
- Reduce los costos de reparación mediante la identificación y corrección de fallas crónicas.
- Disminuye la cantidad de defectos en los productos.
- Mejora los costos operacionales y los tiempos de operación.
- Mejora la capacidad de producción (identifica restricciones).
- Disminuye la posibilidad de accidentes.
- · Minimiza las fallas humanas.

En la figura se representan los pasos para la aplicación de esta metodología.

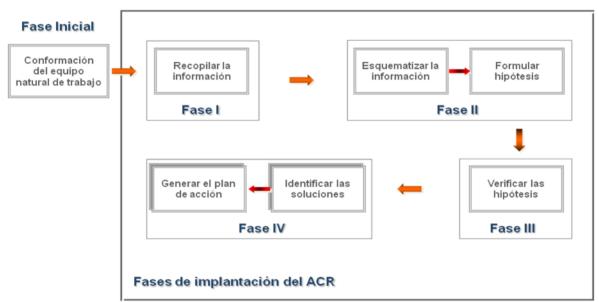



Figura 2.7. Diagrama de Bloques para el Análisis Causa Raíz Fuente: (Centro de Estudios de PDVSA, 2010).

Para realizar los ACR, se aprovechan las herramientas y facilidades existentes en el Sistema de Gestión de la Distribución donde existen los expedientes de vida de los equipos y el resultado de los valores de sus pruebas técnicas, el módulo de defectos y el de





interrupciones al servicio dan todos los elementos para determinar las causas primarias del fallo del sistema

## 2.4.5 Análisis de modos y efectos de fallas (AMEF)

Es un método esencialmente cualitativo, puede ser aplicado por un analista independiente, pero es conveniente su realización por parte de un equipo de trabajo, para aprovechar la sinergia del grupo en las sesiones de trabajo colectivo. Durante las sesiones cada miembro del equipo viene con una preparación previa del equipo tecnológico y el análisis se va conformando con el consenso que resulte del debate, moderado por el líder del equipo.

Primeramente se definen los objetivos y alcance del estudio, y se reúne la documentación técnica y registros del equipo a estudiar.

El análisis de modos y efectos de fallas recorre íntegramente el equipo y todos sus componentes y plantea todas las alternativas de fallo de cada componente (modos de fallo). Para cada modo de fallo se identifican las posibles causas y los efectos sobre el equipo, indicando todos los posibles medios por los cuales el equipo puede fallar.

Se analizan las formas de detección existentes y las posibilidades de recuperación del fallo. Los fallos individuales son considerados como eventos independientes y analizados por separado, aunque el método permite considerar fallos simultáneos de dos componentes, como resultado de una causa única, determinada por factores de acoplamiento entre ambos (insuficiencias comunes de diseño, montaje, calidad de los materiales empleados, mantenimiento, etc.).

Resulta conveniente evaluar de forma cuantitativa la criticidad de los efectos de los fallos de acuerdo con su nivel de severidad para el funcionamiento del equipo, del sistema y de la instalación, con la frecuencia de ocurrencia según los históricos de fallas registrados y de acuerdo con la detección de cada causa de falla, con esto se determina el número de prioridad del riesgo (NPR). Así se pueden fundamentar las medidas para prevenir el fallo y/o contrarrestar sus efectos y se establecen las acciones correctivas sobre cada causa, identificando áreas, fechas y responsables de ponerlas en funcionamiento. Esto es decisivo para el programa de mejoramiento continúo. Todas las acciones deben llevar hacia una reducción significativa de la magnitud del número de prioridad de riesgo.

Posteriormente se deben evaluar los resultados de las acciones correctivas aplicadas y calcular el número de prioridad de riesgo, evaluando las acciones a fin de estar seguros de que ellas realmente llevaron a una mejora. Para constatar la mejora el nuevo valor de NPR debe ser significativamente menor que el original.

En la tabla 2.2 se muestra el contenido básico que se registra durante el desarrollo del FMEA.





Tabla 2.2. Registro de Análisis de Modos y Efectos de Fallas (AMFE) Fuente: (Acuña, J. A., 2003)

| Empresa Eléctrica Cienfuegos |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
|------------------------------|---------------------|---------------------------------|---|---------------------------------------------|---|---------------------------|---|-----|--|--|--|
| Código del Equipo: Función:  |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
| Equipo de Trabajo:           |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
| Objetivo del estudio:        |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
| Componente                   | Modo<br>de<br>falla | Efectos<br>del modo<br>de falla | s | Causas<br>del modo<br>de falla<br>potencial | F | Formas<br>de<br>detección | D | NPR |  |  |  |
|                              |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
|                              |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
|                              |                     |                                 |   |                                             |   |                           |   |     |  |  |  |
|                              |                     |                                 |   |                                             |   |                           |   |     |  |  |  |

Esta plantilla tendrá toda la información respecto a los diversos modos de falla y sus efectos. En esta se desglosan cualitativamente los modos, efectos y causas de falla potencial por los que un activo puede fallar; en las columnas S, F y D se evalúa de forma cuantitativa la severidad, frecuencia y detección de cada causa de falla y se determina el NPR que en la etapa de evaluación será re calculado para verificar si las acciones llevaron realmente a una mejora.

#### Conclusiones parciales del Capitulo 2.

- Se describe la estructura organizativa de la actividad de redes eléctricas con sus características y principales dificultades para el desempeño de la gestión del mantenimiento.
- Se evalúa la aplicación de las herramientas de la fiabilidad a partir de la estructura informativa del SIGEDI proponiendo incluir nuevos registros para favorecer su implementación
- Se adapta la metodología del Modelo de Fiabilidad de PDVSA al procedimiento de fiabilidad de la distribución de la Empresa Eléctrica Cienfuegos y se describe las etapas para su implementación.
- 4. Se detalla la importancia del mantenimiento centrado en fiabilidad (MCC) y su aplicación a los equipos de las redes eléctricas.

Capítulo 3





## Capítulo 3: Análisis de la Fiabilidad en la Empresa Eléctrica Cienfuegos.

La implementación de herramientas de fiabilidad es hoy para la Empresa Eléctrica Cienfuegos un reto, teniendo en cuenta lo vital que resulta la continuidad del servicio eléctrico para el desarrollo y el bienestar del pueblo. En este capítulo se presentan los resultados obtenidos de la aplicación del procedimiento explicado en el capítulo 2.

#### 3.1 Indicadores de Fiabilidad

La determinación de indicadores ha sido una herramienta básica para el equipo de trabajo de fiabilidad, debido a la necesidad de recopilar la información requerida, reunir suficientes datos en el tiempo, crear las bases de datos y estudiar los métodos idóneos para la determinación de los indicadores. Para el presente estudio se utilizan los datos de las redes de distribución almacenados desde el 2009 hasta el 2011 y de forma general estadística de fallos desde el 2001al 2011 por unidades organizativas UBEM.

#### 3.1.1 Fuente de datos de mantenimiento y fiabilidad.

En la Empresa Eléctrica Cienfuegos tradicionalmente se registran los datos técnicos de los equipos, pero resulta muy difícil obtener los datos de mantenimiento y algunos de fiabilidad para determinar indicadores. En los procedimientos de trabajo del sistema de calidad están definidos los modos de fallas de los equipos de y las causas más comunes. Los datos se registran en el Sistema de Gestión de la Distribución SIGEDI. En este sistema no se registran aún todos los datos de falla, aunque tiene flexibilidad suficiente para procesar los datos históricos, procesar los datos de fallas e introducir nuevos campos para completar los datos requeridos.

La cantidad de defectos mensuales que se han registrado, se presentan en la figura 3.1, a través de un gráfico de control de cantidad de defectos del cual se puede observar que no existe un estado de control estadístico, ya que existen 9 puntos fuera de los límites de control y se presentan 11 secuencias inusuales, cumpliendo con la regla de ser grupos de 3 observaciones con valores más allá de 2 sigmas a un mismo lado de la línea central y además se cumple el patrón de conjuntos de 5 observaciones con 4 de ellas más allá de una sigma en 3 ocasiones, lo cual hace un total de 21 puntos especiales, de 40 totales. Además se calcula que el límite superior de 3,0 sigmas es de 90,9939 y el inferior 42,0561, con una media de 66.525 defectos por meses.





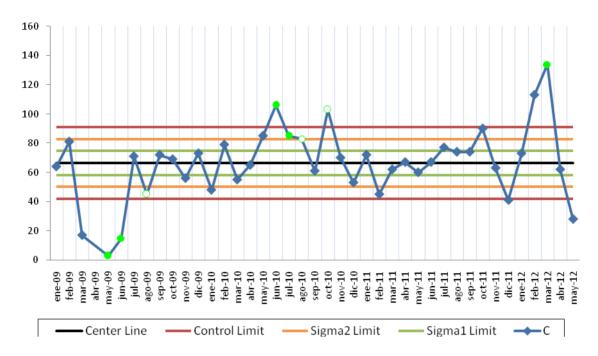



Figura 3.1: Carta de Control C, para cantidad de defectos mensuales en las redes de Distribución Eléctrica Cienfuegos, Fuente: (*Statgraphics*, s.d.) Centurión XV

Para poder utilizar este gráfico los datos deben seguir una distribución de Poisson, lo cual se demuestra a partir de las pruebas de bondad de ajuste realizadas, según la prueba Chi-cuadrada, el valor de p es 0.4158 el cual es mayor que la significación de contraste 0.05, por lo que no se puede rechazar la idea de que los defectos mensuales siguen una distribución de Poisson con un 95 % de confianza.

A partir de los datos proporcionados por el SIGEDI se procede a investigar el estado de la fiabilidad en la empresa, para ello se emplean los registros de fallas, analizados a través de gráficas de Pareto.

Al análisis de los indicadores más importantes para la evaluación de la fiabilidad de la distribución en les redes eléctricas es el Tiempo de Interrupción al Usuario (TIU), este tiempo es llevado en los datos del Sistema de Gestión de la Distribución (SIGEDI) en el consolidado de los circuitos primarios. Sin embargo, está ligado a interrupciones en los niveles primarios, secundarios y de servicios, por lo que se hace necesario determinar en cuál de los niveles se tiene una mayor influencia para los TIU. El método de análisis empleado para este fin es el de la regresión, la cual se realiza según los datos de las interrupciones por niveles y su influencia en los intervalos de TIU calculados a partir de las frecuencias de ocurrencia.





Tabla 3.1: Frecuencias para el Tiempo de Interrupción al Usuario Fuente: Elaboración propia

| Clase | Límite<br>Inferior | Límite<br>Superior | Punto<br>Medio | Frecuencia | Frecuencia<br>Relativa | Frecuencia<br>Acumulada | Frecuencia<br>Rel. Acum. |
|-------|--------------------|--------------------|----------------|------------|------------------------|-------------------------|--------------------------|
|       | menor<br>o igual   | 0,0                |                | 8          | 0,0842                 | 8                       | 0,0842                   |
| 1     | 0,0                | 9,45               | 4,725          | 54         | 0,5684                 | 62                      | 0,6526                   |
| 2     | 9,45               | 18,9               | 14,175         | 10         | 0,1053                 | 72                      | 0,7579                   |
| 3     | 18,9               | 28,35              | 23,625         | 6          | 0,0632                 | 78                      | 0,8211                   |
| 4     | 28,35              | 37,8               | 33,075         | 4          | 0,0421                 | 82                      | 0,8632                   |
| 5     | 37,8               | 47,25              | 42,525         | 2          | 0,0211                 | 84                      | 0,8842                   |
| 6     | 47,25              | 56,7               | 51,975         | 3          | 0,0316                 | 87                      | 0,9158                   |
| 7     | 56,7               | 66,15              | 61,425         | 2          | 0,0211                 | 89                      | 0,9368                   |
| 8     | 66,15              | 75,6               | 70,875         | 0          | 0,0000                 | 89                      | 0,9368                   |
| 9     | 75,6               | 85,05              | 80,325         | 0          | 0,0000                 | 89                      | 0,9368                   |
| 10    | 85,05              | 94,5               | 89,775         | 0          | 0,0000                 | 89                      | 0,9368                   |
| 11    | 94,5               | 103,95             | 99,225         | 0          | 0,0000                 | 89                      | 0,9368                   |
| 12    | 103,95             | 113,4              | 108,675        | 2          | 0,0211                 | 91                      | 0,9579                   |
| 13    | 113,4              | 122,85             | 118,125        | 0          | 0,0000                 | 91                      | 0,9579                   |
| 14    | 122,85             | 132,3              | 127,575        | 2          | 0,0211                 | 93                      | 0,9789                   |
| 15    | 132,3              | 141,75             | 137,025        | 0          | 0,0000                 | 93                      | 0,9789                   |
| 16    | 141,75             | 151,2              | 146,475        | 0          | 0,0000                 | 93                      | 0,9789                   |
| 17    | 151,2              | 160,65             | 155,925        | 0          | 0,0000                 | 93                      | 0,9789                   |
| 18    | 160,65             | 170,1              | 165,375        | 0          | 0,0000                 | 93                      | 0,9789                   |
| 19    | 170,1              | 179,55             | 174,825        | 1          | 0,0105                 | 94                      | 0,9895                   |
| 20    | 179,55             | 189,0              | 184,275        | 1          | 0,0105                 | 95                      | 1,0000                   |
|       | mayor<br>de        | 189,0              |                | 0          | 0,0000                 | 95                      | 1,0000                   |

Esta tabulación de frecuencias dividiendo el rango de TIU en intervalos del mismo ancho, y cuenta el número de datos en cada intervalo. Las frecuencias muestran el número de datos en cada intervalo, mientras que las frecuencias relativas muestran las proporciones en cada intervalo. Pueden verse gráficamente los resultados de la tabulación en la figura 3.2.





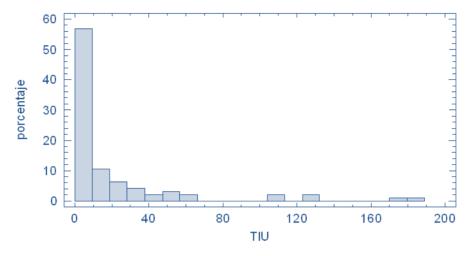



Figura 3.2: Histograma de Frecuencia para los Tiempos de Interrupción al Usuario Fuente: (*Statgraphics*, s.d.) Centurion XV

Estas clases que se calculan, son utilizadas para realizar una regresión Weibull con el fin de determinar en qué medida influyen las interrupciones en los circuitos primarios, secundarios y de servicios en las clasificaciones de los TIU. Los resultados de la regresión se encuentran en la tabla 3.2

Tabla 3.2 Modelo de Regresión Weibull Estimado para los TIU.

Fuente: Elaboración propia

| Parámetro                   | Estimado   | Error<br>Estándar | LC Inferior 95,0%<br>Límite de Conf. | LC Superior 95,0%<br>Límite de Conf. |
|-----------------------------|------------|-------------------|--------------------------------------|--------------------------------------|
| CONSTANTE                   | -0,038558  | 0,10556           | -0,245452                            | 0,168336                             |
| Interrupciones. Primarias   | 0,0102784  | 0,00365493        | 0,00311481                           | 0,0174419                            |
| Interrupciones. Secundarias | 0,00187334 | 0,00112465        | -0,00407761                          | 0,000330931                          |
| Interrupciones. Servicios   | 0,0015056  | 0,000228211       | 0,00105831                           | 0,00195289                           |
| SIGMA                       | 0,58918    | 0,0434629         | 0,509866                             | 0,680832                             |

Para analizar la influencia de cada uno de los parámetros se realizan la pruebas de Verosimilitud, como se puede apreciar en la tabla 3.3, las interrupciones secundarias no son estadísticamente significativas para la clasificación de los TIU, ya que su valor crítico de probabilidad no es menor que 0.05.





Tabla 3.3: Pruebas Razón de Verosimilitud modelo ajustado Fuente: Elaboración. Propia.

| Factor                     | Chi-Cuadrada | GI | Valor-P |
|----------------------------|--------------|----|---------|
| Interrupciones Primarias   | 8,71436      | 1  | 0,0032  |
| Interrupciones Secundarias | 2,63594      | 1  | 0,1045  |
| Interrupciones Servicios   | 36,4795      | 1  | 0,0000  |

Los resultados de ajustar un modelo de regresión para el tiempo de falla con respecto a las interrupciones primarias, secundarias y de servicios. La ecuación del modelo ajustado es: Clasif = exp (-0,0386 + 0,010\*Primarias - 0,0019\* Secundarias + 0,0015\*Servicios)

Lo que permite demostrar que la mayor influencia en las clasificaciones de los TIU están relacionadas en primer lugar con las interrupciones en el nivel primario, luego con el de servicio y por último y menos significativas por las fallas en los niveles secundarios. Para mayor detalle se puede ver el Anexo 4

Para el análisis de los circuitos primarios, inicialmente se muestran la incidencia de la fallas por estructura administrativa, para determinar de esta forma cual es la que presenta mayor número de fallas durante el período estudiado. Resultando, como se puede ver en la figura 3.3 que la mayor cantidad de problemas ocurren en la UBEM Cienfuegos, UBE Centro de Operaciones, Dirección Técnica, UBEM Rodas y la UBEM Lajas.

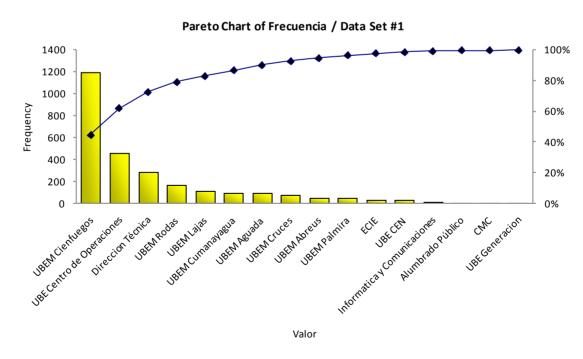



Figura 3.3 Frecuencia de fallas por estructura administrativa en la Empresa Eléctrica Cienfuegos; Fuente: (*Statgraphics*, s.d.) Centurión XV





En el último año se reportaron un total de 15 992 interrupciones, de las cuales 402 fueron en los circuitos primarios, 3357 en los circuitos secundarios y 12 233 en los niveles de servicios, teniendo en cuenta que existen en la provincia un total de 95 circuitos primarios, de los cuales se derivan 3592 circuitos secundarios, para poder estudiarlos con detenimiento se decide por parte del equipo de mejora, seleccionar los más problemáticos.

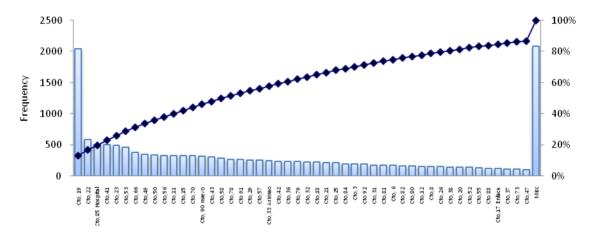



Figura 3.4: Gráfica de Pareto para las interrupciones totales en los circuitos primarios Fuente: (*Statgraphics*, s.d.) Centurión XV

En la figura 3.4 salta a la vista inmediatamente el circuito 19, el cual tiene un nivel de interrupciones muy superior a los demás circuitos. Este circuito tiene un voltaje de 13.8 kV y se encuentra en Cienfuegos, además cuenta con un total de 149 transformadores agrupados en 124 bancos, distribuidos a lo largo de 18 km de líneas. Sin embargo, no es este circuito uno de los que más Tiempo de Interrupción al Usuario (TIU) ha reportado, como se puede ver en la figura 3.5.

A partir de las gráficas de Pareto de las figuras 3.3, 3.4 y 3.5, no es posible determinar un conjunto de circuitos que puedan representar el 80 % de los defectos, ya que no se cumple correctamente el principio, por lo tanto los análisis de los componentes que fallan, deberá hacerse de forma general.

Con los datos proporcionados por el SIGEDI, se pueden conocer también, los elementos que están teniendo una mayor incidencia en las fallas reportadas, para de esta forma poder analizar consecuentemente dónde los elementos conocidos como malos actores en el procedimiento





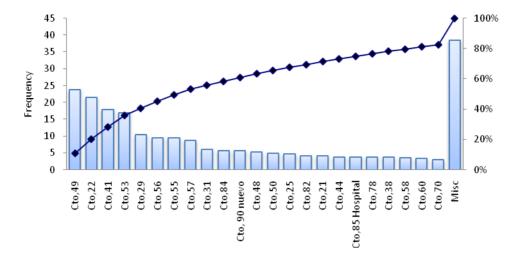



Figura 3.5: Pareto para los TIU reportados por circuitos primarios Fuente: (*Statgraphics*, s.d.) Centurión XV

A partir del análisis de Pareto que se muestra en la figura 3.6, se pude constatar que los elementos más conflictivos del total de 95 componentes que se utilizan, son los siguientes:

- Transformadores
- Acometida
- Poste o estructura
- Conductor

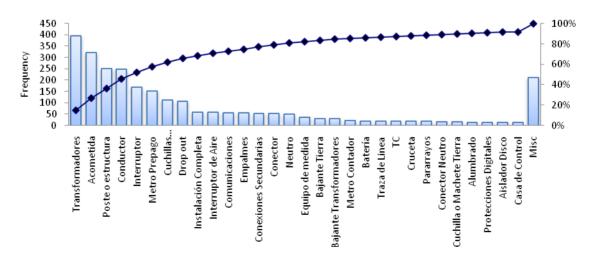



Figura 3.6 Frecuencia de fallas por elementos en la empresa Eléctrica Cienfuegos; Fuente: (*Statgraphics*, s.d.) Centurión XV





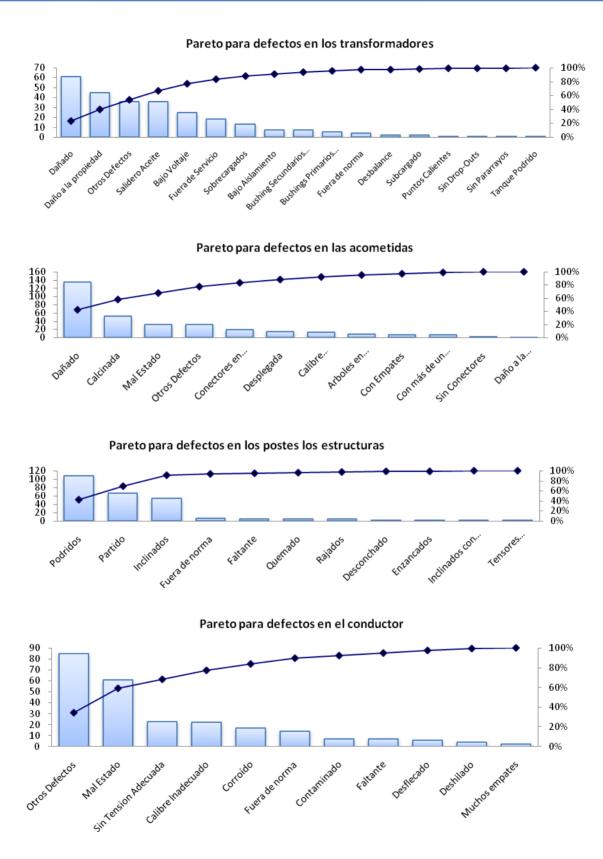



Figura 3.7: Gráficos de Pareto para las sub-causas de los elementos más fallados Fuente: (*Statgraphics*, s.d.) Centurion XV





En la Empresa Eléctrica Cienfuegos existe como parte del sistema de gestión de calidad un procedimiento, el UR-BD 0212, en el cual se definen los distintos tipos de interrupciones que pueden ocurrir en los circuitos, clasificándolas según corresponda por cada tipo de de instalación, como se puede ver en la siguiente tabla, tienen un número clave y las sub causas de dichos fallos se muestra Anexo 5, no todas los tipos de interrupciones están en cada instalación (circuitos primarios, circuitos secundarios, circuitos de servicios, redes de 110 kV, redes de 33 kV, subestación de 110 kV y 33 kV). Para una mejor compresión de los códigos que se emplean en el procedimiento UR-BD 0306, se detallan en el Anexo 6, donde se explican los códigos y para las instalaciones estudiadas.

En el Anexo 7 se describe el comportamiento de estos indicadores entre los años 2003 al 2011 notándose un cierto deterioro en el año 2011 del indicador de índice de transformadores dañados con relación al plan propuesto. En el Anexo 8 se detalla el resultado del número de interrupciones voluntarias y no voluntarias en los niveles primarios, secundarios y de servicios por cada UBEM desde el año 2005 al 2011 según la causa (clave) descripta en la tabla 3.4 siguiente, además ofrece la información del tiempo total y promedio de dichas interrupciones.

Tabla 3.4: Clasificación de las interrupciones y correspondencia con las instalaciones.

Fuente: Flaboración propia

| Interrupciones                  | Clave | Prim. | Secund. | Serv. | Transm<br>110kv | Subtr<br>33kV | SE<br>110kV | SE<br>33kV |
|---------------------------------|-------|-------|---------|-------|-----------------|---------------|-------------|------------|
| Voluntarias                     | 1     | Х     | х       |       | х               | Х             | х           | Х          |
| Estructuras                     | 2     | Х     | х       | Х     | х               | Х             | х           | Х          |
| Aislamiento                     | 3     | Х     |         |       | Х               | Х             | х           | Х          |
| Conductor                       | 4     | Х     | Х       | Х     | Х               | Х             |             |            |
| Crucetas y Herrajes             | 5     | Х     | Х       |       | Х               | Х             | х           | Х          |
| Falso contacto                  | 6     | Х     | Х       | Х     | Х               | Х             | х           | Х          |
| Aterramiento y Shield           | 7     | Х     | Х       |       | Х               | Х             | х           | Х          |
| Equipos                         | 8     | Х     | Х       | Х     | Х               | Х             | х           | Х          |
| Rayos                           | 9     | Х     | Х       | Х     | Х               | х             | х           | Х          |
| Árboles                         | 10    | Х     | Х       | Х     | Х               | х             |             |            |
| Operación defectuosa o errónea. | 11    | х     |         |       | х               | х             | х           | х          |
| Fallas del sistema              | 12    | Х     |         |       | Х               | Х             | х           | Х          |
| Falla en nivel inferior.        | 13    | х     | Х       | Х     | Х               | х             | х           | Х          |
| Otros agentes medioambientales  | 14    | х     | х       |       | х               | х             | х           | х          |
| Agentes externos                | 15    | Х     | х       | Х     | Х               | Х             | х           | Х          |





| Desconocidas | 16 | Х |  | Х | Х |  |
|--------------|----|---|--|---|---|--|
|              |    |   |  |   |   |  |

#### 3.2: Análisis de la probabilidad de fallos

Para el análisis de la probabilidad de fallos existe primeramente un problema, no se tienen contabilizados los tiempos de trabajo hasta el fallo de los elementos que conforman las redes, lo cual dificulta que se puedan calcular los índices tradicionales de fiabilidad, en este caso, se decide calcular la probabilidad de fallas a partir de los datos generales, esta forma de cálculo no permite conocer qué vida media residual tiene un equipo determinado, pero si permite conocer cuál es la probabilidad de que en un día ocurra una falla, a partir de los datos históricos de 40 meses, desde enero de 2009 hasta abril de 2012.

Como se comentó en el epígrafe anterior, la cantidad de fallas en un mes sigue distribución de Poisson con parámetro Lambda igual a 66.525, por lo que se pueden construir las funciones de probabilidad características, como son la función de densidad y la función de probabilidad acumulada, las que se presentan en las figuras 3.8 y 3.9 respectivamente.

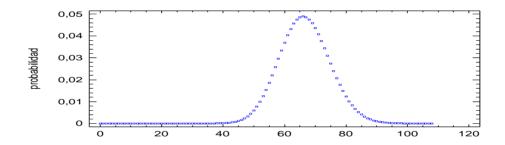



Figura 3.8: Función de densidad de Fallas en la Empresa Eléctrica Cienfuegos Fuente: (*Statgraphics*, s.d.) Centurion XV

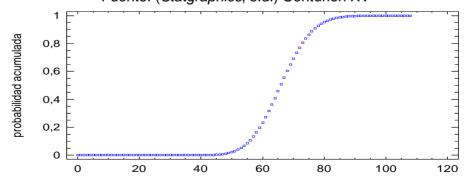
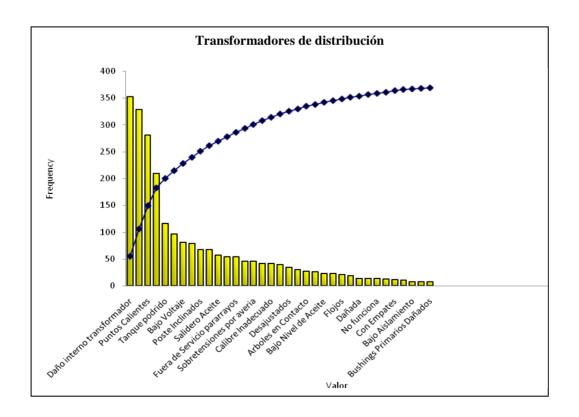



Figura 3.9: Función de Probabilidad de Fallas acumulada en la Empresa Eléctrica Cienfuegos Fuente: (*Statgraphics*, s.d.) Centurion XV

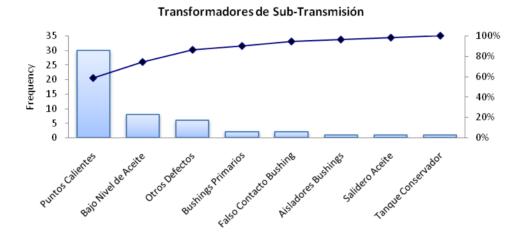





A partir de estos resultados se pueden obtener las áreas de colas, con las que se pueden programar las actividades de atención a averías, ya que las probabilidades calculadas indican que es muy poco probable que los fallos en un mes sean menores de 48 o mayores de 86. Para un análisis más detallado se puede ver el Anexo 9.

Tabla 3.5: Valores de las Áreas de Cola para los percentiles de la función de fallos Fuente: Elaboración propia

| Percentiles            | 0,01 | 0,1 | 0,5 | 0,9 | 0,99 |
|------------------------|------|-----|-----|-----|------|
| Dist. Poisson (66.525) | 48   | 56  | 66  | 77  | 86   |


En el epígrafe anterior, se constató que los elementos más fallados en el periodo estudiado, son los transformadores, por lo que se realiza un análisis más detallado de los fallos de estos equipos. Anteriormente en la figura 3.7, se plantearon de forma general las causas de fallas de los transformadores, pero se pudieran detallar más teniendo en cuenta los tipos de transformadores, pues existen los de Distribución, Transmisión y Subtransmisión, ver figuras 3.10.











Figuras 3.10: Causas de fallas por tipos de transformadores. Fuente (*Statgraphics*, s.d.) Centurión XV

Con los datos proporcionados por el Sistema de Gestión de la Distribución, se pueden estimar las probabilidades de ocurrencia de los fallos. Para ello se analizan las distribuciones de probabilidad que siguen los datos, para este fin se emplea el software Statgraphics 15 Centurión, empleando el método de bondad de ajuste por la prueba Chicuadrada; la cual divide el rango de la variable analizada en intervalos no solapables y compara el número de observaciones en cada clase con el número esperado con base en la distribución ajustada.

Los estadísticos de contraste obtenidos para el análisis de las fallas de los tres tipos de transformadores estudiados, superan el valor del estadígrafo de contraste p-valor igual a 0.05, como se muestra a continuación en la tabla 3.6, la cual además incluye los valores de probabilidad de ocurrencia del evento,





Tabla 3.6: Ajuste a las distribuciones para los Transformadores estudiados. Fuente: Elaboración propia

| Tipo de Transformador           | Distribución | Transmisión | Sub-<br>transmisión | General    |
|---------------------------------|--------------|-------------|---------------------|------------|
| Distribución de<br>Probabilidad | Geométrica   | Geométrica  | Geométrica          | Geométrica |
| probabilidad del evento         | 0.178        | 0.473       | 0.044               | 0.24       |
| P-valor                         | 0.23         | 0.773       | 0.47                | 0.49       |

El uso común de esta función está generalmente definido como tiempo de espera hasta que ocurra el primer éxito en una secuencia de ensayos Bernoulli independientes. En este caso particular esta función se define como la cantidad de días hasta que aparezca un fallo. De esta forma se estiman las funciones de densidad, las que se presentan en las figuras 3.11 al 3.14.

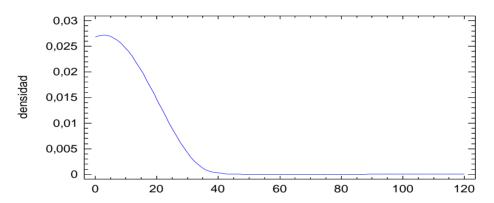



Figura 3.11: Función de densidad suavizada para los fallos de los transformadores en general. Fuente (*Statgraphics*, s.d.) Centurión XV




Figura 3.12: Función de densidad suavizada para los fallos de los transformadores de distribución.Fuente (*Statgraphics*, s.d.) Centurión XV





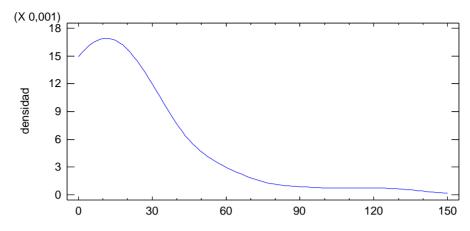



Figura 3.13: Función de densidad suavizada para los fallos de los transformadores de transmisión. Fuente (*Statgraphics*, s.d.) Centurión XV

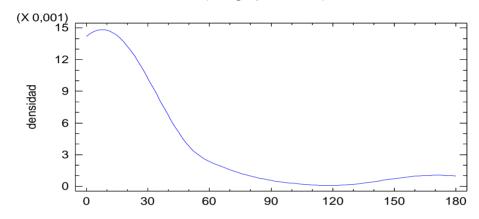



Figura 3.14: Función de densidad suavizada para los fallos de los transformadores de Sub-transmisión.Fuente (*Statgraphics*, s.d.) Centurión XV

Para el análisis de los demás elementos más fallados se emplea la misma forma de trabajar, obteniendo también las funciones de probabilidad a las que más se ajustan los datos, así como las funciones de densidad. En la siguiente tabla 3.7 se observan los valores críticos de rechazo para las pruebas de hipótesis de bondad de ajuste Chicuadrada, así como los parámetros de las funciones.

Tabla 3.7: Ajuste a las distribuciones para los demás elementos estudiados. Fuente: Elaboración propia

| Tipo de Elemento             | Acometida  | Poste o Estructura | Conductor  |
|------------------------------|------------|--------------------|------------|
| Distribución de Probabilidad | Geométrica | Geométrica         | Geométrica |
| probabilidad del evento      | 0.20       | 0.17               | 0.16       |
| P-valor                      | 0.24       | 0.7                | 0.72       |





Las funciones de densidad se encuentran representadas en las figuras 3.15 a la 3.17, teniendo en cuenta que el planteamiento formal de la función es definido como la cantidad de días hasta que aparezca un fallo.

En los anexos 10 y 11, se muestran los detalles de las pruebas estadísticas realizadas para los fallos en los transformadores, las acometidas, los postes o estructuras y conductores.

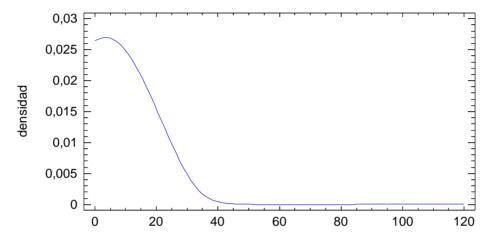



Figura 3.15: Función de densidad suavizada para los fallos de las acometidas.

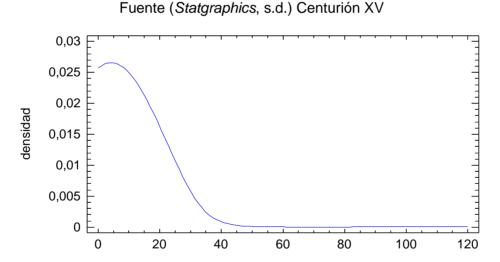



Figura 3.16: Función de densidad suavizada para los fallos de los postes o estructuras.

Fuente (*Statgraphics*, s.d.) Centurión XV





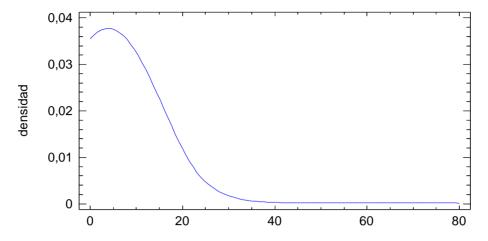



Figura 3.17: Función de densidad suavizada para los fallos de los Conductores.

Fuente (*Statgraphics*, s.d.) Centurión XV

#### 3.3 Construcción de Árboles de fallas y generación de soluciones.

A partir de los resultados obtenidos en los epígrafes anteriores, se puede determinar el árbol de fallas para los problemas presentados en los transformadores, como se muestra en la figura 3.18.

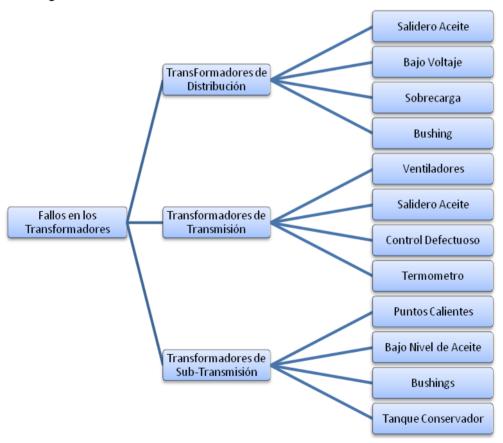



Figura 3.18: Árbol de fallas inicial para los defectos en los transformadores. Fuente: Elaboración propia





Un análisis más profundo de las causas que se presentan por parte de la empresa en el procedimiento empresarial UR-DB 0212 rev. 01, comprueba que existen posibles relaciones de dependencia entre las causas listadas en el procedimiento, lo que impide que se pueda realizar correctamente un análisis de modos y efectos de fallas directamente.

Para determinar por medio de expertos en la empresa las causas potenciales de las fallas que ocurren en los transformadores, las cuales se analizan a través de la técnica de Análisis de Modos de Fallos y sus Efectos, para conocer las jerarquías de las fallas según los niveles de prioridad de los riesgos según se representa en la tabla 3.8.

Se aplica el Método Delphi

Este método está basado en la utilización sistemática e iterativa de juicios de opinión de un grupo de expertos hasta llegar a un acuerdo

#### Selección de los expertos:

| 1 - α | k      |
|-------|--------|
| 99%   | 6,6564 |
| 95%   | 3,8416 |
| 90%   | 2,6896 |

$$n = \frac{p(1-p)k}{i^2}$$

#### Donde:

k: cte. que depende del nivel de significación estadística.

p: proporción de error que se comete al hacer estimaciones del problema con n expertos.

i : precisión del experimento. ( $i \le 12$ )

#### Fase de procesamiento y análisis de la información.

Se utilizan una escala cuantitativa de valores que caractericen la variable de fallo como se especifica en el Anexo 12 donde los 9 expertos seleccionados, como criterio de selección asumen que el menor valor es la de mejor significación. Las 27 variables inicialmente propuesta por medio de una selección ponderada se reducen a 13 de esta forma se tendrán un determinado recorrido lo cual posibilita la fácil utilización de procedimientos estadísticos. Es necesario definir la escala de puntuaciones.

Se confecciona una matriz con los Rangos de las votaciones de los expertos:

El rango es la media aritmética de las posiciones de la evaluación en puntos, de la escala establecida, a la pregunta j por el experto i de acuerdo al rango establecido.





En el Anexo 12 se muestra el resultado de la selección por medio del coeficiente de Kendall que determina la concordancia de los criterios de los expertos, en el análisis se toman como elementos de juicio por los expertos el nivel de incidencia, la magnitud del fallo con la implicación económica que representa. Siendo el resultado el siguiente:

- 1. Fuera de norma no cumple parámetros.
- 2. Devanado primario abierto.
- 3. Cortocircuito devanado secundario.
- 4. Mal estado del aislamiento o envejecido
- 5. Cortocircuito entre espira.
- 6. Relación transformación alterada.
- 7 Bobina corrida o deformada.
- 8. Aceite en mal estado fuera de parámetros
- 9. Puntos calientes
- 10. Bajo Voltaje en la salida.
- 11. Salidero o bajo nivel de aceite.
- 12. Calibre Inadecuado al bajante de tierra.
- 13. Bushing primario partido o rota.

Luego de un trabajo con los expertos de la empresa a partir de la técnica de la tormenta de ideas y posteriormente por medio de la técnica de multivotación se refinan las causas potenciales de las fallas que ocurren en los transformadores, las cuales se analizan a través de la técnica de Análisis de Modos de Fallos y sus Efectos, para conocer las jerarquía de las fallas según los niveles de prioridad de los riesgos según se representa en la tabla 3.8.





Tabla 3.8: Análisis de Modos de Fallas y sus Efectos en los transformadores Fuente: Elaboración propia

|                                       |                                                | Falla                    | Modo de<br>falla                      | Efectos del<br>modo de falla                 | s | Causas<br>del modo<br>de falla<br>potencial | F | Formas de<br>detección            | D | NPR |
|---------------------------------------|------------------------------------------------|--------------------------|---------------------------------------|----------------------------------------------|---|---------------------------------------------|---|-----------------------------------|---|-----|
|                                       |                                                | Salidero Aceite          | Perforación<br>en el cuerpo           | Desperfecto<br>total o parcial               | 8 | Corrosión<br>en el<br>cuerpo                | 3 | Inspección<br>Periódica           | 4 | 96  |
|                                       | adores<br>ución<br>78                          | Sobrecarga               | Mal cálculo<br>de la carga            | Perdida del<br>aislamiento                   | 5 | Error<br>Humano                             | 4 | Medición<br>periódicas            | 3 | 60  |
|                                       | Transformadores<br>de Distribución<br>0.178    | Bushing                  | corrosión y<br>aumento<br>temperatura | Oscilación del<br>voltaje                    | 4 | Falta de<br>Mtto                            | 2 | Diagnostico                       | 3 | 24  |
| adores                                | ϰ                                              | Nivel Bajo de<br>Voltaje | Corrimiento conductores               | Fallo en la<br>relación de<br>transformación | 6 | Falso<br>contacto                           | 3 | Pruebas<br>eléctricas<br>internas | 4 | 92  |
| nsform<br>4                           | ss de                                          | Ventiladores             | Parada del<br>ventilador              | Calentamiento<br>del elemento                | 6 | Error en<br>Mtto                            | 2 | Inspección<br>Periódica           | 5 | 60  |
| Fallos en los Transformadores<br>0.24 | Transformadores de<br>Transmisión<br>0.473     | Salidero Aceite          | Perforaciones<br>en el cuerpo         | Desperfecto<br>total o parcial               | 8 | Corrosión<br>en el<br>cuerpo                | 4 | Inspección<br>Periódica           | 6 | 192 |
| allos en                              | Transfc<br>Tra                                 | Control<br>Defectuoso    | Descontrol<br>de equipo               | Calentamiento<br>del elemento                | 9 | Error en<br>Mtto                            | 3 | Inspección<br>Periódica           | 1 | 27  |
| Ë                                     | de                                             | Sobrecarga               | Mal cálculo<br>de la carga            | Calentamiento<br>del elemento                | 5 | Error<br>Humano                             | 5 | Mediciones<br>periódicas          | 4 | 100 |
|                                       | Transformadores de<br>Sub-Transmisión<br>0.044 | Bajo Nivel de<br>Aceite  | Perforaciones<br>en el cuerpo         | Desperfecto<br>total o parcial               | 8 | Corrosión<br>en el<br>cuerpo                | 5 | Inspección<br>Periódica           | 2 | 80  |

Luego de realizado este análisis de FMEA, se procede a calcular los valores esperados de los niveles de prioridad de riesgo utilizando las probabilidades de ocurrencia calculadas para cada una de las fallas, como se puede ver en la tabla 3.9.

A partir del análisis del valor esperado, se complementa el análisis cualitativo del FMEA con la probabilidad real de ocurrencia de las fallas, por lo que da una mejor medida de a cuáles de los fallos se le debe prestar mayor atención. Es clave destacar que estos





elementos estudiados, es decir, los transformadores, son considerados como de mucha importancia en los procesos de distribución de la energía eléctrica. Es por ello que la empresa como parte de las mejoras de los procesos debería adoptar un análisis de fiabilidad más riguroso que el que se realiza en esta investigación, para ello lo primero sería implementar la hoja de vida de los equipos diseñada en el Anexo 13, para de esta forma poder determinar correctamente los índices de fiabilidad clásicos como son los Tiempos Medios Entre Fallos (TMEF) y los Tiempos de Trabajo Hasta el Fallo (TTHF).

Tabla 3.9: Cálculo del Valor esperado de los NPR en los transformadores. Fuente: Elaboración propia

|                                  |                                            | Falla                   | NPR | Valor<br>Esperado |
|----------------------------------|--------------------------------------------|-------------------------|-----|-------------------|
| Fallos en los<br>Transformadores | Transformadores                            | Salidero<br>Aceite      | 96  | 4.1               |
|                                  | de Distribución  0.178                     | Bajo Voltaje            | 92  | 3.8               |
|                                  |                                            | Sobrecarga              | 60  | 2.56              |
|                                  | Transformadores<br>de Transmisión<br>0.473 | Ventiladores            | 60  | 6.8               |
| 0.24                             |                                            | Salidero<br>Aceite      | 192 | 21                |
|                                  |                                            | Control<br>Defectuoso   | 27  | 3.06              |
|                                  | Transformadores<br>de Sub-Transmisión      | Sobrecarga              | 100 | 1.06              |
|                                  | 0.044                                      | Bajo Nivel<br>de Aceite | 80  | 0.8               |

El proceso de inspección deberá ser iterativo con vistas a lograr la mejora continua, en la figura 3.19, se propone un procedimiento a seguir para la realización de las inspecciones periódicas, el que deberá quedar incluido en la empresa a través de los procedimientos diseñados en el sistema de calidad.

Además el proceso de análisis de la fiabilidad deberá incluir los pasos propuestos en la figura 3.20, el cual se basa en los datos de las inspecciones realizadas en el procedimiento presentado en la figura 3.19. Los datos requeridos para el análisis de la fiabilidad de las redes de distribución actualmente no permiten el análisis de los índices, es por ello que el sistema informático para la gestión de la distribución SIGEDI, deberá ser





modificado para incluir en él los datos de los equipos que se llevarán en el modelo previsto por el Anexo 13.

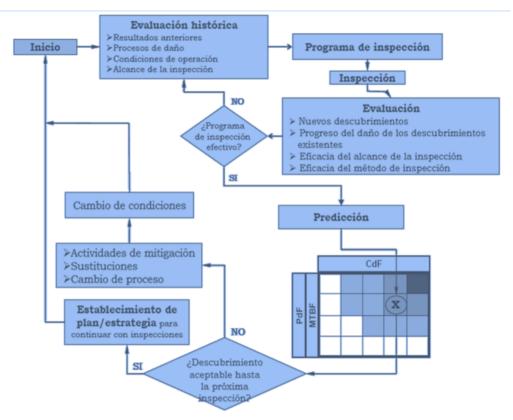



Figura 3.19 Proceso iterativo de inspección propuesto para los elementos de las redes eléctricas. Adaptado de: (Javier García González Quijano, 2004).

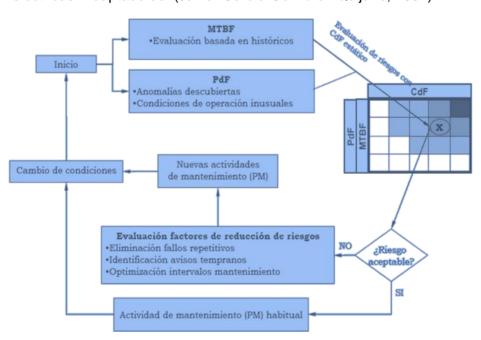



Figura 3.20: Proceso de análisis propuesto para los elementos de las redes eléctricas.

Adaptado de (Javier García González Quijano, 2004).





#### 3.4 Análisis del comportamiento de los transformadores de distribución.

Con vista a conocer el estado del mantenimiento a los transformadores para determinar las causas raíces que determinan los fallos de los mismos se hace un estudio por un período de 2001 al 2011 relacionando las cantidades de fallas de los mismos en los diferentes meses del año y por área organizativa ver Anexo 14, se analiza no solo desde el punto de vista numérico como lo determinan los indicadores establecido en la empresa (índice de interrupciones) sino que se profundiza en otros elementos asociado a la organización del mantenimiento con vista a proponer mejoras al proceso y evaluar las fallas de los transformadores desde otra panorámica asociada a :

- a) Determinar el nivel del servicio eléctrico al cliente por el elemento de falla < transformador>
- b) Evaluar el costo económico de la falla del transformador.

Partiendo de las hojas de toma de datos Anexo 15 donde se detallan los aspectos más significativos sobre la información de las fallas de los transformadores recogidas de los módulos de Control de Defectos, Circuitos, Gestión de Incidencias y Módulo Transformadores.

Se puede apreciar que la empresa no cumple los índices de interrupciones en las redes según el plan directivo del Organismo Superior UNE en los últimos años según Anexo 7 a pesar que ha existido una mejoría de algunos de ellos con relación al año anterior pero las cifras del plan no se cumplen y al evaluar por unidades organizativas la UBEM Cienfuegos que representa el 33% de la contribución a los planes anuales en el 2011 tuvo un incremento negativo en los fallos de los transformadores en el año 2011 ver figura 3.21, el mismo representa el 44% del total provincial fallado, el índice de fallos subió al 4,56 con relación a 2,46 en el año 2010 ver Anexo 16 todo lo anterior justifica realizar un levantamiento por cada circuito en la UBEM Cienfuegos para evaluar su desempeño tomando como partida la información brinda en los diagnóstico. En los Anexos 17, 18 y 19 se relacionan las características de cada circuito y los fallos en el período 2010 al 2011 y los periodos de tiempos de la atención a la avería de los transformadores de distribución.





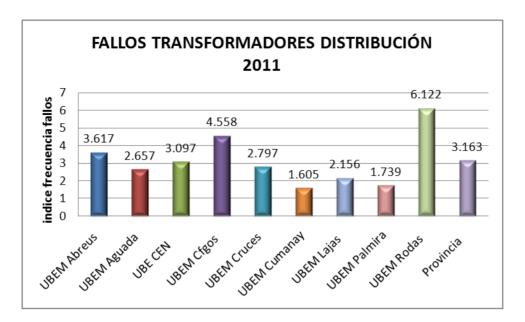



Figura 3.21: Índice de fallos transformadores de distribución 2011.

Fuente: Elaboración propia

Partiendo que la influencia del medio ambiente contribuye muy fuertemente en los índices de interrupciones y en el tiempo de respuesta a la interrupción (TIU) en las redes eléctricas se establecen dos períodos en el año para el análisis de las interrupciones de los transformadores período normal( noviembre a abril) y período de lluvia(mayo a octubre) a fin de proponer la reserva de transformadores según su capacidades para cada UBEM según sus estadística de fallos y así acortar los tiempos de interrupción por los mismos, todo lo anterior se determina por el análisis de los percentiles de la información recogida en el Anexo 15 de forma que se logra determinar el índice de fallo óptimo para cada período y además de forma puntual por cada circuito con el uso de los gráficos de control se analiza el comportamiento de la variable frecuencia de fallo por el nivel de intensidad del fallo (kVA fallado) y el número de clientes afectados. Esto último se emplea como información importante para determinar la valoración económica del fallo que no se determina actualmente en la empresa y que contribuirá a lograr establecer un mecanismo para el análisis de los costos de la calidad en el proceso Distribución de Energía Eléctrica.

### 3.4.1 Evaluación de las pérdidas económicas por las fallas de los transformadores en las redes de distribución.

La gestión económica hoy en día es un elemento clave para la rentabilidad de la entidad y forma parte priorizada de los lineamientos del VI Congreso del PCC, sin embargo no todos los elementos de costo en la entidad se identifican y evalúan dentro del análisis de la gestión del mantenimiento por la Dirección Técnica y la Dirección de Contabilidad y Finanzas, al no lograrse implementar los costo de calidad en la actividad de las redes





eléctricas, los costos generados por los fallos en las redes eléctricas influyen negativamente en el desempeño del proceso pero hoy en día están oculto, cobran una mayor importancia su control y análisis periódico, de ahí la necesidad de proponer un registro donde se identifique adecuadamente todos los elementos asociado con las fallas. El establecer un control primario de todos los gastos asociado a los fallos en cada elemento de las redes y tomando como partida el transformador de distribución por ser el elemento que más factores tiene asociado a los fallos y ser el que mayor gasto implica en el proceso de mantenimiento.

La creación de una base de datos para determinar de forma adecuada los costos de la calidad en dicho proceso, nos asegura trazar estrategias adecuadas en función de mejorar la rentabilidad de la gestión del mantenimiento.

La tabla del Anexo 20 se determina de la siguiente forma las 3 primeras columnas son datos propios de la instalación, la columna no 4 (kVA demandado) se determina por el horario de la falla el valor medido histórico que demanda el banco a partir del número de clientes afectados, el estimado de consumo se relaciona en la tabla 3.10 que se muestra. La columna (5) tipo de cliente y la columna (6) hora se registran, la tarifa es la establecida para cada cliente (sector privado 0,22 \$ x kW.h y sector residencial 0,31 \$ x kW.h ) en el caso de cliente mixto se toma la tarifa de 0,27 \$ x kW.h, la columna (9) Energía dejada de facturar es el producto del valor de las columnas (4, 7 y 8) que la preceden en la tabla , costo de operación al fallo columna (10) es lo registrado en las ordenes de trabajo del personal (fichas de costos) que se relaciona con el transformador en su instalación y revisión in situ, la columna (12) costo por reparación se relaciona con la tarifas de precios y ficha de costos por mantenimiento o reconstrucción del transformador en el taller de la entidad o talleres de terceros. Por último la columna 13 incluye el costo externo para el cliente (perdida por producción dañada o incumplida, rotura de equipos, etc.) más la suma de las columnas 9, 10 y 12

Tabla 3.10 Demanda de consumo cliente x horario Fuente : Elaboración Propia

| Horario           | Demanda de Consumo del transformador | Tipo de cliente |
|-------------------|--------------------------------------|-----------------|
| 6:00 am a 8:00 am | 0,4 kVA x cliente                    | residencial     |
| 11 am a 1:00 pm   | 0,45 kVA x cliente                   | residencial     |
| 2:00 pm a 5:00 pm | 0,35 kVA x cliente                   | residencial     |
| 6:00pm a 8:00 pm  | 0,9 kVA x cliente                    | residencial     |





| 1:00 am a 5:00 am      | 0,2 kVA x cliente                      | residencial |  |  |
|------------------------|----------------------------------------|-------------|--|--|
| Producción             | 0,8 Carga instalada                    | privado     |  |  |
| Sin producción         | 0,2 carga instalada                    | privado     |  |  |
| Según casos anteriores | $\Sigma$ cliente residencial + privado | mixto       |  |  |

#### 3.4.2 Evaluación del nivel del servicio eléctrico al cliente por elemento de falla.

La influencia del servicio eléctrico en la población a tomado un matiz de mucha importancia en los últimos años a partir del desarrollo de la Revolución Energética de aquí que el sector eléctrico haya mejorado gran parte de sus instalaciones para dar respuesta en el cambio en el consumo en los hogares por el uso indispensable de la energía eléctrica en la cocción de los alimentos,

El sector residencial hoy en día exige un incremento de la disponibilidad del servicio ininterrumpido en el momento que más lo requiera (horario pico), esto conlleva a la empresa eléctrica a buscar mecanismo de efectividad para dar respuesta inmediata a cada falla, de ahí la necesidad de valorar el desempeño ante los fallos por intermedio de medir el nivel del servicio al cliente, a partir de indicadores de comportamiento y de situación, por medio de un grupo de experto se determinan el grado de significación de cada variable analizada y los componentes de tiempo de respuesta, con lo cual se determina un rango de puntuación por elemento, por circuito o por unidad organizativa a fin de evaluar el cumplimiento de las expectativas de los clientes.

Para la determinación de los tiempos de respuestas en los transformadores atendiendo a su capacidad (kVA), zona geográfica (urbana o rural) y estado operativo (en mantenimiento u operación) se tomó como referencia un comportamiento del tiempo de fallas a una muestra de 40 transformadores por tipos de capacidad en toda la provincia en un período de 4 años y aplicando un gráfico de control de proceso por variables (valor promedio X.- rango R) determinamos el tiempo optimo para atender la falla por la capacidad del transformador y unificando criterios de comportamiento por medio del análisis de correlación de varias muestra dio como resultado que se agruparan en 3 grupos ( de 3 kVA a 25 kVA, de 37.5 kVA a 75 kVA y de 100 kVA y mayores), establecimos los límites LSC y LIC y se establecen los rangos dividiendo en 1/3 el gráfico, como se muestra en la tabla del Anexo 21 en la columna 8 que relaciona los tiempos de respuesta a la falla del servicio eléctrico..





Aplicando primeramente la técnica del diagrama de relaciones al grupo de expertos seleccionado se identificaron las columnas que relacionaran los aspectos a medir para determinar el nivel de servicio al cliente) columnas 3, 4, 5, 6, 7 8, 9 y el resultado columna 9, por medio de la técnica de la multivotación a los expertos se determinan los valores asociados a las columnas 4, 5 y 8 y la clasificación según el valor obtenido en la columna No 9 del nivel de servicio según lo referido en la tabla 3.11

Tabla 3.11 Rangos de determinación del nivel de servicio por fallo interno del transformador Fuente: Elaboración propia

| Tipo cliente       | Actividad     |     | Rango del valor |      | Clasificación del nivel del servicio eléctrico |         |      |
|--------------------|---------------|-----|-----------------|------|------------------------------------------------|---------|------|
| Residencial urbano | Operación     | ≤15 | 16 a 25         | ≥ 26 | Bueno                                          | Regular | Malo |
| Residencial rural  | Operación     | ≤12 | 13 a 20         | ≥ 21 | Bueno                                          | Regular | Malo |
| Estatal            | Operación     | ≤3  | 4 a 6           | ≥7   | Bueno                                          | Regular | Malo |
| Mixto              | Operación     | ≤6  | 7 a 12          | ≥13  | Bueno                                          | Regular | Malo |
| Residencial urbano | Mantenimiento | ≤12 | 13 a 20         | ≥21  | Bueno                                          | Regular | Malo |
| Residencial rural  | Mantenimiento | ≤10 | 11 a 15         | ≥16  | Bueno                                          | Regular | Malo |
| Estatal            | Mantenimiento | ≤3  | 4 a 6           | ≥7   | Bueno                                          | Regular | Malo |
| Mixto              | Mantenimiento | ≤6  | 7 a 12          | ≥13  | Bueno                                          | Regular | Malo |

### 3.4.3 Análisis de los resultados de los indicadores, del nivel de servicio y de las pérdidas económicas. Propuesta de mejora.

De los epígrafes anteriores se determinan el nivel de servicio por cada fallo crítico del transformador en la UBEM Cienfuegos durante el periodo 2010 al 2011 (epígrafe 3.4.2) auxiliándose de la tabla gráfica del Anexo 21 y de la evaluación de la información del Anexo 19 se obtiene el siguiente resultado que se muestra en el Anexo 22, por su parte la valoración económica de estos fallos parte de aplicar lo descrito en el epígrafe 3.4.1 y los resultados se describen en el Anexo 23.

Los indicadores propuesto en el epígrafe 2.4.1 se determinan en cada circuito de la UBEM Cienfuegos solamente para fallos críticos de transformadores debido que los demás componentes en las redes los registros de las informaciones de sus fallos están muy mezcladas a otros elementos de las redes y no se pueden particularizar ni extraerlo





independientemente. El resultado de cada indicador a nivel de circuito en la UBEM Cienfuegos se describe en el Anexo 24.

El grupo de experto perteneciente al Comité Técnico Asesor, examinan el resultado de los Anexos 22, 23 y 24 de forma individual y se reúnen posteriormente para proponer un plan de acción al órgano de dirección de la entidad con vista al mejoramiento del desempeño del proceso de distribución, aplicando la tormenta de ideas definen primeramente las prioridades de sus acciones de mejoras y por medio de la herramienta 5 H y 1W establecen el Plan de mejora según se refiere en el Anexo 25

#### **Conclusiones parciales del Capitulo 3**

- En este capítulo aplicando Pareto se demuestra que los elementos más conflictivos en los fallos son los : Transformadores, Acometida, Poste o estructura y el Conductor
- 2. Se analizan las distribuciones a las que se ajustan los datos de las fallas de los Transformadores y se desglosan en los diferentes tipos de transformadores.
- Se propone un procedimiento a seguir para la realización de las inspecciones periódicas, el que deberá quedar incluido en la empresa a través de los procedimientos diseñados en el sistema de calidad.
- 4. Se aplican las herramientas de la calidad a los expertos y técnicas estadísticas para conformar los elementos que midan el grado de satisfacción del cliente.
- 5. Se establece un registro para cuantificar los costo económico de los fallos de los equipos en las redes eléctricas y que sirve como complemento para determinar los costo de no calidad en el proceso del mantenimiento a las redes eléctricas.
- 6. Se presenta una metodología en función de la característica del funcionamiento de los equipos (transformador) o el sistema(circuito) a fin de evaluar el nivel de insatisfacción del cliente y que permite hacerla extensiva a los demás componentes de las redes.





## Conclusiones





#### **Conclusiones**

- La cantidad de defectos mensuales se comporta según una distribución de Poisson con una media de 66.525 defectos por meses, pero no tiene un estado de control estadístico.
- 2. La mayor influencia en las clasificaciones de los TIU están relacionadas en primer lugar con las interrupciones en el nivel primario, luego con el nivel de servicio y menos significativamente por las fallas en los niveles secundarios.
- 3. El análisis de Pareto que se muestra en la figura 3.5, indica que los elementos más conflictivos son los siguientes:
  - a. Transformadores
  - b. Acometida
  - c. Poste o estructura
  - d. Conductor
- 4. Se analizan las distribuciones a las que se ajustan los datos de las fallas de los Transformadores y se desglosan en los diferentes tipos de transformadores.
- 5. La empresa no se encuentra en condiciones de realizar los mantenimientos centrados en fiabilidad, ya que no se conocen los tiempos de trabajo de todos los equipos que conforman las redes de distribución eléctricas.
- 6. Se propone un procedimiento a seguir para la realización de las inspecciones periódicas, el cual queda incluido en la empresa en los procedimientos del Manual de Distribución perteneciente al Sistema de Calidad.
- 7. Se establece un registro para cuantificar los costos económicos de los fallos de los equipos en las redes eléctricas y se determina la Energía Dejada de Servir por el fallo del transformador.
- 8. Se propone un indicador para medir el nivel de servicio al cliente en función de las característica del funcionamiento de los equipos o el sistema a fin de controlar por circuitos el tiempo de respuesta a las fallas que influye directamente en el nivel de satisfacción del cliente





## Recomendaciones





#### Recomendaciones

- 1. Incluir los pasos propuestos en el proceso de análisis de la fiabilidad, el cual se basa en los datos de las inspecciones realizadas en el procedimiento presentado en el gráfico 3.14.
- Modificar el programa SIGEDI para la Gestión de los Datos de la Distribución para incluir en él los datos de los equipos que se llevarán en el modelo previsto por el Anexo 6.
- Extender los resultados del estudio a los demás componentes que presentan los mayores problemas para poder conocer la distribución de probabilidad de los fallos y su probabilidad de ocurrencia.
- 4. Utilizar los datos de las probabilidades de falla como punto de partida para realizar un análisis de carga y capacidad en la reparación de averías para las redes de distribución de la Empresa Eléctrica de Cienfuegos.
- 5. Aplicar la evaluación del costo de fallo de los transformadores dentro del sistema de costo de la calidad.
- 6. Generalizar la metodología de evaluación de la insatisfacción para los otros componentes de las redes y en los niveles de voltaje que afectan al cliente.
- 7. Introducir el análisis de la energía dejada de servir por banco de transformadores y no debe forma general como está establecida actualmente.





# Bibliografia





#### **Bibliografía**

A Guide to the Reliability-Centered Maintenance (RCM) Standard. (s.d.). Software Rims of Division. SAE Committee.

Acuña, J. A. (2003). *Ingeniería de Confiabilidad*. Cartago: (Primera.). Tecnológica de Costa Rica.

Agudelo, I. C. (2009). Implementación de la Confiabilidad Operacional en proyectos de Ingeniería.(COPI. *Bogotá., Colombia.*, En busca del costo operacional óptimo.

Allan, R. N. (1982). Basic Concepts in Reliability Evaluation. *IEEE Tutorial Course, Power System Reliability Evaluation*, (Marzo).

Allan. R. N., & Billinton R. (1976, Abril). Reliability evaluation of electrical systems with switching actions. *Proceedings of the IEE*, *123*(5).

Amendola, L. (2002). Modelos Mixtos de Confiabilidad. Valencia, España.

Andreani, A. A. (2009). Ingeniería y gestión de la confiabilidad en plantas industriales.

Billinton R., & Bollinger K. (1968). Transmission system reliability evaluation using Markov processes. *IEEE Transactions on Power Apparatus and Systems*, *PAS-87*.

Billinton R. & Grover M.S. (1975). Qualitative evaluation of permanent outages in distribution systems. *IEEE Transactions on Power Apparatus and Systems*, *PAS-94*.

Billinton. R. & Wojczynski.E. (1985, November). Distributional variation of distribution system reliability. *IEEE Transactions on Power Apparatus and Systems*, *PAS 104*,(11.).

Carpaneto, E, & Chicco. G. (2004, Mayo). Evaluation of the probability density functions of distribution system reliability indices with a characteristic functions-based approach. *IEEE Transactions on Power System.*, 19(2).

Centro de Estudios de PDVSA. (2010). Dossier Ingeniería de Confiabilidad, Nivel Básico. Puerto La Cruz, Venezuela.

Comité técnico de Normalización NC/CTN 56. (2008). Sistema de Gestión de la Calidad. Requisitos. ISO 9001:2008. NC ISO 9001: 2008 (pág. ICS: 03.120.10).





Comité técnico de Normalización NC/CTN 65. (2009). Gestión para el éxito sostenido de una organización. Enfoque de Gestión de Calidad ISO 9004:2009. NC ISO 9004 2009 (pág. ICS: 03.120.10).

Charles J, & Latino, R. C. (2011, Mayo). Definición logro de la cultura de confiabilidad. *confiabilidad.net*. Recuperado a partir de <a href="http://confiabilidad.net/articulos/definicion-y-logro-de-la-cultura-de-confiabilidad/">http://confiabilidad.net/articulos/definicion-y-logro-de-la-cultura-de-confiabilidad/</a>.

Dhillon, B. (2005). Reliability, Quality, and Safety for Engineers. Boca Raton London. *New York Washington, D.C.* 

Durán, M. J. (2000). Optimización de estrategias de mantenimiento.

Dyalinas, E. N., & Allan R.N. (1987, Septiembre). Reliability modeling and evaluation techniques for power distribution networks with local generation. *Proceedings of the IEE.*, 134(5).

Eduardo Sierra Gil, & Santiago Lajes Choy. (2010, Diciembre). Evolución de los métodos de evaluación de la confiabilidad para redes eléctricas de distribución. *Ingeniería Energética*, *XXXI* (3), 42-48.

El Análisis Causa Raíz, Estrategia de Confiabilidad Operacional. (2005). . Colombia.

Escalante, E. J. (2005). Seis-sigma: metodología y técnica (Limusa, Ed.).

Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. (2009, Agosto).

Modelo de Gestión para Optimización de la Confiabilidad Operacional., Primera, E. (2010).

Fabrycky, W. J. (1997). Análisis del coste del ciclo de vida de los sistemas.

Grover M.S & Billinton R. (1974). A computerized approach to substation and switching station reliability evaluation. *IEEE Transactions on Power Apparatus and Systems*, *PAS-93*, 1488 - 1497.

Hinchcliffe, A. M. (2004). RCM: gateway to world class maintenance. Elsevier Inc.

Jones, R. B. (1995). Risk-Based Management: A Reliability-Centered Approach.

Juran J.M. (1992). Programa Juran para mejora de la calidad, Vol. 1.

Koner, P. A. L., G. (2004). SRAT- Distribution voltage sags and reliability assessment tool. *IEEE Transactions on Power Delivery,*, 19(2).





Latino, C. J. (1996). Eliminando Fallas Crónicas Puede Reducirse el Costo de Mantenimiento hasta en un 60%. Recuperado a partir de información@klaron.net.

Luis Amendola, P. D.,, & Tibaire Depool, M. I. (s.d.). Metodología de dirección y gestión de proyectos de parada de planta de proc /. Recuperado Septiembre 12, 2010, a partir de <a href="http://confiabilidad.net/articulos">http://confiabilidad.net/articulos</a>.

Mao Y., & Muy K. N. (2003, Noviembre). Switch Placement to improve system reliability for radial distribution systems with distributed generation. *IEEE Transactions on Power System*, *18*(4).

Mendoza, I. R. (2009). El Análisis de criticidad, una metodología para mejorar la confiabilidad operacional. Recuperado a partir de Club\_mantener@sinectis.com.

Murguía, P. R. (s.d.). Control estadístico de procesos.

NC/CTN 56 Gestión de la Calidad y Aseguramiento de la Calidad, (2005). *Orientación sobre las técnicas estadísticas para la norma ISO 9001:2000. ICS: 03.120.10; 03.120.30.* 

R.W. Hoyer, & Brooke. (2001, julio). ¿Qué es calidad? Quality Progress.

Ramakrishnan, S. (2011, Mayo). Fundamentos para la excelencia en el mantenimiento y confiabilidad. *confiabilidad.net*. Recuperado a partir de http://confiabilidad.net/articulos/.

Rave, J. P.,, & Mesa, C. P. (2007, Mayo). Gestión y activo. Recuperado a partir de Confiabilidad.net.

Robert J Latino. (s.d.). Calidad del proceso y el análisis de causa raíz. Recuperado a partir de <a href="http://confiabilidad.net/articulos/">http://confiabilidad.net/articulos/</a>.

Roberto Hernández Sampier. (2004a). *Metodología de la Investigación I.* La Habana: Félix Varela.

Roberto Hernández Sampier. (2004b). *Metodología de la Investigación II*. La Habana: Félix Varela.

SAE Committee G-11SW. (s.d.). *Reliability Program Implementation Guide*. Software Rims of Division. SAE Committee.

Sánchez, A. C. (s.d.). Conceptos básicos de estadística. (U. P. Valencia, Ed.). Valencia, España.





Sigcho, V. M. (s.d.). Confiabilidad Operacional, una solución de mejora para centros de automatización. Recuperado a partir de confiabilidad.net.

Sistemas de gestión de la calidad – Fundamentos y Vocabulario. (2005). ISO 9000:2005 (Vol. 01).

Tavares, L. (s.d.). Administración moderna del mantenimiento. Valencia, España.





# Tablas y Anexos



Tabla 1.1 Vida media y Función cuantil para los Modelos Exponencial, Weibull, Valor extremo (para mínimos), Normal y Lognormal Fuente: Elaboración propia

| Modelo                       | Vida media                        | Función cuantil                                     |
|------------------------------|-----------------------------------|-----------------------------------------------------|
| Exponencial                  | $E(T) = \frac{1}{\lambda}$        | $t_p = -(1/\lambda) \ln(1-p)$                       |
| Weibull                      | $E(T) = \eta \Gamma(1 + 1/\beta)$ | $t_p = \eta \{-\ln(1-p)\}^{1/\beta}$                |
| Valor extremo (para mínimos) | $E(T) = \mu + 0.5772\sigma$       | $t_p = \mu + \sigma \ln[-\ln(1-p)]$                 |
| Normal                       | $E(T) = \mu$                      | $t_p = \mu + \sigma \Phi^{-1}(p)$                   |
| Lognormal                    | $E(T) = exp(\mu + \sigma^2/2)$    | $t_p = exp\left(\mu + \sigma^{\phi^{-1}}(p)\right)$ |





Tabla 1.2.Funciones de Fiabilidad para los Modelos Exponencial, Weibull, Valor extremo (para mínimos), Normal y Lognormal. Fuente: Elsayed 2005

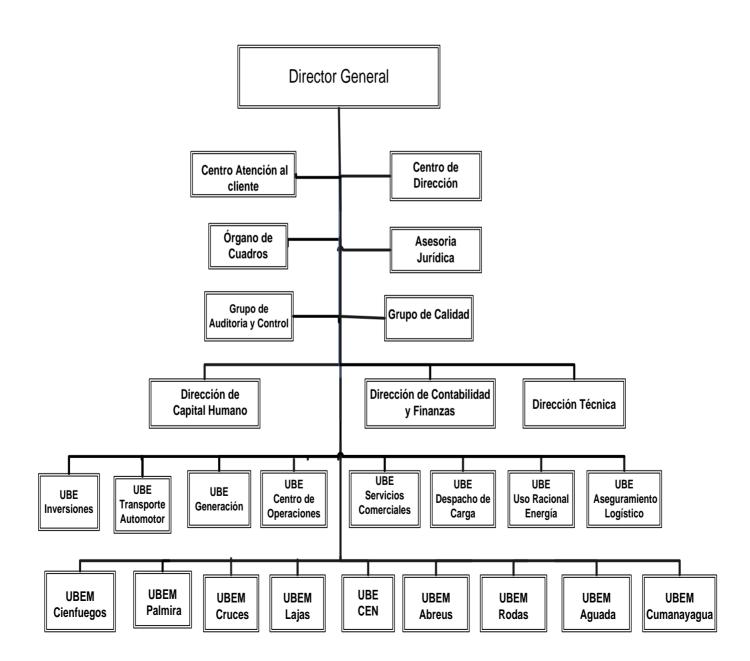
| Modelo        | Función de densidad                                                                                             | Función de infiabilidad                                                       | Función de fiabilidad                                                              | Función o tasa de<br>riesgo                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Exponencial   | $f(t) = \lambda e^{-\lambda t}$                                                                                 | $F(t) = 1 - e^{-\lambda t}$                                                   | $C(t) = e^{-\lambda t}$                                                            | $h(t) = \lambda$                                                    |
| Weibull       | $f(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1} e^{-\left(\frac{t}{\eta}\right)^{\beta}}$    | $F(t) = 1 - e^{-\left(\frac{t}{\gamma_0}\right)^{\beta}}$                     | $C(t) = -e^{-\left(\frac{t}{r_0}\right)^{\beta}}$                                  | $h(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1}$ |
| Valor extremo | $f(t) = \frac{1}{\sigma} exp \left[ \frac{t - \mu}{\sigma} - exp \left( \frac{t - \mu}{\sigma} \right) \right]$ | $F(t) = 1 - exp \left[ -exp \left[ \frac{t - \mu}{\sigma} \right] \right]$    | $C(t) = exp\left[-exp\left[\frac{t-\mu}{\sigma}\right]\right]$                     | $h(t) = \frac{1}{\sigma} \exp\left(\frac{t - \mu}{\sigma}\right)$   |
| Normal        | $f(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{t}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$                        | $F(t) = \int_{-\infty}^{t} f(x) dx = \Phi\left(\frac{t - \mu}{\sigma}\right)$ | $C(t) = 1 - \int_{-\infty}^{t} f(x)dx = 1 - \Phi\left(\frac{t-\mu}{\sigma}\right)$ | h(t) = f(t)/C(t)                                                    |
| Lognormal     | $f(t) = \frac{1}{\sigma t} \Phi\left(\frac{\ln(t) - \mu}{\sigma}\right)$                                        | $F(t) = \varPhi\left(\frac{\ln(t) - \mu}{\sigma}\right)$                      | $C(t) = 1 - \varPhi\left(\frac{\ln(t) - \mu}{\sigma}\right)$                       | h(t) = f(t)/C(t)                                                    |





Tabla 1.3. Resumen de fórmulas para el cálculo de la fiabilidad de sistemas para conexiones en Serie, Paralelo, Serie –Paralelo, K-out-of-m, Paralelo –Serie, Puente y Stand by. Fuente: Elsayed 2005

| ión       |                                                                                                                             | Expresión de eval                                          | uación de Fiabilidad                                                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Conexión  | Diagramas                                                                                                                   | Modelo estático                                            | Modelo dinámico                                                                                         |
| Series    | Aplica en todas las redes de subtransmisión y distribución primaria"                                                        | $R_s = \prod_{i=1}^m R_i$                                  | $R_{s}(t) = \prod_{i=1}^{m} R_{i}(t)$                                                                   |
| Paralelo  | Aplica en las unidades generadoras de las centrales eléctricas distribuidas, circuitos de las redes distribución secundario | $R_p = 1 - \prod_{i=1}^m F_i$                              | $R_p(t) = 1 - \prod_{i=1}^m F_i(t)$                                                                     |
| K-out-of- |                                                                                                                             | $R_{k/m} = \sum_{i=k}^{m} {m \choose i} R^{i} (1-R)^{m-i}$ | $R_{k/m}(t) = \sum_{i=k}^{m} {m \choose i} R^{i} e^{-i\lambda t} \left[1 - e^{-\lambda t}\right]^{m-i}$ |

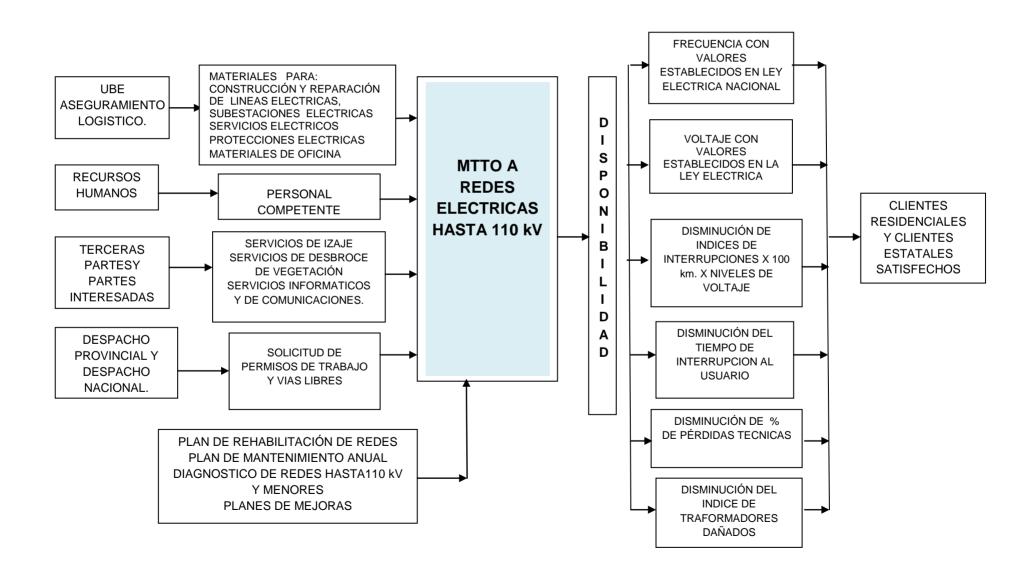





| ión              |                                                               | Expresión de eval                                                                                        | uación de Fiabilidad                                                                                                 |
|------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Conexión         | Diagramas                                                     | Modelo estático                                                                                          | Modelo dinámico                                                                                                      |
| Serie- Paralelo  | Aplica en los subestaciones de distribución y subtransmisión" | $R_{pi} = 1 - \prod_{j=1}^{k} F_{ij}$ $R_{sp} = \prod_{i=1}^{m} \left(1 - \prod_{j=1}^{k} F_{ij}\right)$ | $R_{pi}(t) = 1 - \prod_{j=1}^{k} F_{ij}(t)$ $R_{sp}(t) = \prod_{i=1}^{m} \left(1 - \prod_{j=1}^{k} F_{ij}(t)\right)$ |
| Stand by         | 1<br>3                                                        |                                                                                                          | $R_{st}(t) = e^{-\lambda t} - \prod_{i=0}^{m-1} \left( 1 - \prod_{j=1}^{k} (\lambda t)^{i} / i! \right)$             |
| Paralelo - Serie | 1 2 k 1  1 2 k 2  1 2 k 3                                     | $R_{ps} = 1 - \prod_{i=1}^{m} \left( 1 - \prod_{j=1}^{k} R_{ij} \right)$                                 | $R_{ps}(t) = 1 - \prod_{i=1}^{m} \left( 1 - \prod_{j=1}^{k} R_{ij}(t) \right)$                                       |
| Puente           | 3 3 5                                                         | $R_b = 2R_1R_2R_3R_4R_5 + R_2R_3R_4 - R_1R_2R_4R_5$ $R_b = 2R^5 - 5R^4 + 2R^3 + 2R^2$                    | $R_b(t) = 2[R(t)]^5 - 5[R(t)]^4 + 2$                                                                                 |



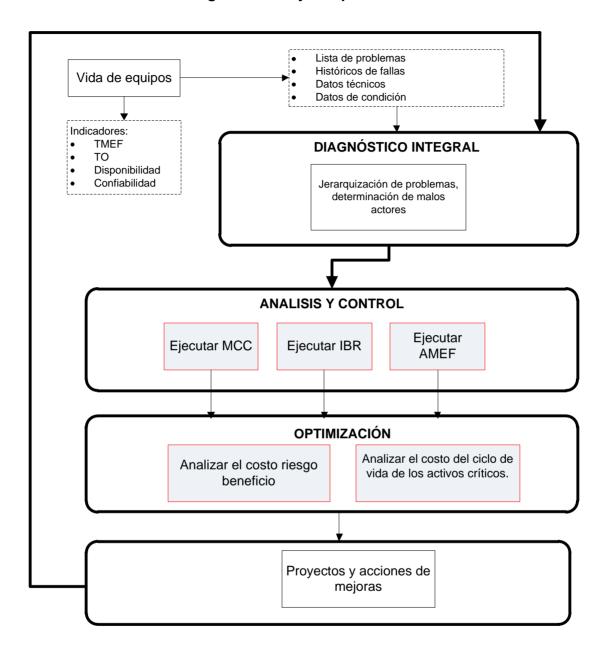
Anexo 1: Estructura de dirección de la Empresa Eléctrica Cienfuegos








# Anexo 2 Mapa SIPOC del proceso mantenimiento de redes eléctricas hasta 110 kV


SUMINISTRADORES ENTRADAS PROCESO SALIDA CLIENTES







Anexo 3: Diagrama de Flujo del procedimiento utilizado.







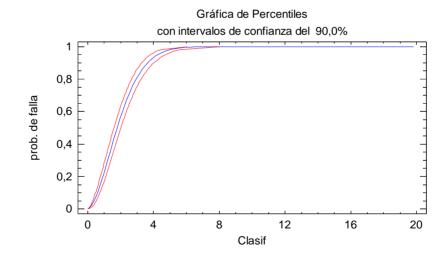
## Anexo 4: Resultados de la Regresión de Supervivencia para las clasificaciones del TIU

Variable dependiente: Clasif

Factores:
Int Primarias
Int\_ Secundarias
Int\_ Servicios

Número de valores no censurados: 95 Número de valores censurados por derecha: 0

Modelo de Regresión Estimado - Weibull


| 11204410        | ac itegi ebion E | 701111111111111111111111111111111111111 |                   |                   |
|-----------------|------------------|-----------------------------------------|-------------------|-------------------|
|                 |                  | Error                                   | LC Inferior 95,0% | LC Superior 95,0% |
| Parámetro       | Estimado         | Estándar                                | Límite de Conf.   | Límite de Conf.   |
| CONSTANTE       | -0,038558        | 0,10556                                 | -0,245452         | 0,168336          |
| Int Primarias   | 0,0102784        | 0,00365493                              | 0,00311481        | 0,0174419         |
| Int_ Secundaria | -0,00187334      | 0,00112465                              | -0,00407761       | 0,000330931       |
| Int_ Servicios  | 0,0015056        | 0,000228211                             | 0,00105831        | 0,00195289        |
| SIGMA           | 0,58918          | 0,0434629                               | 0,509866          | 0,680832          |

Log verosimilitud = -140,211

#### Pruebas de Razón de Verosimilitud

| Factor          | Chi-Cuadrada | Gl | Valor-P |
|-----------------|--------------|----|---------|
| Int Primarias   | 8,71436      | 1  | 0,0032  |
| Int_ Secundaria | 2,63594      | 1  | 0,1045  |
| Int_ Servicios  | 36,4795      | 1  | 0,0000  |

Clasif = exp(-0.038558 + 0.0102784\*IntPrimarias - 0.00187334\*IntSecundarias + 0.0015056\*IntServicios)







## Anexo 5 Sub-causas fundamentales que se presentan en las instalaciones de la Empresa Eléctrica Cienfuegos

#### **Causas Voluntarias:**

#### 1. Voluntarias

- **1.1 Mantenimiento:** Líneas y subestaciones desenergizadas voluntariamente para ejecutar labores de mantenimiento y/o sustitución de elementos en mal estado. Cuando se está trabajando en caliente y el re-cierre está bloqueado si ocurre un disparo transitorio la causa se considerará voluntaria.
- **1.2 Operación:** Líneas y subestaciones des-energizadas voluntariamente por necesidades de la operación del sistema.
- **1.3 Emergencias:** Líneas y subestaciones desenergizadas voluntariamente por situaciones peligrosas para evitar o disminuir los daños para vidas, propiedades, equipos y a la propia línea como consecuencia de la acción de agentes medioambientales, externos, acciones de personal propio o mal estado de elementos de la Línea. Cuando una línea dispara y se deja abierta por situaciones de este tipo y al volverse a Energizar no tiene averías, la interrupción se considerará voluntaria.
- **1.4 Déficit de capacidad:** Líneas y subestaciones des-energizadas voluntariamente por Déficit de capacidad ya sea por generación o por transferencias limitadas en la transmisión.
- **1.5 Condiciones de Voltaje:** Líneas y subestaciones des-energizadas voluntariamente por condiciones de voltaje.
- **1.6 Trabajos planificados propios:** Líneas desenergizadas voluntariamente para ejecutar labores de construcción y otros trabajos de la propia organización en otras líneas cuya cercanía así lo determine.
- **1.7 Trabajos planificados ajenos:** Líneas desenergizadas voluntariamente para ejecutar labores de construcción y otros trabajos de terceros en otras líneas cuya cercanía así lo determine.

#### Causas Propias: Por problemas de Mantenimiento.

- 2. Estructuras: Interrupciones provocadas por problemas en las estructuras.
  - 2.1 Poste partido.
  - 2.2 Poste caído.
  - 2.3 Tensores o anclas.
  - 2.4 Tocón.
  - 2.5 Apoyo o asfalda.
  - 2.6 Otros daños.
- **3. Aislamiento:** Interrupciones provocadas por fallas en el aislamiento.
  - 3.1 Dañado.
  - 3.2 Corrosión.
  - 3.3 Aislador pasado.





- **4. Conductor:** Interrupciones provocadas por fallas en el conductor.
  - 4.1 Conductor en mal estado (corroído, daños mecánicos, muchos empates).
  - 4.2 Sobrecarga.
  - 4.3 Tensión mecánica inadecuada.
  - 4.4 Calibre inadecuado.
  - 4.5 Amarra suelta.
  - 4.6 Cable soterrado.
  - 4.7 Acometida dañada.
  - 4.8 Acometida inadecuada.
  - 4.9 Entrada / salida de corriente.
- 5. Crucetas y Herrajes: Interrupciones provocadas por daño en las crucetas y herrajes.
  - 5.1 Cruceta partida.
  - 5.2 Corrosión en cruceta.
  - 5.3 Falta de ajuste en aisladores.
  - 5.4 Corrosión en herrajes.
  - 5.5 Otros daños.
  - 5.6 Aluvión dañado.
- **6. Falso Contacto:** Interrupciones provocadas por falso contacto entre dos elementos sólidamente conectados.
  - 6.1 Puentes con grampas.
  - 6.2 Puentes con Empalmes.
  - 6.3 Bajantes transformadores.
  - 6.4 Drop outs.
  - 6.5 Terminales.
  - 6.6 Entrada / salida de corriente.
  - 6.7 Acometida.
  - 6.8 Metro contador.
  - 6.9 Otros equipos
- **7. Aterramiento y Shield:** Interrupciones provocadas por bajo nivel de aterramiento y daños del Shield.
  - 7.1 Bajante a tierra abierto o inexistente.
  - 7.2 Neutro abierto o inexistente.
  - 7.3 Falso contacto en bajante a tierra.
  - 7.4 Calibre inadecuado del bajante a tierra.
  - 7.5 Shield partido.
- 8. Fallas en Equipos y accesorios: Interrupciones provocadas por fallas o daños en los equipos u operación inadecuada de estos. Las fallas en equipos pueden tener múltiples causas las cuales serán analizadas por separado por las áreas técnicas con todo el rigor que requiere según el caso y dejando constancia escrita en el expediente de la instalación cuando así lo amerite.
  - 8.1 Interruptores o recerradores.





- 8.2 Drop outs.
- 8.3 Otros Desconectivos (Cuchillas, interruptores en aire, etc.).
- 8.4 Pararrayos.
- 8.5 Transformadores.
- 8.6 Transformadores de Potencial.
- 8.7 Transformadores de corriente.
- 8.8 Capacitores.
- 8.9 Barras.
- 8.10 Baterías.
- 8.11 Fusibles.
- 8.12 Relevadores.
- 8.13 Reactores.
- 8.14 Reguladores de voltaje.
- 8.15 Compresores.
- 8.16 Breakers o chuchos cut out.
- 8.17 Contador de Energia Eléctrica (CEE)

## 9. Rayos. (No tiene sub-causas)

Se debe tener en cuenta cuando la causa de la interrupción es el rayo o la insuficiente protección contra estos y la falta de aterramiento. Es una interrupción propia ya que si existe la protección adecuada el rayo no debe producir afectación sino ocurre impacto directo.

## 10. Árboles. (No tiene sub-causas)

Interrupciones provocadas por cortocircuito debido a árboles. Se considera una interrupción propia porque es una obligación mantener las líneas libres de árboles en contacto con los conductores y ser la poda parte del mantenimiento.

## Por errores propios y otros.

- 11. Operación defectuosa o errónea: Interrupciones por operación indebida de las protecciones sin ocurrir falla por relevador defectuoso, errores de operación o manipulación del personal, equipos fuera de servicio, etc. Debe tenerse en consideración que la mayoría de las fallas por este concepto corresponden a las Subestaciones y no a las líneas.
  - 11.1 Mala coordinación.
  - 11.2 Calibración o ajuste incorrecto.
  - 11.3 Operación incorrecta de la DAF.
  - 11.4 Operación defectuosa de tele-comandos.
  - 11.5 Operación incorrecta de interruptores.
  - 11.6 Error del personal. (En el caso de las líneas se refiere por ejemplo a tirar la cadena de tierra a una línea energizada)
  - 11.7 No operación del Recierre.
  - 11.8 Desbalance.
- **12. Fallas del sistema.** Interrupciones provocadas por falla en el sistema a niveles superiores de voltaje o Centrales Eléctricas cuya causa real será codificada al nivel





que corresponda, no siendo contabilizada en el nivel de voltaje en que se produce la afectación.

- 12.1 Fallas provocadas en un nivel de voltaje superior.
- 12.2 Operación de la DAF.
- 12.3 Operación de la DAV.
- 12.4 Operación de la ACA.

#### 13. Falla en nivel inferior: (No tiene sub causas).

Interrupciones ocurridas por fallas en el nivel de voltaje inferior al de la línea o subestación no provocadas por otras causas codificadas, cuya causa real será codificada al nivel que corresponda, no siendo contabilizada en el nivel de voltaje en que se produce la afectación.

#### I. Causas Externas:

#### 14. Otros Agentes Medioambientales:

Interrupciones provocadas por agentes medioambientales cuando estos son los únicos responsables de la misma y sin influencia del mal estado de la red.

- 14.1 Tormentas.
- 14.2 Inundaciones.
- 14.3 Contaminación salina.
- 14.4 Contaminación química-industrial.
- 14.5 Otros tipos de Contaminación (polvo, etc.)

# 15. Agentes Externos: Interrupciones provocadas por agentes externos a las instalaciones.

- 15.1 Transito.
- 15.2 Equipos tecnológicos (grúas, retroexcavadoras, etc.).
- 15.3 Público, papalotes, animales, pencas, etc.
- 15.4 Derrumbes.
- 15.5 Armas de fuego y explosiones.
- 15.6 Incendios.
- 15.7 Quema de caña.
- 15.8 Daños maliciosos.

# 16 Desconocidas: Interrupciones en las que no se conoce la causa de forma inmediata.

#### Notas:

- Debe tenerse en cuenta que las interrupciones por pencas no se incluyen en la causa 10.
- Conceptualmente las lluvias y los vientos no provocan interrupciones.
- Debe tenerse en cuenta que no todas las sub causas corresponden a todas las instalaciones aunque la causa principal sea la misma. Ej.: Una línea de 110 kV no puede tener falso contacto en el drop out.





# Anexo 6: Codificación de las instalaciones en la Empresa Eléctrica Cienfuegos.

| CATEGORIA                        | TIPO DE<br>INSTALACION                  | RESPONSABLE | LETRA | COD-SICO | OBSERVACIONES                                        |
|----------------------------------|-----------------------------------------|-------------|-------|----------|------------------------------------------------------|
| Producción                       | Bancos de<br>Capacitores                | Territorio  | С     | Sí       | Consecutiva.<br>Incluye Bancos<br>Controlados        |
| Produccion                       | Generadores en<br>Distribución          | Provincia   | G     | Sí       | Generadores<br>Fijos y móviles<br>en Distribución.   |
|                                  | Subestaciones de Transmisión            | Provincia   | Т     |          | Numeración<br>Consecutiva                            |
| Centros de<br>Transformación     | Subestaciones<br>de Distribución        | Provincia   | E     | Sí       | Existe<br>numeración<br>nacional.<br>Cambiar         |
| Centros de                       | Bancos de<br>Transformadores            | Territorio  | В     | Sí       | Número<br>Consecutivo                                |
| Distribución                     | Regulador de<br>Voltaje                 | Provincia   | V     | Sí       | Todo tipo de<br>Regulador de<br>Voltaje              |
|                                  | Empalme o<br>Grampa                     | Provincia   | W     | Si       | Numeración<br>Consecutiva para                       |
| Desconectivos                    | Cuchilla o<br>Interruptores en<br>Aire. | Provincia   | D     | Sí       | todos los<br>desconectivos<br>Independiente de       |
| Seccionalizadores                | Portafusibles                           | Provincia   | F     | Sí       | si es cuchilla,                                      |
|                                  | Interruptor ó<br>Recerrador             | Provincia   | I     | Sí       | fusibles, o interruptor y de su ubicación            |
|                                  | Circuitos de<br>Subtransm 33<br>kV      | Provincia   | U     |          | Permitido el ·<br>Interruptor                        |
|                                  | Circuito Primario hasta 4 kV            | Provincia   | J     |          | Numeración<br>consecutiva para                       |
| Circuitos y Líneas               | Circuito Primario<br>hasta 15 kV        | Provincia   | К     |          | todos los                                            |
| de Distribución                  | Circ Primarios<br>hasta 25 kV           | Provincia   | Н     |          | Primarios.                                           |
|                                  | Circuito<br>Secundarios                 | Territorio  | S     |          | Coincide con<br>Banco<br>Transformadores             |
|                                  | Circuitos de<br>Alumbrado               | Territorio  | А     |          | Numero.<br>Consecutivo                               |
|                                  | Secciones de<br>Líneas                  | Automática  |       |          | Definida en base<br>al Circuito y<br>seccionalizador |
|                                  | Tramos de<br>Líneas                     | Territorio  | Т     |          | Consecutiva por<br>Proyectos                         |
|                                  | Poste                                   | Territorio  | Р     | Sí       | Consecutiva                                          |
| Instalaciones<br>Auxiliares y de | Luminarias                              | Territorio  | L     | Sí       | Coincide con el<br>Poste                             |
| Carga.                           | Entrada de<br>Corriente                 | Territorio  | Y     |          | Ruta y Folio del<br>Cliente                          |
|                                  | Acometidas                              | Territorio  | Z     |          | Ruta y Folio del<br>Primer<br>Consumidor             |
|                                  | Esquema de<br>Protecciones              | Provincia   | Q     |          | Número<br>Interruptor y Tipo<br>de Esquema           |





# Anexo 7 Resumen del comportamiento de los índices de interrupciones

| Indicadores                                                     | 2003  | 20    | 04    | 20    | 05    | 20    | 06    | 20    | 07    | 20    | 08    | 20    | 09    | 20    | 10    | 20    | 11    |
|-----------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Indicadores                                                     | real  | plan  | real  |
| Índice de<br>interrupciones<br>transmisión 110 kV x<br>100 km   | 3,51  | 4,22  | 4,11  | 4.29  | 1.32  | 2.27  | 2.65  | 2.66  | 3.78  | 2.27  | 1.14  | 1.51  | 1.51  | 1.14  | 0.76  | 1.14  | 1.47  |
| Índice de<br>interrupciones<br>subtransmisión 33 kV x<br>100 km | 19,82 | 11,99 | 12,67 | 10.94 | 8,10  | 8.09  | 11.95 | 9.14  | 13.47 | 8.67  | 11.64 | 9.93  | 10.29 | 8.16  | 11.75 | 8.13  | 11.87 |
| Índice de<br>interrupciones redes<br>primarias x 100 km         | 70,70 | 64,30 | 47,01 | 50.18 | 50,51 | 47.72 | 71,87 | 57.51 | 52.02 | 39.58 | 39.28 | 35.17 | 32.18 | 28.43 | 27.23 | 24.01 | 27.91 |
| Índice de interrupciones redes secundaria x 1000 clientes       | 22,59 | 20,42 | 17,27 | 17.55 | 19,53 | 19.19 | 27,50 | 24.75 | 31.39 | 21.38 | 32.12 | 29.23 | 26.35 | 22.27 | 22.58 | 16.79 | 21.82 |
| Índice de interrupciones redes servicios x 1000 clientes        | 20,30 | 17,82 | 17,35 | 17.44 | 27,0  | 23.59 | 47,42 | 42.68 | 83.57 | 55.14 | 76.34 | 69.43 | 62.26 | 59.62 | 55.95 | 53.86 | 55.18 |
| Índice de<br>transformadores<br>dañados x 100<br>instalados     | 3,56  | 3.03  | 2,72  | 2,68  | 2,84  | 2.50  | 3.32  | 2,77  | 2,77  | 2.47  | 2.39  | 2.20  | 2.85  | 2.45  | 2.24  | 2.19  | 2.93  |





Anexo 8 Resultado del tipo de interrupción en los niveles primarios, secundario y de servicios del 2005 al 2011

|             |     |   |    |    |   |     |    | RE | PORT | E DE  | AF   | ECTAC | CION | ES PF | RIMA | RIAS | 3 2 | 2005    |      |        |        |      |
|-------------|-----|---|----|----|---|-----|----|----|------|-------|------|-------|------|-------|------|------|-----|---------|------|--------|--------|------|
| área        |     |   |    |    |   | Ti  | po | de | Int  | terru | pció | n     |      |       |      |      |     | Tie     | тро  | Cant.  | Tiempo |      |
| arca        | 1   | 2 | 3  | 4  | 5 | 6   | 7  | 8  | 9    | 10    | 11   | 12    | 13   | 14    | 15   | 16   |     | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 147 | 2 | 7  | 28 | 4 | 90  | 0  | 6  | 36   | 14    | 0    | 3140  | 4    | 25    | 13   | 2    |     | 18168   | 124  | 227    | 33247  | 146  |
| CEN         | 13  | 0 | 2  | 1  | 0 | 6   | 1  | 3  | 16   | 0     | 0    | 183   | 0    | 10    | 1    | 0    |     | 1129    | 87   | 40     | 6885   | 172  |
| Palmira     | 28  | 0 | 3  | 6  | 0 | 18  | 0  | 4  | 29   | 2     | 0    | 319   | 3    | 12    | 16   | 1    |     | 3379    | 121  | 91     | 10189  | 112  |
| Cruces      | 23  | 2 | 2  | 4  | 1 | 7   | 0  | 2  | 10   | 0     | 0    | 441   | 1    | 1     | 3    | 0    |     | 3092    | 134  | 32     | 3391   | 106  |
| Lajas       | 24  | 1 | 3  | 4  | 0 | 8   | 0  | 1  | 11   | 1     | 0    | 37    | 0    | 4     | 2    | 2    |     | 3307    | 138  | 37     | 4606   | 124  |
| Rodas       | 29  | 1 | 1  | 8  | 1 | 59  | 0  | 3  | 34   | 3     | 0    | 128   | 0    | 13    | 6    | 1    |     | 4133    | 143  | 130    | 29439  | 226  |
| Abreus      | 39  | 0 | 2  | 5  | 0 | 20  | 0  | 5  | 15   | 3     | 0    | 208   | 3    | 10    | 6    | 1    |     | 5065    | 130  | 67     | 7037   | 105  |
| Aguada      | 24  | 0 | 2  | 8  | 1 | 21  | 0  | 1  | 15   | 2     | 0    | 616   | 1    | 6     | 3    | 1    |     | 3528    | 147  | 60     | 10320  | 172  |
| Cumanayagua | 47  | 0 | 10 | 4  | 0 | 22  | 0  | 8  | 50   | 15    | 6    | 645   | 1    | 26    | 8    | 2    |     | 5357    | 114  | 151    | 16101  | 107  |
| Provincia   | 374 | 6 | 32 | 68 | 7 | 251 | 1  | 33 | 216  | 40    | 6    | 5717  | 13   | 107   | 58   | 10   |     | 47158   | 126  | 835    | 121215 | 145  |

|             |     |    |   |     |   |      |    | REP | ORTE | DE A  | 4FE( | CTACI | ONES | SEC | CUND | ARI | AS | 2005    |      |        |        |      |
|-------------|-----|----|---|-----|---|------|----|-----|------|-------|------|-------|------|-----|------|-----|----|---------|------|--------|--------|------|
| área        |     |    |   |     |   | Tij  | 00 | de  | In   | terru | oció | n     |      |     |      |     |    | Tiempo  |      | Cant.  | Tiempo |      |
|             | 1   | 2  | 3 | 4   | 5 | 6    | 7  | 8   | 9    | 10    | 11   | 12    | 13   | 14  | 15   | 16  |    | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 51  | 24 |   | 122 | 2 | 592  | 2  | 90  | 92   | 138   |      |       | 152  | 51  | 164  |     |    | 8787    | 172  | 1277   | 453213 | 355  |
| CEN         | 4   | 0  |   | 3   | 0 | 18   | 0  | 8   | 1    | 0     |      |       | 11   | 3   | 9    |     |    | 1053    | 263  | 42     | 3065   | 73   |
| Palmira     | 4   | 2  |   | 8   | 0 | 59   | 0  | 13  | 22   | 8     |      |       | 11   | 6   | 48   |     |    | 263     | 66   | 166    | 31602  | 190  |
| Cruces      | 11  | 5  |   | 16  | 0 | 72   | 0  | 12  | 22   | 16    |      |       | 15   | 9   | 42   |     |    | 788     | 72   | 194    | 39069  | 201  |
| Lajas       | 6   | 2  |   | 7   | 0 | 43   | 0  | 14  | 8    | 10    |      |       | 10   | 7   | 31   |     |    | 558     | 93   | 122    | 10747  | 88   |
| Rodas       | 14  | 4  |   | 16  | 0 | 106  | 0  | 22  | 36   | 36    |      |       | 27   | 16  | 39   |     |    | 1530    | 109  | 275    | 114145 | 415  |
| Abreus      | 3   | 4  |   | 13  | 0 | 54   | 0  | 8   | 15   | 13    |      |       | 30   | 3   | 26   |     |    | 417     | 139  | 136    | 27698  | 204  |
| Aguada      | 1   | 1  |   | 15  | 0 | 40   | 0  | 6   | 7    | 5     |      |       | 5    | 1   | 15   |     |    | 284     | 284  | 90     | 18664  | 207  |
| Cumanayagua | 12  | 2  |   | 17  | 1 | 53   | 0  | 9   | 30   | 8     |      |       | 35   | 15  | 30   |     |    | 1605    | 134  | 165    | 35233  | 214  |
| Provincia   | 106 | 44 | 0 | 217 | 3 | 1037 | 2  | 182 | 233  | 234   | 0    | 0     | 296  | 111 | 404  | 0   |    | 15285   | 144  | 2467   | 733436 | 297  |





|             |   |   |   |     |   |      |    |     | REF | POR   | TE D | EΑ | FECT/ | ACIC | NES I | EN S | ERV | /ICIOS 2            | 2005 |        |        |      |
|-------------|---|---|---|-----|---|------|----|-----|-----|-------|------|----|-------|------|-------|------|-----|---------------------|------|--------|--------|------|
| área        |   |   |   |     |   | Ti   | ро | de  | In  | terrı | ıpci | ón |       |      |       |      |     | Tien<br>Niv<br>Infe | /el  | Cant.  | Tiempo |      |
|             | 1 | 2 | 3 | 4   | 5 | 6    | 7  | 8   | 9   | 10    | 11   | 12 | 13    | 14   | 15    | 16   |     | Total               | Prom | Invol. | Invol. | Prom |
| Cienfuegos  |   | 2 |   | 430 |   | 980  |    | 158 | 6   | 48    |      |    | 525   |      | 138   |      |     | 112150              | 214  | 1762   | 523585 | 297  |
| CEN         |   | 0 |   | 10  |   | 12   |    | 2   | 0   | 0     |      |    | 4     |      | 7     |      |     | 181                 | 45   | 31     | 1747   | 56   |
| Palmira     |   | 1 |   | 20  |   | 113  |    | 2   | 2   | 1     |      |    | 94    |      | 21    |      |     | 16485               | 175  | 160    | 23598  | 147  |
| Cruces      |   | 0 |   | 39  |   | 219  |    | 9   | 3   | 4     |      |    | 108   |      | 16    |      |     | 19258               | 178  | 290    | 62458  | 215  |
| Lajas       |   | 0 |   | 50  |   | 177  |    | 6   | 4   | 5     |      |    | 16    |      | 24    |      |     | 1903                | 119  | 266    | 15549  | 58   |
| Rodas       |   | 2 |   | 60  |   | 365  |    | 2   | 3   | 18    |      |    | 104   |      | 36    |      |     | 40834               | 393  | 486    | 188799 | 388  |
| Abreus      |   | 1 |   | 46  |   | 116  |    | 5   | 2   | 6     |      |    | 41    |      | 15    |      |     | 19936               | 486  | 191    | 30986  | 162  |
| Aguada      |   | 1 |   | 40  |   | 26   |    | 1   | 0   | 1     |      |    | 11    |      | 8     |      |     | 3453                | 314  | 77     | 10871  | 141  |
| Cumanayagua |   | 0 |   | 26  |   | 98   |    | 5   | 0   | 3     |      |    | 71    |      | 8     |      |     | 22145               | 312  | 140    | 32273  | 231  |
| Provincia   | 0 | 7 | 0 | 721 | 0 | 2106 | 0  | 190 | 20  | 86    | 0    | 0  | 974   | 0    | 273   | 0    |     | 236345              | 243  | 3403   | 889866 | 261  |

|             |                                    |                                        |    |     |    |      |   |    | REP   | ORT  | E DE | E AF | ECT | ACI | ONE  | S PRI | MA      | RIAS 20 | 06     |        |        |     |
|-------------|------------------------------------|----------------------------------------|----|-----|----|------|---|----|-------|------|------|------|-----|-----|------|-------|---------|---------|--------|--------|--------|-----|
| óraa        |                                    |                                        |    |     |    | Tipo | Ć | de | Inter | rupo | ión  |      |     |     |      |       |         | Tien    | про    | Cant.  | Tiempo |     |
| área        | 1                                  | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |    |     |    |      |   |    |       |      |      |      |     |     |      |       | Volunt. | Prom    | Invol. | Invol. | Prom   |     |
| Cienfuegos  | 392                                | 2                                      | 7  | 45  | 2  | 86   | 0 | 10 | 23    | 9    | 4    | 33   | 3   | 17  | 9    | 35    |         | 56718   | 145    | 249    | 31372  | 126 |
| CEN         | 35 0 0 9 2 18 0 3 4 0 0 12 1 1 0 5 |                                        |    |     |    |      |   |    |       |      |      |      |     |     | 3725 | 106   | 42      | 4283    | 102    |        |        |     |
| Palmira     | 62                                 | 2                                      | 1  | 13  | 2  | 23   | 0 | 5  | 43    | 2    | 0    | 8    | 0   | 8   | 17   | 8     |         | 8268    | 133    | 124    | 14964  | 121 |
| Cruces      | 69                                 | 0                                      | 1  | 8   | 0  | 15   | 0 | 8  | 12    | 1    | 0    | 8    | 1   | 9   | 5    | 13    |         | 6808    | 99     | 72     | 14202  | 197 |
| Lajas       | 78                                 | 0                                      | 1  | 6   | 0  | 12   | 0 | 0  | 10    | 0    | 1    | 0    | 1   | 2   | 2    | 4     |         | 11280   | 145    | 38     | 5089   | 134 |
| Rodas       | 85                                 | 1                                      | 3  | 22  | 1  | 50   | 0 | 3  | 27    | 8    | 0    | 0    | 0   | 12  | 9    | 31    |         | 19972   | 235    | 167    | 31151  | 187 |
| Abreus      | 56                                 | 0                                      | 3  | 17  | 1  | 23   | 0 | 4  | 13    | 2    | 0    | 1    | 0   | 7   | 3    | 12    |         | 9009    | 161    | 85     | 12401  | 146 |
| Aguada      | 67                                 | 0                                      | 3  | 11  | 1  | 27   | 0 | 2  | 28    | 2    | 0    | 6    | 1   | 6   | 1    | 11    |         | 5291    | 79     | 92     | 10601  | 115 |
| Cumanayagua | 125                                | 1                                      | 21 | 12  | 1  | 40   | 0 | 5  | 51    | 8    | 0    | 10   | 0   | 29  | 17   | 85    |         | 10860   | 87     | 270    | 42849  | 159 |
| Provincia   | 969                                | 6                                      | 40 | 143 | 10 | 294  | 0 | 40 | 211   | 32   | 5    | 78   | 7   | 91  | 63   | 204   |         | 131931  | 136    | 1139   | 166912 | 147 |





|             |    |    |   |     |   |      |    | F   | REPO | RTE [  | )E A | FEC | CTACIO | NE | SSEC | UN | DAR | IAS 2006 | 3    |        |         |      |
|-------------|----|----|---|-----|---|------|----|-----|------|--------|------|-----|--------|----|------|----|-----|----------|------|--------|---------|------|
| área        |    |    |   |     |   | Tip  | 00 | de  | Inte | errupo | ción |     |        |    |      |    |     | Tien     | npo  | Cant.  | Tien    | про  |
|             | 1  | 2  | 3 | 4   | 5 | 6    | 7  | 8   | 9    | 10     | 11   | 12  | 13     | 14 | 15   | 16 |     | Volunt.  | Prom | Invol. | Invol.  | Prom |
| Cienfuegos  | 18 | 12 |   | 284 | 2 | 725  | 5  | 96  | 162  | 114    |      |     | 216    | 33 | 153  |    |     | 2380     | 132  | 1586   | 398624  | 251  |
| CEN         | 0  | 0  |   | 12  | 0 | 32   | 0  | 5   | 12   | 5      |      |     | 4      | 3  | 10   |    |     | 0        | 0    | 79     | 35174   | 445  |
| Palmira     | 4  | 2  |   | 11  | 0 | 78   | 0  | 9   | 43   | 21     |      |     | 19     | 4  | 98   |    |     | 400      | 100  | 266    | 91426   | 344  |
| Cruces      | 6  | 2  |   | 26  | 0 | 115  | 0  | 12  | 46   | 20     |      |     | 38     | 7  | 57   |    |     | 45008    | 7501 | 285    | 104932  | 368  |
| Lajas       | 3  | 2  |   | 22  | 0 | 68   | 1  | 4   | 20   | 13     |      |     | 29     | 5  | 44   |    |     | 413      | 138  | 179    | 37361   | 209  |
| Rodas       | 2  | 2  |   | 44  | 2 | 237  | 3  | 19  | 70   | 42     |      |     | 43     | 10 | 44   |    |     | 451      | 226  | 473    | 171999  | 364  |
| Abreus      | 0  | 2  |   | 19  | 0 | 49   | 0  | 9   | 27   | 11     |      |     | 28     | 4  | 37   |    |     | 0        | 0    | 158    | 47047   | 298  |
| Aguada      | 0  | 5  |   | 25  | 0 | 49   | 0  | 10  | 25   | 5      |      |     | 10     | 5  | 18   |    |     | 0        | 0    | 142    | 78638   | 554  |
| Cumanayagua | 4  | 6  |   | 32  | 1 | 109  | 0  | 16  | 81   | 13     |      |     | 40     | 20 | 61   |    |     | 17902    | 4476 | 339    | 111179  | 328  |
| Provincia   | 37 | 33 | 0 | 475 | 5 | 1462 | 9  | 180 | 486  | 244    | 0    | 0   | 427    | 91 | 522  | 0  |     | 66554    | 1799 | 3507   | 1076380 | 307  |

|             |   |                                                                                                                                                                    |   |      |   |      |    | R   | EPO  | RTE [  | DE A | FE | CTACIC | NE | S EN | SER | VIC | IOS 2006 | 6      |        |         |      |
|-------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---|------|----|-----|------|--------|------|----|--------|----|------|-----|-----|----------|--------|--------|---------|------|
|             |   |                                                                                                                                                                    |   |      |   |      |    |     |      |        |      |    |        |    |      |     |     | Tiem     | ро     |        |         |      |
| área        |   |                                                                                                                                                                    |   |      |   | Tip  | 00 | de  | Inte | errupo | ción |    |        |    |      |     |     | Nivel in | ferior | Cant.  | Tien    | про  |
|             | 1 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                                                                                                               |   |      |   |      |    |     |      |        |      |    |        |    |      |     |     | Total    | Prom   | Invol. | Invol.  | Prom |
| Cienfuegos  |   | 1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16       9     527     1496     281     19     36     1190     139 |   |      |   |      |    |     |      |        |      |    |        |    |      |     |     | 154124   | 130    | 2507   | 607393  | 242  |
| CEN         |   | 1                                                                                                                                                                  |   | 15   |   | 45   |    | 4   | 1    | 2      |      |    | 43     |    | 4    |     |     | 12641    | 294    | 72     | 32817   | 456  |
| Palmira     |   | 2                                                                                                                                                                  |   | 38   |   | 238  |    | 14  | 6    | 4      |      |    | 159    |    | 41   |     |     | 97235    | 612    | 343    | 47316   | 138  |
| Cruces      |   | 4                                                                                                                                                                  |   | 114  |   | 427  |    | 42  | 9    | 6      |      |    | 206    |    | 43   |     |     | 66975    | 325    | 645    | 252231  | 391  |
| Lajas       |   | 3                                                                                                                                                                  |   | 82   |   | 372  |    | 27  | 6    | 10     |      |    | 140    |    | 29   |     |     | 42292    | 302    | 529    | 84583   | 160  |
| Rodas       |   | 0                                                                                                                                                                  |   | 106  |   | 863  |    | 27  | 8    | 12     |      |    | 173    |    | 32   |     |     | 117889   | 681    | 1048   | 307569  | 293  |
| Abreus      |   | 0                                                                                                                                                                  |   | 46   |   | 177  |    | 6   | 7    | 1      |      |    | 78     |    | 13   |     |     | 26254    | 337    | 250    | 114512  | 458  |
| Aguada      |   | 0                                                                                                                                                                  |   | 34   |   | 142  |    | 5   | 2    | 3      |      |    | 54     |    | 14   |     |     | 32846    | 608    | 200    | 134018  | 670  |
| Cumanayagua |   | 2                                                                                                                                                                  |   | 77   |   | 322  |    | 22  | 4    | 5      |      |    | 207    |    | 22   |     |     | 136806   | 661    | 454    | 113681  | 250  |
| Provincia   | 0 | 21                                                                                                                                                                 | 0 | 1039 | 0 | 4082 | 0  | 428 | 62   | 79     | 0    | 0  | 2250   | 0  | 337  | 0   |     | 687062   | 305    | 6048   | 1694120 | 280  |





|             |      |    |    |     |    |      |   | RE | PORT   | E DE  | AF | ECT. | ACIO | NES | PRIM | ARIA | S : | 2007    |      |        |        |      |
|-------------|------|----|----|-----|----|------|---|----|--------|-------|----|------|------|-----|------|------|-----|---------|------|--------|--------|------|
| área        |      |    |    |     |    | Tipo | , | de | Interr | ирсіс | ón |      |      |     |      |      |     | Tien    | ро   | Cant.  | Tiem   | ро   |
|             | 1    | 2  | 3  | 4   | 5  | 6    | 7 | 8  | 9      | 10    | 11 | 12   | 13   | 14  | 15   | 16   |     | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 347  | 3  | 5  | 47  | 1  | 56   | 0 | 8  | 19     | 21    | 1  | 13   | 3    | 19  | 10   | 17   |     | 47462   | 137  | 207    | 25807  | 125  |
| CEN         | 54   | 0  | 2  | 4   | 3  | 8    | 0 | 0  | 6      | 2     | 0  | 2    | 0    | 1   | 3    | 0    |     | 5768    | 107  | 29     | 3699   | 128  |
| Palmira     | 111  | 3  | 2  | 9   | 3  | 17   | 0 | 3  | 17     | 8     | 0  | 3    | 1    | 7,5 | 6    | 0,5  |     | 16173   | 146  | 76     | 8556   | 113  |
| Cruces      | 117  | 1  | 0  | 11  | 1  | 8    | 0 | 0  | 6      | 0     | 0  | 1    | 0    | 5   | 2    | 0    |     | 18322   | 157  | 34     | 2568   | 76   |
| Lajas       | 68   | 0  | 1  | 3   | 3  | 21   | 0 | 0  | 22     | 0     | 0  | 1    | 0    | 2,5 | 3    | 3,5  |     | 10172   | 150  | 59     | 11991  | 203  |
| Rodas       | 113  | 7  | 10 | 14  | 1  | 44   | 0 | 3  | 30     | 14    | 2  | 0    | 3    | 19  | 7    | 16   |     | 19184   | 170  | 167    | 27426  | 164  |
| Abreus      | 100  | 4  | 1  | 6   | 1  | 8    | 0 | 0  | 13     | 0     | 1  | 0    | 0    | 10  | 1    | 5    |     | 14878   | 149  | 50     | 5602   | 112  |
| Aguada      | 77   | 0  | 2  | 12  | 1  | 21   | 0 | 4  | 16     | 3     | 0  | 1    | 1    | 9   | 4    | 3    |     | 8133    | 106  | 75     | 14203  | 189  |
| Cumanayagua | 142  | 0  | 9  | 11  | 1  | 19   | 0 | 6  | 30     | 21    | 4  | 4    | 0    | 27  | 8    | 9    |     | 23381   | 165  | 145    | 31293  | 216  |
| Provincia   | 1129 | 18 | 32 | 117 | 15 | 202  | 0 | 24 | 159    | 69    | 8  | 25   | 8    | 100 | 44   | 54   |     | 163473  | 145  | 842    | 131144 | 156  |

|             |    |    |   |     |   |      |     | REPO | ORTE   | DE A  | FEC | CTA | CION | ES SI | ECUN | DAR | IAS | 2007    |      |        |         |      |
|-------------|----|----|---|-----|---|------|-----|------|--------|-------|-----|-----|------|-------|------|-----|-----|---------|------|--------|---------|------|
| área        |    |    |   |     |   | Tipo | ) ( | de   | Interr | upció | ón  |     |      |       |      |     |     | Tien    | ро   | Cant.  | Tiem    | ро   |
|             | 1  | 2  | 3 | 4   | 5 | 6    | 7   | 8    | 9      | 10    | 11  | 12  | 13   | 14    | 15   | 16  |     | Volunt. | Prom | Invol. | Invol.  | Prom |
| Cienfuegos  | 10 | 29 |   | 290 | 4 | 831  | 7   | 170  | 68     | 77    |     |     | 136  | 15    | 85   |     |     | 1295    | 130  | 1576   | 312157  | 198  |
| CEN         | 0  | 0  |   | 11  | 0 | 56   | 1   | 13   | 13     | 6     |     |     | 10   | 2     | 2    |     |     | 0       | 0    | 104    | 34807   | 335  |
| Palmira     | 5  | 4  |   | 17  | 2 | 111  | 0   | 25   | 49     | 23    |     |     | 19   | 7     | 68   |     |     | 735     | 147  | 306    | 46033   | 150  |
| Cruces      | 3  | 2  |   | 39  | 0 | 174  | 2   | 19   | 21     | 15    |     |     | 15   | 4     | 34   |     |     | 627     | 209  | 310    | 68524   | 221  |
| Lajas       | 4  | 2  |   | 32  | 1 | 111  | 0   | 8    | 20     | 11    |     |     | 13   | 1     | 26   |     |     | 328     | 82   | 212    | 41442   | 195  |
| Rodas       | 3  | 16 |   | 115 | 0 | 354  | 0   | 58   | 63     | 26    |     |     | 32   | 5     | 29   |     |     | 375     | 125  | 666    | 232193  | 349  |
| Abreus      | 6  | 2  |   | 42  | 0 | 107  | 0   | 30   | 23     | 13    |     |     | 23   | 5     | 19   |     |     | 2189    | 365  | 241    | 52084   | 216  |
| Aguada      | 4  | 3  |   | 60  | 1 | 193  | 0   | 21   | 42     | 12    |     |     | 17   | 7     | 22   |     |     | 1666    | 417  | 361    | 109227  | 303  |
| Cumanayagua | 1  | 4  |   | 35  | 0 | 185  | 2   | 44   | 55     | 15    |     |     | 25   | 8     | 50   |     |     | 141     | 141  | 398    | 214760  | 540  |
| Provincia   | 36 | 62 | 0 | 641 | 8 | 2122 | 12  | 388  | 354    | 198   | 0   | 0   | 290  | 54    | 335  | 0   |     | 7356    | 204  | 4174   | 1111227 | 266  |





|             |   |    |   |      |   |      |    | RI  | EPO | RTE  | DE   | AFE | CTACIO | ONE | S EN | SER | VIC | IOS 200  | 7       |        |         |      |
|-------------|---|----|---|------|---|------|----|-----|-----|------|------|-----|--------|-----|------|-----|-----|----------|---------|--------|---------|------|
|             |   |    |   |      |   |      |    |     |     |      |      |     |        |     |      |     |     | Tien     | npo     |        |         |      |
| área        |   |    |   |      |   | Tip  | 00 | de  | Int | erru | pcić | ón  |        |     |      |     |     | Nivel in | nferior | Cant.  | Tiem    | po   |
|             | 1 | 2  | 3 | 4    | 5 | 6    | 7  | 8   | 9   | 10   | 11   | 12  | 13     | 14  | 15   | 16  |     | Total    | Prom    | Invol. | Invol.  | Prom |
| Cienfuegos  |   | 27 |   | 799  |   | 2644 |    | 436 | 14  | 43   |      |     | 1821   |     | 108  |     |     | 275575   | 151     | 4071   | 641836  | 158  |
| CEN         |   | 0  |   | 25   |   | 95   |    | 12  | 0   | 1    |      |     | 99     |     | 3    |     |     | 23888    | 241     | 136    | 33855   | 249  |
| Palmira     |   | 3  |   | 97   |   | 441  |    | 41  | 9   | 11   |      |     | 431    |     | 38   |     |     | 46310    | 107     | 640    | 85386   | 133  |
| Cruces      |   | 5  |   | 177  |   | 800  |    | 68  | 1   | 8    |      |     | 440    |     | 27   |     |     | 92830    | 211     | 1086   | 264324  | 243  |
| Lajas       |   | 3  |   | 104  |   | 728  |    | 64  | 0   | 6    |      |     | 330    |     | 22   |     |     | 67664    | 205     | 927    | 182198  | 197  |
| Rodas       |   | 9  |   | 168  |   | 1720 |    | 53  | 6   | 10   |      |     | 454    |     | 31   |     |     | 134225   | 296     | 1997   | 578968  | 290  |
| Abreus      |   | 4  |   | 64   |   | 447  |    | 18  | 4   | 2    |      |     | 239    |     | 8    |     |     | 44255    | 185     | 547    | 100433  | 184  |
| Aguada      |   | 7  |   | 140  |   | 566  |    | 28  | 8   | 5    |      |     | 276    |     | 27   |     |     | 64532    | 234     | 781    | 194366  | 249  |
| Cumanayagua |   | 5  |   | 107  |   | 724  |    | 47  | 4   | 11   |      |     | 511    |     | 30   |     |     | 102693   | 201     | 928    | 162646  | 175  |
| Provincia   | 0 | 63 | 0 | 1681 | 0 | 8165 | 0  | 767 | 46  | 97   | 0    | 0   | 4601   | 0   | 294  | 0   |     | 851972   | 185     | 11113  | 2244012 | 202  |

|             |     |   |    |     |    |      |    | RE   | POR   | TE [ | DE A | FEC | TAC | IONES | S PR | IMAF | RIA | S 2008  |      |        |        |      |
|-------------|-----|---|----|-----|----|------|----|------|-------|------|------|-----|-----|-------|------|------|-----|---------|------|--------|--------|------|
| área        |     |   |    |     |    | Tipo | de | · // | nterr | upci | ión  |     |     |       |      |      |     | Tien    | про  | Cant.  | Tie    | тро  |
| area        | 1   | 2 | 3  | 4   | 5  | 6    | 7  | 8    | 9     | 10   | 11   | 12  | 13  | 14    | 15   | 16   |     | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 288 | 1 | 12 | 36  | 0  | 46   | 1  | 7    | 14    | 29   | 2    | 11  | 1   | 34    | 10   | 11   |     | 36621   | 127  | 201    | 29970  | 149  |
| CEN         | 26  | 0 | 0  | 9   | 2  | 4    | 0  | 0    | 1     | 4    | 0    | 6   | 2   | 1     | 3    | 2    |     | 2749    | 105  | 25     | 3758   | 150  |
| Palmira     | 116 | 0 | 2  | 7   | 1  | 11   | 0  | 1    | 5     | 2    | 0    | 4   | 0   | 4     | 3    | 0    |     | 15864   | 137  | 36     | 4370   | 121  |
| Cruces      | 78  | 1 | 0  | 12  | 1  | 2    | 0  | 2    | 6     | 0    | 0    | 3   | 2   | 4     | 1    | 0    |     | 14281   | 183  | 28     | 3571   | 126  |
| Lajas       | 39  | 0 | 2  | 4   | 3  | 9    | 0  | 1    | 11    | 0    | 0    | 2   | 0   | 4     | 6    | 4    |     | 6425    | 167  | 42     | 6234   | 148  |
| Rodas       | 80  | 5 | 20 | 29  | 2  | 16   | 0  | 3    | 13    | 4    | 5    | 4   | 1   | 10    | 4    | 8    |     | 13624   | 170  | 117    | 17749  | 152  |
| Abreus      | 50  | 1 | 0  | 7   | 0  | 5    | 0  | 0    | 4     | 4    | 0    | 1   | 1   | 10    | 2    | 1    |     | 10267   | 207  | 34     | 6129   | 180  |
| Aguada      | 87  | 0 | 2  | 8   | 2  | 14   | 0  | 2    | 9     | 0    | 0    | 0   | 0   | 17    | 2    | 1    |     | 8475    | 98   | 56     | 7120   | 127  |
| Cumanayagua | 100 | 0 | 8  | 0   | 2  | 21   | 0  | 0    | 16    | 19   | 0    | 5   | 0   | 28    | 9    | 2    |     | 13765   | 138  | 104    | 20071  | 193  |
| Provincia   | 863 | 8 | 45 | 111 | 13 | 126  | 1  | 16   | 79    | 61   | 7    | 36  | 7   | 110   | 40   | 28   |     | 122071  | 141  | 643    | 98972  | 154  |





|             |    |    |   |     |   |      |     | REPC | RTE | DE A  | FEC  | TAC | CIONE | S SEC | CUND | ARI | AS | 2008    |      |        |         |      |
|-------------|----|----|---|-----|---|------|-----|------|-----|-------|------|-----|-------|-------|------|-----|----|---------|------|--------|---------|------|
| área        |    |    |   |     |   | 7    | ipo | de   | Int | errup | ciói | 1   |       |       |      |     |    | Tien    | про  | Cant.  | Tiempo  |      |
|             | 1  | 2  | 3 | 4   | 5 | 6    | 7   | 8    | 9   | 10    | 11   | 12  | 13    | 14    | 15   | 16  |    | Volunt. | Prom | Invol. | Invol.  | Prom |
| Cienfuegos  | 21 | 14 |   | 279 | 5 | 764  | 13  | 212  | 139 | 168   |      |     | 82    | 50    | 151  |     |    | 7523    | 358  | 1795   | 425024  | 237  |
| CEN         | 0  | 0  |   | 8   | 0 | 46   | 0   | 8    | 9   | 6     |      |     | 8     | 2     | 5    |     |    | 0       | 0    | 85     | 31520   | 371  |
| Palmira     | 4  | 2  |   | 30  | 0 | 88   | 0   | 31   | 36  | 26    |      |     | 17    | 5     | 75   |     |    | 575     | 144  | 291    | 43294   | 149  |
| Cruces      | 3  | 2  |   | 43  | 0 | 138  | 0   | 32   | 20  | 31    |      |     | 8     | 1     | 31   |     |    | 656     | 219  | 298    | 59216   | 199  |
| Lajas       | 1  | 6  |   | 25  | 0 | 95   | 0   | 26   | 34  | 22    |      |     | 9     | 2     | 25   |     |    | 76      | 76   | 235    | 91359   | 389  |
| Rodas       | 2  | 12 |   | 67  | 0 | 292  | 0   | 63   | 55  | 31    |      |     | 4     | 9     | 35   |     |    | 164     | 82   | 564    | 299707  | 531  |
| Abreus      | 3  | 3  |   | 42  | 0 | 100  | 1   | 34   | 39  | 20    |      |     | 13    | 9     | 36   |     |    | 225     | 75   | 283    | 128250  | 453  |
| Aguada      | 2  | 4  |   | 75  | 0 | 159  | 2   | 47   | 82  | 22    |      |     | 13    | 8     | 46   |     |    | 347     | 160  | 445    | 236987  | 533  |
| Cumanayagua | 0  | 2  |   | 32  | 0 | 156  | 2   | 51   | 59  | 36    |      |     | 19    | 18    | 43   |     |    | 0       | 0    | 399    | 163476  | 409  |
| Provincia   | 36 | 45 | 0 | 600 | 5 | 1838 | 18  | 503  | 473 | 362   | 0    | 0   | 173   | 105   | 446  | 0   | 36 | 9566    | 264  | 4396   | 1478832 | 336  |

|             |   |    |   |     |   | R    | EP  | ORTE | DE A | FEC   | ГАС  | ION | ES EN | SER | VICIO | S 2 | 2008 |          |      |        |        |      |
|-------------|---|----|---|-----|---|------|-----|------|------|-------|------|-----|-------|-----|-------|-----|------|----------|------|--------|--------|------|
|             |   |    |   |     |   |      |     |      |      |       |      |     |       |     |       |     |      | Tiem     | ро   |        |        |      |
| área        |   |    |   |     |   | 7    | ïpo | de   | Int  | errup | ciór | 1   |       |     |       |     |      | Nivel    |      | Cant.  | Tiempo |      |
| arca        |   |    |   |     |   |      |     |      |      |       |      |     |       |     |       |     |      | inferior |      |        |        |      |
|             | 1 | 2  | 3 | 4   | 5 | 6    | 7   | 8    | 9    | 10    | 11   | 12  | 13    | 14  | 15    | 16  |      | Total    | Prom | Invol. | Invol. | Prom |
| Cienfuegos  |   | 19 |   | 815 |   | 2421 |     | 344  | 11   | 69    |      |     | 1754  |     | 129   |     |      | 292649   | 167  | 3807   | 636530 | 167  |
| CEN         |   | 0  |   | 25  |   | 87   |     | 10   | 0    | 4     |      |     | 121   |     | 3     |     |      | 21953    | 182  | 129    | 30995  | 241  |
| Palmira     |   | 7  |   | 75  |   | 449  |     | 42   | 7    | 17    |      |     | 419   |     | 31    |     |      | 46586    | 111  | 627    | 85075  | 136  |
| Cruces      |   | 4  |   | 162 |   | 637  |     | 75   | 4    | 18    |      |     | 388   |     | 17    |     |      | 84464    | 218  | 917    | 194407 | 212  |
| Lajas       |   | 4  |   | 117 |   | 685  |     | 59   | 2    | 9     |      |     | 339   |     | 17    |     |      | 67152    | 198  | 893    | 185156 | 207  |
| Rodas       |   | 11 |   | 187 |   | 1480 |     | 30   | 4    | 20    |      |     | 450   |     | 22    |     |      | 172530   | 383  | 1753   | 605231 | 345  |
| Abreus      |   | 5  |   | 65  |   | 397  |     | 34   | 4    | 8     |      |     | 296   |     | 24    |     |      | 74330    | 251  | 536    | 114686 | 214  |
| Aguada      |   | 13 |   | 266 |   | 457  |     | 66   | 10   | 9     |      |     | 527   |     | 33    |     |      | 182683   | 346  | 854    | 290646 | 340  |
| Cumanayagua |   | 1  |   | 119 |   | 699  |     | 65   | 5    | 11    |      |     | 655   |     | 26    |     |      | 131701   | 201  | 925    | 244643 | 264  |





|             |     |                                  |    |    |    |      |   | RI | EPOR  | TE D  | ΕA | FEC | TAC | ONES | S PRI | MAR | RIA: | S 2009  |      |        |        |      |
|-------------|-----|----------------------------------|----|----|----|------|---|----|-------|-------|----|-----|-----|------|-------|-----|------|---------|------|--------|--------|------|
| área        |     |                                  |    |    |    | Tipo | 0 | de | Inter | rupci | ón |     |     |      |       |     |      | Tiem    | ро   | Cant.  | Tiem   | ро   |
|             | 1   | 2                                | 3  | 4  | 5  | 6    | 7 | 8  | 9     | 10    | 11 | 12  | 13  | 14   | 15    | 16  |      | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 325 |                                  |    |    |    |      |   |    |       |       |    |     |     |      |       | 8   |      | 32930   | 101  | 154    | 23304  | 151  |
| CEN         | 46  | 5 1 2 4 0 4 0 0 2 3 0 8 0 8 4 1  |    |    |    |      |   |    |       |       |    |     |     |      |       |     | 4523 | 98      | 29   | 4936   | 170    |      |
| Palmira     | 90  | 46 1 2 4 0 4 0 0 2 3 0 8 0 8 4 1 |    |    |    |      |   |    |       |       |    |     |     |      |       | 1   |      | 10890   | 121  | 37     | 5982   | 162  |
| Cruces      | 162 | 1                                | 2  | 5  | 0  | 4    | 0 | 0  | 1     | 0     | 0  | 2   | 0   | 0    | 0     | 0   |      | 30908   | 191  | 13     | 1682   | 129  |
| Lajas       | 58  | 1                                | 0  | 4  | 1  | 3    | 0 | 0  | 3     | 0     | 0  | 0   | 1   | 2    | 1     | 1   |      | 7202    | 124  | 16     | 2276   | 142  |
| Rodas       | 155 | 1                                | 1  | 11 | 1  | 19   | 0 | 3  | 2     | 1     | 0  | 8   | 2   | 23   | 9     | 13  |      | 23749   | 153  | 84     | 17623  | 210  |
| Abreus      | 78  | 0                                | 1  | 6  | 1  | 3    | 0 | 0  | 0     | 0     | 1  | 1   | 0   | 9    | 1     | 5   |      | 11915   | 153  | 27     | 3930   | 146  |
| Aguada      | 92  | 3                                | 5  | 8  | 1  | 12   | 0 | 3  | 7     | 5     | 0  | 7   | 2   | 16   | 5     | 4   |      | 7123    | 77   | 69     | 9888   | 143  |
| Cumanayagua | 109 | 1                                | 8  | 6  | 0  | 7    | 0 | 3  | 6     | 28    | 0  | 3   | 3   | 34   | 6     | 4   |      | 16315   | 150  | 103    | 19340  | 188  |
| Provincia   | ### | 10                               | 27 | 73 | 10 | 107  | 0 | 10 | 46    | 52    | 1  | 43  | 9   | 120  | 39    | 37  |      | 145555  | 131  | 532    | 88961  | 167  |

|             |    |                                        |   |     |   |      |    | REP | ORT   | E DE  | AFE | ECT | ACIO | NES | SECU | JND | ARI | AS 2009 | 9    |        |         |      |
|-------------|----|----------------------------------------|---|-----|---|------|----|-----|-------|-------|-----|-----|------|-----|------|-----|-----|---------|------|--------|---------|------|
| área        |    |                                        |   |     |   | Tipo | )  | de  | Inter | rupci | ón  |     |      |     |      |     |     | Tiem    | ро   | Cant.  | Tie     | тро  |
|             | 1  | 2                                      | 3 | 4   | 5 | 6    | 7  | 8   | 9     | 10    | 11  | 12  | 13   | 14  | 15   | 16  |     | Volunt. | Prom | Invol. | Invol.  | Prom |
| Cienfuegos  | 5  | 5 13 179 2 471 5 107 154 147 46 33 233 |   |     |   |      |    |     |       |       |     |     |      |     |      |     |     | 329     | 66   | 1344   | 397277  | 296  |
| CEN         | 0  | 0                                      |   | 5   | 0 | 35   | 1  | 4   | 14    | 8     |     |     | 8    | 5   | 16   |     |     | 0       | 0    | 88     | 18028   | 205  |
| Palmira     | 0  | 2                                      |   | 10  | 0 | 79   | 0  | 7   | 57    | 31    |     |     | 7    | 6   | 112  |     |     | 0       | 0    | 304    | 39330   | 129  |
| Cruces      | 0  | 2                                      |   | 20  | 0 | 80   | 3  | 10  | 37    | 31    |     |     | 9    | 5   | 55   |     |     | 0       | 0    | 243    | 43786   | 180  |
| Lajas       | 1  | 2                                      |   | 14  | 0 | 58   | 1  | 5   | 11    | 16    |     |     | 5    | 3   | 47   |     |     | 83      | 83   | 157    | 34301   | 218  |
| Rodas       | 3  | 10                                     |   | 32  | 0 | 128  | 0  | 36  | 93    | 52    |     |     | 19   | 14  | 70   |     |     | 562     | 187  | 435    | 402693  | 926  |
| Abreus      | 0  | 2                                      |   | 22  | 0 | 79   | 0  | 15  | 29    | 23    |     |     | 15   | 8   | 63   |     |     | 0       | 0    | 241    | 95191   | 395  |
| Aguada      | 1  | 10                                     |   | 59  | 1 | 156  | 1  | 16  | 100   | 40    |     |     | 11   | 11  | 160  |     |     | 55      | 55   | 554    | 326737  | 590  |
| Cumanayagua | 1  | 1                                      |   | 13  | 0 | 79   | 1  | 22  | 61    | 28    |     |     | 16   | 13  | 84   |     |     | 276     | 276  | 302    | 97524   | 323  |
| Provincia   | 11 | 42                                     | 0 | 354 | 3 | 1165 | 12 | 222 | 556   | 376   | 0   | 0   | 136  | 98  | 840  | 0   |     | 1305    | 119  | 3668   | 1454867 | 397  |





| carros karaer kooriguez, |   |    |                               |      |   |      |    | R   | EPO | RTE    | DE A  | FEC | TACIO | NES | EN S | ERV | ICIC | S 2009   |        |        |         |      |
|--------------------------|---|----|-------------------------------|------|---|------|----|-----|-----|--------|-------|-----|-------|-----|------|-----|------|----------|--------|--------|---------|------|
| área                     |   |    |                               |      |   | Ti   | ро | de  | In  | terrup | ociói | 7   |       |     |      |     |      | Tiem     | •      | Cant.  | Tien    | oar  |
|                          |   |    |                               |      |   |      |    |     |     |        |       |     |       |     |      |     |      | Nivel in | ferior |        |         | -7   |
|                          | 1 | 2  | 3                             | 4    | 5 | 6    | 7  | 8   | 9   | 10     | 11    | 12  | 13    | 14  | 15   | 16  |      | Total    | Prom   | Invol. | Invol.  | Prom |
| Cienfuegos               |   | 13 | 3 746 2089 289 23 48 1443 125 |      |   |      |    |     |     |        |       |     |       |     |      |     |      | 201431   | 0      | 3333   | 535011  | 161  |
| CEN                      |   | 0  |                               |      |   |      |    |     |     |        |       |     |       |     |      |     |      | 16555    | 0      | 87     | 33606   | 386  |
| Palmira                  |   | 1  | 0 27 48 9 2 0 98 1            |      |   |      |    |     |     |        |       |     |       |     |      |     |      | 34830    | 0      | 617    | 73913   | 120  |
| Cruces                   |   | 5  |                               | 143  |   | 456  |    | 60  | 2   | 8      |       |     | 336   |     | 45   |     |      | 56926    | 0      | 719    | 135107  | 188  |
| Lajas                    |   | 2  |                               | 132  |   | 424  |    | 34  | 2   | 8      |       |     | 366   |     | 44   |     |      | 59533    | 0      | 646    | 124591  | 193  |
| Rodas                    |   | 1  |                               | 145  |   | 1124 |    | 30  | 11  | 21     |       |     | 291   |     | 41   |     |      | 147796   | 0      | 1373   | 465756  | 339  |
| Abreus                   |   | 3  |                               | 55   |   | 261  |    | 23  | 5   | 7      |       |     | 275   |     | 16   |     |      | 72241    | 0      | 370    | 89159   | 241  |
| Aguada                   |   | 12 |                               | 432  |   | 259  |    | 51  | 12  | 8      |       |     | 528   |     | 62   |     |      | 186289   | 0      | 836    | 260052  | 311  |
| Cumanayagua              |   | 2  |                               | 118  |   | 458  |    | 45  | 6   | 2      |       |     | 718   |     | 56   |     |      | 144450   | 0      | 687    | 192436  | 280  |
| Provincia                | 0 | 39 | 0                             | 1886 | 0 | 5514 | 0  | 601 | 71  | 123    | 0     | 0   | 4347  | 0   | 434  | 0   |      | 920051   | 0      | 8668   | 1909631 | 220  |

|             |      |   |    |    |   |      |     | R  | EPO | RTE   | DE A  | AFEC | TAC | ONES | PRIM | IARI | AS      | 2010   |        |        |       |     |
|-------------|------|---|----|----|---|------|-----|----|-----|-------|-------|------|-----|------|------|------|---------|--------|--------|--------|-------|-----|
| área        |      |   |    |    |   | Tipo | • ( | de | Int | erruµ | oción | )    |     |      |      |      |         | Tiem   | ро     | Cant.  | Tie   | тро |
|             | 1    |   |    |    |   |      |     |    |     |       |       |      |     |      |      |      | Volunt. | Prom   | Invol. | Invol. | Prom  |     |
| Cienfuegos  | 401  |   |    |    |   |      |     |    |     |       |       |      |     |      |      |      | 52194   | 130    | 135    | 17546  | 130   |     |
| CEN         | 37   | 0 | 0  | 1  | 0 | 3    | 0   | 0  | 0   | 0     | 0     | 2    | 0   | 9    | 1    | 0    |         | 4702   | 127    | 14     | 2820  | 201 |
| Palmira     | 83   | 0 | 2  | 6  | 1 | 4    | 0   | 1  | 5   | 1     | 0     | 5    | 0   | 9    | 7    | 0    |         | 11810  | 142    | 36     | 5814  | 162 |
| Cruces      | 83   | 0 | 2  | 0  | 0 | 2    | 0   | 0  | 2   | 1     | 0     | 2    | 0   | 3    | 0    | 1    |         | 18640  | 225    | 11     | 1386  | 126 |
| Lajas       | 93   | 0 | 0  | 0  | 0 | 2    | 0   | 0  | 0   | 0     | 0     | 0    | 1   | 9    | 2    | 1    |         | 16400  | 176    | 14     | 1250  | 89  |
| Rodas       | 103  | 1 | 1  | 9  | 0 | 7    | 0   | 0  | 4   | 5     | 2     | 0    | 0   | 32   | 8    | 7    |         | 20133  | 195    | 76     | 15229 | 200 |
| Abreus      | 55   | 1 | 0  | 2  | 2 | 3    | 0   | 0  | 6   | 0     | 0     | 1    | 1   | 11   | 3    | 3    |         | 8425   | 153    | 31     | 3384  | 109 |
| Aguada      | 92   | 1 | 0  | 11 | 1 | 8    | 0   | 2  | 3   | 2     | 0     | 3    | 0   | 18   | 5    | 4    |         | 9230   | 100    | 55     | 6759  | 123 |
| Cumanayagua | 70   | 2 | 4  | 1  | 4 | 4    | 0   | 0  | 3   | 11    | 0     | 5    | 1   | 49   | 6    | 7    |         | 9132   | 130    | 91     | 13414 | 147 |
| Provincia   | 1017 | 6 | 11 | 48 | 8 | 74   | 0   | 7  | 37  | 35    | 5     | 42   | 6   | 164  | 45   | 23   |         | 150666 | 148    | 463    | 67602 | 146 |





|             |    |    |   |     |   |     |    | RI  | EPOR | TE D   | E A  | FEC | TACIO | NES | SECL | JND. | ARI | AS 2010 |      |        |        |      |
|-------------|----|----|---|-----|---|-----|----|-----|------|--------|------|-----|-------|-----|------|------|-----|---------|------|--------|--------|------|
| área        |    |    |   |     |   | Ti  | ро | de  | Inte | errupo | ción |     |       |     |      |      |     | Tiem    | ро   | Cant.  | Tien   | про  |
|             | 1  | 2  | 3 | 4   | 5 | 6   | 7  | 8   | 9    | 10     | 11   | 12  | 13    | 14  | 15   | 16   |     | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 12 | 15 |   | 180 | 0 | 401 | 8  | 119 | 126  | 194    |      |     | 44    | 47  | 192  |      |     | 3593    | 299  | 1282   | 341794 | 267  |
| CEN         | 0  | 0  |   | 14  | 0 | 20  | 1  | 9   | 10   | 3      |      |     | 3     | 4   | 16   |      |     | 0       | 0    | 77     | 16009  | 208  |
| Palmira     | 0  | 0  |   | 11  | 0 | 45  | 0  | 4   | 33   | 17     |      |     | 6     | 5   | 90   |      |     | 0       | 0    | 205    | 23701  | 116  |
| Cruces      | 0  | 0  |   | 16  | 0 | 48  | 0  | 4   | 19   | 16     |      |     | 19    | 12  | 50   |      |     | 0       | 0    | 165    | 24866  | 151  |
| Lajas       | 0  | 1  |   | 21  | 0 | 28  | 0  | 6   | 9    | 17     |      |     | 5     | 7   | 47   |      |     | 0       | 0    | 136    | 58054  | 427  |
| Rodas       | 2  | 5  |   | 35  | 0 | 98  | 0  | 20  | 75   | 60     |      |     | 11    | 20  | 93   |      |     | 134     | 67   | 406    | 109148 | 269  |
| Abreus      | 1  | 2  |   | 23  | 0 | 46  | 1  | 20  | 24   | 23     |      |     | 17    | 15  | 48   |      |     | 63      | 63   | 202    | 136880 | 678  |
| Aguada      | 2  | 9  |   | 56  | 1 | 122 | 1  | 10  | 68   | 24     |      |     | 5     | 29  | 97   |      |     | 310     | 155  | 417    | 92797  | 223  |
| Cumanayagua | 2  | 3  |   | 13  | 0 | 39  | 1  | 12  | 56   | 41     |      |     | 12    | 51  | 99   |      |     | 423     | 212  | 315    | 79956  | 254  |
| Provincia   | 19 | 35 | 0 | 369 | 1 | 847 | 12 | 204 | 420  | 395    | 0    | 0   | 122   | 190 | 732  | 0    |     | 4523    | 238  | 3205   | 883205 | 276  |

|             |   |    |   |      |   |      |    | RI  | EPOF | RTE D | EΑ   | FEC | TACIO | NES | EN S | ERV | /ICI | OS 2010  |        |        |         |      |
|-------------|---|----|---|------|---|------|----|-----|------|-------|------|-----|-------|-----|------|-----|------|----------|--------|--------|---------|------|
|             |   |    |   |      |   |      |    |     |      |       |      |     |       |     |      |     |      | Tiem     | ро     |        |         |      |
| área        |   |    |   |      |   | Tij  | ро | de  | Inte | errup | ción |     |       |     |      |     |      | Nivel in | ferior | Cant.  | Tien    | ро   |
|             | 1 | 2  | 3 | 4    | 5 | 6    | 7  | 8   | 9    | 10    | 11   | 12  | 13    | 14  | 15   | 16  |      | Total    | Prom   | Invol. | Invol.  | Prom |
| Cienfuegos  |   | 14 |   | 714  |   | 2257 |    | 266 | 29   | 86    |      |     | 1253  |     | 140  |     |      | 456317   | 0      | 3506   | 779531  | 222  |
| CEN         |   | 0  |   | 19   |   | 47   |    | 5   | 1    | 2     |      |     | 64    |     | 4    |     |      | 9833     | 0      | 78     | 13413   | 172  |
| Palmira     |   | 0  |   | 78   |   | 303  |    | 45  | 5    | 9     |      |     | 264   |     | 64   |     |      | 87681    | 0      | 504    | 47469   | 94   |
| Cruces      |   | 4  |   | 81   |   | 425  |    | 51  | 3    | 10    |      |     | 353   |     | 35   |     |      | 53500    | 0      | 609    | 76629   | 126  |
| Lajas       |   | 0  |   | 68   |   | 424  |    | 45  | 1    | 5     |      |     | 292   |     | 36   |     |      | 118434   | 0      | 579    | 104523  | 181  |
| Rodas       |   | 5  |   | 94   |   | 830  |    | 45  | 10   | 34    |      |     | 248   |     | 52   |     |      | 55816    | 0      | 1070   | 193302  | 181  |
| Abreus      |   | 2  |   | 25   |   | 193  |    | 33  | 3    | 7     |      |     | 269   |     | 24   |     |      | 54189    | 0      | 287    | 48679   | 170  |
| Aguada      |   | 7  |   | 165  |   | 369  |    | 119 | 5    | 10    |      |     | 598   |     | 72   |     |      | 111131   | 0      | 747    | 155694  | 208  |
| Cumanayagua |   | 2  |   | 73   |   | 372  |    | 67  | 6    | 6     |      |     | 707   |     | 34   |     |      | 110034   | 0      | 560    | 91265   | 163  |
| Provincia   | 0 | 34 | 0 | 1317 | 0 | 5220 | 0  | 676 | 63   | 169   | 0    | 0   | 4048  | 0   | 461  | 0   |      | 1056935  | 0      | 7940   | 1510505 | 190  |





|             |      |    |    |    |    |     |   | RE | PORT   | E DE   | AF | ECT | ACIOI | NES P | RIMA | RIA | S 2 | 2011    |      |        |        |      |
|-------------|------|----|----|----|----|-----|---|----|--------|--------|----|-----|-------|-------|------|-----|-----|---------|------|--------|--------|------|
| área        |      |    |    |    |    | Tip | 0 | de | Interi | rupcio | ón |     |       |       |      |     |     | Tiem    | ро   | Cant.  | Tier   | тро  |
|             | 1    | 2  | 3  | 4  | 5  | 6   | 7 | 8  | 9      | 10     | 11 | 12  | 13    | 14    | 15   | 16  |     | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 464  | 1  | 2  | 12 | 2  | 35  | 0 | 3  | 11     | 26     | 0  | 18  | 8     | 43    | 12   | 4   |     | 54135   | 117  | 151    | 24264  | 161  |
| CEN         | 58   | 0  | 3  | 2  | 0  | 1   | 0 | 1  | 0      | 0      | 0  | 0   | 0     | 9     | 1    | 1   |     | 8235    | 142  | 18     | 4257   | 237  |
| Palmira     | 131  | 1  | 2  | 2  | 0  | 4   | 0 | 0  | 3      | 0      | 0  | 0   | 0     | 13    | 7    | 2   |     | 20036   | 153  | 34     | 3390   | 100  |
| Cruces      | 179  | 0  | 0  | 1  | 0  | 0   | 0 | 0  | 3      | 0      | 0  | 4   | 0     | 7     | 3    | 3   |     | 18875   | 105  | 17     | 1523   | 90   |
| Lajas       | 104  | 2  | 0  | 3  | 1  | 1   | 0 | 0  | 2      | 0      | 0  | 0   | 0     | 3     | 1    | 0   |     | 12878   | 124  | 13     | 2723   | 209  |
| Rodas       | 125  | 5  | 3  | 4  | 3  | 9   | 0 | 1  | 5      | 5      | 0  | 0   | 0     | 28    | 8    | 3   |     | 21841   | 175  | 74     | 18870  | 255  |
| Abreus      | 61   | 1  | 1  | 1  | 3  | 5   | 0 | 0  | 4      | 1      | 1  | 0   | 1     | 19    | 5    | 0   |     | 9861    | 162  | 41     | 5747   | 140  |
| Aguada      | 113  | 1  | 3  | 4  | 0  | 5   | 0 | 0  | 1      | 0      | 0  | 0   | 1     | 15    | 6    | 2   | ·   | 8356    | 74   | 37     | 5855   | 158  |
| Cumanayagua | 122  | 0  | 2  | 2  | 2  | 5   | 0 | 3  | 2      | 23     | 2  | 4   | 2     | 36    | 12   | 10  | ·   | 18820   | 154  | 99     | 16128  | 163  |
| Provincia   | 1357 | 11 | 16 | 31 | 11 | 65  | 0 | 8  | 31     | 55     | 3  | 26  | 12    | 173   | 55   | 25  |     | 173037  | 128  | 484    | 82757  | 171  |

|             |    |    |   |     |   |     |    | REP | ORTE   | DE A   | FEC | CTAC | CIONE | S SE | CUND | ARI | AS | 2011    |      |        |        |      |
|-------------|----|----|---|-----|---|-----|----|-----|--------|--------|-----|------|-------|------|------|-----|----|---------|------|--------|--------|------|
| área        |    |    |   |     |   | Tip | 0  | de  | Interi | rupció | ón  |      |       |      |      |     |    | Tiem    | ро   | Cant.  | Tiem   | ро   |
|             | 1  | 2  | 3 | 4   | 5 | 6   | 7  | 8   | 9      | 10     | 11  | 12   | 13    | 14   | 15   | 16  |    | Volunt. | Prom | Invol. | Invol. | Prom |
| Cienfuegos  | 7  | 17 |   | 186 | 2 | 430 | 5  | 105 | 144    | 241    |     |      | 48    | 31   | 159  |     |    | 848     | 121  | 1320   | 316555 | 240  |
| CEN         | 0  | 0  |   | 3   | 0 | 10  | 0  | 2   | 5      | 6      |     |      | 2     | 1    | 2    |     |    | 0       | 0    | 29     | 5649   | 195  |
| Palmira     | 1  | 1  |   | 14  | 0 | 55  | 0  | 11  | 35     | 36     |     |      | 10    | 9    | 81   |     |    | 0       | 0    | 242    | 29269  | 121  |
| Cruces      | 1  | 1  |   | 19  | 0 | 34  | 0  | 19  | 27     | 14     |     |      | 20    | 6    | 52   |     |    | 179     | 179  | 172    | 25038  | 146  |
| Lajas       | 3  | 1  |   | 19  | 0 | 46  | 1  | 13  | 16     | 36     |     |      | 6     | 5    | 41   |     |    | 306     | 102  | 178    | 32613  | 183  |
| Rodas       | 4  | 9  |   | 43  | 0 | 102 | 2  | 31  | 62     | 73     |     |      | 20    | 17   | 71   |     |    | 330     | 83   | 410    | 100652 | 245  |
| Abreus      | 2  | 0  |   | 32  | 0 | 42  | 1  | 14  | 29     | 28     |     |      | 21    | 7    | 59   |     |    | 303     | 152  | 212    | 88553  | 418  |
| Aguada      | 2  | 5  |   | 53  | 0 | 111 | 1  | 16  | 66     | 29     |     |      | 9     | 15   | 105  |     |    | 715     | 358  | 401    | 79343  | 198  |
| Cumanayagua | 0  | 0  |   | 22  | 1 | 36  | 0  | 20  | 38     | 26     |     |      | 22    | 19   | 59   |     |    | 0       | 0    | 221    | 59644  | 270  |
| Provincia   | 20 | 34 | 0 | 391 | 3 | 866 | 10 | 231 | 422    | 489    | 0   | 0    | 158   | 110  | 629  | 0   |    | 2681    | 134  | 3185   | 737316 | 231  |

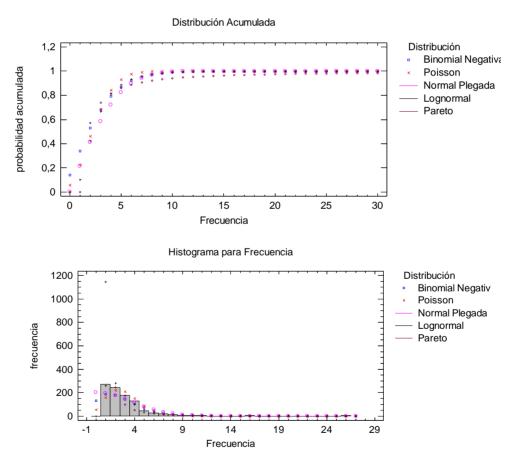




|             |   |    |   |      |   |      |    | R   | EPC | RTE     | DE A | FEC | CTACIO | NES | EN S | ERVI | CI | OS 201            | 1    |        |         |      |
|-------------|---|----|---|------|---|------|----|-----|-----|---------|------|-----|--------|-----|------|------|----|-------------------|------|--------|---------|------|
| á na a      |   |    |   |      |   | Ti   | ро | de  | Ir  | nterruj | oció | า   |        |     |      |      |    | Tien              | •    | Cant.  | Tien    | про  |
| área        | 1 | 2  | 3 | 4    | 5 | 6    | 7  | 8   | 9   | 10      | 11   | 12  | 13     | 14  | 15   | 16   |    | Nivel in<br>Total | Prom | Invol. | Invol.  | Prom |
| Cienfuegos  | - | 3  |   | 806  | Ť | 2318 | -  | 269 | 16  | 87      |      |     | 1232   |     | 134  |      |    | 248800            | 0    | 3633   | 730813  | 201  |
| CEN         |   | 1  |   | 5    |   | 31   |    | 3   | 0   | 0       |      |     | 22     |     | 1    |      |    | 4119              | 0    | 41     | 8396    | 205  |
| Palmira     |   | 0  |   | 80   |   | 289  |    | 48  | 6   | 33      |      |     | 258    |     | 57   |      |    | 24970             | 0    | 513    | 49962   | 97   |
| Cruces      |   | 0  |   | 137  |   | 443  |    | 81  | 4   | 20      |      |     | 400    |     | 27   |      |    | 56804             | 0    | 712    | 86253   | 121  |
| Lajas       |   | 1  |   | 58   |   | 359  |    | 38  | 7   | 13      |      |     | 221    |     | 25   |      |    | 29189             | 0    | 501    | 78473   | 157  |
| Rodas       |   | 0  |   | 87   |   | 811  |    | 44  | 13  | 29      |      |     | 362    |     | 63   |      |    | 61282             | 0    | 1047   | 197231  | 188  |
| Abreus      |   | 0  |   | 34   |   | 231  |    | 37  | 5   | 13      |      |     | 327    |     | 23   |      |    | 56056             | 0    | 343    | 63169   | 184  |
| Aguada      |   | 3  |   | 221  |   | 302  |    | 115 | 6   | 14      |      |     | 638    |     | 71   |      |    | 140104            | 0    | 732    | 147026  | 201  |
| Cumanayagua |   | 2  |   | 84   |   | 330  |    | 50  | 9   | 19      |      |     | 720    |     | 38   |      |    | 132741            | 0    | 532    | 105463  | 198  |
| Provincia   | 0 | 10 | 0 | 1512 | 0 | 5114 | 0  | 685 | 66  | 228     | 0    | 0   | 4180   | 0   | 439  | 0    |    | 754065            | 0    | 8054   | 1466786 | 182  |






# Anexo 9: Pruebas de Bondad de ajuste para los fallos en las redes de distribución.

#### Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Pareto            | 1                     | -1513,12          |
| Gaussiana Inversa | 2                     | -1683,2           |
| Lognormal         | 2                     | -1690,07          |
| Binomial Negativa | 2                     | -1891,19          |
| Normal Plegada    | 2                     | -1908,8           |
| Poisson           | 1                     | -1934,94          |
| Binomial          | 1                     | -1949,86          |
| Geométrica        | 1                     | -2063,45          |
| Uniforme Discreta | 2                     | -3052,84          |
| Bernoulli         | 1                     | -9,37E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |

#### Pruebas de Bondad-de-Ajuste para Frecuencia de fallos

Prueba Chi-Cuadrada



|              | Binomial Negativa | Poisson | Normal Plegada | Lognormal | Pareto  |
|--------------|-------------------|---------|----------------|-----------|---------|
| Chi-Cuadrada | 255,48            | 272,535 | 228,836        | 49,7538   | 234,121 |
| G.l.         | 11                | 8       | 9              | 11        | 20      |
| Valor-P      | 0,56789           | 0.4158  | 0,.57863       | 0,66053   | 0,6786  |





## Anexo 10: Pruebas de Bondad de ajuste para los fallos en los transformadores.

**Pruebas de Bondad-de-Ajuste para días hasta el fallo del Total de Transformadores** Prueba Chi-Cuadrada

|               | Límite   | Límite   | Frecuencia | Frecuencia |              |
|---------------|----------|----------|------------|------------|--------------|
|               | Inferior | Superior | Observada  | Esperada   | Chi-Cuadrada |
| menor o igual |          | 0,0      | 89         | 97,66      | 0,77         |
|               | 1,0      | 1,0      | 89         | 73,70      | 3,18         |
|               | 2,0      | 2,0      | 68         | 55,61      | 2,76         |
|               | 3,0      | 3,0      | 40         | 41,97      | 0,09         |
|               | 4,0      | 4,0      | 31         | 31,67      | 0,01         |
|               | 5,0      | 5,0      | 24         | 23,90      | 0,00         |
|               | 6,0      | 6,0      | 10         | 18,03      | 3,58         |
|               | 7,0      | 7,0      | 9          | 13,61      | 1,56         |
|               | 8,0      | 8,0      | 8          | 10,27      | 0,50         |
|               | 9,0      | 9,0      | 7          | 7,75       | 0,07         |
|               | 10,0     | 10,0     | 6          | 5,85       | 0,00         |
|               | 11,0     | 11,0     | 4          | 4,41       | 0,04         |
|               | 12,0     | 12,0     | 4          | 3,33       | 0,13         |
|               | 13,0     | 13,0     | 2          | 2,51       | 0,10         |
|               | 14,0     | 15,0     | 2          | 3,33       | 0,53         |
|               | 16,0     |          | 5          | 4,40       | 0,08         |

Chi-Cuadrada = 13,4192 con 14 g.l. Valor-P = 0,493811

#### Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Geométrica        | 1                     | -903,775          |
| Normal            | 2                     | -1294,99          |
| Uniforme Discreta | 2                     | -1874,39          |
| Poisson           | 1                     | -1,E9             |
| Binomial          | 1                     | -1,E9             |
| Bernoulli         | 1                     | -3,98E11          |
| Binomial Negativa | 2                     | -3,98E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |

#### Pruebas de Bondad-de-Ajuste para Trasformadores de distribución

Prueba Chi-Cuadrada

|               | Límite   | Límite   | Frecuencia | Frecuencia |              |
|---------------|----------|----------|------------|------------|--------------|
|               | Inferior | Superior | Observada  | Esperada   | Chi-Cuadrada |
| menor o igual |          | 0,0      | 43         | 47,16      | 0,37         |
|               | 1,0      | 1,0      | 47         | 38,77      | 1,75         |
|               | 2,0      | 2,0      | 41         | 31,87      | 2,62         |
|               | 3,0      | 3,0      | 30         | 26,20      | 0,55         |
|               | 4,0      | 4,0      | 18         | 21,53      | 0,58         |
|               | 5,0      | 5,0      | 17         | 17,70      | 0,03         |
|               | 6,0      | 6,0      | 10         | 14,55      | 1,42         |
|               | 7,0      | 7,0      | 9          | 11,96      | 0,73         |
|               | 8,0      | 8,0      | 5          | 9,83       | 2,38         |
|               | 9,0      | 9,0      | 11         | 8,08       | 1,05         |
|               | 10,0     | 10,0     | 6          | 6,64       | 0,06         |
|               | 11,0     | 11,0     | 7          | 5,46       | 0,43         |
|               | 12,0     | 12,0     | 5          | 4,49       | 0,06         |
|               | 13,0     | 13,0     | 1          | 3,69       | 1,96         |
|               | 14,0     | 14,0     | 1          | 3,03       | 1,36         |
|               | 15,0     | 15,0     | 3          | 2,49       | 0,10         |
|               | 16,0     | 16,0     | 0          | 2,05       | 2,05         |
|               | 17,0     | 18,0     | 2          | 3,07       | 0,37         |
|               | 19,0     | 20,0     | 5          | 2,07       | 4,12         |
|               | 21,0     |          | 4          | 4,32       | 0,02         |

Chi-Cuadrada = 22,0294 con 18 g.l. Valor-P = 0,230684



#### Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Geométrica        | 1                     | -697,305          |
| Normal            | 2                     | -929,014          |
| Uniforme Discreta | 2                     | -1248,03          |
| Poisson           | 1                     | -1,E9             |
| Binomial          | 1                     | -1,E9             |
| Bernoulli         | 1                     | -3,98E11          |
| Binomial Negativa | 2                     | -3,98E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |

# **Pruebas de Bondad-de-Ajuste para Transformadores de Transmisión** Prueba Chi-Cuadrada

|               | Límite   | Límite   | Frecuencia | Frecuencia |              |
|---------------|----------|----------|------------|------------|--------------|
|               | Inferior | Superior | Observada  | Esperada   | Chi-Cuadrada |
| menor o igual |          | 0,0      | 3          | 2,65       | 0,05         |
|               | 1,0      | 1,0      | 4          | 2,53       | 0,86         |
|               | 2,0      | 2,0      | 4          | 2,41       | 1,05         |
|               | 3,0      | 3,0      | 3          | 2,29       | 0,22         |
|               | 4,0      | 4,0      | 3          | 2,18       | 0,30         |
|               | 5,0      | 5,0      | 2          | 2,08       | 0,00         |
|               | 6,0      | 7,0      | 3          | 3,87       | 0,20         |
|               | 8,0      | 9,0      | 4          | 3,51       | 0,07         |
|               | 10,0     | 11,0     | 4          | 3,19       | 0,21         |
|               | 12,0     | 13,0     | 3          | 2,89       | 0,00         |
|               | 14,0     | 15,0     | 2          | 2,63       | 0,15         |
|               | 16,0     | 17,0     | 0          | 2,38       | 2,38         |
|               | 18,0     | 19,0     | 2          | 2,16       | 0,01         |
|               | 20,0     | 22,0     | 3          | 2,87       | 0,01         |
|               | 23,0     | 25,0     | 1          | 2,48       | 0,89         |
|               | 26,0     | 28,0     | 1          | 2,15       | 0,61         |
|               | 29,0     | 32,0     | 1          | 2,42       | 0,83         |
|               | 33,0     | 37,0     | 5          | 2,43       | 2,71         |
|               | 38,0     | 43,0     | 2          | 2,24       | 0,03         |
|               | 44,0     | 51,0     | 1          | 2,13       | 0,60         |
|               | 52,0     | 64,0     | 0          | 2,10       | 2,10         |
|               | 65,0     |          | 5          | 2,39       | 2,86         |
|               |          |          |            |            |              |

Chi-Cuadrada = 16,1305 con 20 g.l. Valor-P = 0,708494

## Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |  |  |  |  |
|-------------------|-----------------------|-------------------|--|--|--|--|
| Geométrica        | 1                     | -225,43           |  |  |  |  |
| Normal            | 2                     | -261,238          |  |  |  |  |
| Uniforme Discreta | 2                     | -269,936          |  |  |  |  |
| Poisson           | 1                     | -810,705          |  |  |  |  |
| Binomial          | 1                     | -1,E9             |  |  |  |  |
| Bernoulli         | 1                     | -3,98E11          |  |  |  |  |
| Binomial Negativa | 2                     | -3,98E11          |  |  |  |  |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |  |  |  |  |





# **Pruebas de Bondad-de-Ajuste para Transformadores de Sub-transmisión** Prueba Chi-Cuadrada

| ·             | Límite   | Límite   | Frecuencia | Frecuencia |              |  |
|---------------|----------|----------|------------|------------|--------------|--|
|               | Inferior | Superior | Observada  | Esperada   | Chi-Cuadrada |  |
| menor o igual |          | 0,0      | 14         | 2,20       | 63,26        |  |
|               | 1,0      | 1,0      | 2          | 2,10       | 0,01         |  |
|               | 2,0      | 2,0      | 2          | 2,01       | 0,00         |  |
|               | 3,0      | 4,0      | 3          | 3,76       | 0,15         |  |
|               | 5,0      | 6,0      | 3          | 3,44       | 0,06         |  |
|               | 7,0      | 8,0      | 8          | 3,14       | 7,52         |  |
|               | 9,0      | 10,0     | 1          | 2,87       | 1,22         |  |
|               | 11,0     | 12,0     | 0          | 2,62       | 2,62         |  |
|               | 13,0     | 14,0     | 1          | 2,40       | 0,81         |  |
|               | 15,0     | 16,0     | 3          | 2,19       | 0,30         |  |
|               | 17,0     | 18,0     | 1          | 2,00       | 0,50         |  |
|               | 19,0     | 21,0     | 0          | 2,69       | 2,69         |  |
|               | 22,0     | 24,0     | 0          | 2,35       | 2,35         |  |
|               | 25,0     | 27,0     | 1          | 2,05       | 0,54         |  |
|               | 28,0     | 31,0     | 1          | 2,34       | 0,76         |  |
|               | 32,0     | 36,0     | 2          | 2,39       | 0,06         |  |
|               | 37,0     | 42,0     | 1          | 2,24       | 0,68         |  |
|               | 43,0     | 50,0     | 2          | 2,18       | 0,02         |  |
|               | 51,0     | 62,0     | 0          | 2,10       | 2,10         |  |
|               | 63,0     |          | 5          | 2,93       | 1,46         |  |

Chi-Cuadrada = 87,1041 con 18 g.l. Valor-P = 4,76106E-11

## Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Geométrica        | 1                     | -205,045          |
| Normal            | 2                     | -257,058          |
| Uniforme Discreta | 2                     | -259,925          |
| Poisson           | 1                     | -1,E9             |
| Binomial          | 1                     | -1,E9             |
| Bernoulli         | 1                     | -3,98E11          |
| Binomial Negativa | 2                     | -3,98E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |





# Anexo 11: Pruebas de Bondad de ajuste para los fallos en las acometidas, postes o estructuras y conductores.

Pruebas de Bondad-de-Ajuste para acometida

Prueba Chi-Cuadrada

|               | Límite   | Límite   | Frecuencia | Frecuencia |                                      |  |
|---------------|----------|----------|------------|------------|--------------------------------------|--|
|               | Inferior | Superior | Observada  | Esperada   | Chi-Cuadrada                         |  |
| menor o igual |          | 0,0      | 52         | 66,56      | 3,19                                 |  |
|               | 1,0      | 1,0      | 74         | 52,76      | 8,55                                 |  |
|               | 2,0      | 2,0      | 48         | 41,82      | 0,91                                 |  |
|               | 3,0      | 3,0      | 30         | 33,15      | 0,30                                 |  |
|               | 4,0      | 4,0      | 28         | 26,27      | 0,11                                 |  |
|               | 5,0      | 5,0      | 22         | 20,83      | 0,07<br>0,38<br>5,00<br>2,07<br>0,18 |  |
|               | 6,0      | 6,0      | 14         | 16,51      |                                      |  |
|               | 7,0      | 7,0      | 5          | 13,08      |                                      |  |
|               | 8,0      | 8,0      | 15         | 10,37      |                                      |  |
|               | 9,0      | 9,0      | 7          | 8,22       |                                      |  |
|               | 10,0     | 10,0     | 6          | 6,52       | 0,04                                 |  |
|               | 11,0     | 11,0     | 3          | 5,16       | 0,91                                 |  |
|               | 12,0     | 12,0     | 4          | 4,09       | 0,00                                 |  |
|               | 13,0     | 13,0     | 2          | 3,24       | 0,48                                 |  |
|               | 14,0     | 14,0     | 5          | 2,57       | 2,29                                 |  |
|               | 15,0     | 15,0     | 0          | 2,04       | 2,04                                 |  |
|               | 16,0     | 17,0     | 2          | 2,90       | 0,28                                 |  |
|               | 18,0     | 20,0     | 0          | 2,46       | 2,46                                 |  |
|               | 21,0     |          | 4          | 2,44       | 1,00                                 |  |

Chi-Cuadrada = 30,2458 con 17 g.l. Valor-P = 0,246262

Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Geométrica        | 1                     | -790,167          |
| Uniforme Discreta | 2                     | -1505,92          |
| Poisson           | 1                     | -1,E9             |
| Binomial          | 1                     | -1,E9             |
| Bernoulli         | 1                     | -3,21E11          |
| Binomial Negativa | 2                     | -3,21E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |

# **Pruebas de Bondad-de-Ajuste para poste** Prueba Chi-Cuadrada

|               | Límite   | Límite   | Frecuencia | Frecuencia   |              |  |
|---------------|----------|----------|------------|--------------|--------------|--|
|               | Inferior | Superior | Observada  | Esperada     | Chi-Cuadrada |  |
| nenor o igual |          | 0,0      | 39         | 42,74        | 0,33         |  |
|               | 1,0      | 1,0      | 43         | 35,46        | 1,60         |  |
|               | 2,0      | 2,0      | 36         | 29,42        | 1,47         |  |
|               | 3,0      | 3,0      | 22         | 24,41        | 0,24         |  |
|               | 4,0      | 4,0      | 23         | 20,26        | 0,37         |  |
|               | 5,0      | 5,0      | 14         | 16,81        | 0,47         |  |
|               | 6,0      | 6,0      | 14         | 13,95        | 0,00         |  |
|               | 7,0      | 7,0      | 8          | 11,57        | 1,10<br>0,04 |  |
|               | 8,0      | 8,0      | 9          | 9,60         |              |  |
|               | 9,0      | 9,0      | 7          | 7,97         | 0,12         |  |
|               | 10,0     | 10,0     |            | 6,61<br>5,48 | 0,02         |  |
|               | 11,0     | 11,0     | 1          |              | 3,67         |  |
|               | 12,0     | 12,0     | 6          | 4,55         | 0,46         |  |
|               | 13,0     | 13,0     | 5          | 3,78         | 0,40         |  |
|               | 14,0     | 14,0     | 5          | 3,13         | 1,11         |  |
|               | 15,0     | 15,0     | 1          | 2,60         | 0,98         |  |
|               | 16,0     | 16,0     | 4          | 2,16         | 1,58         |  |
|               | 17,0     | 18,0     | 2          | 3,27         | 0,50         |  |
|               | 19,0     | 20,0     | 2          | 2,25         | 0,03         |  |
|               | 21,0     | 23,0     | 1          | 2,14         | 0,60         |  |
|               | 24,0     |          | 2          | 2,84         | 0,25         |  |

Chi-Cuadrada = 15,3351 con 19 g.l. Valor-P = 0,701075





Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Geométrica        | 1                     | -672,642          |
| Uniforme Discreta | 2                     | -1175,21          |
| Poisson           | 1                     | -1,E9             |
| Binomial          | 1                     | -1,E9             |
| Bernoulli         | 1                     | -3,21E11          |
| Binomial Negativa | 2                     | -3,21E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |

# **Pruebas de Bondad-de-Ajuste para Conductor** Prueba C<u>hi-Cuad</u>rada

|               | Límite   | Límite   | Frecuencia | Frecuencia |              |
|---------------|----------|----------|------------|------------|--------------|
|               | Inferior | Superior | Observada  | Esperada   | Chi-Cuadrada |
| menor o igual |          | 0,0      | 50         | 41,75      | 1,63         |
|               | 1,0      | 1,0      | 42         | 34,72      | 1,52         |
|               | 2,0      | 2,0      | 32         | 28,88      | 0,34         |
|               | 3,0      | 3,0      | 13         | 24,02      | 5,05         |
|               | 4,0      | 4,0      | 20         | 19,97      | 0,00         |
|               | 5,0      | 5,0      | 12         | 16,61      | 1,28         |
|               | 6,0      | 6,0      | 13         | 13,81      | 0,05         |
|               | 7,0      | 7,0      | 10         | 11,49      | 0,19         |
|               | 8,0      | 8,0      | 11         | 9,55       | 0,22         |
|               | 9,0      | 9,0      | 7          | 7,95       | 0,11         |
|               | 10,0     | 10,0     | 6          | 6,61       | 0,06         |
|               | 11,0     | 11,0     | 5          | 5,49       | 0,04         |
|               | 12,0     | 12,0     | 4          | 4,57       | 0,07         |
|               | 13,0     | 13,0     | 4          | 3,80       | 0,01         |
|               | 14,0     | 14,0     | 4          | 3,16       | 0,22         |
|               | 15,0     | 15,0     | 3          | 2,63       | 0,05         |
|               | 16,0     | 16,0     | 2          | 2,19       | 0,02         |
|               | 17,0     | 18,0     | 5          | 3,33       | 0,84         |
|               | 19,0     | 20,0     | 1          | 2,30       | 0,74         |
|               | 21,0     | 23,0     | 0          | 2,19       | 2,19         |
|               | 24,0     |          | 4          | 2,97       | 0,36         |

Chi-Cuadrada = 14,9938 con 19 g.l. Valor-P = 0,72299

Comparación de Distribuciones Alternas

| Distribución      | Parámetros Est.       | Log Verosimilitud |
|-------------------|-----------------------|-------------------|
| Geométrica        | 1                     | -667,685          |
| Uniforme Discreta | 2                     | -1074,02          |
| Poisson           | 1                     | -1175,88          |
| Binomial          | 1                     | -1254,57          |
| Bernoulli         | 1                     | -3,21E11          |
| Binomial Negativa | 2                     | -3,21E11          |
| Hipergeométrica   | <sin ajuste=""></sin> |                   |





# Anexo 12 Aplicación del método Delphi para los expertos

|           |    | Resultado del método De                   | lphi y | y el co | efici | ente | de K | endal | para | a la s | selec | ción de las | variables |        |              |
|-----------|----|-------------------------------------------|--------|---------|-------|------|------|-------|------|--------|-------|-------------|-----------|--------|--------------|
|           |    |                                           |        |         |       | Ex   | pert | os    |      |        |       |             |           |        |              |
|           |    |                                           | E1     | E2      | E3    | E4   | E5   | E6    | E7   | E8     | E9    | ΣΑί         | Δ         | Δ^2    | Críticos     |
|           | 1  | Cortocircuito entre espira                | 7      | 4       | 4     | 5    | 3    | 4     | 3    | 4      | 5     | 39          | -86.9     | 7549.7 | Seleccionado |
|           | 2  | Falta hermeticidad del transformador      | 18     | 20      | 20    | 21   | 20   | 22    | 23   | 22     | 19    | 185         | 59.1      | 3494.1 |              |
|           | 3  | Puntos calientes                          | 10     | 8       | 11    | 10   | 10   | 9     | 10   | 10     | 8     | 86          | -39.9     | 1591.1 | Seleccionado |
|           | 4  | Mal estado del aislamiento o envejecido   | 5      | 7       | 1     | 1    | 2    | 8     | 1    | 7      | 4     | 36          | -89.9     | 8080   | Seleccionado |
|           | 5  | Bajo Voltaje en la salida                 | 9      | 12      | 9     | 8    | 9    | 11    | 9    | 12     | 10    | 89          | -36.9     | 1360.8 | Seleccionado |
|           | 6  | Bajante tierra partido                    | 22     | 24      | 21    | 18   | 22   | 20    | 18   | 21     | 23    | 189         | 63.1      | 3983   |              |
|           | 7  | Relación transformación alterada          | 6      | 5       | 6     | 6    | 7    | 5     | 6    | 5      | 6     | 52          | -73.9     | 5459.6 | Seleccionado |
| SO        | 8  | Defectuoso el cambia tap                  | 24     | 26      | 25    | 22   | 23   | 21    | 21   | 23     | 21    | 206         | 80.1      | 6417.8 |              |
| fallos    | 9  | Cortocircuito devanado secundario         | 2      | 3       | 5     | 4    | 4    | 3     | 5    | 1      | 3     | 30          | -95.9     | 9194.7 | Seleccionado |
| de i      | 10 | Poste inclinado con transformador         | 17     | 18      | 16    | 19   | 16   | 15    | 19   | 17     | 18    | 155         | 29.1      | 847.46 |              |
|           | 11 | Salidero o bajo nivel de aceite           | 13     | 11      | 10    | 11   | 13   | 12    | 16   | 11     | 12    | 109         | -16.9     | 285.23 | Seleccionado |
| ple       | 12 | Conexión calcinada                        | 25     | 22      | 24    | 17   | 21   | 19    | 24   | 19     | 22    | 193         | 67.1      | 4503.9 |              |
| Variables | 13 | Fuera de servicio el pararrayos           | 20     | 19      | 19    | 15   | 19   | 18    | 20   | 20     | 17    | 167         | 41.1      | 1690.1 |              |
| >         | 14 | Devanado primario abierto                 | 1      | 2       | 3     | 3    | 5    | 2     | 4    | 3      | 2     | 25          | -101      | 10179  | Seleccionado |
|           | 15 | Mala conexión fallo humano                | 21     | 26      | 22    | 27   | 26   | 27    | 25   | 27     | 24    | 225         | 99.1      | 9823   |              |
|           | 16 | Bobina corrida o deformada                | 4      | 6       | 8     | 7    | 6    | 7     | 8    | 9      | 9     | 64          | -61.9     | 3830.2 | Seleccionado |
|           | 17 | Calibre Inadecuado al bajante de tierra   | 11     | 9       | 18    | 12   | 14   | 17    | 11   | 8      | 11    | 111         | -14.9     | 221.68 | Seleccionado |
|           | 18 | Fuera de norma no cumple parámetros       | 3      | 1       | 2     | 2    | 1    | 1     | 2    | 2      | 1     | 15          | -111      | 12296  | Seleccionado |
|           | 19 | Desajustados el drop out                  | 26     | 25      | 27    | 24   | 21   | 23    | 22   | 24     | 26    | 218         | 92.1      | 8484.5 |              |
|           | 20 | Bushing primario partido o rota           | 12     | 16      | 12    | 13   | 12   | 14    | 17   | 13     | 16    | 125         | -0.89     | 0.7901 | Seleccionado |
|           | 21 | Falso contacto parrilla del transformador | 23     | 21      | 23    | 25   | 24   | 24    | 26   | 25     | 25    | 216         | 90.1      | 8120   |              |





| Bushing secundario dañado o roto Corrosión tanque o parte externa Falso contacto bajante a tierra Válvula de sobrepresión rota Aceite en mal estado fuera de parámetros  Fórmulas Σ Ai= Σ En | 15<br>19<br>14<br>27<br>8                                  | 14<br>17<br>13<br>27<br>10                                     | 17<br>13<br>15<br>26<br>7                                                                                          | 16<br>14<br>20<br>26                                                                                                                                                                    | 15<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13<br>10<br>16                                                                                                                                                                                        | 15<br>12<br>13                                                                                                                                                                                           | 15<br>16<br>14                                                                                                                                                                                               | 13<br>14<br>20                                                                                                                                                                                                                      | 129<br>130                                                                                                                                                                                                              | 3.11<br>4.11                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Falso contacto bajante a tierra Válvula de sobrepresión rota Aceite en mal estado fuera de parámetros  Fórmulas                                                                              | 14<br>27                                                   | 13<br>27                                                       | 15<br>26                                                                                                           | 20                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | 16.901                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                           |
| Válvula de sobrepresión rota  Aceite en mal estado fuera de parámetros  Fórmulas                                                                                                             | 27                                                         | 27                                                             | 26                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       | 13                                                                                                                                                                                                       | 14                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| Aceite en mal estado fuera de parámetros  Fórmulas                                                                                                                                           |                                                            |                                                                |                                                                                                                    | 26                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                  | 143                                                                                                                                                                                                                     | 17.1                                                                                                                                                                                                                                                                                                                                                             | 292.79                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |
| Fórmulas                                                                                                                                                                                     | 8                                                          | 10                                                             | 7                                                                                                                  | 27 27 26 26 25 26 2                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       | 27                                                                                                                                                                                                       | 26                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                  | 237                                                                                                                                                                                                                     | 111                                                                                                                                                                                                                                                                                                                                                              | 12346                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                              |                                                            |                                                                | - /                                                                                                                | 9                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                     | 7                                                                                                                                                                                                        | 6                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                   | 68                                                                                                                                                                                                                      | -57.9                                                                                                                                                                                                                                                                                                                                                            | 3351.1                                                                                                                                                                                                                                                                                                                                   | Seleccionado                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                              |                                                            |                                                                |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       | ΣΣ                                                                                                                                                                                                       | Δi                                                                                                                                                                                                           | 3399                                                                                                                                                                                                                                |                                                                                                                                                                                                                         | 124397                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| 7 Ai= 7 En                                                                                                                                                                                   |                                                            |                                                                |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                             |
| Z AI- Z EII                                                                                                                                                                                  |                                                            |                                                                |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| Δ=Σ Ai -T                                                                                                                                                                                    | Si w >=0,5- Hay                                            |                                                                |                                                                                                                    |                                                                                                                                                                                         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       | 1                                                                                                                                                                                                        | 25.8889                                                                                                                                                                                                      |                                                                                                                                                                                                                                     | Las variables más                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| T=ΣΣ Ai / k                                                                                                                                                                                  |                                                            |                                                                |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         | importantes serán los que                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| w= 12 Σ Δ^2 / (m^2(k^3-k))                                                                                                                                                                   | ·                                                          |                                                                |                                                                                                                    |                                                                                                                                                                                         | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       | 0                                                                                                                                                                                                        | .937583                                                                                                                                                                                                      |                                                                                                                                                                                                                                     | cumplan que:                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| , , , , ,                                                                                                                                                                                    |                                                            |                                                                |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         | ZAI < I                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| Términos                                                                                                                                                                                     | criterio de los expertos                                   |                                                                |                                                                                                                    |                                                                                                                                                                                         | Hay concordancia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              | а                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| k- Número de características                                                                                                                                                                 | 27                                                         |                                                                |                                                                                                                    | •                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       | Mátada da Kandall                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| m- Número de expertos                                                                                                                                                                        | 9                                                          | 1                                                              |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                              | Met                                                                                                                                                                                                                                 | odo de Ken                                                                                                                                                                                                              | uaii                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |
| w- Coeficiente de concordancia                                                                                                                                                               |                                                            | 250<br>200<br>150<br>100<br>1 2 3 4 5                          |                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       | 5 6 7 8 9 10 11 12 13 14 15 16 13                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | 18 19 20 21 22 23                                                                                                                                                                                                                                                                                                                        | 24 25 26 27                                                                                                                                                                                                                                                                 |
| k<br>n                                                                                                                                                                                       | Términos - Número de características n- Número de expertos | Terminos  - Número de características  - Número de expertos  9 | Concord de concord de concord de concord de concord de concord criteria Términos  - Número de características 27 9 | Concordancia de los e  y= 12 Σ Δ^2 / (m^2(k^3-k))  Si w < 0,5 concorda criterio de I  Términos  - Número de características - Número de expertos  y- Coeficiente de concordancia  27  1 | Concordancia en e de los expersos Si w < 0,5- No concordancia en e de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos Si w < 0,5- No concordancia criterio de los expersos S | Concordancia en el cri de los expertos  Si w < 0,5- No hay concordancia en el cri riterio de los expertos  Términos  Número de características  1- Número de expertos  7- Coeficiente de concordancia | Concordancia en el criterio de los expertos  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  - Número de características  - Número de expertos  7- Coeficiente de concordancia | Concordancia en el criterio de los expertos  W  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  - Número de características  n- Número de expertos  7- Coeficiente de concordancia | Concordancia en el criterio de los expertos  y= 12 Σ Δ^2 / (m^2(k^3-k))  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  - Número de características - Número de expertos  y- Coeficiente de concordancia | Concordancia en el criterio de los expertos  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  Número de características  N- Número de expertos  Concordancia en el criterio de los expertos  W | Concordancia en el criterio de los expertos  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  Número de características  Número de expertos  Coeficiente de concordancia  Coeficiente de concordancia  Concordancia en el criterio de los expertos  W 0.937583  Hay concordanci  Método de Ken  150  1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 | Concordancia en el criterio de los expertos  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  Número de características  Número de expertos  P- Coeficiente de concordancia  Concordancia en el criterio de los expertos  W 0.937583  Hay concordancia  Método de Kendall  150  100  150  100  100  100  100  1 | Concordancia en el criterio de los expertos  Si w < 0,5- No hay concordancia en el criterio de los expertos  Términos  Número de características  Número de expertos  P- Coeficiente de concordancia  Términos  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |





## Anexo 13: Hoja de Vida propuesta para la Empresa Eléctrica Cienfuegos.

|         |                             |                  |                        | H    | OJA DE   | VIDA  |          |      |             |        |
|---------|-----------------------------|------------------|------------------------|------|----------|-------|----------|------|-------------|--------|
| Equipos | Mtto<br>correctivo          | función del '    |                        |      |          |       | Modos de | Modo | Componente  | Fecha  |
| Equipos | TFS (horas)                 | Falla<br>crítica | Falla<br>No<br>crítica | Cero | Parcial  | Total | falla    |      | gen ponente | . Cond |
|         |                             |                  |                        |      |          |       |          |      |             |        |
|         |                             |                  |                        |      |          |       |          |      |             |        |
|         |                             |                  |                        |      |          |       |          |      |             |        |
| Familia | Mtto por<br>Diagnóstic<br>o | _                | icto sobre<br>peración |      | Modos de |       |          |      |             |        |
| Equipos | TES (horas)                 | Falla<br>crítica | Falla<br>No<br>crítica | Cero | Parcial  | Total | falla    | Modo | Componente  | Fecha  |
|         |                             |                  |                        |      |          |       |          |      |             |        |
|         |                             |                  |                        |      |          |       |          |      |             |        |
|         |                             |                  |                        |      |          |       |          |      |             |        |
|         |                             |                  |                        |      |          |       |          |      |             |        |

<sup>(1)</sup> Impacto de la falla sobre la operación. Marcar con una x (*Cero*) si la falla no provoca la parada de una Central Eléctrica ni limitación en operación de las redes eléctricas principales, (*Parcial*) si la falla provoca la parada de una parte del SEN y limitaciones de funcionamiento Centrales eléctricas , (*Total*) si la falla provoca parada Centrales eléctricas y grandes afectaciones en las redes eléctricas)

<sup>(2)</sup> Efecto sobre la función de la unidad del equipo. Marcar con una x (*Falla crítica*) si la falla origina el cese inmediato de la capacidad de realizar su función, (*Falla No crítica*) si la falla no causa la interrupción inmediata de la capacidad para cumplir la función requerida).





# Anexo 14 Transformadores fallados por prueba de medición del taller 2001 al 2011.

|                     | Transfo | rmadore | s en rede | es primar | ias falla | ados prov | vincia Cie | nfuegos |      |      |      | Prom  |
|---------------------|---------|---------|-----------|-----------|-----------|-----------|------------|---------|------|------|------|-------|
| Área Administrativa | 2001    | 2002    | 2003      | 2004      | 2005      | 2006      | 2007       | 2008    | 2009 | 2010 | 2011 | anual |
| UBEM Abreus         | 36      | 28      | 24        | 13        | 35        | 26        | 35         | 35      | 20   | 22   | 20   | 27    |
| UBEM Aguada         | 26      | 29      | 22        | 20        | 22        | 28        | 34         | 18      | 27   | 12   | 16   | 23    |
| UBE CEN             | 9       | 8       | 7         | 9         | 3         | 15        | 7          | 14      | 10   | 13   | 7    | 9     |
| UBEM Cienfuegos     | 91      | 69      | 67        | 53        | 75        | 108       | 80         | 97      | 83   | 67   | 111  | 82    |
| UBEM Cruces         | 19      | 19      | 20        | 6         | 11        | 32        | 13         | 11      | 8    | 8    | 16   | 15    |
| UBEM Cumanayagua    | 34      | 14      | 23        | 13        | 21        | 45        | 40         | 22      | 34   | 13   | 17   | 25    |
| UBEM Lajas          | 8       | 20      | 14        | 8         | 14        | 19        | 3          | 17      | 14   | 11   | 12   | 13    |
| UBEM Palmira        | 24      | 16      | 14        | 12        | 27        | 24        | 17         | 17      | 18   | 7    | 13   | 17    |
| UBEM Rodas          | 36      | 26      | 23        | 30        | 26        | 36        | 34         | 32      | 27   | 29   | 39   | 31    |
| Provincia           | 283     | 229     | 214       | 164       | 234       | 333       | 263        | 263     | 241  | 182  | 251  | 242   |

|                     | Transforn | nadores | en redes | primaria | as fallad | os durant | e el manto | enimient | <u>o</u> |      |      | Prom  |
|---------------------|-----------|---------|----------|----------|-----------|-----------|------------|----------|----------|------|------|-------|
| Área Administrativa | 2001      | 2002    | 2003     | 2004     | 2005      | 2006      | 2007       | 2008     | 2009     | 2010 | 2011 | anual |
| UBEM Abreus         | 4         | 2       | 7        | 2        | 6         | 10        | 8          | 5        | 3        | 4    | 4    | 5     |
| UBEM Aguada         | 10        | 6       | 8        | 6        | 5         | 12        | 6          | 7        | 6        | 3    | 7    | 7     |
| UBE CEN             | 1         | 0       | 0        | 2        | 0         | 3         | 0          | 2        | 5        | 4    | 5    | 2     |
| UBEM Cienfuegos     | 15        | 5       | 6        | 5        | 19        | 29        | 19         | 22       | 6        | 12   | 9    | 13    |
| UBEM Cruces         | 8         | 4       | 1        | 1        | 5         | 13        | 6          | 3        | 0        | 4    | 0    | 4     |
| UBEM Cumanayagua    | 13        | 3       | 7        | 0        | 2         | 14        | 7          | 7        | 3        | 5    | 0    | 5     |
| UBEM Lajas          | 4         | 5       | 0        | 1        | 5         | 9         | 1          | 4        | 3        | 3    | 4    | 3     |
| UBEM Palmira        | 2         | 2       | 3        | 3        | 3         | 12        | 3          | 1        | 5        | 1    | 3    | 3     |
| UBEM Rodas          | 14        | 2       | 2        | 3        | 1         | 10        | 9          | 3        | 0        | 5    | 6    | 5     |
| Provincia           | 71        | 29      | 34       | 23       | 46        | 112       | 59         | 54       | 31       | 41   | 38   | 49    |





|                     | Transform | nadores e | n redes | primarias | s fallado | s en oper | ación (int | errupcio | nes) |      |      | Prom  |
|---------------------|-----------|-----------|---------|-----------|-----------|-----------|------------|----------|------|------|------|-------|
| Área Administrativa | 2001      | 2002      | 2003    | 2004      | 2005      | 2006      | 2007       | 2008     | 2009 | 2010 | 2011 | anual |
| UBEM Abreus         | 32        | 26        | 17      | 11        | 29        | 16        | 27         | 30       | 17   | 18   | 16   | 22    |
| UBEM Aguada         | 16        | 23        | 14      | 14        | 17        | 16        | 28         | 11       | 21   | 9    | 9    | 16    |
| UBE CEN             | 8         | 8         | 7       | 7         | 3         | 12        | 7          | 12       | 5    | 9    | 2    | 7     |
| UBEM Cfgos          | 76        | 64        | 61      | 48        | 56        | 79        | 61         | 75       | 77   | 55   | 102  | 68    |
| UBEM Cruces         | 11        | 15        | 19      | 5         | 6         | 19        | 7          | 8        | 8    | 4    | 16   | 11    |
| UBEM Cumanayagua    | 11        | 11        | 16      | 13        | 19        | 31        | 33         | 15       | 31   | 8    | 17   | 19    |
| UBEM Lajas          | 4         | 15        | 14      | 7         | 9         | 10        | 2          | 13       | 11   | 8    | 8    | 9     |
| UBEM Palmira        | 22        | 14        | 11      | 9         | 24        | 12        | 14         | 16       | 13   | 6    | 10   | 14    |
| UBEM Rodas          | 22        | 24        | 21      | 27        | 25        | 26        | 25         | 29       | 27   | 24   | 33   | 26    |
| Provincia           | 202       | 200       | 180     | 141       | 188       | 221       | 204        | 209      | 210  | 141  | 213  | 192   |





# Anexo 15 Resumen de las fallas de transformadores por su potencia instalada (kVA)

| UBEM   | Año  | 5 | 10 | 15 | 20 | 25 | 37.5 | 50 | 63 | 75 | 100 | 160 | 167 | 180 | 250 o<br>mas | No Fallas |
|--------|------|---|----|----|----|----|------|----|----|----|-----|-----|-----|-----|--------------|-----------|
|        | 2001 | 3 | 13 | 7  |    | 6  | 1    | 4  |    |    |     | 2   |     |     |              | 36        |
|        | 2002 | 3 | 5  | 5  |    | 4  | 2    | 8  |    |    | 2   |     |     |     |              | 29        |
|        | 2003 | 1 | 4  | 7  |    | 4  | 8    | 3  |    | 1  |     |     |     |     |              | 28        |
|        | 2004 |   | 5  | 1  |    | 3  | 2    | 2  |    |    |     |     |     |     |              | 13        |
|        | 2005 | 3 | 10 | 7  |    | 7  | 2    | 2  |    | 1  | 2   | 2   | 1   |     | 1            | 38        |
| Abreus | 2006 |   | 2  | 6  |    | 5  | 4    | 6  |    | 1  | 2   |     |     |     |              | 26        |
|        | 2007 | 1 | 5  | 5  | 1  | 5  | 4    | 3  |    |    | 3   |     | 1   |     | 5            | 33        |
|        | 2008 | 1 | 3  | 8  |    | 5  | 4    | 6  |    |    | 4   | 2   |     |     |              | 33        |
|        | 2009 | 2 | 1  | 2  |    | 2  | 2    | 9  |    |    | 2   |     |     |     |              | 20        |
|        | 2010 |   | 2  | 6  |    | 5  | 3    | 3  |    | 1  | 1   | 1   |     |     |              | 22        |
|        | 2011 | 1 | 3  | 2  |    | 2  | 8    | 4  |    | 1  |     |     |     |     |              | 21        |
|        | 2001 | 5 | 5  | 4  |    | 7  | 4    | 6  |    |    |     |     |     |     |              | 31        |
|        | 2002 | 4 | 3  | 6  | 1  | 6  | 2    | 8  |    | 1  |     | 1   |     |     |              | 32        |
|        | 2003 | 3 | 5  | 4  |    | 9  | 7    | 4  |    |    |     |     |     |     |              | 32        |
|        | 2004 |   | 5  | 2  |    | 7  | 1    | 3  |    |    |     |     |     |     |              | 18        |
|        | 2005 | 2 | 7  | 3  |    | 7  | 1    | 5  |    |    |     |     |     |     |              | 25        |
| Aguada | 2006 | 1 | 1  | 4  |    | 12 | 1    | 8  |    |    | 1   |     |     |     |              | 28        |
|        | 2007 | 1 | 2  | 5  |    | 13 | 4    | 6  | 1  |    |     |     |     |     |              | 32        |
|        | 2008 |   | 1  | 5  |    | 10 | 1    | 2  |    |    |     |     |     |     |              | 19        |
|        | 2009 | 1 | 2  | 3  |    | 7  | 9    | 2  |    |    |     |     |     |     |              | 24        |
|        | 2010 |   | 1  | 4  |    | 3  | 2    | 2  |    |    |     |     |     |     |              | 12        |
|        | 2011 |   | 1  | 2  |    | 1  | 9    | 3  |    |    |     |     |     |     |              | 16        |





| UBEM       | Año  | 5 | 10 | 15 | 20 | 25 | 37.5 | 50 | 63 | 75 | 100 | 160 | 167 | 180 | 250 o<br>mas | No Fallas |
|------------|------|---|----|----|----|----|------|----|----|----|-----|-----|-----|-----|--------------|-----------|
|            | 2001 |   | 3  | 1  |    |    | 3    | 2  |    |    |     |     |     |     |              | 9         |
|            | 2002 | 1 |    | 2  |    | 1  | 1    | 2  |    |    |     |     | 1   |     |              | 8         |
|            | 2003 | 1 |    | 1  |    |    | 1    | 3  |    |    | 1   |     |     |     |              | 7         |
|            | 2004 |   |    | 1  |    | 1  | 2    | 3  |    |    | 1   |     | 1   |     |              | 9         |
|            | 2005 |   |    |    |    |    | 1    | 2  |    |    |     |     |     |     |              | 3         |
| CEN        | 2006 | 1 |    | 2  |    | 2  | 1    | 6  | 1  |    |     |     | 1   |     |              | 14        |
|            | 2007 |   | 2  | 1  |    | 1  | 1    | 1  |    |    |     |     |     |     | 1            | 7         |
|            | 2008 |   | 1  | 4  |    | 1  | 2    | 2  | 1  | 1  | 1   | 1   |     |     |              | 14        |
|            | 2009 |   | 1  | 4  |    | 1  | 1    | 2  |    |    |     |     |     |     |              | 9         |
|            | 2010 | 1 | 2  | 1  |    | 2  | 1    | 5  |    |    | 1   |     |     |     |              | 13        |
|            | 2011 |   | 1  |    |    | 2  | 3    | 2  |    | 1  |     |     |     |     |              | 9         |
|            | 2001 | 9 | 13 | 11 |    | 12 | 10   | 14 |    | 2  | 2   |     |     |     |              | 73        |
|            | 2002 | 8 | 11 | 12 |    | 9  | 6    | 13 |    | 3  |     |     |     |     | 2            | 64        |
|            | 2003 | 5 | 13 | 8  |    | 14 | 9    | 8  |    | 2  | 1   |     | 2   |     |              | 62        |
|            | 2004 | 3 | 9  | 8  | 1  | 13 | 6    | 10 |    | 1  | 2   |     |     |     |              | 53        |
|            | 2005 | 3 | 11 | 18 |    | 10 | 14   | 9  |    | 2  | 3   |     |     |     |              | 70        |
| Cienfuegos | 2006 | 7 | 14 | 13 | 3  | 12 | 9    | 28 | 1  |    | 1   |     |     |     |              | 88        |
|            | 2007 | 3 | 7  | 13 |    | 12 | 9    | 10 | 1  | 4  | 1   | 1   |     |     |              | 61        |
|            | 2008 | 1 | 7  | 13 |    | 10 | 12   | 15 |    | 1  | 2   |     |     |     | 1            | 62        |
|            | 2009 | 2 | 9  | 15 |    | 16 | 14   | 10 |    | 1  |     |     | 1   |     |              | 68        |
|            | 2010 |   | 5  | 8  |    | 8  | 8    | 14 |    | 1  | 1   |     |     |     |              | 45        |
|            | 2011 | 3 | 10 | 21 |    | 24 | 18   | 30 |    | 1  | 1   |     | 1   |     |              | 109       |





| UBEM        | Año  | 5 | 10 | 15 | 20 | 25 | 37.5 | 50 | 63 | 75 | 100 | 160 | 167 | 180 | 250 o<br>mas | No Fallas |
|-------------|------|---|----|----|----|----|------|----|----|----|-----|-----|-----|-----|--------------|-----------|
|             | 2001 | 3 | 4  | 4  |    | 8  | 5    |    |    |    |     |     |     |     |              | 24        |
|             | 2002 | 1 | 6  | 3  |    | 5  | 2    | 3  | 1  |    |     |     |     |     |              | 21        |
|             | 2003 | 5 | 5  | 5  |    | 6  | 1    | 3  |    | 1  | 1   |     |     |     |              | 27        |
|             | 2004 | 1 | 2  | 1  |    | 3  | 3    |    |    |    |     |     |     |     |              | 10        |
|             | 2005 |   | 1  | 1  |    | 4  | 1    | 3  |    |    |     | 1   |     |     |              | 11        |
| Cruces      | 2006 |   | 7  | 6  |    | 12 | 1    | 6  |    |    |     |     |     |     |              | 32        |
|             | 2007 |   | 3  | 2  |    | 2  | 1    | 4  |    | 1  |     |     |     |     |              | 13        |
|             | 2008 | 1 | 3  | 1  |    | 2  | 1    | 2  |    |    |     |     |     |     |              | 10        |
|             | 2009 |   | 1  | 1  |    | 3  | 3    |    |    |    |     |     |     |     |              | 8         |
|             | 2010 |   | 1  | 3  |    | 2  | 1    |    |    |    | 1   |     |     |     |              | 8         |
|             | 2011 |   | 1  | 4  |    | 3  | 3    | 3  |    |    |     |     |     |     |              | 14        |
|             | 2001 | 6 | 11 | 4  |    | 7  | 4    | 1  |    |    | 1   |     |     |     |              | 34        |
|             | 2002 | 4 | 4  | 1  |    | 1  |      | 2  |    |    |     |     |     |     |              | 12        |
|             | 2003 | 2 | 8  | 4  | 1  | 5  | 1    | 1  | 1  |    | 1   |     |     |     |              | 24        |
|             | 2004 | 2 | 6  | 5  |    | 1  | 3    | 1  |    |    | 1   |     |     |     |              | 19        |
|             | 2005 | 2 | 3  | 2  |    | 2  | 1    | 2  |    | 1  |     | 2   |     |     |              | 15        |
| Cumanayagua | 2006 | 9 | 16 | 6  |    | 5  | 7    | 2  |    |    |     |     |     |     |              | 45        |
|             | 2007 | 5 | 16 | 5  |    | 1  | 6    | 3  |    |    | 1   |     |     |     |              | 37        |
|             | 2008 | 1 | 8  | 3  |    | 4  | 1    | 5  |    |    |     |     |     |     |              | 22        |
|             | 2009 | 2 | 7  | 9  | 1  | 6  | 3    | 3  |    |    | 1   |     |     |     |              | 32        |
|             | 2010 |   | 3  | 5  |    | 3  |      | 2  |    |    |     |     |     |     |              | 13        |
|             | 2011 | 3 | 5  | 1  |    | 4  | 2    | 2  |    |    |     |     |     |     |              | 17        |





| UBEM    | Año  | 5 | 10 | 15 | 20 | 25 | 37.5 | 50 | 63 | 75 | 100 | 160 | 167 | 180 | 250 o<br>mas | No Fallas |
|---------|------|---|----|----|----|----|------|----|----|----|-----|-----|-----|-----|--------------|-----------|
|         | 2001 | 3 | 1  | 1  |    | 4  |      | 1  |    |    | 1   |     |     |     |              | 11        |
|         | 2002 | 1 | 6  | 5  |    | 6  | 1    | 1  |    |    |     |     |     |     |              | 20        |
|         | 2003 | 2 | 4  | 1  |    | 3  | 3    | 1  |    |    |     |     |     |     |              | 14        |
|         | 2004 |   | 1  | 1  | 1  | 3  |      | 3  |    |    |     |     |     |     |              | 9         |
|         | 2005 | 2 | 2  | 3  |    | 2  | 1    | 2  |    |    |     |     |     |     |              | 12        |
| Lajas   | 2006 |   | 6  | 2  |    | 6  | 1    | 4  |    |    |     |     |     |     |              | 19        |
|         | 2007 |   |    | 1  |    | 1  |      |    |    |    |     |     |     |     |              | 2         |
|         | 2008 |   | 1  | 3  |    | 5  | 2    | 5  |    |    | 1   |     |     |     |              | 17        |
|         | 2009 |   | 3  | 5  |    | 1  | 2    |    |    |    |     |     |     |     |              | 11        |
|         | 2010 |   | 1  |    |    | 4  | 3    | 4  |    | 1  |     |     |     |     |              | 13        |
|         | 2011 |   | 1  | 2  |    | 4  | 3    | 1  |    |    |     |     |     |     |              | 11        |
|         | 2001 | 3 | 6  | 8  | 2  | 6  | 2    | 4  |    |    |     | 1   |     |     |              | 32        |
|         | 2002 |   | 6  | 2  |    | 5  | 4    |    |    |    |     |     |     |     |              | 17        |
|         | 2003 | 2 | 1  | 2  |    | 2  | 3    | 2  | 1  | 1  |     |     |     |     |              | 14        |
|         | 2004 | 1 | 6  | 2  |    | 3  |      | 2  |    |    |     |     |     |     |              | 14        |
|         | 2005 | 5 | 5  | 2  |    | 8  | 1    | 4  |    | 1  |     |     |     |     | 1            | 26        |
| Palmira | 2006 | 1 | 5  | 2  | 1  | 7  | 1    | 7  |    |    |     |     |     |     |              | 24        |
|         | 2007 | 1 | 3  | 7  |    | 1  | 2    | 1  |    | 2  |     |     |     |     |              | 17        |
|         | 2008 | 2 | 3  | 3  |    | 2  | 5    | 2  |    |    |     |     |     |     |              | 17        |
|         | 2009 | 3 | 4  | 1  |    | 1  | 2    | 5  |    |    | 2   |     |     |     |              | 18        |
|         | 2010 |   | 1  |    |    | 6  |      | 1  |    |    |     |     |     |     |              | 8         |
|         | 2011 |   |    | 1  |    | 3  | 2    | 8  |    |    |     |     |     |     |              | 14        |





| UBEM    | Año  | 5  | 10 | 15 | 20 | 25 | 37.5 | 50 | 63 | 75 | 100 | 160 | 167 | 180 | 250 o<br>mas | No Fallas |
|---------|------|----|----|----|----|----|------|----|----|----|-----|-----|-----|-----|--------------|-----------|
|         | 2001 | 7  | 10 | 9  | 1  | 6  | 1    | 9  |    |    |     |     |     | 1   |              | 44        |
|         | 2002 | 1  | 6  | 4  |    | 7  | 5    | 3  |    | 1  |     |     |     |     |              | 27        |
|         | 2003 |    | 5  | 3  |    | 5  | 1    | 6  | 1  | 1  | 1   |     |     |     |              | 23        |
|         | 2004 | 2  | 7  | 6  | 1  | 9  | 2    | 3  |    |    | 1   |     |     |     |              | 31        |
|         | 2005 | 3  | 7  | 3  | 1  | 9  | 1    | 3  |    |    |     |     |     |     |              | 27        |
| Rodas   | 2006 | 2  | 6  | 6  |    | 9  | 6    | 4  |    | 1  |     |     |     |     |              | 34        |
|         | 2007 | 1  | 5  | 4  |    | 8  | 6    | 11 |    |    |     |     |     |     |              | 35        |
|         | 2008 | 2  | 4  | 4  |    | 7  | 4    | 12 |    |    |     |     |     |     |              | 33        |
|         | 2009 |    | 6  | 2  |    | 9  | 3    | 4  |    | 1  |     |     | 1   |     |              | 26        |
|         | 2010 | 1  |    | 5  |    | 10 | 8    | 6  |    |    |     |     |     |     |              | 30        |
|         | 2011 | 2  | 3  | 8  |    | 11 | 7    | 8  |    |    | 1   |     | 1   |     |              | 41        |
|         | 2001 | 39 | 69 | 49 | 3  | 56 | 30   | 41 | 0  | 2  | 4   | 3   | 0   | 1   | 0            | 297       |
|         | 2002 | 23 | 47 | 40 | 1  | 44 | 23   | 40 | 1  | 5  | 2   | 1   | 1   | 0   | 2            | 230       |
|         | 2003 | 21 | 45 | 35 | 1  | 48 | 34   | 30 | 3  | 6  | 5   | 0   | 2   | 0   | 0            | 230       |
|         | 2004 | 9  | 39 | 29 | 3  | 43 | 19   | 27 | 0  | 1  | 5   | 0   | 1   | 0   | 0            | 176       |
|         | 2005 | 20 | 46 | 39 | 1  | 49 | 23   | 32 | 0  | 5  | 5   | 5   | 1   | 0   | 2            | 228       |
| Empresa | 2006 | 21 | 57 | 47 | 4  | 70 | 31   | 71 | 2  | 2  | 4   | 0   | 1   | 0   | 0            | 310       |
|         | 2007 | 12 | 43 | 43 | 1  | 44 | 33   | 39 | 2  | 7  | 5   | 1   | 1   | 0   | 6            | 237       |
|         | 2008 | 8  | 31 | 44 | 0  | 46 | 32   | 51 | 1  | 2  | 8   | 3   | 0   | 0   | 1            | 227       |
|         | 2009 | 10 | 34 | 42 | 1  | 42 | 39   | 35 | 0  | 2  | 5   | 0   | 2   | 0   | 0            | 212       |
|         | 2010 | 2  | 16 | 32 | 0  | 43 | 26   | 37 | 0  | 3  | 4   | 1   | 0   | 0   | 0            | 164       |
|         | 2011 | 9  | 25 | 41 | 0  | 54 | 55   | 61 | 0  | 3  | 2   | 0   | 2   | 0   | 0            | 252       |





# Anexo 16 Transformadores en redes primarias y su índice de fallas por pruebas del taller 2001 al 2011

|                     | <u>Can</u> | tidad de t | transforn | nadores | instalad | os en las | redes elé | ctricas |      |      |      |
|---------------------|------------|------------|-----------|---------|----------|-----------|-----------|---------|------|------|------|
| Área Administrativa | 2001       | 2002       | 2003      | 2004    | 2005     | 2006      | 2007      | 2008    | 2009 | 2010 | 2011 |
| UBEM Abreus         | 403        | 408        | 412       | 421     | 422      | 431       | 464       | 487     | 503  | 522  | 553  |
| UBEM Aguada         | 427        | 435        | 442       | 443     | 446      | 467       | 502       | 530     | 536  | 539  | 602  |
| UBE CEN             | 191        | 194        | 197       | 197     | 208      | 214       | 229       | 241     | 247  | 220  | 226  |
| UBEM Cfgos          | 1773       | 1780       | 1787      | 1797    | 1814     | 1910      | 2068      | 2101    | 2148 | 2240 | 2238 |
| UBEM Cruces         | 375        | 381        | 384       | 412     | 420      | 415       | 441       | 510     | 529  | 540  | 572  |
| UBEM Cumanayagua    | 756        | 767        | 772       | 826     | 835      | 865       | 978       | 995     | 1012 | 1025 | 1059 |
| UBEM Lajas          | 233        | 238        | 240       | 267     | 264      | 278       | 285       | 339     | 349  | 347  | 371  |
| UBEM Palmira        | 422        | 428        | 431       | 431     | 432      | 441       | 497       | 531     | 535  | 535  | 575  |
| UBEM Rodas          | 417        | 420        | 424       | 424     | 425      | 430       | 442       | 455     | 495  | 564  | 539  |
| Provincia           | 4997       | 5051       | 5089      | 5218    | 5266     | 5451      | 5906      | 6189    | 6354 | 6532 | 6735 |

|                     |      |      | Índice de | e fallos d | e transfo | ormadore | s de distri | bución |      |      |      |      |
|---------------------|------|------|-----------|------------|-----------|----------|-------------|--------|------|------|------|------|
| Área Administrativa | 2001 | 2002 | 2003      | 2004       | 2005      | 2006     | 2007        | 2008   | 2009 | 2010 | 2011 | Prom |
| UBEM Abreus         | 8.93 | 6.86 | 5.82      | 3.09       | 8.29      | 6.03     | 7.54        | 7.19   | 3.98 | 4.22 | 3.62 | 5.53 |
| UBEM Aguada         | 6.09 | 6.67 | 4.98      | 4.52       | 4.93      | 5.99     | 6.77        | 3.40   | 5.04 | 2.23 | 2.66 | 4.50 |
| UBE CEN             | 4.71 | 4.12 | 3.55      | 4.57       | 1.44      | 7.00     | 3.06        | 5.81   | 4.05 | 5.91 | 3.10 | 4.28 |
| UBEM Cienfuegos     | 5.13 | 3.88 | 3.41      | 2.67       | 3.09      | 4.14     | 2.95        | 3.57   | 3.58 | 2.46 | 4.56 | 3.38 |
| UBEM Cruces         | 5.07 | 4.99 | 4.95      | 1.21       | 1.43      | 4.58     | 1.59        | 1.57   | 1.51 | 0.74 | 2.80 | 2.26 |
| UBEM Cumanayagua    | 4.50 | 1.82 | 2.07      | 1.57       | 2.28      | 3.58     | 3.37        | 1.51   | 3.06 | 0.78 | 1.60 | 2.20 |
| UBEM Lajas          | 3.43 | 8.40 | 5.83      | 2.62       | 3.41      | 3.60     | 0.70        | 3.84   | 3.15 | 2.30 | 2.16 | 3.07 |
| UBEM Palmira        | 5.69 | 3.74 | 2.55      | 2.09       | 5.56      | 2.72     | 2.82        | 3.01   | 2.43 | 1.12 | 1.74 | 2.67 |
| UBEM Rodas          | 8.63 | 6.19 | 4.95      | 6.37       | 5.88      | 6.05     | 5.66        | 6.37   | 5.45 | 4.26 | 6.12 | 5.00 |
| Provincia           | 5.66 | 4.53 | 3.54      | 2.702      | 3.57      | 4.05     | 3.45        | 3.38   | 3.30 | 2.16 | 3.16 | 3.26 |





# Anexo 17 Relación de circuitos UBEM Cienfuegos con los transformadores instalados y su capacidad kVA

| Código          | transform /      |   |    |     |     |     |    |     | Car   | ntida | des por | Capa | cidad k | VA  |     |     |     |     |     |      |     | \/al+  -\//                |
|-----------------|------------------|---|----|-----|-----|-----|----|-----|-------|-------|---------|------|---------|-----|-----|-----|-----|-----|-----|------|-----|----------------------------|
| del<br>Circuito | kVA<br>instalado | 3 | 5  | 7,5 | 10  | 15  | 20 | 25  | 37.5  | 40    | 50      | 63   | 75      | 100 | 160 | 167 | 225 | 250 | 300 | 333  | 400 | Volt kV/<br>longitud<br>km |
| FJ 1            | 19               |   |    |     | 4   | 1   |    | 2   | 6     |       | 4       |      | 1       | 1   |     |     |     |     |     |      |     | 4,33                       |
| LJ T            | 705 kVA          |   |    |     | 40  | 15  |    | 50  | 225   |       | 200     |      | 75      | 100 |     |     |     |     |     |      |     | 8.109                      |
| FJ 2            | 87               |   | 2  |     | 10  | 11  |    | 15  | 7     |       | 29      |      | 4       | 7   |     | 2   |     |     |     |      |     | 4,33                       |
| 132             | 3696,5 kVA       |   | 10 |     | 100 | 165 |    | 375 | 262,5 |       | 1450    |      | 300     | 700 |     | 334 |     |     |     |      |     | 2.577                      |
| FJ 3            | 64               |   | 4  |     | 2   | 7   |    | 9   | 12    |       | 25      |      | 1       | 4   |     |     |     |     |     |      |     | 4,33kV                     |
| 133             | 2545 kVA         |   | 20 |     | 20  | 105 |    | 225 | 450   |       | 1250    |      | 75      | 400 |     |     |     |     |     |      |     | 8.714                      |
| FJ 4            | 21               |   | 1  |     |     | 4   | 1  | 3   | 3     |       | 4       |      | 3       | 1   |     | 1   |     |     |     |      |     | 4,33kV                     |
| 1 J 4           | 964,5 kVA        |   | 5  |     |     | 60  | 20 | 75  | 112,5 |       | 200     |      | 225     | 100 |     | 167 |     |     |     |      |     | 2.686                      |
| FJ 5            | 57               |   |    |     | 2   | 16  |    | 5   | 5     |       | 8       |      | 7       | 9   |     | 5   |     |     |     |      |     | 4,33kV                     |
| 133             | 3232,5 kVA       |   |    |     | 20  | 240 |    | 125 | 187,5 |       | 400     |      | 525     | 900 |     | 835 |     |     |     |      |     | 2,398                      |
| FK 6            | 104              |   | 2  | 1   | 19  | 16  |    | 24  | 16    |       | 14      |      | 5       |     |     | 2   |     |     |     | 5    |     | 13,8kV                     |
| TKU             | 4721,5 kVA       |   | 10 | 7,5 | 190 | 240 |    | 600 | 600   |       | 700     |      | 375     |     |     | 334 |     |     |     | 1665 |     | 33,88                      |
| FJ 9            | 46               |   | 4  |     | 6   | 6   |    | 9   | 2     |       | 10      |      | 3       | 3   | 2   |     |     |     |     |      | 1   | 4,33kV                     |
| 13.9            | 2215 kVA         |   | 20 |     | 60  | 90  |    | 225 | 75    |       | 500     |      | 225     | 300 | 320 |     |     |     |     |      | 400 | 7,51                       |
| FJ 12           | 87               | 1 | 13 | 1   | 13  | 23  |    | 23  | 3     |       | 4       |      | 4       | 2   |     |     |     |     |     |      |     | 4,33kV                     |
| FJ 12           | 1938 kVA         | 3 | 65 | 7,5 | 130 | 345 |    | 575 | 112,5 |       | 200     |      | 300     | 200 |     |     |     |     |     |      |     | 18,45                      |
| FJ 15           | 96               | 1 | 12 |     | 20  | 16  |    | 27  | 3     |       | 7       |      | 4       | 2   |     | 4   |     |     |     |      |     | 4,33kV                     |
| L) 12           | 2808,5 kVA       | 3 | 60 |     | 200 | 240 |    | 675 | 112,5 |       | 350     |      | 300     | 200 |     | 668 |     |     |     |      |     | 27,815                     |
| FK 17           | 56               |   |    |     | 3   | 4   |    | 8   | 10    |       | 29      |      | 2       |     |     |     |     |     |     |      |     | 13,8kV                     |
| IK 17           | 2265 kVA         |   |    |     | 30  | 60  |    | 200 | 375   |       | 1450    |      | 150     |     |     |     |     |     |     |      |     | 2,5                        |
| FK 18           | 102              |   | 1  |     | 10  | 11  |    | 11  | 24    |       | 38      |      | 4       | 2   |     | 1   |     |     |     |      |     | 13,8kV                     |
| 11/10           | 4012 kVA         |   | 5  |     | 100 | 165 |    | 275 | 900   |       | 1900    |      | 300     | 200 |     | 167 |     |     |     |      |     | 5,5                        |





| 0/ 1:                     |                                      |   |    |     |     |     |    |     | Car   | ntida | des por | Capa | cidad k | :VA |     |     |     |     |     |     |     | Voltaje               |
|---------------------------|--------------------------------------|---|----|-----|-----|-----|----|-----|-------|-------|---------|------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----------------------|
| Código<br>del<br>Circuito | transformad<br>or / kVA<br>instalado | 3 | 5  | 7,5 | 10  | 15  | 20 | 25  | 37.5  | 40    | 50      | 63   | 75      | 100 | 160 | 167 | 225 | 250 | 300 | 333 | 400 | kV/<br>longitud<br>km |
| FK 19                     | 139                                  |   |    |     | 12  | 6   |    | 22  | 32    |       | 63      |      | 3       | 1   |     |     |     |     |     |     |     | 13,8kV                |
| LK 19                     | 5435 kVA                             |   |    |     | 120 | 90  |    | 550 | 1200  |       | 3150    |      | 225     | 100 |     |     |     |     |     |     |     | 18.382                |
| FK 20                     | 105                                  |   |    |     | 11  | 7   |    | 28  | 23    |       | 21      |      | 6       | 3   |     |     |     | 3   |     | 3   |     | 13,8kV                |
| 1 1 20                    | 5746,5 kVA                           |   |    |     | 110 | 525 |    | 700 | 862,5 |       | 1050    |      | 450     | 300 |     |     |     | 750 |     | 999 |     | 9,562                 |
| FK 64                     | 48                                   |   |    |     | 5   | 8   |    | 6   | 4     |       | 13      |      | 3       | 5   |     |     | 1   |     |     | 3   |     | 13,8kV                |
| FK 04                     | 3069 kVA                             |   |    |     | 50  | 120 |    | 150 | 150   |       | 650     |      | 225     | 500 |     |     | 225 |     |     | 999 |     | 2,886                 |
| FJ 66                     | 60                                   |   | 1  |     | 4   | 9   |    | 16  | 7     |       | 18      |      | 2       | 3   |     |     |     |     |     |     |     | 4,33kV                |
| FJ 00                     | 1930 kVA                             |   | 5  |     | 40  | 135 |    | 400 | 262,5 |       | 900     |      | 150     | 300 |     |     |     |     |     |     |     | 7,756                 |
| FK 68                     | 8                                    |   |    |     |     | 1   |    | 3   |       |       |         |      |         |     |     |     |     |     |     |     |     | 13,8 kV               |
| FK 00                     | 90 kVA                               |   |    |     |     | 15  |    | 75  |       |       |         |      |         |     |     |     |     |     |     |     |     | 0,2                   |
| FK 69                     | 85                                   |   | 1  |     | 9   | 10  |    | 15  | 21    |       | 22      |      | 5       | 2   |     |     |     |     |     |     |     | 13,8kV                |
| FK 09                     | 2295 kVA                             |   | 5  |     | 90  | 150 |    | 375 | 787,5 |       | 1100    |      | 375     | 200 |     |     |     |     |     |     |     | 7,11                  |
| FK 76                     | 46                                   |   | 2  |     | 3   | 10  |    | 13  | 6     |       | 9       |      |         | 2   |     | 1   |     |     |     |     |     | 13,8kV                |
| FK /O                     | 1557 kVA                             |   | 10 |     | 30  | 150 |    | 325 | 225   |       | 450     |      |         | 200 |     | 167 |     |     |     |     |     | 14,214                |
| FJ 80                     | 69                                   |   | 3  |     | 3   | 6   |    | 3   | 13    |       | 31      | 1    | 2       | 5   | 1   | 1   |     |     |     |     |     | 4,33kV                |
| FJ 00                     | 2800 kVA                             |   | 15 |     | 30  | 90  |    | 75  | 487,5 |       | 1550    | 63   | 150     | 500 | 160 | 167 |     |     |     |     |     | 3,277                 |
| FJ 81                     | 74                                   |   | 2  |     | 7   | 6   |    | 7   | 9     | 1     | 27      |      | 6       | 7   |     | 2   |     |     |     |     |     | 4,33kV                |
| L) OI                     | 3219 kVA                             |   | 10 |     | 70  | 90  |    | 175 | 337,5 | 40    | 1350    |      | 450     | 700 |     | 334 |     |     |     |     |     | 2,719                 |
| FK 90                     | 195                                  |   | 2  |     | 35  | 39  |    | 36  | 38    |       | 36      |      | 4       | 1   | 2   | 2   |     |     |     |     |     | 13,8kV                |
| FK 90                     | 6124 kVA                             |   | 10 |     | 350 | 585 |    | 900 | 1425  |       | 1800    |      | 300     | 100 | 320 | 334 |     |     |     |     |     | 44,82                 |
| FK 91                     | 112                                  |   |    |     | 14  | 12  |    | 12  | 36    |       | 33      |      | 4       |     | 1   |     |     |     |     |     |     | 13,8kV                |
| LV 31                     | 4080 kVA                             |   |    |     | 140 | 180 |    | 300 | 1350  |       | 1650    |      | 300     |     | 160 |     |     |     |     |     |     | 9,82                  |





| 0 ( 1:                    |                                 |   |     |     |      |      |    |       | Car    | itida | des por | Capad | cidad k | :VA  |     |      |     |      |     |      |     | Voltaje               |
|---------------------------|---------------------------------|---|-----|-----|------|------|----|-------|--------|-------|---------|-------|---------|------|-----|------|-----|------|-----|------|-----|-----------------------|
| Código<br>del<br>Circuito | transform /<br>kVA<br>instalado | 3 | 5   | 7,5 | 10   | 15   | 20 | 25    | 37.5   | 40    | 50      | 63    | 75      | 100  | 160 | 167  | 225 | 250  | 300 | 333  | 400 | kV/<br>longitud<br>km |
| FK 92                     | 146                             |   | 1   |     | 3    | 11   |    | 25    | 36     |       | 69      |       | 1       |      |     |      |     |      |     |      |     | 13,8kV                |
| FK 92                     | 5700 kVA                        |   | 5   |     | 30   | 165  |    | 625   | 1350   |       | 3450    |       | 75      |      |     |      |     |      |     |      |     | 11,33                 |
| FK 94                     | 27                              |   | 1   |     | 3    | 10   |    | 4     | 4      |       | 3       |       |         |      |     |      |     |      | 2   |      |     | 13,8kV                |
| 111 34                    | 1185 kVA                        |   | 5   |     | 30   | 150  |    | 100   | 150    |       | 150     |       |         |      |     |      |     |      | 600 |      |     | 1,8                   |
| FK 95                     | 58                              |   | 3   |     | 12   | 6    |    | 17    | 3      |       | 15      |       | 1       | 1    |     |      |     |      |     |      |     | 13,8kV                |
| 1 1 3 3                   | 1575 kVA                        |   | 15  |     | 120  | 90   |    | 425   | 112,5  |       | 750     |       | 75      | 100  |     |      |     |      |     |      |     | 8,32                  |
| FK 401                    | 20                              |   |     |     | 4    |      |    | 6     | 3      |       | 6       |       | 1       |      |     |      |     |      |     |      |     | 13,8kV                |
| 111 401                   | 565 kVA                         |   |     |     | 40   |      |    | 150   | 112,5  |       | 300     |       | 75      |      |     |      |     |      |     |      |     |                       |
| FK 405                    | 52                              |   |     |     | 2    | 3    |    | 4     | 16     |       | 16      |       | 3       | 8    |     |      |     |      |     |      |     | 13,8kV                |
| 111 403                   | 2590 kVA                        |   |     |     | 20   | 45   |    | 100   | 600    |       | 800     |       | 225     | 800  |     |      |     |      |     |      |     |                       |
| FK 406                    | 23                              |   |     |     | 2    | 2    |    | 3     | 6      |       | 10      |       |         |      |     |      |     |      |     |      |     | 13,8kV                |
| 1 K 400                   | 850 kVA                         |   |     |     | 20   | 30   |    | 75    | 225    |       | 500     |       |         |      |     |      |     |      |     |      |     |                       |
| FK 407                    | 176                             |   |     |     | 5    | 15   |    | 44    | 37     |       | 63      |       | 3       | 9    |     |      |     |      |     |      |     | 13,8kV                |
| 110407                    | 7037,5 kVA                      |   |     |     | 50   | 225  |    | 1100  | 1387,5 |       | 3150    |       | 225     | 900  |     |      |     |      |     |      |     |                       |
| FK 408                    | 79                              |   |     |     | 4    | 10   |    | 20    | 24     |       | 17      | 1     |         | 2    |     |      |     | 1    |     |      |     | 13,8kV                |
| FK 406                    | 2953 kVA                        |   |     |     | 40   | 150  |    | 500   | 900    |       | 850     | 63    |         | 200  |     |      |     | 250  |     |      |     |                       |
|                           |                                 |   |     |     |      |      |    |       |        |       |         |       |         |      |     |      |     |      |     |      |     |                       |
| UBEM                      | 2261                            | 2 | 55  | 2   | 228  | 289  | 1  | 420   | 410    | 1     | 643     | 2     | 82      | 80   | 6   | 21   | 1   | 4    | 2   | 11   | 1   | 13,8 kV               |
| Cfgos                     | 87904,5 kVA                     | 6 | 275 | 15  | 2280 | 4335 | 20 | 10500 | 15375  | 40    | 32150   | 126   | 6150    | 8000 | 960 | 3507 | 225 | 1000 | 600 | 3663 | 400 | 4,33 kV               |
|                           |                                 |   |     |     |      |      |    |       |        |       |         |       |         |      |     |      |     |      |     |      |     |                       |





Anexo 18 Relación de fallos de transformadores por circuitos UBEM Cienfuegos 2010 al 2011

| Cádigo             | С | apacida | ad (kV | A ) trai | nsforma | dores | de dist | ribucić | 'n  |                 |
|--------------------|---|---------|--------|----------|---------|-------|---------|---------|-----|-----------------|
| Código<br>Circuito |   |         |        |          |         |       |         |         |     | Total           |
| Circuito           | 5 | 10      | 15     | 25       | 37,5    | 50    | 75      | 100     | 167 | transformadores |
| FJ 2               |   |         |        |          |         |       | 1       |         |     | 87              |
| FJ 3               |   |         | 1      |          | 1       | 1     |         |         |     | 64              |
| FJ 4               |   |         |        |          | 3       | 3     |         |         |     | 21              |
| FJ 5               |   |         |        | 1        |         |       |         |         |     | 57              |
| FK 6               |   | 2       | 2      | 1        | 3       | 1     | 1       |         |     | 104             |
| FJ 9               |   |         |        |          |         | 3     |         |         |     | 46              |
| FJ 12              |   | 3       | 1      | 1        |         | 2     |         |         |     | 87              |
| FJ 15              | 2 | 5       | 2      | 2        | 1       | 1     |         |         |     | 96              |
| FK 17              |   |         |        | 1        |         |       | 1       |         |     | 56              |
| FK 18              |   | 3       |        | 2        | 2       | 4     |         |         |     | 102             |
| FK 19              |   | 1       | 1      | 2        | 3       | 1     |         |         |     | 139             |
| FK 20              |   | 1       | 1      |          | 1       | 3     |         | 1       |     | 105             |
| FK 64              |   |         | 1      |          |         |       |         |         |     | 48              |
| FJ 66              |   |         | 2      |          | 3       | 1     |         |         |     | 60              |
| FK 68              |   |         | 1      |          |         |       |         |         |     | 8               |
| FK 69              |   |         | 1      | 1        | 1       | 1     | 1       |         |     | 85              |
| FK 76              |   |         | 1      |          |         |       |         |         |     | 46              |
| FJ 80              |   |         |        |          |         | 1     |         |         |     | 69              |
| FJ 81              |   |         |        |          |         | 2     |         |         |     | 74              |
| FK 90              |   | 2       | 6      | 5        | 4       | 5     |         |         | 1   | 195             |
| FK 91              |   | 2       | 6      | 3        | 2       | 3     |         |         |     | 112             |
| FK 92              | 1 |         |        | 2        | 3       | 5     |         |         |     | 146             |
| FK 94              |   |         |        | 1        |         |       |         |         |     | 27              |
| FK 95              |   |         | 2      | 4        |         | 1     |         |         |     | 58              |
| FK 406             |   |         |        |          |         | 4     |         |         |     | 22              |
| FK 407             |   | 1       | 3      | 3        | 1       | 4     | 1       |         |     | 13              |
| FK 408             |   |         |        | 6        | 1       | 1     |         |         |     | 8               |
| TOTAL              | 3 | 20      | 31     | 35       | 29      | 47    | 5       | 1       | 1   | 172             |





### Anexo 19 Tiempos de fallos de los transformadores de distribución UBEM Cienfuegos 2010 al 2011

| Codigo<br>Transf | Circ  | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                           | Actividad                                                               |
|------------------|-------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| CB9              | FJ1   | 01/06/10 12:50:54                     | 01/06/10 16:22:00                  | 01/06/10 17:54:00                | 304            | 8     | 5            | Calle 53 entre 56 y 58.                                             | 37,5 KVA quemado, se cambio x 37,5 KVA                                  |
| CB211            | FJ1   | 01/05/11 15:04:53                     | 01/05/11 21:41:27                  | 01/05/11 23:40:24                | 516            | 9     |              | Ave 58 # 4706 entre 47 y 49.                                        | Dañado 50 KVA x trueno. se<br>reparo grampa pelicano partida x<br>rayos |
| CB82             | FJ2   | 14/12/10 17:17:31                     | 14/12/10 23:16:35                  | 14/12/10 23:17:34                | 360            | 8     | 5            | Ave 60 # 4730 entre 47 y 49.                                        | se cambia transformador                                                 |
| CB74             | FJ2   | 16/07/11 18:44:27                     | 16/07/11 19:56:00                  | 16/07/11 20:46:48                | 122            | 8     | 5            | Calle 45 # 5212 entre 52 y 54.                                      | dañado 65 KVA fase b abierta                                            |
| CB5499           | FJ2   | 14/10/11 09:42:32                     | 14/10/11 16:25:00                  | 14/10/11 17:37:00                | 475            | 8     | 5            | Ave 50 entre 27 y 29.                                               | Se cambio dañado 75 KVA x 75 KVA                                        |
| CB4629           | FJ33  | 28/02/10 09:18:13                     | 01/03/10 11:27:00                  | 01/03/10 13:47:00                | 1709           | 8     | 5            | UBPC El Castillo entre Carretera Rancho<br>Luna y. San Antón        | se cambio 15 KVA x15 KVA                                                |
| CB196            | FJ3   | 10/05/10 10:36:36                     | 10/05/10 12:53:23                  | 10/05/10 13:34:44                | 178            | 10    |              | Calle 43 e/ 38 y 40 Inversiones de la Salud.                        | se cambia 15 KVA x 15KVA por dañado.                                    |
| CB492            | FJ406 | 06/10/10 11:03:21                     | 06/10/10 16:49:00                  | 06/10/10 17:33:00                | 390            | 8     | 5            | Calle 65 # 72a31 entre 74 y 76.                                     | se cambia 50 KVA x un 50 KVA x sobrecarga                               |
| CB203            | FJ3   | 22/12/10 19:03:16                     | 22/12/10 23:04:32                  | 23/12/10 01:12:16                | 369            | 8     | 5            | Calle 43 # 2223 entre 22 y 24.                                      | se cambia un 37.5 KVA x 50 KVA                                          |
| CB253            | FJ3   | 30/05/11 19:38:21                     | 31/05/11 08:38:00                  | 31/05/11 10:13:00                | 875            | 9     |              | Ave 44 # 3501 entre 35 y 37.                                        | se cambia 50 KVA x 50 KVA                                               |
| CB197            | FJ3   | 11/08/11 02:34:12                     | 11/08/11 03:13:15                  | 11/08/11 03:42:01                | 68             | 8     | 5            | Calle 36 # 4102 entre 41 y 43.                                      | dañado de 50 KVA x rayo                                                 |
| CB120            | FJ5   | 24/02/10 10:19:59                     | 24/02/10 14:26:57                  | 24/02/10 15:25:28                | 306            | 8     | 5            | Calle 37 entre 48 y 50.                                             | se cambio quemado                                                       |
| CB159            | FJ5   | 05/08/10 12:07:13                     | 05/08/10 15:26:00                  | 05/08/10 16:53:00                | 286            | 8     | 5            | Calle 33 entre 52 y 54                                              | 50KVA quemado x cto cto se cambio                                       |
| CB160            | FJ5   | 27/09/10 17:30:29                     | 27/09/10 20:07:46                  | 27/09/10 21:52:41                | 262            | 8     | 5            | Ave 54, entre 31 y 33.                                              | se cambio 100 KVA x bushing explotado.                                  |
| CB157            | FJ5   | 13/10/10 11:01:39                     | 13/10/10 17:13:47                  | 13/10/10 17:36:31                | 395            | 6     | 4            | Calle 31 entre 52 y 54.                                             | f/c bushing se reparo.                                                  |
| CB672            | FK6   | 24/02/10 21:36:47                     | 27/02/10 09:46:22                  | 27/02/10 10:05:09                | 3629           | 8     | 5            | Carretera Pasacaballo entre llegar al faro del faro y enfilaciones. | Se cambio de 10 KVA x dañado                                            |
| CB5534           | FK6   | 26/07/10 15:16:44                     | 27/07/10 08:23:00                  | 27/07/10 09:55:21                | 1119           | 8     | 5            | U/M entre antigua base submarino y .<br>Rancho Luna                 | reponerlo no da servicio 15 KVA<br>se cambio x 37.5 KVA                 |
| CB653            | FK6   | 06/09/10 16:37:28                     | 07/09/10 04:12:44                  | 07/09/10 04:39:00                | 722            | 9     |              | CPA Mártires de barbados entre el ranchón y al lado de la placita.  | dañado x rayo 37.5 KVA se<br>repuso x 37.5 KVA                          |
| CB653            | FK6   | 27/08/11 16:06:38                     | 27/08/11 22:40:39                  | 28/08/11 02:04:16                | 598            | 9     |              | CPA Mártires de barbados entre el ranchón y al lado de la placita.  | se cambio 37.5 KVA x i37,5 KVA x rayo                                   |





| Codigo<br>Transf | Circ | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                                                            | Actividad                                              |
|------------------|------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| CB668            | FK6  | 18/10/11 17:16:51                     | 18/10/11 23:53:20                  | 19/10/11 02:53:11                | 577            | 8     | 5            | Playa Rancho Luna entre Delfinario y .<br>Cfgos                                                      | 50 KVA dañado se cambia x 50 KVA                       |
| CB4022           | FJ7  | 24/02/10 17:36:37                     | 24/02/10 20:41:52                  | 24/02/10 21:08:17                | 212            | 6     | 3            | Edif 20 # 101 entre 8 plantas y .<br>Pastorita, Cfgos                                                | se reparo f/c Bushing                                  |
| CB470            | FJ7  | 01/03/10 19:21:44                     | 02/03/10 06:33:00                  | 02/03/10 19:18:48                | 1437           | 8     | 5            | Edif 18 plantas # 19 # ap03 entre y pastorita. Cienfuegos                                            | dañado 25 KVA se cambio                                |
| CB480            | FJ7  | 27/03/10 23:20:05                     | 28/03/10 00:58:15                  | 28/03/10 01:57:17                | 157            | 4     | 2            | Entrando por delegación entre la lomita y<br>. Pastorita                                             | 50 KVA dañado se cambio                                |
| CB778            | FK8  | 18/07/10 19:35:00                     | 18/07/10 19:54:00                  | 18/07/10 20:13:00                | 38             | 8     | 5            | 125 # Apto:3 entre 64 y 66. La esperanza                                                             | Se cambió Dañado de 50 KVA.                            |
| CB783            | FK8  | 09/11/10 18:19:48                     | 09/11/10 22:25:31                  | 10/11/10 00:56:00                | 397            | 8     | 5            | 115 # 402 entre 4 y 6. Buena Vista                                                                   | dañado se cambio un 37,5 KVA x<br>50 KVA               |
| CB4232           | FJ9  | 17/07/10 08:10:47                     | 17/07/10 18:22:06                  | 17/07/10 18:31:06                | 621            | 8     | 5            | Finca La India entre detrás de SOMEC y .<br>Barrio Paraíso                                           | Dañado 10 KVA cambiado x igual                         |
| CB164            | FJ9  | 11/07/11 11:25:43                     | 11/07/11 14:28:41                  | 11/07/11 15:34:18                | 249            | 8     | 5            | Materias Primas entre Al Lado de<br>Bachiplan y Frente a Fertilizantes. Zona<br>Ind 2 Obourke        | dañado 50 KVA x rayos no tenia<br>pararrayos se cambio |
| CB4085           | FJ11 | 18/09/10 22:42:05                     | 19/09/10 00:48:42                  | 19/09/10 01:25:38                | 163            | 9     |              | Finca Carolina entre después de las 3<br>vaquerías y Donde están las turbinas.<br>Cienfuegos         | se cambio quemado de 25 KVA                            |
| CB4413           | FJ11 | 20/01/11 06:27:24                     | 20/01/11 09:07:25                  | 20/01/11 10:52:25                | 265            | 6     | 3            | Venta Del Rio entre Viradero de la 200 y                                                             | se reparo tierra en Bushing x f/c                      |
| CB919            | FJ12 | 19/07/10 14:15:34                     | 19/07/10 15:04:00                  | 19/07/10 15:52:00                | 97             | 8     | 5            | Carret de Palmira entre después del T 15 y Materias Primas. Cantarrana                               | 50 KVA dañado cambiar conexión                         |
| CB882            | FJ12 | 30/08/10 14:08:07                     | 30/08/10 19:33:00                  | 30/08/10 19:33:00                | 325            | 9     |              | Carret Rodas km 6½ entre Venta del Rio y emp Genético Porcino. Cienfuegos                            | se cambio dañado                                       |
| CB856            | FJ12 | 09/09/10 09:34:50                     | 09/09/10 15:07:27                  | 09/09/10 16:30:46                | 416            | 8     | 5            | finca el Recreo. Paraíso                                                                             | 10 KVA se cambio x 15 KVA                              |
| CB844            | FJ12 | 03/05/11 07:25:20                     | 03/05/11 09:20:00                  | 03/05/11 11:54:00                | 269            | 9     |              | Batey Cantarrana # s/n entre carretera<br>Palmira y Paraíso. Cfgos                                   | se cambio un transformador quemado por trueno          |
| CB919            | FJ12 | 04/05/11 09:05:26                     | 04/05/11 14:43:49                  | 04/05/11 15:02:16                | 357            | 8     | 5            | Carret. Palmira entre KM 3 y medio y<br>Patio Chatarra. Cantarrana                                   | dañado 50 KVA se cambio                                |
| CB4157           | FJ12 | 21/07/11 20:08:40                     | 22/07/11 12:51:25                  | 22/07/11 14:25:24                | 1097           | 9     |              | Callejón del Piojo entre al lado de la torre<br>de alta tensión y Autoconsumo de la<br>ANAP. Paraíso | se repone dañado x rayo se puso pararrayo              |
| CB876            | FJ12 | 14/09/11 08:47:32                     | 14/09/11 14:03:50                  | 14/09/11 14:33:22                | 346            | 9     |              | Finca La Luisa entre U/M 1669 y . Paraíso                                                            | se cambio 15KVA                                        |
| CB875            | FJ12 | 03/08/11 20:50:22                     | 04/08/11 02:09:45                  | 04/08/11 02:44:55                | 354            | 8     | 5            | Finca Refugio # s/n entre Barrio Paraíso y después de las Biplantas. Cienfuegos                      | 15 KVA quemado por rayo                                |
| CB939            | FK14 | 21/07/11 09:53:51                     | 21/07/11 14:35:13                  | 21/07/11 17:50:18                | 477            | 8     | 5            | Batey Carolina Viejo. Cfgos                                                                          | 13 KVA dañado x rayo se cambio                         |
| CB1005           | FJ15 | 13/02/10 14:04:42                     | 13/02/10 16:22:00                  | 13/02/10 22:18:44                | 494            | 8     | 5            | Loma Abreu km 11 e/ carret<br>Cumanayagua y Cfgos                                                    | se cambio dañado                                       |
| CB1002           | FJ15 | 23/06/10 22:57:44                     | 24/06/10 02:50:22                  | 24/06/10 02:50:54                | 233            | 8     | 5            | Naranjito al final entre Frente al<br>Organoponico y después de Guaos.                               | dañado 25 KVA se repuso x igual                        |





| Codigo<br>Transf | Circ | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                                                 | Actividad                                   |
|------------------|------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|-------------------------------------------------------------------------------------------|---------------------------------------------|
| CB1008           | FJ15 | 05/07/10 12:27:00                     | 05/07/10 18:15:00                  | 05/07/10 19:08:00                | 401            | 8     | 5            | Fca. de Cemento La ECA. Guabairo                                                          | dañado 15 KVA se cambio x 15 KVA            |
| CB1011           | FJ15 | 08/08/10 17:08:05                     | 09/08/10 09:06:39                  | 09/08/10 10:16:27                | 1028           | 8     | 5            | Carretera El Polvorín. Guabairo                                                           | 25 KVA x quemado x rayo .                   |
| CB1011           | FJ15 | 22/08/10 19:17:11                     | 23/08/10 13:17:00                  | 23/08/10 13:21:00                | 1084           | 8     | 5            | Carret Pepito Tey entre la Calera y Cfgos                                                 | se cambia 167 KVA x100 KVA                  |
| CB1011           | FJ15 | 23/08/10 08:44:35                     | 23/08/10 14:40:00                  | 23/08/10 15:51:00                | 427            | 9     |              | El Polvorín. Guabairo                                                                     | se cambia 15 KVA x10 KVA x rayo             |
| CB1003           | FJ15 | 23/09/10 10:07:48                     | 24/09/10 13:45:18                  | 24/09/10 14:49:25                | 1722           | 8     | 5            | Naranjito final entre en el organopónico y<br>. Guaos                                     | cambia 10 KVA x10 KVA                       |
| CB971            | FJ15 | 24/09/10 20:52:12                     | 24/09/10 22:46:23                  | 25/09/10 00:04:40                | 192            | 6     | 5            | Jardín Botánico entre Carrt Trinidad y .<br>Pepito Tey                                    | reparó bushing Primario. dañado<br>y en f/c |
| CB677            | FJ15 | 09/11/10 15:11:13                     | 09/11/10 19:39:30                  | 09/11/10 21:21:18                | 370            | 8     | 5            | Carret. Cumanayagua Crucero Pepito Tey<br>e/ después del Servi Cupet                      | 10 KVA dañado se cambio x igual             |
| CB1021           | FJ15 | 14/11/10 15:14:22                     | 14/11/10 20:31:13                  | 14/11/10 20:31:25                | 317            | 8     | 5            | Calle Real Panadería. Pepito Tey                                                          | 15 KVA se cambio x 15 KVA                   |
| CB973            | FJ15 | 20/05/11 07:06:53                     | 20/05/11 11:41:00                  | 20/05/11 12:33:08                | 327            | 8     | 5            | Calle Real # 276 entre al lado de la calera y . Pepito Tey                                | 25 KVA dañado. se cambio x 37.5 KVA         |
| CB999            | FJ15 | 31/05/11 00:56:28                     | 31/05/11 10:02:00                  | 31/05/11 11:30:00                | 634            | 9     |              | Ave 64 # 4905 entre 49 y 51                                                               | se repuso x igual 50 KVA y 2 de<br>37 KVA   |
| CB982            | FJ15 | 09/06/11 13:43:40                     | 09/06/11 18:08:47                  | 09/06/11 19:20:58                | 337            | 8     | 5            | Carret a Cumanayagua entre Fca de<br>Bloques y . Guaos                                    | 50 KVA dañado se cambio                     |
| CB1002           | FJ15 | 16/06/11 10:34:09                     | 17/06/11 02:14:10                  | 17/06/11 04:15:23                | 1061           | 9     |              | Real Final Naranjito entre saliendo a<br>Cumanayagua y llegando al<br>Organoponico. Guaos | Quemado x rayos se cambian                  |
| CB1018           | FJ15 | 28/06/11 16:54:07                     | 29/06/11 02:10:06                  | 29/06/11 02:10:32                | 556            | 8     | 5            | Guabairo # s/n entre frete al merendero y . Guabairo                                      | dañado 37.5 KVA se cambio                   |
| CB996            | FJ15 | 02/08/11 15:07:44                     | 02/08/11 21:17:35                  | 02/08/11 22:11:35                | 424            | 8     | 5            | La Ceiba entre Naranjito y Guaos                                                          | 25 KVA varias pruebas y Mtto general.       |
| CB963            | FJ15 | 15/10/11 17:48:50                     | 16/10/11 09:24:00                  | 16/10/11 10:44:00                | 1016           | 8     | 5            | San Antón # S/N entre después de las casita Cooperativa y . Central Pepito Tey.           | Se cambió dañado de 25 KVA x igual          |
| CB989            | FJ15 | 02/12/11 08:35:01                     | 02/12/11 17:17:32                  | 02/12/11 18:22:03                | 587            | 8     | 5            | Carretera de Cumanayagua km 15 entre<br>Frente al cementerio y . Guaos                    | dañado 15 KVA y una fase abierta            |
| CB993            | FJ15 | 03/12/11 10:09:06                     | 03/12/11 11:52:00                  | 03/12/11 15:46:00                | 337            | 8     | 5            | Carret Cumanayagua entre Frente Al<br>Cementerio y Taller Automotriz. Guaos               | se cambio de 15 KVA x 50 KVA                |
| CB5371           | FK17 | 20/09/10 11:27:26                     | 21/09/10 15:25:34                  | 21/09/10 15:25:37                | 1678           | 8     | 5            | Calle 61 # 5006 entre 50 y 52.                                                            | botando aceite se cambio                    |
| CB5375           | FK17 | 21/08/11 16:58:08                     | 22/08/11 00:17:00                  | 22/08/11 01:15:00                | 497            | 8     | 5            | Ave 46 # 6909 entre 69 y 71. Juanita                                                      | 25 KVA quemado x rayo se cambio x igual     |
| CB617            | FK18 | 10/01/10 07:34:55                     | 10/01/10 10:09:50                  | 10/01/10 11:25:23                | 231            | 8     | 5            | Ave 42 # 97 entre 61 y 63 (detrás del<br>Hospital Prov). Hermanas Giralt                  | se instalo 50 KVA x 37.5 KVA<br>dañado      |
| CB618            | FK18 | 02/02/10 19:44:18                     | 02/02/10 23:27:00                  | 03/02/10 00:00:00                | 256            | 8     | 5            | Ave 5 de Septiembre e/ Hotelera La<br>Marina y Hermanas Giralt                            | 15 KVA dañado se dio servicio               |





| Codigo<br>Transf | Circ | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                     | Actividad                                                |
|------------------|------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|---------------------------------------------------------------|----------------------------------------------------------|
| CB356            | FK18 | 26/03/10 12:24:21                     | 26/03/10 15:24:00                  | 26/03/10 17:30:09                | 306            | 8     | 5            | Calle 37- Edificio -2 e/ cerca Oficinas<br>ETECSA y Pastorita | se colocaron 2 de 50 KVA en paralelo                     |
| CB5346           | FK18 | 05/05/10 00:24:03                     | 05/05/10 08:36:25                  | 05/05/10 11:27:49                | 663            | 8     | 5            | Ave 58 # 5907 entre 57 y 59. La Juanita                       | dañado se repone 37.5 KVA                                |
| CB611            | FK18 | 01/09/10 07:17:04                     | 01/09/10 12:43:04                  | 01/09/10 13:45:37                | 388            | 6     | 9            | 57 # S/N entre 34 y 36. Los Petroleros                        | Se cambio 25 KVA dañado x<br>árbol                       |
| CB16             | FK18 | 14/10/10 23:27:49                     | 15/10/10 15:15:36                  | 15/10/10 16:07:04                | 1000           | 8     | 5            | 58 # 6316A entre 63 y 65. La Juanita                          | se cambio 10KVA x 15KVA                                  |
| CB622            | FK18 | 23/12/10 18:53:49                     | 23/12/10 21:06:44                  | 24/12/10 00:30:45                | 337            | 4     | 2            | 65 entre 46 y 48. Arizona                                     | dañado 50 KVA                                            |
| CB4093           | FK18 | 11/08/11 00:22:22                     | 11/08/11 02:31:08                  | 11/08/11 02:58:50                | 156            | 8     | 5            | 50 x Arizona # 6307 entre 63 y 65. La<br>Juanita              | dañado 37.5 KVA                                          |
| CB515            | FK18 | 17/09/11 08:32:13                     | 17/09/11 13:57:00                  | 17/09/11 15:33:00                | 421            | 8     | 5            | Ave 54 entre 73 y 75. Juanita                                 | botando aceite 50 KVA se cambio                          |
| CB516            | FK18 | 16/10/11 18:02:12                     | 16/10/11 20:26:00                  | 16/10/11 20:58:00                | 176            | 6     | 3            | Ave 54 # 6901a e/ 69 y 71 La Juanita                          | Parrilla completa dañada y<br>quemada                    |
| CB516            | FK18 | 23/10/11 22:58:26                     | 23/10/11 23:00:14                  | 24/10/11 06:15:57                | 437            | 8     | 5            | Ave 54 entre 69 y 71. Juanita                                 | se cambio dañado 50 KVA x 50 KVA                         |
| CB541            | FK19 | 02/03/10 19:03:15                     | 02/03/10 21:13:00                  | 02/03/10 21:49:52                | 166            | 6     | 3            | 22 entre 97 y 99. Tulipán                                     | se cambio parrilla partida x f/c                         |
| CB574            | FK19 | 18/06/10 06:48:38                     | 22/06/10 09:45:44                  | 22/06/10 11:02:57                | 6014           | 8     | 5            | Hidropónico Caonao e/ carr a la Sabana y<br>Línea.            | 15 KVA dañado se repuso con<br>37.5 KVA                  |
| CB562            | FK19 | 03/07/10 18:54:40                     | 03/07/10 22:48:00                  | 03/07/10 23:30:00                | 276            | 6     | 3            | Calle 83 entre 16 y 18. Tulipán                               | Se cambió la parrilla banco de transformador.            |
| CB589            | FK19 | 14/07/10 12:00:30                     | 14/07/10 12:06:00                  | 14/07/10 12:25:00                | 25             | 15    | 3            | Ave 70 # 3716 entre 39 y 37.                                  | Se repuso por igual capacidad                            |
| CB559            | FK19 | 25/09/10 23:26:32                     | 26/09/10 11:54:40                  | 26/09/10 12:33:55                | 787            | 9     |              | Plaza de Alto entre y El Recinto.                             | se cambio 37.5 KVA dañado x<br>rayo                      |
| CB509            | FK19 | 16/12/10 18:23:13                     | 16/12/10 20:26:09                  | 16/12/10 20:59:07                | 156            | 6     | 3            | Calle 89 entre 60 y 62. Tulipán                               | se reparo parrillas partida x f/c                        |
| CB547            | FK19 | 09/05/11 09:03:03                     | 10/05/11 09:53:16                  | 10/05/11 11:31:12                | 1588           | 8     | 5            | Constructora Militar e/ Circunvalación y frente a Guamajar.   | trifásico 25 KVA mediciones<br>167v entre fases y Neutro |
| CB580            | FK19 | 16/05/11 14:46:00                     | 17/05/11 10:32:00                  | 17/05/11 19:21:00                | 1715           | 8     | 5            | Ave 6 # 8704 entre 87 y 89. Tulipán                           | 10 KVA se cambio x 15 KVA                                |
| CB580            | FK19 | 16/06/11 11:42:30                     | 17/06/11 09:19:38                  | 17/06/11 10:11:38                | 1349           | 9     |              | Ave 6 # 8704 entre 87 y 89.                                   | Salidero de aceite                                       |
| CB508            | FK19 | 01/07/11 11:22:55                     | 01/07/11 16:10:00                  | 01/07/11 18:08:00                | 406            | 8     | 5            | Ave 58 entre 89 y 91.                                         | quemado se cambia x 37.5 KVA                             |
| CB508            | FK19 | 01/07/11 19:12:27                     | 02/07/11 09:22:55                  | 02/07/11 11:57:33                | 1005           | 8     | 5            | Ave 58 entre 89 y 91                                          | cambio 37.5 KVA x 37,5 KVA.                              |
| CB543            | FK19 | 10/09/11 17:10:41                     | 10/09/11 20:59:20                  | 10/09/11 21:00:55                | 230            | 8     | 5            | Calle 43 entre 52 y 54. La Gloria                             | Dañado 50 KVA x Trueno. se cambio                        |
| CB4424           | FK19 | 10/02/10 10:33:21                     | 10/02/10 17:33:00                  | 10/02/10 17:57:00                | 444            | 8     | 5            | Ave 2 # 8504 entre 85 y 87. Tulipán                           | dañado 37.5 KVA se cambio                                |
| CB552            | FK19 | 22/11/11 18:51:18                     | 22/11/11 23:31:52                  | 23/11/11 00:41:22                | 350            | 8     | 5            | Calle 99 # 1805 entre 18 y 20. Tulipán                        | Cambio 37,5 KVA quemado x sobre carga x 50 KVA           |
| CB608            | FK20 | 02/03/10 11:56:30                     | 02/03/10 13:03:25                  | 02/03/10 13:44:17                | 108            | 6     | 5            | Calle 51A # 3504 entre 34 y 36.                               | Se reparo F/C en los Bushing x secundario                |
| CB606            | FK20 | 08/07/10 11:26:01                     | 08/07/10 15:36:25                  | 08/07/10 15:41:12                | 255            | 6     | 5            | Calle 51 A # 3405 entre 34 y 38.                              | Bushing salidero aceite y mal estado, se reparo          |





| Codigo<br>Transf | Circ | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                                                            | Actividad                                      |
|------------------|------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|------------------------------------------------------------------------------------------------------|------------------------------------------------|
| CB4035           | FK20 | 21/08/10 19:22:38                     | 21/08/10 23:37:35                  | 22/08/10 00:15:43                | 293            | 8     | 5            | Calle 37 # 2011 entre 20 y 22.                                                                       | dañado 50 KVA se cambio x<br>50KVA             |
| CB3318           | FK20 | 28/12/10 16:45:52                     | 29/12/10 02:28:02                  | 29/12/10 02:28:07                | 583            | 8     | 5            | Edif 17 # apto 1 entre 28 y 30                                                                       | 37,5 KVA x 25 KVA dañado                       |
| CB694            | FK26 | 21/03/10 16:17:02                     | 21/03/10 20:00:21                  | 21/03/10 20:39:54                | 262            | 8     | 5            | Carretera La sabana entre Finca La<br>Amparo y frente a la escuelita. Cfgos                          | 25 KVA Se cambió por igual                     |
| CB722            | FK26 | 16/05/10 12:12:05                     | 16/05/10 17:06:00                  | 16/05/10 17:06:00                | 294            | 8     | 5            | Loma Abreus entre después del puente<br>de lagunilla y carretera de Cumanayagua.                     | 25 KVA se cambio                               |
| CB682            | FK26 | 10/09/11 08:38:14                     | 10/09/11 14:53:33                  | 10/09/11 16:32:13                | 474            | 8     | 5            | Carret a Cumanay km10 # s/n entre<br>Desvio Lagunilla y por el Rebombeo del<br>Acueducto. Cienfuegos | Se cambió Dañado 15 KVA                        |
| CB693            | FK26 | 12/09/11 06:43:42                     | 13/09/11 01:37:02                  | 13/09/11 02:21:02                | 1178           | 8     | 5            | Sabana Miguel entre al lado de la bodega<br>y . Cienfuegos                                           | 50 KVA dañado se cambio                        |
| CB4322           | FK33 | 03/04/11 10:13:32                     | 03/04/11 11:57:23                  | 03/04/11 14:47:15                | 274            | 6     | 3            | Carret Circuito Sur entre Pepito Tey y<br>Arimao San Antón                                           | f/c Bushing .                                  |
| CB2641           | FK33 | 24/09/11 10:20:39                     | 24/09/11 10:56:00                  | 24/09/11 13:38:00                | 198            | 8     | 5            | Al lado de la bodega Rebombeo San<br>Antón.                                                          | 10 KVA se cambio x 15 KVA.                     |
| CB4323           | FK33 | 16/10/11 12:02:09                     | 17/10/11 09:03:01                  | 17/10/11 10:54:21                | 1372           | 6     | 7            | Carret La Cantera San Antón entre<br>después de la cooperativa y . Cienfuegos                        | quemado x malas condiciones                    |
| CB698            | FK64 | 11/06/10 20:07:32                     | 11/06/10 23:43:07                  | 12/06/10 00:40:11                | 273            | 9     |              | Calle 63 # modulo 3 entre 76 y 78. Pueblo Griffo                                                     | 37.5 KVA se cambio x igual x rayo              |
| CB59             | FK64 | 29/08/11 19:29:56                     | 29/08/11 21:25:00                  | 29/08/11 21:49:00                | 140            | 9     |              | 5 de septiembre entre x el Hospital y .<br>Cfgos                                                     | Se repuso x igual x rayo                       |
| CB138            | FJ65 | 26/03/10 11:50:05                     | 26/03/10 13:21:00                  | 26/03/10 13:28:13                | 98             | 8     | 5            | Ave 48 entre 29 y 31. Cfgos                                                                          | se repuso con 25 KVA x<br>sobrecarga un 50 KVA |
| CB382            | FJ66 | 17/01/10 10:14:32                     | 17/01/10 11:49:00                  | 17/01/10 15:58:16                | 344            | 8     | 5            | Calle 23 entre 48 y 50.                                                                              | 100 KVA dañado Bushing interno suelto.         |
| CB373            | FJ66 | 19/02/10 18:14:16                     | 19/02/10 20:15:00                  | 19/02/10 20:22:21                | 128            | 8     | 5            | Ave 52 entre 19 y 21.                                                                                | salidero de aceite                             |
| CB395            | FJ66 | 04/03/10 07:01:26                     | 04/03/10 14:24:58                  | 04/03/10 15:52:53                | 531            | 8     | 5            | Calle 25 # 5821 entre 58 y 60.                                                                       | devanado secundario dañado<br>se cambió 50 KVA |
| CB414            | FJ66 | 23/05/10 09:05:30                     | 24/05/10 09:48:02                  | 24/05/10 13:46:01                | 1721           | 8     | 5            | 7 Edif 2 Apto 1 entre 42 y 44. Reina                                                                 | 15 KVA dañado, se cambio                       |
| CB431            | FJ66 | 26/09/10 07:12:44                     | 28/09/10 09:20:00                  | 28/09/10 09:20:00                | 3008           | 8     | 5            | Calle 1ra entre Reyna Final y Rebombeo de Residuales.                                                | dañado se cambiaron dos de<br>50 kVA           |
| CB431            | FJ66 | 13/10/11 07:45:25                     | 13/10/11 10:56:00                  | 13/10/11 10:57:00                | 192            | 8     | 5            | Ave 48 entre Final y cerca de almacén de<br>Cubalub. Reina                                           | 37.5 KVA dañado                                |
| CB428            | FJ66 | 14/10/11 13:04:58                     | 14/10/11 21:10:23                  | 14/10/11 21:34:52                | 510            | 8     | 5            | Calle 1ra # S/N entre 48 y 50. Reina                                                                 | 10 KVA dañado.                                 |
| CB375            | FJ66 | 01/12/11 21:08:56                     | 01/12/11 22:05:34                  | 02/12/11 00:06:30                | 178            | 8     | 5            | Ave 54 entre 19 y 21.                                                                                | dañado 75 KVA se camb x 100 KVA                |
| CB893            | FJ67 | 09/03/10 10:22:55                     | 09/03/10 13:27:00                  | 09/03/10 13:28:00                | 186            | 8     | 5            | 1ra Final Centro de Elaboración del entre<br>CIMEX al lado de la Piscina y . Pastorita               | dañado se repuso con 50 KVA                    |
| CB915            | FJ67 | 11/08/010 18:12:32                    | 12/08/10 11:04:41                  | 12/08/10 11:04:44                | 1012           | 8     | 5            | Callejón de los Curas. 4 Caminos                                                                     | 25 KVA se cambio                               |





| Codigo<br>Transf | Circ | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                                     | Actividad                                           |
|------------------|------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|-------------------------------------------------------------------------------|-----------------------------------------------------|
| C67              | FJ67 | 05/06/11 12:05:37                     | 05/06/11 17:10:39                  | 05/06/11 17:59:47                | 354            | 6     | 2            | Hotelera 2 # hab 319 entre Los<br>Framboyanes y . Pastorita                   | 167 KVA dañado puente primario partido x f/c        |
| CB910            | FJ67 | 28/06/11 16:35:27                     | 29/06/11 09:05:59                  | 29/06/11 10:05:06                | 1050           | 8     | 5            | Carret. a Palmira Km 2 1/2 entre Al lado de los amarillos y . Cfgos           | 25 KVA dañado se repuso x igual.                    |
| CB4033           | FJ67 | 23/07/11 05:50:31                     | 23/07/11 11:23:49                  | 23/07/11 12:38:12                | 408            | 8     | 5            | Edificio U-13 # apto2. Pastorita                                              | Dañado 15 KVA se cambio                             |
| CB804            | FK69 | 06/10/10 08:09:15                     | 06/10/10 15:21:00                  | 06/10/10 16:42:00                | 513            | 8     | 5            | Calle 81 entre 30 y 32. Junco Sur                                             | se cambio un 75 KVA x 167 KVA x dañado              |
| CB4037           | FK69 | 16/02/11 20:16:59                     | 16/02/11 21:32:56                  | 17/02/11 00:57:18                | 281            | 8     | 5            | Edif: 12 Plantas. Junco Sur                                                   | 37.5 KVA dañado se cambio                           |
| CB818            | FK69 | 17/02/11 09:39:44                     | 17/02/11 20:07:00                  | 18/02/11 14:58:30                | 1759           | 8     | 5            | Edif 19 entre Apartamento 402. Junco Sur                                      | retirar 3 transf e instalar 3 de 50<br>KVA          |
| CB3304           | FK69 | 25/05/11 12:36:24                     | 25/05/11 14:30:34                  | 25/05/11 15:26:37                | 170            | 8     | 5            | 32 Final Edif 18 y 19 entre y Rpto Los<br>Militares. Junco Sur                | 50KVA dañado se cambio x 50<br>KVA x dañado.        |
| CB808            | FK69 | 12/09/11 16:16:10                     | 12/09/11 23:27:19                  | 13/09/11 00:49:46                | 513            | 8     | 5            | Edif 20 entre frente a los edif y Junco<br>Sur Cen                            | 10KVA dañado se cambió                              |
| CB819            | FK69 | 26/09/11 14:58:45                     | 26/09/11 18:25:10                  | 26/09/11 18:33:47                | 215            | 4     | 2            | Edif 35,apto 19 entre frente a 12 plantas y la marina. junco sur              | Se cambio dañado. 25 KVA por sobrecarga             |
| CB4443           | FK76 | 04/04/10 13:15:33                     | 04/04/10 15:10:00                  | 04/04/10 16:26:00                | 191            | 6     | 3            | Carret Rancho luna entre x la escuela primaria y junco viejo. Cfgos           | Se cambió parrilla en mal estado                    |
| CB827            | FK76 | 28/09/10 12:40:15                     | 28/09/10 15:20:00                  | 28/09/10 16:12:00                | 212            | 6     | 3            | Rebombeo, detrás del 12 plantas. Junco<br>sur                                 | dañado 100 KVA x f/c en las parrillas               |
| CB110            | FJ79 | 30/01/10 18:29:58                     | 30/01/10 22:20:59                  | 30/01/10 23:51:09                | 322            | 8     | 5            | Calle 55 # 6405 entre 4 y 2 NE.                                               | 75 KVA Dañado se cambio x 50 KVA                    |
| CB87             | FJ79 | 12/11/10 07:05:53                     | 12/11/10 09:23:11                  | 12/11/10 11:19:15                | 254            | 10    |              | Ave 64 # 4511 entre 45 y 47                                                   | 50 KVA no da salida se cambio x igual capacidad     |
| CB91             | FJ79 | 01/05/11 16:00:18                     | 02/05/11 14:34:54                  | 02/05/11 15:36:51                | 1416           | 8     | 5            | Calle 47 e/ 68 y 70 en la panadería.                                          | dañado10 KVA pto. de fuerza                         |
| CB92             | FJ79 | 02/06/11 18:25:45                     | 02/06/11 21:32:41                  | 02/06/11 23:19:36                | 294            | 8     | 5            | Calle 51 # 7203 entre 72 y 74.                                                | dañado de 75 KVA, se cambio                         |
| CB181            | FJ80 | 24/02/10 18:48:31                     | 24/02/10 23:07:33                  | 25/02/10 00:22:58                | 334            | 8     | 5            | Calle 39 # 6807 entre 68 y 70.                                                | reponer 50 KVA x 50 KVA                             |
| CB181            | FJ80 | 24/07/10 15:42:36                     | 24/07/10 19:00:12                  | 24/07/10 19:23:22                | 221            | 8     | 5            | Calle 35 entre 70 y 72.                                                       | Bushing flojo salidero aceite se cambio 50 x 50 KVA |
| CB181            | FJ80 | 02/05/11 18:11:12                     | 02/05/11 22:46:13                  | 02/05/11 23:15:50                | 304            | 8     | 5            | Calle35 # 7007 entre 70 y 72.                                                 | Se cambió dañado de 50 KVA                          |
| CB163            | FJ80 | 23/07/11 08:04:25                     | 23/07/11 16:37:33                  | 23/07/11 17:09:15                | 545            | 8     | 5            | Finca El Comino entre después del<br>Hotelito de base de camiones y . Paraíso | dañado un 15 KVA se cambio                          |
| CB296            | FJ81 | 19/01/10 19:38:47                     | 19/01/10 22:54:20                  | 20/01/10 00:00:54                | 262            | 8     | 5            | Ave 68 entre 37 y 39.                                                         | 50 KVA Dañado. se cambió x igual                    |
| C81              | FJ81 | 30/10/11 20:57:01                     | 31/10/11 10:25:00                  | 31/10/11 13:36:00                | 999            | 8     | 5            | Calle 45 # 6003 entre 60 y 62.                                                | 75 KVA dañado se cambio                             |
| CB288            | FJ81 | 31/10/11 13:19:41                     | 31/10/11 18:08:44                  | 31/10/11 20:16:29                | 417            | 8     | 5            | Ave 60 # 4503 entre 45 y 47.                                                  | dañado 75 KVA se cambio x 100<br>KVA                |
| CB713            | FK90 | 04/03/10 18:23:19                     | 04/03/10 23:52:00                  | 05/03/10 00:46:42                | 383            | 8     | 5            | 6ta entre F y G. Los Tanques                                                  | Se cambio x uno igual. Dañado<br>25 KVA.            |
| CB4197           | FK90 | 13/03/10 18:08:59                     | 14/03/10 00:04:00                  | 14/03/10 00:56:00                | 408            | 8     | 5            | Ave 64 # 14567 entre A y Oeste. Caonao                                        | dañado 37.5 KVA se cambio                           |
| CB225            | FK90 | 25/05/10 19:03:25                     | 26/05/10 00:10:00                  | 26/05/10 00:11:00                | 308            | 8     | 5            | Real # 122 entre Oeste y Matadero.                                            | se cambio                                           |





|                  |      |                                       |                                    |                                  |                |       |              | Caonao                                                                                               |                                                     |
|------------------|------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Codigo<br>Transf | Circ | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                                                            | Actividad                                           |
| CB744            | FK90 | 23/03/11 16:00:14                     | 23/03/11 18:43:29                  | 23/03/11 21:04:26                | 304            | 8     | 5            | Real entre después del puente de los chinos y . Caonao                                               | Se cambió X igual Capacidad                         |
| CB684            | FK90 | 15/07/11 07:10:44                     | 15/07/11 14:30:54                  | 15/07/11 16:17:15                | 547            | 8     | 5            | Desvío Lagunilla e/ la carretera vieja y frente a la vial fábrica de cemento.                        | 15 KVA se quedo sin aceite.se cambio                |
| CB748            | FK90 | 23/07/11 07:08:21                     | 23/07/11 13:19:35                  | 23/07/11 14:05:53                | 417            | 8     | 5            | Alegría Final al lado de la UBPC. Caonao                                                             | Dañado 15 KVA se cambio                             |
| CB712            | FK90 | 15/08/11 18:41:54                     | 15/08/11 23:03:26                  | 16/08/11 01:14:53                | 393            | 8     | 5            | Portada la Josefa. Caonao                                                                            | dañado 50 KVA x 50 KVA                              |
| CB5486           | FK90 | 14/12/11 20:45:02                     | 15/12/11 02:04:11                  | 15/12/11 04:34:16                | 469            | 8     | 5            | Carretera Cumanayagua entre Caonao<br>Sur y después del aeropuerto. Caonao                           | dañado se cambio x igual                            |
| CB787            | FK91 | 21/01/011 19:29:31                    | 21/01/11 21:53:26                  | 21/01/11 23:09:52                | 220            | 8     | 5            | Calle 113 # 405 entre 4 y 6. Buena Vista                                                             | 50 KVA quemado, se cambio                           |
| CB953            | FK91 | 06/02/11 18:18:36                     | 06/02/11 21:44:00                  | 06/02/11 22:55:00                | 277            | 8     | 5            | Alegría Norte (final) entre después de la<br>Farmacia y . Caonao                                     | dañado 25 KVA se cambió x<br>37.5 KVA               |
| CB4179           | FK91 | 19/01/10 18:49:14                     | 19/01/10 22:26:02                  | 19/01/10 22:38:56                | 229            | 8     | 5            | Franco (final) Edificio -6 # apto-25.<br>Buena Vista                                                 | 50 KVA dañado. Se cambió x uno igual.               |
| CB4173           | FK91 | 25/01/10 18:36:39                     | 26/01/10 11:11:00                  | 26/01/10 11:50:00                | 1034           | 8     | 5            | Carret a Palmira, KM 2½, Edif 27 vivienda e/ frente la torre de Cubacel.                             | Se cambia dañado de 15 KVA x<br>37.5 KVA            |
| CB5353           | FK91 | 09/03/10 14:43:28                     | 09/03/10 16:43:00                  | 09/03/10 18:00:00                | 197            | 8     | 5            | Ave 72, final # 81116 entre<br>circunvalación, el callejón y detrás del<br>miedo. Pueblo Grifo Viejo | se apretó Bushing de entrada                        |
| CB66             | FK91 | 11/03/10 16:47:01                     | 12/03/10 00:19:49                  | 12/03/10 00:19:51                | 452            | 8     | 5            | Ave 64 entre 61 y 63                                                                                 | Dañado 25 KVA se cambio                             |
| CB64             | FK91 | 29/04/10 13:58:41                     | 29/04/10 14:10:40                  | 29/04/10 14:41:50                | 43             | 8     | 5            | Fabrica de refrescos Hiromberg entre calzada y Línea.                                                | 50 KVA quemado                                      |
| CB4177           | FK91 | 11/05/10 19:35:42                     | 12/05/10 16:37:00                  | 12/05/10 17:30:00                | 1315           | 8     | 5            | Ave 64 entre 81 y 83. Tulipán                                                                        | se cambio 10 KVA x un 15 KVA                        |
| CB365            | FK91 | 26/06/10 11:12:25                     | 26/06/10 15:11:58                  | 26/06/10 16:04:54                | 292            | 8     | 5            | Calle 101 entre 64 y 66. Buena Vista                                                                 | quemado 15 KVA se puso un 20KVA                     |
| CB28             | FK91 | 06/08/10 15:14:01                     | 06/08/10 19:39:00                  | 06/08/10 19:39:00                | 265            | 8     | 5            | Carretera Palmira entre Después del T-15<br>y Puesto de Mando de la Agricultura.                     | 25 KVA cambio por uno igual                         |
| CB67             | FK91 | 24/08/10 14:09:02                     | 24/08/10 16:38:45                  | 24/08/10 17:40:45                | 211            | 8     | 5            | Calle 61 (fundición) entre 64 y 66.                                                                  | dañado 25KVA se cambio                              |
| CB797            | FK91 | 23/05/11 12:23:40                     | 23/05/11 13:56:54                  | 23/05/11 14:45:53                | 142            | 8     | 5            | Ave 64(emp ganado menor) entre 101 y<br>103. Buena Vista                                             | se cambio 15 KVA x 15 KVA pto<br>de fuerza x dañado |
| CB786            | FK91 | 04/07/11 18:55:56                     | 05/07/11 10:47:55                  | 05/07/11 11:44:15                | 1009           | 8     | 5            | Ave 66 entre 99 y 101. Buena Vista                                                                   | se quemaron las parrillas                           |
| CB783            | FK91 | 31/08/11 18:44:31                     | 01/09/11 04:01:38                  | 01/09/11 06:34:34                | 710            | 8     | 5            | Calle 119 # s/n entre 4 y 6 La<br>Bayamesa. Buena Vista                                              | dañado 50 KVA se cambió x 50<br>KVA                 |
| CB794            | FK91 | 10/09/11 08:35:51                     | 11/09/11 08:23:06                  | 11/09/11 08:23:47                | 1428           | 8     | 5            | Ave 66 Veterinaria Prov entre 103 y 105. Cienfuegos                                                  | Dañado 15 KVA fue solucionado                       |
| CB794            | FK91 | 10/12/11 12:38:48                     | 10/12/11 13:11:09                  | 10/12/11 13:40:09                | 62             | 8     | 5            | Calle 103 entre 68 y 70. Buena Vista                                                                 | Dañado 15 KVA no da salida.                         |
| CB481            | FK92 | 28/06/10 16:11:47                     | 28/06/10 19:14:24                  | 28/06/10 20:37:23                | 266            | 9     |              | Finca palma sola km 8 entre y carretera roda. Cienfuegos                                             | se cambio 10 KVA x 25 KVA x rayo                    |
| CB332            | FK92 | 04/07/10 20:05:20                     | 05/07/10 08:51:00                  | 05/07/10 09:41:00                | 816            | 8     | 5            | Calle 63 entre rotonda y 4 caminos.                                                                  | quemado x rayo se cambio de 15<br>x 25 KVA          |





| Codigo<br>Transf | Circ  | Fecha y Hora del<br>reporte de avería | Fecha y Hora<br>recibe el Operario | Fecha y Hora<br>cierre de avería | Durac<br>(min) | Causa | Sub-<br>caus | Dirección                                                                                               | Actividad                                              |
|------------------|-------|---------------------------------------|------------------------------------|----------------------------------|----------------|-------|--------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| CB468            | FK92  | 18/07/10 17:15:42                     | 19/07/10 09:08:31                  | 19/07/10 10:12:41                | 1017           | 8     | 5            | Carretera Carolina entre a la entrada de<br>la carretera vieja Carol y . Venta del Rio                  | Dañado x quemado 50 KVA se cambio                      |
| CB496            | FK92  | 06/10/10 17:52:13                     | 06/10/10 20:58:39                  | 06/10/10 21:59:40                | 247            | 8     | 5            | Calle 65 # 7204 entre 72 y 76. Pueblo<br>Grifo                                                          | Se cambió dañado de 50 KVA x<br>50 KVA                 |
| CB27             | FK92  | 09/09/11 18:59:35                     | 10/09/11 06:08:00                  | 10/09/11 06:10:00                | 671            | 8     | 5            | Ave 4ne Edificio B1 entre 61 y 63.  Juanita 2                                                           | se cambio 50 KVA x el mismo                            |
| CB326            | FK93  | 25/06/11 06:59:26                     | 25/06/11 15:57:49                  | 25/06/11 17:07:49                | 608            | 8     | 5            | Carrt Oburque entre Coca leca y (La<br>Ponedora). Pueblo Griffo                                         | 50 KVA dañado se cambia                                |
| CB959            | FK94  | 10/06/10 07:05:02                     | 12/06/10 12:59:08                  | 12/06/10 13:38:04                | 3273           | 8     | 5            | avenida bolivariana entre después del puente 150 metros adelante                                        | se retiro 15 KVA y se repone 25 KVA x quemado          |
| CB869            | FK94  | 25/07/10 20:14:35                     | 25/07/10 23:00:46                  | 25/07/10 23:57:44                | 223            | 8     | 5            | Las Tecas entre después de la<br>Universidad y . Cfgos                                                  | dañado 15 KVA se cambio por igual                      |
| CB5412           | FK94  | 10/12/10 17:23:17                     | 10/12/10 19:58:20                  | 10/12/10 21:13:25                | 230            | 8     | 5            | Carret de Palmira km 2 entre Zona<br>Industrial 2 y Tarea Confianza. Cfgos                              | dañado se cambia                                       |
| CB942            | FK95  | 14/08/10 08:24:43                     | 14/08/10 14:15:02                  | 14/08/10 15:05:55                | 401            | 8     | 5            | Por la Unidad de Recría. Caserio:Carolina-<br>2                                                         | se cambio dañado                                       |
| CB932            | FK95  | 21/08/10 14:46:30                     | 23/08/10 13:58:00                  | 23/08/10 14:36:00                | 2870           | 9     |              | Carolina Viejo Zona Refinería entre frente<br>al Movimiento de Tierra y Área Colectiva.<br>Paraíso      | dañado x rayo se cambio 50 y 25<br>KVA                 |
| CB5442           | FK95  | 03/06/11 07:17:14                     | 03/06/11 10:52:54                  | 03/06/11 11:41:49                | 264            | 8     | 5            | Finca Carolina # s/n entre al lado de la<br>Refinería y Transcupet.                                     | 37.5 KVA dañado tienen servicio punto de fuerza dañado |
| CB944            | FK95  | 11/07/11 07:44:59                     | 11/07/11 18:36:17                  | 11/07/11 19:35:22                | 711            | 8     | 5            | Vaquería San Francisco. Veta Del Rio                                                                    | 25 KVA no tiene pararrayos se cambio x 25KVA           |
| CB938            | FK95  | 20/07/11 20:39:38                     | 21/07/11 03:53:10                  | 21/07/11 10:48:06                | 849            | 8     | 5            | Calorina Viejo entre al lado de la Refinería de Petróleo y                                              | quemado 25 KVA x rayo no tenia pararrayo se cambió     |
| CB939            | FK95  | 16/09/11 23:35:22                     | 17/09/11 06:56:00                  | 17/09/11 07:56:00                | 501            | 9     |              | Batey Carolina Viejo entre la refinería y frente a la tienda de víveres.                                | 25 KVA dañado x rayo se conecto un 37.5 KVA            |
| CB4134           | FK408 | 16/03/11 16:20:09                     | 16/03/11 18:24:39                  | 16/03/11 19:10:10                | 170            | 8     | 5            | Carret a Palmira entre Km 5, Zona Indust<br>2 y Centro de Tarea de Confianza. Pueblo<br>Griffo          | 25 KVA Se realizó el cambio                            |
| CB915            | FK408 | 29/08/11 17:49:57                     | 30/08/11 00:30:00                  | 30/08/11 00:59:00                | 430            | 9     |              | Carret a Rodas Callejón de los Curas e/<br>después del Punto de los Amarillos para y<br>Rodas. 4 Camino | Se repuso por igual capacidad por rayos                |
| CB309            | FK408 | 29/08/11 19:59:24                     | 29/08/11 23:35:00                  | 30/08/11 00:28:00                | 269            | 9     |              | T 15 buscando el Somatón e/Empresa<br>Suministro Transporte Agropecuario.                               | Se repuso por igual capacidad por tormenta             |





#### Anexo 20 Determinación del costo económico de la falla de los transformadores de distribución

| Columna          | Columna          | Column         | Columna                      | Columna            | Columna             | Columna | Columna                 | Columna                             | Columna                     | Columna   | Columna                          | Columna                         |
|------------------|------------------|----------------|------------------------------|--------------------|---------------------|---------|-------------------------|-------------------------------------|-----------------------------|-----------|----------------------------------|---------------------------------|
| 1                | 2                | a 3            | 4                            | 5                  | 6                   | 7       | 8                       | 9                                   | 10                          | 11        | 12                               | 13                              |
| Código<br>Transf | Capacidad<br>kVA | Código<br>Circ | kVA<br>demandado<br>afectado | Tipo de<br>cliente | Hora de<br>la falla |         | Tiempo de<br>afectación | Energía<br>dejada<br>de<br>facturar | Costo de operación al fallo | Ubicación | Costo por reparación transformac | Costo<br>económico<br>del fallo |
|                  |                  |                |                              | Residencial        |                     |         |                         |                                     | Orden de trabajo            | Rural     |                                  |                                 |
|                  |                  |                |                              | Estatal            |                     |         |                         |                                     |                             | Urbana    |                                  |                                 |
|                  |                  |                |                              | Mixto              |                     |         |                         |                                     |                             |           |                                  |                                 |
|                  |                  |                |                              |                    |                     |         |                         |                                     |                             |           |                                  |                                 |





Anexo 21 Determinación del nivel de servicio al cliente por falla del transformador a partir de factores de comportamiento y de la situación de la fallas en las redes de distribución.

| Columna<br>No1      | Colum<br>na No2    | Columna<br>No3                   | Columna<br>No4              | Columna<br>No5         | Columna<br>No6               | Columna<br>No7                       |                                | Columna<br>No8                |                                | Columna<br>No9    | Columna<br>No10                    |
|---------------------|--------------------|----------------------------------|-----------------------------|------------------------|------------------------------|--------------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------|------------------------------------|
| Código<br>Transform | Código<br>Circuito | Tipo de<br>cliente               | Horario de<br>la falla      | No cliente<br>afectado | Actividad<br>en que<br>falla | Capacidad<br>del<br>transform<br>kVA | Tiempo<br>mínimo<br>afectación | Tiempo<br>medio<br>afectación | Tiempo<br>máximo<br>afectación | Ubicación         | Grado de<br>servicio al<br>cliente |
|                     |                    |                                  | (1) a (9)                   | (2) a (20)             |                              |                                      | (1)                            | (2)                           | (4)                            |                   |                                    |
| СВххх               | FJxx               | Residencial urbano               | Durante el<br>pico (5)      | 1 a 5 (2)              |                              | De 3 kVA                             | Hasta<br>1:30h                 | Entre 1:31h<br>hasta 2:00h    | Mayor<br>de 2:00h              | Urbano            | ∑ columnas (4<br>y 5) x 8          |
|                     | FKxx               | Residencial rural                | Durante el<br>pico (4)      | 6 a 10 (4)             |                              | a 25 kVA                             | Hasta<br>2:00h                 | Entre 2:01h<br>hasta 2:30h    | Mayor<br>de 2:30h              | Rural             |                                    |
|                     | xxxx               | Residencial urbano               | Por el día<br>no pico (3)   | 11 a 15 (6)            |                              | De 37 kVA                            | Hasta<br>2:00h                 | Entre 2:01h<br>hasta 2:40h    | Mayor<br>de 2:40h              | Urbano            |                                    |
|                     | xxxx               | Residencial rural                | Por el día<br>no pico (2)   | 16 a 20 (8)            | Operación                    | a 75 kVA                             | Hasta<br>2:30h                 | Entre 2:31h<br>hasta 3:00h    | Mayor<br>de 3:00h              | Rural             |                                    |
|                     | xxxx               | Residencial<br>urbano y<br>rural | Madrugada<br>(2)            | 21 a 30 (10)           |                              | De 100                               | Hasta<br>3:00h                 | Entre 3:01h<br>hasta 4:00h    | Mayor<br>4:00h                 | Urbano            |                                    |
|                     | xxxx               | Mixto                            | Pico y<br>producc<br>(8)    | 31 a 40 (15)           |                              | kVA y<br>mayores                     | Hasta<br>4:00h                 | Entre 4:01h<br>hasta 5:00h    | Mayor<br>de 5:00h              | Rural             |                                    |
|                     | xxxx               | Mixto                            | Pico y no<br>producc<br>(6) | Más 40 (20)            |                              | De 3 kVA<br>a 25 kVA                 | Hasta<br>0:30h                 | Entre 0:31h<br>hasta 1:00h    | Mayor<br>de 1:00h              | Urbano<br>y rural |                                    |
|                     | xxxx               | Mixto                            | No pico y<br>producc<br>(7) |                        | Mantenim.                    | De 37 kVA<br>a 75 kVA                | Hasta<br>1:00h                 | Entre 1:01h<br>hasta 1:40h    | Mayor<br>de 1:40h              | Urbano<br>y rural |                                    |
|                     | xxxx               | Estatal                          | No<br>producc<br>(1)        |                        |                              | De 100<br>kVA y<br>mayores           | Hasta<br>1:45h                 | Entre 1:46h<br>hasta 2:30h    | Mayor<br>de 2:30h              | Urbano<br>y rural |                                    |
|                     | xxxx               | Estatal                          | Producción<br>(6)           |                        |                              |                                      |                                |                               |                                |                   |                                    |





### Anexo 22 Evaluación del nivel de servicio por fallo del transformador UBEM Cienfuegos del 2010 al 2011

| Código<br>Transform | Código<br>Circuito | Tipo de cliente | Horario<br>de la<br>falla | No<br>cliente<br>afectado | Actividad | kVA  | Tiempo<br>afectación<br>(minutos) | Ubicación<br>(Urb y Rur) | Nivel de<br>servicio al<br>cliente.<br>(B, R y M) |
|---------------------|--------------------|-----------------|---------------------------|---------------------------|-----------|------|-----------------------------------|--------------------------|---------------------------------------------------|
| CB9                 | FJ1                | mixto           | 12:50                     | 5                         | Operac    | 37,5 | 304                               | U                        | MAL                                               |
| CB211               | FJ1                | resid           | 15:04                     | 25                        | Operac    | 50   | 516                               | U                        | MAL                                               |
| CB74                | FJ2                | resid           | 18:44                     | 46                        | Operac    | 65   | 122                               | U                        | BIEN                                              |
| CB82                | FJ2                | resid           | 17:17                     | 85                        | Operac    | 100  | 360                               | U                        | REGULAR                                           |
| CB138               | FJ2                | resid           | 11:50                     | 21                        | Mtto      | 25   | 98                                | U                        | BIEN                                              |
| CB382               | FJ2                | resid           | 10:14                     | 147                       | Operac    | 167  | 344                               | U                        | REGULAR                                           |
| CB5432              | FJ2                | estatal         | 17:10                     | 1                         | Operac    | 50   | 230                               | U                        | REGULAR                                           |
| CB5499              | FJ2                | resid           | 09:42                     | 61                        | Operac    | 75   | 475                               | U                        | MAL                                               |
| CB196               | FJ3                | estat           | 10:36                     | 1                         | Operac    | 15   | 178                               | U                        | BIEN                                              |
| CB197               | FJ3                | resid           | 02:34                     | 36                        | Operac    | 50   | 68                                | U                        | BIEN                                              |
| CB203               | FJ3                | resid           | 19:03                     | 38                        | Operac    | 37,5 | 369                               | U                        | MAL                                               |
| CB253               | FJ3                | resid           | 19:38                     | 53                        | Operac    | 50   | 875                               | U                        | MAL                                               |
| CB120               | FJ5                | mixto           | 10:19                     | 5                         | Operac    | 37,5 | 306                               | U                        | MAL                                               |
| CB159               | FJ5                | mixto           | 12:07                     | 23                        | Operac    | 50   | 286                               | U                        | REGULAR                                           |
| CB160               | FJ5                | estatal         | 17:30                     | 1                         | Operac    | 100  | 262                               | U                        | BIEN                                              |
| CB645               | FK6                | estatal         | 15:16                     | 1                         | Operac    | 15   | 1119                              | R                        | MAL                                               |
| CB653               | FK6                | mixto           | 16:37                     | 49                        | Operac    | 37   | 722                               | R                        | MAL                                               |
| CB653               | FK6                | mixto           | 16:06                     | 49                        | Operac    | 37   | 598                               | R                        | MAL                                               |
| CB668               | FK6                | resid           | 17:16                     | 11                        | Operac    | 50   | 577                               | R                        | MAL                                               |
| CB672               | FK6                | alumb           | 21:36                     | 1                         | Operac    | 10   | 3629                              | R                        | MAL                                               |
| CB164               | FJ9                | estatal         | 11:25                     | 1                         | Operac    | 50   | 249                               | R                        | REGULAR                                           |
| CB4232              | FJ9                | resid           | 8:10                      | 7                         | Operac    | 10   | 621                               | R                        | MAL                                               |
| CB844               | FJ12               | resid           | 7:25                      | 3                         | Operac    | 10   | 269                               | R                        | REGULAR                                           |
| CB856               | FJ12               | resid           | 9:34                      | 8                         | Operac    | 10   | 416                               | R                        | MAL                                               |
| CB875               | FJ12               | resid           | 20:50                     | 4                         | Operac    | 15   | 354                               | R                        | MAL                                               |
| CB876               | FJ12               | mixto           | 08:47                     | 10                        | Operac    | 15   | 346                               | R                        | MAL                                               |
| CB880               | FJ12               | resid           | 08:04                     | 18                        | Operac    | 15   | 545                               | R                        | MAL                                               |
| CB882               | FJ12               | mixto           | 14:08                     | 24                        | Operac    | 25   | 325                               | R                        | MAL                                               |
| CB919               | FJ12               | estatal         | 9:05                      | 1                         | Operac    | 50   | 357                               | R                        | MAL                                               |





| Código<br>Transform | Código<br>Circuito | Tipo de cliente | Horario<br>de la<br>falla | No<br>cliente<br>afectado | Actividad | kVA  | Tiempo<br>afectación<br>(minutos) | Ubicación<br>(Urb y Rur) | Nivel de<br>servicio al<br>cliente.<br>(B, R y M) |
|---------------------|--------------------|-----------------|---------------------------|---------------------------|-----------|------|-----------------------------------|--------------------------|---------------------------------------------------|
| CB4157              | FJ12               | estatal         | 20:08                     | 1                         | Operac    | 15   | 1097                              | R                        | MAL                                               |
| CB677               | FJ15               | estatal         | 15:11                     | 1                         | Operac    | 10   | 370                               | R                        | MAL                                               |
| CB963               | FJ15               | resid           | 17:48                     | 60                        | Operac    | 25   | 1016                              | R                        | MAL                                               |
| CB972               | FJ15               | estatal         | 19:17                     | 1                         | Operac    | 167  | 1084                              | R                        | MAL                                               |
| CB973               | FJ15               | resid           | 7:06                      | 4                         | Operac    | 5    | 327                               | R                        | MAL                                               |
| CB982               | FJ15               | estatal         | 13:43                     | 1                         | Operac    | 50   | 337                               | R                        | MAL                                               |
| CB989               | FJ15               | resid           | 8:35                      | 32                        | Operac    | 25   | 587                               | R                        | MAL                                               |
| CB993               | FJ15               | resid           | 10:09                     | 66                        | Operac    | 15   | 337                               | R                        | MAL                                               |
| CB996               | FJ15               | resid           | 15:07                     | 52                        | Operac    | 25   | 424                               | R                        | MAL                                               |
| CB1002              | FJ15               | resid           | 22:57                     | 18                        | Operac    | 25   | 233                               | R                        | BIEN                                              |
| CB1002              | FJ15               | resid           | 10:34                     | 18                        | Operac    | 25   | 1061                              | R                        | MAL                                               |
| CB1003              | FJ15               | mixta           | 10:07                     | 17                        | Operac    | 10   | 1722                              | R                        | MAL                                               |
| CB1005              | FJ15               | resid           | 14:04                     | 4                         | Operac    | 5    | 494                               | R                        | MAL                                               |
| CB1008              | FJ15               | estatal         | 12:27                     | 1                         | Operac    | 15   | 401                               | R                        | MAL                                               |
| CB1011              | FJ15               | resid           | 17:08                     | 10                        | Operac    | 15   | 1028                              | R                        | MAL                                               |
| CB1011              | FJ15               | resid           | 8:44                      | 10                        | Operac    | 15   | 427                               | R                        | MAL                                               |
| CB1018              | FJ15               | mixto           | 16:54                     | 35                        | Operac    | 37,5 | 556                               | R                        | MAL                                               |
| CB1021              | FJ15               | mixto           | 15:14                     | 46                        | Operac    | 15   | 317                               | R                        | MAL                                               |
| CB698               | FK17               | estatal         | 20:07                     | 1                         | Operac    | 37,5 | 273                               | U                        | REGULAR                                           |
| CB5375              | FK17               | resid           | 16:58                     | 22                        | Operac    | 25   | 497                               | U                        | MAL                                               |
| CB16                | FK18               | resid           | 23:27                     | 12                        | Operac    | 10   | 1000                              | U                        | MAL                                               |
| CB515               | FK18               | resid           | 8:32                      | 36                        | Operac    | 50   | 421                               | U                        | MAL                                               |
| CB516               | FK18               | resid           | 22:58                     | 41                        | operac    | 50   | 437                               | U                        | MAL                                               |
| CB611               | FK18               | resid           | 7:17                      | 18                        | operac    | 25   | 388                               | U                        | MAL                                               |
| CB617               | FK18               | resid           | 7:34                      | 40                        | operac    | 50   | 231                               | U                        | REGULAR                                           |
| CB618               | FK18               | mixto           | 19:44                     | 31                        | operac    | 15   | 256                               | U                        | REGULAR                                           |
| CB622               | FK18               | resid           | 18:53                     | 45                        | operac    | 50   | 337                               | U                        | MAL                                               |
| CB4093              | FK18               | estatal         | 00:22                     | 1                         | operac    | 37,5 | 156                               | U                        | BIEN                                              |
| CB5346              | FK18               | estatal         | 00:24                     | 1                         | operac    | 37,5 | 663                               | U                        | MAL                                               |
| CB508               | FK19               | resid           | 11:22                     | 60                        | operac    | 37,5 | 406                               | U                        | MAL                                               |
| CB508               | FK19               | resid           | 19:12                     | 60                        | operac    | 37,5 | 1005                              | U                        | MAL                                               |
| CB552               | FK19               | resid           | 18:51                     | 45                        | operac    | 37,5 | 350                               | U                        | MAL                                               |





| Código<br>Transform | Código<br>Circuito | Tipo de cliente | Horario<br>de la<br>falla | No<br>cliente<br>afectado | Actividad | kVA  | Tiempo<br>afectación<br>(minutos) | Ubicación<br>(Urb y Rur) | Nivel de<br>servicio al<br>cliente.<br>(B, R y M) |
|---------------------|--------------------|-----------------|---------------------------|---------------------------|-----------|------|-----------------------------------|--------------------------|---------------------------------------------------|
| CB559               | FK19               | resid           | 23:26                     | 52                        | operac    | 37,5 | 787                               | U                        | MAL                                               |
| CB580               | FK19               | mixto           | 14:46                     | 62                        | operac    | 10   | 1715                              | U                        | MAL                                               |
| CB589               | FK19               | resid           | 12:00                     | 69                        | mtto      | 37,5 | 25                                | U                        | BIEN                                              |
| CB4424              | FK19               | mixto           | 10:33                     | 36                        | operac    | 37,5 | 444                               | U                        | MAL                                               |
| CB232               | FK20               | mixto           | 19:22                     | 13                        | operac    | 50   | 293                               | U                        | REGULAR                                           |
| CB4186              | FK20               | resid           | 16:45                     | 31                        | operac    | 37,5 | 583                               | U                        | MAL                                               |
| CB59                | FK64               | mixto           | 19:30                     | 43                        | operac    | 50   | 140                               | U                        | BIEN                                              |
| CB375               | FJ66               | resid           | 21:08                     | 68                        | operac    | 75   | 178                               | U                        | BIEN                                              |
| CB414               | FJ66               | mixto           | 9:05                      | 12                        | operac    | 15   | 1721                              | U                        | MAL                                               |
| CB426               | FJ66               | mixto           | 7:45                      | 30                        | operac    | 37,5 | 192                               | U                        | BIEN                                              |
| CB428               | FJ66               | estatal         | 13:04                     | 1                         | operac    | 10   | 510                               | U                        | MAL                                               |
| CB431               | FJ66               | estatal         | 7:12                      | 2                         | operac    | 2x50 | 3008                              | U                        | MAL                                               |
| CB804               | FK69               | mixto           | 8:09                      | 85                        | operac    | 75   | 513                               | U                        | MAL                                               |
| CB808               | FK69               | mixto           | 16:16                     | 16                        | operac    | 10   | 513                               | U                        | MAL                                               |
| CB818               | FK69               | mixto           | 09:39                     | 211                       | operac    | 3x50 | 1759                              | U                        | MAL                                               |
| CB819               | FK69               | resid           | 14:58                     | 32                        | operac    | 25   | 215                               | U                        | REGULAR                                           |
| CB3304              | FK69               | resid           | 12:36                     | 65                        | operac    | 50   | 170                               | U                        | BIEN                                              |
| CB4037              | FK69               | resid           | 20:16                     | 14                        | operac    | 37,5 | 281                               | U                        | REGULAR                                           |
| CB181               | FJ80               | resid           | 18:48                     | 70                        | operac    | 50   | 334                               | U                        | MAL                                               |
| CB181               | FJ80               | resid           | 15:42                     | 70                        | operac    | 50   | 221                               | U                        | REGULAR                                           |
| CB181               | FJ80               | resid           | 18:11                     | 70                        | operac    | 50   | 304                               | U                        | MAL                                               |
| CB288               | FJ81               | mixto           | 13:19                     | 79                        | operac    | 75   | 417                               | U                        | MAL                                               |
| CB296               | FJ81               | mixto           | 19:38                     | 61                        | operac    | 50   | 262                               | U                        | REGULAR                                           |
| CB225               | FK90               | mixto           | 19:03                     | 31                        | operac    | 37,5 | 308                               | U                        | MAL                                               |
| CB682               | FK90               | mixto           | 8:38                      | 4                         | operac    | 15   | 474                               | R                        | MAL                                               |
| CB693               | FK90               | mixto           | 6:43                      | 16                        | operac    | 50   | 1178                              | R                        | MAL                                               |
| CB694               | FK90               | estatal         | 16:17                     | 1                         | operac    | 25   | 262                               | R                        | REGULAR                                           |
| CB712               | FK90               | resid           | 18:41                     | 51                        | operac    | 50   | 393                               | R                        | MAL                                               |
| CB713               | FK90               | resid           | 18:23                     | 44                        | operac    | 25   | 383                               | U                        | MAL                                               |
| CB722               | FK90               | resid           | 12:12                     | 3                         | operac    | 10   | 294                               | R                        | REGULAR                                           |





| Código<br>Transform | Código<br>Circuito | Tipo de cliente | Horario<br>de la<br>falla | No<br>cliente<br>afectado | Actividad | kVA     | Tiempo<br>afectación<br>(minutos) | Ubicación<br>(Urb y Rur) | Nivel de<br>servicio al<br>cliente.<br>(B, R y M) |
|---------------------|--------------------|-----------------|---------------------------|---------------------------|-----------|---------|-----------------------------------|--------------------------|---------------------------------------------------|
| CB735               | FK90               | estatal         | 6:48                      | 1                         | operac    | 15      | 6014                              | U                        | MAL                                               |
| CB744               | FK90               | mixto           | 16:00                     | 40                        | operac    | 37,5    | 304                               | U                        | MAL                                               |
| CB748               | FK90               | mixto           | 07:08                     | 16                        | operac    | 15      | 417                               | R                        | MAL                                               |
| CB4197              | FK90               | resid           | 18:08                     | 31                        | operac    | 37,5    | 408                               | U                        | MAL                                               |
| CB5486              | FK90               | resid           | 20:45                     | 40                        | operac    | 50      | 469                               | U                        | MAL                                               |
| CB365               | FK91               | mixto           | 11:12                     | 12                        | operac    | 15      | 292                               | U                        | REGULAR                                           |
| CB778               | FK91               | resid           | 19:35                     | 47                        | operac    | 50      | 38                                | U                        | BIEN                                              |
| CB783               | FK91               | resid           | 18:44                     | 84                        | operac    | 50      | 710                               | R                        | MAL                                               |
| CB783               | FK91               | resid           | 18:19                     | 84                        | operac    | 37,5    | 397                               | R                        | MAL                                               |
| CB787               | FK91               | resid           | 19:29                     | 47                        | operac    | 50      | 220                               | U                        | REGULAR                                           |
| CB794               | FK91               | mixto           | 8:35                      | 21                        | operac    | 15      | 1428                              | U                        | MAL                                               |
| CB797               | FK91               | mixto           | 12:23                     | 9                         | operac    | 15      | 142                               | U                        | BIEN                                              |
| CB953               | FK91               | resid           | 18:18                     | 15                        | operac    | 25      | 277                               | U                        | REGULAR                                           |
| CB4177              | FK91               | estatal         | 19:35                     | 1                         | operac    | 10      | 1315                              | U                        | MAL                                               |
| CB4179              | FK91               | resid           | 18:49                     | 43                        | operac    | 50      | 229                               | U                        | REGULAR                                           |
| CB27                | FK92               | mixto           | 18:59                     | 45                        | operac    | 50      | 671                               | R                        | MAL                                               |
| CB64                | FK92               | mixto           | 13:58                     | 11                        | Mtto      | 50      | 43                                | U                        | BIEN                                              |
| CB66                | FK92               | estatal         | 16:47                     | 3                         | operac    | 25      | 452                               | U                        | MAL                                               |
| CB68                | FK92               | estatal         | 14:09                     | 1                         | operac    | 25      | 211                               | U                        | REGULAR                                           |
| CB70                | FK92               | resid           | 00:56                     | 35                        | operac    | 50      | 634                               | U                        | MAL                                               |
| CB87                | FK92               | mixto           | 07:05                     | 51                        | operac    | 50      | 254                               | U                        | REGULAR                                           |
| CB88                | FK92               | mixto           | 20:57                     | 67                        | operac    | 75      | 999                               | U                        | MAL                                               |
| CB91                | FK92               | mixto           | 16:00                     | 14                        | operac    | 10      | 1416                              | U                        | MAL                                               |
| CB92                | FK92               | resid           | 18:25                     | 80                        | operac    | 75      | 294                               | U                        | REGULAR                                           |
| CB110               | FK92               | resid           | 18:29                     | 66                        | operac    | 75      | 322                               | U                        | MAL                                               |
| CB496               | FK92               | mixto           | 17:52                     | 68                        | operac    | 50      | 247                               | R                        | REGULAR                                           |
| CB869               | FK94               | resid           | 20:14                     | 10                        | operac    | 15      | 223                               | R                        | REGULAR                                           |
| CB959               | FK94               | estatal         | 07:05                     | 1                         | operac    | 15      | 3273                              | R                        | MAL                                               |
| CB932               | FK95               | estatal         | 14:46                     | 1                         | operac    | 25 y 50 | 2870                              | R                        | MAL                                               |
| CB938               | FK95               | mixto           | 20:39                     | 42                        | operac    | 25      | 849                               | R                        | MAL                                               |
| CB939               | FK95               | resid           | 23:35                     | 20                        | operac    | 25      | 501                               | R                        | MAL                                               |
| CB939               | FK95               | resid           | 9:53                      | 20                        | operac    | 25      | 477                               | R                        | MAL                                               |
| CB942               | FK95               | resid           | 08:24                     | 14                        | operac    | 25      | 401                               | R                        | MAL                                               |





| Código<br>Transform | Código<br>Circuito | Tipo de cliente | Horario<br>de la<br>falla | No<br>cliente<br>afectado | Actividad | kVA  | Tiempo<br>afectación<br>(minutos) | Ubicación<br>(Urb y Rur) | Nivel de<br>servicio al<br>cliente.<br>(B, R y M) |
|---------------------|--------------------|-----------------|---------------------------|---------------------------|-----------|------|-----------------------------------|--------------------------|---------------------------------------------------|
| CB944               | FK95               | estatal         | 07:44                     | 1                         | operac    | 25   | 711                               | R                        | MAL                                               |
| CB945               | FK95               | estatal         | 22:42                     | 1                         | operac    | 25   | 163                               | R                        | BIEN                                              |
| CB5442              | FK95               | estatal         | 07:17                     | 1                         | operac    | 37,5 | 264                               | R                        | REGULAR                                           |
| CB326               | FK405              | estatal         | 06:59                     | 1                         | operac    | 50   | 608                               | U                        | MAL                                               |
| CB492               | FJ406              | resid           | 11:03                     | 49                        | operac    | 50   | 390                               | U                        | MAL                                               |
| CB332               | FK407              | mixto           | 20:05                     | 11                        | operac    | 25   | 816                               | U                        | MAL                                               |
| CB455               | FK407              | mixta           | 23:20                     | 12                        | operac    | 50   | 157                               | U                        | BIEN                                              |
| CB470               | FK407              | resid           | 19:21                     | 48                        | operac    | 25   | 1437                              | U                        | MAL                                               |
| CB480               | FK407              | resid           | 5:50                      | 12                        | operac    | 15   | 408                               | U                        | MAL                                               |
| CB893               | FK407              | estatal         | 10:22                     | 1                         | operac    | 50   | 186                               | U                        | BIEN                                              |
| CB309               | FK408              | estatal         | 19:59                     | 1                         | operac    | 50   | 269                               | U                        | REGULAR                                           |
| CB309               | FK408              | estatal         | 15:14:                    | 1                         | operac    | 25   | 265                               | U                        | REGULAR                                           |
| CB910               | FK408              | estatal         | 16:35                     | 2                         | operac    | 25   | 1050                              | R                        | MAL                                               |
| CB915               | FK408              | resid           | 18:12                     | 25                        | operac    | 25   | 1012                              | R                        | MAL                                               |
| CB915               | FK408              | resid           | 17:49                     | 25                        | operac    | 25   | 430                               | U                        | MAL                                               |
| CB4134              | FK408              | estatal         | 16:20                     | 1                         | operac    | 25   | 170                               | U                        | BIEN                                              |
| CB4173              | FK408              | resid           | 18:36                     | 20                        | operac    | 15   | 1034                              | U                        | MAL                                               |
| CB5499              | FJ2                | mixto           | 10:26                     | 16                        | mtto      | 50   | 180                               | U                        | REGULAR                                           |
| CB191               | FJ4                | resid           | 11:36                     | 28                        | mtto      | 50   | 125                               | U                        | BIEN                                              |
| CB39                | FJ5                | estatal         | 9:13                      | 1                         | mtto      | 25   | 166                               | U                        | REGULAR                                           |
| CB5484              | FJ9                | estatal         | 15:20                     | 1                         | mtto      | 37,5 | 123                               | R                        | REGULAR                                           |
| CB5474              | FJ9                | mixto           | 8:16                      | 23                        | mtto      | 50   | 94                                | R                        | BIEN                                              |
| CB565               | FJ19               | resid           | 11:31                     | 42                        | mtto      | 50   | 137                               | U                        | REGULAR                                           |
| CB4835              | FJ19               | resid           | 9:22                      | 18                        | mtto      | 25   | 211                               | U                        | MAL                                               |
| CB580               | FJ19               | resid           | 8:53                      | 11                        | mtto      | 15   | 117                               | U                        | REGULAR                                           |
| CB4035              | FK20               | estatal         | 10:34                     | 1                         | mtto      | 10   | 55                                | U                        | BIEN                                              |
| CB599               | FK20               | resid           | 15:18                     | 15                        | mtto      | 25   | 68                                | U                        | BIEN                                              |
| CB227               | FK20               | mixto           | 9:19                      | 18                        | mtto      | 37,5 | 144                               | U                        | REGULAR                                           |
| CB3386              | FK64               | resid           | 8:05                      | 14                        | mtto      | 15   | 197                               | U                        | MAL                                               |
| CB500               | FK68               | estatal         | 9:48                      | 1                         | mtto      | 15   | 208                               | R                        | MAL                                               |
| CB812               | FK69               | resid           | 14:22                     | 11                        | mtto      | 15   | 133                               | U                        | REGULAR                                           |
| CB826               | FK76               | mixto           | 10:27                     | 6                         | mtto      | 15   | 55                                | U                        | BIEN                                              |





| Código<br>Transform | Código<br>Circuito | Tipo de cliente | Horario<br>de la<br>falla | No<br>cliente<br>afectado | Actividad | kVA  | Tiempo<br>afectación<br>(minutos) | Ubicación<br>(Urb y Rur) | Nivel de<br>servicio al<br>cliente.<br>(B, R y M) |
|---------------------|--------------------|-----------------|---------------------------|---------------------------|-----------|------|-----------------------------------|--------------------------|---------------------------------------------------|
| CB91                | FK92               | estatal         | 13:30                     | 1                         | mtto      | 5    | 75                                | U                        | BIEN                                              |
| CB5447              | FK94               | mixto           | 10:10                     | 15                        | mtto      | 25   | 110                               | R                        | BIEN                                              |
| CB936               | FK95               | estatal         | 9:55                      | 1                         | mtto      | 15   | 155                               | R                        | REGULAR                                           |
| CB405               | FK407              | resid           | 10:55                     | 8                         | mtto      | 10   | 217                               | R                        | MAL                                               |
| CB312               | FK408              | estatal         | 8:23                      | 1                         | mtto      | 37,5 | 83                                | U                        | BIEN                                              |
|                     |                    |                 |                           |                           |           |      |                                   |                          |                                                   |





# Anexo 23 Evaluación del costo económico del fallo del transformador por energía dejada de facturar

| Código<br>Transf | Capacid<br>kVA | kVA<br>demandado<br>afectado | Tipo de<br>cliente | Hora de<br>la falla | Tarifa<br>eléctrica | Tiempo de afectación | Energía<br>dejada de<br>facturar |
|------------------|----------------|------------------------------|--------------------|---------------------|---------------------|----------------------|----------------------------------|
| CB9              | 37,5           | 22,5                         | mixto              | 12:50               | 0,27                | 5,05                 | \$ 24,30                         |
| CB211            | 50             | 17,5                         | resid              | 15:04               | 0,31                | 8,10                 | \$35,15                          |
| CB74             | 65             | 52                           | resid              | 18:44               | 0,31                | 2,05                 | \$26,43                          |
| CB82             | 100            | 87                           | resid              | 17:17               | 0,31                | 6                    | \$130,01                         |
| CB138            | 25             | 13                           | resid              | 11:50               | 0,31                | 1,40                 | \$4,51                           |
| CB382            | 167            | 75                           | resid              | 10:14               | 0,31                | 5,45                 | \$101,37                         |
| CB5432           | 50             | 36                           | estatal            | 17:10               | 0,22                | 3,50                 | \$22,18                          |
| CB5499           | 75             | 33,75                        | resid              | 09:42               | 0,31                | 7,55                 | \$63,19                          |
| CB196            | 15             | 12                           | estatal            | 10:36               | 0,22                | 2,50                 | \$5,44                           |
| CB197            | 50             | 19                           | resid              | 02:34               | 0,31                | 1,05                 | \$4,94                           |
| CB203            | 37,5           | 30                           | resid              | 19:03               | 0,31                | 6,15                 | \$ 45,75                         |
| CB253            | 50             | 40                           | resid              | 19:38               | 0,31                | 14,35                | \$142,35                         |
| CB120            | 37,5           | 22                           | mixto              | 10:19               | 0,27                | 5,10                 | \$24,23                          |
| CB159            | 50             | 20                           | mixto              | 12:07               | 0,27                | 4,45                 | \$19,22                          |
| CB160            | 100            | 40                           | estatal            | 17:30               | 0,22                | 4,35                 | \$30,62                          |
| CB645            | 15             | 9                            | estatal            | 15:16               | 0,22                | 18,35                | \$29,06                          |
| CB653            | 37             | 22                           | mixto              | 16:37               | 0,27                | 12,05                | \$57,26                          |
| CB653            | 37             | 26                           | mixto              | 16:06               | 0,27                | 9,55                 | \$53,63                          |
| CB668            | 50             | 40                           | resid              | 17:16               | 0,31                | 9,35                 | \$92,75                          |
| CB672            | 10             | 8                            | alumb              | 21:36               | 0,22                | 60,40                | \$85,04                          |
| CB164            | 50             | 42                           | estatal            | 11:25               | 0,22                | 4,15                 | \$27,89                          |
| CB4232           | 10             | 4                            | resid              | 8:10                | 0,31                | 10,35                | \$10,26                          |
| CB844            | 10             | 3,6                          | resid              | 7:25                | 0,31                | 4,40                 | \$3,93                           |
| CB856            | 10             | 3,8                          | resid              | 9:34                | 0,31                | 6,55                 | \$6,17                           |
| CB875            | 15             | 12                           | resid              | 20:50               | 0,31                | 5,50                 | \$16,37                          |
| CB876            | 15             | 7                            | mixto              | 08:47               | 0,27                | 5,45                 | \$8,24                           |
| CB880            | 15             | 9                            | resid              | 08:04               | 0,31                | 9                    | \$20,09                          |
| CB882            | 25             | 17                           | mixto              | 14:08               | 0,27                | 5,20                 | \$19,09                          |
| CB919            | 50             | 39                           | estatal            | 9:05                | 0,22                | 5,57                 | \$38,23                          |
| CB4157           | 15             | 9                            | estatal            | 20:08               | 0,22                | 18,25                | \$28,90                          |





| Código<br>Transf | Capacid<br>kVA | kVA<br>demandado<br>afectado | Tipo de cliente | Hora de<br>la falla | Tarifa<br>eléctrica | Tiempo de afectación | Energía<br>dejada de<br>facturar |
|------------------|----------------|------------------------------|-----------------|---------------------|---------------------|----------------------|----------------------------------|
| CB677            | 10             | 4                            | estatal         | 15:11               | 0,22                | 6,10                 | \$4,29                           |
| CB963            | 25             | 20                           | resid           | 17:48               | 0,31                | 16,56                | \$82,13                          |
| CB972            | 167            | 100                          | estatal         | 19:17               | 0,22                | 18,04                | \$217,50                         |
| CB973            | 5              | 2                            | resid           | 7:06                | 0,31                | 5,27                 | \$2,61                           |
| CB982            | 50             | 28                           | estatal         | 13:43               | 0,22                | 5,37                 | \$26,46                          |
| CB989            | 25             | 16                           | resid           | 8:35                | 0,31                | 9,47                 | \$37,58                          |
| CB993            | 15             | 8                            | resid           | 10:09               | 0,31                | 5,37                 | \$10,65                          |
| CB996            | 25             | 14                           | resid           | 15:07               | 0,31                | 7,04                 | \$24,44                          |
| CB1002           | 25             | 18                           | resid           | 22:57               | 0,31                | 3,43                 | \$15,31                          |
| CB1002           | 25             | 11                           | resid           | 10:34               | 0,31                | 17,41                | \$47,49                          |
| CB1003           | 10             | 4                            | mixto           | 10:07               | 0,27                | 28,42                | \$24,55                          |
| CB1005           | 5              | 2                            | resid           | 14:04               | 0,31                | 8,14                 | \$4,04                           |
| CB1008           | 15             | 11                           | estatal         | 12:27               | 0,22                | 6,41                 | \$12,41                          |
| CB1011           | 15             | 11                           | resid           | 17:08               | 0,31                | 17,08                | \$46,59                          |
| CB1011           | 15             | 7                            | resid           | 8:44                | 0,31                | 7,07                 | \$12,27                          |
| CB1018           | 37,5           | 28                           | mixto           | 16:54               | 0,27                | 9,16                 | \$55,40                          |
| CB1021           | 15             | 7                            | mixto           | 15:14               | 0,27                | 5,17                 | \$7,82                           |
| CB698            | 37,5           | 22                           | estatal         | 20:07               | 0,22                | 4,33                 | \$16,76                          |
| CB5375           | 25             | 17                           | resid           | 16:58               | 0,31                | 8,17                 | \$34,44                          |
| CB16             | 10             | 6                            | resid           | 23:27               | 0,31                | 16,40                | \$24,40                          |
| CB515            | 50             | 27                           | resid           | 8:32                | 0,31                | 7,01                 | \$46,94                          |
| CB516            | 50             | 32                           | resid           | 22:58               | 0,31                | 7,17                 | \$56,90                          |
| CB611            | 25             | 15                           | resid           | 7:17                | 0,31                | 6,28                 | \$23,36                          |
| CB617            | 50             | 31                           | resid           | 7:34                | 0,31                | 3,41                 | \$26,22                          |
| CB618            | 15             | 11                           | mixto           | 19:44               | 0,27                | 4,16                 | \$9,88                           |
| CB622            | 50             | 37                           | resid           | 18:53               | 0,31                | 5,37                 | \$49,27                          |
| CB4093           | 37,5           | 11                           | estatal         | 00:22               | 0,22                | 2,36                 | \$4,57                           |
| CB5346           | 37,5           | 8                            | estatal         | 00:24               | 0,22                | 11,03                | \$15,91                          |
| CB508            | 37,5           | 14                           | resid           | 11:22               | 0,31                | 6,46                 | \$22,43                          |
| CB508            | 37,5           | 21                           | resid           | 19:12               | 0,31                | 16,45                | \$85,67                          |
| CB552            | 37,5           | 33                           | resid           | 18:51               | 0,31                | 5,40                 | \$44,19                          |





| Código<br>Transf | Capacid<br>kVA | kVA<br>demandado<br>afectado | Tipo de cliente | Hora de<br>la falla | Tarifa<br>eléctrica | Tiempo de afectación | Energía<br>dejada de<br>facturar |
|------------------|----------------|------------------------------|-----------------|---------------------|---------------------|----------------------|----------------------------------|
| CB559            | 37,5           | 25                           | resid           | 23:26               | 0,31                | 13,07                | \$81,03                          |
| CB580            | 10             | 5                            | mixto           | 14:46               | 0,27                | 28,35                | \$30,62                          |
| CB589            | 37,5           | 19                           | resid           | 12:00               | 0,31                | 0,25                 | \$1,18                           |
| CB4424           | 37,5           | 28                           | mixto           | 10:33               | 0,27                | 7,24                 | \$43,79                          |
| CB232            | 50             | 41                           | mixto           | 19:22               | 0,27                | 7,23                 | \$64,03                          |
| CB4186           | 37,5           | 24                           | resid           | 16:45               | 0,31                | 9,43                 | \$56,13                          |
| CB59             | 50             | 33                           | mixto           | 19:30               | 0,27                | 2,20                 | \$15,68                          |
| CB375            | 75             | 68                           | resid           | 21:08               | 0,31                | 2,58                 | \$43,51                          |
| CB414            | 15             | 8                            | mixto           | 9:05                | 0,27                | 28,41                | \$49,09                          |
| CB426            | 37,5           | 19                           | mixto           | 7:45                | 0,27                | 3,12                 | \$12,80                          |
| CB428            | 10             | 6                            | estatal         | 13:04               | 0,22                | 8,30                 | \$8,76                           |
| CB431            | 2x50           | 67                           | estatal         | 7:12                | 0,22                | 50,08                | \$590,54                         |
| CB804            | 75             | 43                           | mixto           | 8:09                | 0,27                | 8,33                 | \$77,37                          |
| CB808            | 10             | 3                            | mixto           | 16:16               | 0,27                | 8,31                 | \$5,38                           |
| CB818            | 3x50           | 87                           | mixto           | 09:39               | 0,27                | 29,19                | \$546,96                         |
| CB819            | 25             | 11                           | resid           | 14:58               | 0,31                | 3,35                 | \$9,14                           |
| CB3304           | 50             | 17                           | resid           | 12:36               | 0,31                | 2,40                 | \$10,12                          |
| CB4037           | 37,5           | 29                           | resid           | 20:16               | 0,31                | 4,41                 | \$31,72                          |
| CB181            | 50             | 35                           | resid           | 18:48               | 0,31                | 5,34                 | \$46,35                          |
| CB181            | 50             | 20                           | resid           | 15:42               | 0,31                | 3,37                 | \$16,71                          |
| CB181            | 50             | 43                           | resid           | 18:11               | 0,31                | 5,04                 | \$53,75                          |
| CB288            | 75             | 30                           | mixto           | 13:19               | 0,27                | 6,57                 | \$42,57                          |
| CB296            | 50             | 23                           | mixto           | 19:38               | 0,27                | 4,22                 | \$20,96                          |
| CB225            | 37,5           | 21                           | mixto           | 19:03               | 0,27                | 5,08                 | \$23,04                          |
| CB682            | 15             | 6                            | mixto           | 8:38                | 0,27                | 7,54                 | \$9,77                           |
| CB693            | 50             | 11                           | mixto           | 6:43                | 0,27                | 19,33                | \$45,93                          |
| CB694            | 25             | 9                            | estatal         | 16:17               | 0,22                | 4,22                 | \$6,68                           |
| CB712            | 50             | 36                           | resid           | 18:41               | 0,31                | 6,33                 | \$56,51                          |
| CB713            | 25             | 20                           | resid           | 18:23               | 0,31                | 6,23                 | \$30,90                          |
| CB722            | 10             | 3                            | resid           | 12:12               | 0,31                | 4,54                 | \$33,78                          |
| CB735            | 15             | 6                            | estatal         | 6:48                | 0,22                | 100,11               | \$105,72                         |





| CB744 | 37,5 | 19 | mixto | 16:00 | 0,27 | 5,04 | \$20,68 |
|-------|------|----|-------|-------|------|------|---------|





| Código<br>Transf | Capacid<br>kVA | kVA<br>demandado<br>afectado | Tipo de<br>cliente | Hora de<br>la falla | Tarifa<br>eléctrica | Tiempo de afectación | Energía<br>dejada de<br>facturar |
|------------------|----------------|------------------------------|--------------------|---------------------|---------------------|----------------------|----------------------------------|
| CB748            | 15             | 3                            | mixto              | 07:08               | 0,27                | 6,57                 | \$4,26                           |
| CB4197           | 37,5           | 33                           | resid              | 18:08               | 0,31                | 6,48                 | \$53,03                          |
| CB5486           | 50             | 45                           | resid              | 20:45               | 0,31                | 6,49                 | \$72,43                          |
| CB365            | 15             | 7                            | mixto              | 11:12               | 0,27                | 4,52                 | \$6,83                           |
| CB778            | 50             | 43                           | resid              | 19:35               | 0,31                | 0,38                 | \$4,05                           |
| CB783            | 50             | 39                           | resid              | 18:44               | 0,31                | 11,50                | \$111,23                         |
| CB783            | 37             | 33                           | resid              | 18:19               | 0,31                | 6,37                 | \$52,13                          |
| CB787            | 50             | 40                           | resid              | 19:29               | 0,31                | 3,40                 | \$33,73                          |
| CB794            | 15             | 4                            | mixto              | 8:35                | 0,27                | 23,48                | \$20,29                          |
| CB797            | 15             | 7                            | mixto              | 12:23               | 0,27                | 2,12                 | \$3,20                           |
| CB953            | 25             | 22                           | resid              | 18:18               | 0,31                | 4,37                 | \$23,84                          |
| CB4177           | 10             | 2                            | estatal            | 19:35               | 0,22                | 21,55                | \$7,58                           |
| CB4179           | 50             | 39                           | resid              | 18:49               | 0,31                | 3,49                 | \$33,75                          |
| CB27             | 50             | 33                           | mixto              | 18:59               | 0,27                | 11,11                | \$71,99                          |
| CB64             | 50             | 25                           | mixto              | 13:58               | 0,27                | 0,43                 | \$2,32                           |
| CB66             | 25             | 20                           | estatal            | 16:47               | 0,22                | 7,32                 | \$25,77                          |
| CB68             | 25             | 17                           | estatal            | 14:09               | 0,22                | 3,31                 | \$9,90                           |
| CB70             | 50             | 15                           | resid              | 00:56               | 0,31                | 10,34                | \$38,46                          |
| CB87             | 50             | 33                           | mixto              | 07:05               | 0,27                | 4,14                 | \$29,51                          |
| CB88             | 75             | 56                           | mixto              | 20:57               | 0,27                | 16,39                | \$198,25                         |
| CB91             | 10             | 4                            | mixto              | 16:00               | 0,27                | 23,36                | \$20,18                          |
| CB92             | 75             | 66                           | resid              | 18:25               | 0,31                | 4,54                 | \$74,31                          |
| CB110            | 75             | 58                           | resid              | 18:29               | 0,31                | 4,52                 | \$65,02                          |
| CB496            | 50             | 14                           | mixto              | 17:52               | 0,27                | 4,07                 | \$12,31                          |
| CB869            | 15             | 11                           | resid              | 20:14               | 0,31                | 3,45                 | \$9,41                           |
| CB959            | 15             | 6                            | estatal            | 07:05               | 0,22                | 3,43                 | \$3,62                           |
| CB932            | 25 y 50        | 55                           | estatal            | 14:46               | 0,22                | 47,40                | \$275,30                         |
| CB938            | 25             | 16                           | mixto              | 20:39               | 0,27                | 14,09                | \$48,69                          |
| CB939            | 25             | 13                           | resid              | 23:35               | 0,31                | 8,21                 | \$26,47                          |
| CB939            | 25             | 11                           | resid              | 9:53                | 0,31                | 8,17                 | \$22,29                          |
| CB942            | 25             | 9                            | resid              | 08:24               | 0,31                | 6,33                 | \$14,13                          |





| Código<br>Transf | Capacid<br>kVA | kVA<br>demandado<br>afectado | Tipo de<br>cliente | Hora de<br>la falla | Tarifa<br>eléctrica | Tiempo de afectación | Energía<br>dejada de<br>facturar |
|------------------|----------------|------------------------------|--------------------|---------------------|---------------------|----------------------|----------------------------------|
| CB944            | 25             | 12                           | estatal            | 07:44               | 0,22                | 11,41                | \$24,10                          |
| CB945            | 25             | 9                            | estatal            | 22:42               | 0,22                | 2,43                 | \$3,85                           |
| CB5442           | 37,5           | 21                           | estatal            | 07:17               | 0,22                | 4,24                 | \$8,85                           |
| CB326            | 50             | 11                           | estatal            | 06:59               | 0,22                | 10,08                | \$19,51                          |
| CB492            | 50             | 22                           | resid              | 11:03               | 0,31                | 6,30                 | \$34,37                          |
| CB332            | 25             | 18                           | mixto              | 20:05               | 0,27                | 13,36                | \$51,94                          |
| CB455            | 50             | 27                           | mixto              | 23:20               | 0,27                | 2,37                 | \$13,82                          |
| CB470            | 25             | 19                           | resid              | 19:21               | 0,31                | 23,57                | \$111,06                         |
| CB480            | 15             | 6                            | resid              | 5:50                | 0,31                | 6,48                 | \$9,64                           |
| CB893            | 50             | 31                           | estatal            | 10:22               | 0,22                | 3,06                 | \$16,69                          |
| CB309            | 50             | 9                            | estatal            | 19:59               | 0,22                | 4,29                 | \$6,79                           |
| CB309            | 25             | 16                           | estatal            | 15:14:              | 0,22                | 4,25                 | \$11,97                          |
| CB910            | 25             | 14                           | estatal            | 16:35               | 0,22                | 17,30                | \$42,63                          |
| CB915            | 25             | 17                           | resid              | 18:12               | 0,31                | 16,51                | \$69,61                          |
| CB915            | 25             | 20                           | resid              | 17:49               | 0,31                | 7,10                 | \$35,22                          |
| CB4134           | 25             | 19                           | estatal            | 16:20               | 0,22                | 2,50                 | \$8,36                           |
| CB4173           | 15             | 11                           | resid              | 18:36               | 0,31                | 17,14                | \$46,76                          |
|                  |                |                              |                    |                     |                     |                      |                                  |





#### Anexo 24 Indicadores de fiabilidad a los fallos de los transformadores

| Código<br>del<br>circuito | Razón<br>de falla<br>(f/anual) | Índice de<br>frecuencia<br>de fallo (%) | Frecuencia<br>media<br>interrupc kVA | Tiempo<br>medio<br>entre fallas | Tiempo<br>fuera de<br>servicio | Grado de<br>Intensidad<br>del fallo |
|---------------------------|--------------------------------|-----------------------------------------|--------------------------------------|---------------------------------|--------------------------------|-------------------------------------|
|                           | λ                              | IFF                                     | FMIK                                 | TMEF                            | TPFS                           | kVA prom                            |
| FJ1                       | 1                              | 10,53                                   | 0,124                                | 182                             | 410                            | 43.75                               |
| FJ2                       | 3,5                            | 9,19                                    | 0,154                                | 80                              | 226,1                          | 71,18                               |
| FJ3                       | 2                              | 6,25                                    | 0,060                                | 121                             | 372,5                          | 38,12                               |
| FJ4                       | 0,5                            | 4,76                                    | 0,052                                | 300                             | 125                            | 50                                  |
| FJ5                       | 2                              | 7,02                                    | 0,066                                | 121                             | 255                            | 53,12                               |
| FK6                       | 2,5                            | 4,81                                    | 0,032                                | 104                             | 1329                           | 43,75                               |
| FJ9                       | 2                              | 8,69                                    | 0,061                                | 121                             | 271,7                          | 33,75                               |
| FJ12                      | 4                              | 9,19                                    | 0,080                                | 72                              | 463,6                          | 19,37                               |
| FJ15                      | 8,5                            | 17,71                                   | 0,172                                | 38                              | 630,6                          | 28,5                                |
| FK17                      | 1                              | 3,57                                    | 0,276                                | 182                             | 385                            | 31,25                               |
| FK18                      | 4,5                            | 8,82                                    | 0,081                                | 66                              | 274,5                          | 36,11                               |
| FK19                      | 5                              | 7,91                                    | 0,069                                | 61                              | 472,4                          | 34,09                               |
| FK20                      | 2,5                            | 4,76                                    | 0,026                                | 104                             | 285,7                          | 29,5                                |
| FK64                      | 1                              | 4,17                                    | 0,021                                | 182                             | 168,5                          | 32,5                                |
| FJ66                      | 2,5                            | 10                                      | 0,123                                | 104                             | 1121,8                         | 39,58                               |
| FK68                      | 0,5                            | 12,5                                    | 0,167                                | 300                             | 208                            | 15                                  |
| FK69                      | 3                              | 10,59                                   | 0,158                                | 91                              | 512                            | 40,28                               |
| FK76                      | 0,5                            | 2,17                                    | 0,010                                | 300                             | 55                             | 15                                  |
| FJ80                      | 1,5                            | 4,35                                    | 0,054                                | 145                             | 286,3                          | 50                                  |
| FJ81                      | 1                              | 2,70                                    | 0,039                                | 182                             | 339,5                          | 62,5                                |
| FK90                      | 5,5                            | 6,15                                    | 0,060                                | 56                              | 908,7                          | 30,62                               |
| FK91                      | 5                              | 8,93                                    | 0,078                                | 61                              | 504,8                          | 31,75                               |
| FK92                      | 6                              | 8,90                                    | 0,101                                | 52                              | 432                            | 44,42                               |
| FK94                      | 1,5                            | 11,11                                   | 0,046                                | 145                             | 1202                           | 18,33                               |
| FK95                      | 4,5                            | 17,24                                   | 0,176                                | 66                              | 639,1                          | 27,75                               |
| FK405                     | 0,5                            | 2,22                                    | 0,019                                | 300                             | 412,5                          | 50                                  |
| FK406                     | 0,5                            | 4,54                                    | 0,059                                | 300                             | 390                            | 50                                  |
| FK407                     | 3                              | 46,15                                   | 0,025                                | 91                              | 536,8                          | 29,17                               |
| FK408                     | 4                              | 80                                      | 0,077                                | 72                              | 539,1                          | 28,43                               |





### Anexo 25 Plan de mejoras resultante del diagnóstico del proceso de mantenimiento en las redes eléctricas.

| Nro.   | ¿Por qué                                                                                                                                                                                                 | ¿Dónde?                                  | ¿Cuándo?                 | ¿Quién?                                                                | ¿Qué?                                                           |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| 1      | ¿POR QUÉ? Es muy elevado las fallas por falso contacto en los niveles secundario y de servicios en las redes de distribución eléctricas                                                                  |                                          |                          |                                                                        |                                                                 |  |
| ¿Cómo? | Caracterizar los circuitos y evaluar el uso adecuado según las especificaciones de los medios utilizados en las redes para los acoples de conductores                                                    | Por circuito en<br>cada UBEM             | Todo el año              | Especialistas y<br>técnicos de<br>distribución                         | Disminuir los falsos<br>contactos                               |  |
|        | Inspeccionar la actividad de las brigadas y certificar la calidad. Penalizar por incremento de las fallas del servicio                                                                                   | En las redes<br>eléctricas               | Durante el<br>servicio   | Brigadas de servicios<br>comerciales UBEM                              | Mejorar la calidad<br>del servicio a los<br>clientes            |  |
|        | Evaluar y reportar el comportamiento de las fallas por banco de transformadores periódicamente analizando las perdidas eléctricas por falso contacto y otras fallas                                      | SIGERE                                   | 1er<br>trimestre<br>2013 | Técnicos comerciales<br>UBEM                                           | Disminuir el tiempo<br>sin servicio                             |  |
|        | Establecer un indicador especifico de las interrupciones por falso contacto en la evaluación del desempeño de las brigadas de servicio y mantenimiento a las redes                                       | Reglamento de<br>pago                    | 1er<br>trimestre<br>2013 | Especialistas<br>Dirección de Capital<br>Humano                        | Cumplir los<br>objetivos<br>empresariales                       |  |
|        | Realizar un análisis de los circuitos más críticos y los recursos que ocasionan cuellos de botellas en los planes de mantenimiento para su mejoramiento                                                  | Consejo de<br>calidad                    | trimestral               | Director Técnico                                                       | Cumplir Plan de<br>Mtto                                         |  |
|        | Analizar el comportamiento de las interrupciones en cada nivel de voltaje evaluando el componente técnico económico por nivel de interrupción                                                            | En la reunión de<br>Operaciones          | Una vez al<br>mes        | Grupo de Regímenes<br>UBE Despacho de<br>carga                         | Mejorar los<br>indicadores                                      |  |
| 2      | ¿POR QUÉ? Es desigual el comportamiento de la confiabilidad del funcionamiento de los transformadores en todas las redes                                                                                 |                                          |                          |                                                                        |                                                                 |  |
|        | Elaborar una estrategia de trabajo que homogenice la actividad apoyando las áreas mas atrasada. Crear grupos de brigadas intermunicipales en DIP de mejoras.                                             | Plan anual 2013                          | 4to<br>trimestre<br>2012 | Consejo de Dirección                                                   | Incrementar el<br>índice de<br>disponibilidad por<br>kVA al 90% |  |
| ¿Cómo? | Elevar la actividad de diagnóstico no solo en el nivel de la subtransmisión haciendo extensiva al nivel primario y secundario en toda la provincia.                                                      | Grupo de<br>diagnóstico de<br>redes      | 2do<br>semestre<br>2013  | Director Técnico                                                       |                                                                 |  |
|        | Capacitar con las mejoras practicas a los técnicos de las UBEM más<br>negativas, aplicar las herramientas para el análisis adecuado y toma de<br>decisión sobre la base de datos del SIGERE actualizadas | Plan de<br>capacitación<br>2013          | 2013                     | Grupo formación y<br>desarrollo y<br>Especialista Dirección<br>Técnica | Disminuir las<br>brechas de<br>competencias                     |  |
|        | Mejorar la disponibilidad del parque automotor tecnológico, logrando crear<br>un equipo integral de diagnóstico de transformadores a nivel provincial.                                                   | Taller de<br>transporte                  | 3er<br>trimestre         | Director UBE<br>Transporte Automotor                                   | Índice disponibilidad<br>tecnológica 87%                        |  |
|        | Certificar el laboratorio de pruebas eléctricas de alto voltaje del taller de transformadores                                                                                                            | Taller de<br>transformadores             | 1 trimestre<br>2013      | Director UBE Centro<br>de Operaciones                                  | Acreditar por NC<br>17025                                       |  |
|        | Certificar e integrar los proceso de gestión de mantenimiento y organización de la producción de bienes y servicios                                                                                      | Programa de<br>Certificación<br>integral | 2do<br>semestre<br>2013  | Especialistas de<br>calidad y directores                               | Certificar la calidad<br>por NC ISO 9000                        |  |





|        | Aplicar las técnicas estadísticas en los estudios de comportamiento de las redes eléctricas, establecer diagramas de control de procesos por circuitos                                                                                | Actividad de<br>Control y<br>análisis          | 2do<br>trimestre<br>2013       | Espec. Direcc. Técnica<br>y UBE Centro de<br>Operaciones. | Control de la<br>calidad de proceso                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|        | Establecer la caracterización de cada punto de carga de la red(banco de transformadores)por medio de los índices de fiabilidad                                                                                                        | Modulo de<br>transformadores<br>del SIGERE     | 2do<br>trimestre<br>2013       | Técnicos de UBEM                                          | Control de la<br>energía dejada de<br>servir              |
| 3      | ¿POR QUÉ? Falla el stock de repuestos en los almacenes para la actividad de mantenimiento en las redes                                                                                                                                |                                                |                                |                                                           |                                                           |
| ¿Cómo? | Evaluar el estado de necesidades de las partes de equipos a partir del grafico de tendencia de los mantenimientos. Asegurar la entrega y aprobación del plan de presupuesto                                                           | UBEM, UBE<br>Centro de<br>Operaciones          | 4to<br>trimestre               | Especialistas y<br>técnicos de redes<br>distribución      | Disminuir el tiempo<br>de reparación del<br>transformador |
|        | Establecer estudio de mercado de los productos según las necesidades de entrega y mejorar la gestión de compra y aseguramiento buscando otras alternativas                                                                            | Mercado<br>externo                             | 2do<br>semestre                | UBE Aseguramiento<br>logístico                            | Control de las<br>existencias de<br>productos             |
|        | Establecer los ficheros de gastos históricos y hacerlo corresponder a los contratos de suministro anuales.                                                                                                                            | UBE Centro<br>Operaciones y<br>Direcc técnica  | 3er<br>trimestre<br>anualmente | Director Técnico                                          | Evaluar el<br>presupuesto por<br>contratos                |
|        | Establecer indicadores del desempeño de la gestión de compra de los productos fundamentales a las redes eléctricas. Establecer como objetivo en el Plan Anual de la UBE Aseguramiento logístico                                       | UBE<br>Aseguramiento<br>logístico              | 2013                           | Director UBE<br>Aseguramiento<br>Iogístico                | Disminuir el déficits<br>de piezas                        |
|        | Establecer en los contratos con los proveedores las especificaciones de calidad de los productos y piezas. Exigir el cumplimiento de los requerimientos como plazos de entrega. Mantener la vigencia y actualización de los contratos | En los contratos                               | Durante su<br>revisión         | Ejecutor y Jefe del<br>contrato                           | Cumplir los<br>indicadores y<br>planes                    |
|        | Evaluación de los proveedores y la inspección de entrada de los productos adquiridos a los suministradores                                                                                                                            | A los<br>proveedores                           | Cada 2<br>años                 | Grupo de Compra y<br>Contratación                         | Calidad del<br>suministro                                 |
|        | Evaluar el cumplimiento de las cláusulas de los contratos de suministro para la actividad de las redes eléctricas.                                                                                                                    | Comité de<br>Contratación                      | mensual                        | Director Técnico                                          | Cumplir<br>expectativas                                   |
|        | Velar por el cumplimiento de los requisitos de transportación,<br>manipulación, almacenamiento y conservación de los productos para la<br>actividad de mantenimiento                                                                  | Punto de<br>entrega,<br>recorrido y<br>Almacén | diario                         | Transportista y<br>almaceneros                            | Disminuir los<br>rechazos                                 |
|        | Evaluar en los Consejo de Administración la efectividad del proceso de compra, la correspondencia de los productos suministrados con el cumplimiento de los indicadores de interrupciones y de perdidas                               | Consejo de<br>Administración                   | mensual                        | Director Técnico                                          | Cumplir el objetivo                                       |





| Nro.   | ¿Por qué                                                                                                                                                                                                                  | ¿Dónde?                                         | ¿Cuándo?              | ¿Quién?                                                            | ¿Qué?                                                        |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| 4      | ¿POR QUÉ? La inspección de prevención de transformadores de distribución no logra el nivel adecuado según lo establecido en la UBEM Cienfuegos                                                                            |                                                 |                       |                                                                    |                                                              |
| ¿Cómo? | Garantizar el trabajo permanente en la actividad de prueba y análisis a los bancos de transformadores de la brigada. Prohibir participar en otro servicio                                                                 | Brigada prueba<br>y análisis UBEM<br>Cienfuegos | permanente            | Jefe técnico UBEM                                                  | Cumplir plan<br>inspección                                   |
|        | Asegurar cumplir el plan de mantenimiento de los transformadores en el taller. Evaluar las causas raíces de fallos de los averiados y el resultado de la prueba                                                           | Taller de transformadores                       | Según plan            | Grupo operarios de transformadores                                 | Cumplir indicador de interrupción                            |
|        | Certificar las rutas de mantenimiento a los transformadores. Establecer celaje periódico a los circuitos más críticos de operación                                                                                        | En los Circuitos                                | Según plan            | brigadas                                                           | Disminuir la interrupción                                    |
|        | Evaluar los transformadores por la toma de aceite o medición del régimen de trabajo (cantidad de descargas eléctricas, disparos, tiempo de servicio, etc.)                                                                | En los Banco de transformadores                 | Según plan            | Brigada prueba y<br>análisis                                       | Evitar daños<br>económico por<br>fallos                      |
|        | Incrementar la entrada por mantenimiento capital de los transformadores de distribución al taller estableciendo en cada UBEM una reserva de transformadores por capacidades según el comportamiento de las fallas anuales | Taller de<br>transformadores                    | Plan de<br>mtto       | Director UBE Centro<br>de Operaciones                              | Disminuir índice de fallas y acortar tiempo de mtto a 4 años |
| 5      | ¿POR QUÉ? El tiempo de interrupción al usuario por falla de los transformadores no logra reducirse a un valor esperado para el cliente                                                                                    |                                                 |                       |                                                                    |                                                              |
|        | Incrementar el celaje en los circuitos más críticos de fallos en los horarios de máxima demanda y monitorear los transformadores que más tiempo de trabajo                                                                | Circuitos mas fallados                          | permanente            | Brigadas de servicio<br>eléctrico UBEM                             | Cumplir plan<br>inspección                                   |
| Cómo?  | Inspeccionar periódicamente los bancos de transformadores en zonas de fuerte viento para eliminar el falso contacto y el funcionamiento de sus protecciones                                                               | Zonas de fuertes tormentas                      | Según la<br>situación | Brigadas de servicio<br>eléctrico UBEM                             | Cumplir el índice de interrupción de servicio y pérdidas     |
|        | Cumplir el plan de toma de carga a los transformadores y sustituir de inmediato los que tengan un funcionamiento en sus parámetros inadecuados                                                                            | En los Circuitos<br>designados por<br>el plan   | Según plan            | Brigada de prueba y<br>análisis y de servicio<br>eléctrico en UBEM | Disminuir el índice<br>de la interrupción<br>secundaria      |
|        | Evaluar y reponer al 100% los componentes adecuados de las protecciones de los transformadores eliminando la causa de la avería por fallo de la protección                                                                | En cada banco o transformador                   | mensual               | Jefe técnico UBEM                                                  | Disminuir el costo<br>de fallos                              |