UNIVERSIDAD DE CIENFUEGOS "Carlos Rafael Rodríguez Rodríguez" Facultad de Ingeniería

Propuesta de diseño y montaje de un sistema solar fotovoltaico en la Empresa CENEX, Cienfuegos.

Autor: Yoel Orlando Piñeiro Sosa

Tutores:

Ing. Luis Angel Iturralde Carrera

Ing. Ernesto Molina Santana

Msc. Reinier Jiménez Borges

Declaración de autoridad

Facultad de Ingeniería Mecánica

Hago constar que el presente trabajo fue realizado en la Universidad de Cienfuegos, como parte de la culminación de los estudios en la especialidad de Ingeniería Mecánica; autorizando para que el mismos sea utilizado para los fines que estime conveniente, tanto de forma parcial como total, además no podrá ser presentado en eventos ni publicado sin la aprobación de la Universidad de Cienfuegos.

Firma del Autor

Los abajo firmantes certifican que el presente trabajo ha sido revisado según acuerdo de la dirección de nuestro centro y el mismo cumple los requisitos que debe tener un trabajo de esa envergadura, referido a la temática señalada.

Información Científico Técnico

Nombre y Apellidos. Firma.

Firma del Vice Decano

Pensamiento:

"La ciencia no es sino una perversión de sí misma, a menos que tenga como objetivo final el mejoramiento de la humanidad".

Nicolás Tesla

Dedicatoria:

Dedico este trabajo a mis padres por haberme apoyado en este proyecto y haberme educado durante el transcurso de mi vida.

A mi hermano por encaminarme inconscientemente por el trayecto de la ciencia, la lógica y la ingeniería.

A toda mi familia, que me apoyo incondicionalmente en los tiempos más difíciles y precarios de mi vida.

Agradecimientos:

Mis más sinceros agradecimientos, a mi querida madre María Caridad Sosa Capote y a mi padre Yoel Orlando Piñeiro Grau que durante el transcurso de mi carrera y mi vida me formaron como persona.

Agradezco a toda mi familia por apoyarme incondicionalmente durante mi formación profesional y alentarme a cumplir mi sueño.

Finalmente agradezco a todos mis amigos, que me ayudaron de una u otra forma, al desarrollo del mismo, especialmente a Karol Joseph y Laercio Alfaro por apoyarme durante 3er año de la carrera a pesar de la situación precaria que pasé.

Agradecimiento especial a mis tutores.

Resumen:

En el presente estudio se diseña un sistema solar fotovoltaicos (SSFV) que permita disminuir el consumo de energía eléctrica asociado a los servidores y el alumbrado exterior de la Empresa de Servicios Técnicos de Defectoscopia y Soldadura (CENEX) en la provincia de Cienfuegos, Cuba. Se introduce una metodología de diseño analítica para presentar el cálculo del diseño de SSFV. El tipo de modulo a instalar es el DSM-380-MP-72. Mediante el análisis de sombras en el SketchUp Pro 2021 y su extensión Skelion se determinó que es posible instalar una cantidad total de 48 módulos si se utiliza un sistema de orientación Este-Oeste a dos aguas generando 22.6 MWh/año. El soporte fue diseñado con un material de acero aleado fundido, utilizando el software SolidWorks Premium 2016, donde los desplazamientos máximos de la estructura indican su correcta funcionalidad. La inversión presenta un Periodo de Recuperación de la Inversión de 5 años y medios con un Valor Presente Neto a los 25 años de 133 600 546.7 CUP.

Palabras claves: Energía Solar, SSFV, electricidad, consumo, CENEX, generación de energía.

Abstract:

This study designs a photovoltaic solar system (SSFV) to reduce the consumption of electrical energy associated with the servers and outdoor lighting of the Technical Services Company of Defectscopy and Welding (CENEX) in the province of Cienfuegos, Cuba. An analytical design methodology is introduced to present the calculation of SSFV design. The type of module to be installed is the DSM-380-MP-72. Through shadow analysis in the SketchUp Pro 2021 and its Skelion extension, it was determined that a total amount of 48 modules can be installed if a gabled East-West orientation system is used generating 22.6 MWh/year. The support was designed with a cast alloy steel material, using SolidWorks Premium 2016 software, where the maximum displacements of the structure indicate its correct functionality. The investment has a Payback Period of 5 and a half years with a 25-year Net Present Value of 133 600 546.7 CUP.

Keywords: Solar energy, SSFV, electricity, consumption, CENEX, power generation.

Índice:

Capítulo I: Marco teórico referencial de la investigación	3
1.1 Introducción:	3
1.2 Energía solar	3
1.2.1 ¿Por qué usar la energía solar?	4
1.2.2 Situación energética mundial con respecto a la energía solar	4
1.2.3 Aplicación de la energía solar fotovoltaica en el mundo	6
1.2.4 Formas de aprovechar la energía solar	7
1.3 Funcionamiento de los paneles solares	8
1.3.1 Efecto fotoeléctrico	8
1.3.2 Física del estado sólido	
1.3.3 El silicio como semiconductor	13
1.3.4 Funcionamiento de la célula solar fotovoltaica.	14
1.4 SSFV	15
1.4.1 Componentes del sistema	16
1.4.2 Tipos principales de instalaciones de SSFV	17
1.4.3 Compromiso de los componentes de los SSFV con el medio ambiente.	17
1.4.4 SSFV en edificios	
1.5 Comparación entre algunas de las metodologías revisadas	20
1.6 Generaciones de paneles solares	25
1.6.1 Tipos de generaciones de células	25
1.6.2 Estructura del panel	30
1.6.2 Futuro diseño de los paneles solares para combatir el cambio climático	30
1.7 Situación energética de Cuba.	
1.7.1Situación actual	32
1.7.2 Futuro con las energías renovables	33
1.8 Situación energética en Cienfuegos.	
1.8.1 Caracterización de la provincia.	
1.8.1 Unidades de generación eléctrica en Cienfuegos	
1.8.3 Consumo energético de Cienfuegos.	
1.9 Situación de CENEX en Cuba	40
1.9.1 ¿Que es CENEX?:	40
1.9.2 Misión de CENEX:	41

1.9.3 Política de CENEX.	41
1.9.4 Tipos de servicios prestados.	41
1.9.5 Consumo de la entidad	
1.10 Conclusiones del capítulo.	
CAPÍTULO 2: MATERIALES Y MÉTODOS	45
2.1. Caracterización energética.	45
2.1.1. Revisión energética	45
2.1.2. Modelo de Sistema de Gestión de la Energía ISO 50001	45
2.2. Caracterización del sistema eléctrico del lugar	48
2.3. Análisis estructural del sitio	48
2.3.1 Revisión de estudios estructurales previos ejecutados a la entidad	48
2.4. Revisión de la orientación y coordenadas del sitio.	48
2.5. Clasificación de la disponibilidad de las áreas de la entidad para la pos	ible
instalación de SSFV.	
2.6. Estudio de sombras en las áreas seleccionadas.	
2.7. Selección del SSFV a utilizar	
2.7.1. Selección del panel solar. Requisitos a tener en cuenta.	
2.8. Diseño estructural de los soportes de los paneles	49
2.8.1 Estos cálculos se pueden realizar mediante:	51
2.9. Cálculo de la disposición del SSFV	58
2.10. Diseño de la red eléctrica del SSFV.	62
2.11. Análisis de costos e impacto medioambiental.	74
2.11.1. Análisis de costo para la institución.	74
2.11.2 Análisis y aporte medioambiental	
2.12 Conclusiones del capítulo	
Capítulo 3: Resolución de la Metodología.	80
3.1. Caracterización energética.	80
3.1.1. Revisión energética	80
3.1.2. Modelo de Sistema de Gestión de la Energía ISO 50001	80
3.2 Caracterización del sistema eléctrico del lugar:	
3.3. Análisis estructural del sitio	
3.3.1 Revisión de estudios estructurales previos ejecutados a la entidad	
3.4. Revisión de la orientación y coordenadas del sitio.	

3.5. Clasificación de la disponibilidad de las áreas de la entidad para la posible instalación de SSFV.	; 89
3.6. Estudio de sombras en las áreas seleccionadas.	89
3.7. Selección del SSFV a utilizar	90
3.7.1. Selección del panel solar. Requisitos a tener en cuenta.	90
3.8. Diseño estructural de los soportes de los paneles	92
3.9. Cálculo de la disposición del SSFV	96
3.10. Diseño de la red eléctrica del SSFV.	99
3.11. Análisis de costos e impacto medioambiental.	. 104
3.12 Conclusiones Parciales	. 107
CONCLUSIONES GENERALES	. 108
Referencias Bibliográficas:	. 109

Introducción:

El impacto del cambio climático y sus problemas asociados son unos de los retos más importantes a nivel global en el ámbito científico. Como ingenieros tenemos el deber de colaborar con unos desarrollos e investigaciones que sean benéficas con el medio ambiente. Los paneles fotovoltaicos han sido un gran instrumento de mitigación de CO_2 en la forma de generar electricidad. Sin embargo el objetivo de limitar el calentamiento global a 1.5 C^0 requiere cada vez más enfoques adicionales (Honsberg et al., 2022).

Todos sabemos que la contaminación ambiental aumenta los efectos de los gases invernadero, los cuales cambian el balance antes planteado, cambiando de esta manera la capacidad de absorción y reflexión de las nubes. Una estimación del desequilibrio causado por los gases de efecto invernadero es de entre (0.47-0.87) W/m^2 .El aumento de la temperatura de la tierra puede ser mitigado por varios enfoques de la tecnología, los paneles fotovoltaicos reducen la generación de los gases de efecto invernadero.

La emisión de CO₂ durante el ciclo de vida de los paneles fotovoltaicos es uno de los más bajos en la historia de las energías, incluso contando con los paneles de silicio mono cristalino llegando estos a ser de aproximadamente de 45 g/kW (Rabaia et al., 2021).

La competencia por la eficiencia energética y producción de energía renovable se ha disparado a nivel mundial, siendo esta temática un punto fuerte dentro de la comunidad científica internacional. En un plazo de 8 años (2010-2018) las fuentes de obtención de energía renovable han presentado un crecimiento sin precedentes, la capacidad de generación mundial de energía renovable aumentó de 1 223 GW a 2 361 GW, llevando consigo a un aumento de la tecnología solar fotovoltaica que, aunque es una tecnología relativamente nueva aumentó de 40 GW a 483 GW, prácticamente un aumento de 1 207.5% en 8 años. Siendo China el país líder en esta competencia por tener aproximadamente 250 GW instalados de energía solar (Rabaia et al., 2021). Esto demuestra la efectividad y el crecimiento del mercado internacional con respecto a los productos necesitados para un SSFV.

Cuba tiene su propia producción de petróleo y gas, pero su generación actual basada en fuentes de energía renovables solo llega 5.2% de la producción total de electricidad (Vazquez et al., 2018).

El sistema eléctrico nacional es administrado por la compañía Unión Eléctrica de Cuba (UNE). La capacidad total de generación de la UNE es de aproximadamente 6 000 MW. La generación base de las fuentes de energía renovables solo se compone de 470 MW de biomasa de calderas, 63 MW en hidroeléctricas, 10 MW en parques eólicos y 10 MW en parques solares fotovoltaicos (JICA, 2016).

El gobierno cubano ha instituido una serie de sectores energéticos reformas centradas en el equilibrio de los costes, mejora de eficiencia energética, reducción de riesgos en la distribución de energía, el aumento de la cooperación internacional y la aplicación de tecnologías de energía renovable.

En la provincia de Cienfuegos, a pesar de poseer la termoeléctrica "Carlos Manuel de Céspedes", solo genera 361.965 toneladas equivalentes de petróleo (tep), llegando a ser el 63,9% de la producción de energía renovable en la provincia (López & Lugo de León, 2021).

La proyección del país es instalar 700 MWp en SSFV interconectados a la red para 2030. La Empresa de Servicios Técnicos de Defectoscopia y Soldadura (CENEX) tiende a consumir 3 000 kWh de energía al mes. Para mitigar este consumo de energía se decidió diseñar un SSFV para suministrar energía eléctrica a los servidores y el alumbrado exterior de la empresa.

Problema científico: No existe un estudio previo, sobre las potencialidades de un SSFV y la propuesta de montaje en la Empresa de Servicios Técnicos de Defectoscopia y Soldadura (CENEX), para disminuir el consumo de energía eléctrica de la empresa.

Hipótesis: Con el diseño del SSFV en la empresa CENEX es posible disminuir el consumo de energía eléctrica asociado a los servidores del departamento de informática y el alumbrado exterior de la instalación.

Objetivo general: Diseñar un SSFV que permita disminuir el consumo de energía eléctrica asociado a los servidores y el alumbrado exterior de la empresa.

Objetivos específicos:

- 1. Revisar los aspectos fundamentales para el montaje de los SSFV.
- Presentar una metodología de diseño y cálculo del SSFV propuesto en la Empresa de Servicios Técnicos de Defectoscopia y Soldadura (CENEX).

- Simular el SSFV propuesto en el software PVsyst y SketchUp, verificando la resistencia de la estructura propuesta para el montaje del sistema en el software SolidWorks Premium 2016.
- 4. Realizar una valoración económica de la propuesta presentada, determinando los principales indicadores financieros.

Capítulo I: Marco teórico referencial de la investigación

1.1 Introducción:

En la elaboración del marco teórico para la investigación se hace imprescindible la revisión bibliográfica que la sustente en función de la temática a abordar, por lo que en el siguiente capítulo se realiza una revisión bibliográfica de documentos relacionados con la temática de: energía solar; cambio; climático; fuentes renovables de energía; paneles solares y su funcionamiento físico; situación energética en Cuba; situación energética en Cienfuegos y CENEX.

En la Figura 1.1 se resume la estructura básica del capítulo:

Figura 1.1. Estructura básica del capítulo 1. Fuente: Confección propia, 2022.

1.2 Energía solar.

La energía solar es un tipo de energía renovable que se obtiene al aprovechar la energía irradiada de nuestro Sol. Es un tipo de energía verde o energía limpia que se ha

aprovechado desde la antigüedad y que hoy en día es una de las energías renovable con una tecnología emergente para su aprovechamiento muy importante, sobre todo con la crisis climática actual.

1.2.1 ¿Por qué usar la energía solar?

La energía solar constituye la principal fuente de vida en la Tierra, dirige los ciclos biofísicos, geofísicos y químicos que mantienen la vida en el planeta, los ciclos del oxígeno, del agua, del carbono y del clima. La energía del Sol es la que induce el movimiento del viento y del agua, y el crecimiento de las plantas , por ello la energía dólar es el origen de la mayoría de las fuentes de energía renovable: eólica, hidroeléctrica, biomasa, de las olas y corrientes marinas, además de la propia solar (Marín, 2004).

Aunque existen variaciones en la distancia entre el Sol y la Tierra, según la época del año, la cantidad de energía que llega a las capas exteriores de la atmosfera es del orden de 1 400 W/m^2 , pero queda reducida aproximadamente 1 000 W/m^2 , una vez que atraviesa la atmosfera y llega al suelo si el día es despejado, la media a lo largo del año es 340 W/m^2 .

La energía que llega a la Tierra es una infinitésima parte de la enorme cantidad de energía de la radiación solar emitida por el Sol, pero la energía que recibimos ha sido suficiente para proporcionar y seguir permitiendo las condiciones físicas que reinan en nuestro planeta desde su formación, incluidas las que conocemos como vida, y sería suficiente para satisfacer todas nuestras necesidades energéticas si supiéramos aprovechar una fracción de ella (Marín, 2004).

1.2.2 Situación energética mundial con respecto a la energía solar.

Una masiva parte de los esfuerzos en el mundo para la utilización de las fuentes renovables de energía ha llevado los sistemas de energía renovable a un nivel que alentó a los países desarrollados a trabajar en la transformación de su combinación mixta energética actual hacia más energías renovables, y la exigencia de una oferta global reducción de emisiones de carbono. Enormes decisiones geopolíticas y específicamente El Acuerdo de París han pedido una reducción mundial de las emisiones de carbono, pero de acuerdo con el informe Climate Safe Energy Solutions 2017 de La Agencia Internacional de Energía Renovable (IRENA), para lograr de manera efectiva objetivos tan grandes y limitar suficientemente los efectos negativos sobre el cambio climático, completo la des carbonización del uso de la energía debe lograrse en menos de 50 años.

En la Figura 1.2 se muestra se muestra la emisión de CO_2 durante el ciclo de vida de varios tipos de tecnologías de energía renovables

Figura 1.2. Emisión de CO_2 de diferentes tipos de tecnologías de energía renovables. Fuente: Confección propia, datos tomados de (Rabaia et al., 2021).

A pesar de que la economía mundial se triplicará para 2060, esto no puede lograrse sin que las fuentes de energía renovables crezcan al menos siete veces la tasa de crecimiento actual. El informe estadístico de IRENA de 2019 ha informado de que las energías renovables, en general, han experimentado un crecimiento del 7,4% en capacidad con una capacidad neta de 176 GW en 2019, de los cuales el 54% se instaló en Asia solo, siendo el 90% de ellos nuevas capacidades de energía solar y eólica. Las energías renovables están dominando las nuevas instalaciones eléctricas en el mundo, ha alcanzado alrededor del 70% en 2019 (Rabaia et al., 2021).

Al echar un vistazo más de cerca de las tecnologías renovables y sus estadísticas de crecimiento recientes, podemos ver que el mundo está increíblemente interesado en los sistemas de energía solar, con casi el 60% del crecimiento de la capacidad total instalada de la energía renovable en 2019 de 98 GW, como se muestra en la Figura 1.3 (Rabaia et al., 2021).

Figura 1.3. Total, de potencia renovable instalada en el mundo. Fuente: Confección propia, datos tomados de (Rabaia et al., 2021).

1.2.3 Aplicación de la energía solar fotovoltaica en el mundo.

Con un interés tan grande en los sistemas de energía renovable en general y las tecnologías solares en particular, es crucial y esencial tomar precauciones adecuadas con respecto al medio ambiente. Para evitar más impactos ambientales resultantes de los sistemas de suministro de energía recientemente introducidos, existe la necesidad de estudiar el nivel de sostenibilidad de tales tecnologías renovables, la evaluación ambiental de cada tecnología, y mitigación de cualquier impacto ambiental potencial.

La energía solar es muy barata en comparación con otras fuentes de generación de energía. También son abundantes y adecuados para varias aplicaciones. El costo de mantenimiento de los SSFV también es bajo. El principal demérito es el hecho de que están sujetos a la intermitencia climática; por lo tanto, requerirá un sistema de almacenamiento de energía que se sumará al costo total de la tecnología.

El crecimiento de potencia de la energía solar ha aumentado exponencialmente entre 1992 y 2020. Esta evolucionó de aplicaciones a pequeña escala a la fuente de electricidad convencional. Desde el desarrollo de las células solares en la década de 1950, varios países han recurrido al uso de la generación de energía solar. El primero fue el Estados Unidos, seguido de Japón y Alemania, pero China hoy se mantiene el principal productor de electricidad del sol.

La energía solar se utiliza ya sea en aplicaciones solares térmicas donde la energía solar se utiliza como fuente de calor o indirectamente como fuente de electricidad en plantas de energía solar concentrada utilizada directamente en la generación de electricidad en la energía solar fotovoltaica, sistemas solares fotovoltaicos concentrados y células de combustible foto-asistidas(Rabaia et al., 2021).El crecimiento exponencial de la energía solar la energía también se puede ver en la capacidad de los SSFV instalados, como se puede representar en la Figura 1.4.

Figura 1.4. Acumulación global del crecimiento de la energía solar en giga watts. Fuente: Tomado de (Rabaia et al., 2021)

1.2.4 Formas de aprovechar la energía solar.

La energía solar activa se puede aprovechar básicamente de 2 formas:

-La energía térmica: en la cual se aprovecha la energía solar y se transforma en energía calorífica producto de la radiación. Estos sistemas de aprovechamiento de energía pueden ser de baja, de media y alta temperatura. Los de baja temperatura se emplean sobre todo para calefacción, climatización de locales y la producción de agua caliente sanitaria. Los de media y alta temperatura pueden ser aprovechados para la producción de energía eléctrica, mediante las llamadas centrales de torre o a través de colectores cilíndricos-parabólicos. En estas instalaciones se calienta el fluido que transporta el calor y genera electricidad mediante una turbina y un alternador (Marín, 2004).

-La energía fotovoltaica: en la cual la luz incide en unas placas (paneles fotovoltaicos) que mediante unas determinas condiciones se produce electricidad de corriente continua, la cual puede ser distribuidas directamente a la red nacional, consumida en el acto por algún elemento pasivo (electrodoméstico) o almacenada en baterías para su posterior consumo. Éstos sistemas de energías pueden instalarse para uso personal en una vivienda o pueden ser usados de forma masiva para crear un parque fotoeléctrico.

1.3 Funcionamiento de los paneles solares.

En esta sección se mostrará que es el efecto fotoeléctrico y como se descubrió. En que influyen los materiales sobre la conducción de la electricidad, así como los tipos de paneles solares existentes en el mercado

1.3.1 Efecto fotoeléctrico.

En el año 1887 el físico alemán Heinrich Rudolf Hertz cuando experimentaba con ondas electromagnéticas descubrió que los arcos eléctricos producidos entre 2 esferas cargadas con alta tensión eran mayores (en distancia) cuando se iluminaba la superficie de al menos una de estas con otra fuente de energía. Hertz llego a la conclusión de que la luz amplificaba los arcos eléctricos, hoy sabemos por la naturaleza de los fotones que en realidad estos facilitan la emisión de los electrones. Esta idea no tuvo mucho impacto ya que Thomas Edison descubrió el efecto de emisión termiónica en la que al calentar suficientemente un metal este puede emitir energía en forma de electrones. La cuestión de Hertz era de que sus esferas no tenían una temperatura suficiente para la emisión termiónica.

Seguido de Hertz este efecto fue minuciosamente investigado por los científicos alemanes Philipp Lenard y Wilhelm Hallwachs entre 1886 y 1900.Crearon un fototubo (Figura 1.5) al vacío con un ánodo y un cátodo, le conectaron una fuente de diferencia de potencial (una batería) que creara un campo eléctrico del ánodo al cátodo. Al incidir una corriente al cátodo crea una corriente sobre el circuito desde. La corriente se mide con un galvanómetro acoplado al sistema, que detecta las variaciones de la intensidad de la misma, esto permitió apreciar el efecto directo del aumento de la corriente al aumentar la intensidad de luz cuando incidía en el cátodo.

Figura 1.5. Experimento sobre el efecto fotoeléctrico desarrollado por los científicos alemanes Philipp Lenard y Wilhelm Hallwachs entre 1886 y 1900.Nota: E = campo eléctrico, $v_o = potencial de frenado, G = galvanómetro. Fuente: Tomado de (Young et al., 2009).$

Los científicos encontraron que cuando el cátodo era excitado con luz monocromática, este no emitía electrones, por tanto, empezaron a variar el espectro de la luz emitida y se encontraron con un límite en el que si el cátodo empezaba a emitir electrones. Esta frecuencia fue denominada *f o* "frecuencia umbral". Para la mayoría de los metales, la frecuencia de umbral está en el ultravioleta (que corresponde a las longitudes de onda λ entre 200 y 300 nm) pero para los óxidos de potasio y cesio, está en el espectro visible (λ entre 400 y 700 nm) (Young et al., 2009).

Si invertimos la polaridad el campo eléctrico generado por la fuente, podemos frenar la corriente fotoeléctrica si la diferencia de potencial es suficientemente negativa entre el cátodo y el ánodo, ésta diferencia de potencial se denomina *Vo* "potencial de frenado" (Young et al., 2009).Cada vez que los electrones se mueven del cátodo al ánodo el potencial de frenado realiza sobre los electrones que tratan de escapar un trabajo negativo: -eVo.

Cuando en 1905 Albert Einstein desarrolló el análisis correcto del efecto fotoeléctrico (por el cual recibió el premio Nobel),basándose en una hipótesis del científico Max Planck postuló que la luz interactúa con la materia mediante unos cuantos o fotones que funcionan como mini paquetes de energía electromagnética siendo la energía de estos igual a la constante de Planck ($h = 6.660\ 693 * 10^{-34}\ J * s$) (Young et al., 2009) por su frecuencia f que es igual a c/λ .Quedando la Ecuación 1:

$$E = hf = \frac{hc}{\lambda}$$
 (Energia de un fotón) Ec.1

Einstein explica que cuando un fotón interactúa con un electrón este intercambio de energía electromagnética es de todo o nada, no es una transferencia continua de energía en la que se va acumulando hasta el punto en el que el electrón adquiere suficiente como para salir de su nivel. Esta energía necesaria para que el electrón escape de su nivel se llama "función de trabajo" ϕ .

Cuando Einstein aplicó la ley de la conservación de la energía para expresar la energía cinética de los electrones, le quedó como se muestra en la Ecuación 2:

$$K = \frac{m * v^2}{2} = hf - \Phi \quad Ec.2$$

Pero para expresar correctamente la energía del electrón se usa una magnitud "llamada electronvoltio" eV siendo igual a $1.602 * 10^{-19} J$.De tal manera el efecto fotoeléctrico puede resumirse en la Ecuación 3:

$$eVo = hf - \Phi$$
 (efecto fotoelectrico) Ec.3

1.3.2 Física del estado sólido.

Cuando nos referimos a "materia condensada" incluye tanto los sólidos como los líquidos. En ambos estados, las interacciones entre átomos o moléculas son lo bastante fuertes como para comunicar un volumen definido al material, el cual cambia poco al aplicarle una fuerza. En la materia condensada, los átomos adyacentes se atraen entre sí, hasta que comienzan a traslapar en forma importante sus nubes de carga electrónica externa.

Así, las distancias entre átomos adyacentes de la materia condensada (distancia entre los centros de los núcleos) son más o menos iguales que los diámetros de los átomos mismos, comúnmente de 0.1 a 0.5 nm (Young et al., 2009).

En el momento que nos hablan de un sólido y un líquido a la mayoría de las personas nos viene a la mente una imagen del agua y el hielo, son formas definidas que tenemos por la experiencia. No obstante, si cogemos una barra de mantequilla y la empezamos a calentar

levemente observamos que empieza a perder su forma original y empezara a transformarse en un fluido sin una transición definida como la de un acero.

Este fenómeno se debe a la forma de su "estructura interna", en la cual el hielo presenta una estructura "cristalina" y la mantequilla una estructura "amorfa". Básicamente la diferencia es que la estructura cristalina tiene un orden de largo alcance comparado con la estructura amorfa. Los líquidos también sólo tienen orden de corto alcance. Las fronteras entre sólido cristalino, sólido amorfo y líquido pueden ser confusas a veces (Young et al., 2009).

Las estructuras bcc y fcc son dos estructuras cristalinas simples y comunes. Los metales alcalinos tienen una estructura bcc, esto es, una red bcc con una base de un átomo en cada punto de red. Cada átomo en una estructura bcc tiene ocho vecinos más próximos. Los elementos: Al, Ca, Cu, Ag y Au tienen una estructura fcc, es decir, una red fcc con una base de un átomo en cada punto de red. En una estructura fcc cada átomo tiene 12 vecinos más próximos.

En la Figura 1.6 se muestra una representación gráfica de las estructuras bcc y fcc

Figura 1.6. Representación gráfica de las estructuras bcc y fcc. Nota: La imagen presenta una representación exagerada de las distancias entre núcleos para su fácil comprensión del fenómeno. Fuente: Tomado de (Young et al., 2009).

La estructura principal que vamos a tratar en esta tesis es la "estructura del diamante"; así se llama por ser la estructura cristalina del carbono en forma de diamante. También es la del silicio que es el elemento base de los paneles solares que se plantearan en esta propuesta energética. La red del diamante es fcc; la base consiste en un átomo en cada punto de red y un segundo átomo idéntico desplazado la cuarta parte de la longitud del cubo en cada una de las tres direcciones de las aristas del cubo. La Figura 1.7 ayudará a visualizar esto.

Figura 1.7. Representación básica de una estructura cristalina de tipo diamante. Nota: La estructura del diamante, indicada como dos estructuras cúbicas centradas en la cara que se intersecan o se enlazan con distancias exageradas entre átomos. En relación con el átomo verde correspondiente, cada átomo púrpura está desplazado hacia arriba, atrás y hacia la izquierda una distancia a > 4.Fuente: Tomado de (Young et al., 2009).

El volumen sombreado en la Figura 6 muestra la octava parte inferior derecha del cubo básico; los cuatro átomos que están en vértices alternados de este cubo están en los vértices de un tetraedro regular, y hay un átomo adicional en el centro. Entonces, cada átomo en la estructura del diamante está en el centro de un tetraedro regular con cuatro átomos vecinos en los vértices.

En la estructura del diamante, las esferas púrpura y verde en la Figura 1.7 representan átomos idénticos (dos silicios). En la estructura de la figura, las esferas púrpuras representan una clase de átomo y las esferas verdes representan una clase diferente. Por ejemplo, en el sulfuro de zinc (ZnS), cada átomo de zinc (púrpura en la Figura 1.7) está en el centro de un tetraedro regular con cuatro átomos de azufre (verdes en esa figura) en sus vértices, y viceversa.

El silicio con la estructura de diamante que presenta es un ejemplo sencillo de un cristal covalente. Este elemento está en el grupo IV de la tabla periódica, lo cual quiere decir que cada átomo tiene cuatro electrones en su capa externa. Cada átomo forma un enlace covalente con cada uno de los cuatro átomos adyacentes, en los vértices de un tetraedro (Figura 1.7). Estos enlaces son muy direccionales, por las distribuciones electrónicas asimétricas que indica el principio de exclusión, y el resultado es la estructura tetraédrica del diamante.

1.3.3 El silicio como semiconductor.

Para comprender como el silicio, que es el material clave de los paneles solares que presentamos en la propuesta de esta tesis es necesario comprender que son las bandas de energía. Supongamos que hay una gran cantidad de átomos del mismo tipo, en este caso de silicio, suficientemente lejos uno de otros como para que sus interacciones atómicas sean despreciables.

Cada átomo tiene el mismo diagrama de niveles de energía, o sea que es el mismo diagrama de niveles de energía en todo el sistema. Se ve justo como el de un sólo átomo, pero el principio de exclusión (que no pueden tener todos sus números cuánticos idénticos, esto es, en el mismo estado cuántico dentro del mismo sistema cuántico), aplicado a todo el sistema, permite que cada estado esté ocupado por una cantidad determinada de electrones, en vez de uno sólo. Ahora si acerquemos entre sí uniformemente a los átomos. Debido a las interacciones eléctricas y al principio de exclusión, las funciones de onda se comienzan a distorsionar, en especial las de los electrones externos o de valencia.

Las energías correspondientes también se desplazan, algunas hacia arriba y otras hacia abajo, en cantidades variables, a medida que las funciones de onda del electrón de valencia se vuelven menos localizadas y se extienden sobre cada vez más átomos. Entonces, los estados de valencia que antes producían un estado en el sistema, con un nivel definido de energía que podía dar cabida a una cantidad determinada de electrones, ahora producen una banda que contiene una cantidad determinada de niveles muy cercanos. Entre bandas de energía adyacentes hay espacios, donde no hay niveles de energía permitidos. Los electrones internos de un átomo se afectan mucho menos por los átomos cercanos que los electrones de valencia, y sus niveles de energía permanecen relativamente definidos.(Young et al., 2009).

Las diferencias entre las bandas de energía determinan la naturaleza del material: sea conductor, aislante o semiconductor en el caso del silicio. En particular, lo que importa es el grado con que los estados de cada banda estén ocupados, y la distancia, o intervalo vacío de energía, que haya entre bandas adyacentes.

En un aislante a la temperatura del cero absoluto, la banda más alta que está totalmente llena, llamada banda de valencia también es la más alta que tiene algunos electrones en ella. La siguiente banda más alta, llamada banda de conducción, está totalmente vacía; no hay electrones en sus estados. Y como en un aislante, un semiconductor en el cero absoluto tiene una banda de conducción vacía arriba de la banda de valencia llena.

La diferencia es que en un semiconductor el intervalo vacío de energía entre esas bandas es relativamente pequeño, y los electrones pueden saltar con más facilidad para entrar a la banda de conducción. En un conductor, como lo es un metal, hay electrones en la banda de conducción aun en el cero absoluto. Por tanto un semiconductor tiene una resistividad eléctrica intermedia entre las de los buenos conductores y las de los buenos aislantes.(Young et al., 2009).

La Figura 1.8 ayuda a entender este concepto:

Figura 1.8. Representación simbólica de las bandas de energía y su estructura. Nota: a) Representación de un aislante, b) Representación de un semiconductor, c) Representación de un conductor. Fuente: Tomado de (Young et al., 2009).

1.3.4 Funcionamiento de la célula solar fotovoltaica.

Los paneles están constituidos por una gran placa de cristal de algún semiconductor, usualmente silicio. Este cristal presenta 3 regiones:

-la "región tipo p" que tiene una muy baja concentración de electrones en su estructura, dejando "huecos" en su estructura cristalina. Esta deficiencia de electrones se logra dopando directamente la placa con elementos impuros como el boro que tiene menos electrones de valencia que el silicio, de esta manera el cristal al tener menos electrones de valencia en su estructura actúa como si estuviera cargado positivamente.

-la "región tipo n" que contiene una alta concentración de electrones en su estructura, esto se logra dopando la región con sustancias que tengan más electrones de valencia que el silicio, como por ejemplo el fosforo, de esta manera 1 o más electrones quedan libres de moverse. De esta forma se crea una región con una alta concentración de electrones cargándola negativamente.

La interacción entre estas dos regiones crea una zona en la que los electrones de la placa n migran hacia la zona desplazando una fracción de los huecos de la zona p hasta la zona n creando una zona límite entre las 2 regiones que no tienen electrones libres. Ésta región se denomina "región de agotamiento". Por la propia migración de electrones, la zona entre la región limite y la zona n se carga ligeramente de huecos que actúan como carga positiva y la región tipo p se carga negativamente.

Cuando la luz del sol penetra y llega a la región de agotamiento, los fotones empiezan a interactuar con los electrones permitiéndoles escapar de su nivel y se empiezan a generar huecos y electrones libres, de esta manera por la propia migración de electrones, la zona entre la región limite y la zona p se vuelve a cargar positivamente y la región n negativamente. Este fenómeno genera una diferencia de potencial la cual se aprovecha para al conectar un conductor entre la región tipo p y la n se genera una corriente continua. En la Figura 1.9 se puede observar claramente la estructura de una celda fotovoltaica.

Figura 1.9. Esquema de una celda fotovoltaica. Fuente: Tomado de (P. & Jaramillo P., 2008).

1.4 SSFV.

En este epígrafe se realiza una explicación de los SSFV y sus componentes como instalación básica en función a los paneles solares. Se exponen las generaciones de células fotovoltaicas, explicando sus ventajas y desventajas.

1.4.1 Componentes del sistema.

Un SSFV normalmente consiste en matrices y combinaciones de paneles fotovoltaicos, un controlador de carga (DC a DC), un inversor DC (corriente directa) a AC (corriente alterna), medidor de potencia, interruptores y lo más importante una batería o una matriz de baterías dependiendo del tamaño del sistema. El panel fotovoltaico demostró resultados prometedores en diferentes aplicaciones, especialmente aquellos alejados de la red (Rabaia et al., 2021).

La Figura 1.10 muestra un esquema general de un SSFV. El panel fotovoltaico genera una salida de CC regulada por la carga controlador y almacenado en la batería. Una vez necesario, la energía almacenada en la batería se invierte a CA a través del inversor (CC/CA) para Carga de CA, o de otra manera alimenta directamente una carga de CC. Se utiliza un medidor de potencia para registrar y medir el flujo de electricidad que alimenta la carga.

Aunque, muchas personas consideran que los SSFV no tienen requisitos de mantenimiento, es porque solo necesitan una limpieza adecuada de vez en cuando, cuando se instalan en sitios con clima arenoso o polvoriento ya que tiene un efecto sustancial en su rendimiento.

Una vez fuera de la fase de fabricación y totalmente instalados, los SSFV están completamente instalados seguro para el medio ambiente; no producen ningún ruido, ni emiten ningún gas tóxico o de efecto invernadero. El objetivo general para la mejora de la

energía solar fotovoltaica es mejorar la eficiencia de las células para reducir el costo general de la tecnología, así como mejorar la tecnología de fabricación asociada a ella (Rabaia et al., 2021).

1.4.2 Tipos principales de instalaciones de SSFV.

Básicamente se puede desglosar la instalación de los paneles solares en 2 tipos en función a su destinación:

-Instalaciones aisladas: En ellas la energía se almacena en baterías para poder disponer de ella cuando sea necesario. Este tipo de instalaciones las suelen promover particulares y cuentan con una potencia comprendida entre 3 y 5 kWp.Las cuentas con potencias comprendidas entre 5 y 100 kWp se suelen utilizar en edificios bioclimático o en edificios públicos de nueva construcción que cuentan con la energía solar como valor añadido. La distribución de la energía eléctrica producida por los módulos pasa por regulador de carga y se almacena en baterías. También es precisa la instalación de un convertidor, que tiene como misión la transformación de la corriente continua en las baterías en corriente alterna para el abastecimiento de quipos electrodomésticos.

- Instalaciones conectadas a la red eléctrica. Cuentan con una potencia superior a los 100 kWp y casi siempre están promovidas por empresas. La energia producida por los modulos fotovoltaicos se transforma mediante un inversor en corriente alterna de la misma tensión y frecuencia que la de la compañía eléctrica que les compra la electricidad genera (Marín, 2004).

1.4.3 Compromiso de los componentes de los SSFV con el medio ambiente.

Entre las investigaciones relacionadas con los SSFV y el medio ambiente, se han hecho un trabajo muy único y efectivo analizando la evaluación del ciclo de vida de un SSFV y abordando los impactos ambientales de varios componentes del sistema que incluyen una batería de iones de litio y un panel fotovoltaico de silicio mono-cristalino (Rabaia et al., 2021)

Utilizando la metodología de flujo de materias primas, han comparado las entradas y salidas del ciclo de vida de los componentes, concluyendo que los resultados al agua fueron significativamente altos para el convertidor, la batería, el cable y el medidor de potencia sin tener ningún salidas de residuos sólidas, mientras que el interruptor, el inversor y el panel fotovoltaico no tienen alguna salida al agua, pero tuvieron una producción relativamente más alta en otros formas tales como salidas al suelo y al aire con salidas significativas de

residuos sólidos, también concluyeron que todos los componentes tenían aproximadamente los mismos insumos de la naturaleza con un promedio del 20%.

Además utilizando el método de Datos de Ciclo de Vida de Referencia Internacional, han hecho una comparación detallada en términos de los perfiles ambientales de los componentes, incluidos los recursos minerales, los recursos fósiles, un recurso renovable, el recurso hídrico y el agotamiento del ozono como así como el uso de la tierra, la acidificación, el cambio climático, la toxicidad humana, etc.(Rabaia et al., 2021).

La Figura 1.11 muestra una comparación detallada de las posibles emisiones de gases de efecto invernadero (GEI) de cada componente del sistema que utiliza el método del IPCC durante un período de por vida de 100 años.

Figura 1.11. Posibles emisiones de gases de efecto invernadero. Fuente: Tomado de (Rabaia et al., 2021)

1.4.4 SSFV en edificios.

Los edificios representan aproximadamente el 40% del consumo mundial de energía y el 36% de las emisiones de CO2 asociadas. Al mismo tiempo, la necesidad de electrificar la demanda de energía para facilitar la reducción de las emisiones de gases de efecto invernadero y reducir los potenciales de calentamiento del cambio climático, hace que sea importante ubicar nuevas áreas disponibles para la producción de energía renovable. Los paneles solares fotovoltaicos en la azotea de los edificios junto con el almacenamiento eléctrico son un medio demostrado para abordar el uso de energía del edificio, ya que las

áreas del techo a menudo no están obstruidas a la radiación solar y están disponibles gratuitamente para dicha utilización.

El área del techo de los edificios del mundo y las extensiones de techo asociadas son aproximadamente $223 * 10^9 m^2$ y se espera que se dupliquen aproximadamente para 2050. Con la producción fotovoltaica, el diseño de nuevos edificios con un consumo de energía casi o neto cero ha demostrado ser factible en todo el mundo, pero persisten las preocupaciones de aplicación, en particular para los edificios existentes.

Teniendo en cuenta la antigüedad, la ineficiencia y la lentitud de la renovación del parque inmobiliario, los edificios existentes tienen un gran potencial para lograr ahorros de energía. La modernización es un factor clave para alcanzar los objetivos europeos (UE) de Energía y Clima para 2030 (reducción del 55 % de las emisiones de gases de efecto invernadero, mejora del 33 % de la eficiencia energética, aumento del 32 % de las energías renovables) con vistas a ser el primer continente neutro para el clima en 2050 (D'Agostino et al., 2022).La Figura 1.12 muestra ejemplos de aplicación de paneles solares en el techo de los edificios.

Figura 1.12. Aplicación de energía fotovoltaica en techos de edificios. Fuente: Tomado de (D'Agostino et al., 2022).

La aplicación de SSFV en los techos de edificaciones ha sido sustancialmente profundizada a pesar de ser una tecnología emergente. Dando consigo a la creación de los edificios verdes modernos que cuentan con paneles integrados en su fachada y techo de manera natural, propiamente integrado en el proyecto de diseño original del edificio.

Las aplicaciones de paneles solares fotovoltaicos a edificios se pueden ver reflejado en los siguientes trabajos científicos:

- Hacia el logro de la mejor solución para utilizar paneles solares fotovoltaicos para edificios residenciales en áreas urbanas (Fardi Asrami et al., 2021).
- Hacia un edificio Net Zero utilizando paneles fotovoltaicos: un estudio de caso en un edificio educativo (Dhakal et al., 2021).
- Optimización tecno económica para SSFV de techo amigables con la red: un estudio de caso de edificios comerciales en Columbia Británica (Christiaanse et al., 2021).
- Análisis tecno económico y optimización multi-objetivo de un novedoso sistema de energía de edificios basado en energía solar; Un esfuerzo por alcanzar el verdadero significado de los edificios de energía cero (Arabkoohsar et al., 2021).
- Mejora del rendimiento y termografía infrarroja (IR) del panel solar fotovoltaico que utiliza la refrigeración posterior del aire residual del sistema de aire acondicionado centralizado del edificio (Ahmad et al., 2021).
- Diseño óptimo de sistemas fotovoltaicos en azotea conectados a la red: una visión general y un nuevo enfoque con aplicación a edificios educativos en climas áridos (Mokhtara et al., 2021).
- Determinación de la inclinación óptima y el ángulo azimutal del sistema BiSPVT junto con su rendimiento debido a la sombra de los edificios adyacentes (Yadav et al., 2021).
- Una revisión de los diseños y el rendimiento de los sistemas fotovoltaico-térmicos integrados (BIPVT) de edificios basados en fachadas (Yu et al., 2021)
- Una nueva aplicación de la toma de decisiones multi-criterio en la tecnología energética en edificios tradicionales: un estudio de caso de Isfahán (Hosseini Dehshiri, 2022)

1.5 Comparación entre algunas de las metodologías revisadas.

Para este análisis se utiliza las Tablas 1.1;1.2;1.3 y 1.4.Se tienen en cuenta tres de las metodologías consultadas en el presente trabajo, las cuales están propuestas por, (Callisaya, 2012), (Becerra, 2019), (Albo, 2021).

Referenci	Análisis	Análisis de	Dimensionamient	Evaluación	Evaluación
а	energético.	sombras.	o del SSFV.	económica.	del impacto
					medio-
					ambiental.
(Albo,	Asume la	Tiene en	A partir del	Tiene en	No tiene.
2021)	energía	cuenta el	estudio de	cuenta el	
	consumida por	tiempo de	sombras se	Periodo de	
	la institución	incidencia de la	localiza la zona	Recuperación	
	como la	radiación solar	más conveniente	de la Inversión	
	contratad por	y la sombra	para ubicar los	y el Valor	
	la misma, por	producida por	paneles	Presente Neto	
	lo que no deja	objetos	fotovoltaicos en	en un periodo	
	claridad en la	cercanos a los	dependencia de	de 25 años,	
	caracterización	módulos, lo	la zona	analizando el	
	eléctrica del	que permite un	disponible.	promedio de	
	local.	estudio de		vida útil del	
		sombras		sistema.	
		completo			

Tabla 1.1 Comparación entre las metodologías consultadas (Parte 1).

(Albert,	Tiene en	Se analiza la	Se realiza en	Determina	Determinar
2020)	cuenta el	incidencia de	función de la	el periodo	la
	consumo	radiación solar	demanda	de	reducción
	anual de la	durante todos	energética	recuperació	de las
	institución	los meses sin	de la	n de la	emisiones
	y los días	tener en	instalación,	inversión.	de CO ₂ a la
	en los que	cuenta las	la cantidad		atmosfera,
	se el	sombras	de		evalúa la
	consumo	producidas	componente		influencia
	eléctrico	por objetos	s a utilizar		sobre los
	es mayor.	cercanos a los	depende de		ecosistema
		módulos.	la energía		s próximos,
			que se		presentand
			necesita		o un
			generar.		análisis
					muy sólido.
(Benítez &	Se registra	Se analiza la	Se realiza en	Hace un	muy sólido. Considera
(Benítez & Tello,	Se registra el consumo	Se analiza la incidencia de	Se realiza en función de la	Hace un análisis	muy sólido. Considera las
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por	Se analiza la incidencia de radiación solar	Se realiza en función de la demanda	Hace un análisis detallado del	muy sólido. Considera las emisiones
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo	Se analiza la incidencia de radiación solar durante todos	Se realiza en función de la demanda energética de	Hace un análisis detallado del costo de la	Considera las emisiones de CO ₂ a la
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite	Se analiza la incidencia de radiación solar durante todos los meses sin	Se realiza en función de la demanda energética de la instalación,	Hace un análisis detallado del costo de la inversión	Considera las emisiones de CO ₂ a la atmosfera
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta	Se realiza en función de la demanda energética de la instalación, desaprovech	Hace un análisis detallado del costo de la inversión para	muy sólido. Considera las emisiones de CO ₂ a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el	Hace un análisis detallado del costo de la inversión para determinar el	muy sólido. Considera las emisiones de CO ₂ a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de la	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras producidas por	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el potencial	Hace un análisis detallado del costo de la inversión para determinar el	muy sólido. Considera las emisiones de CO_2 a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de la institución	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras producidas por objetos	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el potencial disponible al	Hace un análisis detallado del costo de la inversión para determinar el tiempo de recuperación	muy sólido. Considera las emisiones de CO_2 a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de la institución analizando	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras producidas por objetos cercanos a los	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el potencial disponible al centrarse en	Hace un análisis u detallado del costo de la inversión u para determinar el tiempo de recuperación de la	muy sólido. Considera las emisiones de CO ₂ a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de la institución analizando los horarios	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras producidas por objetos cercanos a los módulos.	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el potencial disponible al centrarse en la demanda.	Hace un análisis ue detallado del costo de la inversión ue para ue determinar el tiempo de recuperación de la inversión.	muy sólido. Considera las emisiones de CO ₂ a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de la institución analizando los horarios de mayor	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras producidas por objetos cercanos a los módulos.	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el potencial disponible al centrarse en la demanda.	Hace un análisis detallado del costo de la inversión para determinar el tiempo de recuperación de la inversión.	muy sólido. Considera las emisiones de CO ₂ a la atmosfera por meses.
(Benítez & Tello, 2018)	Se registra el consumo eléctrico por horas, lo que permite un análisis profundo de la institución analizando los horarios de mayor consumo.	Se analiza la incidencia de radiación solar durante todos los meses sin tener en cuenta las sombras producidas por objetos cercanos a los módulos.	Se realiza en función de la demanda energética de la instalación, desaprovech ando todo el potencial disponible al centrarse en la demanda.	Hace un análisis detallado del costo de la inversión para determinar el tiempo de recuperación de la inversión.	muy sólido. Considera las emisiones de CO ₂ a la atmosfera por meses.

Tabla1.2 Comparación entre las metodologías consultadas (Parte 2).

(Callisaya	Realiza un	No tiene en	Se realiza en	No tiene.	No tiene.
, 2012)	levantamient	cuenta el	función de la		
	o de carga	análisis de	demanda		
	eléctrica para	las	energética de la		
	obtener el	sombras	instalación,		
	consumo	producidas	desaprovechand		
	diario del	objetos	o todo el		
	local.	cerca de	potencial		
		los	disponible al		
		módulos.	centrarse en la		
		No se	demanda.		
		profundiza			
		en el			
		estudio de			
		sombras.			
(Molina &	Analiza	Analiza la	El	Aparte de	Analiza la
González	detalladament	radiación	dimensionamiento	tomar en	cantidad
, 2022)	e el consumo	solar	del sistema se	cuenta el	de CO ₂
	diario de la	incidente	realiza a partir del	ahorro	dejada
	entidad por	sobe la zona	espacio disponible	energético	de emitir
	mes y	y realiza un	para la instalación	de la	a la
	determina los	estudio de	de los módulos.	empresa,	atmósfer
	meses de	sombra para		toma en	a al año.
	mayor	determinar		cuenta el	
	demanda	una		ahorro de	
	energética.	localización		combustibl	
		conveniente		e no	
		de los		quemado	
		módulos		para la	
		fotovoltaicos		generación	
				eléctrica.	

Tabla1.3 Comparación entre las metodologías consultadas (Parte 3).

(Guzmán	El análisis	No tiene en	El	Solo se	Analiza la
et al., 2017)	del consumo	cuenta las	dimensionamiento	analiza el	cantidad
	de energía	magnitudes	del sistema se	ahorro que	de CO ₂
	eléctrica es	de la	realiza a partir del	supone a la	dejada de
	mensual	radiación	espacio	empresa en	emitir a la
		incidente en	disponible para la	términos de	atmósfera.
		la zona ni se	instalación de los	energía no	
		realizan	módulos,	consumida	
		estudios de	aprovechando	de la red	
		sombras.	eficientemente el	eléctrica.	
			área y		
			optimizando la		
			generación		
			fotovoltaica.		
(Becerra,	Solo se	Analiza las	Dimensionamiento	Tiene en	Contempla
2019)	determina el	sombras	tradicional de los	cuenta el	la cantidad
	consumo	producidas	SSFV centrándose	Periodo de	de
	anual	por los	en las distancias de	Recuperación	combustible
	mediante un	propios	las filas por la	de la	que se deja
	análisis	módulos	proyección de la	Inversión y el	de quemar
	mensual del	fotovoltaicos	sombra de los	Valor	para así
	año crítico.	y el tiempo	propios paneles.	Presente	determinar
		de radiación		Neto en un	la cantidad
		efectiva		periodo de 25	de <i>CO</i> ₂
		diaria para la		años.	dejado de
		producción			emitir a la
		de energía.			atmosfera.

Tabla1.4 Comparación entre las metodologías consultadas (Parte 4).

(González	Analiza el	No tiene en	El	No tiene.	No tiene.
et al.,	consumo	cuenta el	dimensionamiento		
2022)	mensual	análisis de	del sistema se		
	de	las	realiza a partir del		
	energía	sombras	espacio		
	eléctrica	producidas	disponible para la		
	en	objetos	instalación de los		
	horario	alrededor	módulos,		
	pico.	de los	aprovechando		
		módulos, ni	eficientemente el		
		la	área y		
		incidencia	optimizando la		
		de la	generación		
		radiación	fotovoltaica.		
		solar, por			
		tanto no se			
		profundiza			
		en el			
		estudio de			
		sombras.			

Tabla1.5 Comparación entre las metodologías consultadas (Parte 5).

Fuente: Elaboración propia.

1.6 Generaciones de paneles solares

En este epígrafe se caracterizan las generaciones de paneles solares en función de su rendimiento, ventajas y desventajas. Esto se logra auxiliándose mediante unas tablas para visualizar la información de manera más concisa.

1.6.1 Tipos de generaciones de células.

Los SSFV se clasifican en función del tipo de tecnología de celda solar, junto con el material utilizado. Las celdas solares se clasifican según tres generaciones principales.

Son la primera generación, segunda generación, y tercera generación. La base de la primera generación es el silicio cristalino, que puede ser mono o multi-cristalino, y la segunda generación es células solares de película delgada que incluyen silicio amorfo,

teluro de cadmio, sulfuro de cadmio, etc. El último tipo se compone de tecnologías que no utilizan silicio como las células solares de perovskita, celdas solares sensibilizadas con colorantes y células de punto cuántico (Rabaia et al., 2021).

En la Tabla 1.6 se pueden observar los paneles de 1ra generación, sus ventajas y desventajas.

Tipo de células solares	Rendimiento	Ventajas	Desventajas
Mono- cristalina de silicio (sc-SI)	25-27% en escala de laboratorio	Alta eficiencia	La fabricación es lenta y demandada, los materiales usados son escasos y costosos
	16-22% comercialmente Banda prohibida entre 1.11 y 1.15		
Multi- cristalina de silicio (mc-Si)	eV 15-18% en escala de laboratorio	Ideal para reducir el precio del mercado internacional de los módulos fotovoltaicos	Eficiencia baja comparada con las células sc-SI
	La banda prohibida es de 1.11 eV		

Tabla 1.6. Características de la primera generación de celdas fotovoltaicas.

Fuente: Elaboración propia, datos tomados de (Rabaia et al., 2021)

En la Tabla 1.7 y la Tabla 1.8 se pueden observar los paneles de 2da generación, sus ventajas y desventajas.
Tipos de células solares	Rendimiento	Ventajas	Desventajas	
Silicio amorfo (a-Si)	8% de eficiencia comercial	Muy barato internacionalmente	Menos material para absorber la radiación solar porque las células están hechas de un material más delgado	
	12% de eficiencia en como máximo en laboratorios			
Arseniuro de galio (GaAs)	29% de eficiencia en escala de laboratorios	Alta eficiencia y menor espesor comparado con los de silicio	Costoso	
	La banda prohibida es de 1.43 eV			
Telururo de cadmio (CdTe)	10-15% de eficiencia	Ofrece la oportunidad de explotar un espectro de longitud de onda más amplio que los de silicio. Aparte el cadmio es abundante y barato	El cadmio es tóxico	
	21% de eficiencia como máximo			
	La banda prohibida es de 1.45 eV			

Tabla 1.7. Características de la segunda generación de celdas fotovoltaicas (Parte 1).

Fuente: Elaboración propia, datos tomados de (Rabaia et al., 2021).

Tabla 1.8. Características de la segunda generación de celdas fotovoltaicas (Parte 2).

		El proceso de	Baja eficiencia	
Cobre indio,		fabricación no requiere	comparado con las de	
galio y	20% de eficiencia	tanta energía como las	silicio. Requiere	
seleniuro		de silicio. Buena	aplicarles químicos	
		resistencia al calor	tóxicos. Muy costosos	
		El proceso de	Baja eficiencia	
Cobre indio,		fabricación no requiere	comparado con las de	
galio y	20% de eficiencia	tanta energía como las	silicio. Requiere	
seleniuro		de silicio. Buena	aplicarles químicos	
		resistencia al calor	tóxicos. Muy costosos	
	Banda prohibida de			
	1.68 eV			
		El proceso de		
Cobre indio y	10-13% de	fabricación no requiere	Baja eficiencia	
seleniuro	eficiencia	mucha energía. Buena		
		resistencia al calor		
Híbrido		Buena relación costo v		
(combinación	Alrededor del 21%		-	
de a-Si y c-SI)				

Fuente: Elaboración propia, datos tomados de (Rabaia et al., 2021)

En las Tablas 1.9 y la 1.10 se pueden observar los paneles de 3ra generación, sus ventajas y desventajas.

Tabla 1.9. Características de la 3ra generación de celdas fotovoltaicas (Parte 1).

Tipos de	Rendimie	Ventajas	Desventajas
células	nto		
solares			
Célula solar	´19-22%	Buena eficiencia,	Puede degradarse fácilmente cuando
de	de	manufactura barata	se expone al calor, nieve, humedad,
perovskita	eficiencia	comparada con las de	etc.
(PSC)		silicio	

Fuente: Elaboración propia, datos tomados de (Rabaia et al., 2021)

Célula	Cerca	del	Flexible, no son	Los electrolitos pueden congelarse, lo		
solares	10%		contaminantes y	que lleva a la intermitencia en la		
sensibilizadas			pueden ser	fuente de alimentación. Los		
con			recicladas	electrolitos están formados por		
colorantes			fácilmente.	disolventes orgánicos, por lo que el		
(DSSC)			Baratas de	sellado se vuelve muy crucial para		
			fabricar.	este tipo de tecnología.		
			Funcionan con			
			poca luz. Alta			
			eficiencia en			
			temperaturas			
			elevadas.			
Células de	1.9%	de	Fácil de crear	Muy baja eficiencia		
punto	eficiencia					
cuántico (QD)						

Tabla 1.10. Características de la 3ra generación de celdas fotovoltaicas (Parte 2).

Fuente: Elaboración propia, datos tomados de (Rabaia et al., 2021)

Entre todas las otras tecnologías fotovoltaicas basadas en obleas, las células de silicio mono-cristalino tiene alrededor del 90% aproximadamente de la capacidad de fabricación mundial actual. Las células solares de silicio mono-cristalino tienen una eficiencia relativamente alta con una eficiencia celular promedio de 15.3% y una eficiencia del módulo de 14.0%. Sin embargo, las células solares de silicio mono-cristalino son costosas y probablemente las más altas debido a la alta pureza del silicio y la precisión de fabricación requerida para dicha pureza, lo que conduce a una energía de producción promedio de 1 MWh/kg-Si.

Las células de silicio mono-cristalino se han mejorado a aproximadamente el 25% debido a algunas mejoras en la fabricación y el diseño. El proceso de captura de luz, por ejemplo, se mejoró utilizando estructuras de captura como la "pirámide invertida", diseño que minimiza la reflexión y maximiza la absorción a través del aumento del área de contacto fotones-células, también utilizando la parte posterior diseños para reflejar los fotones en las áreas activas (Rabaia et al., 2021).

1.6.2 Estructura del panel.

Las células fotovoltaicas (o células solares) son dispositivos que convierten la luz energía de cualquier fuente a energía eléctrica. En la estructura fotovoltaica se combinan diferentes componentes. A través del boceto presentado en la Figura 1.13, los diferentes componentes de un panel fotovoltaico pueden ser reconocidos.

Partiendo de abajo, encontramos el plástico respaldo (o hoja posterior), que es la superficie blanca característica de módulos fotovoltaicos, compuestos por Tedlar (fluoruro de polivinilo) y tereftalato de polietileno. Subiendo encontramos dos láminas de etileno acetato de vinilo (EVA) que incorpora el semiconductor, que puede variar dependiendo del tipo de panel, es un polímero conformado por unidades de etileno y acetato de vinilo que se usa para la encapsulación de las células de silicio. Finalmente, se encuentra una capa de vidrio colocada por encima como forma de protección primaria.

Todas estas capas están intercaladas dentro de un marco de aluminio para que la caja de conexiones está conectada. En algunos casos, un anti reflectante es añadido sobre la superficie de vidrio.(Padoan et al., 2019)

Figura 1.13. Estructura de un panel. Fuente: Tomado de (Padoan et al., 2019).

1.6.2 Futuro diseño de los paneles solares para combatir el cambio climático.

La superficie de la tierra absorbe alrededor de la mitad (45% - 52% dependiendo de la superficie) y aproximadamente el 7% (4%-10%) es reflejada y pasa a través de la atmosfera. Entonces se necesita diferenciar entre la superficie de la Tierra y la atmosfera, y las nubes reflejan aproximadamente el 23% de la radiación hacia el espacio.

Adicionalmente para absorber y reflejar la luz del Sol, la superficie de la Tierra también emite radiación basada en su temperatura. La mayoría de esta radiación es reabsorbida por la atmosfera terrestre, siendo un 89% aproximadamente y el resto que sería un 11% es emitido al espacio. La atmosfera reenvía la radiación absorbida al espacio (47%) y hacia la superficie de la tierra. Las superficies de los paneles fotovoltaicos se pueden mejorar en diseño para alterar este balance a favor de la emisión y así alterar el albedo de nuestro planeta de forma gradual.

El requisito más fundamental para que las superficies fotovoltaicas proporcionen enfriamiento neto es que deben tener un albedo efectivo igual o mayor que el entorno y / o el promedio global, es decir, no debe generar más calor que sus superficies circundantes. El albedo de la Tierra varía significativamente entre los diferentes tipos de superficies y la época del año, pero un albedo típico del área terrestre relevante para la energía fotovoltaica es del 30 al 40% (Honsberg et al., 2022).

Para un albedo efectivo de 30 - 40%, la densidad de potencia de la reflexión y la generación eléctrica es de $300 - 400 W/m^2$. Los SSFV actuales tienen eficiencias del 15 - 20%, dando $150 - 200 W/m^2$ de energía eléctrica. La luz de espacio de sub-banda reflectante aumenta el albedo efectivo, desde un valor pequeño (~ 4% para superficies fotovoltaicas de vidrio) hasta un máximo de $170 W/m^2$ para Si PV (Honsberg et al., 2022). La reflexión del espacio de sub-banda se incorpora modificando las propiedades de reflexión de la parte delantera o agregando reflectores en la parte trasera.

Según las investigaciones realizadas Utilizando 150 W/m^2 para la potencia del SSFV y 127 W/m^2 para la reflexión de la brecha de la sub-banda (75% de reflexión), los SSFV existentes tienen un albedo efectivo del 27.8%. El aumento de la eficiencia del SSFV y la fracción de luz de brecha de sub-banda reflejada al 20% y 80%, da un albedo efectivo del 33.6%. La optimización de la célula solar y la óptica muestra que una célula solar delgada de Si (50 μ m) y una reflexión optimizada permite densidades de potencia de 410 W/m^2 mientras se mantiene la producción de energía anual (Honsberg et al., 2022).

Desde las universidades de Arizona (Estados Unidos) y la de Oklahoma (Estados Unidos) se realizan investigaciones sobre el tema de los cuales se llegó a la conclusión de que los requisitos para las superficies fotovoltaicas son irradiar a través de la ventana atmosférica y generar electricidad con un valor total de 650 $\frac{W}{m^2}$ (Honsberg et al., 2022).Esto puede ser logrado:

31

1-aumento de la eficiencia fotovoltaica a temperaturas de funcionamiento 200 W/m^2 y aumento de la reflexión de la brecha de sub-banda 150 W/m^2

2-aumentar la emisión térmica de IR hasta cerca de su valor máximo 150 W/m^2

3- agregar emisión IR activa en IR cercano 1.5 μm de 150 W/m^2 (Honsberg et al., 2022).

En general, la consideración del equilibrio radiactivo para los SSFV introduce una ventaja adicional para los SSFV de alta eficiencia, así como la reducción de la temperatura de funcionamiento de los módulos (Honsberg et al., 2022).

1.7 Situación energética de Cuba.

El Sistema Electroenergético Nacional (SEN) actual en Cuba se basa principalmente en combustibles fósiles y fuentes renovables. En este epígrafe se caracterizará la matriz energética de Cuba y como se tiene previsto su desarrollo en el futuro.

1.7.1Situación actual

Cuba tiene su propia producción de petróleo y gas, pero, por ejemplo, en 2013, el 38% de se importó petróleo crudo utilizado para la producción de energía. En generación actual basada en fuentes de energía renovables (RES) cubre solo el 5.2% de la producción total de electricidad (Vazquez et al., 2018).El sistema eléctrico nacional es administrado por la compañía Unión Eléctrica de Cuba (UNE).

La capacidad total de generación de la UNE es de aproximadamente 6 000 MW que consta de 2 600 MW de centrales de vapor a gran escala alimentadas con fueloil pesado, 600 MW de plantas de turbinas de gas a gran escala alimentadas con gas natural, 1 100 MW de vapor de combustible medio/ligero a menor escala y plantas de motores, y 1 100 MW de plantas de motores diésel. La generación base de las fuentes de energía renovables se compone de 470 MW de biomasa de calderas, 63 MW en hidroeléctricas, 10 MW en parques eólicos y 10 MW en parques solares fotovoltaicos (JICA, 2016).

El gobierno cubano ha instituido una serie de reformas en sectores energéticos centradas en el equilibrio de los costes, mejora de eficiencia energética, reducción de riesgos en la distribución de energía, el aumento de la cooperación internacional y la aplicación de tecnologías de energía renovable. Para 2030, consumo de energía se estima que aumentará el 40% de 20 TWh a 28 TWh, y la participación de las energías renovables debería aumentar al 24 por ciento de la producción total.

1.7.2 Futuro con las energías renovables.

En 2030 se planean recursos de generación de energía renovable para consiste en una capacidad térmica de biomasa de aproximadamente 1 400 MW, 700 MW de capacidad solar fotovoltaica, 700 MW de capacidad de energía eólica, y 120 MW de energía hidroeléctrica a pequeña escala (Vazquez et al., 2018). Las cuotas estimadas de las diferentes fuentes de energía generada en 2030 se representan en la Figura 1.14.

Figura 1.14.Matriz energética planificada para el 2030.Fuente: Elaboración propia, datos tomados de (Vazquez et al., 2018).

Cuba se encuentra en la encrucijada del desarrollo futuro de su suministro de energía. Cuba puede optar por impulsar su próximo crecimiento en consumo de energía con combustibles convencionales, o puede elegir utilizar sus abundantes fuentes de energía renovables.

La producción de electricidad por los diferentes tipos de plantas de energía en el caso de que cuba se mantenga con un escenario BAU ("bussines as usual", "negocios como siempre") se muestra en la Figura 1.15 La línea "Nuevas tecnologías +" significa un ciclo combinado con unidades de gas natural y plantas de motores alimentados con fuel oil ligero y diesel oil.

Figura 1.15. Producción eléctrica en un escenario BAU en GWh por diferentes plantas de energía. Fuente: Tomado de (Vazquez et al., 2018).

La generación de energía tiene que seguir fluctuaciones instantáneas en la demanda eléctrica. Con el aumento de la proporción de un suministro intermitente renovable, la producción de energía controlable tiene que ser capaz de subir y bajar con un rango de operación más alto y una tasa de cambio en comparación con la estructura del sistema convencional (Vazquez et al., 2018).

El primer análisis de un posible escenario suministrado por una energía 100% renovable (Hohmeyer y Welle, 2018) ha demostrado que Cuba tiene un vasto recurso de energía solar (más de 170 000 MW), así como un buen recurso de energía eólica muy sustancial (alrededor de 19 000 MW). Además de estas dos grandes energías renovables Cuba puede utilizar un gran recurso de biomasa de residuos agrícolas y forestales, así como un uso moderado de cultivos energéticos. Además, Cuba tiene suficientes recursos de energía hidroeléctrica y áreas con más de 300 m de altitud de desnivel, que se puede utilizar como recurso hidroeléctrico para complementar el objetivo ideal de una energía suministrada por un 100% de energía renovable.

Estos cinco componentes principales (solar fotovoltaica, energía eólica, biomasa, energía hidroeléctrica y almacenamientos hidroeléctricos) pueden suministrar toda la electricidad necesaria para Cuba (Vazquez et al., 2018).

Suponiendo un crecimiento económico sustancial de 2017 a 2040, el consumo actual de energía eléctrica es de aproximadamente 20 TWh/año puede crecer incluso hasta 60 TWh/año en 2040 (diferentes escenarios: 28 TWh/año para el BAU, 44 TWh/año si otros consumos no eléctricos en el los sectores residencial e industrial se convierten en electricidad, y 60TWh/año si todo el sector del transporte se convierte en electricidad).

El análisis de (Hohmeyer y Welle, 2018) ha demostró que la combinación de 14 500 MW de energía eólica, 8 400 MW solar fotovoltaica, 1 500 MW de biogás, 236 MW de energía hidroeléctrica y almacenamientos hidráulicos por bombeo de 3 000 MW junto con el uso de biodiesel en los 2 500 MW existentes de generadores diésel como el sistema definitivo de respaldo en caso de alguna falla, se puede suministrar toda la electricidad que Cuba consume de un escenario de 60 TWh/año (Vazquez et al., 2018).

Teniendo en cuenta los resultados de este primer análisis y el futuro desarrollo de la política climática global y la volatilidad en el mercado mundial del petróleo crudo, una decisión a seguir una transformación del sistema energético hacia una 100% renovable El suministro de energía ofrece una serie de ventajas significativas sobre una estrategia basada en combustibles fósiles:

- 1- Reducirá masivamente el consumo de divisas para importaciones de energía fósil en el rango de 400 a 500 millones USD/año.
- 2- Aumentará sustancialmente el crecimiento económico de Cuba debido a al hecho de que las importaciones pueden ser sustituidas por las fuentes nacionales de energía renovable.
- 3- Reducirá masivamente las emisiones de CO₂ de Cuba al alrededor de 50 millones de toneladas por año (esto comparado con un suministro de energía basada en combustible fósil).
- 4- Reducirá masivamente la contaminación del aire local debido al uso de electricidad verde limpia en la producción de energía, transporte, hogares, industria y comercio sector.
- 5- Permitirá el acceso directo a las fuentes internacionales de financiamiento de energía renovable para ayudar en la transición al 100% sistema de energía renovable (Vazquez et al., 2018).

1.8 Situación energética en Cienfuegos.

En esta sección se caracteriza la provincia de Cienfuegos con tal de dar una imagen geográfica y energética de su situación en Cuba, siendo esta una provincia importante por su instalación de 316 MW de potencia eléctrica.

1.8.1 Caracterización de la provincia.

La provincia de Cienfuegos se encuentra situada en el centro-sur del país entre las coordenadas 210 21' y 220 35' de latitud norte y 800 20' y 810 10' de longitud oeste. Limita al Norte con los municipios de Ranchuelo y Santo Domingo (provincia de Villa Clara) y con los municipios Calimete y Los Arabos (provincia de Matanzas). Al Este con el municipio de Manicaragua (provincia de Villa Clara) y con el municipio de Trinidad (provincia de Sancti Spíritus).

Al Sur limita con el Mar Caribe y al Oeste con los municipios Ciénaga de Zapata y Calimete de la provincia de Matanzas. La Temperatura media anual es de 24.5°C, la humedad relativa del 78% y el promedio de lluvia anual es de 1304 mm (López & Lugo de León, 2021).

1.8.1 Unidades de generación eléctrica en Cienfuegos.

En Cienfuegos se encuentra enclavada la Termoeléctrica "Carlos Manuel de Céspedes" (ETE) organización que pertenece a la Unión Nacional Eléctrica (UNE) que a su vez forma parte del Ministerio de Energía y Minas (MINEM), por su capacidad instalada, su ubicación geográfica, su elevada eficiencia y disponibilidad, constituye uno de los pilares fundamentales del Sistema Electroenergético Nacional (SEN), y está designada por el Despacho Nacional de Carga (DNC) para llevar la frecuencia del sistema (López & Lugo de León, 2021).

La ETE que brinda el servicio de generación de electricidad al SEN con una potencia instalada 316 MW, integrada por 2 unidades o bloques de generación de tecnología japonesa (HITACHI) de 158 MW cada uno. Las unidades de Cienfuegos representan el 12% de las unidades térmicas del país, a la generación de energía eléctrica se integran en período de zafra los CAI de la provincia siendo estos:

- ✓ CAI Antonio Sánchez, Municipio Aguada de Pasajeros
- ✓ CAI 14 de Julio, Municipio Rodas.
- ✓ CAI 5 de Septiembre, Municipio Rodas.
- ✓ CAI Elpidio Gómez, Municipio Palmira.
- ✓ CAI Ciudad Caracas, Municipio Lajas.

Un elemento importante es el uso de las fuentes renovables de energía las cuales han ido en aumento, destacándose en la provincia un crecimiento significativo de la biomasa cañera y la energía fotovoltaica.

1.8.3 Consumo energético de Cienfuegos.

El consumo de portadores energéticos en la provincia Cienfuegos está constituido fundamentalmente por la energía eléctrica, el diésel, la gasolina y el gas licuado. El mayor consumo le corresponde a la energía eléctrica y aunque en el 2013 se observa un crecimiento, en el 2014 disminuye en comparación con años anteriores, le sigue el diésel que se comporta de manera similar, pero en menor medida (López & Lugo de León, 2021). La gasolina va en descenso y el gas licuado se mantiene estable como se observa en la Figura 1.16.

Figura 1.16. Consumo de portadores energéticos en la provincia de Cienfuegos. Fuente: Tomado de (López & Lugo de León, 2021).

El consumo de energía eléctrica en la provincia de Cienfuegos es mayor en el sector estatal, este consume un 55.5% de la electricidad de la red provincial y del mismo solo un 0.8% es del alumbrado público dejando al sector privado con un 44.5% pero de ello un 42.9% es del sector residencial, esto se refleja en la Figura 1.17, Figura1.18 y Figura 1.9. (López & Lugo de León, 2021).

Figura 17. Consumo de energía entre el sector estatal y el privado. Fuente: Elaboración propia, datos tomados de (López & Lugo de León, 2021).

Figura 18. Consumo de electricidad en el sector estatal. Fuente: Elaboración propia, datos tomados de (López & Lugo de León, 2021).

Figura 19. Consumo de electricidad en el sector privado. Fuente: Elaboración propia, datos tomados de (López & Lugo de León, 2021).

En la comparación del consumo de energía eléctrica en los municipios de la provincia de Cienfuegos, se obtiene que el municipio de Cienfuegos es el de mayor consumo eléctrico, debido a que en el territorio están enclavadas las principales industrias y sectores de servicios de la provincia, así como la mayor población lo que clasifica al municipio como ciudad tipo 1 o 1^{er} orden en Cuba.

Las fuentes energéticas primarias propias en el municipio de Cienfuegos son principalmente las Fuentes Renovables de Energía (FRE). La Tabla 1.11 recoge las fuentes de energía primarias propias disponibles en el municipio de Cienfuegos.

Producción Primaria	Valor	Unidad	Fuente primaria en tep	% sobre TOTAL
Leña	7 722.8	m ³	200.792 8	35.433 939 03
Biogás	45.463	MWh	3.909 818	0.689 966 237
Solar fotovoltaica	4 208.9	MWh	361.965 4	63.876 094 73
TOTAL	•		3 367.336 88	100

Tabla 1.11. Fuentes primarias propias aprovechables energéticamente en el municipio de Cienfuegos

Fuente: Tomado de (López & Lugo de León, 2021).

En términos de energía primaria propia, la Figura 1.20 muestra la producción de la energía solar fotovoltaica como la mayor contribución, representando un 63.9 % del total de las fuentes primarias propias, seguido del aprovechamiento de la leña con un 35.4 %, siendo muy inferior la utilización del biogás con respecto a los demás portadores energéticos.

Figura 1.20. Producción primaria. Fuente: Tomado de (López & Lugo de León, 2021).

1.9 Situación de CENEX en Cuba.

A continuación, se describe que es la empresa CENEX, cuál es su política, sus objetivos, a que entidades brinda sus servicios y cuál es su consumo eléctrico de forma general.

1.9.1 ¿Que es CENEX?:

El Centro surge en 1985 como Establecimiento de Servicio de Control Técnico dentro de la Empresa Constructora de Obras Industriales # 6 (ECOI-6), ubicado en la carretera del Castillo, Cienfuegos; previsto para el servicio de control técnico durante la construcción de la CENTRAL ELECTRONUCLEAR de JURAGUÁ. Al paralizarse la construcción de la CEN en 1992, se constituye el Centro Experimental de la Construcción (CENEX), con el objetivo de dar servicios a los trabajos de conservación de la CEN, ofrecer servicios a la industria nacional y desarrollar tareas de investigación y desarrollo. Es una Empresa en Perfeccionamiento Empresarial desde el 2005. En la actualidad, denominada Empresa de Servicios Técnicos de Defectoscopia y Soldadura, está Integrada al OSDE de Diseño e Ingeniería de la Construcción (GEDIC) según Resolución Ministerial Nº387/2014 de fecha 30 de diciembre del 2014 (Terry Ramírez et al., 2022).

1.9.2 Misión de CENEX:

El CENEX, mediante la especialización de los servicios de control por ensayos no destructivos a uniones soldadas, materiales metálicos y de construcción, de análisis de integridad estructural a recipientes, tuberías y componentes estructurales; comprobación de dispositivos de alivio de presión y, de diseño y prestación del servicio de entrenamiento y homologación de soldadores; tiene la misión de garantizar la seguridad en los elementos ensayados, para minimizar afectaciones a la salud y al medio ambiente por la ocurrencia de accidentes o por vertimiento de gases o líquidos peligrosos, así como, de propiciar el uso adecuado de los materiales y la tecnología con Producciones Más Limpias y Buenas Prácticas, con el entrenamiento y homologación de soldadores.

1.9.3 Política de CENEX.

La Empresa de Servicios Técnicos de Defectoscopia y Soldadura. CENEX, adopta un enfoque a procesos y de pensamiento basado en riesgos en todos sus sistemas de manera eficiente, desarrollando un rol protagónico en la mejora continua a corto, mediano y largo plazo en las perspectivas de la organización, contando con un Capital Humano competente y motivado con los requisitos de nuestro Sistema Integrado de Gestión. cumpliendo los requisitos establecidos en las normas NC ISO 9 001:2015: Sistema de Gestión de la Calidad, Requisitos; NC ISO 14 001:2015: Sistema de Gestión Ambiental: Requisitos. Y NC ISO 45 001: 2015: Sistema de Gestión de Seguridad y Salud en el Trabajo. Requisitos para su uso, que garantizan eficazmente la comprensión de las necesidades y expectativas de las partes interesadas, hacia una Cultura de Seguridad e integridad física de los recursos materiales, financieros y humano; la población y el medio ambiente.

Esta política está avalada por el liderazgo y compromiso de la alta dirección, los funcionarios, especialistas y trabajadores en general, de esforzarse en todo momento por su cabal cumplimiento, contando para ello, con una efectiva consulta y participación de los trabajadores, su sentido de pertenencia, dedicación al trabajo y su espíritu de constante superación.

1.9.4 Tipos de servicios prestados.

TIPOS DE SERVICIOS:

Los servicios que presta la Empresa y que se describen a continuación, aclaramos que ellos trabajan en grupos de trabajo:

Servicio de Control por Ensayos No Destructivos: Estos controles consisten en detectar los defectos internos y externos en los metales y uniones soldadas en estructuras, recipientes y tuberías. Se relacionan a continuación: Aquí se incluyen 6 Especialistas en Ensayo Físico Químico y Mecánico, 4 Especialista en Soldadura, 3 Técnicos en ensayo Físico, Químico y Mecánico, 13 Técnicos en Defectoscopia que realizan todos los servicios del grupo incluyendo la radiografía y ultrasonido, y los 5 choferes que están capacitados para la transportación y manipulación de las fuentes radioactivas (Terry Ramírez et al., 2022).

Inspección visual: Con este tipo de control el inspector puede observar sólo los defectos externos como poros, grietas, en las soldaduras además socavaduras, exceso de ancho del cordón, falta de penetración entre otros defectos superficiales y las dimensiones geométricas de la unión.

Control Radiográfico: Permite analizar los posibles defectos internos utilizando las propiedades de los rayos X y gamma.

Control por Ultrasonido: Permite analizar los posibles defectos internos utilizando las propiedades de las ondas ultrasónicas.

Control por líquidos penetrantes: Permite revelar los defectos superficiales por el efecto capilar de los líquidos que se utilizan.

Hermeticidad: Permite detectar los defectos pasantes que afecten la hermeticidad de los equipos, tuberías.

Medición de espesor: Permite determinar espesores utilizando las propiedades de las ondas ultrasónicas.

Macro y Micro estructura ínsito: Permite el examen macro y micro – estructural de los materiales con los aumentos correspondientes para conocer su tipo de estructura interna, forma y tamaño de granos, así como los defectos internos entre otros aspectos.

Pruebas de dureza ínsito: Permite determinar la capacidad de los metales de resistir a la penetración de un material más duro.

Servicios de METALSOL: Aquí contamos con 9 Especialistas en Soldadura.

Entrenamiento y Homologación de Soldadores: Proceso que se dedica a entrenar y homologar los soldadores en uno o varios procesos de soldadura.

Elaboración y comprobación de procedimientos de Soldadura: Elaboración de procedimientos de soldaduras por diferentes métodos y su correspondiente comprobación, según la norma aplicada.

Análisis de integridad estructural de recipientes, tuberías y componentes estructurales: Se realiza una inspección y sobre esa base se ejecutan los servicios de control requeridos para determinar si estos equipos aún cumplen con las especificaciones técnicas y funciones para las cuales fueron diseñados.

Controles Destructivos: Estos controles se denominan ensayos mecánicos, consisten en detectar los defectos y propiedades mecánicas, mediante la destrucción de las probetas elaboradas a partir de las uniones soldadas o metales bases. No están disponibles en su totalidad por falta de equipamiento excepto las pruebas de dureza.

Todos los servicios descritos son de gran responsabilidad, ya que el margen de error es ínfimo y de haberlo, ocasionaría afectaciones, al trabajador, al medio ambiente y a la economía del país (Terry Ramírez et al., 2022).

Estos servicios se prestan en diversas empresas a lo largo y ancho del país, entre ellas se encuentran obras priorizadas y de prioridad para el país, citando algunas:

- Refinerías (de Cienfuegos, Súper Tanqueros Matanzas, Habana, Mayabeque)
- Termoeléctricas (Cienfuegos, Mariel, Santiago de Cuba, del este de la Habana)
- MOA Níquel (la Che Guevara y la Pedro Soto Alba)
- Frigoríficos
- Centrales azucareros (Ciego de Ávila, Cienfuegos)
- Cloro (Sosa de Sagua)
- Antillana de acero,
- Alimentarias del país.
- Fábricas de Cemento
- Ciego de Ávila, con la empresa BIOPOWER, en convenio con los chinos, en central Ciro Redondo

1.9.5 Consumo de la entidad.

Para el control energético de la empresa, el departamento encargado del control de la energía realiza una crónica diaria a modo de bitácora de la empresa, recogiendo todos los

datos. El consumo actual de la empresa es 272.91 kWh al día teniendo una potencia instalada de 48.322 kW. La empresa ajustándose a la nueva política energética del país ha propuesto en su plan un consumo de 127.47 kWh al día, siendo esto menos de la mitad del consumo actual, por tanto, la empresa esta apta para buscar soluciones energéticas como la propuesta de una instalación fotovoltaica que ayude a mitigar el consumo diario de energía, aparte de la aplicación de nuevas normas de ahorro energético. Para tener en cuenta las finanzas energéticas la empresa se subordina a la Resolución 277, dictada por el ministro de Finanzas y Precios, del 13 de junio de 2014, que aprueba el Sistema para la formación de las tarifas eléctricas en pesos cubanos o en pesos convertibles.

1.10 Conclusiones del capítulo.

Conclusiones parciales del capítulo:

1. La tecnología solar fotovoltaica, aunque es emergente por el poco tiempo entre nosotros ha resultado ser un campo de investigación prioritario para la comunidad científica internacional al ser uno de los pilares energéticos que salvara el medio ambiente de la inminente devastación.

2. Cuba ha desarrollado una política de investigación de la energía renovable que de aplicarse correctamente reducirá masivamente el consumo de divisas para importaciones de energía fósil en el rango de 400 a 500 millones USD/año.

 La provincia de Cienfuegos tiene un consumo de portadores energéticos que está constituido fundamentalmente por la energía eléctrica, el diésel, la gasolina y el gas licuado.
 La aplicación de instalaciones fotovoltaicas en la red reduciría notablemente el consumo de estos portadores energéticos.

CAPÍTULO 2: MATERIALES Y MÉTODOS.

El siguiente apartado consiste en evaluar cada aspecto para la instalación de un SSFV, mediante cálculos manuales, quedando creada así, una metodología para futuros proyectos de integración de SSFV en edificaciones. Para ello se desarrolló una secuencia de pasos con un orden lógico que posteriormente fue complementada con las ecuaciones que fuesen necesaria para dar solución al diseño seleccionado.

Cabe aclarar que, para la veracidad de esta metodología, que todas estas ecuaciones fueron extraídas de referencias confiables, entre las que tenemos: (Benítez & Tello, 2018), (Albert, 2020), (Perpiñán, 2013), (Álvarez et al., s. f.),(Becerra, 2019),(Dobrovolski, 1970), (Callisaya, 2012), (Iturralde et al., 2021), (Monteagudo & Crespo, 2021),(Albo, 2021),(ABB, 2019).

2.1. Caracterización energética.

2.1.1. Revisión energética.

2.1.2. Modelo de Sistema de Gestión de la Energía ISO 50001.

En la Figura 2.1 se muestra el Modelo de Gestión de la Energía ISO 50 001.

Figura 2.1. Modelo de Gestión de la Energía ISO 50 001. Fuente (Monteagudo & Sánchez, 2021).

Analizar el uso y consumo de energía:

- Gráfico de Energía y Producción Vs. Tiempo.
 Este tipo de gráfico se utiliza porque:
- Muestra la variación simultánea del consumo energético con la producción realizada en el tiempo.
- Muestran cuando se producen comportamientos anormales del consumo energético con respecto a la variación de la producción.
- Permiten identificar causas o factores que producen variaciones significativas de los consumos (Monteagudo Yanes et al., 2006).
- Gráfico de Control.

Este tipo de gráfico se utiliza porque:

- Son diagramas lineales que permiten observar el comportamiento de una variable en función de ciertos límites establecidos.
- Se usan como instrumento de autocontrol y resultan muy útiles como complemento a los diagramas causa y efecto, para detectar en cuales fases del proceso analizado se producen las alteraciones (Monteagudo Yanes et al., 2006).
 - Gráfico de Tendencia.

Este tipo de gráfico se utiliza porque:

- Gráfico para monitorear la tendencia de la empresa en cuanto a la variación de sus consumos energéticos respecto a un período base de comparación dado.
- Permite determinar cuantitativamente la magnitud de la energía dejada de consumir o consumida en exceso respecto al periodo base de referencia.
- Conocer la tendencia real de la empresa en cuanto a variación de los consumos energéticos.
- Comparar la eficiencia energética de períodos con diferentes niveles de producción.
 - Determinar la magnitud del ahorro o gasto en exceso en un período actual respecto a un período base.

 Evaluar la efectividad de medidas de ahorro de energía (Monteagudo Yanes et al., 2006).

Identificar las áreas de uso significativo de energía y de consumo:

Diagrama de Pareto.

Este tipo de gráfico se utiliza porque:

- Es un gráfico especializado de barra que presenta la información en orden descendente, desde la categoría mayor a la más pequeña en unidades y en porcentaje.
- Los porcentajes agregados de cada barra se conectan por una línea para mostrar la suma incremental de cada categoría respecto al total.
- El diagrama de Pareto es útil para aplicar la Ley de Pareto o Ley 80

 20, que identifica el 20% de las causas que provoca el 80% de los efectos de cualquier fenómeno estudiado (Monteagudo Yanes et al., 2006).
- Estratificación.

Este tipo de gráfico se utiliza porque:

- Cuando es necesario encontrar la causa particular del efecto de consumo, entonces se aplica Pareto a estratos más profundos de la causa general.
- La estratificación es el método de agrupar datos asociados por características comunes pasando de lo general a lo particular.
- Pueden ser estratificados los gráficos de control, los diagramas de Pareto, los diagramas de dispersión, los histogramas y otras herramientas de descripción de efectos (Monteagudo Yanes et al., 2006).

Identificar oportunidades para la mejora del desempeño energético:

- Guía de la Supervisión Energética.
- Manual de Procedimientos del Diagnóstico Energético y Socio ambiental de la TGTEE.
- Analizar objetivos que tenga la institución de disminuir su consumo de energía eléctrica con energía solar fotovoltaica.

2.2. Caracterización del sistema eléctrico del lugar.

- > Revisión de la tarifa eléctrica de la institución.
- > Verificación de la potencia contratada y del factor de potencia.
- > Levantamiento de las cargas instaladas.
- Comportamiento del consumo histórico de la institución y de las cargas instaladas.
- > Caracterización de fuentes de energías alternativas a la red.

2.3. Análisis estructural del sitio.

En esta sección se realiza un análisis estructural de la unidad de ser necesario, dependiendo del lugar de instalación.

2.3.1 Revisión de estudios estructurales previos ejecutados a la entidad.

Se solicita el estudio estructural realizado por el ingeniero civil en la instalación a la hora de su construcción.

En caso de ausencia de dicho estudio solicitarlo a entidades competentes.

2.4. Revisión de la orientación y coordenadas del sitio.

2.5. Clasificación de la disponibilidad de las áreas de la entidad para la posible instalación de SSFV.

2.6. Estudio de sombras en las áreas seleccionadas.

- Mediante cálculos manuales.
- > Mediante softwares especializados:
 - Pvsyst.
 - SketchUp.
 - Sunny Design.

2.7. Selección del SSFV a utilizar.

2.7.1. Selección del panel solar. Requisitos a tener en cuenta.

- > Dimensiones para relacionar con el área disponible.
- Masa del panel solar para relacionar con las características estructurales del lugar.
- Características eléctricas del panel para relacionar con la posible demanda a cubrir.
- > Análisis de la relación área vs potencia del panel.
- > Tecnología del panel solar fotovoltaico a relacionar con las características

climáticas del sitio.

2.8. Diseño estructural de los soportes de los paneles.

> Estudio de las características climáticas de la institución.

Las características del clima influyen en la eficiencia y rendimiento del SSFV. Para la zona en la cual se centra el proyecto, es importante contar con la información meteorológica. Especialmente, contar con la información de la radiación solar que se presenta en el lugar para beneficiar el funcionamiento del sistema que se desea implementar (Benítez & Tello, 2018).

También es importante conocer la influencia de los vientos sobre las estructuras para los cálculos de resistencia al viento. Estos datos se pueden encontrar en centros meteorológicos o basándose en softwares de diseños.

Selección del tipo de estructura.

La estructura es el elemento encargado de fijar los paneles al terreno o tejado de la instalación, pueden ser de los siguientes tipos (Albert, 2020):

- Coplanares: Para paneles que se colocan pegados a la cubierta. Permiten aprovechar mejor el espacio disponible en la cubierta y son la solución más estética y con menor impacto visual.
- Estructura triangular: Se utilizan para corregir la inclinación y la orientación de los paneles cuando la posición de la cubierta no es la idónea, aumentando la radiación recibida por los paneles y por consiguiente la producción eléctrica.
- Seguidores solares: Se trata de estructuras móviles, de uno o dos ejes, que varían la orientación de los paneles en función de la posición solar. Son instalaciones más complejas, pero pueden llegar a aumentar hasta un 30% la producción eléctrica en emplazamientos de elevada radiación directa. Hay varios tipos:
 - Dos ejes: Mantienen la superficie del panel perpendicular al Sol.
 - Un eje polar: Se ajusta el giro de un eje de tal forma que la normal a la superficie del panel coincida con el meridiano terrestre que contiene al Sol.
 - Un eje azimutal: Se ajusta el giro de un eje para hacer coincidir la normal a la superficie con el meridiano local que contiene al Sol.
 - Un eje horizontal: Se ajusta el giro sobre un eje horizontal y orientado en dirección norte-sur, de tal forma que la normal a la superficie del panel coincida con el meridiano terrestre que contiene al Sol.
- Estructuras estáticas: En estas estructuras el módulo se fija en una posición y no se

cambia, son las más utilizadas y las adecuadas para techos e integración arquitectónica.

- Estructura a dos aguas Este Oeste: Se fijan dos módulos, uno dirección Este y orto Oeste, permitiendo un mayor tiempo de aprovechamiento de la radiación solar.
- Selección del ángulo de inclinación del módulo con respecto a la superficie que se va instalar.

Como es habitual en los SSFV, la orientación del generador debe ser hacia el horizonte Sur en el hemisferio Norte (y hacia el horizonte Norte en el hemisferio Sur). La inclinación del generador debe ser tal que maximice la producción anual, de forma que estará comprendida entre la que prima la producción en los meses invernales y la que favorece la generación en verano. Una recomendación sencilla consiste en inclinar el generador 10° menos que la latitud del lugar. Es posible obtener valores más precisos con la Ecuación 4, en la que los ángulos de inclinación y latitud están en grados. En cualquier caso, es necesario que la inclinación no se encuentre por debajo de 15° para permitir que la suciedad acumulada pueda ser retirada por la lluvia (Perpiñán, 2013).

$$B_{op} = 3.7 + 0.69 * |\varphi|$$
 Ec. 4

Donde:

Bop ángulo de inclinación óptima.

 φ latitud del lugar.

> Determinar el azimut de los módulos solares.

La orientación del panel es una de las decisiones que influye directamente en la eficiencia de la instalación, esta consiste en posicionar adecuadamente el panel solar con relación al astro rey. Este tema ha sido ampliamente estudiado en los últimos años (Albo, 2021).

La orientación de los módulos se debe indicar a partir del uso del ángulo azimut de la desviación con respecto a la dirección sur (para las localizaciones que se encuentren en el hemisferio norte) o con respecto a la dirección norte (para localizaciones que se encuentran en el hemisferio sur) (ABB, 2019).

Los valores positivos de los ángulos azimut muestra una orientación que tiende al oeste mientras que los valores negativos tienden al este. Se obtienen buenos resultados cuando los módulos son orientados de sureste o sur-oeste con una desviación de hasta un máximo de 45 grados hacia la dirección sur.

Mayores desviaciones pueden ser compensadas por medio de un ligero alargamiento de la superficie de los módulos (ABB, 2019).

Cálculo de soporte de la estructura:

Para el dimensionamiento y cálculo de la estructura de soporte se tienen en cuenta los siguientes aspectos:

- Peso de la estructura.
- Peso propio del panel.
- Carga en las vigas.
- Carga por acción del viento.
- Cálculo de resistencia de las uniones.

2.8.1 Estos cálculos se pueden realizar mediante:

• Software especializado Autodesk Inventor Profesional.

Para los cálculos de soporte de la estructura se utilizan diferentes softwares dependiendo de la empresa o diseñador del SSFV. Estos softwares realizan un análisis de la estructura mediante un sistema hiperestático en donde se le plasman las cargas estáticas como la del propio peso del panel y también se le agregan cargas dinámicas como la fuerza ejercida por el viento, llegando esta, a ser variable. Estos softwares también realizan los cálculos pertinentes de las uniones realizadas en la estructura, ya sean atornilladas u mediante soldaduras, aparte de tener en cuenta os contrapesos y sistemas de anclajes. En esta metodología se opta por usar el sistema Autodesk Inventor y el SolidWorks. El Autodesk Inventor cual ha sido utilizado como herramienta de cálculo de precisión en varios artículos científicos en el cual se utiliza como fuente de obtención de energía los módulos fotovoltaicos:

- Un análisis del vehículo bi-híbrido eléctrico alimentado por energía solar en comparación con los vehículos con motor IC utilizando análisis de gráficos con IA (Reddy et al., 2022).
- Rastreador de programación de doble eje con un algoritmo adaptativo para una fuerte dispersión del rayo de sol (Saymbetov et al., 2021).
- Implementación del movimiento de fabricantes al laboratorio de energía renovable: estudio de caso del modelo fotovoltaico de seguimiento automático (Afif et al., 2019).
- Investigación del rendimiento óptico y eléctrico de sistemas fotovoltaicos-térmicos truncados 3X sin imágenes de baja concentración (Chandan et al., 2020).

- Mejora del rendimiento de un sistema de refrigeración basado en desecantes mediante la mitigación de la iluminación no uniforme en las unidades térmicas fotovoltaicas acopladas de baja concentración (Chandan et al., 2022).
- SMOFIM : Maquina de pescado ahumado basado en energía solar fotovoltaica con filtro de escape reduciendo los contaminantes CO, CO2 Y HC como un esfuerzo para la mejorar la economía de la comunidad de pescadores en TRISIK BEACH (Setiawan et al., 2018).

El SolidWorks junto con su extensión SolidWorks Simulation es un programa de gran precisión que ha sido utilizada en diversos artículos científicos, entre los cuales se encuentran:

- Diseño y análisis numérico de engranajes rectos utilizando la técnica de simulación de SolidWorks (Mahakul et al., 2021).
- Diseño, análisis y optimización del volante de inercia de la máquina trilladora mediante la simulación de Solidworks (Vardaan & Kumar, 2022).
- Desarrollo del diseño del silenciador y su validación (Kashikar et al., 2021).
- Diseño y análisis de la turbina hidráulica helicoidal Gorlov en índice de revolución (Jayaram & Bavanish, 2022).
- Estudios computacionales sobre el flujo de aire desarrollados por el sistema de energía solar pasiva integrado en edificios (Sivaram et al., 2021).
- Diseño de un brazo robótico ligero para la polinización del kiwi (Li et al., 2022)
- Diseño, Análisis y Simulación de una Turbina de Viento Darrieus (tipo Eggbater) (Shah & Barve, 2021).
- Investigación numérica sobre estática y comportamiento de pandeo de un soporte de mástil para Turbina H-Rotor Darrieus bajo carga (Ferroudji et al., 2021).
- Modelado y simulación dinámica de un robot con la herramienta SolidWorks Motion (Lounici et al., 2021).
- Modelado y simulación SCARA basado en SimMechanics y Solidworks (Zhuo & Cheng, 2021).
 - Cálculos manuales.

El peso de la estructura de soporte del panel se obtiene mediante softwares a partir del volumen del material utilizado y las propiedades del mismo.

Peso propio de los paneles

El peso propio de los paneles fotovoltaicos se considera como un añadido al peso propio de la estructura. Este peso propio de los paneles si debe determinarse manualmente. Por lo que el peso propio de los paneles se expresa en la Ecuación 5 (Álvarez et al., s. f.):

$$P = \frac{peso \ de \ un \ panel \ (N)}{área(m^2)} \qquad \text{Ec. 5}$$

> Carga en las vigas

La carga para cada una de las vigas debe tener en cuenta el peso propio del panel, accesorios y calibre del cableado empleado. De acuerdo con los datos necesario para la determinación de la carga es usada la Ecuación 6 (Álvarez et al., s. f.):

$$N = \left(\frac{P_{p+a} * T_p}{L_v}\right) + W_c \qquad Ec. \, 6$$

Donde:

N carga sobre la viga.

 P_{p+a} peso propio del panel más accesorios.

 T_p total de paneles sobre la viga.

 L_v longitud de las vigas.

 W_c peso lineal del calibre del conductor.

> Carga por la acción del viento

La velocidad de los vientos que inciden sobre la parte frontal de los paneles de determina mediante la Ecuación 7 (Becerra, 2019):

$$Vf = V * cos \varphi$$
 Ec.7

Donde:

V velocidad del viento.

 φ ángulo entre la dirección del viento y el panel.

> Fuerza de los vientos sobre los paneles

Para determinar la fuerza que ejercen los vientos sobre los paneles se utiliza la Ecuación 8 (Becerra, 2019):

$$F = \rho * C_{di} * A * \frac{Vf^2}{2} \qquad Ec.8$$

Donde:

 ρ Densidad del aire a nivel del mar.

 C_{di} Coeficiente de resistencia de superficies planas.

A Área proyectada del panel.

Vf Velocidad frontal de los vientos.

Cálculo de carga de los vientos haciendo uso de NC 285:2003 "Carga de vientos. Método de Cálculo".

La presión de viento sobre los paneles y las estructuras de fijación se obtiene a partir de la Ecuación 9 y la Ecuación 10 (Becerra, 2019):

$$q = q10 * Ct * Ch * Cs * Cr * Cf * Cra$$
 Ec.9

Donde:

q10 Presión básica característica del viento para una recurrencia de 25 años.

$$q10 = \frac{V_V^2}{1.6 * 10^3} \qquad Ec. \, 10$$

Vv velocidad del viento en el territorio.

Ct coeficiente de recurrencia para 25 años.

Cs coeficiente de sitio considerando sitio expuesto.

Ch coeficiente de altura.

Cr coeficiente de ráfaga.

Cra coeficiente de reducción de área.

Cf coeficiente de forma.

Cálculo de Resistencia de las uniones

Para el cálculo de las uniones roscadas en la estructura de soporte del panel se utiliza como bibliografía el libro de elementos de máquinas Dobrovolski, el método de cálculo es para uniones roscadas sin tensado previo en su montaje.

En este caso la falla principal es la rotura del tornillo a tracción por lo que la condición de resistencia será dada por la Ecuación 11 (Dobrovolski, 1970):

$$d_1 = \sqrt{\frac{4 * P}{\pi * [\sigma_{adm \, rot}]}} \qquad Ec.\,11$$

Donde:

 d_1 diámetro del tornillo hasta la base del filete.

P carga axial a la que está sometida la unión.

h altura de la cabeza del tornillo.

 $[\sigma_{adm rot}]$ tensión admisible de rotura.

Es evidente que además de la rotura a tracción del tornillo pueden ocurrir otras fallas, como el cizallamiento de la cabeza del tornillo, el cizallamiento de la rosca del tornillo, el cizallamiento de la rosca de la tuerca, la flexión o el aplastamiento de las espiras de la rosca.

El cálculo al cizallamiento de la cabeza del tornillo se realiza para evitar que esta se cizalle por la superficie cilíndrica de diámetro "do", se expresa en la Ecuación 12 (Dobrovolski, 1970):

$$\sigma_{cort} = \frac{P}{0.5 * \pi * d_0 * h} < [\sigma_{adm \ cort}] \qquad Ec. 12$$

Donde:

 σ_{cort} tensión cortante ejercida.

d₀ diámetro del tornillo hasta el exterior del filete.

h altura de la cabeza del tornillo.

 $[\sigma_{adm \ cort}]$ tensión admisible cortante.

El esquema de análisis para el cálculo de las espiras de la rosca a cortante se expresa en la Ecuación 13.

$$\sigma_{cort} = \frac{P}{0.5 * \pi * d_1 * \beta * H} < [\sigma_{adm \, cort}] \quad Ec. 13$$

Donde:

H Altura efectiva de la rosca.

 β Coeficiente de relleno de la altura de la rosca ($\beta = 1$ para roscas triangulares).

Para el cálculo de las espiras a flexión se asume que estas desplegadas son una viga en voladizo, la carga repartida en la superficie de la espira se sustituye por la fuerza concentrada $\frac{P}{z}$ (*z*- número de espiras de la rosca) y aplicada a la mitad de la altura de trabajo de la espira ($l = \frac{t'_2}{2}$). El esquema de análisis se puede apreciar en la Figura 2.2 y se expresa el cálculo en la Ecuación 14 (Dobrovolski, 1970):

Figura 2.2. Esquema para el análisis del cálculo de las espiras de las roscas a flexión. Fuente: (Dobrovolski, 1970).

$$\sigma_{flex} = \frac{3*P*t'_2}{z*\pi*d_1*b} < \left[\sigma_{adm\,flex}\right] \qquad Ec.\,14$$

Donde:

 σ_{flex} Tensión de flexión ejercida.

 t'_2 La mitad de la altura de trabajo de la espira.

b Distancia teórica entre los filetes.

 $[\sigma_{adm \ flex}]$ Tensión admisible de flexión.

z Numero de espiras de la rosca.

El cálculo de la rosca al aplastamiento se efectúa por la siguiente condición planteada en la Ecuación 15:

$$\sigma_{aplast} = \frac{4*P}{\pi*(d_0^2 - d_1^2)*z} < \left[\sigma_{adm\,aplast}\right] \quad Ec.\,15$$

Donde:

 σ_{aplast} tensión de aplastamiento.

 $[\sigma_{adm \ aplast}]$ tensión admisible de aplastamiento.

Para los cálculos de los tornillos sometidos a cargas transversales se utiliza la Ecuación 16 que expresa la tensión que soporta la caña de forma transversal:

$$\sigma_{cort} = \frac{4 * R}{\pi * d^2} < [\sigma_{adm \, cort}] \qquad Ec. \, 16$$

Donde:

d diámetro nominal de la caña.

R carga transversal.

Por tanto, fácilmente puede deducirse que el diámetro mínimo necesario de la caña será definido por la Ecuación 17:

$$d_{min} = \sqrt{\frac{4 * R}{\pi * [\sigma_{adm \, cort}]}} \quad Ec. 17$$

En las uniones roscadas montadas sin tensado previo y sometidas simultáneamente a cargas axiales y transversales la condición de resistencia se expresa a través de alguna de las hipótesis de la resistencia de los materiales. Según la cuarta hipótesis plasmada en la Ecuación 18:

$$\sigma_{equiv} = \sqrt{\sigma_{tracción}^2 + 3 * \sigma_{cort}} = \sqrt{\left(\frac{4 * P}{\pi * d^2}\right) + 3 * \left(\frac{4 * R}{\pi * d^2}\right)} < [\sigma_{adm\,rot}] \ Ec. 18$$

Donde:

 $\sigma_{tracción}$ tensión ejercida a tracción por la carga axial.

 σ_{equiv} tensión geométrica equivalente total producto de las tensiones axiales y cortantes.

2.9. Cálculo de la disposición del SSFV.

 Determinar ubicación de los módulos fotovoltaicos proyectados sobre el área (Número de filas y columnas y espacio entre las mismas).

El cálculo de la distancia mínima de separación entre las distintas filas de módulos solares que componen el generador fotovoltaico se realiza para que no se produzcan sombras de unos módulos sobre otros. En la Figura 2.3 se muestran todas las medidas que se deben tener en cuenta para estructuras de soporte estáticas convencionales (Becerra, 2019).

Figura 2.3. Medidas que se deben tener en cuenta para estructuras de soporte estáticas convencionales. Fuente (Becerra, 2019).

Donde:

dmín distancia mínima entre aristas de paneles para evitar sombras, (m).

A ancho del panel (columna de módulos en paralelo), (m).

h componente de la altura del panel, (m).

 β grado de inclinación del panel respecto a la horizontal, (°).

 θ ángulo de la sombra respecto a la horizontal, (°).

a distancia de la arista superior de un panel a la arista inferior del otro respecto a la horizontal, (m).

b distancia de la arista inferior del panel a la arista superior del mismo respecto a la horizontal, (m).

Con el grado de inclinación del panel y la longitud del panel, se calcula la altura solar al mediodía mediante la Ecuación 19 (Becerra, 2019).

$$h = sen\beta * A$$
 Ec. 19

Con los mismos datos se calcula la distancia (b) en la Ecuación 20.

$$b = cos\beta * A$$
 Ec.20

Considerando el ángulo de inclinación del panel y los ángulos rectos que se forman, se complementan los demás ángulos y se determina que el ángulo θ (Becerra, 2019).

Con el valor del ángulo θ y la altura h se calcula la distancia a en la Ecuación 21.

$$a = \frac{h}{tan\theta} \qquad Ec.\,21$$

Al ser (*a*) la distancia mínima entre la arista superior de un panel y la arista superior del otro con respecto a la horizontal, esta se puede normalizar a un valor mayor en caso de que sea puy pequeño, para asegurar que no ocurra interferencia entre paneles y facilitar el acceso por los pasillos para la limpieza y mantenimiento (Becerra, 2019).

En la Ecuación 22 se suma la distancia (a) más la distancia (b) para obtener la distancia mínima entre aristas inferiores de paneles, para evitar la sombra sobre otro panel.

$$d_{min} = a + b$$
 Ec.22

En la figura 2.4 se representa la distancia mínima entre paneles en la fila.

Figura 2.4. Distancia mínima entre paneles en la fila. Fuente (Becerra, 2019).

La distancia mínima entre paneles en la fila se determina mediante la Ecuación 23.

$$d = dmin - A$$
 Ec. 23

Esta magnitud también puede ser normalizada para asegurar que no ocurra interferencia entre paneles y facilitar el acceso por los pasillos para la limpieza y mantenimiento (Becerra, 2019).

Cálculo del número máximo teórico de paneles fotovoltaicos.

Una vez calculada la separación mínima que debe haber entre filas de paneles (dmín), se procede calcular el número de estas que se podrán colocar sobre el área útil de las azoteas, mediante la Ecuación 24.

Número máximo de filas de paneles =
$$\frac{Ancho de la edificación}{Distancia entre paneles}$$
 Ec. 24

Conocidas las dimensiones de los paneles solares y el área máxima a ocupar, en cada fila podrán colocarse el número determinado por la Ecuación 25.

Número máximo de paneles por filas =
$$\frac{Largo de la edificación}{Ancho del panel} Ec. 25$$

Comprobación de las distancias reales.

Es necesario comprobar la distancia entre paneles, para garantizar la no existencia de sombra sobre áreas efectivas de generación eléctrica del panel para garantizar la distancia mínima, la limpieza y el mantenimiento.(Becerra, 2019).

Con la Ecuación 26 se procede a calcular la distancia entre filas:

$$Distfila = Nf * b + Npa * a$$
 Ec.26

Donde

Nf Número de filas.

Npa Número de pasillos a lo ancho.

b Distancia de la arista inferior del panel a la arista superior del mismo respecto a la horizontal.

a Distancia de la arista superior de un panel a la arista inferior del otro respecto a la horizontal.

Con la Ecuación 27 se procede a calcular la distancia entre columnas:

 $Dist \ columna = Nc * L + Npl * d$ Ec. 27

Donde

Nc Número de columnas.

Npl Número de pasillos a lo largo.

L Longitud del panel.

d Distancia entre paneles.

Mediante softwares especializados:

Para el estudio de sombras en las áreas seleccionadas para obtener resultados de la disposición del SSFV a seleccionar, siempre se puede realizar por cálculos manuales, pero la calidad del cálculo mejora sustancialmente cuando se usa software potente que realizan los cálculos con más precisión y sobre un espectro del día más amplio. Estos softwares son ampliamente reconocidos en el mundo, entre los cuales por la aplicación como herramientas fiables de simulación de sombras se encuentran:

- Pvsyst utilizado en:
 - Análisis y diseño de sistemas solares fotovoltaicos utilizando el software Pvsyst (Baqir & Channi, 2022).
 - Diseño y análisis de un sistema solar en red utilizando el software PVsyst para aplicaciones comerciales (Abdul Kader et al., 2022).
 - Diseño y simulación de sistemas solares fotovoltaicos independientes utilizando el software PVsyst: un caso de estudio (Kumar et al., 2021).
 - Modelado y simulación de un sistema de energía solar-fotovoltaica fuera de la red de 48 kWp utilizando PVsyst (Espina et al., 2022).
 - Evaluación de la capacidad de energía solar y evaluación del rendimiento de un sistema fotovoltaico independiente utilizando PVsyst (Shrivastava et al., 2021).
 - Diseño y simulación de una planta solar autónoma de 12.6 kWp en la región argelina de M'sila utilizando el software PVsyst (Salmi et al., 2022).
- SketchUp utilizado en:
 - Diseño asistido por computadora y mejora de la eficiencia basada en simulación de la primera ciudad solar egipcia (Haggag et al., 2021).

- Evaluación de viabilidad de la adopción de energía solar fotovoltaica distribuida y materiales de cambio de fase en edificios residenciales multifamiliares (Gassar & Cha, 2022).
- Sistema de energía fotovoltaica en red: un estudio de caso (Hussein M. K. et al., 2022).
- Análisis óptimo de tamaño, colocación y sombreado de un sistema fotovoltaico residencial de techo atado a la red de 19.2 kWp (Satpathy et al., 2021).
- Diseño, rendimiento y análisis económico del sistema solar fotovoltaico: un tamaño de estudio de caso de 148.8 kWp para el Centro de Atención y Rehabilitación Al-Tafila (Jordania) (Alzgool et al., 2021).
- Árbol solar fotovoltaico: plantas de energía fotovoltaica urbana para aumentar la relación potencia y ocupación territorial (Vyas et al., 2022).
- Sunny Design utilizado en:
 - Evaluación del rendimiento de las tecnologías fotovoltaicas en exteriores y estimación de software comercial en climas cálidos y secos (Othman & Hatem, 2022).
 - Planificación óptima de sistemas solares fotovoltaicos y de almacenamiento de baterías para el sector residencial conectado a la red: revisión, desafíos y nuevas perspectivas (Khezri et al., 2022).
 - Optimización del autoconsumo fotovoltaico mediante el sistema de almacenamiento y la gestión de la demanda (Ishaku & Yakoi, 2021).

2.10. Diseño de la red eléctrica del SSFV.

- Determinación del regulador de carga:
 - Regulador de primera o segunda generación:

Un regulador de primera o segunda generación debe poder manejar una intensidad de corriente igual a la intensidad de cortocircuito del o de los módulos fotovoltaicos. Entonces, la intensidad máxima a soportar por el regulador se expresa en la Ecuación 28 (Forget, 2011).

$$I_{mreg} = N_p * I_{SC}$$
(28)

Donde

 I_{mreg} intensidad máxima a soportar por el regulador.
N_p número de módulos fotovoltaicos conectados en paralelo.

I_{SC} intensidad de cortocircuito de un módulo fotovoltaico.

• Reguladores de tercera generación:

En el caso de los reguladores de tercera generación, en los reguladores MPPT, no se debe utilizar esta expresión, ya que justamente el regulador MPPT aumenta la intensidad a entregar a la batería (Forget, 2011). Para estos reguladores la intensidad máxima a soportar se determina mediante la Ecuación 29:

$$I_{mMPPT} = N * \frac{P_M}{V_{mbat}} \qquad Ec.29$$

Donde

N número total de paneles.

 P_M potencia pico de un panel.

 V_{mbat} tensión mínima a la cual puede llegar la batería descargada.

 Cálculo y selección de los inversores según la potencia nominal instalada en el SSFV:

La cantidad de inversores que hacen falta para la instalación se determina mediante la Ecuación 30 (Becerra, 2019).

Número de inversores =
$$\frac{Pd}{P_{inversor}}$$
 Ec.30

Donde:

Pd potencia que demanda la edificación.

La selección del inversor y de su dimensionamiento se lleva a cabo de acuerdo con la potencia nominal del generador fotovoltaico. A partir de la potencia nominal del generador fotovoltaico ($P_{DC PV GEN}$) según la distribución de la radiación de la energía solar en el lugar de instalación y de acuerdo con las condiciones de instalación. El diseñador tomará la decisión de si el inversor será sobredimensionado ($P_{DC Máx Inverter} > P_{DC PV GEN}$) o de tamaño insuficiente ($P_{DC Máx Inverter} < P_{DC PV GEN}$). En caso de que el inversor sera de tamaño insuficiente, cuando la potencia generada sea superior a la que normalmente se estima, el inversor limitará automáticamente la potencia de salida (ABB, 2019).

La tasa máxima de potencia de DC del inversor $P_{DC Máx Inverter}$, de acuerdo con la eficiencia del inversor, define la relación máxima de potencia de del inversor AC. La eficiencia del

inversor se encuentra influenciada por el porcentaje de la potencia de salida que el inversor tiene definida y el voltaje del arreglo fotovoltaico (ABB, 2019).

• Cálculo y selección del banco de baterías:

Capacidad necesaria de la batería:

La capacidad de la batería se determina mediante la Ecuación 31 (Callisaya, 2012).

$$C_{bat}(Wh) = \frac{E * D}{Pd} \qquad Ec.31$$

Donde

E Es la energía total necesaria que hay que suministrar teniendo en cuenta las pérdidas globales.

D Número de días de autonomía de la instalación.

Pd Es la profundidad de descarga de la batería.

La capacidad de la batería se convierte de (*Wh*) a (*Ah*) mediante la Ecuación 32:

$$C_{bat}(Ah) = \frac{C_{bat}(Wh)}{V_{bat}(V)} \qquad Ec.32$$

- Configuración de cadenas fotovoltaicas:
 - Selección de la arquitectura del inversor:

La selección de la arquitectura del inversor a utilizar tiene un impacto directo en los costos de la planta fotovoltaica. Sobre los últimos años los costos de un inversor central y un inversor de cadena se han ido acercando de una manera dramática. Aún los costos de los inversores de cadena son mayores que los inversores centrales.

Los costos de instalación es también uno de los elementos a tener en cuenta para la selección de la arquitectura del inversor:

- Instalación mecánica.

- Instalación eléctrica.

- Puesta en marcha de los inversores de cadena. (Mayores costos asociadas a la arquitectura basada en inversores de cadena que en el caso de los inversores centrales)

En el balance del sistema DC resulta ser más caro la arquitectura de inversores centrales y en el caso del balance del sistema AC es más caro para la arquitectura de inversores de cadena. Desde un punto de vista global, los costos de instalación de los inversores de cadena son mayor que los asociados a los inversores centrales.

Principales diferencias entre un inversor central e inversores de cadena en cuanto a los costos de operación:

- La gran capacidad de potencia que poseen los inversores centrales hace que sea necesario el uso de una ventilación activa. La menor capacidad de los inversores de cadena elimina el uso de este tipo de ventilación.

- Las cabinas donde se encuentra el inversor central son estructurados con ventiladores, filtros y respiraderos para habilitar la ventilación: estos componentes requieren de mantenimiento.

- Las unidades de conversión de potencia y las tarjetas de control pueden necesitar ser reemplazados durante el tiempo de vida útil de inversor.

Los inversores centrales son diseñados para brindar su servicio en el exterior y por tanto sus costos de mantenimiento son considerables.

Los inversores de cadena no son usualmente diseñados para realizar su servicio en el exterior y sus costos de mantenimiento por esta cuestión son bajos.

Desde el punto de vista de desempeño de la planta:

- La arquitectura basada en inversores de cadena está caracterizada por el uso de múltiples MPPT, considerando el hecho en el cual el desempeño a lo largo del arreglo fotovoltaico varía debido a:

* el comportamiento diferenciado de las sombras sobre el mismo.

* arreglos con diferentes ángulos de inclinación u orientación.

* presencia de daños en diferentes módulos.

De esta manera se logra optimizar cada generador fotovoltaico en el nivel de arreglo de tal manera que la salida de potencia del sistema sea maximizada.

Por lo general, en la arquitectura basada en inversores centralizados, se caracteriza por el uso de un solo MPPT.

- Si un inversor central se sale de la línea, entonces una porción significativa del

Inversores Centrales:

Los inversores centrales son por lo general pueden llegar a manejar hasta un máximo de 5MW de potencia, aunque este límite se puede ir incrementado continuamente. Los inversores centrales pueden ser utilizados en plantas de generación fotovoltaica de edificaciones comerciales e industriales y en aplicaciones montadas en el suelo.

La arquitectura del sistema que utilizan inversores centralizados requiere del uso de cajas de conexiones DC para el caso de las cadenas fotovoltaicas conectadas en paralelo como se muestra en la Figura 2.5.

Figura 2.5. Planta fotovoltaica con inversores centralizados. Fuente: Tomado de (ABB, 2019).

Beneficios del montaje de inversores centralizados:

- Bajo gasto de capital.
- Número reducido de la cantidad de inversores a utilizar.
- Mayor experiencia con las aplicaciones de campo.

• Mantenimiento de los inversores centrales:

Los inversores centrales generalmente requieren mantenimiento. El plan de mantenimiento usualmente incluye:

- Limpiare los filtros de admisión de aire.
- Verificación termográfica (imágenes IR) de conexiones.

En general, el mantenimiento (además de la intervención en sí y por lo tanto de los beneficios que aporta) es una operación que permite comprobar el estado de la máquina.

• Inversores de Cadena:

Los inversores de cadena pueden manejar potencias en el rango de 1.2 hasta 175 kW. Los inversores de cadena pueden ser utilizados por lo general en plantas de generación fotovoltaicas residenciales, comerciales e industriales como también en aplicaciones con montaje en el suelo como se muestra en la Figura 2.6.

Figura 2.6. Planta fotovoltaica con inversores en cadena. Fuente; Tomado de (ABB, 2019).

Beneficios del montaje de inversores en cadena:

- Pueden poseer un diseño de configuración al unísono con dispositivos de protección a la entrada DC integrados y que pueden ser monitorizados.

- Amplio rango de voltajes a la entrada.
- Múltiples entradas MPPT.
- Alta eficiencia total.
- Avanzadas funciones de soporte a la red.
- Posee un interfaz de servicio segura e intuitiva al usuario.
- Apropiado para ser utilizado tanto en instalaciones interiores como exteriores.
- Pérdidas mínimas por mantenimiento.

- Resulta más fácil realizar el diagnóstico de fallas.
- Mejores gastos de operación.
- Una logística más sencilla.
- Conexión directa de las cadenas en el interior del inversor
 - Mantenimiento de los inversores de cadena:

En el mantenimiento de los inversores de cadena debe de realizarse de acuerdo con el tipo de

ventilación (enfriamiento): podría ser convección natural o ventilación forzada:

- En caso de convección natural, la disipación se confía al flujo natural de aire a través de las aletas del disipador de calor. Este tipo de inversor puede considerarse como "libre de mantenimiento" con la excepción de la limpieza del disipador de calor para asegurar el flujo de aire correcto.
- En el caso de ventilación forzada, los ventiladores "empujan" aire fresco sobre las aletas del disipador de calor: el forzado la ventilación es más efectiva que la convección natural y requiere menos intercambio de temperatura superficie (disipadores de calor más bajos y, por lo tanto, menos engorrosos); sin embargo, la ventilación forzada requiere el presencia de ventiladores que son componentes sujetos a desgaste a largo plazo (el reemplazo es generalmente requerido después de 10 años de operación). Además, la limpieza periódica del filtro / rejilla de entrada de aire es obligatorio. La frecuencia depende muy a menudo de las características del lugar de instalación (presencia de polvo, sal, suciedad, etc.)

En cualquier caso, el cliente deberá hacer referencia a las indicaciones que se dan en el manual del producto, tanto en términos de mantenimiento periódico y en términos de ciclo de vida o reemplazo previo de componentes sujetos a llevar.

• Micro inversores:

Los micro inversores se instalan detrás de 1 o pocos módulos fotovoltaicos y convierten la potencia de CC de módulos fotovoltaicos a alimentación de CA compatible con la red directamente en el módulo. Las soluciones de micro inversores se pueden utilizar en energía fotovoltaica plantas de edificios residenciales y comerciales.

Beneficios del montaje de micro inversores:

- Reducción de las pérdidas de energía en caso de la existencia de sombreados.
- Mínimas pérdidas por mantenimiento.
- Monitoreo del desempeño de módulos fotovoltaicos de manera individual.

- Uso de cables de menor calibre.

- Alta modularidad de la planta fotovoltaica.

- Apagado de los módulos de un modo individualizado en caso de emergencia.

- Las plantas fotovoltaicas con una arquitectura basada en micro-inversores tiene un costo inicial alto.

Determinación del número máximo de módulos fotovoltaicos en cadena:

El máximo número de módulos fotovoltaicos conectados en serie que pueden ser conectados al inversor es definido en la Ecuación 33 en base a considerar que el voltaje de la cadena siempre se va a encontrar por debajo del voltaje máximo a la entrada del inversor. En caso de que el voltaje de la cadena exceda el voltaje de entrada del inversor, puede ocurrir daños en el inversor debido al sobre-voltaje al que es expuesto (ABB, 2019).

$$N_{MAX \ Module} \le \frac{V_{MAX-Inverter}}{V_{OC-MAX \ Module}} \qquad Ec.33$$

Donde:

 $N_{MAX Module}$ Máximo número de módulos fotovoltaicos conectados en serie por cada cadena.

 $V_{MAX-Inverter}$ Máximo voltaje permitido a la entrada del inversor.

V_{OC-MAX Module} Máximo voltaje de circuito abierto del módulo fotovoltaico.

Determinación del voltaje máximo de la cadena fotovoltaica V_{OC MAX String}:

El voltaje máximo de circuito abierto de la cadena ($V_{OC MAX String}$) a la temperatura más baja que puede ser lo esperado en el lugar de la instalación fotovoltaica podría calcularse mediante la Ecuación 34:

$$V_{OC MAX String} = N_{MAX-Inverter} * V_{OC-MAX Module}$$
 Ec. 34

Determinación de la cantidad mínima de módulos fotovoltaicos en cadena:

En caso de que el voltaje de cadena sea menor que el voltaje mínimo del punto de máxima potencia del inversor, entonces puede que el inversor no sea capaz de realizar el seguimiento o incluso generar pérdidas durante su operación.

El mínimo número de módulos fotovoltaicos conectados en serie que pueden ser conectados en el inversor es definido en la Ecuación 35 a partir de considerar que se está operando con el voltaje de cadena mínimo en las condiciones de punto de máxima potencia (ABB, 2019).

$$N_{\min Mod} \ge \frac{V_{\min MPPT Inversor}}{V_{MPP \min Module}} \qquad Ec.35$$

Donde:

*V*_{min MPPT Inversor} Voltaje mínimo del inversor MPPT.

V_{MPP min Module} Voltaje mínimo del módulo fotovoltaico MPP.

N_{minMod} Número mínimo de módulos fotovoltaicos conectados en serie.

El número de módulos fotovoltaicos por cadena no deben:

- Exceder el máximo número de módulos fotovoltaicos por cadena.

- No debe ser menor al mínimo número de módulos fotovoltaicos por cadena.

Determinación de la corriente máxima de los módulos fotovoltaicos:

La corriente de corto-circuito es proporcional con la temperatura de la celda y posee su máximo valor a la máxima temperatura de la celda. Por tanto, este máximo se puede determinar a partir de los siguientes datos:

- Temperatura máxima a la que se espera que opere la instalación fotovoltaica.

- Corriente de corto circuito del módulo fotovoltaico ante las STC.

- Coeficiente de temperatura del módulo fotovoltaico.

Las fórmulas para calcular I_{SC MAX} son expresadas en las Ecuaciones 36 y 37:

$$I_{SC MAX m \acute{o} dulo} = I_{SC STC} * [1 - \alpha * (25 - T_{cell})] \quad Ec.36$$

0

$$I_{SC MAX m \acute{o} dulo} = I_{SC STC} - \alpha' * (25 - T_{cell}) \quad Ec.37$$

Donde:

 T_{cell} Temperatura más baja que se puede esperar en el lugar de instalación fotovoltaica.

I_{SC STC} Corriente de cortocircuito del módulo fotovoltaico en condiciones de prueba estándar.

 α Coeficiente de variación de la corriente en función de la temperatura y depende de la tipología de módulo fotovoltaico; se mide en [%/K].

 α' Coeficiente de variación de la corriente en función de la temperatura y depende de la tipología de módulo fotovoltaico; se mide en [mA/K].

Además, la IEC 60364-7-712 propone una fórmula simplificada que se muestra en la Ecuacion 38:

$$I_{SC MAX módulo} = K * I_{SC STC}$$
 Ec. 38

Donde:

K Factor de corrección y su valor mínimo es 1,25; se incrementará para tener en cuenta situaciones ambientales.

Determinación de la corriente máxima en la cadena:

En una serie de conexiones de módulos la corriente no se suma; la corriente total en una cadena de módulos fotovoltaicos conectados en serie es igual a la corriente generada por un único modulo. Sobre la base de lo anterior se muestra la Ecuación 39,en la cual la corriente máxima de la cadena fotovoltaica es ($I_{SC MAX String}$) es igual a la corriente máxima del módulo fotovoltaico $I_{SC MAX}$ (ABB, 2019).

$$I_{SC MAX module} = I_{SC MAX string}$$
 Ec. 39

Determinación del número de cadenas:

Suponiendo que se llevó a cabo un dimensionamiento correcto del inversor de acuerdo con la potencia nominal del generador fotovoltaico, tan pronto como se defina el número de módulos por cadena, el número de cadenas por inversor debe ser verificado.

En el caso de inversores de cadena con MPPT independiente, el número máximo de cadenas conectadas en paralelo que podría conectarse al único canal de entrada de DC del inversor se define en función de la suposición de que la corriente de cortocircuito de la cadena ($I_{SC MAX}$) está siempre está por debajo de la corriente de entrada máxima del inversor como se muestra en la Ecuación 40 (ABB, 2019).

$$N_{MAX \ Module} \le \frac{I_{\max input}}{I_{SC \ MAX}} \quad Ec.40$$

Donde:

I_{max input} Corriente de entrada máxima al canal DC del inversor.

I_{SC MAX} Corriente de cortocircuito de la cadena.

N_{MAX Module} Número máximo de módulos por cadenas.

En el caso de inversores de cadena o un inversor central con un solo MPPT, el número máximo de cadenas conectado en paralelo que podría conectarse al inversor se define en

base a la suposición de que el ($I_{SC MAX}$) siempre está por debajo de la corriente de entrada máxima del inversor como se muestra en la Ecuación 41.

$$N_{MAX \ string} \le \frac{I_{\max \ inverter}}{I_{SC \ MAX \ string}} \qquad Ec. 41$$

Donde:

Imaxinverter Corriente máxima del inversor.

I_{SC MAX string} Corriente máxima de la cadena.

N_{MAX string} Número máximo de cadenas.

En el caso del inversor central, la determinación del número de cadena debe realizarse también para la caja combinadora. En cualquier caso, el nivel máximo de corriente de los componentes utilizados en las cajas combinadoras (conectores, interruptor, fusibles) y el inversor debe ser adecuado para el número de cadenas conectadas (ABB, 2019).

Cálculo de la generación del SSFV proyectado mediante:

- Software PVsyst.
- Sunny Design.

Para el cálculo de la generación del SSFV proyectado existen varias maneras para ejecutar ese cálculo desde el uso del término de horas solares pico hasta el uso de modelos basados en la información presentada por el fabricante de los módulos fotovoltaicos y los inversores. Entre los programas recomendados para llevar a cabo este cálculo con precisión encontramos el caso de PVsyst y Sunny Design como ya habíamos mencionado anteriormente. También se puede utilizar:

- Helioscope que se utilizó en:
 - Avance de las herramientas de simulación específicas para sistemas solares fotovoltaicos flotantes: análisis comparativo del rendimiento energético medido y simulado en el campo (Manoj Kumar et al., 2022).
 - Diseño y optimización del sistema fotovoltaico de minired para países en desarrollo (Chaware et al., 2021).
 - Diseño y análisis de simulación de 1 MWp de sistema fotovoltaico conectado a la red flotando sobre el lago Nasser (Elshafei et al., 2021).

- Sistema integrado fotovoltaico de generación de energía distribuida para el desarrollo de energía sostenible teniendo en cuenta los índices de confiabilidad y el costo nivelado de la energía (Tamoor et al., 2021).
- Tomando el sol: Diseño de techos fotovoltaicos a pequeña escala para micro, pequeñas y medianas empresas: Caso de estudio en ratán Craft Center en la aldea de Trangsan, Sukoharjo, Java Central (Nagel et al., 2022).
- Evaluación tecno económica de un sistema híbrido de producción de energía fotovoltaica, trigeneración e hidrógeno conectado a la red en un campus universitario (Şevik, 2022).
- HOMER utilizado en:
 - Análisis previo a la instalación a través de "PVsyst" y "HOMER Pro" para diseñar y simular un sistema fotovoltaico conectado a la red solar de 50 kWp para la electrificación de áreas rurales, India (Ahirwar et al., 2021).
 - Evaluación del rendimiento de una planta fotovoltaica de 20 MW en un clima cálido utilizando datos reales y herramientas de simulación (Bentouba et al., 2021).
 - Diseño óptimo de un sistema híbrido fotovoltaico-eólico con la red nacional utilizando HOMER: un estudio de caso en Kerkennah, Túnez (Mallek et al., 2022).
 - Diseño de micro-red conectada a red con módulo solar fotovoltaico (Barua et al., 2021).
 - Diseño y análisis tecno económico de un sistema solar fotovoltaico conectado a la red en Bangladesh (Shamim et al., 2022).
 - Un enfoque basado en el consumidor para el diseño de sistemas de energía distribuida con generación solar fotovoltaica (Perez-Moscote & Tyagunov, 2021).
 - Cálculos manuales:

Para el análisis de generación energética del SSFV se utiliza la Ecuación 42 (Becerra, 2019):

$$E_G = N * Ppp * Isi * 0.753 \qquad Ec. 42$$

Donde

Ppp Potencia pico del panel.

N Número de paneles.

Isi Irradiación solar incidente sobre los paneles.

Potencia instalada:

La potencia instalada se calcula a partir de la Ecuación 43 (Becerra, 2019):

$$Pinst = N * \left(\frac{Ppp}{1\ 000}\right) \qquad Ec.\,43$$

Disposición de área/potencia:

La disposición área/potencia se determina con la Ecuación 44:

$$At = Pinst * E_G \quad Ec. 44$$

Donde

At Disposición área/potencia.

2.11. Análisis de costos e impacto medioambiental.

2.11.1. Análisis de costo para la institución.

Para el desarrollo del análisis de costos se siguen los criterios dados por: (Becerra, 2019), (Iturralde et al., 2021), (Monteagudo & Crespo, 2021).

Para la realización de la evaluación económica se tendrán en consideración todos los gastos asociados a la instalación de la tecnología fotovoltaica en cuanto a: paneles, mesas de fijación, tornillería e inversores; además de tener en consideración los siguientes factores: el impuesto del banco, inflación, tasa de descuento y el período de vida útil de los paneles, para así poder conocer de forma más certera el periodo de tiempo en que se recuperará la inversión y las ganancias que traerá consigo (Becerra, 2019).

Todo el cálculo económico estará realizado para las menores condiciones de radiación y horas solares pico, donde la capacidad de generación y entrega del SSFV será mínima y para el consumo máximo registrado en un día.

Ingresos anuales.

Para la determinación del ingreso en el año se tiene en cuenta los días que se trabaja y los días que no, ya que el ingreso en los días no laborables, está asociado a la generación del SSFV que será inyectada a la red del Sistema de Energía Nacional (SEN) con una tarifa de venta determinada. Conociendo todas estas condiciones se puede proceder al cálculo de los ingresos anuales definidos como ingresos por ahorro a los producidos en los días laborables e ingresos por exportación a los no laborables (Becerra, 2019).El ingreso por ahorro viene dado por la Ecuación 45,el ingreso por exportación por la Ecuación 46 y el ingreso total por la Ecuación 47.

Ingreso por ahorro.

Ingreso ahorro = Elect gen en días laborables * Tarifa eléctrica * Días laborables Ec. 45

Ingreso por exportación.

Ingreso exp = Elect gen en días no laborables * Tarifa eléctrica * Días no laborables Ec.46

Ingreso total.

Ingreso total = Ingreso ahorro + Ingreso exp Ec. 47

Determinación del Período Simple de Recuperación (PSRI).

Se emplea en aquellos casos en que los ahorros anuales son constantes, el PSRI en años será calculado mediante la Ecuación 48 (Monteagudo & Crespo, 2021).

$$PSRI = \frac{Inversión en capital}{Ahorros anuales netos}$$
 Ec.48

Por la poca profundidad de esta evaluación, es aconsejable emplear el método del Periodo Simple de Recuperación de la Inversión únicamente como un primer filtro rápido de las posibles inversiones y emplear métodos más confiables para evaluar en detalle proyectos con buenas perspectivas.

Cálculo del interés simple.

Un capital colocado en el banco genera un nuevo capital, pero siempre sobre la magnitud del capital inicial depositado y nunca sobre la magnitud del interés ganado (No hay capitalización). La Ecuación 49 plantea como se determina el interés simple. (Monteagudo & Crespo, 2021).

$$F = \sum_{i=1}^{n} p(1+r)_i \qquad Ec.49$$

Donde:

F Interés simple.

p Cantidad presente de dinero.

i Año para el que se desea determinar el valor futuro.

r Tasa de interés.

Cálculo del interés compuesto.

Un capital colocado en el banco genera un nuevo capital, pero siempre sobre la magnitud del capital inicial depositado más la magnitud del interés ganado (Hay capitalización). Se determina por la Ecuación 50:

$$F = P[1 + 3r + 3r^2 + r^3] \qquad Ec.50$$

P Cantidad presente de dinero.

r Tasa de interés.

F Interés compuesto.

Evaluación del valor del dinero a través del tiempo.

Para la evaluación del valor del dinero se utiliza la Ecuación 51.

$$F = P(1+r)^i \qquad Ec.51$$

Determinación del flujo de caja.

Elflujo de caja es la diferencia neta entre beneficios y costos en cada uno de los años, refleja el dinero real en caja. Este se determina por la Ecuación 52:

$$Fc_i = (I_i - G_i - Dep) * \left(1 - \frac{t}{100}\right) + Dep \quad Ec.52$$

Donde

I Ingresos en el año i.

G Gastos en el año.

Dep Depreciación del equipamiento, que se determina por la Ecuación 53:

$$Dep = \frac{costo \, del \, equipo}{vida \, \acute{u}til \, estimada(años)} \qquad Ec.53$$

t Tasa de impuesto sobre la ganancia.

Determinación de la tasa de interés real (R).

Es el interés que tiene en cuenta los efectos de la inflación. La inflación o devaluación del dinero, reflejada por un aumento de los precios en el mercado, puede incluirse en el análisis de inversiones calculando una tasa de interés real (tasa en moneda constante) mediante la relación de Ficher.(Monteagudo & Crespo, 2021). Esta se determina por la Ecuación 54:

$$R = \left(\frac{1+r}{1+f}\right) - 1 \qquad Ec.\,54$$

Donde

r tasa de interés bancaria.

f tasa de inflación, fracción.

Determinación del valor presente neto.

Se determina el Valor Presente Neto (VPN) haciendo uso de la Ecuación (56). Se calcula el valor presente neto de los flujos de caja proyectados para todos los años durante el período de evaluación del proyecto.(Iturralde et al., 2021).

$$VPN = -K_0 + \sum_{i=1}^{n} \frac{Fc_i}{(1+D)^i}$$
 Ec. 55

Donde

 K_0 inversión inicial.

Fc flujo de caja.

D taza de descuento real utilizada.

Determinación de la Tasa Interna de Retorno (TIR).

Se define como aquella tasa de descuento que reduce a cero el Valor Presente Neto.

La TIR representa el porcentaje o tasa de interés que se gana sobre el saldo no recuperado de una inversión, de forma tal que, al finalizar el período de evaluación o vida útil, el saldo no recuperado sea igual a cero (Monteagudo & Crespo, 2021).

Analíticamente la TIR se determina mediante la Ecuación 56 como:

$$0 = -K_0 + \sum_{i=1}^{n} \frac{Fc_i}{(1 + TIR)^i} \qquad EC.56$$

Como se puede observar, esta ecuación no se puede resolver directamente, sino que se requiere de un análisis iterativo para obtener el valor de la TIR.

Determinación del Período Real de Recuperación de la Inversión (PRI).

Es el tiempo en que se recupera la inversión inicial para una tasa de descuento D considerada. Se calcula como el momento para el cual el VPN se hace cero. Se determina a partir de la Ecuación 57 (Monteagudo & Crespo, 2021):

$$0 = -K_0 + \sum_{i=1}^{PRI} \frac{Fc_i}{(1+D)^i} \qquad Ec.57$$

Para obtener el valor del PRI se le van adicionando gradualmente a la inversión inicial los flujos de caja anuales hasta que el resultado sea cero, en ese momento se ha recuperado la inversión.

Relación Costo - Beneficio (RCB).

Se determina como la relación entre el Valor Presente Neto de los Costos VPNC y el Valor Presente Neto de los Beneficios VPNB como se muestra en la Ecuación 58.

$$RCB = \frac{VPNC}{VPNB} \qquad Ec. 58$$

En la determinación del VPNC hay que sumar al valor de los costos anuales descontados, el valor de la inversión inicial sin descontar.

Revisión de precio del SSFV.

Para la realización de la evaluación económica se tendrán en consideración todos los gastos asociados a la instalación de la tecnología fotovoltaica en cuanto a:paneles, mesas de fijación, tornillería e inversores; además de tener en consideración los siguientes factores como: el impuesto del banco, inflación, tasa de descuento y el período de vida útil de los paneles, para así poder conocer de forma más certera el periodo de tiempo en que se recuperará la inversión y las ganancias que traerá consigo.

2.11.2 Análisis y aporte medioambiental.

Analizando el problema en cuanto a combustible dejado de quemar para producir la misma cantidad de energía.

Por tanto, a partir del combustible ahorrado se puede obtener la cantidad de CO_2 dejado de emitirá la atmósfera en t/año.

Cantidad de combustible ahorrado.

Analizando el problema en cuanto a combustible dejado de quemar para producir la misma cantidad de energía, este se puede calcular mediante la Ecuación 60 (Becerra, 2019):

Combustible aborrado =
$$\frac{E * g}{1\ 000}$$
 Ec. 60

Donde

E energía generada, kWh/año

g consumo específico de combustible de los grupos electrógenos

Cantidad de CO₂ dejado de emitir a la atmósfera.

A partir del combustible ahorrado se puede obtener la cantidad de CO₂ dejado de emitir a la atmósfera en t/año por la ecuación:

$$CO_2$$
no emitido = $\frac{Combustible ahorrado * k}{\rho}$ Ec.61

Donde

K coeficiente que permite relacionar el combustible no quemado con las toneladas de CO₂ no vertidas a la atmósfera.

 ρ densidad del combustible.

2.12 Conclusiones del capítulo

- 1. Se planearon los pasos a seguir para el dimensionamiento de SSFV.
- 2. Se utilizaron métodos manuales para los cálculos de selección y dimensionamiento de los SSFV.
- 3. Se hiso referencia a softwares utilizados para la evaluación los cálculos propuestos manualmente.

Capítulo 3: Resolución de la Metodología.

- 3.1. Caracterización energética.
- 3.1.1. Revisión energética.

3.1.2. Modelo de Sistema de Gestión de la Energía ISO 50001.

Analizar el uso y consumo de energía.

> Gráfico de Energía y Producción Vs. Tiempo.

La Figura 3.1 muestra la energía consumida por la empresa y su producción total de bienes y servicios mediante el Gráfico de consumo de Energía y Producción durante el 2019,2020 y 2021 dividido en 4 trimestres cada año. El año 2021 presenta un cambio drástico en la producción de bienes y servicios de la empresa debido a las medidas económicas tomadas por el Ministerio de Economía y Planificación de Cuba conocido como "Reordenamiento Económico".

Figura 3.1. Gráfico de Energía y Producción. Nota: MP = millones de pesos. Fuente: Elaboración propia, datos tomados de la empresa (Terry Ramírez et al., 2019).

- Gráfico de Control.
- > Gráfico de Tendencia.

Las Figura 3.2 es una combinación de dos tipos de gráficos: el Gráfico de Control y el Gráfico de Tendencia. Este gráfico muestra el consumo de electricidad y su tendencia, en unos límites inferiores y superiores establecidos siendo estos el promedio más o menos

(según el caso) 3 veces la desviación estándar de la muestra de los datos de los meses durante el año 2021.Los gráficos de los años 2019 y 2020 se pueden encontrar en el **Anexo 1: Gráficos de Control y Tendencia de consumo de kWh del 2019 y 2020**.

Figura 3.2. Gráfico de Control y Tendencia del consumo de kWh. Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021b).

Identificar las áreas de uso significativo de energía y de consumo.

Estratificación.

En la Figura 3.3 se realiza una estratificación del consumo de los equipos eléctricos por tipo, de la empresa para analizar de forma ágil cuales son los que más consumen energía eléctrica diariamente. Con este diagrama se llega a la conclusión de que efectivamente los equipos que más consumen son los de climatización y la PC del servidor del departamento de informática, el cual está entre los objetivos a cubrir con la instalación de los paneles solares.

Figura 3.3. Consumo diario de kWh por equipos eléctricos. Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

Diagrama de Pareto.

En la Figura 3.4 se muestra un diagrama de Pareto para analizar el consumo de energía eléctrica en el departamento de informática demostrando que dentro de este departamento el mayor consumo es marcado por el servidor y el equipo de climatización.

Figura 3.4. Consumo de energía en el departamento de informática. Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

Identificar oportunidades para la mejora del desempeño energético.

- > Guía de la Supervisión Energética.
- Manual de Procedimientos del Diagnóstico Energético y Socio ambiental de la TGTEE.
- Analizar objetivos que tenga la institución de disminuir su consumo de energía eléctrica con energía solar fotovoltaica.

La institución planea disminuir el consumo de energía eléctrica del departamento de informática y el alumbrado exterior de la empresa, priorizando los servidores. En las Tablas 3.1;3.2 y 3.3 se desglosan el consumo del departamento de informática y el alumbrado exterior respectivamente.

Tabla 3.1. Consumo del departamento de informática (Parte 1).

Consumidor	Pot.	Cant	Pot.	tpo/	Energía	Energía a
	Kilo		Instalada	día.	Total	considerar
	Watts					para el SSFV
Luminaria	0.072	2	0.144	8	1.152	
4x18W						
PC	0.785	4	3.14	24	75.36	+

Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

Tabla 3.2. Consumo del departamento de informática (Parte 2).

Monitor	0.12	2	0.24	8	1.92	
Impresora	0.686	1	0.686	2	1.372	
Láser						
mod.						
Laptop	0.190 5	1	0.190 5	2	0.381	
AA Midea	0.95	1	0.95	24	22.8	+
Swich	0.114	2	0.228	24	5.472	+
Dataswich	0.076	2	0.152	24	3.648	+
Inversor	0.25	1	0.25	24	6	+
Pizarra	0.095	1	0.095	24	2.28	+
telefónica						
Ruster	0.075	2	0.15	24	3.6	+
		Total	6.225 5	Total	123.985	119.16

Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

Tabla 3.3. Consumo del alumbrado exterior.

Consumidor	Pot.	Cant.	Pot.	tpo/	Energía a
	Kilo		Instalada	día.	considerar
	Watts				para el
					SSFV
Luminaria	0.072	14	1.008	9	9.072
4x18W					

Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

El objetivo de consumo total a cubrir con la instalación fotovoltaica: 128.232 kWh, siendo la suma del consumo de los servidores y el alumbrado exterior.

3.2 Caracterización del sistema eléctrico del lugar:

> Revisión de la tarifa eléctrica de la institución:

Según la Resolución 277, dictada por el Ministro de Finanzas y Precios, del 13 de junio de 2014, aprueba el Sistema para la formación de las tarifas eléctricas en pesos cubanos o en pesos convertibles, según la moneda establecida para el cobro de este servicio a cada cliente.

Para la formación de la tarifa que se establece, se utiliza un Factor K, el que constituye un coeficiente de ajuste de las tarifas por variaciones de precios mayoristas de los combustibles utilizados en la generación de electricidad y cambios en la participación de cada tipo de combustible en la estructura de generación.

El suministro de energía eléctrica, para el racional funcionamiento del Sistema Eléctrico Nacional debe efectuarse con un Factor de Potencia de 0.90 o mayor. Valores menores implican gastos innecesarios de energía reactiva por las líneas del Sistema Eléctrico Nacional, provocando pérdidas de energía. El Factor de Potencia o ($\cos \phi$): Es el resultado de la aplicación del coseno ϕ , a la arco-tangente de la división entre la energía reactiva (kVArh) y la energía activa (kWh), medida en un período de tiempo mayor de veinticuatro (24) horas o hasta el período de facturación.

A los servicios ubicados en Media Tensión, siempre que se les instale un equipo de medida que permita registrar el consumo de cada uno de los tres horarios (madrugada, día y Pico) se les aplica la Tarifa M1-A. Esta tarifa se aplica a todos los servicios de consumidores, excluyendo a los clasificados como de Alta Tensión, que se alimentan de una subestación o banco de transformadores exclusivo, existiendo entre el transformador de suministro y el consumidor, sólo la acometida.

M1-A: TARIFA DE MEDIA TENSIÓN CON MEDICIÓN DE TRES REGISTROS:

APLICACIÓN: Se aplica a todos los servicios de consumidores clasificados como de Media Tensión con equipo de medición de tres registros.

\$ 94.00 mensual por cada kW de máxima demanda contratada en el horario comprendido entre las 5:00 y las 21:00 horas.

Por cada kWh consumido en el horario pico:

(3.167 2 \$/ kWh * K + 0.859 5 \$/ kWh) * Consumo pico en kWh.

Por cada kWh consumido en el horario del día:

(1.586 9 \$/kWh * K + 0.859 5 \$/ kWh) * Consumo día en kWh.

Por cada kWh consumido en el horario de la madrugada:

(1.060 1 \$/ kWh * K + 0.859 5 \$/kWh) * Consumo madrugada en kWh.

Para el cálculo de la facturación del cargo fijo mensual, se considera:

• El valor de demanda máxima contratada en el horario comprendido entre las 05:00 y las 21:00 horas.

• Si la demanda máxima registrada en el horario establecido, es mayor que la demanda máxima contratada, se factura la contratada al precio de la tarifa y el exceso al triple de su valor, \$ 282.00 por cada kW.

• Sólo se permite contratar dos valores de demanda al año, por períodos no menores de tres meses a los consumidores cíclicos o por períodos de alta y baja en el caso de las instalaciones hoteleras.

• Se aplican el Factor de potencia y el Factor K.

Verificación de la potencia contratada y del factor de potencia.
La potencia contratada de la empresa es directamente el consumo de la institución.

Factor de potencia en la empresa: 0.98.

> Levantamiento de las cargas instaladas.

La potencia instalada y consumida en la empresa se expresa en la Tabla 3.4 y la 3.5:

Tabla 3.4. Potencia instalada contra potencia consumida al día (Parte 1).

	Potencia instalada	Potencia consumida (kWh
Departamentos	(kW)	al día)
Economía	3.282 1	9.576 8
Recursos Laborales	2.560 5	11.343 7
Caja	0.976 5	4.594 1
Unidad Básica de Aseguramiento	1.466 5	2.162 1
Jefe División de Servicios	1.552	6.874
Informática	6.225 5	123.985
Pasillo Central	0.44	1.36
Secretaría	0.300 8	3.030 4

Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

Salón de Reuniones	2.82	5.55
Pantry	3.702	9.164
Baño	0.018	0.018
Pasillo	0.072	0.072
Dirección	2.493	10.127 6
Calidad	1.449 8	6.714 4
Producción	1.653 6	7.028 8
Baños	0.072	0.072
Archivo	0.072	0.072
Cuarto Obscuro	0.832	3.056
Revelado y Descifrado	1.33	5.8
Radiografía	0.267	0.699
Seguridad Radiológica #1	0.072	0.144
Seguridad Radiológica #2	1.466 5	6.501 8
Laboratorio Ensayo Destructivos	1.194	5.352
METALSOL	3.015 6	13.148 8
Asesor Jurídico	1.048 5	5.309 8
Almacén	0.136	1.088
Despacho de Materiales	0.683 8	3.011 8
Jefe de grupo CND	0.784 8	3.038 4
Laboratorio CND	2.504	3.104
Área de trabajo CND	5.796 1	20.838 6
Áreas Exteriores	1.008	9.072
Total	49.294 6	281.909 1

Tabla 3.5. Potencia instalada contra potencia consumida al día (Parte 2).

Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2021a).

Comportamiento del consumo histórico de la institución y de las cargas instaladas.

El consumo de histórico de la empresa durante el 2019,2020 y el 2021 se muestra en la Figuras 3.5.

> Caracterización de fuentes de energías alternativas a la red.

La empresa no posee fuentes alternativas a la red, esta instalación sería la primera en su tipo dentro de la red de distribución eléctrica en la empresa.

3.3. Análisis estructural del sitio.

El techo del almacén es de placa con un grosor suficiente para aguantar el peso de los 4 soportes que se instalaran en él. El suelo donde se instalarán los otros módulos fotovoltaicos con sus respectivos soportes está pavimentado correctamente sin ningún desnivel que afecte la orientación de los paneles, ni provoque que estos se hundan con el tiempo.

3.3.1 Revisión de estudios estructurales previos ejecutados a la entidad.

La estructura no posee un análisis oficial de carga sobre el techo en su fabricación, lo que si posee un estudio en el cual se iba a montar un sistema de climatización centralizado en el techo del almacén de recursos radioactivos, el cual posee un peso superior al total de paneles a instalar en esa área (Font Ariosa, comunicación personal, 2022). Por tanto, se asume que resistirá el peso la estructura.

3.4. Revisión de la orientación y coordenadas del sitio.

La orientación y coordenadas del sitio están sacadas mediante de la utilización de dos programas profesionales para así disminuir el margen de error lo más posible, Se utilizó la extensión Skelion del programa SketchUp Pro-2021 y el PVsyst 7.1. Los demás datos

meteorológicos se pueden encontrar en el Anexo 2: Datos Meteorológicos y de Geolocalización

Dando unas coordenadas en Cuba (Cuatro Caminos) de latitud 22.1651°N y longitud -80.452 7. Con una altitud de 14 metros y con zona horaria -5.0. Fuente: Meteonorm 7.3 (1991-2005), Sat=100%.

3.5. Clasificación de la disponibilidad de las áreas de la entidad para la posible instalación de SSFV.

El área disponible inicialmente del proyecto es el área del techo del almacén de elementos radioactivos que cuenta con un área de 31.97 m². Ademas se podrá tomar un área alrededor de la caseta el cual aumentaría el área disponible a 386.72 m². Teniendo un largo de 13.36 m y un ancho de 28.86 m aproximadamente.

3.6. Estudio de sombras en las áreas seleccionadas.

Con la extensión SunHours en el programa SketchUp Pro-2021 se realiza un estudio preliminar de radiación incidente en el área disponible por la empresa para así descartar áreas con menos radiación solar de los cálculos y optimizar la posición de los paneles.

La Figura 3.6 muestra el resultado del análisis de la incidencia de radiación mediante el SunHours. La Figura 3.6 muestra unas mallas realizadas por el SunHours. Las celdas de las mallas están compuestas por celdas de 0.5 m de ancho y a una altura de 0.10 m de la superficie. La simulación de radiación en las mallas empieza a las 7 am y termina a las 6 pm, durante todos los días del año, calculando la incidencia por pasos de 1 hora. No se generó mallas dentro del cercado del almacén puesto que la sombra de la cerca en si iba a disminuir la efectividad de los paneles dentro de ellas, por tanto, se descartó esa área aparte de ser un perímetro de seguridad.

Figura 3.6. Incidencia de radiación mediante el SunHours. Fuente: Elaboración propia, imagen diseñada en el software SketchUp Pro-2021.

Como se puede observar en la Figura 3.7, mediante la extensión Skelion se descarta el área donde incide la sombra desde aproximadamente las 10 am hasta las 3 pm durante el 1 de enero y el 31 de diciembre que son los días en el cual hay más proyección de sombras, esta sombra marcada en color rojo es descartada, producida por el árbol, el almacén de recursos radioactivos y la cerca perimetral de 3 metros de altura .Después de este estudio de sombras, se reduce el área disponible del suelo a 124.99 m² como se muestra marcada en color verde y se mantiene el área total del techo.

Con esta área marcada en verde y el área del techo se aprovecha al máximo el área disponible sin sombras. Se le deja libre la zona aledaña al área marcada de verde para no obstruir el proyecto del parqueo lateral al almacén de recursos radioactivos ni su obstrucción a el acceso frontal al almacén de recursos radioactivos.

Figura 3.7. Estudio de sombras del SSFV. Fuente: Elaboración propia, imagen diseñada en el software SketchUp Pro 2021.

3.7. Selección del SSFV a utilizar.

3.7.1. Selección del panel solar. Requisitos a tener en cuenta.

El módulo fotovoltaico seleccionado es el DSM–380MP-72 por ser de fabricacion nacional. Los módulos por 72 celdas solares de formato 156.75mm x 156.75mm. Las celdas que componen el módulo son de silicio mono-cristalino de tipo PERC, esta tecnología PERC permite el aumento de la eficiencia de las celdas que componen el módulo, evitando pérdidas durante su operación. Este módulo es proveniente de la Empresa de Componentes Electrónicos "Ernesto Che Guevara" de Pinar del Río, encargada de la fabricación de los módulos solares asegura que las potencias de la salida de los módulos solares se mantendrán en:

- 90% a los 10 años
- 80% a los 25 años
- 10 años de garantía contra defecto de fabricación.

Los módulos solares seleccionados cumplen con todos los requerimientos establecidos en las normas internacionales (I. J. M. Pérez Armas, comunicación personal, 2022):

- IEC 61215 Edición 2,
- IEC 61730
- Clase de protección II

La Tabla 3.6 muestra las características técnicas principales del panel DSM-380MP-72

Tabla 3.6. Ficha técnica del panel DSM-380MP-72.

Especificaciones técnicas							
Celda	Celda Solar de Silicio Monocristalino PERC 156.75mm x 156.75mm						
No. de celdas y conexiones	72 (6X12)						
Dimensiones del módulo	1960mm x 990mm x 40mm						
Cubierta frontal	Vidrio templado						
Material del marco	Aleación de aluminio anodizado						
Peso	21,5 Kg						
Característica	s eléctricas						
Modelo	DSM-380MP						
Voltaje a circuito abierto (Voc) [V]	48.50						
Voltaje en el punto de máxima potencia (Vmp) [V]	39.33						
Corriente de corto circuito (Isc) [A]	10.17						
Corriente en el punto de máxima potencia (Imp) [A]	9.67						
Potencia máxima a STC (Pm) [Wp]	380						
Tolerancia [%]	±3						
STC: 1000 W/m ²	, 25°C, AM 1.5						
Límit	tes						
Temperatura de operación	-40 a +85°C						
Voltaje máximo del sistema	1500 VDC						
Valor máximo del fusible de la serie	15A						
Parámetros térmicos							
NOCT	[°C] 45±2						
Coeficiente de temperatura (Isc)	[%/ºC] 0.06						
Coeficiente de temperatura (∀oc)	[%/ºC] -0.36						
Coeficiente de temperatura (Pmp)	[%/ºC] -0.36						

Fuente: Información obtenida de COPEXTEL Cienfuegos.

Los demás datos tecnológicos del panel se pueden encontrar en el **Anexo 3: Ficha técnica del módulo fotovoltaico utilizado**.

3.8. Diseño estructural de los soportes de los paneles.

> Estudio de las características climáticas de la institución.

Como la empresa no posee la información meteorológica del lugar, para el diseño de la estructura de los paneles se utilizará como parámetro del viento la velocidad pico indicada por el software PVsyst, el cual genera estos datos como una estimación mediante unos algoritmos a partir de los datos recopilados de la geolocalización del lugar de operación y su base de datos. como se muestra en la Figura 3.8, el cual generó los datos sintéticamente para el año 2022.

Figura 3.8. Velocidad pico del viento el 15/4/2022. Fuente: Elaboración propia, gráfico extraído del PVsyst.

Selección del tipo de estructura.

Para la selección de la estructura se tomó como criterio los análisis de generación energética simulados en el PVsyst, en total se realizaron 3 variantes y se tomó el soporte en base a la variante 3 que era la que generaba más energía eléctrica los cuales se comparan en la sección del diseño de la red eléctrica. El tipo de estructura seleccionado es a dos aguas Este-Oeste permitiendo más aprovechamiento de la radiación total al permitir la colocación del doble de paneles en el área sacrificando muy poco la producción individual de cada módulo fotovoltaico, esto se puede apreciar comparando el **Anexo 8: Resultados**

de la simulación del PVsyst y el Anexo 9: Resultados de la simulación del PVsyst con un sistema tradicional de orientación. En la Tabla 3.15 se puede observar la diferencia de potencia del sistema si se utilizara un sistema de soporte tradicional orientado al sur

- Selección del ángulo de inclinación del módulo con respecto a la superficie que se va instalar.
- > Determinar el azimut de los módulos solares.

Para seleccionar el ángulo de inclinación óptimo se utiliza la herramienta Skelion del programa SketchUp Pro 2021 la cual permite establecer mediante el análisis de datos meteorológicos y la geolocalización la inclinación óptima y el azimut. En la Figura 3.9 se puede observar que el ángulo optimo 20.66 grados de inclinación y 173.07 de azimut. Pero por cuestiones de diseño y generación energética se tomó el soporte de a dos aguas orientado de Este a Oeste y con un ángulo de inclinación de 10 grados.

Figura 3.9. Orientación óptima de los paneles según el Skelion. Fuente: Elaboración propia, gráfico extraído del Skelion.

Con estos datos se diseñó el soporte a dos aguas que se observa en la Figura 3.10

Figura 3.10. Soporte diseñado. Fuente: Elaboración propia, imagen extraída del SolidWorks Premium 2016.

> Cálculo de soporte de la estructura:

Este cálculo de soporte de la estructura se realizó mediante el software especializado SolidWorks Premium 2016 para lograr una precisión más exacta que los cálculos manuales. En el cálculo se consideró:

• Peso propio de los paneles.

El peso propio de los paneles sería P = 41.718 6 N

• Carga en las vigas.

Para las cargas en las vigas se incluyó el peso propio de estas, utilizando el material de acero aleado fundido con una densidad de 7 300 Kg/m³

 Carga de los vientos haciendo uso de NC 285:2003 "Carga de vientos. Método de Cálculo".

Siendo la carga del viento mediante la NC 285:2003 "Cargas de vientos. Método de Cálculo".

 $q = 44.286 N/m^2$

Donde se pueden ver los coeficientes tomados en la Tabla 3.7.

Tabla 3.7. Datos de los coeficientes según la norma NC 285:2003 "Cargas de vientos. Método de Cálculo".

Vv	Ct	Cs	Ch	Cr	Cra	Cf
0.0756 kN/m ²	0.75	1	0.8	1.22	1	0.8

Fuente: Elaboración propia, datos extraídos de la norma NC 285:2003 "Cargas de vientos. Método de Cálculo".

• Cálculo de Resistencia de las uniones.

Para el cálculo de las uniones se consideró en el anclaje tornillos de 11 mm nominal. Las uniones de soldadura se consideraron como cordones intermitentes con un intervalo de 8 mm por 8 mm, estas uniones se consideraron "uniones globales".

Como resultado de la simulación de las cargas en el software se puede observar en la Figura 3.11 que las tensiones son prácticamente inexistentes

Figura 3.11. Resultado de la simulación de las tensiones del soporte diseñado. Fuente: Elaboración propia, imagen extraída del SolidWorks Premium 2016.

El desplazamiento máximo está en el orden de los micrones siendo de 0.000 688 868 milímetros como se puede observar en la Figura 3.12.

Figura 3.12. Resultado de la simulación de los desplazamientos del soporte diseñado. Fuente: Elaboración propia, imagen extraída del SolidWorks Premium 2016.

Para consultar plano de ensamble se puede encontrar en el **Anexo 4: PLANO DEL SOPORTE Y SUS COMPONENTES**. Para información más detallada sobre los resultados de la simulación del SolidWorks Premium 2016 revisar el **Anexo 5: Resultados de la simulación del Solidworks**.

3.9. Cálculo de la disposición del SSFV.

Mediante la extensión Skelion en el software SketchUp Pro-2021 se determinó la disposición de los paneles para optimizar el espacio útil concedido por la empresa. En la Figura 3.13 se puede observar la disposición de los paneles.

Figura 3.13. Disposición de los paneles. Fuente: Elaboración propia, imagen extraída del SketchUp Pro 2021.

Con esta disposición se instalarán 8 módulos fotovoltaicos en el techo y 40 en el suelo. Dentro de la disposición la pérdida máxima con respecto a la inclinación optima es de -10.7°, estando dentro de lo permitido con respecto al reporte de la Figura 3.9.

Las Tablas 3.8 y 3.9 muestran las perdidas por sombras con los grados de inclinación y el azimut.

Tabla 3.8. Pérdidas por sombra.

Resultados de cada cara de los módulos solares										
Caras	Modelo	Numero de Paneles.	Potencia Pico (Wp)	Potencia (kWp)	Peso (kg)	Azimut	Inclinación	Inclinación relativa	Perdida por sombras (%)	
Caras 1 Techo	Panel DSM- 380	4	380.00	1.52	86.00	226.73	10.22	10.00	0.00	
Caras 2 Techo	Panel DSM 380	4	380.00	1.52	86.00	22.89	10.22	10.00	0.00	
Caras 3 Suelo	Panel DSM- 380	20	380.00	7.60	430.00	214.95	10.00	10.00	1.54	
Caras 4 Suelo	Panel DSM 380	20	380.00	7.60	430.00	34.95	10.00	10.00	0.36	

Fuente: Elaboración propia, imagen extraída del SketchUp Pro-2021.
Pérdidas por sombra mensuales (%)												
Cara	Ene	Feb	Mar	Abr	Mayo	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Cara 1 Techo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cara 2 Techo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cara 3 Suelo	0.94	0.88	0.45	0.19	0.04	0.06	0.11	0.05	0.26	0.30	0.94	0.95
Cara 4 Suelo	4.06	3.51	1.49	0.22	0.18	0.12	0.14	0.24	0.56	1.35	3.98	5.01
Aproxim.	1.25	1.10	0.48	0.10	0.05	0.05	0.06	0.07	0.21	0.41	1.23	1.49

Tabla 3.9. Pérdidas por sombra mensuales.

Fuente: Elaboración propia, imagen extraída del SketchUp Pro-2021.

3.10. Diseño de la red eléctrica del SSFV.

Mediante el software PVsyst se realizó el diseño de red, siguiendo un sistema básico conectado a la red en el cual los paneles entregan la energía generada a un inversor. Este sistema disminuye el consumo de la energía eléctrica de las necesidades del usuario, el esquema simplificado en la Figura 3.14 muestra el diseño básico.

Figura 3.14. Esquema simplificado del diseño de la red. Fuente: Elaboración propia, imagen extraída del PVsyst.

Los datos técnicos de los inversores seleccionados se observan en las tablas 3.10 y 3.11:

Tabla 3.10. Características principales del inversor Sunny Boy 7000TL-US-22 -240V .

Modelo	Sunny Boy 7000TL-US-22 -240V
Voltaje MPP mínimo	245 V
Voltaje mínimo para potencia nominal	245 V
Corriente máxima por MPPT	14.8 A
Voltaje MPP nominal	400 V
Voltaje MPP máximo	480 V
Voltaje FV máximo absoluto	600 V
Umbral de potencia	35 W
Ancho	490 mm
Profundidad	185 mm
Altura	519 mm
Peso	24 kg

Fuente: Elaboración propia, datos extraídos del PVsyst.

Tabla 3.11. Características principales del inversor SE-TL1.5K.

Modelo	SE-TL1.5K
Voltaje MPP mínimo	100 V
Voltaje mínimo para potencia nominal	100 V
Corriente máxima por MPPT	15.4 A
Voltaje MPP nominal	360 V
Voltaje MPP máximo	425 V
Voltaje FV máximo absoluto	480 V
Umbral de potencia	7.5 W
Ancho	313 mm
Profundidad	140 mm
Altura	415 mm
Peso	11 kg

Fuente: Elaboración propia, datos extraídos del PVsyst.

Los demás datos de los inversores se pueden encontrar en el **Anexo 6: Ficha técnica del inversor Sunny Boy 7000TL-US-22 -240 V**. y el **Anexo 7: Ficha técnica del inversor SE-TL1.5K**. En las Tablas 3.12 y 3.13 se pueden encontrar las características de las configuraciones del SSFV.

Tabla 3.12. Configuración de las cadenas en el techo.

Módu	llo PV	Inversor						
Fabricante	NUMEN Solar	Fabricante	Solar Energy Do					
			Brasil					
Modelo	DSM-380MP	Modelo	SE-TL1.5K					
Potencia por unidad	380 Wp	Potencia por unidad	1.5 kWac					
Número de módulos	8 unidades	Número de	2 unidades					
PV		inversores						
Nominal (STC)	3 040 Wp	Potencia total	3 kWac					
	Matriz #3-Pane	les en el techo						
Orientación	#1							
Inclinación/Azimut	10/47°							
con respecto al norte								
Número de módulos	4 unidades	Número de	2 unidades					
PV		inversores						
Nominal (STC)	1 520 Wp	Potencia total	3 kWac					
Módulos	1 cadena por 4							
	módulos en serie							
	Matriz #4-Panel	es en el techo 2						
Orientación	#2							
Inclinación/Azimut	10/-157°							
con respecto al norte								
Número de módulos	4 unidades	Número de	2 unidades					
PV		inversores						
Nominal (STC)	1520 Wp	Potencia total	3 kWac					
Módulos	1 cadena por 4							
	módulos en serie							

Fuente: Elaboración propia, datos extraídos del PVsyst.

Tabla 3.13. Configuración de las cadenas en el suelo.

Módu	lo PV	Inversor					
Fabricante	NUMEN Solar	Fabricante	SMA				
Modelo	DSM-380MP	Modelo	Sunny Boy 7000TL-				
			US-22-240V				
Potencia por unidad	380 Wp	Potencia por unidad	7 kWac				
Número de módulos	40 unidades	Número de	2 unidades				
PV		inversores					
Nominal (STC)	15.2 kWp	Potencia total	14 kWac				
	Matriz #1-Conju	nto FV del suelo					
Orientación	#3						
Inclinación/Azimut	10/35°						
con respecto al norte							
Número de módulos	20 unidades	Número de	1 unidad MPPT con				
PV		inversores	2 entradas.				
Nominal (STC)	7.6 kWp	Potencia total	7 kWac				
Módulos	2 cadenas con 10						
	módulos en serie						
	Matriz #2-Conju	nto FV del suelo					
Orientación	#4						
Inclinación/Azimut	10/-145°						
con respecto al norte							
Número de módulos	20 unidades	Número de	1 unidad MPPT con				
PV		inversores	2 entradas.				
Nominal (STC)	7.6 kWp	Potencia total	7 kWac				
Módulos	2 cadenas con 10						
	módulos en serie						

Fuente: Elaboración propia, datos extraídos del PVsyst.

Con esta disposición de los paneles en conjunto a los inversores el sistema tuvo una producción en la simulación de 22.58 MWh/año, una producción especifica 1238 kWh/kWp/año. La producción más alta durante el año ocurre en los meses de abril y julio

obteniendo una pérdida del conjunto del SSFV de solo 0.88 kWh/kWp/día y la pérdida relacionada con el inversor solo llega ha ser de 0.13 kWh/kWp/día. Se disminuye el consumo de la red de 46.769 MWh/año a 32.007 MWh/año, resultando así una reducción del 31.56% puesto que se consumen 14.789 MWh/año y se exportan 7.79 MWh/año. La Figura 3.21 muestra la producción normalizada del sistema durante el año, así como la Tabla 3.14 muestra los resultados principales de la generación. Se pueden encontrar los datos adicionales de los resultados en el **Anexo 8: Resultados de la simulación del PVsyst**.

Producciones normalizadas (por kWp instalado)

Figura 3.21. Producción normalizada. Fuente: Elaboración propia, datos extraídos del PVsyst.

Tabla 3.14. Balance y resultados principales.

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	113.2	54.59	19.71	112.1	102.3	1.648	3.974	1.129	0.455	2.846
Febrero	116.9	54.60	21.62	115.9	106.6	1.698	3.590	1.072	0.561	2.518
Marzo	154.6	71.18	23.77	153.1	142.2	2.236	3.974	1.340	0.816	2.635
Abril	158.9	81.71	24.55	157.6	147.5	2.314	3.846	1.373	0.857	2.473
Мауо	156.0	83.97	26.41	154.8	145.0	2.258	3.974	1.374	0.799	2.601
Junio	150.6	81.43	26.73	149.4	139.9	2.178	3.846	1.326	0.770	2.520
Julio	160.6	89.31	27.31	159.4	149.0	2.316	3.974	1.424	0.806	2.551
Agosto	155.5	81.15	27.16	154.2	144.7	2.245	3.974	1.330	0.831	2.644
Septiembre	123.6	73.12	25.64	122.3	113.4	1.777	3.846	1.172	0.535	2.674
Octubre	116.1	54.81	25.02	114.8	106.1	1.667	3.974	1.073	0.527	2.901
Noviembre	110.4	53.56	22.31	109.2	99.7	1.590	3.846	1.090	0.439	2.756
Diciembre	107.2	51.63	21.64	106.1	96.4	1.543	3.974	1.087	0.395	2.888
Año	1623.6	831.06	24.34	1608.9	1492.7	23.470	46.796	14.789	7.790	32.007

Balances y resultados principales

Leyendas

GlobHor	Irradiación horizontal global	EArray	Energía efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_User	Energía suministrada al usuario
T_Amb	Temperatura ambiente	E_Solar	Energía del sol
Globinc	Global incidente plano receptor	E_Grid	Energía inyectada en la red
GlobEff	Global efectivo, corr. para IAM v sombreados	EFrGrid	Energía de la red

Fuente: Elaboración propia, datos extraídos del PVsyst.

3.11. Análisis de costos e impacto medioambiental.

3.11.1. Análisis de costo para la institución.

Para el costo inicial de la inversión se considera que es la suma de los componentes principales más el costo de instalación y montaje. El precio para tubos cuadrados es de 1.55 USD/kg según la información en la empresa comercializadora ACINOX, por tanto, el material total de los soportes ascendería a 56 802.53 CUP después de añadirle el margen comercial de la empresa (8.31%) y el impuesto por la importación de un 10% (Jefe de Ventas, comunicación personal, 2022),

El costo de los inversores mediante la comercializadora COPEXTEL sería aproximadamente de 226 000.32 CUP. El coste unitario del panel es de 5 382.07 CUP la unidad, con un costo total para el proyecto de 258 339.36 CUP. El costo inicial total de los materiales para la inversión sería de 541 142.22 CUP, añadiéndole un costo adicional del 20% para la instalación y montaje (I. J. M. Pérez Armas, comunicación personal, 2022) ascendería a 649 370.66 CUP.

El impuesto sobre la ganancia es del 35%, según artículo 97 de la Ley 113 publicada en la Gaceta Oficial No. 053 Ordinaria de 21 de noviembre de 2012. La tasa de inflación ha sido tomada de Trading Economic (*Matrix - Datos - Indicadores Económicos*, 2022) y su magnitud actual es de 37.24%. Se considera la tasa de descuento de 2.25% (*Matrix - Datos - Indicadores Económicos*, 2022) y el margen de riesgo de 3%.Para la tarifa eléctrica se toma 2.446 4 CUP/kWh según la tarifa M1A y se estima un 3.780 8 CUP/kWh para la tarifa de exportación. La Tabla 3.15 muestra los resultados de los ingresos generados para el análisis económico. La Tabla 3.16 muestra los resultados del análisis económico. Una de las principales ventajas de los SSFV son los bajos gastos de mantenimiento, por eso se considerarán 0 en los cálculos. La vida útil del sistema se estimará de 25 años. Para la información sobre el análisis económico de la variante con un sistema tradicional de orientación.

	Energía generada	Tarifa eléctrica	Ingresos			
Ingresos por	14 789 kWh/año	2.446 4 CUP/kWh	36 179.8 CUP/año			
ahorros						
(autoconsumo)						
Ingresos por	7 790 kWh/año	3.780 8 CUP/kWh	29 452.43 CUP/año			
exportación						
Ingresos totales	22 579 kWh/año	-	65 632.24 CUP/año			

Tabla 3.15. Ingresos generados para el análisis económico.

Fuente: Elaboración propia

Tabla 3.16. Resultados económicos.

Determinación del periodo simple de	10 años.				
recuperación PSRI					
Interés simple a los 25 años	2 110 454.646 CUP				
Interés compuesto a los 3 años	22 291 677.19				
	CUP				
Evaluación del valor del dinero a través del	4*10 ¹⁸ CUP				
tiempo para 25 años					
Determinación del flujo de caja	51 752.14 CUP/año				
Determinación de la tasa de interés real	-0.254 954 82 %				
Determinación del valor presente neto a los	133 600 546.7 CUP				
25 años VPN					
Determinación de la tasa interna de retorno	42%				
para 25 años TIR					
Determinación del Periodo Real de	5 años y medio				
Recuperación de la Inversión PRI					
Relación Costo-Beneficio RCB	6.79*10 ⁻⁵				

Fuente: Elaboración propia

La Figura 3.22 muestra el comportamiento del VPN.

Figura 3.22. Comportamiento del VPN vs Años. Fuente: Elaboración propia.

Para la consideración económica con respecto al ahorro de petróleo se considera el precio de 96.15 USD/barril según la Organización de Países Exportadores de Petróleo(*Precio del petróleo OPEP por barril 2022 | Datosmacro.com*, 2022).Se considera que el consumo especifico de combustible de los grupos electrógenos es de 250 gr/kWh. Con una generación de 22 579 kWh al año se ahorraría 5 650 kg de petróleo. El peso del barril oscila entre 119 kg y los 151 kg, por tanto, tomamos como término medio un peso de 135 kg. Con esta información se llega a la conclusión de que se ahorra aproximadamente 4 024 USD/año o 96 577.33 CUP/año.

La Figura 3.23 muestra el impacto en las emisiones de dióxido de carbono.

Figura 3.23. Impacto medioambiental. Fuente: Elaboración propia, datos extraídos del PVsyst.

3.12 Conclusiones Parciales

- El estudio de sombras redujo el área útil disponible a 124.99 m².
- El panel seleccionado es el DSM-380MP-72 junto con los inversores SE-TL1.5K y Sunny Boy 7 000TL-US-22-240V.
- El diseño de la red consta con 40 módulos conectados con los inversores de tecnología MPPT Sunny Boy 7 000TL-US-22-240V y 8 con los SE-TL1.5K.

- El sistema instalado tiene una generación anual de 22.6 MWh/año.
- Aunque por la situación económica que pasa el país el precio de los costos con la comercializadora COPEXTEL es muy alto el proyecto tiene un Periodo de Recuperación de la inversión de 5.5 años, por lo que demuestra factibilidad económica.
- Se dejan de emitir 634.0 tCO_{2 a} la atmósfera.

CONCLUSIONES GENERALES

- La utilización de softwares para la selección y dimensionamiento del SSFV facilitó el trabajo y la evaluación de los resultados de forma más eficiente.
- La simulación con el SketchUp Pro-2021 y el PVsyst para determinar las potencialidades de generación fotovoltaica sobre el área propuesta por CENEX para e SSFV mostró que la zona cuenta con un área disponible de 156.96 m² entre el techo del almacén de recursos radioactivos y el área seleccionada del suelo, superficies donde existe la posibilidad de instalar un total de 48 módulos fotovoltaicos del modelo DSM-380, con una capacidad de generación anual (real) de 22.6 MWh/año reduciendo el consumo de energía eléctrica propuesto en un 48.24%. Se utilizó el Modelo de Gestión de la Energía ISO 50 001.
- Se hace necesario revisar la posibilidad de un suministrador de menos costo si es posible puesto que los costos establecidos entre la entidad suministradora de este tipo de tecnologías en nuestro país (COPEXTEL S.A) y la comercializadora de materiales ACINOX para instalar el SSFV asciende a 649 370.66 CUP para 18.2 kWp.
- La inversión presenta un VPN de 133 600 546.7 CUP, al cabo de los 25 años, un Periodo de Recuperación de la Inversión (PRI) de 5.5 años y una Tasa Interna de Retorno (TIR) de 42%. Esta inversión sin dudas resulta la más adecuada para la entidad puesto que en Cuba un rango óptimo para la instalación de los SSFV es de entre 7 y 9 años.

Referencias Bibliográficas:

- ABB. (2019). Photovoltaic plants Cutting edge technology. From sun to socket [Manual]. https://search.abb.com/library/Download.aspx?DocumentID=9AKK107492A3277&Langua geCode=en&DocumentPartId=&Action=Launch
- Abdul Kader, Rahman, Nahid, Abedin, & Mannan. (2022). *Design and analysis of an on-grid solar* system using PVsyst software for commercial application.

Afif, Pfeifer, & El-Khozondar. (2019). Implementation of maker movement to renewable energy laboratory: Case study of auto-tracking photovoltaic model. *2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)*, 1-4.

https://doi.org/10.1109/PICECE.2019.8747226

Ahirwar, Kori, & Kapoor. (2021). Pre-Installation analysis via "PVsyst" & "HOMER Pro" to design & simulate a 50kWp solar grid-tied PV system for rural area electrification, India. 2021 5th International Conference on Electrical, Electronics, Communication, Computer
 Technologies and Optimization Techniques (ICEECCOT), 388-394.
 https://doi.org/10.1109/ICEECCOT52851.2021.9708056

- Ahmad, Ghenai, Hamid, Rejeb, & Bettayeb. (2021). Performance enhancement and infra-red (IR) thermography of solar photovoltaic panel using back cooling from the waste air of building centralized air conditioning system. *Case Studies in Thermal Engineering*, *24*, 100840. https://doi.org/10.1016/j.csite.2021.100840
- Albert, E. (2020). Instalación de placas solares en una nave industrial para autoconsumo. https://repositorio.comillas.edu/xmlui/handle/11531/44273
- Albo, P. D. (2021). Propuesta de evaluación y montaje de un Sistema Solar Fotovoltaico para la Universidad de Cienfuegos. Universidad de Cienfuegos.

Álvarez González, A. L., Jiménez Borges, R., & Iturralde, L. A. (2021). Propuesta de evaluación y montaje de un Sistema Solar Fotovoltaico para la Universidad de Cienfuegos. Universidad de Cienfuegos.

Alzgool, Nasan, & Khatabi. (2021). Design, performance and economic analysis of solar pv system: A case study size 148.8 kWp for Al-Tafila Center for Care and Rehabilitation (Jordan). 2021 12th International Renewable Engineering Conference (IREC), 1-6.

https://doi.org/10.1109/IREC51415.2021.9427839

- Arabkoohsar, Behzadi, & Alsagri. (2021). Techno-economic analysis and multi-objective optimization of a novel solar-based building energy system; An effort to reach the true meaning of zero-energy buildings. *Energy Conversion and Management, 232*, 113858. https://doi.org/10.1016/j.enconman.2021.113858
- Baqir, & Channi. (2022). Analysis and design of solar PV system using PVsyst software. *Materials Today: Proceedings*, *48*, 1332-1338. https://doi.org/10.1016/j.matpr.2021.09.029
- Barua, Kumar Jain, Kumar Mishra, & Singh. (2021). Design of grid connected microgrid with solar photovoltaic module. *Materials Today: Proceedings*, 47, 6971-6975.

https://doi.org/10.1016/j.matpr.2021.05.228

Becerra, R. M. (2019). Anteproyecto de sistema solar fotovoltaico en la Delegación Provincial de Materiales de la Construcción. Cienfuegos. Universidad de Cienfuegos.

Benítez, A. C., & Tello, I. D. (2018). Estudio De Factibilidad De La Implementación De Un Sistema Solar Fotovoltaico En La Finca Villa Catalina.

http://repository.unilibre.edu.co/handle/10901/15474

Bentouba, Bourouis, Zioui, Pirashanthan, & Velauthapillai. (2021). Performance assessment of a 20 MW photovoltaic power plant in a hot climate using real data and simulation tools. *Energy Reports*, *7*, 7297-7314. https://doi.org/10.1016/j.egyr.2021.10.082 Callisaya, A., & Romay, M. [Tutor. (2012). Calculo y diseño de un sistema solar fotovoltaico auxiliar para el hospital de La Asunta—Sud Yungas [Thesis].

http://repositorio.umsa.bo/xmlui/handle/123456789/9631

- Chandan, Baig, ali Tahir, Reddy, Mallick, & Pesala. (2022). Performance improvement of a desiccant based cooling system by mitigation of non-uniform illumination on the coupled low concentrating photovoltaic thermal units. *Energy Conversion and Management, 257*, 115438. https://doi.org/10.1016/j.enconman.2022.115438
- Chandan, Dey, Sujan Kumar, Reddy, & Pesala. (2020). Optical and electrical performance investigation of truncated 3X non-imaging low concentrating photovoltaic-thermal systems. *Energy Conversion and Management*, *220*, 113056. https://doi.org/10.1016/j.enconman.2020.113056
- Chaware, Dambhare, Pathan, & Mistry. (2021). Design and optimization of mini-grid PV system for developing country. 2021 9th IEEE International Conference on Power Systems (ICPS), 1-6. https://doi.org/10.1109/ICPS52420.2021.9670199
- Christiaanse, Loonen, & Evins. (2021). Techno-economic optimization for grid-friendly rooftop PV systems – A case study of commercial buildings in British Columbia. *Sustainable Energy Technologies and Assessments, 47,* 101320. https://doi.org/10.1016/j.seta.2021.101320
- D'Agostino, Parker, Melià, & Dotelli. (2022). Optimizing photovoltaic electric generation and roof insulation in existing residential buildings. *Energy and Buildings*, 255, 111652.

https://doi.org/10.1016/j.enbuild.2021.111652

Dhakal, Sedai, Paneru, Yosofvand, & Moussa. (2021). Towards a net zero building using photovoltaic panels: A case study in an educational building. *International Journal of Renewable Energy Research*, *11*, 879-889.

Dobrovolski, V. (1970). Elementos de Máquinas. Mir.

- Elshafei, Abdelrazik, & Elshenawy. (2021). *Design and simulation analysis of 1 MWp grid connected* photovoltaic system floating over lake Nasser by using PVsyst software.
- Espina, Enano, Descalsota, & Occidental. (2022). *Modeling and simulation of a 48-kW off-grid solar-pv power system using pvsyst*. https://doi.org/10.13140/RG.2.2.21490.58566
- Fardi Asrami, Sohani, Saedpanah, & Sayyaadi. (2021). Towards achieving the best solution to utilize photovoltaic solar panels for residential buildings in urban areas. *Sustainable Cities and Society*, *71*, 102968. https://doi.org/10.1016/j.scs.2021.102968
- Ferroudji, Benbouta, & Outtas. (2021). Numerical investigation on static and buckling behaviours of a mast support for h-rotor darrieus turbine under external loading. *UPB Scientific Bulletin, Series D: Mechanical Engineering, 83,* 273-284.
- Font Ariosa. (2022). *Situación estructural del almacen de recursos radioactivos*. [Comunicación personal].
- Forget, A. (2011). Manual de diseño de sistemas fotovoltaicos aislados.
- Gassar, & Cha. (2022). Feasibility assessment of adopting distributed solar photovoltaics and phase change materials in multifamily residential buildings. *Sustainable Production and Consumption*, *29*, 507-528. https://doi.org/10.1016/j.spc.2021.11.001
- González, A. L. Á., Carrera, L. A. I., Borges, R. J., Yanes, J. P. M., & Muñoz, M. G. (2022). Potencialidades de generación fotovoltaica sobre cubiertas de edificaciones en una instalación hotelera. *Universidad y Sociedad*, *14*(3), Art. 3.
- Guzmán Villavicencio, M., Soto Castellón, C. R., Águila Bernal, I., & Torres Águila, J. M. (2017). Procedimiento para instalación de un sistema fotovoltaico sobre techos en la corporación cuba ron s.a. *Centro Azúcar*, 44(1), 70-81.
- Haggag, Aboshosha, & Azouz. (2021). Computer-aided design and simulation-based efficiency improvement of the first Egyptian Solar City. *2021 22nd International Middle East Power*

Systems Conference (MEPCON), 491-496.

https://doi.org/10.1109/MEPCON50283.2021.9686277

- Honsberg, Bowden, Sellers, King, & Goodnick. (2022). *Photovoltaic surfaces to reverse global warming*. 3.
- Hosseini Dehshiri. (2022). A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan. *Energy*, *240*, 122814. https://doi.org/10.1016/j.energy.2021.122814
- Hussein M. K., Al-Asemi, Sabr, Almawari, Abuelrub, & Ehsani. (2022). On-grid photovoltaic energy system-a case study. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE), 1-6. https://doi.org/10.1109/SGRE53517.2022.9774138
- Ishaku, & Yakoi. (2021). PV self-consumption optimization using storage system and demand side management.
- Iturralde Carrera, L. A., Monteagudo Yanes, J. P., & Negrín Ransoli, P. J. (2021). Anteproyecto de biodigestor de bolsa para la cocina comedor de una empresa porcina.
- Jayaram, & Bavanish. (2022). Design and analysis of gorlov helical hydro turbine on index of revolution. *International Journal of Hydrogen Energy*, *47*(77), 32804-32821. https://doi.org/10.1016/j.ijhydene.2022.07.181
- Jefe de Ventas. (2022). *Información de los materiales en venta en ACINOX* [Comunicación personal].
- Kashikar, Suryawanshi, Sonone, Thorat, & Savant. (2021). Development of muffler design and its validation. *Applied Acoustics*, 180, 108132.

https://doi.org/10.1016/j.apacoust.2021.108132

Khezri, Mahmoudi, & Aki. (2022). Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives.

Renewable and Sustainable Energy Reviews, 153, 111763.

https://doi.org/10.1016/j.rser.2021.111763

Kumar, Rajoria, Sharma, & Suhag. (2021). Design and simulation of standalone solar PV system using PVsyst Software: A case study. *Materials Today: Proceedings*, 46, 5322-5328. https://doi.org/10.1016/j.matpr.2020.08.785

Li, Huo, Liu, Shi, He, & Cui. (2022). Design of a lightweight robotic arm for kiwifruit pollination. *Computers and Electronics in Agriculture, 198*, 107114.

https://doi.org/10.1016/j.compag.2022.107114

- López, & Lugo de León. (2021). *Red de aprendizaje de eficiencia energética para el sector industrial en Cienfuegos*. Carlos Rafael Rodriguez.
- Lounici, Mohammed, & El Hadi. (2021). *Modeling and dynamic simulation of a robot using the Solidworks motion tool*.
- Mahakul, Nath Thatoi, Choudhury, & Patnaik. (2021). Design and numerical analysis of spur gear using SolidWorks simulation technique. *Materials Today: Proceedings*, *41*, 340-346. https://doi.org/10.1016/j.matpr.2020.09.554
- Mallek, Elleuch, Euchi, & Jerbi. (2022). Optimal design of a hybrid photovoltaic–wind power system with the national grid using HOMER: A case study in Kerkennah, Tunisia. 2022 International Conference on Decision Aid Sciences and Applications (DASA), 725-729. https://doi.org/10.1109/DASA54658.2022.9765310
- Manoj Kumar, Chakraborty, Kumar Yadav, Singh, & Chopra. (2022). Advancing simulation tools specific to floating solar photovoltaic systems – Comparative analysis of field-measured and simulated energy performance. *Sustainable Energy Technologies and Assessments*, *52*, 102168. https://doi.org/10.1016/j.seta.2022.102168
- Marín. (2004). La energía solar fotovoltaica en España. 27.

Matrix—Datos—Indicadores Económicos. (2022). https://es.tradingeconomics.com/matrix

- Mokhtara, Negrou, Settou, Bouferrouk, & Yao. (2021). Optimal design of grid-connected rooftop PV systems: An overview and a new approach with application to educational buildings in arid climates. *Sustainable Energy Technologies and Assessments*, *47*, 101468. https://doi.org/10.1016/j.seta.2021.101468
- Molina Santana, E., & González Becerra, M. (2022). *Proyecto Técnico Instalación Fotovoltaica Fábrica de Pienso de Cienfuegos*.
- Mons Mazorra. (2019). Bitácora Energética de CENEX 2019.
- Mons Mazorra. (2020). Bitácora Energética de CENEX 2020.
- Mons Mazorra. (2021a). Balance Carga contra Capacidad CENEX.
- Mons Mazorra. (2021b). Bitácora Energética de CENEX 2021.
- Monteagudo Yanes, Borroto Nordelo, Centro de Estudios de Energía y Medio Ambiente, & Universidad de Cienfuegos, Cuba. (2006). *Gestión y economía energética*. Universidad de Clenfuegos 2006.
- Monteagudo Yanes, J. P., & Crespo Sánchez, G. (2021). Evaluación Económica de Proyectos de Ahorro de Energía.
- Nagel, Windarta, & Dwiatmoko. (2022). Soaking up the sun: Designing small scale photovoltaic (pv) rooftop for micro, small, and medium enterprises (msme): study case at rattan crafts center in Trangsan village, Sukoharjo, Central Java.
- Othman, & Hatem. (2022). Assessment of PV technologies outdoor performance and commercial software estimation in hot and dry climates. *Journal of Cleaner Production, 340*, 130819. https://doi.org/10.1016/j.jclepro.2022.130819
- P., D. A. P., & Jaramillo P., J. L. (2008). Sistemas fotovoltaicos para iluminación: Paneles fotovoltaicos. 4.

- Padoan, F. C. S. M., Altimari, P., & Pagnanelli, F. (2019). Recycling of end of life photovoltaic panels: A chemical prospective on process development. *Solar Energy*, *177*, 746-761. https://doi.org/10.1016/j.solener.2018.12.003
- Pérez Armas, I. J. M. (2022). *Datos sobre el proyecto del sistema fotovoltaico en Copextel.* [Comunicación personal].

Perez-Moscote, & Tyagunov. (2021). A consumer-based approach to the design of distributed energy systems with solar photovoltaic generation. 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 1-5. https://doi.org/10.1109/REEPE51337.2021.9388012

Perpiñán Lamigueiro, O. (2013). ENERGÍA SOLAR Fotovoltaica.

Precio del petróleo OPEP por barril 2022 | Datosmacro.com. (2022).

https://datosmacro.expansion.com/materias-primas/opec

Rabaia, Abdelkareem, Sayed, Elsaid, Chae, Wilberforce, & Olabi. (2021). Environmental impacts of solar energy systems: A review. *Science of The Total Environment*, 754, 141989.
 https://doi.org/10.1016/j.scitotenv.2020.141989

 Reddy, K, Dinesh, Das, Prajwal, & Anand. (2022). A review of solar powered electric Bi-hybrid vehicle compared with IC Engine Vehicles using graph analytics with AI. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), 605-609. https://doi.org/10.1109/ICSSIT53264.2022.9716463

- Salmi, Baci, Inc, Menni, Lorenzini, & Al-Douri. (2022). Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria's M'sila region using PVsyst software. *Optik*, *262*, 169294. https://doi.org/10.1016/j.ijleo.2022.169294
- Satpathy, Sharma, & Panda. (2021). Optimal Sizing, Placement and Shading Analysis of a 19.2kW Grid-Tied Residential Roof-Top PV System. 2021 1st Odisha International Conference on

Electrical Power Engineering, Communication and Computing Technology(ODICON), 1-6. https://doi.org/10.1109/ODICON50556.2021.9428927

Saymbetov, Mekhilef, Kuttybay, Nurgaliyev, Tukymbekov, Meiirkhanov, Dosymbetova, & Svanbayev. (2021). Dual-axis schedule tracker with an adaptive algorithm for a strong scattering of sunbeam. *Solar Energy*, 224, 285-297.

https://doi.org/10.1016/j.solener.2021.06.024

- Setiawan, Fauzi, & Enja. (2018). SMOFIM: Smoke fish machine based on solar photovoltaic integrated android mobile iot (internet of things) with exhaust filter reducing co, co2 and hc pollutants as an effort to improve the economy of the fishermen community at Trisik beach. Jurnal Ilmiah Penalaran dan Penelitian Mahasiswa Volume 2, 42-51.
- Şevik. (2022). Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. *International Journal of Hydrogen Energy*. https://doi.org/10.1016/j.ijhydene.2022.05.193
- Shah, & Barve. (2021). *Design, analysis and simulation of a Darrieus (eggbeater type) wind turbine.* 08, 1655-1660.
- Shamim, Silmee, & Sikder. (2022). Design and techno-economic analysis of a grid-connected solar photovoltaic system in Bangladesh. 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 1-6. https://doi.org/10.1109/ICAECT54875.2022.9808078
- Shrivastava, Sharma, Kumar Saxena, Shanmugasundaram, Lal Rinawa, & Ankit. (2021). Solar energy capacity assessment and performance evaluation of a standalone PV system using PVSYST. *Materials Today: Proceedings*. https://doi.org/10.1016/j.matpr.2021.07.258

- Sivaram, Premalatha, & Arunagiri. (2021). Computational studies on the airflow developed by the building-integrated passive solar energy system. *Journal of Building Engineering*, *39*, 102250. https://doi.org/10.1016/j.jobe.2021.102250
- Tamoor, Tahir, & Zaka. (2021). Photovoltaic integrated distributed energy generation system for sustainable energy development considering reliability indices and levelized cost of energy. *International Journal of Advanced Trends in Computer Science and Engineering*, 10, 2540-2549. https://doi.org/10.30534/ijatcse/2021/1461032021
- Terry Ramírez, Diaz Fernández, Zuaznabal Himely, & Veloz Cuellar. (2022). *Estudio de la condiciones laborales de los trabajadores de servicio del CENEX*. FORUM DE CIENCIA Y TÉCNICA 2021.
- Terry Ramírez, Veloz Cuellar, & Font Ariosa. (2019). *Información trimestral de OTS a la Dirección de Trabajo Provincial 2019*.
- Vardaan, & Kumar. (2022). Design, analysis, and optimization of thresher machine flywheel using Solidworks simulation. *Materials Today: Proceedings*, *56*, 3651-3655. https://doi.org/10.1016/j.matpr.2021.12.348
- Vazquez, Majanne, Castro, Luukkanen, Hohmeyer, Vilaragut, & Diaz. (2018). Energy system planning towards renewable power system: Energy matrix change in cuba by 2030. *IFAC-PapersOnLine*, *51*(28), 522-527. https://doi.org/10.1016/j.ifacol.2018.11.756
- Vyas, Chowdhury, Verma, & Jain. (2022). Solar Photovoltaic Tree: Urban PV power plants to increase power to land occupancy ratio. *Renewable Energy*, *190*, 283-293. https://doi.org/10.1016/j.renene.2022.03.129
- Yadav, Hachem-Vermette, Panda, Tiwari, & Mohapatra. (2021). Determination of optimum tilt and azimuth angle of BiSPVT system along with its performance due to shadow of adjacent buildings. *Solar Energy*, *215*, 206-219. https://doi.org/10.1016/j.solener.2020.12.033

Young, Hugh D, Roger A, & Freedman. (2009). *Física Universitaria—Sears Zemansky—Vol 2—12ava Edición.pdf*. Google Docs. https://docs.google.com/file/d/0B-

87D9cxiLfiV3NXdENoXzBaM1k/edit?usp=embed_facebook

 Yu, Yang, Yan, & Kyeredey Ansah. (2021). A review of designs and performance of façade-based building integrated photovoltaic-thermal (BIPVT) systems. *Applied Thermal Engineering*, *182*, 116081. https://doi.org/10.1016/j.applthermaleng.2020.116081

Zhuo, & Cheng. (2021). SCARA modeling and simulation based on SimMechanics and SolidWorks.
2021 IEEE 4th Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 4, 1559-1563.

https://doi.org/10.1109/IMCEC51613.2021.9482097

Anexos Anexo 1: Gráficos de Control y Tendencia de consumo de kW del 2019 y 2020.

La Figura 1 Anexo es una combinación de dos tipos de gráficos: el Gráfico de Control y el Gráfico de Tendencia del 2019.

Figura 1 Anexo. Gráfico de Control y Tendencia del consumo de kW del 2019. Fuente: Elaboración propia, datos tomados de la empresa (Mons Mazorra, 2019)

La Figura 2 Anexo es una combinación de dos tipos de gráficos: el Gráfico de Control y el Gráfico de Tendencia del 2020.

Figura 2 Anexo. Gráfico de Control y Tendencia del consumo de kW del 2020. Fuente: Elaboración propia, datos tomados de la empresa(Mons Mazorra, 2020).

Anexo 2: Datos Meteorológicos y de Geolocalización.

uatro

Sitio geográfico	Situ	ación											
Cuatro Caminos Cuba					ud		22.17 °N						
					Longitud			-80.45 °W					
				Altitu	ıd		14 m						
				Zona	a horaria		UTC	C-5					
					Valore	s mete	o mens	uales					
amliFnuoeen_tbs/1N73.SIT Me	eteonorm	7.3 (199	91-2005)	, Sat=10	0%								
	Ene.	Feb.	Mar.	Abr.	Mayo	Jun.	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Año
Horizontal global	Ene. 113.2	Feb. 116.9	Mar. 154.6	Abr. 158.9	Mayo 156.0	Jun. 150.6	Jul. 160.6	Ago. 155.5	Sep. 123.6	Oct. 116.1	Nov. 110.4	Dic. 107.2	Año 1623.6 kWh/m²
Horizontal global Difuso horizontal	Ene. 113.2 54.6	Feb. 116.9 54.6	Mar. 154.6 71.2	Abr. 158.9 81.7	Mayo 156.0 84.0	Jun. 150.6 81.4	Jul. 160.6 89.3	Ago. 155.5 81.1	Sep. 123.6 73.1	Oct. 116.1 54.8	Nov. 110.4 53.6	Dic. 107.2 51.6	Año 1623.6 kWh/m² 831.0 kWh/m²
Horizontal global Difuso horizontal Extraterrestre	Ene. 113.2 54.6 222.8	Feb. 116.9 54.6 233.3	Mar. 154.6 71.2 294.9	Abr. 158.9 81.7 315.0	Mayo 156.0 84.0 340.4	Jun. 150.6 81.4 333.0	Jul. 160.6 89.3 341.6	Ago. 155.5 81.1 330.7	Sep. 123.6 73.1 296.5	Oct. 116.1 54.8 270.6	Nov. 110.4 53.6 224.8	Dic. 107.2 51.6 211.7	Año 1623.6 kWh/m² 831.0 kWh/m² 3415.4 kWh/m²
Horizontal global Difuso horizontal Extraterrestre Índice de claridad	Ene. 113.2 54.6 222.8 0.508	Feb. 116.9 54.6 233.3 0.501	Mar. 154.6 71.2 294.9 0.524	Abr. 158.9 81.7 315.0 0.504	Mayo 156.0 84.0 340.4 0.458	Jun. 150.6 81.4 333.0 0.452	Jul. 160.6 89.3 341.6 0.470	Ago. 155.5 81.1 330.7 0.470	Sep. 123.6 73.1 296.5 0.417	Oct. 116.1 54.8 270.6 0.429	Nov. 110.4 53.6 224.8 0.491	Dic. 107.2 51.6 211.7 0.506	Año 1623.6 kWh/m² 831.0 kWh/m² 3415.4 kWh/m² 0.475 proporciói
Horizontal global Difuso horizontal Extraterrestre Índice de claridad Temp. ambiente	Ene. 113.2 54.6 222.8 0.508 19.7	Feb. 116.9 54.6 233.3 0.501 21.6	Mar. 154.6 71.2 294.9 0.524 23.8	Abr. 158.9 81.7 315.0 0.504 24.6	Mayo 156.0 84.0 340.4 0.458 26.4	Jun. 150.6 81.4 333.0 0.452 26.7	Jul. 160.6 89.3 341.6 0.470 27.3	Ago. 155.5 81.1 330.7 0.470 27.2	Sep. 123.6 73.1 296.5 0.417 25.6	Oct. 116.1 54.8 270.6 0.429 25.0	Nov. 110.4 53.6 224.8 0.491 22.3	Dic. 107.2 51.6 211.7 0.506 21.6	Año 1623.6 kWh/m² 831.0 kWh/m² 3415.4 kWh/m² 0.475 proporción 24.3 °C

Valores meteo mensuales

Trayectorias solares en Cuatro Caminos, (Lat. 22.1651° N, long. -80.4527° W, alt. 14 m) - Hora Legal

Anexo 3: Ficha técnica del módulo fotovoltaico utilizado.

	Módulo FV - D	SM-380MP	
Fabricante	NUMEN Solar	Datos comerciales	
Modelo	DSM-380MP	Disponibilidad : Prod. desd	e 2020
		Fuente de datos : Datasheet	s 2020
Pnom Potencia STC (fabricante)	380 Wp	Tecnología S	i-mono
Tamaño del módulo (ancho x largo) 0.990 x 1.	960 m²	Área áspera del módulo (Amódulo)	1.94 m²
Número de células 1 >	< 72	Área sensible (células) (Acélulas)	1.77 m²
Especificaciones para el modelo (fabric	ante o datos de medio	ión)	
Temperatura de referencia (TRef)	25 °C	Irradiancia de referencia (GRef)	1000 W/m²
Voltaje de circuito abierto (Voc) 4	18.5 V	Corriente de cortocircuito (Isc)	10.17 A
Voltaje del punto de potencia máx. (Vmpp) 3	39.3 V	Corriente de punto de potencia máx. (Impp)	9.67 A
=> potencia máxima (Pmpp) 38	30.3 W	Coef. de temp. lsc (mulsc)	6.1 mA/°C
Parámetros de modelo de un diodo			
Resistencia derivación (Rderivación) 1.	200 Ω	Corriente saturación diodo (IoRef)	2.65 nA
Resistencia serie (Rserie) 0	0.25 Ω	Coef. de temp. Voc (MuVoc)	-149 mV/°C
Coef. temp. Pmax especificado (muPMaxR) -0	0.37 %/°C	Factor de calidad diodo (Gamma)	1.19
		Factor de diodo temper. coeff. (muGamma)	0.000 1/°C
Parámetros de polarización inversa, par	a usar en el comporta	miento del conjunto FV bajo sombrea	do parcial o desaiuste
Características inversas (oscuro) (BRev)	3.20 mA/V ²	(factor cuadrático (por célula))	,,
Número de diodos de deivación por módulo	3	Voltaje directo de diodos de derivación	-0.7 V
Resultados del modelo para las condició	ones estándar (STC:	T=25 °C. G=1000 W/m². AM=1.5)	
Voltaje del punto de potencia máx. (Vmpp) 3	39.7 ∨	Corriente de punto de potencia máx. (Impp)	9.63 A
Potencia máxima (Pmpp) 38	30.7 Wp	Coef. de temp. de potencia (muPmpp)	-0.37 %/°C
Eficiencia(/ Área módulo) (Efic_mód.) 1	19.6 %	Factor de forma (FF)	0.772
Eficiencia(/ Área células) (Efic_cél.) 2	21.5 %		
12 Temp. células = 25° C	Módulo FV: NÚMEN S	olar, DSM-380MP	
-			-
Irrad. inc	cidente = 1000 W/m²		
10		380.7 W	-
-		$\mathbf{\lambda}$	-
Irrad. inc	cidente = 800 W/m²	304.2 \	
8—			-
		\mathbf{X}	_
	$dente = 600 M/m^2$		
a 6 –		227.1 W	_
Conti			
-			-
Irrad. inc	cidente = 400 W/m²	149.6 W	
4 —			-
-			-
2 Irrad. inc	cidente = 200 W/m²	72.7 W	
-			
-		~ 110	-
		$\langle \rangle \rangle \langle $	
	20 \/o#		
0 10	20 000	ອມ≁ເ*ງ 4∪ 50	60

Anexo 4: PLANO DEL SOPORTE Y SUS COMPONENTES.

Λ				2		1								
	FORMATO	ZONA	MARCA 4	REF	ERENCIA		5	DENOMI	NACIÓN	ма	TERIAL	CANTIDAD -	OBSERVAC.	
Г	1	2	3		4			5			6	7	8	1
							D	OCUME	ΝΤΑCΙÓΝ					
	A3						PLA	NO DE	ENSAMBLE	ACER	0 A.F.	1		
								PIEZ	AS					
E	A4		1					PIEZ	A 1	ACER	0 A.F.	1		E
	A4		2					PIEZ	A 2	ACER	20 A.F.	1		
	A4		3					PIEZ	A 3	ACER	20 A.F.	1		
	A4		4					PIEZ	A 4	ACER	0 A.F.	1		
	A4		5					PIEZ	A 5	ACER	20 A.F.	1		
υ							ARTÍCULOS NORMALIZADOS							עך
				NC	06 47		TORNILLO M10X60					4		
				NC	06 64		ARAN	DELA $ otin 1$	1XØ21			4		
							MATERIALES							
С							ELECTR	RODO Eé	50			6		С
							PINTUR	A ANTIC	ORROSIVA 3R	2				
в														В
	SI NO S	se indica		TRARIO: ACA	BADO:			REBARBAR Y	NO CAMBIE LA ES		R			-
	LAS CC ACABA TOLERA	LAS COTAS SE EXPRESAN EN MM ACABADO SUPERFICIAL: TOLERANCIAS:					VIVAS			STA DE EL	.EMEN	ITOS		
	ANG	ULAR:	Ombre	FIRMA	FECHA				Τίτυιο:					
	DIBUJ. VERIF.	YOEL O.	PIÑEIRO	S.	3/11/2022				SOPORTE	DEL	OS PAI	NELE :	s	
А	APROB. FABR.													A
	CALID.					MATERIAL				JUI	01		A4	
						PESO:			ESCALA:1:1		HOJA I DE	1		
4						(3		2			1		

Anexo 5: Resultados de la simulación del Solidworks.

Simulación de Ensamblaje

Fecha: jueves, 27 de octubre de 2022 Diseñador: Yoel Orlando Piñeiro Sosa Nombre de estudio: Análisis estático Tipo de análisis: Análisis estático

Descripción

Soporte de dos aguas diseñado para soportar paneles solares DSM-380MP-72. En la simulación se consideran las uniones por soldadura uniones de tipo rígidas. Se considera las cargas de los paneles como masa distribuida, la presión del viento según la norma cubana NC 285: 2003 y el propio peso de la estructura. El anclaje se realiza mediante tornillos de fundación.

Suposiciones

Carga de viento calculada por la NC 285: 2003.Las uniones soldadas se consideran una unión global

Información de modelo

Image: Second					
Sólidos					
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación		
Saliente-Extruir1	Sólido	Masa:3.65349 kg Volumen:0.000500477 m^3 Densidad:7300 kg/m^3 Peso:35.8042 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza1.SLDPRT Oct 27 11:14:36 2022		
Saliente-Extruir1	Sólido	Masa:3.65349 kg Volumen:0.000500477 m^3 Densidad:7300 kg/m^3 Peso:35.8042 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza1.SLDPRT Oct 27 11:14:36 2022		
Saliente-Extruir1	Sólido	Masa:3.65349 kg Volumen:0.000500477 m^3 Densidad:7300 kg/m^3	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza1.SLDPRT		

		Peso:35.8042 N	Oct 27 11:14:36 2022
Saliente-Extruir1	Sólido	Masa:3.65349 kg Volumen:0.000500477 m^3 Densidad:7300 kg/m^3 Peso:35.8042 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza1.SLDPRT Oct 27 11:14:36 2022
Cortar-Extruir1	Sólido	Masa:0.106666 kg Volumen:1.46118e-005 m^3 Densidad:7300 kg/m^3 Peso:1.04533 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza2.SLDPRT Oct 20 17:00:39 2022
Cortar-Extruir1	Sólido	Masa:0.106666 kg Volumen:1.46118e-005 m^3 Densidad:7300 kg/m^3 Peso:1.04533 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza2.SLDPRT Oct 20 17:00:39 2022
Cortar-Extruir1	Sólido	Masa:0.106666 kg Volumen:1.46118e-005 m^3 Densidad:7300 kg/m^3 Peso:1.04533 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza2.SLDPRT Oct 20 17:00:39 2022
Cortar-Extruir1	Sólido	Masa:0.106666 kg Volumen:1.46118e-005 m^3 Densidad:7300 kg/m^3 Peso:1.04533 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza2.SLDPRT Oct 20 17:00:39 2022

¥	Saliente-Extruir1	Sólido	Masa:3.20879 kg Volumen:0.00043956 m^3 Densidad:7300 kg/m^3 Peso:31.4461 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza3.SLDPRT Oct 20 17:04:46 2022
Ļ	Saliente-Extruir1	Sólido	Masa:3.20879 kg Volumen:0.00043956 m^3 Densidad:7300 kg/m^3 Peso:31.4461 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza3.SLDPRT Oct 20 17:04:46 2022
¥	Saliente-Extruir1	Sólido	Masa:3.20879 kg Volumen:0.00043956 m^3 Densidad:7300 kg/m^3 Peso:31.4461 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza3.SLDPRT Oct 20 17:04:46 2022
Ļ	Saliente-Extruir1	Sólido	Masa:3.20879 kg Volumen:0.00043956 m^3 Densidad:7300 kg/m^3 Peso:31.4461 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza3.SLDPRT Oct 20 17:04:46 2022
ŕ	Cortar-Extruir1	Sólido	Masa:0.641006 kg Volumen:8.7809e-005 m^3 Densidad:7300 kg/m^3 Peso:6.28186 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza4.SLDPRT Oct 20 17:59:32 2022
Ļ	Cortar-Extruir1	Sólido	Masa:0.641006 kg Volumen:8.7809e-005 m^3 Densidad:7300 kg/m^3 Peso:6.28186 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza4.SLDPRT Oct 20 17:59:32 2022

-				
Ļ	Cortar-Extruir1	Sólido	Masa:0.641006 kg Volumen:8.7809e-005 m^3 Densidad:7300 kg/m^3 Peso:6.28186 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza4.SLDPRT Oct 20 17:59:32 2022
Ļ	Cortar-Extruir1	Sólido	Masa:0.641006 kg Volumen:8.7809e-005 m^3 Densidad:7300 kg/m^3 Peso:6.28186 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza4.SLDPRT Oct 20 17:59:32 2022
Ļ	Saliente-Extruir1	Sólido	Masa:5.83416 kg Volumen:0.0007992 m^3 Densidad:7300 kg/m^3 Peso:57.1748 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza5.SLDPRT Oct 25 14:59:33 2022
Ļ	Saliente-Extruir1	Sólido	Masa:5.83416 kg Volumen:0.0007992 m^3 Densidad:7300 kg/m^3 Peso:57.1748 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza5.SLDPRT Oct 25 14:59:33 2022
Ļ	Saliente-Extruir1	Sólido	Masa:5.83416 kg Volumen:0.0007992 m^3 Densidad:7300 kg/m^3 Peso:57.1748 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza5.SLDPRT Oct 25 14:59:33 2022
Ļ	Saliente-Extruir1	Sólido	Masa:5.83416 kg Volumen:0.0007992 m^3 Densidad:7300 kg/m^3 Peso:57.1748 N	C:\Users\Yoel Orlando\Documents\Soporte de la tesis\Pieza5.SLDPRT Oct 25 14:59:33 2022
Propiedades del estudio

Nombre de estudio	Análisis estático
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (C:\Users\Yoel Orlando\Documents\Soporte de la tesis)

Unidades	
Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades del material

	Sólido 1(Saliente- Extruir1)(Pieza5-2), Sólido 1(Saliente- Extruir1)(Pieza5-3), Sólido 1(Saliente- Extruir1)(Pieza5-4), Sólido 1(Saliente- Extruir1)(Pieza5-5)
Datos de curva:N/A	

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción	Detalles de s	sujeción
Perno de fundación-1		Entidades: Tipo: Diámetro de la cabeza: Referencia: Diámetro del vástago nominal: Precarga (Torsión): Módulo de Young: Cociente de Poisson: Unidades de precarga:	1 arista(s), 1 plano(s) Tornillo(Diámetro de la cabeza/tuerca)(Tornillo de fundación) 18.462 mm PLANO1 12.308 26.72 2.1e+011 0.28 N.m
Perno de fundación-2		Entidades: Tipo: Diámetro de la cabeza: Referencia: Diámetro del vástago nominal: Precarga (Torsión): Módulo de Young: Cociente de Poisson: Unidades de precarga:	1 arista(s), 1 plano(s) Tornillo(Diámetro de la cabeza/tuerca)(Tornillo de fundación) 18.462 mm PLANO2 12.308 26.72 2.1e+011 0.28 N.m

Perno de fundación-3		Entidades: Tipo: Diámetro de la cabeza: Referencia: Diámetro del vástago nominal: Precarga (Torsión): Módulo de Young: Cociente de Poisson: Unidades de precarga:	1 arista(s), 1 plano(s) Tornillo(Diámetro de la cabeza/tuerca)(Tornillo de fundación) 18.462 mm PLANO4 12.308 26.72 2.1e+011 0.28 N.m
Perno de fundación-4		Entidades: Tipo: Diámetro de la cabeza: Referencia: Diámetro del vástago nominal: Precarga (Torsión): Módulo de Young: Cociente de Poisson: Unidades de precarga:	1 arista(s), 1 plano(s) Tornillo(Diámetro de la cabeza/tuerca)(Tornillo de fundación) 18.462 mm PLANO3 12.308 26.72 2.1e+011 0.28 N.m
Pared virtual-1	×	Tipo: Entidades: Tipo de pared: Rigidez axial: Rigidez tangente:	Pared virtual 1 cara(s), 1 plano(s) Unión rígida O(N/m)/m^2 O(N/m)/m^2
Pared virtual-2	×	Tipo: Entidades: Tipo de pared: Rigidez axial: Rigidez tangente:	Pared virtual 1 cara(s), 1 plano(s) Unión rígida O(N/m)/m^2 O(N/m)/m^2
Pared virtual-3	×	Tipo: Entidades: Tipo de pared: Rigidez axial: Rigidez tangente:	Pared virtual 1 cara(s), 1 plano(s) Unión rígida O(N/m)/m^2 O(N/m)/m^2

Pared virtual-4		Tipo: Entidades: Tipo de pared: Rigidez axial: Rigidez tangente:	Pared virtual 1 cara(s), 1 plano(s) Unión rígida O(N/m)/m^2 O(N/m)/m^2
	7		

Nombre de carga	Cargar imagen	Detalles de	e carga
Masa distribuida-1		Entidades: Tipo: Sistema de coordenadas: Traslación Valores: Rotación Valores: Coordenadas de referencia: Masa remota: Momento de inercia: Componentes transferidos:	4 cara(s) Desplazamiento (Transferencia directa) Coordenadas cartesianas globales ,, mm ,, deg 0 0 0 mm 21.5 kg 0,0,0,0,0,0 kg.m^2 NA
Masa distribuida-2		Entidades: Tipo: Sistema de coordenadas: Traslación Valores: Rotación Valores: Coordenadas de referencia: Masa remota: Momento de inercia: Componentes transferidos:	4 cara(s) Desplazamiento (Transferencia directa) Coordenadas cartesianas globales ,, mm ,, deg 0 0 0 mm 21.5 kg 0,0,0,0,0,0 kg.m^2 NA
Gravedad-1		Referencia: Valores: Unidades:	PLANO1 0 0 9.81 SI

Presión-1	Entidades: Tipo: Valor: Unidades: Ángulo de fase: Unidades:	7 cara(s) Normal a cara seleccionada 44.286 N/m^2 O deg
Fuerza-1	Entidades: Referencia: Tipo: Valores:	4 cara(s) Cara< 1 > Aplicar fuerza -9.88464,, N

Definiciones de conector No hay datos

Información de contacto

Contacto	Imagen del contacto	Propiedades de	el contacto
Contacto global		Tipo: Componentes: Opciones:	Unión rígida 1 componente(s) Mallado compatible

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar

Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	44.1998 mm
Tolerancia	2.20999 mm
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

Número total de nodos	24365
Número total de elementos	12796
Cociente máximo de aspecto	135.43
% de elementos cuyo cociente de aspecto es < 3	2.41
% de elementos cuyo cociente de aspecto es > 10	88.9
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:13
Nombre de computadora:	

Detalles del sensor No hay datos

1

Fuerzas resultantes Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0	0	0	1e-033
Momentos de rea	cción				
Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Resultados del estudio

Nombre	Тіро	Mín.	Máx.
Tensiones1	VON: Tensión de von Mises	24482.5 N/m^2 Nodo: 17202	2.2836e+008 N/m^2 Nodo: 8
Nombre del modelo:Ensamblaje1 Nombre de estudio:Análisis estático Tipo de resultado: Análisis estático	o(-Predeterminado-) ten sión nodal Ten siones1	Nodo: 17202	von Mises (N/m^2) 2.284e+008 2.093e+008 1.903e+008 1.713e+008 1.1522e+008 1.1322e+008 1.1322e+008 1.142e+008 9.516e+007 7.614e+007 5.711e+007 1.905e+007 1.905e+007 1.905e+007 2.448e+004
Z			
	Ensamblaje1-Análisis	estático-Tensiones-T	ensiones1

Nombre	Тіро	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000451352 mm Nodo: 6753	0.276312 mm Nodo: 21342
Nombre del modelo En samblaje1 Nombre de estudio:Análisis estático.Predeterminado-) Tipo de resultado: Desplazamiento estático Desplazamientos Es cala de deformación: 789.005		URES (mm) 2.763e-001 2.533e-001 2.303e-001 2.2073e-001 2.1.614e-001 1.1.614e-001 1.1.54e-001 2.1.154e-001 2.1.154e-001 2.1.154e-001 2.2.344e-002 2.344e-002 2.344e-002 2.344e-002	21342
Ensamb	laje1-Análisis estático-Desplazamientos-Des	splazamientos1	

Nombre	Тіро
Desplazamientos1{1}	Deformada
Nombre del modelo En samblaje1 Nombre de estudio:Análisis estáticol-Predeterminado-) Tipo de resultado: Deforma da Despizzamientos1(1)	
Ensam	blaje1-Análisis estático-Desplazamientos-Desplazamientos1{1}

Nombre	Тіро	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	1.09089e-007	0.000688868
	equivalente	Elemento: 10602	Elemento:
			2951
Encamblaie	1-Análicis estático-Deformaciones unitarias-	Deformaciones unitarias 1	
Liisaiiibiaje	1-Analisis estatico-Deformaciones unitarias-		
Nombre del modelo En samblaje1 Nombre de estudio: Análisis estático(- Predetr	erminado.)		
Tipo de resultado: Deformación unitaria esta	stica Deformaciones unitarias1		
Escala de deformación: 789.005			

ESTRN

6.889e-004 6.315e-004 5.741e-004 5.167e-004 4.593e-004 4.019e-004 3.445e-004 2.871e-004 1.723e-004 1.723e-004 1.149e-004 5.751e-005 1.091e-007

Conclusión

El soporte de los paneles es resistente a las inclemencias del tiempo en Cuba cumpliendo con los requisitos mecánicos estando el desplazamiento máximo de la simulación en el orden de los micrones

Anexo 6: Ficha técnica del inversor Sunny Boy 7000TL-US-22 -240V

	Inverso	r - Sunny Bo	y 7000TL-US-22 -240V	
Fabricante Modelo	Sunny Boy 7000TL-US-	SMA 22 -240V	Datos comerciales Disponibilidad : Fuente de datos : Observaciones Tecnología: 16 kHz, IGBT Protección: -40 - +45°C, IP 65 - Control: Graphikdisplay Tamaños Anchura Altura	Prod. desde 2014 Manufacturer 2014 NEMA 3R: outdoor installable 490 mm 519 mm
			Profundidad Peso	185 mm 24.00 kg
Características de entrad Modo operativo Voltaje MPP mínimo (Vmín) Voltaje MPP máximo (Vmáx) Voltaje FV máx. absoluto (Vmí Voltaje mín. para PNom (Vmín Multi capacidad MPPT Número de entradas MPPT Características de salida	la (lado del conjunto MPPT 245 V 480 V áx conjunto) 600 V n@Pnom) 245 V 2 (Lado de red CA)	FV)	Potencia FV nominal (Pnom CC Potencia FV máxima (Pmáx CC Umbral de potencia (Pthresh.) Comportamiento en Vmin/Vmáx Comportamiento en Pnom) 7.3 kW) 7.3 kW 35 W : Limitación Limitación
Voltaje de Red (Imáx) Frecuencia de la red	Monofásico 240 V 60 Hz	z	Potencia de CA nominal (Pnom Potencia CA máxima (Pmáx CA Corriente CA nominal (Inom CA Corriente CA máxima (Imáx CA	CA) 7.0 kWca) 7.0 kWca) 29.2 A) 29.2 A
Eficiencia máxima Eficiencia media europea	96.8 % 96.5 %			
Observaciones y Caracte Monitoreo de aislamiento de c Interruptor de CC interno Ajuste de desconexión de volt	e rísticas técnicas conjunto aje de salida			

Anexo 7: Ficha técnica del inversor SE-TL1.5K

	Inversor	- SE-TL1.5K	
Fabricante Modelo	Solar Energy Do Brasil SE-TL1.5K	Datos comercialesDisponibilidad :FFuente de datos :MailObservacionesTecnología: TL transformerlessProtección: IP65, -25°C to +60°C, 4Control: LCD, 2x16 char. & LED (3)Warranty 5 years	Prod. desde 2014 anufacturer 2016 up to 2000m altitude without power decre lights)
		INMETRO ABNT NBR 16149 - ABNT NBR 16 ABNT NBR IEC 62113 Tamaños	5150
		Anchura Altura Profundidad Peso	313 mm 415 mm 140 mm 11.00 kg
Características de entrada (lado Modo operativo	del conjunto FV) MPPT		
Voltaje MPP mínimo (Vmín) Voltaje MPP máximo (Vmáx) Voltaje FV máx. absoluto (Vmáx conjun Voltaje mín. para PNom (Vmín@Pnom)	100 V 425 V to) 480 V 100 V	Potencia FV nominal (Pnom CC) Potencia FV máxima (Pmáx CC) Umbral de potencia (Pthresh.)	1.5 kW 1.8 kW 8 W
Comportamiento en Vmín/Vmáx Comportamiento en Pnom	Limitación Limitación		
Características de salida (Lado d Voltaje de Red (Imáx) Mon Frecuencia de la red	e red CA) ofásico 220 V 60 Hz	Potencia de CA nominal (Pnom CA Potencia CA máxima (Pmáx CA) Corriente CA nominal (Inom CA) Corriente CA máxima (Imáx CA)	A) 1.5 kWca 1.7 kWca 6.5 A 8.5 A
Eficiencia máxima Eficiencia media europea	97.3 % 96.5 %	· · · · ·	
Observaciones y Características La potencia nominal del conjunto debe Esto es una exigencia contractual del fa	técnicas ser inferior a la potencia máxir bricante.	na FVMonitoreo de aislamiento de conju Interruptor de CC interno	nto
		Ajuste de desconexión de voltaje d	le salida

Anexo 8: Resultados de la simulación del PVsyst.

08/11/22

PVsyst V7.1.7 VC1, Fecha de simulación: 06/11/22 11:15 con v7.1.7

Necesidades detalladas del usuario

Perfil diario, Constante durante el año, promedio = 128 kWh/día

Carga por hora	0 h	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	9 h	10 h	11 h	
	5.97	5.97	5.97	5.97	5.97	5.97	4.97	4.97	4.97	4.97	4.97	4.97	kW
	12 h	13 h	14 h	15 h	16 h	17 h	18 h	19 h	20 h	21 h	22 h	23 h	
	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	5.97	5.97	5.97	kW

Perfil diario

PVsyst V7.1.7 VC1, Fecha de simulación: 06/11/22 11:15 con v7.1.7

Resultados principales

Producción del sistema Energía producida

22.58 MWh/año

Producción específica Proporción de rendimiento (PR) Fracción solar (SF) 1238 kWh/kWp/año 76.94 % 31.60 %

Proporción de rendimiento (PR)

Balances y resultados principales

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	113.2	54.59	19.71	112.1	102.3	1.648	3.974	1.129	0.455	2.846
Febrero	116.9	54.60	21.62	115.9	106.6	1.698	3.590	1.072	0.561	2.518
Marzo	154.6	71.18	23.77	153.1	142.2	2.236	3.974	1.340	0.816	2.635
Abril	158.9	81.71	24.55	157.6	147.5	2.314	3.846	1.373	0.857	2.473
Мауо	156.0	83.97	26.41	154.8	145.0	2.258	3.974	1.374	0.799	2.601
Junio	150.6	81.43	26.73	149.4	139.9	2.178	3.846	1.326	0.770	2.520
Julio	160.6	89.31	27.31	159.4	149.0	2.316	3.974	1.424	0.806	2.551
Agosto	155.5	81.15	27.16	154.2	144.7	2.245	3.974	1.330	0.831	2.644
Septiembre	123.6	73.12	25.64	122.3	113.4	1.777	3.846	1.172	0.535	2.674
Octubre	116.1	54.81	25.02	114.8	106.1	1.667	3.974	1.073	0.527	2.901
Noviembre	110.4	53.56	22.31	109.2	99.7	1.590	3.846	1.090	0.439	2.756
Diciembre	107.2	51.63	21.64	106.1	96.4	1.543	3.974	1.087	0.395	2.888
Δño	1623.6	831.06	24.34	1608.9	1492.7	23.470	46.796	14.789	7.790	32.007

GlobHor	Irradiación horizontal global	EArray	Energía efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_User	Energía suministrada al usuario
T_Amb	Temperatura ambiente	E_Solar	Energía del sol
GlobInc	Global incidente plano receptor	E_Grid	Energía inyectada en la red
GlobEff	Global efectivo, corr. para IAM y sombreados	EFrGrid	Energía de la red

PVsyst V7.1.7 VC1, Fecha de simulación: 06/11/22 11:15 con v7.1.7

PVsyst V7.1.7 VC1, Fecha de simulación: 06/11/22 11:15 con v7.1.7

PVsyst V7.1.7 VC1, Fecha de simulación: 06/11/22 11:15 con v7.1.7

Fotal:	534.6 tCO2		
Emisiones generadas		Emisión de CO₂ ahorrada vs tiempo	
Total:	15.50 tCO2	· · · · · · · · · · · · · · · · · · ·	
Fuente: Cálculo detallado de la sig	guiente tabla:		
Emisiones reemplazadas		600 	
Total:	634.0 tCO2		
Sistema de producción:	22.58 MWh/año	500 -	
Emisiones del ciclo de vida de la red:	936 gCO₂/kWh	100 L	
⁻ uente:	Lista IEA		
País:	Cuba	Ö 300	
Γoda la vida:	30 años		
Degradación anual:	1.0 %	200	
		Bal	
		100	
		0	
		-100 -100 -1	
		Año	
	Datallas de amisianas de	l siste de vide del sistema	
	Detailes de emisiones de	a cició de vida del sistema	
Artículo	LCE	Cantidad Subtotal	
		[kgCO ₂]	
Módulos 171	3 kgCO2/kWp	7.60 kWp 13017	
Soportes 6.	24 kgCO2/kg	200 kg 1249	

Anexo 9: Resultados de la simulación del PVsyst con un sistema tradicional de orientación.

PVsyst V7.1.7 VC0, Fecha de simulación: 18/10/22 17:25 con v7.1.7

				Nece	sidades	s detalla	adas de	l usuari	ο				
Perfil diario, Con	stante du	rante el a	ño, prome	edio = 128	kWh/día								
Carga por hora	0 h	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	9 h	10 h	11 h	
	5.97	5.97	5.97	5.97	5.97	5.97	4.97	4.97	4.97	4.97	4.97	4.97	kW
	12 h	13 h	14 h	15 h	16 h	17 h	18 h	19 h	20 h	21 h	22 h	23 h	
	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	5.97	5.97	5.97	kW
		Perfil d	iario										
B000 7000 7000 5000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	- Promec	lio = 128 k	Wh/día Wh/día 12 1 1/05/00	<u> </u>	<u>-</u>								

Variante: Variante con un sistema de orientación tradicional

PVsyst V7.1.7 VC0, Fecha de simulación: 18/10/22 17:25 con v7.1.7

Resultados principales

Producción del sistema Energía producida

9.79 MWh/año

Producción específica Proporción de rendimiento (PR) Fracción solar (SF) 1288 kWh/kWp/año 75.42 % 20.51 %

Producciones normalizadas (por kWp instalado) Lc: Pérdida de collección (pérdidas del conjunto FV) 0.98 kWh/kWp/día 0.17 kWh/kWp/día Ls: Pérdida del sistema (inversor, ...) Energía normalizada [kWh/kWp/día] Yf: Energía útil producida (salida inversor) 3.53 kWh/kWp/día 3 2 0 Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Proporción de rendimiento (PR)

Balances y resultados principales

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	113.2	54.59	19.71	138.2	126.7	0.844	3.974	0.794	0.012	3.180
Febrero	116.9	54.60	21.62	135.5	124.6	0.820	3.590	0.765	0.019	2.825
Marzo	154.6	71.18	23.77	165.4	152.7	0.994	3.974	0.914	0.038	3.060
Abril	158.9	81.71	24.55	158.7	147.0	0.957	3.846	0.895	0.020	2.951
Мауо	156.0	83.97	26.41	147.9	136.3	0.883	3.974	0.828	0.013	3.147
Junio	150.6	81.43	26.73	138.8	127.7	0.828	3.846	0.782	0.005	3.064
Julio	160.6	89.31	27.31	149.5	137.6	0.891	3.974	0.843	0.005	3.131
Agosto	155.5	81.15	27.16	152.5	141.3	0.911	3.974	0.852	0.017	3.123
Septiembre	123.6	73.12	25.64	126.6	116.2	0.755	3.846	0.703	0.016	3.144
Octubre	116.1	54.81	25.02	130.4	120.2	0.780	3.974	0.719	0.024	3.256
Noviembre	110.4	53.56	22.31	131.1	120.0	0.791	3.846	0.742	0.014	3.104
Diciembre	107.2	51.63	21.64	133.4	121.9	0.806	3.974	0.762	0.008	3.212
Año	1623.6	831.06	24.34	1708.0	1572.3	10.261	46.796	9.599	0.191	37.197
l evendas										
GlobHor	bHor Irradiación horizontal global				EArra	av Ener	oía efectiva a	a la salida del	coniunto	
DiffHor	Irradiación difusa horizontal				E User Energía suministrada al usuario					
T Amb	Temperatura ambiente				E Solar Energía del sol					

E_Grid

EFrGrid

Energía inyectada en la red

Energía de la red

GlobInc

GlobEff

Global incidente plano receptor

Global efectivo, corr. para IAM y sombreados

Proyecto: CENEX Variante: Variante con un sistema de orientación tradicional

PVsyst V7.1.7 VC0, Fecha de simulación: 18/10/22 17:25 con v7.1.7

Diagrama de pérdida

Irradiación horizontal global Global incidente plano receptor Sombreados cercanos: perdida de irradiancia Factor IAM en global Factor de pérdida de suciedad Irradiancia efectiva en colectores Conversión FV Conjunto de energía nominal (con efic. STC) Pérdida de degradación módulos (por año #10) Pérdida FV debido al nivel de irradiancia Pérdida FV debido a la temperatura. Pérdida calidad de módulo Pérdidas de desajuste, módulos y cadenas (incluyendo 1% para dispersión por degradación Pérdida óhmica del cableado Energía virtual del conjunto en MPP Pérdida del inversor durante la operación (eficiencia) Pérdida del inversor sobre potencia inv. nominal Pérdida del inversor debido a la corriente de entrada máxima Pérdida de inversor sobre voltaje inv. nominal Pérdida del inversor debido al umbral de potencia Pérdida del inversor debido al umbral de voltaje Energía disponible en la salida del inversor

Energía inyectada en la red

Variante: Variante con un sistema de orientación tradicional

PVsyst V7.1.7 VC0, Fecha de simulación: 18/10/22 17:25 con v7.1.7

Variante: Variante con un sistema de orientación tradicional

PVsyst V7.1.7

VC0, Fecha de simulación: 18/10/22 17:25 con v7.1.7

	Balance de e	emisiones de CO ₂	
Total:	223.0 tCO₂		
Emisiones generadas		Emisión d	e CO₂ ahorrada vs tiempo
Total:	15.50 tCO2		-
Fuente: Cálculo detallad	do de la siguiente tabla:		
Emisiones reemplazad	as	²⁵⁰ F	
Total:	274.9 tCO ₂	F	
Sistema de producción:	9790.27 kWh/año	200 🗧	
Emisiones del ciclo de vida	de la red: 936 gCO₂/kWh	<u>_</u>	
Fuente:	Lista IEA	150	
País:	Cuba	j B	
Toda la vida:	30 años	÷ 100 E	
Degradación anual:	1.0 %		
		⁵⁰ E	
		E /	
		0	
		Ě	
		0 5	10 15 20 25 Año
	Detalles de emisiones	del ciclo de vida del sisten	na
Artículo	LCE	Cantidad	Subtotal
			[kgCO ₂]
	1713 kaCO2/kWp	7.60 kWp	13017
Módulos	17 10 19002/1010	•	
Módulos Soportes	6.24 kgCO2/kg	200 kg	1249

Anexo 10: Resultados del análisis económico de la variante con un sistema tradicional de orientación.

La Tabla 1 Anexo y la Tabla 2 Anexo muestran los resultados económicos de la variante con un sistema tradicional de orientación.

Tabla 1 Anexo. Ingresos generados para el análisis económico de la variante con un sistema tradicional de orientación.

		Energía generada	Tarifa eléctrica	Ingresos
Ingresos	por	9 599 kWh/año	2.446 4 CUP/kWh	23 482.993 6
ahorros				CUP/año
(autoconsumo)				
Ingresos	por	191 kWh/año	3.780 8 CUP/kWh	722.132 8 CUP/año
exportación				
Ingresos totales		9 790 kWh/año	-	24 205.126 4
				CUP/año

Fuente: Elaboración propia.

Tabla 2 Anexo. Ingresos generados para el análisis económico de la variante con un sistema tradicional de orientación.

Determinación del periodo simple de recuperación PSRI	12 años.				
Interés simple a los 25 años	961 392.77 CUP				
Interés compuesto a los 3 años	10 154 711.13 CUP				
Evaluación del valor del dinero a través del	1.8*10 ¹⁸ CUP				
tiempo para 25 años					
Determinación del flujo de caja	19 874.716 4 CUP/año				
Determinación de la tasa de interés real	-0.254 954 82 %				
Determinación del valor presente neto a los	51 261 063.73 CUP				
25 años VPN					
Determinación de la tasa interna de retorno	39%				
para 25 años TIR					
Determinación del Periodo Real de	5 años y medio				
Recuperación de la Inversión PRI					
Relación Costo-Beneficio RCB	0.000 18				

Fuente: Elaboración propia.