

Facultad de Ingeniería Mecánica

TRABAJO DE DIPLOMA.

Título: Gestión Energética en la Empresa de Productos Lácteos Escambray

Autor: Yuniel Olivera Cruz

Tutores: Dr. Sergio Montelier Hernández

M.Sc. Ángel Rafael Martínez León

Cienfuegos 2012

"Año 54 de la Revolución."

Declaración de autoridad.

Facultad de Ingeniería Mecánica.

Hago constar que el presente trabajo fue realizado en la Universidad de Cienfuegos, como parte de la culminación de los estudios en la especialidad de Ingeniería Mecánica; autorizando a que el mismo sea utilizado para los fines que estime conveniente, tanto de forma parcial como total, y además no podrá ser presentado en eventos ni publicado sin la aprobación de la Universidad de Cienfuegos.

Firma del Autor Los abajo firmantes certificamos que el presente trabajo ha sido revisado según acuerdo de la dirección de nuestro centro y el mismo cumple los requisitos que debe tener un trabajo de esa envergadura, referido a la temática señalada. Información Científico – Técnica, Firma Firma del Vicedecano Firma del Tutor

Sistema de Documentación de Proyectos

Pensamiento

Cuando puedes medir aquello de lo que hablas, y expresarlo con números, sabes algo acerca de ello; pero cuando no lo puedes medir, cuando no lo puedes expresar con números, tu conocimiento es pobre e insatisfactorio: puede ser el principio del conocimiento, pero apenas has avanzado en tus pensamientos a la etapa de ciencia.

William Thompson Kelvin

Dedicatoria

A MI MAMÁ, MI PAPÁ Y HERMANA QUE SIEMPRE CONFIARON EN MÍ, A MIS ABUELOS, A MI ABUELO CELESTINO A PESAR QUE NO ESTÁ FÍSICAMENTE ENTRE NOSOTROS, A MIS TÍOS, PRIMOS, Y DEMÁS FAMILIARES,

A TODAS LA PERSONA QUE DE UNA MANERA U OTRA SIEMPRE ME A YUDARON.

Agradecimientos

DIOS: FORJADOR DE TODOS MIS TRIUNFOS, QUE ME DIO LA VIDA Y ME BRINDO LA OPORTUNIDAD DE REALIZAR ESTE SUEÑO.

A MI MAMÁ, MI PAPÁ Y A MI HERMANITA QUE HAN LUCHADO TANTO PARA YO PODER REALIZAR ESTE SUEÑO, A MIS ABUELA OLIMPIA QUE ES MI RAZÓN DE SER, QUE SIEMPRE ME HA APOYADO Y AYUDADO, MIS ABUELOS, TÍOS Y PRIMOS, QUE SIEMPRE ME HAN ALENTADO. AL CHINO POR AYUDARME EN TODO LO QUE HA PODIDO.

A MIS TUTORES QUE ME BRINDARON SU APOYO PARA YO PODER REALIZAR ESTA TAREA.

A TODOS LOS PROFESORES DEL CEEMA ,QUE SIEMPRE ME BRIDARON SUS CONOCIMIENTOS.

A MIS COMPAÑEROS DE AULA QUE NUNCA OLVIDARÉ QUE SON UNA FAMILIA PARA MÍ
POR HABER COMPARTIDO MOMENTOS BUENOS Y MALOS DURANTE LA CARRERA.
A LAS PERSONAS MENCIONADAS. GRACIAS.

Pesumen

Resumen:

El presente trabajo está enfocado a la gestión de la eficiencia energética y a las principales oportunidades de ahorro en La Empresa de Productos Lácteo Escambray (EPLE).

Para la conformación del mismo se realizaron búsquedas bibliográficas encaminadas a dar una panorámica del comportamiento del sector nacional e internacional en cuanto a los consumos energéticos, y la situación energética.

Para determinar el estado actual de la Gestión Energética en la planta se analizaron las informaciones del periodo comprendido de los años 2010 y 2011, llegándose a la conclusión de que la electricidad y el fuel Oil son los de mayor influencia con un 48,64 % y 24,83 % respectivamente en los consumos energéticos de la empresa.

Se realizó un diagnóstico del estado de la gestión de la energía en la EPLE, y se proponen las medidas pertinentes para disminuir el consumo de energía. Se valoró el efecto económico de la propuesta, así como los beneficios económicos y ambientales de la misma.

La tesis se presenta en forma de Introducción, tres Capítulos, Conclusiones y Recomendaciones, el primer capítulo expone la situación nacional e internacional en los consumos energéticos y, el segundo capítulo caracteriza la EPLE y posteriormente en el tercer capítulo se aplican las herramientas del Sistema de Gestión Total Eficiente de la Energía para determinar los principales potenciales de ahorro de energía disponibles en la plante de producción de quesos de la EPLE.

A partir de los resultados obtenidos en el estudio se emiten criterios que posibilitarán mejorar sensiblemente la gestión de la energía en la empresa, y obtener los respectivos beneficios desde el punto de vista económico, social y ambiental.

Mala

Contenido

Introducción	
CAPITULO I. Estado del Arte	5
1.1 La situación energética contemporánea	5
1.1.1 Panorama energético internacional:	5
1.1.2 Panorama regional de América latina y el Caribe	9
1.2 Estado actual de la economía y uso de la energía en Cuba	12
1.2.1 Desarrollo económico. La Revolución Energética en Cuba	12
1.3 La Administración de energía	15
1.3.1 La Administración de energía en América Latina y Cuba	15
1.4. La Eficiencia Energética	19
1.4.1. Importancia de elevar la Eficiencia Energética	21
1.4.2 Gestión Total Eficiente de la Energía	22
1.5. Uso portadores energéticos en la industria láctea	24
1.5.1. Consumo de agua	25
1.5.2. Consumo de energía	25
Conclusiones parciales	26
CAPITULO II. Caracterización energética de la Empresa Productos Lácteo	42
2.1. Características fundamentales de la empresa	42
2.2. Diagrama energético productivo de la EPLE	43
2.2. Estructura organizativa de la empresa.	44
2.3 Valoración del control energético del lácteo.	45
2.4 Estructura de consumo de los portadores energético en la EPLE	47
2.5 Estructura de consumo de energía eléctrica por área de la EPLE	48
Conclusiones parciales.	50
Capítulo III. Estudio de Caso. Planta de quesos	51
3.1. Descripción general de la Planta de quesos	51
3.2 Diagrama de flujo del proceso de la planta de quesos	52
3.3. Características de los equipos de la sala de máquina de la planta	53
3.2.1. Utilización de la energía eléctrica	54
3.3 Gráficos de control de la planta de quesos	54
3.3.1 Comportamiento del consumo y la producción en el tiempo	57
3.3.2 Diagrama de correlación.	58

3.4 Principales deficiencias detectadas en el diagnóstico de recorrido5	9
3.5 Determinación de los potenciales energéticos6	60
3.5.1 Cálculo de las cargas por infiltración de aire en las cámaras6	60
3.5.2 Cálculo de la eficiencia de la caldera por el método directo:6	64
3.5.3. Cálculo de las pérdidas de calor por convección en tuberías6	6
3.5.4 Cálculo de las pérdidas de calor en tuberías de agua helada7	'1
3.5.6 Cálculo de la cantidad de calor que absorbe la tubería de agua fría si tuviese aislamiento7	'3
3.6 Valoración técnica y económica de las oportunidades de ahorra seleccionadas7	'6
3.6.1 Cantidad de kW que consume de más el compresor al año debido a las cargas por	
infiltración7	'6
3.6.2. Cantidad de calor que se ahorraría si las tuberías de vapor estuviesen aisladas:7	'6
3.7 Reducción del impacto ambiental asociado si las cámaras de frío estuviesen bien selladas7	7
3.8 Propuestas de medidas energéticas para implementar en la EPLE7	'8
Conclusiones parciales8	3 1
Conclusiones Generales	32
Recomendaciones8	3
Referencia Bibliográfica:	34
Bibliografía:	36
Anexo 1. Criterios para determinar el nivel de competencia de eficiencia energética en las EPLE 8	88
Anexo 2 Matriz de administración de energía y medio ambiente9	90
Anexo.3 Gestión total eficiente de la energía9	13

Introducción

La economía actual se basa en la generación de casi el 80% de la energía a partir de combustibles fósiles, siendo el petróleo y sus derivados los que mayor proporción representan, dependientes de los recursos limitados y de los negativos impactos sobre el medio ambiente la tendencia al encarecimiento de la energía, el agotamiento de los recursos naturales y el impacto ambiental presionan a la humanidad tanto en el orden económico como social.

En Cuba, una gran parte de la labor técnica, científica e intelectual se ocupa en realizar una revolución energética para asegurar la producción y reafirmar la independencia y seguridad nacional. Esta revolución se materializa en la práctica mediante profundas transformaciones estructurales, indispensables para el desarrollo y el crecimiento económico. Las vías fundamentales para transformar el esquema energético actual y avanzar hacia el desarrollo sostenible son la introducción de fuentes renovables de energía y el incremento de la eficiencia energética en todos los sectores.

La eficiencia constituye una herramienta rentable en la lucha por alcanzar un futuro energético sostenible y un medio ambiente más saludable. Las mejoras en la eficiencia energética pueden reducir la necesidad de inversión en la infraestructura energética, los gastos de combustibles, aumentar la competitividad y mejorar el bienestar de los consumidores.

Las plantas productoras y procesadoras de productos lácteos para el desarrollo del proceso productivo poseen una gran variedad de equipos y tecnologías como son los sistemas de bombeos, las calderas de producción de vapor, e instalaciones de refrigeración, y salas de máquinas que son grandes consumidores de energía y otros portadores energéticos.

La Empresa de Productos Lácteos "Escambray", tiene como misión fundamental la de producir y comercializar en un mercado de prestigio y calidad helados, quesos de variedades y derivados de la soya; así como los consumos sociales, aprovechando su ubicación geográfica en el centro sur del país. Su papel en el abastecimiento de estos productos en la red de instituciones sociales de la región trae aparejado gran impacto económico y social.

La Empresa de productos Lácteos "Escambray" (EPLE) se ha enfocado en la realización de estudios

para incrementar la eficiencia energética de sus procesos, a partir de la aplicación de herramientas de gestión energética que le permitan identificar los principales problemas que existen y proponer soluciones ventajosas que mejoren la eficiencia energética en sentido general.

La repercusión económica, política y social de la planta es elevada ya que sus producciones inciden verticalmente en la sociedad; abarca el sector del turismo, los hospitales y dentro del sector de la salud, se encuentra el yogur de los niños intolerantes y la leche en bolsa de la canasta básica, que es uno de los logros de nuestro socialismo, además de las ofertas para la cadena y el apoyo a la alimentación de la capital del país y a la merienda escolar de la provincia y parte de Villa Clara y Sancti Spíritus.

Para la obtención de la gama de productos antes mencionados el combinado lácteo se fundamenta en dos líneas de producción fundamentales que son la línea de producción de helados y la planta de fabricación de quesos para el consumo nacional y el sector turístico. Estas áreas abarcan casi el 90 % del consumo total de la empresa.

La diversidad de equipos termoenergéticos que abarcan desde sistemas de bombeo hasta plantas generación, almacenamiento de productos refrigerados, además de las características de producción continua de la empresa provoca elevados consumos desde el punto de vista energético y ambiental de la misma.

Por otra parte, en la EPLE no están identificados los potenciales de ahorro de energía eléctrica en lo que se incurre debido a la falta de mantenimiento del equipamiento y las tecnologías, así como la carencia de mecanismos dentro de la empresa para la gestión eficiente de la energía. Por tanto constituye un problema científico el hecho de que la EPLE no posee un sistema de gestión energética científicamente fundamentado que permita hacer un uso racional de la energía y posibilite a los directivos del centro tomar decisiones para mejorar el desempeño energético de la empresa, y de esta forma cumplir con las directivas nacionales sobre ahorro de energía.

<u>Hipótesis:</u>

La aplicación de las herramientas de la **Tecnología de Gestión Total Eficiente de la Energía** en la Empresa de Productos Lácteo Escambray le posibilitará tener un mejor desempeño energético y una

reducción del impacto ambiental asociado.

Objetivo general

Aplicar las herramientas de la **Tecnología de Gestión Total Eficiente de la Energía** a la Empresa Productos Lácteo Escambray para determinar los principales potenciales de ahorro energético y proponer soluciones adecuadas que conduzcan a la reducción del consumo de energía y el impacto ambiental asociado.

Objetivos específicos:

- Identificar el estado de la gestión energética en el EPLE
- > Caracterizar los procesos y el equipamiento de la planta de quesos.
- Realizar un diagnóstico energético en la planta.
- Identificar posibilidades de ahorro de energía.
- Proponer alternativas para el ahorro energético de la planta

Capitalo 1

CAPITULO I. Estado del Arte

1.1 La situación energética contemporánea.

1.1.1 Panorama energético internacional:

A partir de los acontecimientos de los primeros años de la década del 70 con la reducción de los suministros de petróleo y la duplicación del precio de los crudos, adquiere un nuevo interés la situación energética que se pone de manifiesto en el desarrollo de lo que ha venido en llamarse el "análisis energético".

Desde entonces, este análisis ha prestado su mayor atención en la evaluación de las posibilidades futuras de suministro y en la utilización de todos los tipos de energía en su conjunto. Más recientemente, el desarrollo sostenible, como nuevo concepto del desarrollo económico, se presenta como un proceso en que la política energética, entre otras muchas, debe formularse de manera de lograr un desarrollo que sea sostenible desde el punto de vista económico, social y ecológico.

Debido a esto y de acuerdo con un estudio realizado, los miembros de la Organización de Países Exportadores de Petróleo (OPEP) serán los más importantes suministradores de petróleo del mundo, representando un 60 % del incremento previsto. [1]

Los precios del petróleo en el año 2010 llegaron a valores de 85 dólares el barril, en cambio en el 2011 ascendieron hasta los 90 dólares por barril. En lo que va de año del 2012 el precio del petróleo ha sobrepasado la barrera de los 100 dólares por barril .[2].

La tabla 1.1, muestra los datos históricos de la evolución de los precios del petróleo entre los años 2010 y 2012 .[3].

Tabla 1.1.Evolución de Precios del petróleo 2010 – 2012 (Dólares/Barril)

			CRUDO	
PERIODO	CRUDO	CRUDO	WEST TEXAS	CRUDO
	VENEZUELA	OPEP	INTERMEDIATE	BRENT
			(W.T.I).	
Año 2010	71,97	77,45	79,52	80,24
Año 2011	101,06	107,47	95,12	110,80
I trimestre	92,05	101,01	94,04	104,88
Enero	86,15	92,83	89,67	96,59
Febrero	89,05	100,29	89,42	103,49
Marzo	100,65	109,84	102,60	114,43
II trimestre	104,29	112,39	102,71	117,11
Abril	108,12	118,09	109,68	122,65
Мауо	102,25	109,94	101,86	114,85
Junio	102,55	109,21	96,62	113,91
III trimestre	102,36	108,60	90,03	112,28
Julio	105,94	111,40	97,23	116,45
Agosto	98,73	106,32	86,65	110,01
Septiembre	102,40	108,06	86,09	110,32
IV trimestre	105,37	107,78	93,73	108,85
Octubre	102,54	106,02	85,80	108,35
Noviembre	107,84	109,93	96,80	110,44
Diciembre	105,82	107,46	98,70	107,81
Año 2012	112,50	117,44	102,95	118,68
Enero*	108,20	111,33	100,22	111,14
Febrero*	111,46	117,03	101,92	118,47

Por

Marzo*	116,47	122,93	106,39	124,54
Abril*	113,99	118,60	103,24	120,84
16 al 20	113,58	116,87	102,98	118,93
23 al 27	113,51	116,19	103,84	118,93

consiguiente y a pesar del agotamiento del petróleo mundial los consumos seguirán incrementándose, por lo que se estima que aumente de 78 a 119 millones de barriles día entre el 2002 al 2025, donde China incrementara su consumo hasta un 7,5% anual.

Como se puede observar en la figura 1.1 los combustibles fósiles (petróleo, gas natural y carbón), seguirán siendo los más utilizados en todo el mundo, básicamente el sector del transporte y el industrial. También para este periodo se incrementarán la energía nuclear y energías renovables, aunque mucho más suave.

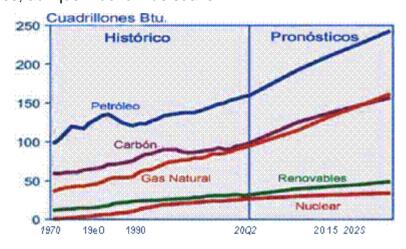


Fig. 1.1 Mercado mundial del consumo de energía por tipo 1970 - 2025.

En cuanto a la generación de electricidad se espera que se duplique desde la fecha hasta el 2 025, pasando de 14 275 b/kWh a 26 018 billones, donde el crecimiento más rápido lo experimentarán las economías emergentes, con un promedio de crecimiento de 4,0 % por año, en los países consolidados se prevé un aumento promedio de consumo eléctrico de 1,5 % por año. En este aspecto se debe añadir que algunos países han optado por la generación distribuida (GD), que se basa como necesidad de generación o el almacenamiento de

energía eléctrica a pequeña escala, lo más cercana al centro de carga, con la red eléctrica, y donde la capacidad de los sistemas de GD varía de cientos de kW hasta diez mil kW. [4].

El consumo de petróleo en el mundo se espera que aumente de 83 millones de barriles día en 2004 a 97 millones de barriles día en 2015 y 118 millones en 2030. En el año 2006, por ejemplo, la demanda anual era de 84,45 millones de barriles. La subida de los precios del petróleo impide un pronóstico sobre el consumo en muchas partes del mundo, particularmente en mercados consolidados y economías de transición. La demanda de petróleo sería aun mayor si no se contara con las necesidades de los países emergentes como India y China. Así, para el caso de China, se prevé un crecimiento en el consumo de un 7,5% anual de 2002 a 2010, y a partir de esta fecha disminuir a un 2,9% hasta el año 2025. De acuerdo con el estudio, los miembros de la OPEC serán los más importantes suministradores de petróleo, representando un 60% del incremento previsto. Importantes incrementos de petróleo se esperan de suministradores de la zona del Caspio, Este de África y América Central y del Sur. [5].

La aparición en los últimos años de economías emergentes que demandan grandes partidas de portadores energéticos, como China, la India y Brasil, etc., agrava aún más el panorama energético mundial. Muchos estudiosos del tema prevén que para el 2050 se habrán agotado las fuentes tradicionales de energía, y sin embargo, no existirán otras fuentes capaces de remplazarlas. [6]

Según **OLADE**: El año 2003, fue un año que se caracterizó por una gran volatilidad e incertidumbre en los mercados energéticos, situación reflejada principalmente en el incremento en los precios del petróleo los cuales fueron los más altos de los últimos 20 años. Por otro lado, cabe destacar, que las reservas mundiales de energía continuaron en ascenso y se cuenta con reservas de petróleo para cubrir la demanda actual de energía por 40 años y de gas natural por 60 años. Existen indicios para sostener que los descubrimientos continuarán en los años venideros por lo cual la seguridad energética de los países pasa más por un análisis de la distribución y geopolítica de las mismas que por una escasez en la oferta.

Finalmente, se espera que en los siguientes años el consumo de energía siga liderizado por la demanda de petróleo aunque seguida muy de cerca por la demanda de gas natural, que

pasará a ser el segundo energético más demandado. Para este escenario será determinante el crecimiento de la demanda de gas natural que registre el Asia, continente que guiará la tasa a la cual crezca este mercado.

CEPAL [7]: El 2005 fue el tercer año consecutivo de crecimiento de América Latina y el Caribe. Se estima que el Producto Interno Bruto (PIB) tuvo una expansión de alrededor de un 4,3 %, lo que supone un aumento del PIB per cápita cercano al 3 %. El 2006 tuvo una prolongación de la fase expansiva del ciclo económico, aunque a una tasa algo inferior (4,1 %), siendo la tasa de crecimiento medio del período 2003 - 2006 levemente superior al 4 %, mientras el PIB per cápita acumula un aumento cercano al 11 %. Desde una perspectiva histórica, el período de crecimiento que atraviesa América Latina y el Caribe constituye un hecho sumamente positivo. Sin embargo, la mayor parte de los países de la región está creciendo menos que otras regiones del mundo.

1.1.2 Panorama regional de América latina y el Caribe

América Latina no ha estado alejada de los problemas energéticos mundiales y ha vivido desde hace muchos años los embates de la crisis energética internacional, fundamentalmente la de los años de la década del 70, de aquí que en este contexto nace la Organización Latinoamericana de Energía (OLADE). Esta organización está conformada por 26 países del área (incluida Cuba), y tiene entre sus objetivos desarrollar los recursos energéticos, además de atender conjuntamente los aspectos relativos a su eficiente y su racional aprovechamiento, a fin de contribuir al desarrollo económico y social de la región.

Sin embargo, es preciso señalar que los países que integran a la América Latina y el Caribe, no todos presentan las mismas condiciones desde el punto de vista energético, por ejemplo: Venezuela, México, Trinidad y Tobago, Colombia y Ecuador, son considerados exportadores netos de petróleo; pero los de mayor peso son México, Venezuela y Colombia, aunque esta última ha disminuido su cuota de 820 000 barriles por día (bpd) en 1999 a 520 000 bpd en el 2005, mientras que México, junto con Venezuela, concentra el grueso de las reservas disponibles en América Latina. México representa un 1,4 % de ellas a nivel mundial y produce el 5 % de la oferta mundial; Venezuela, en cambio, es la quinta exportadora mundial de petróleo y, cuenta con una reserva para 250 años, manteniendo el volumen vigente de

extracción, con el 6,8 % de las reservas, aportando el 3,9 % de la producción. El crecimiento energético en la región estuvo liderizado particularmente por la producción de gas natural, con un 3,21 % de crecimiento y de carbón con un importante ascenso en 12,67 %, mientras que la de petróleo se redujeron en 1,85 %, Venezuela, miembro de la OPEP, se ha mantenido entre los 10 primeros productores de petróleo del mundo, a pesar de problemas ocurridos en el mismo. El país es por tanto, clave para los mercados energéticos mundiales, con sus reservas probadas de petróleo estimadas en más de 77 mil millones de barriles. Las reservas de gas natural de Venezuela son las mayores de la región, estimadas en unos 147 Trillones de pies cúbicos (TPC). México también tiene grandes reservas de crudo con más 14 mil millones de barriles, mientras que sus reservas probadas de gas natural se estiman en aproximadamente 15 TPC. Argentina, con unos 3,2 mil millones de barriles de reservas probadas de petróleo, es también un importante participante en el mercado de hidrocarburos en Latinoamérica, sus exportaciones se hacen principalmente a Chile, Brasil, Uruguay y Paraguay, con pequeñas cantidades que también van a la Costa del Golfo de los Estados Unidos. Las reservas probadas de gas natural del país son de aproximadamente 27 TPC, como se muestra a continuación:

Según la Agencia Internacional de Energía (AIE) y la OPEP, [4] la región cuenta con más del 10 % de las reservas mundiales de petróleo y con más de 14 % de la producción mundial de ese hidrocarburo.

En la figura 1.2 se muestra los países mayores reservas de crudo en el área. En este sentido, Venezuela, país anfitrión de la I Cumbre Energética, posee las mayores reservas probadas de crudo del mundo, las cuales alcanzan los 80 billones de barriles. En la actualidad, es el quinto productor de petróleo del mundo.

Brasil, el país con mayor extensión territorial de la región, cuenta con 11,7 billones de barriles de crudo, Ecuador alcanza los 4,51 billones y Argentina 2,46 billones de barriles de reservas probadas.

Sambay

Capitulo 1 Estado del Arte

Fig. 1.2 Mayores reservas de crudo del área.

En cuanto al gas natural, Suramérica cuenta con 4 % de las reservas mundiales y es responsable del 6 % de la producción mundial. Entre los países de la región con mayores reservas están Bolivia, Perú y Venezuela. Además de petróleo y gas, el continente suramericano es rico en grandes reservas minerales, recursos naturales así como de ejemplares de flora y fauna, únicos en el mundo.

Teniendo en cuenta estos datos relacionados con la situación energética del área, y debido al acecho de los Estados Unidos a que estas naciones formen parte del Área de Libre Comercio para las Américas (ALCA), con el objetivo de anexarse energética y económicamente a esta región; es que se da surgimiento a la Alternativa Bolivariana para las Américas (ALBA), como necesidad de contrapartida al ALCA. Esta es una propuesta de integración enfocada para los países de América Latina y el Caribe que pone énfasis en la lucha contra la pobreza y la exclusión social, se concreta en un proyecto de colaboración y complementación política, social y económica entre países de América Latina y el Caribe, promovida inicialmente por Cuba y Venezuela.

El ALBA se formuló por el Presidente de la República Bolivariana de Venezuela, Hugo Chávez Frías, en el marco de la III Cumbre de Jefes de Estado y de Gobierno de la Asociación de Estados del Caribe, celebrada en la isla de Margarita, en diciembre de 2 001, y ha tenido gran impacto sobre las nuevas políticas llevadas a cabo por los acuerdos y convenios, entre los estados de esta región.

Es por ello que debido a estos convenios y con la aprobación de los mandatarios de la región, en conjunto con el presidente de la República Bolivariana para las Américas dan nacimiento a:

- PETROSUR: Integrada por Argentina, Brasil, Venezuela y Uruguay.
- **PETROCARIBE:** Compuesta por 14 países de la región caribeña, incluida Cuba. En este panorama, la creación de Petrocaribe, a iniciativa del presidente venezolano, Hugo Chávez, adquiere enorme importancia histórica al convertirse en el primer acuerdo energético de naturaleza solidaria con fines de desarrollo social firmado entre un grupo de estados de cualquier región del mundo
- PETROANDINA: Integrada por Ecuador, Colombia, Bolivia, Perú y Venezuela.
- **PETROAMÉRICA:** Impulsada por el gobierno venezolano para redefinir las relaciones existentes en cuanto a recursos y potencialidades, aprovechar la complementariedad económica, social y cultural a fin de reducir las asimetrías de la región. En ella confluyen las tres iniciativas anteriores.

Su objetivo fundamental es lograr y estimular la política de cooperación energética de Venezuela con los países de América Latina y el Caribe en el sector energético, incluyendo petróleo y sus derivados, gas, la electricidad y su uso eficiente, cooperación tecnológica, capacitación, desarrollo de infraestructura energética, así como el aprovechamiento de fuentes alternas tales como: energía eólica, solar y otras.

1.2 Estado actual de la economía y uso de la energía en Cuba

1.2.1 Desarrollo económico. La Revolución Energética en Cuba.

Nuestro país no está exento de la crisis energética internacional, y en torno a esto arrastró una de las peores crisis electro energética de su historia, ya que se contaba con 10 plantas termoeléctricas con una capacidad instalada de 3 958 MW; donde el 72,77 % le correspondía a las termoeléctricas, los auto productores de Níquel y MINAZ con el 16,52 MW, la Hidroeléctrica con el 1,48 %, las turbinas de gas con el 7,28 %, plantas diesel 1,94 % y el resto pertenecía a la eólica, figura 1.3.

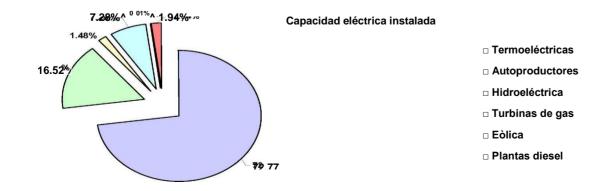


Fig 1.3 Capacidad instalada de energía eléctrica.

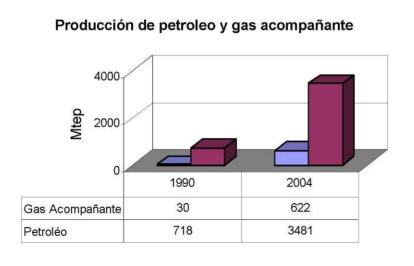
Estas plantas tienen 46 unidades de generación, sin embargo, debido a varias causas como por ejemplo: averías, la falta de mantenimiento en el tiempo planificado y el uso de combustible no idóneo para su operación, provocaron que la capacidad real de generación llegara a ser de 1 200 MW.

Por su parte la demanda de energía eléctrica en Cuba, se redujo de 2 500 MW en el año 1989 a 950 MW en el 2005, debido al gran número de industrias paralizadas, así como a una baja en el consumo agrícola y doméstico.[8].

Con el derrumbe del campo socialista y la desaparición de la URSS, unido al brutal bloqueo norteamericano, se establece en el país el período especial. Bajo estas condiciones las importaciones del combustible para la generación de electricidad llegaron a valores muy bajos y la caída de generación de electricidad fue abrupta, decidiéndose iniciar el proceso de asimilación paulatina del crudo nacional en las plantas, a pesar de que sus características (alto contenido de azufre, alta viscosidad y otros componentes) no eran las especificadas en el diseño. Al agudizarse aún más las condiciones del bloqueo y considerando el requerimiento de satisfacer las necesidades de la economía y de la población, se acelera más el empleo del crudo nacional y del gas acompañante que se perdía con la extracción del hidrocarburo, llegando al cierre del año 2003 al consumo de 2 300 000 t de combustibles nacionales.

La explotación del crudo nacional, unida al gas acompañante que se expulsaba a la atmósfera con la correspondiente contaminación ambiental y que fue aprovechado para la generación de energía eléctrica, permitió la autosuficiencia energética del país. En esta etapa tuvo una particular importancia la modernización de las centrales termoeléctricas para el uso eficiente del crudo nacional cuyo alcance fue:

- 1. Adaptación y asimilación paulatina de las instalaciones para la utilización del petróleo crudo nacional como combustible.
- 2. Mantenimiento general y mejoramiento técnico de las instalaciones.



3. Restablecimiento de los Sistemas de Control Automático de las Centrales Eléctricas, obsoletos y con ausencia de repuestos en el mercado mundial.

La política energética está orientada a alcanzar la independencia energética. Para ello se encuentra fomentando la exploración petrolera a través de contratos de riesgo compartido entre la empresa estatal Cubapetróleo y las empresas privadas, principalmente costa afuera. Por otro lado y como parte de la estrategia de alcanzar la independencia energética, se apoya en el desarrollo de energías renovables, siendo Cuba el mayor país productor del Caribe de estos tipos de energías, en este sentido, se pretende continuar apoyando la utilización de la biomasa como principal recurso energético alternativo. En medio de esta situación se logran algunos convenios con la República Bolivariana de Venezuela y otras entidades exportadoras de combustibles.

Fue así que entre los convenios establecidos y sumado a esto el descubrimiento de un yacimiento de petróleo de calidad, a escasos kilómetros de Santa Cruz del Norte, con reservas probadas de 14 millones de toneladas de crudo, promete restaurar e incrementar los niveles de extracción y dar un alivio importante al apetito energético de Cuba. Según expertos, los pozos que se perforen en ese yacimiento podrían llegar a producir, de conjunto, hasta un millón de toneladas al año, alrededor de la cuarta parte de la producción actual del país. [9].

De aquí que se mantuvo la política de impulsar la extracción del crudo nacional y del gas acompañante, ya que como se muestra en la figura 1.4, se produce un amplio crecimiento de ambos en el periodo de 1 990 al 2 004, donde para el gas fue de un 25 % con un incremento de 21 veces y el petróleo de un 31 % con un incremento de 5 veces.

Fuente: www.OLADE.org.ec/documentos/ONE.doc

Fig.1.4 Producción nacional de crudo y gas acompañante en miles de toneladas equivalentes de petróleo (Mtep).

Eficiencia energética, uso racional de la energía, uso eficiente de la energía, son frases muy frecuentes encontradas dentro de las políticas que aplican casi todos los países, muy especialmente impulsadas cuando se presentan etapas o períodos de crisis, ya sea por efecto de precios elevados o por falta de oferta.

La escalada en los precios del petróleo en el primer trimestre del año 2012 promedió por 117,40 dólares por barril., ha hecho que muchos países se preocupen nuevamente por hacer un uso racional de la energía. Varios de estos países de Latinoamérica y el Caribe están diseñando o reactivando políticas de ahorro y eficiencia para tratar de paliar los efectos que en la economía causan los elevados precios del petróleo y sus derivados.

Así, la realidad muestra que no se trata solo de diversificar la matriz energética, sino de preocuparse por dar un uso racional y eficiente a la energía. Dos condiciones deben ser consideradas a este efecto: **primero**, mediante buenas costumbres de uso se debe evitar el desperdicio, hábitos que solo se logran a través de una profunda educación, **segundo** promoviendo la utilización de artefactos y equipos modernos, altamente eficientes, es decir, que tengan un menor consumo de energía, sin necesidad de disminuir la capacidad deseada. La Revolución Energética de Cuba no es una campaña transitoria ni demagogia política. Se está en presencia de, probablemente, uno de los esfuerzos más planificados y consientes que haya hecho nación alguna para elevar el nivel de vida de su población consumiendo el combustible de manera racional y económica.

1.3 La Administración de energía.

1.3.1 La Administración de energía en América Latina y Cuba.

En América Latina, dada las condiciones de subdesarrollo a las que se ven sometidos los países, surgen e implementan diferentes programas encaminados al ahorro de energía. Dentro de ellos se pueden citar.

En México La Comisión Nacional para el Ahorro de Energía (CONAE) es un órgano administrativo desconcentrado de la Secretaría de Energía, que goza de autonomía técnica y operativa, tiene por objeto fungir como órgano técnico de consulta de las dependencias y entidades de la Administración Pública Federal, así como, de los gobiernos de las entidades federativas, de los municipios y de los particulares, en materia de ahorro y uso eficiente de la energía y de aprovechamiento de energías renovables. Su Misión es coordinar y promover acciones para el aprovechamiento eficiente de los recursos energéticos renovables y no renovables y su Visión ofrecer credibilidad y satisfacción a un número creciente de clientes a través de la innovación, eficacia y calidad. De conjunto con la CONAE trabajan:

- El programa Promoviendo un Sector Público Energéticamente Eficiente (PEPS) que busca crear un movimiento mundial de gobiernos locales que adopten políticas de compras de productos ahorradores de energía, que ayuden a reducir el consumo de energía de los municipios, con grandes beneficios económicos y reduzcan las emisiones de gases de efecto invernadero mejorando la sustentabilidad urbana.
- El Consejo Internacional para las Iniciativas Ambientales Locales (ICLEI) y sus asociaciones, cuya misión es construir y darles apoyo en un movimiento mundial para lograr mejoras tangibles en las condiciones ambientales locales y en el desarrollo sustentable global a través de acciones locales acumulativas, donde tiene gran representación en América Latina, el Caribe y en países europeos.
- El Fideicomiso para el Ahorro de Energía Eléctrica (FIDE) es un organismo mexicano, privado con participación mixta, creado en 1990 con la participación de las principales cámaras industriales del país, encaminado a realizar acciones de eficiencia energética dirigida a los usuarios de los sectores industrial, comercial, de servicios, doméstico servicios municipales, demostrando desde su fundación los beneficios del ahorro de energía eléctrica.
 - EDUCAREE: Promueve la formación de una cultura de ahorro de energía eléctrica en la población infantil y juvenil, a través del programa de Educación para el Uso Racional y Ahorro de Energía Eléctrica

En Perú, el Ministerio de Energía y Minas (MEM) es el ente rector en el sector y tiene la autoridad para regular el otorgamiento y aprovechamiento de recursos mineros y de hidrocarburos. Asimismo, regula todo lo relacionado a la generación y aprovechamiento de energía. Con el propósito de enfrentar el

Scambray Scambray

Capitulo 1 Estado del Arte

déficit de energía eléctrica existente en el país, se creó el Programa para Ahorro de Energía (PAE) del Ministerio de Energía y Minas, con el fin de mejorar los hábitos de consumo de la población y promover la utilización de equipos energéticamente eficientes.

En noviembre de 1997 surge el Programa de Ahorro de Electricidad en Cuba (PAEC) después de un período de estudio de programas o proyectos similares que han tenido resultados exitosos en otros países y de visitar e intercambiar con el Programa de Ahorro (PAE) del Perú, el Fideicomiso de Ahorro de Electricidad (FIDE) y la Comisión de Ahorro de la Energía (CONAE) de México.

Para cubrir la demanda y evitar afectaciones a la población y en el sector estatal, este Programa de ahorro de Electricidad en Cuba (PAEC) tiene como objetivos:

- -Reducir la máxima demanda del sistema y la tasa de crecimiento anual del consumo según los planes que se establezcan.
- Lograr desarrollar hábitos y costumbres en el Uso Racional de la Energía y Protección del Medio Ambiente en las nuevas generaciones.
- Desarrollar una base normativa y una política de precios que garanticen una buena eficiencia energética de todos los nuevos equipos eléctricos que se instalen en el país.

Su **Misión** es Garantizar el cumplimiento del programa de medidas excepcionales de ahorro de energía y desplazamiento de las cargas fuera del horario pico, que emite el Comité Ejecutivo del Consejo de Ministros, teniendo su principal acción en Regular la Demanda y el

Consumo de Energía Eléctrica en las principales empresas del país y prestar servicios de asesoría energética con calidad, eficiencia y competitividad que satisfagan las exigencias del cliente, así como crear conciencia en el uso eficiente de la energía eléctrica, logrando con estas acciones retrasar la necesidad de las inversiones que debe realizar el país en las unidades generadoras de energía eléctrica y mejorar la eficiencia en el uso de la electricidad.

Para el logro de estos objetivos el PAEC cuenta con un grupo nacional encargado de dirigir la política, y un grupo en cada provincia encargado de desarrollar todas las actividades previstas, que disponen de una fuerza técnica muy calificada de alrededor de 300 profesionales. Para el desarrollo de sus funciones los especialistas del Grupo Nacional del PAEC están organizados en 3 Proyectos Fundamentales de trabajo como se muestra en la siguiente figura:

Fig. 1.7 Estructura Organizativa del Grupo Nacional del PAEC.

Dentro de las principales acciones desarrolladas por estos proyectos se encuentran:

S El **PROYECTO TÉCNICO** del PAEC, es el encargado de dirigir todas las acciones encaminadas a reducir la demanda y la generación en el corto y mediano plazo implementando proyectos y tareas, desarrollando auditorias y estableciendo un control estricto del comportamiento de los consumidores tanto del Sector Residencial como del resto.

✓ El PROYECTO EDUCATIVO Y DE MOTIVACIÓN AL AHORRO del PAEC, dirige todas las acciones encaminadas a formar una cultura sobre el uso racional de la energía y el cuidado del medio ambiente en las nuevas generaciones, para ello, cuenta con el apoyo del Ministerio de Educación (MINED) y se crea el Programa de Ahorro de energía para el Ministerio de Educación (PAEME), que orienta la inclusión en los programas educativos todo lo relacionado con el ahorro de energía, para que sea tratado como eje transversal en las clases de las diferentes asignaturas , motivar acerca de la importancia de adoptar medidas de ahorro de electricidad por toda la población en cualquier lugar que se esté consumiendo y elevar el dominio y el conocimiento de todos los especialistas energéticos propios del PAEC, así como, los de empresas y organismos del país. En la actividad de Motivación se implementa una campaña integral por los medios de difusión, desarrollando una serie de mensajes de bien público por radio y televisión, vallas en calles y carreteras, artículos educativos y de resultados de ahorro en diferentes centros y un trabajo directo con las organizaciones barriales, de hombres y de mujeres, todas dirigidas a enseñar como se puede ahorrar y de la importancia relevante de estas acciones para la economía individual y del país y para preservar el medio ambiente en que vivimos.

Scantray Scantray

Capitulo 1 Estado del Arte

✓ El **PROYECTO NORMAS Y PRECIOS** del PAEC fundamenta su trabajo en el desarrollo de normas de eficiencia energética que creen las bases para que todos los nuevos equipos eléctricos que se produzcan o importen tengan la mayor eficiencia posible, así como, que la política de precios que se desarrolle estimule la elevación de la eficiencia energética.

1.4. La Eficiencia Energética.

La eficiencia energética, entendida como la eficiencia en la producción, distribución y uso de la energía necesaria para garantizar calidad total, es parte del conjunto de problemas que afectan la competitividad de las empresas o instituciones.

Eficiencia Energética implica lograr los requisitos establecidos por el cliente con el menor gasto energético posible y la menor contaminación ambiental por este concepto.

Priorizar la eficiencia energética significa identificar donde están las pérdidas energéticas del sistema que impactan los costos, clasificar estas pérdidas en relativas a los procedimientos y relativas a la tecnología, establecer y monitorear en tiempo real, indicadores de eficiencia (que no es el índice de consumo) que permitan controlar y reducir las pérdidas relativas a los procedimientos, evaluar técnica y económicamente los potenciales de reducción de las pérdidas relativas a la tecnología y contar con un plan estratégico a corto, mediano y largo plazo con metas alcanzables y entendidas por todos los actores claves.

Es práctica común actuar sobre los consumos energéticos y no sobre la eficiencia energética, lo cual se explica porque es el consumo lo que se contrata y lo que se paga. La gestión empresarial sobre la energía se limita, en la generalidad de los casos, a obtener un buen contrato de energía y monitorear los cambios en la cuenta mensual y la variación del índice de consumo (consumo por unidad de producción) en el tiempo, observando oportunidades de cambios tecnológicos que pueden disminuir el consumo energético, pero que generalmente tienen sus causas en problemas de mantenimiento que afectan la producción.

En estos casos, estamos actuando sobre el efecto y no sobre la causa del problema que deseamos resolver: reducir los costos de energéticos. Y en no pocas ocasiones este esfuerzo se manifiesta infructuoso, con resultados cíclicos de altas y bajas.

Para poder utilizar adecuadamente el potencial que brinda la eficiencia energética en el ahorro de energía de cada Empresa es importante conocer su carácter de fuente de energía dado por los siguientes elementos:

- Es una fuente de energía altamente competitiva, ya que generalmente la inversión principal para obtenerla está hecha, es el equipo, el sistema o la tecnología donde se producen las pérdidas.
- Es la fuente energética de menor costo de explotación ya que generalmente, en una primera etapa, las acciones principales están dirigidas a emplear el potencial de ahorro aprovechable prácticamente sin inversiones, o con inversiones menores y de rápida recuperación.
- Es la menos contaminante de todas las fuentes ya que no sólo no produce contaminación sino que disminuye la existente y evita la futura.
- Es una fuente de magnitudes importantes. En Cuba se considera que por esta vía se puede lograr un ahorro anual de unas 450 mil toneladas de combustible convencional, con inversiones que se recuperarían en menos de 1,5 años. Más del 45% de este ahorro se obtendría en el sector industrial, el 40% en los sectores residencial y de servicios, y en el transporte casi un 10%.

A pesar de lo evidente que resultan las ventajas de explotar la eficiencia energética para disminuir los gastos energéticos y los costos de producción, su materialización práctica se ha hecho difícil. El país en los últimos años ha incrementado el indicador global de intensidad energética.

Toda técnica creada por el hombre trabaja sobre la base de la utilización de energía; por ello es natural que en muchos casos uno de las principales partidas del costo total sea el costo energético, donde se incluyen los componentes relativos a la producción, distribución y uso de las diferentes formas de energía.

El incremento de la eficiencia energética tiene un beneficio ambiental inmediato y directo, ya que implica una reducción en el uso de recursos naturales y en la emisión de contaminantes, incluido el CO2. Sin lugar a dudas, la energía más limpia es la energía ahorrada.

El incremento de la eficiencia energética se logra mediante las acciones tomadas por productores o consumidores que reducen el uso de energía por unidad de producto o servicio, sin afectar la calidad del mismo.

Para evaluar los cambios en la eficiencia energética se utilizan dos indicadores básicos:

- La intensidad energética.
- El consumo específico de energía o índice de consumo.

La intensidad energética se define, para un sector de la economía de un país, como el consumo de energía por unidad de valor añadido por ese sector. Al nivel de nación, el

Producto Interno Bruto (PIB) es la suma de los valores añadidos por todos los sectores económicos; y

Scambray Scambray

Capitulo 1 Estado del Arte

en este caso, la intensidad energética para la economía nacional como un todo, es la relación entre el consumo total de energía de todos los sectores y el PIB. [10]

1.4.1. Importancia de elevar la Eficiencia Energética.

A nivel Global los beneficios de la eficiencia energética son la reducción de las emisiones contaminantes y la contribución al desarrollo sustentable. A nivel de Nación, la conservación de los recursos energéticos límites, la mejora de la seguridad energética. La reducción de las importaciones de energéticos y la reducción de costos que pueden ser utilizados para el desarrollo. A nivel de empresa el incremento de la eficiencia energética reduce las cuentas de energía, incrementa la competitividad, eleva la productividad y las ganancias.

Es imprescindible reducir la dependencia de nuestra economía del petróleo y los combustibles fósiles. Es una tarea urgente, según muchos de los estudiosos del ambiente, porque la amenaza del cambio climático global y otros problemas ambientales son muy serias y porque, a mediano plazo, no podemos seguir basando nuestra forma de vida en una fuente de energía no renovable que se va agotando. Además esto lo debemos hacer compatible, por un deber elemental de justicia, con lograr el acceso a una vida más digna para todos los habitantes del mundo.

Para lograr estos objetivos son muy importantes dos cosas:

Por una parte aprender a obtener energía, de forma económica y respetuosa con el ambiente, de fuentes alternativas. Pero más importante aun, es aprender a usar eficientemente la energía. Usar eficientemente la energía significa no emplearla en actividades innecesarias y conseguir hacer las tareas con el mínimo consumo de energía posible. Desarrollar tecnologías y sistemas de vida y trabajo que ahorren energía es lo más importante para lograr un auténtico desarrollo, que se pueda llamar sostenible. Por ejemplo, se puede ahorrar energía en los automóviles, tanto construyendo motores más eficientes, que empleen menor cantidad de combustible por kilómetro, como con hábitos de conducción más racionales, como conducir a menor velocidad o sin aceleraciones bruscas.

El ahorro de energía, si bien no representa una fuente de energía en sí, se acostumbra a considerarla como tal, ya que ofrece la posibilidad de satisfacer más servicios energéticos, lo que es equivalente a disponer de más energía.

1.4.2 Gestión Total Eficiente de la Energía

Hasta el momento el problema de explotar el recurso eficiencia energética se ha abordado en las empresas de una forma muy limitada, fundamentalmente mediante la realización de diagnósticos energéticos para detectar las fuentes y niveles de pérdidas, y posteriormente definir medidas o proyectos de ahorro o conservación energética. Esta vía, además de obviar parte de las causas que provocan baja eficiencia energética en las empresas, generalmente tiene baja efectividad por realizarse muchas veces sin la integralidad, los procedimientos y el equipamiento requerido, por limitaciones financieras para aplicar los proyectos; pero sobre todo, por no contar la empresa con la cultura ni las capacidades técnico administrativas necesarias para realizar el seguimiento y control requerido y lograr un adecuado nivel de consolidación de las medidas aplicadas.

La entidad que no comprenda esto verá en breve limitadas sus posibilidades de crecimiento y desarrollo con una afectación sensible de su nivel de competencia y de la calidad de los servicios que presta; quedará rezagada respecto a aquellas que preparen sus recursos humanos y creen las capacidades permanentes necesarias para explotar este recurso, de magnitud no despreciable, en sus propias instalaciones.

La elevación de la eficiencia energética puede alcanzarse por dos vías fundamentales, no excluyentes entre sí:

- Mejor gestión energética y buenas prácticas de consumo.
- Tecnologías y equipos eficientes.

Cualquiera de las dos reduce el consumo específico, pero la combinación de ambas es la que posibilita alcanzar el punto óptimo. La primera vía tiene un menor costo, pero el potencial de ahorro es menor y los resultados son más difíciles de conseguir y mantener, puesto que entrañan cambios en hábitos de consumo y en métodos de gestión empresarial. La segunda vía requiere de inversiones, pero el potencial de ahorro es más alto y asegura mayor permanencia en los mismos.

El alto nivel competitivo a que están sometidas las empresas desde los años 90 les impone cambios en sus sistemas de administración. No es suficiente dirigir desde un núcleo generador de soluciones a los problemas, a través de medidas que compulsen a los hombres y dediquen los recursos a lo que se ha considerado fundamental; se requiere que exista una estrategia, un sistema entendido por todos y con

Scambray 8

Capítulo 1 Estado del Arte

la capacidad para llevarlo a cabo, que garantice la estabilidad de cada resultado en consonancia con la visión que se ha propuesto la Empresa.

Lo más importante para lograr la eficiencia energética en una empresa, no es sólo que exista un plan de ahorro de energía, sino contar con un sistema de gestión energética que garantice que ese plan sea renovado cada vez que sea necesario, que involucre a todos, que eleve cada vez más la capacidad de los trabajadores y directivos para generar y alcanzar nuevas metas en este campo, que desarrolle nuevos hábitos de producción y consumo en función de la eficiencia, que consolide los hábitos de control y autocontrol, y en general, que integre las acciones al proceso productivo o de servicios que se realiza.[11]

Estudios realizados por el Centro de Estudios de Energía y Medio Ambiente de la Universidad de Cienfuegos en más de 100 empresas cubanas para caracterizar la situación actual de su capacidad técnico-organizativa para la administración eficiente de la energía existente arrojan los siguientes resultados:

- La capacidad técnico-organizativa de las empresas no es similar, pero las que han avanzado en este sentido constituyen minoría respecto al resto.
- Existe interés y preocupación por la eficiencia energética, pero la gestión empresarial para lograrla ocupa un lugar secundario en las prioridades de las empresas industriales y de servicios y se limita generalmente a lo que le exigen sus organismos nacionales y provinciales.
- Las eventuales necesidades prácticas de aumento de la eficiencia energética determinadas por la propia empresa, aparecen generalmente por motivos diversos como: ampliar la producción, la reducción del gasto de combustible o la electricidad asignado, modernizar la tecnología, mantener la disponibilidad o el funcionamiento de la industria, etc.
- La puesta en práctica de medidas de ahorro de energía, detectadas por las capacidades técnicas de la propia empresa o por la inspección Estatal Energética, depende de las prioridades que tenga la empresa o el ministerio a que pertenecen al decidir el uso del pequeño capital disponible.
- Existe un alto potencial de incremento de la eficiencia energética a partir de la capacitación del personal en prácticas eficientes del consumo y técnicas de administración eficiente de la energía, la implantación de sistemas técnico - organizativos de gestión, el uso de programas de concientización, motivación (estimulación) y capacitación del personal involucrado en los índices de

Capitulo 1 Estado del Arte

consumo y de eficiencia, el desarrollo de auditorías energéticas sistemáticas de diferentes grados y otras, que requieren de pequeñas inversiones y responden a cortos períodos de recuperación de la inversión.

1.4.2.1. Tecnología de Gestión Total Eficiente de la Energía (TGTEE).

La TGTEE incorpora un conjunto de procedimientos y herramientas innovadoras en el campo de la gestión energética. Es particularmente novedoso el sistema de control energético, que incorpora todos los elementos necesarios para que exista verdaderamente control de la eficiencia energética.

Su implantación se realiza mediante un ciclo de capacitación, prueba de la necesidad, diagnóstico energético, estudio socio ambiental, diseño del plan, organización de los recursos humanos, aplicación de acciones y medidas, supervisión, control, consolidación y evaluación, en una estrecha coordinación con la dirección de la empresa.

La TGTEE ha tenido una amplia generalización en empresas del país, demostrando su efectividad para crear en las empresas capacidades permanentes para la administración eficiente de la energía, alcanzando significativos impactos económicos, sociales y ambientales, y contribuyendo a la creación de una cultura energética ambiental.

La TGTEE consiste en un paquete de procedimientos, herramientas técnico-organizativas y software especializado, que aplicado de forma continua y con la filosofía de la gestión total de la calidad, permite establecer nuevos hábitos de dirección, control, diagnóstico y uso de la energía, dirigidos al aprovechamiento de todas las oportunidades de ahorro, conservación y reducción de los costos energéticos en una empresa.

Su objetivo no es sólo diagnosticar y dejar un plan de medidas, sino esencialmente elevar las capacidades técnico-organizativas de la empresa, de forma tal que esta sea capaz de desarrollar un proceso de mejora continua de la eficiencia energética.

1.5. Uso portadores energéticos en la industria láctea.

Una de las industrias fundamentales para la alimentación de la población a nivel mundial la constituye la industria de producción y elaboración de productos provenientes de la leche. De forma general abarca

Seamp

Capitulo 1 Estado del Arte

las producciones de quesos, mantequillas, yogurt, entre otros derivados de la leche.

El proceso productivo que comienza desde la transportación de la leche hasta la elaboración de los productos y tratamiento de residuales. Existen por tanto elevados consumos de energía, agua y otros portadores energéticos que se utilizan en gran escala.

1.5.1. Consumo de agua.

Para el tratamiento de la leche se requiere utilizar grandes cantidades de agua, los mayores consumos se producen en la operación de limpieza. La cantidad de agua total empleada supera varias veces el volumen de leche tratada (entre una y cuatro veces), dependiendo del tipo de instalación y del sistema de limpieza.

1.5.2. Consumo de energía.

La energía térmica se utiliza grandemente tanto en la esterilización como en la limpieza, pudiendo suponer hasta un 80% del consumo global. Respecto a la energía eléctrica, el máximo consumo se produce en el enfriado, y la conservación seguido de las operaciones homogeneización, desaireación, clarificación, etc. Existen sin embargo una serie de sistemas de bombeo, de compresión, y otras tecnologías asociadas a este sector que altos consumidores de energía eléctrica.

La diversidad de procesos tecnológicos, por lo general altos consumidores de energía, que tienen lugar en los procesos productivos de la industria láctea conducen a la existencia de excelentes potenciales para el uso racional y eficiente de los portadores energéticos. Para lograr este objetivo es necesario fomentar y desarrollar una cultura energética general que abarque todos los eslabones del proceso, desde la máxima dirección hasta los operadores. Insertar mecanismos de gestión energética en las empresas, soportadas en el uso de herramientas de avanzada, y tecnologías de punta permitirán mejorar el desempeño energético, la imagen, y la competitividad de la empresa.

Capitulo 1 Estado del Arte

Conclusiones parciales

- 1. Las crisis petroleras han provocado incrementos en los precios del petróleo de 12 dólares por barril en 1979 a más de 120 dólares por barril en el 2012, afectando el entorno económico mundial, factor determinante que se mantiene hoy en la esfera energética mundial agravado por la crisis económica.
- 2. La gestión energética constituye una herramienta fundamental en el mundo moderno mediante la cual se puede administrar la energía en las distintas empresas y entidades produciendo efectos positivos desde el punto de vista económico y ambiental de las mismas.
- 3. Las empresas de productos lácteos para el proceso productivo requieren de un conjunto de equipos, tecnologías y medios que son altos consumidores energéticos, y por tanto en ellas se presentan excelentes oportunidades de ahorro a través de una administración de la energía efectiva.

Capitulo 2

CAPITULO II. Caracterización energética de la Empresa Productos Lácteo

2.1. Características fundamentales de la empresa.

La Empresa de Productos Lácteo Escambray (**EPLE**) fue construida en 1975 e inaugurado el 26 de Julio de ese año por el Comandante en Jefe Fidel Castro, está integrada por tres unidades de producción independientes:

- La fábrica de helados
- La fábrica de quesos
- La pasteurizadora.

Comprende además una base transporte de talleres centrales de mantenimiento y el edificio socioadministrativo.

Las producciones fundamentales que emergen de la empresa son:

- Helados en masa
- Quesos de diferentes tipos y subproductos del gueso
- leche pasteurizada
- yogurt
- soyur
- productos en polvo (batidos, refrescos)

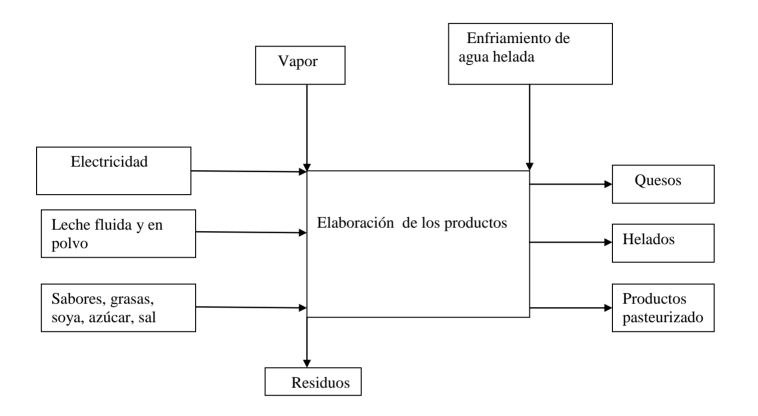
Sus principales materias primas utilizadas son:

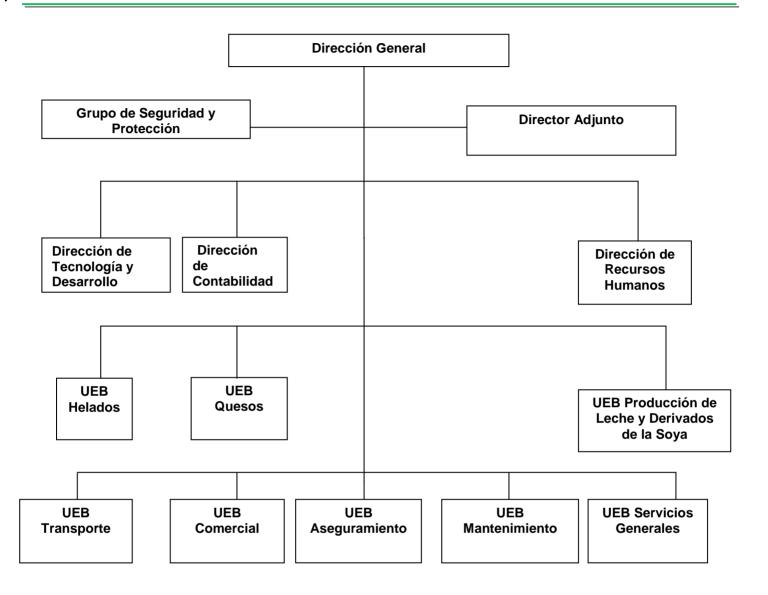
- leche fluida y en polvo,
- sabores
- grasas

- azúcar
- sal

2.2. Diagrama energético productivo de la EPLE

Para la producción de la EPLE se conjugan una series de elementos que son de vital importancia tal como se muestra en la figura 2.1, como son la electricidad, la producción de vapor, enfriamiento del agua para las cámaras de frío, la materia prima necesaria para la producción de quesos, helados y productos pasteurizados, de esta producción se extraen residuos que se utilizan posteriormente en la cría porcina.




Fig. 2.1 Diagrama de flujo de la producción de la EPL

2.2. Estructura organizativa de la empresa.

En el **esquema 2.2** se observa la estructura organizativa y de dirección de La Empresa de Productos Lácteos Escambray, la misma se encuentra conformada por:

- Director general
- 2. Vice dirección general(director adjunto)
- 3. Grupo de seguridad y protección
- 4. Subdirecciones de tecnología, recursos humanos y contabilidad y finanzas
- 5. 7 unidades empresariales de base (UEB) cuya misión es garantizar la producción, comercialización y transporte de los distintos productos terminados que se generan en la EPLE.

Esquema 2.2 Organización estructural de la planta.

2.3 Valoración del control energético del lácteo.

Para valorar el estado de la gestión de la energía nos apoyamos en una serie de preguntas para determinar el nivel de competencia en materia de eficiencia energética en la EPLE, ver (Anexo 1).

A partir de los resultados de la encuesta se construye la matriz energética actual de la empresa. La tabla 2.3 se evalúan por niveles los diferentes aspectos que en ella se encuentran.

Tabla 2.3 Matriz de Gestión energética en la EPLE:

Nivel	Política	Organización	Comunicación	Información	Planeación	Auditoría
	Energética					
4						
3						
1	Inexistencia de una política específica	Responsabilidad de la administración energética y ambiental delegada a un profesional con cierta experiencia o capacitación.	Diálogo irregular establecido en respuesta de solicitudes de información específicas	Registros y documentación son mantenidos en los casos en que se relacionan con el control financiero o actividades reguladas	Evaluación limitada de responsabilidades ambientales o de los potenciales ahorros en costos. Sin recursos asignados a la administración ambiental.	Auditorías ambientales periódicas para asegurar el cumplimiento de las regulaciones
0						

Se puede observar en la tabla 2.3 el estado en que se encuentra la gestión energética en la EPLE. Es notable que no existe una política energética específica de gestión, donde la responsabilidad de llevar a cabo la gestión energética le corresponde a un personal con cierta experiencia en esta materia, no existe comunicación establecida entre la administración superior y la fuerza de trabajo, no se cuenta con un sistema para la capacitación especializada de los operarios y jefes que deciden en la gestión energética, no están identificados en las áreas los sistemas y equipos mayores consumidores, por lo que el sistema de monitoreo y control energético en la empresa es deficiente, y no poseen las

herramientas necesarias, ni los mecanismos apropiados para llevar correctamente la gestión energética en la entidad:

2.4 Estructura de consumo de los portadores energético en la EPLE

Para los diferentes procesos que existen en La Empresa Productos Lácteo se consumen varios portadores energéticos, tal como se muestra en la **tabla 2.4**

Tabla 2.4 Estructura de los portadores energéticos

No	Portador	U.M	Consumo	F. Conversión.	TEP
1	Energía Eléctrica	MWh	4950,784	0,3520	1742,68
2	Fuel Oil	Т	898,415	0,9903	889,70
3	Diesel Regular	Т	570,062	1,0534	600,50
4	Gasolina B-83	Т	214,842	1,3541	290,92
5	Lubricantes	Т	27,004	1,000	27,00
6	Gasolina Regular	Т	17,745	1,3541	24,03
7	Gas Licuado	Т	6,535	1,1631	7,60
8	Grasas	Т	0,582	1,000	0,58
Total		•			3583,01

La figura 2.5 muestra la estructura de consumo de portadores energéticos de la EPLE.

Fig. 2.5 Estructura de consumo del año 2011

Se aprecia en la figura 2.5 que el portador energético que más se consume en la empresa es la energía eléctrica con un 48% de energía equivalente, esto responde a la presencia de una gran cantidad de equipos y tecnologías de producción en la entidad que son consumidores de la energía eléctrica.

2.5 Estructura de consumo de energía eléctrica por área de la EPLE.

En la figura 2.6 se observa el consumo de energía eléctrica por las distintas áreas que existen en la empresa.

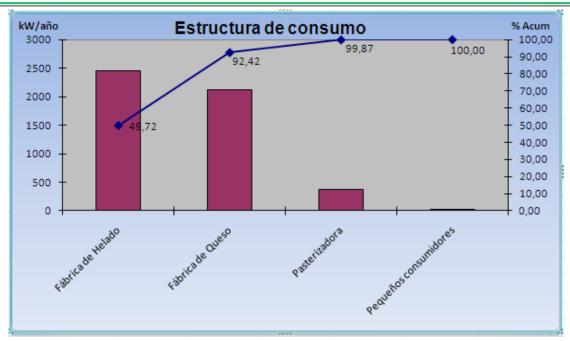


Fig.2.6. Consumo de energía eléctrica por área.

Se aprecia que las áreas más consumidoras son la planta de producción de helados y la planta de quesos. A pesar de que la producción de helados, tiene un consumo ligeramente superior a la planta de producción de quesos, el trabajo se enfocó en el área del queso por interés de la propia empresa teniendo en consideración que allí se centran la mayor cantidad de problemas energéticos que reinan en la EPLE en la actualidad.

Conclusiones parciales.

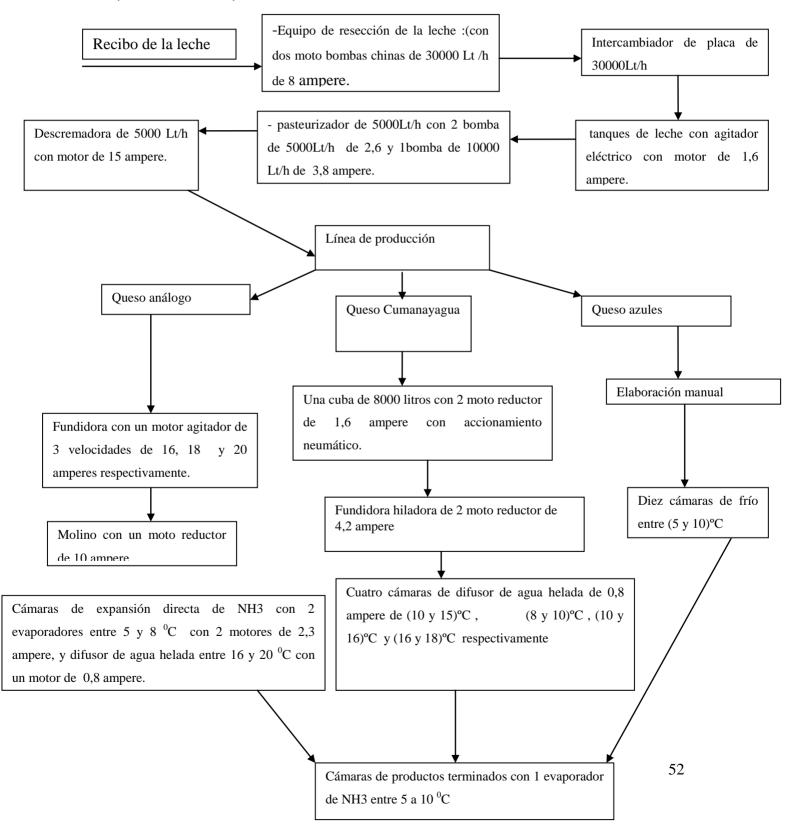
- 1- La Empresa de productos Lácteos Escambray (EPLE) en materia de gestión energética presenta un nivel bajo dado fundamentalmente porque no existe un mecanismo establecido, ni un grupo encargado de organizar la gestión energética de la empresa.
- 2- El consumo de energía eléctrica representa la partida fundamental dentro de la estructura de consumos de la empresa, siendo el helado y el queso las áreas de mayor incidencia con un 49 y 42 % respectivamente.

Capitulo 3

Capítulo III. Estudio de Caso. Planta de quesos

3.1. Descripción general de la Planta de quesos

La UEB de Quesos comenzó su producción el 1ro de mayo de 1976 en saludo al Día Internacional de los Trabajadores. El mismo elabora cuatro variedades de quesos especiales y quesos análogos.


En el aspecto tecnológico la planta no se encuentra en su mayor desarrollo, pues la generalidad del equipamiento data desde la década del 70, aún cuando debemos señalar que se ha iniciado un proceso de revitalización tecnológica, con la introducción de cubas de leche, intercambiadores de calor, descremadoras; equipos que nos introducen poco a poco en el campo de la tecnología de punta en esta actividad.

Actualmente la planta tiene un amplio surtido de productos, los que son elaborados de acuerdo al destino previamente contratado con los clientes, los productos destinados a la moneda nacional satisfacen la canasta básica y las necesidades de los organismos. En el caso de los servicios al turismo y otras entidades son solicitados por la cadena del Turismo y se cobran en CUC.

3.2 Diagrama de flujo del proceso de la planta de quesos.

En la figura 3.1 se muestra el diagrama de flujo del proceso productivo de la planta de producción de quesos de la EPLE.

3.3. Características de los equipos de la sala de máquina de la planta.

Compresores de NH₃

Marca	País de	Potencia
	Fabricación	
Mycon	Brasil	115 kW
N6WB		
JZ4612J	Chino	80kW
4A417	Chino	90kW
Mycon N8WB	Brasil	145kW

Compresores de aire

Marca	País de	Potencia
	fabricación	
	Español	110 kW
-		
-	Alemán	95 kW

Bombas de agua

Cantidad	Flujo	Corriente
3	40m3/h	8 ampere
4	100m3/h	
4	60 m3/h	

3.2.1. Utilización de la energía eléctrica.

La energía eléctrica es el principal portador energético de la planta, las máquinas y equipos que participan en la elaboración y conservación dependen de este portador para alcanzar los niveles de producción planificados por la EPLE.

La estratificación de los consumos de energía eléctrica solo fue posible hasta los niveles de la planta de quesos donde existe un medidor central que proporcionó los datos para el estudio

3.3 Gráficos de control de la planta de quesos.

Los gráficos de control son diagramas lineales que permiten observar el comportamiento de una variable en función de ciertos límites establecidos. Se usan como instrumento de autocontrol y resultan muy útiles como complemento a los diagramas causa y efecto, para detectar en cuales fases del proceso analizado se producen las alteraciones. Los gráficos que se muestran a continuación son realizados con datos de la planta de quesos en el periodo del 2010 y 2011 con el objetivo de conocer si las variables evaluadas están bajo control.

La tabla 3.1 muestra los valores de consumo de energía eléctrica de la planta de queso y los valores de producción de los años 2010 y 2011 necesarios para construir el diagrama de energía contra producción.

La tabla 3.1. Valores de producción y consumo planta de quesos.

MES	CONSUMO (kWh)	PRODUCCION (TONELADAS)
Ene-10	182416	1000,0
Feb-10	169316	806,5
Mar-10	176458	954,6
Abr-10	176396	881,7
May-10	177501	834,5
Jun-10	223423	1250,0
Jul-10	228354	1208,4
Ago-10	225919	1286,6
Sep-10	223457	1253,9
Oct-10	233261	1364,9
Nov-10	228528	1359,6

Dic-10	184317	1200,0
Ene-11	170095	740,0
Feb-11	178542	889,3
Mar-11	179136	921,0
Abr-11	176479	950,0
May-11	187876	965,0
Jun-11	183375	860,0
Jul-11	213993	1229,1
Ago-11	219483	1186,1
Sep-11	213021	1314,0
Oct-11	213883	1305,0
Nov-11	194322	1153,0
Dic-11	191116	1154,2

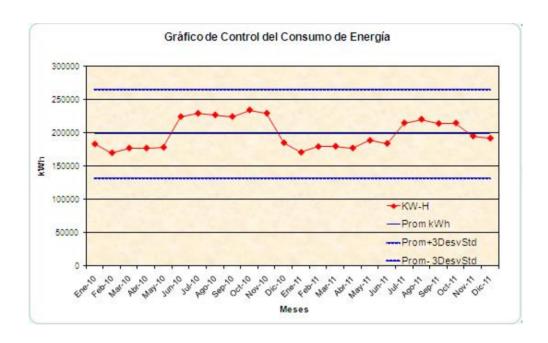


Gráfico.3.1 Control del consumo de energía

Como podemos observar en el gráfico 3.1 el consumo de energía varía en dos periodos en cada año, en el período seco ocurre menos producción por lo tanto se consume menos debido a la carencia de materia prima, en los meses de verano ocurre lo contrario.

El gráfico 3.2 muestra el control de índice de consumo.

Gráfico. 3.2 Control del índice de consumo.

En el gráfico de control se evalúa el comportamiento de la variable índice de consumo (kWh/ton), evidenciándose un comportamiento relativamente estable encontrándose dentro del rango de control, en el mes de enero el índice de consumo aumentó debido a que la producción disminuyó en gran proporción con respecto al consumo.

3.3.1 Comportamiento del consumo y la producción en el tiempo.

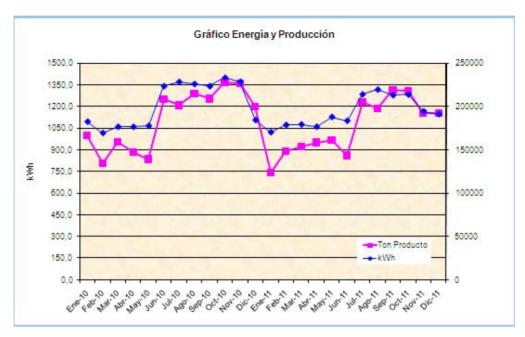


Gráfico.3.3 Energía y producción

El gráfico muestra una relación bastante estable entre el consumo de energía y la producción, existen meses que la producción baja y el consumo no disminuye en la misma proporción debido a que aunque se produzca menos las cámaras de frío tienen que mantenerse en funcionamiento.

3.3.2 Diagrama de correlación.

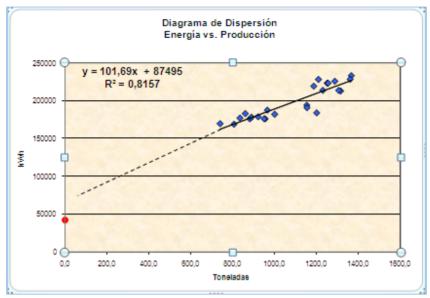


Fig.3.4 Diagrama de dispersión

En la figura 3.4 se obtiene la correlación lineal entre las variables de energía consumida y toneladas producidas en la planta de quesos.

La expresión que caracteriza dicha correlación es la siguiente:

$$y = 101.69x + 87495$$

Con un coeficiente de correlación R2= 0.8157

La literatura y la experiencia acumulada en los trabajos realizados por el CEEMA indican que se pueden considerar adecuados, a los efectos de estos análisis energéticos, valores del coeficiente de correlación R2 ≥ 0.75.

Por lo que el valor del coeficiente de correlación (R2) obtenido en el diagrama de Dispersión de Energía vs. Producción es superior al 0,75 por lo que se considera una correlación buena entre las variables analizadas.

3.4 Principales deficiencias detectadas en el diagnóstico de recorrido.

En el diagnóstico de recorrido inicial se observaron las siguientes deficiencias en la planta que constituyen los macro potenciales energéticos que permitirán una vez determinadas su envergadura actuar sobre los problemas detectados en orden de prioridad.

1. Falta de aislamiento en tubería de agua helada de 1°C a 3 kgf/cm2

Diámetro	longitud
2"	80 metros
1"1/2	60 metros
1"	100 metros
3/,"	100 metros
En mal estado	
2"	100 metros
1"1/2	200 metros

2-Falta de aislamiento en tuberías de vapor a 3kgf/cm2

Diámetro	longitud
2"	80 metros
1"1/2	120 metros
1"	40 metros
3/4"	70 metros

- 3 -Falta de sellaje en 15 puertas de nevera y 10 puertas que necesitan sustitución. Las pérdidas energéticas productos a la infiltración aire debido a puertas defectuosas o de uso excesivo pueden ascender al doble del consumo de un sistema de refrigeración por compresión por este concepto. [12]
- 4- Falta de enchaquetado en tanque de vapor y falta de aislamiento en cubas de vapor.
- 5- Falta de aislamiento en tubería de leche fría.
- 6- Existen 220 metros de tuberías de succión de amoniaco en mal estado con una presión de succión de 1,5 a 2,0 kgf/cm².
- 7- No existe recuperación del condensado en la sala de caldera

A partir de los problemas listados anteriormente, detectados en el diagnóstico de recorrido de la planta se vislumbran amplias oportunidades para el ahorro energía que deben cuantificarse para proponer las respectivas medidas correctivas que mejoren el uso de la energía en las distintas áreas.

3.5 Determinación de los potenciales energéticos.

Para la determinación de algunos potenciales energéticos se calcularon las pérdidas que ocurren debido a las cargas por infiltración en las cámaras de frío, la cantidad de calor que desprende las tuberías de vapor por no poseer aislamiento, y la cantidad de calor que absorben las tuberías de agua fría por no tener aislamiento.

3.5.1 Cálculo de las cargas por infiltración de aire en las cámaras

A partir de la metodología que expone la Copeland [12] se determina la cantidad de calor que se pierde al medio por infiltraciones de aire.

$$Qi = V * CA * CR \qquad \left(\frac{BTU}{24h}\right) \tag{3.1}$$

V- volumen pie³

CA-cambios de aire tabla 8 del Manual la Copeland

ancho	Largo	altura	Volumen	CA	CR	Qi
(m)	(m)	(m)	(pie^3)			NORMALES
6	6	3	3811,055	8,5	2,08	67379,45
4	3	3	1281,003	16	2,08	42631,77
4	4	3	1690	13	2,08	45697,6
10	4	3	4290	7,9	2,08	70493,28
5	4	3	2080	11,5	2,08	49753,6
4	3	3	1281,003	16	2,08	42631,68
12	5	3	6240	6,2	1,82	70412,16
12	5	3	6240	6,2	1,82	70412,16
12	5	3	6240	6,2	1,82	70412,16
10	10	3	10890	4,6	1,82	91171,08
12	10	3	12870	4,2	1,78	96216,12
12	12	3	15210	3,8	1,78	104036,4
10	10	3	10890	4,6	1,94	97182,36
10	10	3	10890	4,6	1,94	97182,36
12	10	3	12870	4,2	1,96	105945,84
20	12	3	25740	2,8	2,1	151351,2
,						1272909.2

CR- coeficiente que depende de la temperatura de la cámara y la humedad relativa exterior tabla 9 de la Copeland ($\frac{BTU}{pie^3}$)

Después de haber calculado las cargas por infiltraciones normales se multiplica el valor de cada cámara por un factor de uso, en este caso el factor que se tomó es de 2 porque las cámaras tienen un uso excesivo.

Cámaras	Qi x factor
1	134758,9
2	85263,54
3	91395,2
4	140986,56
5	99507,2
6	85263,36
7	140824,32
8	140824,32
9	140824,32
10	182342,16
11	192432,24
12	208072,8
13	194364,72
14	194364,72
15	211891,68
16	302702,4
	2545818.44

Cálculo entre la diferencia entre cargas afectadas por el factor del Copeland y cargas por infiltraciones normales .

QI= Qi x factor – Qi normales (3.2)

QI=2545818.44 - 1272909.2

QI= 1272909.2 BTU/24 hrs

QI=53037 BTU/hrs

Cálculo de la cantidad de energía (kW) innecesaria que está consumiendo el compresor debido al mal estado de las juntas de las puertas.

Según White [8], en sistemas de refrigeración que trabajen a temperaturas de evaporación alrededor de 0 F, (-17 °C) requiere 2HP de potencia por cada tonelada de refrigeración de capacidad.

Se requiere un compresor X=8,8 HP para suplir las pérdidas ocasionadas por las excesivas infiltraciones de aire en las cámaras.

El consumo de corriente nominal de un motocompresor de 22 amperes con suministro de voltaje trifásico.

Potencia teórica innecesaria consumida por compresor.

$$P_{\text{teor}} = \sqrt{3} \times V \times A \times Cos \varnothing. \tag{3.3}$$

Donde:

P_{teor} = Potencia teórica del compresor.

V = Voltaje (V)

A = Amperaje (A)

 $Cos \varnothing = Factor de potencia 0.9$

Sustituyendo en (3.2)

$$P_{teórica} = 1.73 \times 208 \times 22 \times 0.9$$

P_{teórica} = 7.132 kW

3.5.2 Cálculo de la eficiencia de la caldera por el método directo:

 $Qu \Rightarrow Calor \text{ útil.}$

 $B \Rightarrow$ Flujo de combustible

 $Qd \Rightarrow$ Calor disponible.

$$Qu = Dsc(Isc - Iaa) + Dsat(Isat - Iaa) + Dext(Iliq - Iaa) + \sum \left[Drc(Irc'' - Irc') \right] + Qcal$$

 $Dvsat \Rightarrow$ Flujo de vapor saturado

 $Dvsc \Rightarrow$ Flujo de vapor sobrecalentado.

Dext ⇒ Flujo de la extracción o purgas continúas.

 $Drc \Rightarrow$ Flujo de agua de alimentar procedente del economizador (agua con una energía calorífica suministrada es este intercambiador de calor)

 $Qcal \Rightarrow$ Energía calorífica suministrada al aire de alimentar en el calentador de aire.

Como en el generador de vapor que se analiza no existen sistemas de sobre calentadores de vapor, no existen purgas o extracción continuas, no se cuenta con calentadores de aire, ni con economizadores la ecuación anterior se simplifica quedando de la siguiente manera:

$$Qu = Dsat(Isat - Iaa)$$
(3.5)

Donde:

Isat ⇒ Entalpía del vapor saturado en la tabla 5 del Steam Table (Para esta caldera la temperatura del vapor es de 184°C).

Iaa ⇒ Entalpía del agua de alimentar en la tabla 4 del Steam Table (A

temperatura aviente 32°C).

Dsat= 3795 Kg/h

$$Qu = 3795 Kg/h(2766 KJ/Kg - 135 KJ/Kg) = 9984645 Kg/h*KJ/Kg$$

$$Qd = \mathbf{Q}_{I}^{P} + Ic \tag{3.6}$$

 $Q^{^{P}}_{_{_{I}}}\!\Rightarrow\!\mathsf{Calor}$ de combustión inferior térmica.

 $Ic \Rightarrow$ Entalpía del combustible.

Donde:

$$Q_{I}^{P} = 9400Kcal/Kg*4,18 = 39292Kj/Kg$$
(3.7)

$$Ic = Cc * Tc (3.8)$$

$$Cc = 0.415 + 0.0006 * Tc = 0.415 + 0.0006 * 70^{\circ} C = 0.457$$

 $Tc \Rightarrow$ Temperatura a la que se introduce el combustible en el quemador.

$$Ic = Cc *Tc = 0.457 *70 = 31.99 Kcal/Kg *4.1898 = 134.06 KJ/Kg$$

Por lo que: Sustituyendo en (3.6)

$$Qd = Q_I^P + Ic = 39292 \, KJ/Kg + 134.06 \, KJ/Kg = 39426 \, KJ/Kg$$

Sustituyendo en (3.4)

$$\eta = 0.76\%$$

Tomando en consideración la existencia de líneas de vapor sin aislamiento térmico, a través de las cuales se producen pérdidas energéticas que atentan contra la economía de la entidad, hacemos la siguiente valoración.

Precio del fuel-oil ------0.71 C.U.C./kgc.

Costo en divisas de cada kcal que aporta el combustible

$$0.71C.U.C./kgc = 7,5*10^{-5} C.U.C./Kcal$$
 (3.9)
9400 kcal/kgc

Para saber el costo real de la kcal después de la caldera, se afecta por la eficiencia de la misma.

$$7.5 \times 10E-05 \text{ C.U.C./kcal} = 9.8 \times 10^{-5} \text{ C.U.C./kcal}$$

0.76

3.5.3. Cálculo de las pérdidas de calor por convección en tuberías

3.5.3.1. Cálculo de las pérdidas de calor por convección al medio en tuberías sin aislamiento.

El calor que se pierde en las tuberías de vapor por no tener aislamiento considerando queda expresado por la expresión 3.9. Se considera una temperatura de superficie igual a la temperatura media del fluido de 100°C.

Ø de tubería (")	Longitud sin aislamiento (m)		
2	80		

$$Q = \alpha * A * (Ts - T\alpha)$$

(3.10)

 α - coeficiente de aire estancado entre (5 y 10), W / $m^2 {}^{\circ} c$

A- área, m^2

ts- temperatura de la superficie, 100 °C

t α -temperatura del medio, 32 °C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,051m * 80m(100 - 32)$$

$$Q = 6098,13W$$

Ø de tubería (")	Longitud sin aislamiento (m)
1"1/2	120

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W/m^2 ° c

A-área, m^2

ts- temperatura de la superficie , 100 $^{\circ}\text{C}$

t α -temperatura del medio, 32 °C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,038m * 120m(100 - 32)$$

$$Q = 6815,55W$$

Ø de tubería (")	Longitud sin aislamiento (m)
1"	40

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10) , W / $m^{2\,\mathrm{o}}\,c$

A- área, m^2

ts- temperatura de la superficie, 100°C

t α -temperatura del medio, 32°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,025m * 40m(100 - 32)$$

$$Q = 1494,64W$$

Ø de tubería (")	Longitud sin aislamiento (m)
3/4"	70

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^2 {}^{\circ} c$

A- área, m^2

ts- temperatura de la superficie , 100°C

t α -temperatura del medio, 32°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,019m * 70m(100 - 32)$$

$$Q = 1987,87W$$

Cantidad total de calor que se deprende en las tuberías sin aislamiento:

O = 6098,13W + 6815,55W + 1494,64W + 1987,87W = 16396,19W

3.5.3.2 Cálculo de las pérdidas de calor por convección en tuberías con aislamiento.

La temperatura en la superficie del aislamiento se considera 40°C (Según la Empresa Alastor).

Ø de tubería (")	Longitud sin aislamiento (m)
2	80

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^2 \, ^{\circ} \, c$

A- área,
$$m^2$$

ts- temperatura de la superficie, 40°C

t α -temperatura del medio, 32°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,051m * 80m(40 - 32)$$

$$Q = 717.4W$$

Ø de tubería (")	Longitud sin aislamiento (m)
1"1/2	120

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^{2\,\mathrm{o}}\,c$

A-área, m^2

ts- temperatura de la superficie , 40°C

 $t \alpha$ -temperatura del medio, 32°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,038m * 120m(40 - 32)$$

$$Q = 801.8W$$

Ø de tubería (")	Longitud sin aislamiento (m)
1"	40
•	10

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W $\bigg/ \ m^{2\, {\rm o}} \, c$

A- área,
$$m^2$$

ts- temperatura de la superficie, 40°C

 $t \alpha$ -temperatura del medio, 32°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,025m * 40m(40 - 32)$$

$$Q = 175,8W$$

Ø de tubería (")	Longitud sin aislamiento (m)
3/4"	70

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^{2\,\mathrm{o}}\,c$

A- área,
$$m^2$$

ts- temperatura de la superficie, 40°C

t α -temperatura del medio, 32°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3.14 * 0.019m * 70m(40 - 32)$$

$$Q = 233,86W$$

Cantidad de calor que se desprende en las tuberías con aislamiento:

$$Q = 717.4W + 801.8W + 175.8W + 233.86W = 1928.86W$$

3.5.4 Cálculo del calor absorbido en las tuberías de agua helada.

Debido a la ausencia de aislamiento se absorbe de calor del medio. Para el cálculo se toma una temperatura de superficie de la tubería de 3°C.

Ø de tubería (")	Longitud sin aislamiento (m)
2	80

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^{2\,\mathrm{o}}\,c$

Capítulo 3 Estudio de Caso. Planta de quesos 🥌

A-área, m^2

ts- temperatura de la superficie ,3 °C

t α -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(T\alpha - Ts)$$

$$Q = 7 * 3.14 * 0.051m * 80m(30 - 3)$$
° C

$$Q = 2421,3W$$

Ø de tubería (")	Longitud sin aislamiento (m)		
1"1/2	60		

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^{2\,\mathrm{o}}\,c$

A- área,
$$m^2$$

ts- temperatura de la superficie ,3 °C

t α -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(T\alpha - Ts)$$

$$Q = 7 * 3,14 * 0,038m * 60m(30 - 3)$$
° C

$$Q = 1353,08W$$

Ø de tubería (")	Longitud sin aislamiento (m)
1"	100

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), $W / m^{2} \circ c$

A- área,
$$m^2$$

ts- temperatura de la superficie ,3 °C

 $t \; \alpha$ -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(T\alpha - Ts)$$

Capítulo 3 Estudio de Caso.Planta de quesos 🥌

$$Q = 7 * 3.14 * 0.025m * 100m(30 - 3)^{\circ}C$$

$$Q = 1438,6W$$

Ø de tubería (")	Longitud sin aislamiento (m)		
3/4"	100		

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^{2\,\mathrm{o}}\,c$

A- área, m^2

ts- temperatura de la superficie ,3°C

t α -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3,14 * 0,019m * 100m(30 - 3)^{\circ} C$$

$$Q = 1127,5W$$

Cantidad de calor total que absorbe las tuberías por no tener aislamiento:

3.5.6 Cálculo de la cantidad de calor que absorbe la tubería de agua fría si tuviese aislamiento.

Suponiendo una temperatura en la superficie del aislamiento de 25°C (Empresa Alastor).

Ø de tubería (")	Longitud sin aislamiento (m)		
2	80		

Capítulo 3 Estudio de Caso. Planta de quesos

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), $W / m^{2} \circ c$

A- área,
$$m^2$$

ts- temperatura de la superficie ,25 °C

t α -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(T\alpha - Ts)$$

$$Q = 7 * 3,14 * 0,051m * 80m(30 - 25)$$
° C

$$Q = 448,4W$$

Ø de tubería (")	Longitud sin aislamiento (m)		
1"1/2	60		

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^2 {}^{\circ} c$

A- área,
$$m^2$$

ts- temperatura de la superficie ,25 °C

t α -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(T\alpha - Ts)$$

$$Q = 7 * 3,14 * 0,038m * 60m(30 - 25)$$
° C

$$Q = 250,5W$$

Ø de tubería (")	Longitud sin aislamiento (m)		
1"	100		

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W/m^{2} o c

A- área,
$$m^2$$

ts- temperatura de la superficie ,25 °C

 $t \alpha$ -temperatura del medio, 30°C

Capítulo 3 Estudio de Caso. Planta de quesos 🥌

$$O = \alpha * \pi * d * l(T\alpha - Ts)$$

$$Q = 7 * 3,14 * 0,025m * 100m(30 - 25)$$
° C

$$Q = 274,7W$$

Ø de tubería (")	Longitud sin aislamiento (m)		
3/4"	100		

$$Q = \alpha * A * (Ts - T\alpha)$$

 α - coeficiente de aire estancado entre (5 y 10), W / $m^{2\,\mathrm{o}}\,c$

A- área,
$$m^2$$

ts- temperatura de la superficie ,25°C

t α -temperatura del medio, 30°C

$$Q = \alpha * \pi * d * l(Ts - T\alpha)$$

$$Q = 7 * 3.14 * 0.019m * 100m(30 - 25)° C$$

$$Q = 208,8W$$

Cantidad de calor total que absorbe las tuberías con aislamiento:

Cantidad de calor que se dejaría de absorber si las tuberías estuviesen aisladas:

Capítulo 3 Estudio de Caso. Planta de quesos 🥌

3.6 Valoración técnica y económica de las oportunidades de ahorra seleccionadas

3.6.1 Cantidad de kW que consume de más el compresor al año debido a las cargas por infiltración.

Como los compresores funcionan 18horas al día la energía que se ahorraría por un buen sellaje en las cámaras de frío en el año sería la siguiente:

 $E = 7.1 \text{ kW} \times 18 \text{ h/d/a} \times 365 \text{ d/a}$

E =46810 kWh/año

Cálculo del gasto monetario (G) que se está pagando por las deficiencias existentes:

Tarifa de la EPLE:

$$G = \left(\frac{0.029\$}{\kappa_W} * K + \frac{0.064\$}{\kappa_W}\right) * kW \tag{3.10}$$

K=5.7748 (dato de la empresa)

$$G=(0.029\%/Kw*K+0.064\%/Kw)*46810Kw/año$$

G=10836 \$/año.

3.6.2. Cantidad de calor que se ahorraría si las tuberías de vapor estuviesen aisladas:

Qt= (Q tuberías sin aislamiento –Q con aislamiento)

Qt = (16396,19W - 1928,86W)

Qt=14467,33 W

Qt=3,46 Kcal/s

Capítulo 3 Estudio de Caso. Planta de quesos

Qt=(3,46 Kcal/s) *(3600 s) =12456 Kcal/h

Tomando en consideración que trabaja 12 horas diarias, nos queda que:

(12456 kcal/h) (12 h/día) = 149472 kcal al día

El ahorro económico en un día sería el siguiente:

(149472 Kcal)*(7,5*10⁻⁵ C.U.C./kcal)=11,3 CUC al día

Considerando que trabaje 300 días al año el ahorro económico seria de :

(11,3 CUC/ día)*(300 día/año)=3390 CUC al año.

3.7 Reducción del impacto ambiental asociado si las cámaras de frío estuviesen bien selladas.

El efecto de contaminación indirecta derivado de la quema de combustibles fósiles queda expresado de la manera siguiente [13], [14].

$$RI = E_a . e_{CO_2}, \frac{kgCO_2}{a\tilde{n}o}$$
 (3.11)

Donde:

RI = Reducción del impacto ambiental asociado; $\frac{kgCO_2}{a\tilde{n}o}$

 $E_a = Energía ahorrada; \frac{kWh}{a\tilde{n}a}$

 e_{CO_2} = índice de emisiones; $\frac{kgCO_2}{kWh}$

Capítulo 3 Estudio de Caso. Planta de quesos 🥌

Cálculo de la cantidad de kgCO₂ que se desprende durante el proceso de combustión.

$$C+O_2 \rightarrow CO_2$$

12 $kgc+32 kgO_2 \rightarrow 44 kgCO_2$

De acuerdo al contenido de carbono que posee el petróleo crudo cubano:

$$0.81 \frac{kgC}{kgPetr\'oleo}$$
, utilizado en las termoeléctricas de Cuba [12], se determinan los

kilogramos de CO₂ que genera la quema de petróleo para producir un kilowatt - hora

$$3,67 \frac{kgCO_2}{kgC} \times 0.81 \frac{kgC}{kgPetr\'oleo} = 2,97 \frac{kgCO_2}{kgPetr\'oleo}$$

$$2,97 \frac{kgCO_2}{kgPetr\'oleo} \times 0,310 \frac{kgPetr\'oleo}{kWh} = 0,921 \frac{kgCO_2}{kWh}$$

 $e_{CO_2} = 0.921 \, \frac{kgCO_2}{kWh}$, según tipo de combustible quemado en las termoeléctricas de Cuba [12], [13].

RI =
$$46810 \frac{kWh}{a\tilde{n}o}$$
 X 0,921 $\frac{kgCO_2}{kWh}$ = 42129 $kgCO_2$ /año

Un buen sellaje de las cámaras de frío reduciría el impacto ambiental, al dejar de emitirse a la atmósfera 42 toneladas de CO₂ al año, por la quema del petróleo en las termoeléctricas.

3.8 Propuestas de medidas energéticas para implementar en la EPLE.

El plan de medidas constituye un aspecto clave que permite ir aprovechando el

Capítulo 3 Estudio de Caso.Planta de guesos <

potencial de racionalidad que presenta la empresa. El control del consumo de los portadores energéticos debe ir acompañado de una serie de medidas diseñadas para alcanzar niveles de consumo acorde con las posibilidades reales. Esto debe entenderse como racionalidad en la utilización de la energía necesaria para garantizar la calidad de la producción terminada y la satisfacción de las exigencias del cliente.

En la EPLE, el comité energético de la empresa tiene que velar porque se cumplan las acciones encaminadas al control de la eficiencia energética en la planta.

El plan de medidas en una primera etapa está orientado a tres categorías:

- 1. Medidas de planificación, control y evaluación.
- 2. Medidas para disminuir el uso indebido de equipos e instalaciones.
- 3. Medidas de pequeñas y medianas inversiones, dirigidas a aumentar la calidad de las mediciones y mejorar la eficiencia de los equipos e instalaciones.

MEDIDAS DE PLANIFICACIÓN, CONTROL Y EVALUACIÓN.

- 1. Planificar el consumo de portadores energéticos en función de:
 - Producción física equivalente a procesar en el mes.
 - Máquinas herramientas disponibles.
 - Composición del plan entre producción interna y servicios a terceros (los últimos para la planificación de combustibles).
- 2. Informar a las áreas de la situación energética diariamente y la necesidad de usar racionalmente la energía. Que propongan sus medidas en cada local entre las que se debe incluir el establecimiento de un horario estricto del uso de la Refrigeración, iluminación, y todo aquello que consuma energía. Realizar talleres y seminarios sobre eficiencia energética.
- 3. Medir el consumo diario, estimación de gastos y evaluar el cumplimiento del plan propuesto. Evaluar del cumplimiento de las medidas en ejecución.

Capítulo 3 Estudio de Caso.Planta de quesos 🥌

- Evaluar el cumplimiento del plan de gastos en portadores energéticos.
 Evaluación y adecuación del plan de medidas y de gastos, en función del índice de consumo propuesto.
- 5. Control del cumplimiento del plan de medidas. Comunicar en matutinos, y reflejar en murales los resultados alcanzados.
- 6. Creación de la comisión de uso racional de la energía de la empresa, Integrada por los operadores de los puestos claves, jefes de las principales áreas consumidoras, la dirección y mantenimiento.
- 7. Garantizar la entrega de copias de facturas eléctricas y conciliar con los controles diarios de consumo llevados por el energético.
- 8. Mantener actualizada a la dirección en caso de cambios de tarifas de los portadores energéticos, la máxima demanda y el factor de potencia.
- Actualización diaria de los registros primarios en los puestos claves, análisis de índices de consumo físicos y de las causas de sus desviaciones con los operarios y jefes de los puestos claves.

Capítulo 3 Estudio de Caso. Planta de quesos 🥌

Conclusiones parciales.

- Existe una correlación adecuada entre los niveles de producción de quesos y la demanda eléctrica. La inestabilidad en el proceso productivo de la planta afecta considerablemente el desempeño energético de la misma, así como los niveles de correlación de las variables.
- 2. Las pérdidas económicas asociadas a los potenciales energéticos determinados en la planta de quesos de la EPLE ascienden a 95586 \$ lo que implica un impacto ambiental debido a un sobreconsumo del compresor de 42 toneladas de CO₂ al año.

Conclusiones

Conclusiones

Conclusiones Generales

- 1- El estudio de gestión energética realizado a la Empresa de Productos Lácteos Escambray (EPLE) permitió realizar la matriz energética actual de la empresa, determinándose el nivel de competencia de la misma en materia de gestión. Se establecieron los principales indicadores de consumo para la planta de producción de quesos.
- 2- En el desarrollo del trabajo se percibe que la empresa EPLE a pesar de medir algunos indicadores energéticos como son los consumos totales de energía eléctrica y combustibles, y otros portadores energéticos no cuenta con un sistema de gestión de la energía que tenga en cuenta además de los aspectos de operación otros requisitos que exigen los sistemas de gestión como son compromiso de la dirección sobre el consumo de energía y requisitos sobre la comunicación y formación de sistemas energéticos a los trabajadores, y una política energética que le permita detectar las mejoras continuas del desempeño energético.
- 3- Los potenciales energéticos determinados en el trabajo por concepto de infiltraciones de aire, y pérdidas energéticas por defectos en el aislamiento de las tuberías de vapor y agua helada ascienden a significan pérdidas monetarias ascendentes a 95586 pesos al año. El impacto ambiental indirecto asociado al sobreconsumo de energía en las cámaras de conservación de quesos es de 42 toneladas de CO₂ anuales.
- 4- Se proponen un grupo de acciones generales, encaminadas a reducir el consumo de energía en la planta de quesos de la EPLE para gestionar el comportamiento de los índices de consumo determinados en este trabajo, que de ser implementadas en la empresa le permitirán mejorar la eficiencia energética en la planta, y mejorar su desempeño energético.

Pecomendaciones

Recomendaciones

Recomendaciones.

- 1- Extender el estudio a las demás áreas de la EPLE para determinar los potenciales energéticos globales de toda la planta.
- 2- Concientizar a la máxima dirección de la EPLE con la importancia de implementar un sistema de gestión de la energía en la planta que le permita administrar de forma eficiente la energía y reducir los gastos.

Referencias Bibliográficas

Referencias Bibliográficas

Referencia Bibliográfica:

- Tercer Mundo Económico-Integración energética en el Mercosur. Tomado de: www.redtercermundo.org.uy/tm economico/texto completo. 11 de Noviembre de 2006
- 2. **Kozul, Roberto.** *La energía en siglo XXI.* s.l. EDUCO, 2011. pág. 84.
- http://www.menpet.gob.ve/secciones).
 http://www.menpet.gob.ve/secciones). [En línea] 13 de Febrero de 2012.
 [Citado el: 24 de Marzo de 2012.] http://www.menpet.gob.ve/secciones).
- 4. <u>www.conae.gob.mx/wb/CONAE/CONA</u> 1917 <u>generacion distribuición</u>. Tomado 11 de Noviembre de 2006. [3] Organización Latinoamericana de Energía. (2003). OLADE - Informe Energético -Aspectos económicos, regulatorios y de política energética. <u>www.olade.org.ec/Informe</u> Energético/InformeEnergetico05.htm
- 5. http://www.energiasrenovables.ciemat.es/especiales/energia/index.ht m.[En línea] 2009. [Citado el: 27 de Abril de 2012].
- Turrini, Enrrico. E I Camino del Sol.. editorial Cubasolar, 2006. pág. 366
- 7. -<u>www.cepal.orgComision</u>Económica para América Latina
- 8. Cumbre Energética Suramericana, un encuentro que busca luchar contra la pobreza y las asimetrías. http://www.telesurtv.net/secciones/noticias/nota/index.php?ckl=9905
- 9. CUBA: Crisis de energía eléctrica. Por Manuel

Referencias Bibliográficas

Cereijo, Tomado de la Revista Electrónica GUARACABUYA.

- 10. <u>www.bohemia.cubaweb.cu/2005/ene/03/sumarios/ec</u>
 <u>onomia/articulo3.htm</u>. Tomado 11 de
 Octubre de 2006.
- 11. Colectivo de Autores CEEMA. (2006). Gestión y Economía Energética.
 ISBN 959 257 -114 7. Editorial UNIVERSO SUR. Universidad de Cienfuegos:
- 12. Copeland.. Refrigeration Manual
- 13.R.V., Juan Landa., "Estimadores Cuantitativos de la Emisión de Contaminantes Atmosféricos por Combustión del Petróleo Crudo Cubano y su Efecto Económico", Energética, Vol.2, 2004.
- 14. D.o.E. Washintong., "DC 20585 Environmental Protection Agency Washintong DC 20460". Vol. DC 20460 E.P.A Washintong 2000.

Bibliografia

Bibliografía

Bibliografía:

- A fin de mejorar la eficiencia de este proceso, resulta conveniente poner en marcha la comisión energética del centro. (5 de mayo de 2006). Obtenido de www.jmarcano.com/educa/curso/activ10 . html 13k
- CEPAL. Estudio Económico de América Latina y el Caribe". Petróleo y gas en América Latina un análisis político de relaciones internacionales a partir de la política venezolana (DT). (2005-2006). Obtenido de www.eclac.org
- (8 de mayode 2008). Obtenido de www.OLADE.org.ec/documentos/convenios.lin.doc
- A shadow of a lake: Africa's disappearing lake Chad. (9 de 10 de 2006). Obtenido de www.gsfc.nasa.gov/topstory/20010227lakechad.html
- Aislamiento térmico. (2003). España, Barcelona: Labor.
- Castellón, S. R. (s.f.). Consideraciones sobre el sector energético cubano. Obtenido de www.nodo50.org/cubasigloXXI/economía/rodriguz1
- CEEMA, C. d. (2006). Gestión y economía energética. Cienfuegos: Universo SUR.
- Cereijo, M. (s.f.). CUBA, Crisis de energía eléctrica. Guaracabuya.
- Chávez, A. S. (2010). apuesta por la eficiencia enérgetica. Ciencia y Tecnología.
- Energías renovables,. (11 de 10 de 2006). Obtenido de www.energias-renovables.com
- Flow of fluids. (1969). La Habana: Ciencia y Técnica.
- La OPEP, surge de una necesidad común comprobable y satisface una necesidad práctica. (5
 de 10 de 2006). Obtenido de www.efemeridesvenezolanas.com/html/opep.htm26k
- Landa, J. (2004). Estimadores Cuantitativos de la Emisión de Contaminantes Atmosféricos por Combustión del Crudo Cubano y su Efecto Económico.

Bibliografía

 Política y panorama energético/crisis energética -Habrá un antes y un después de la Revolución Enerética de Cuba . (s.f.). Obtenido de www.embacubalebanon.com/energia0116s.html

Fresos

Anexo 1. Criterios para determinar el nivel de competencia de eficiencia energética en las EPLE.

- 1. ¿Están identificados todos los portadores energéticos que consume la unidad y ordenados por prioridad en función de la incidencia de cada uno?
- Si todo está completo
- 2. ¿Están identificados en la unidad las áreas, sistemas y equipos mayores consumidores?
- no, los equipos solo datos de chapa
- 3. ¿Están establecidos los índices de consumo y de eficiencia energética a nivel de Unidad y hasta el nivel de las áreas, sistemas y equipos mayores consumidores?

• no

- 4. ¿Existe algún mecanismo o procedimiento de análisis y control periódico de estos índices?
- Reporte diario- Mensual.
- 5. ¿Se conocen y siguen los valores de los indices de consumo energético con respecto al de otros equipos y procesos similares a nivel nacional e internacional?

No

- 6. ¿Están identificados los operarios y jefes que deciden en los consumos energéticos?
- Estructura de organizacion pequeña). Sin reuniones.

Anexos

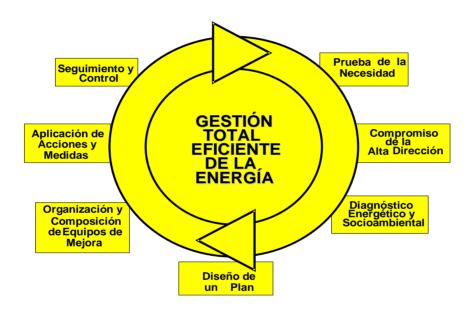
7. ¿Existe un sistema de atención diferenciada a este personal que decide en la eficiencia energética?	• No
8. ¿Se cuenta con un sistema para la capacitación especializada para los operarios y jefes que deciden en la eficiencia energética?	• No
9. ¿Se han desarrollado acciones para la concientización de todo el personal que labora en la unidad sobre el ahorro de energía?	• no.
10. ¿Se conoce cuánta energía se consume de forma fija, independientemente del nivel de las producciones que se realizan o los servicios que se prestan?	• no
11. ¿Está normado cuanto se debe consumir en energía eléctrica y combustibles para cada nivel de actividad?	• se pone un plan para el mes completo
12. ¿Se han realizado en la unidad diagnósticos energéticos en los últimos años?	• no
13. ¿Está identificado el banco de problemas energéticos y cuantificadas las principales reservas de eficiencia energética y potenciales de ahorro?	Si varios proyectos.
14. ¿Cuenta la Unidad en la actualidad con un plan de medidas e inversiones para la elevación de la eficiencia energética?	• Si en Proyecto.
15. ¿Se conoce lo que cuesta producir los portadores energéticos secundarios?	• Si.
16. ¿Ha realizado la unidad inversiones en los últimos tres años para reducir los consumos y costos energéticos?	• no.
17. ¿Se utiliza en la unidad alguna fuente de energía no renovable?	• no
18. ¿Ha recibido la jefatura y el personal técnico capacitación especializada en eficiencia y gestión energética?	• no

Anexo 2 Matriz de administración de energía y medio ambiente.

	POLÍTICA	ORGANIZACIÓN	COMUNICACIÓN	INFORMACIÓN	PLANEACIÓN	AUDITORÍA
4	Firmada,	Responsabilidad	Reporte regular y	Existencia de un	Identificación de	Programa de
	adoptada y dada	general sobre la	positivo en dos	manual de	futuros	auditoría completo.
	a conocer,	eficiencia energética y	sentidos a todos los	administración de la	requerimientos de	Auditores
	detallando un	protección al ambiente	involucrados.	energía, detallando	recursos. Inversión	experimentados,
	programa de	asignada a la	Comunicación	planes de acción,	de largo plazo en	capacitados, e
	mejoramiento	administración	interna establecida	procedimientos de	eficiencia	independientes de la
	continuo y el	superior. Asignación de	y canales para	trabajo y política.	energética y	instalación auditada.
	modo en que el	responsabilidades	realizar los reportes.	Procedimientos	protección	Los hallazgos de la
	mismo se va a	específicas a los		para condiciones de	ambiental, para	auditoría están
	lograr Revisada y	gerentes (descripción		operación	obtener ventaja	sustentados dentro
	difundida	del puesto) y		anormales o de	competitiva.	de un plan de acción
	regularmente.	valoración de		emergencia.		dinámico.
		desempeño.				
3	Política firmada,	Función de la	Diálogo positivo	Procedimientos	Revisión regular de	Programa específico
	detallando las	administración de la	establecido con	operacionales para	todas las	de auditoría del sitio
	opciones de	energía y el ambiente	autoridades	algunas actividades	necesidades de los	que genera acciones
	administración	separada de la	regulatorias.	pero no del todo	involucrados,	correctivas,
	energética y	administración en	Reportes regulares	formalizadas en un	incluyendo	reportado a la
	ambiental.	línea.	sobre temas.	manual.	legislación y	administración
	Revisión	Responsabilidades		Mantenimiento de	potenciales	superior. Auditorías
	irregular,	definidas para algunos		detalles del	ahorros en los	identifican
	conocimiento	gerentes de línea.		monitoreo y el	costos logrados por	incumplimiento con
	limitado de su			control del	una mejor	las regulaciones, la
	existencia y			consumo de	administración.	política y la

Anexos

	propósito.			energía y emisiones y descargas reguladas.	·	adecuada práctica industrial.
2	Declaración de política firmada. Sin detalles sobre cómo lograr lo fijado en la declaración. Adopción y distribución limitada.	Responsabilidad de la administración energética y ambiental delegada a un profesional con cierta experiencia o capacitación.	Diálogo irregular establecido en respuesta de solicitudes de información específicas. Sin comunicación establecida entre la administración superior y la fuerza de trabajo.	documentación son mantenidos en los casos en que se relacionan con el control financiero o actividades	Responsabilidades ambientales entendidas. La inversión se prepara para cumplir con las regulaciones o para reducir el costo de actividades en marcha.	Auditorías ambientales periódicas para asegurar el cumplimiento de las regulaciones. Auditorías energéticas limitadas a la revisión del gasto total y a las verificaciones simples
1	Establecimiento informal de lineamientos sobre la posición de la organización en materia de eficiencia energética y protección del ambiente. Inexistencia de una política específica.	Arreglos informales y carentes de coordinación para la administración energética y ambiental Responde a los hechos conforme éstos se presentan.	Comunicación irregular y canales de reporte desigualmente establecidos. La administración superior solicita información ambiental sólo después de que se presenta un	Información, documentación y registro no están coordinados y son informales. Los temas	Evaluación limitada de responsabilidades ambientales o de los potenciales ahorros en costos. Sin recursos asignados a la administración ambiental.	1. •



	Temas abordados según va haciendo falta.		incidente.			
O	No hay declaración por escrito de la política.	No hay recursos para las cuestiones de administración de la energía y el ambiente.	No hay contacto con las autoridades regulatorias o el público en general. Falta de conocimiento o atención en los asuntos ambientales.	Existencia escasa o nula de documentación. Pobres reportes de uso de la energía, ausencia de monitoreo ambiental.	Desconocimiento del ambiente. Obligaciones o ahorros potenciales por mejorar la eficiencia energética.	No se lleva a cabo ninguna auditoría administrativa.

Anexo.3 Gestión total eficiente de la energía

