

Facultad de Ingeniería Mecánica. Colectivo de Mecánica Aplicada.

Trabajo de Diploma

Estimación de la Vida Útil de los tubos de las Calderas de la CTE "Carlos Manuel de Céspedes" para diferentes materiales de los tubos.

Autor: Mayren Rivero Castellanos

Tutores: Dr.C. Rafael Antonio Goytisolo Espinosa

Dr.C. Eduardo Concepción Morales. M.Sc. Vladimir Carrera Martínez

Junio 2012 "Año 54 de la Revolución"

Pensamiento

Hay hombres que luchan un día y son buenos,
hay hombres que luchan un año y son
mejores,
hay quienes luchan muchos años y son muy
buenos,
Pero hay los que luchan toda la vida, esos son
los imprescindibles

CHE

Agradecimientos

A mis padres:

A mis padres que es lo más bello que jamás he conocido. Ya que todo lo que soy, se lo debo a ustedes. Atribuyo todos mis éxitos en esta vida a la enseñanza moral, intelectual y física que recibí de ustedes. Gracias por guiarme apoyarme en todos los momentos de mi vida, por su perseverancia, dedicación y apoyo incondicional gracias por darme la vida.

A mi hermano:

A ti Luisi, que desde que llegaste a este mundo eres tan importante en mi vida como mi propio corazón, aunque en ocasiones tu no te percates de que me duele lo que me haces yo se que en ese corazoncito hay mucho cariño para mí.

A mi novio:

A ti, Javier, Por enseñarme que la vida es mucho más que un instante y que está llena de tropiezos a los que hay que sobreponerse gracias por tu amor.

A mis familiares:

Por estar siempre cuando los necesité y por ayudarme a ser una mejor persona, gracias por su apoyo y confianza. En especial a mi tía la loca Marieta que le encanta andar de viaje con sus sobrinos y llegar al lugar más intrincado por cumplir nuestros caprichos. Y mi primo Yaser por ser el super primo el cual era mi gran ejemplo para llegar a este final que estoy llegando hoy.

A mis profes:

Por inculcarme tantos valores ayudándome a ser un profesional comprometido con su profesión, en especial a todos aquellos que me apoyaron incondicionalmente en mi tesis especialmente Eduardo, pero sobre todo a mi tutor Goytisolo por estar a mi lado siempre que lo necesitaba el que en muchas ocasiones me hacia sonreír aunque estuviera preocupada, gracias por haberte conocido y convertirte en un gran ejemplo para mí. Y aunque en un futuro por cosas de la vida no estemos tan cerca, nunca olvides lo mucho que aprendí a

A mis amigos:

Gracias por dejarme gozar de las maravillas de la amistad y por tantos buenos momentos que vivimos todos juntos que se quedaran en mi memoria para contarles a todos con orgullo de los grandes amigos que hice en estos años. Pero en especial a Braulio que siempre me ayudo en las tareas difíciles de las que sin su ayuda no hubiera podido hacer, a Pepe por siempre estar aconsejándome, a Reinier por soportar mis malcriadeces, a mi amigo Francisco por estar en los momentos difíciles y ayudarme a salir de ellos. En fin a todos los que estuvieron a mi lado en estos años de mi carrera apoyándome y aprendiendo a sobre llevar mi carácter.

A la UCF:

Por permitirme aprovechar estos cinco años para formarme como un profesional comprometido con la Revolución. Y salir de ella con grandes recuerdos y buenos amigos.

Dedicatoria

A mis padres por darme las fuerzas para llegar al final, pero sobre todo a mi padre por no desfallecer en el afán de verme convertida en una profesinal...

Resumen

Resumen

En el presente trabajo se describe la metodología de pronóstico de la vida útil por "Creep", establecida por la Norma ISO/TR 7468-1981. Se realizó una investigación bibliográfica acerca de los criterios y expresiones empleadas por diferentes autores e instituciones al calcular las tensiones en la determinación de la vida útil por "Creep", para el caso de los tubos de los generadores de vapor. De la misma, se concluye la necesidad de utilizar la expresión exacta de los tubos de paredes gruesas del Problema de Lamé y la de incorporar en los cálculos la influencia de la temperatura de trabajo y de la diferencia de temperatura entre el borde exterior e interior de la pared de los tubos. en las tensiones y además la influencia de la temperatura en las propiedades físicas con la temperatura ya que estas influyen en el cálculo de las tensiones. Los resultados se aplicaron para los tubos de los generadores de vapor de la CTE "Carlos M. de Céspedes" para el material actual de los tubos y para otros posibles materiales obteniéndose importantes conclusiones tanto teóricas como prácticas. Se realizó además en el trabajo una valoración económica de lo que ha representado para la CTE "Carlos M. de Céspedes" las averías de los tubos concluyendo que la afectación económica ha sido importante.

Índice

INTRODUCCIÓN	1
CAPÍTULO I CARACTERIZACIÓN DE LOS DISTINTOS TIPOS DE FALLAS QUE OCURREN ELEVADAS TEMPERATURAS	A 3
1.1 Falla por Grafitización.	3
1.2 FALLA POR "CREEP".	
1.3 INTERACCIÓN DE LA FATIGA Y LA TERMOFLUENCIA.	
1.4 COMPORTAMIENTO DE LOS ACEROS A ELEVADAS TEMPERATURAS.	
1.5 Sobrecalentamiento a corto plazo.	
1.6 SOBRECALENTAMIENTO A LARGO PLAZO.	
1.7 FATIGA TÉRMICA DE LOS TUBOS.	
1.8 CORROSIÓN Y EROSIÓN DE LOS TUBOS DE LAS CALDERAS.	
1.8.1 Corrosión a altas temperaturas.	
1.8.2 Corrosión por Vanadio.	
1.8.3. Corrosión a bajas temperaturas	
1.9 CONCLUSIONES DEL CAPÍTULO I	
_	
CAPÍTULO II INFLUENCIA DEL MATERIAL, DE LA TEMPERATURA Y DE LA DIFERENCIA I TEMPERATURA ENTRE LA SUPERFICIE EXTERIOR E INTERIOR DE LOS TUBOS EN LAS TENSIONES Y EN LA VIDA PRONOSTICADA POR "CREEP"	
2.1 ANÁLISIS DE LAS EXPRESIONES EMPLEADAS POR DIFERENTES AUTORES E INSTITUCIONES AL CALC LAS TENSIONES EN LA DETERMINACIÓN DE LA VIDA ÚTIL POR "CREEP" EN EL CASO DE LOS TUBOS DE L GENERADORES DE VAPOR.	_OS
2.1.1 Estado tensional de la pared del tubo.	
2.1.2 Considerando el tubo como una bóveda de pared Delgada	14
2.1.3 Bóveda estado tensional triaxial (ETT).	14
2.1.4 Bóveda estado tensional plano (ETP).	
2.1.5 Considerando el tubo como un cilindro de pared gruesa aplicando las Ecuaciones de	
Problema de Lamé.	
2.2 OTRAS ECUACIONES PARA EL CÁLCULO DE TENSIONES.	
2.2.1 Metodología propuesta por la Universidad de New South Wales en Australia (UNSW)	
2.2.2 Metodología propuesta por el Buró Central de Generación Eléctrica (Central Electric	
Generating Board) de Canadá (CEGB)	
2.2.3 Metodología propuesta por la Central de Servicios Técnicos del Reino Unido (Centra	
Technical Services, CTS)	. 17
2.3 COMPARACIÓN ENTRE LAS DIFERENTES EXPRESIONES PARA EL CÁLCULO DE LAS TENSIONES	
2.4 CONSIDERACIÓN DE LA DIFERENCIA DE TEMPERATURA ENTRE LA SUPERFICIE INTERIOR Y EXTERIO	
LA PARED DE LOS TUBOS EN LA MAGNITUD DE LAS TENSIONES.	
2.5 PREDICCIÓN DE LA VIDA ÚTIL POR FRACTURA, BAJO CREEP EN PRESENCIA DE LA DIFERENCIA DE	10
TEMPERATURA DE LA PARED PARA EL ACERO AISI 210 A1.	19
2.5.1 Datos de los Tubos de la CTE "Carlos M. de Céspedes"	19
2.5.2 Composición química del acero actualmente utilizado en los tubos AISI 210 A1	19
2.5.3 Propiedades mecánicas en función de la temperatura	20
2.5.4 Metodología de Pronóstico de la Vida Útil por "Creep" de acuerdo con la Norma ISO/ 7468 - 1981	TR
2.6 PREDICCIÓN DE LA VIDA ÚTIL POR FRACTURA, BAJO "CREEP" EN PRESENCIA DE LA DIFERENCIA DE	Ε
TEMPERATURA DE LA PARED PARA EL ACERO 9% CR - 1% MO	
2.6.1 Composición química del acero 9% Cr - 1% Mo	38
2.6.2 Propiedades mecánicas y físicas en función de la temperatura	
2.6.3 Pronóstico de la Vida Útil por "Creep" de acuerdo con la Norma ISO/TR 7468 - 1981	
2.7 PREDICCIÓN DE LA VIDA ÚTIL POR FRACTURA, BAJO "CREEP" EN PRESENCIA DE LA DIFERENCIA DE	
TEMPERATURA DE LA PARED PARA EL ACERO 1% CR – 0,5% MO.	
2.7.1 Composición química del acero 1% Cr – 0,5% Mo	
2.7.2 Propiedades mecánicas y físicas en función de la temperatura	
2.7.3 Metodología de Pronóstico de la Vida Útil por "Creep" de acuerdo con la Norma ISO/	TR
7468 - 1981 2.8 CONCLUSIONES DEL CAPÍTULO II	
Z.O CONCLUSIONES DEL CAPITULO II	55

CAPÍTULO III. COSTO DE LAS AVERÍAS DE LOS TUBOS DE LAS UNIDADES CMC 3 Y CMC 4 DE LA CENTRAL TERMOELÉCTRICA "CARLOS M. DE CÉSPEDES"	
3.1 Introducción. 3.2. Valoración Económica de una avería por falla de tubo en las Unidades Japonesas de la	
CENTRAL TERMOELÉCTRICA "CARLOS MANUEL DE CÉSPEDES" DE CIENFUEGOS. 3.2.1 Aspectos que serán tomados en cuenta.	59
3.2.2 Cálculo del costo de una avería de un tubo en una de las Unidades Japonesa de la CTE "Carlos Manuel de Céspedes" de Cienfuegos	60
3.2.2.2 Incremento del consumo de combustible en el SEN	. 62 . 62
3.2.2.4 Costo de Diesel en el arranque. 3.2.2.5 Costo de los Materiales empleados en la reparación.	. 62
3.2.2.6 Costo de la mano de obra durante la reparación	. 63
3.3 CONCLUSIONES DEL CAPÍTULO III.	
RECOMENDACIONES	

Introducción

Introducción

Las averías o fallas en los tubos de las paredes de agua (pantallas) del horno y de los sobrecalentadores de la CTE "Carlos Manuel de Céspedes", aparecen reportadas desde el año 1980, es decir, casi desde el arranque de las unidades CMC 3 y CMC 4. Las fallas que se presentan pueden estar originadas por distintas causas: 1. "Creep". 2. "Creep" en presencia de adelgazamiento de fabricación en la pared (Durante el doblado de los codos fundamentalmente). 3. "Creep" en presencia del adelgazamiento de la pared en presencia del fenómeno erosión – corrosión. 4. Colapsación plástica. En todos estos casos al final resulta obligatorio detectar y reparar los tubos que presentan las averías, de lo contrario, la eficiencia de la instalación se ve muy afectada. La solución de estas fallas, cuando ha sido factible, se ha ejecutado durante el período de las paradas para los mantenimientos programados, sin embargo en muchas ocasiones ha sido necesario parar las unidades con el propósito principal de solucionar las averías de los tubos. El procedimiento para restablecer las cualidades de explotación de los tubos con averías, consiste en cortar la longitud del tramo donde están localizados los ponches y soldar un trozo de tubo (mocheta) en sustitución del tramo de tubo que ha sido eliminado. La consecuencia directa e inmediata, cuando existen tubos ponchados en las pantallas, es el aumento progresivo de la cantidad de agua desmineralizada que se alimenta a las calderas, lo cual se explica porque dichas fallas en los tubos producen salideros o escape de agua que no termina el proceso de formación de vapor. Por lo tanto, las averías provocan pérdidas por indisponibilidad y otras pérdidas asociadas con la reparación de las averías en cuestión, disminuyendo la eficiencia de la instalación.

La situación de las fallas en los tubos de los hornos CMC 3 y CMC 4, está presente también en casi la totalidad de las Centrales Termoeléctricas de Cuba, manifestándose de manera similar. Por otro lado, una gran cantidad de investigadores de todo el mundo se están ocupando del estudio de la vida útil en los tubos de las centrales termoeléctricas con el fin de minimizar las averías y reducir los gastos que hoy se mantienen en el ámbito mundial. Los estudios encaminados hacia la extensión de la vida útil de las centrales termoeléctricas se fundamentan en que:

Hay un aumento significativo del costo de las nuevas Centrales Termoeléctricas, para idénticas capacidades generadoras.

El empeoramiento de las propiedades de los combustibles afecta directamente la longevidad de los distintos componentes de los bloques electro energéticos.

Los especialistas de la CTE encargados de la reparación y mantenimiento de los bloques CMC 3 y CMC 4 siempre que ocurre una avería realizan una valoración de las posibles causas que provocan la falla, con criterios técnicos bien fundamentados. Sin embargo, en estos más de 30 años (1980 – 2011) en que vienen ocurriendo las fallas en los tubos mencionados no se ha logrado establecer y aplicar una metodología, que tomando en cuenta los parámetros geométricos, material, temperaturas, etc. permita establecer un pronóstico de vida de los tubos para cada una de las averías, que conduzca al esclarecimiento de las verdaderas causas de las fallas y por consiguiente a la aplicación de la medidas correctivas necesarias y que contribuya a realizar una adecuada selección del material de los tubos a adquirir para la central. Lo antes expuesto constituye el Problema Científico a abordar en el presente trabajo.

En el presente trabajo, como contribución a la solución del Problema Científico planteado se propusieron los siguientes Objetivos Específicos:

Recopilar la Documentación Técnica lo más actualizada posible sobre el estado del arte de las fallas de los tubos de Calderas en el ámbito mundial, nacional y de la CTE "Carlos Manuel de Céspedes".

Desarrollar y/o perfeccionar la Metodología para la determinación del tiempo de Vida Útil de los Tubos por "Creep", incorporando para el cálculo de las tensiones la influencia de la temperatura en las propiedades físicas y mecánicas de los aceros y la diferencia de temperatura entre la superficie exterior e interior de los tubos.

Aplicar estas Metodologías al Pronóstico de Vida Útil de los Tubos de las Calderas de la CTE "Carlos Manuel de Céspedes" para diferentes materiales utilizados en los tubos de calderas.

Recopilar datos para la determinación de los gastos en los que se incurren al producirse una avería en los Tubos de las Calderas de la CTE "Carlos Manuel de Céspedes" y los costos totales de lo que estas averías han representado para la CTE.

Capítulo I Caracterización de los distintos tipos de fallas que ocurren a elevadas temperaturas.

1.1 Falla por Grafitización.

A temperaturas superiores a los 427 °C el acero al carbono está sujeto a la Grafitización, por encima de 875°F (468,3 °C) los aceros al Carbono aleados con Molibdeno son afectados de manera similar. El Carbono normalmente está presente en el acero en forma de carburos que pueden transformarse en grafito en un largo período de tiempo. Esta transformación puede tomar lugar preferentemente en las zonas afectadas por el calor o aquellas que hayan sido soldadas, o sobre líneas de tensiones, que forman un tipo de cadenas de Grafitización. Un ejemplo de esto es mostrado en la (Figura 1.1). (Bilmes, 1999)

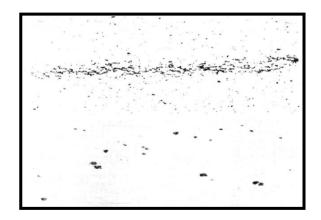


Figura 1.1 Ejemplos de la Grafitización del tipo de cadena, 100 X (superior).

Los conductos de aceros al Carbono y los de acero aleado al Molibdeno, particularmente cuando operan a temperaturas superiores a los 800°F (426 °C) y 875°F (468,3 °C) respectivamente, han experimentado la Grafitización del tipo de cadenas resultando en una falla o en la necesidad de la reparación o el reemplazo. Debido a estos problemas, se ha evitado por muchos años el empleo de los componentes de conductos de aceros al Carbono Molibdeno y ha estado limitado el uso de los conductos de acero al Carbono que se exponen a 800°F (426 °C). Para servicios de altas temperaturas el uso de los aceros que contienen la mitad del porciento de cromo o más, eliminan en gran medida el peligro de la Grafitización. Las tuberías de acero al Carbono y las de aceros al Molibdeno no experimentan una tendencia similar frente a la Grafitización como los conductos. La Grafitización ocasionalmente encontrada en tuberías está usualmente en forma de nódulos bien

dispersos (Figura 1.1) los cuales no debilitan el acero. Las tuberías de acero al Carbono y de aceros al Molibdeno pueden, sin embargo, ser usadas en aplicaciones cuando, la temperatura alcanza los 850°F (454 °C) y 900°F (482,22 °C) respectivamente.

1.2 Falla por "Creep".

Una gran cantidad de fenómenos metalúrgicos de importancia depende fuertemente de la temperatura a la que se originan, como es el caso de la Termofluencia ("Creep"), que además de la temperatura, juegan un papel importante los esfuerzos a los que se ven sometidos los materiales y el tiempo de operación (Feodosiev, 1985). En este caso podemos definir el fenómeno de la Termofluencia como: el flujo plástico de los metales, que se presenta cuando se le somete a cargas virtualmente constantes, temperaturas ligeramente por encima de la de recristalización del metal o aleación durante períodos largos de tiempo. La estructura interna del metal es otra variable que ejerce influencia en el fenómeno de la termofluencia. Se ha encontrado que el espacio de las bandas de deslizamiento aumenta con el incremento de la temperatura o con la disminución de la tensión. En la proximidad de los límites de granos se producen fenómenos complejos de deformación. El tamaño de la deformación depende de la tensión y la temperatura. La disminución de la velocidad de fluencia en la primera etapa es debido a la presencia de un mayor número de subgranos, al progresar la deformación. (Bilmes, 1999), (NRIB-397, 1982)

Otros de los principales procesos que se observan en los límites de granos durante la termofluencia a temperaturas elevadas es la formación de pliegues y grietas. Se han observado dos tipos de fracturas intergranulares en metales sujetos a condiciones de termofluencia, cuando se presenta el resbalamiento de los límites de granos las grietas se pueden iniciar en los puntos triples que se forman al coincidir tres límites de granos. El otro tipo de fractura intergranular se caracteriza por la formación de huecos en los límites de granos especialmente en aquellos que son transversales a las tensiones de tracción. Los huecos van creciendo y coalecen en una grieta intergranular. Este tipo de fractura es predominante cuando la tensión es baja, y la rotura se produce después de transcurrido un periodo largo de tiempo. A una temperatura $T=0.5 \cdot T_f$ predomina la etapa de fluencia secundaria o de estado estacionario, como consecuencia de un equilibrio entre el endurecimiento del material por deformación y la recuperación del metal. Realmente no existe una

relación funcional sencilla entre la velocidad de fluencia estacionaria y la tensión ya que esta última depende del desarrollo de las transformaciones de la estructura que se genera durante la termofluencia.

La deformación por termofluencia puede producir cambios considerables en las dimensiones de un componente de tal forma que lo inhabilite parar continuar en el servicio. En otras ocasiones la termofluencia puede provocar la fractura del material donde este tipo de falla se conoce como "falla por tensión", esta se identifica con facilidad, muchas veces se refleja como una deformación localizada, y varias grietas que normalmente se presentan en forma intergranular.

En dependencia del tipo de aleación, la fractura puede ser frágil o dúctil. La fractura frágil es de carácter intergranular y sin o con poca deformación visible. Las fracturas íntergranulares se inician en puntos triples de los límites de grano con fases secundarias o intersecciones o más límites de granos. Se pueden formar además cavidades o vacíos por termofluencia, sin necesidad de una intersección de los límites de grano. Este fenómeno se denomina Cavitación por Termofluencia.

El tipo de fractura no solo depende de la temperatura, sino también de la velocidad de deformación. Por lo menos si la temperatura es constante, la fractura ya sea intergranular o transgranular dependerá de la velocidad de deformación y por otro lado si la velocidad de deformación es constante el tipo de fractura dependerá de la temperatura. En general se pude decir que las velocidades bajas de termofluencia tiempos largos de ruptura o temperaturas altas, promoverán el desarrollo de fracturas intragranulares.

El conocimiento del proceso de termofluencia en los componentes críticos de los generadores de vapor es un factor importante en las operaciones adecuadas de dichos sistemas. La deformación que tiene lugar a lo largo de un período de tiempo prolongado, como resultado de las tensiones aplicadas a una temperatura elevada, constituye el proceso típico de termofluencia.

La termofluencia y la fractura por tensión son dos procesos activados térmicamente; en ambos se producen deslizamientos de los límites de grano que provocan agrietamiento entre ellos. Se puede decir que mientras más elevada sea la temperatura de fusión del metal o de la aleación, mayor será su resistencia a la termofluencia o a la rotura por tensión.

La necesidad de contar con materiales que resistan a temperaturas elevadas durante su funcionamiento en largos períodos de tiempo, deberá conducir a corto plazo al desarrollo de nuevas aleaciones y al estudio intenso de las propiedades de los materiales metálicos que se exponen a la acción simultánea de esfuerzos de trabajo, altas temperaturas y agentes corrosivos que aporta el medio de servicio.

1.3 Interacción de la fatiga y la termofluencia.

Cuando los metales son expuestos a cargas cíclicas mientras operan con su rango de "Creep", el efecto de "Creep", puede reducir la vida de la fatiga. Los períodos de tiempo mantenidos a alta temperatura permiten la aparición del "Creep", ocasionando el detrimento de la vida a la fatiga. (Bilmes, 1999)

El problema de la interacción de la fatiga y el "Creep", es muy compleja y dificulta la formulación de un modelo básico consistente que pueda ser evaluado en la práctica durante un ciclo de operación en el intervalo de temperaturas del "Creep", y que permita la obtención de datos sobre propiedades del material las cuales puedan ser usadas en el modelo. (Taipa y Omani, 1986)

1.4 Comportamiento de los aceros a elevadas temperaturas.

A temperaturas que exceden los 343 °C los aceros sufren un gradual decrecimiento de su tenacidad y su resistencia a la rotura. A altas temperaturas, la fatiga en el material no es solo función de las tensiones aplicadas sino también del tiempo al que permanece el material en el entorno de trabajo, las tensiones y bajo la incidencia de la temperatura. En este gran intervalo de temperatura, el metal se deformará continuamente así como también a tensiones mucho menores que la tensión de rotura, produciéndose el fenómeno conocido por "Creep". (Taipa y Omani, 1986)

Para poder predecir el comportamiento de los aceros a elevadas temperaturas es necesario desarrollar ensayos de "Creep" a diferentes niveles de tensiones y temperaturas y por períodos de tiempo, tan prolongados como sea posible y realizar tantas pruebas, y extrapolaciones como sean necesarias para poder establecer valores de resistencia a la deformación por "Creep" y resistencia a la rotura. La vida por "Creep", basada en ensayos de este tipo aparecen especificadas para diferentes tipos de aceros en la Norma ISO /TR 7468-1981, la cual será utilizada en el presente trabajo. (ISO/TR 7468, 1981)

Los aceros al Carbono comienzan a perder resistencia por encima de los 426,66 °C, y para 454,44 °C ya ha perdido la mitad de su valor de la temperatura del cuarto. Las aleaciones ferríticas de bajo cromo comienzan a perder resistencia por encima de los 426,66 °C, y 537,77 °C ya han perdido la mitad de su valor. La resistencia y la ductibilidad de los aceros a altas temperaturas puede ser fuertemente afectada por el tamaño del grano, el trabajo en frío, tratamiento en caliente y otras variables. Los materiales suministrados así como el equipamiento técnico tienen que ser cuidadosamente dado en consecuencia con estos factores, su manufactura y sus procesos de fabricación. (Taipa y Omani, 1986)

1.5 Sobrecalentamiento a corto plazo.

Tales fallas son el resultado de la exposición a temperaturas significativamente superiores a la indicada por diseño, o debido a la sucesión de eventos anormales tales como irregularidad en el flujo de agua o de vapor. Las fallas de los tubos, a corto plazo exhiben una considerable elongación la cual se muestra por sí misma por un gran aumento del diámetro, particularmente en el diámetro interior, y una considerable reducción en el espesor de las paredes en la superficie de la fractura. La Figura 1.2 muestra la sección transversal de una pared de tubos de agua la cual experimenta un sobrecalentamiento en un corto período de tiempo. Una rotura típica es mostrada en la Figura 1.3, la misma había ocurrido en un tubo que se encontraba a corta distancia de esta sección transversal (a la que se hizo referencia anteriormente). Sobre la superficie los tubos expuestos, existe adelgazamiento causado por la combinación de la presión interna y la temperatura. La forma de huevo en el interior de los tubos es una condición típica asociada con el sobrecalentamiento a corto plazo. Estas condiciones físicas de adelgazamiento y crecimiento diametral proporcionan la más fácil y mejor forma de comprobar el grado del daño sostenido. Bajo las condiciones de sobrecalentamiento a corto plazo, los tubos no han experimentado un adelgazamiento significativo o el daño por "Creep" (deformación) por hinchazón no ha sido medido como un resultado del sobrecalentamiento. (Bilmes, 1999)

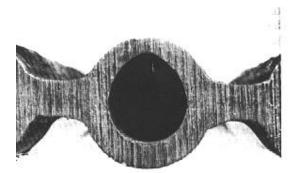


Figura 1.2 Sección transversal de un tubo expuesto a sobrecalentamiento por corto tiempo. El lado de la superficie superior del tubo se ha adelgazado y ovalado como resultado de la exposición a temperaturas excesivamente altas mientras el tubo mantenía una presión interior.

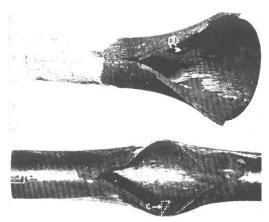


Figura 1.3 Falla por fractura de una tubería de acero al carbono causado por un sobrecalentamiento en un periodo prolongado de tiempo (superior) y falla debido a un sobrecalentamiento por un período de unos minutos (inferior).

1.6 Sobrecalentamiento a largo plazo.

Aquellos tubos que acumulan muchas horas a la exposición de temperaturas moderablemente superiores a su capacidad de resistencia a largo plazo a veces son vulnerables a la rotura por "Creep". El efecto de la deformación por elongación (hinchazón y reducción del espesor de las paredes es mucho menos pronunciada en las fallas por sobrecalentamiento a largo plazo. La Figura 1.4 muestra una falla por sobrecalentamiento a largo plazo, las fallas por rotura de "Creep" a largo plazo usualmente muestran la evidencia de un agrietamiento secundario (intragranular) en adición a las principales grietas asociadas. (Bilmes, 1999)

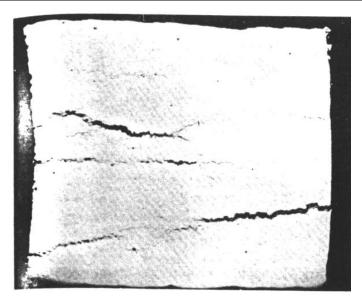


Figura 1.4 Macroestructura de un conducto de pared gruesa de acero al Carbono Molibdeno el cual ha fallado debido a los esfuerzos de ruptura en un periodo largo de tiempo.

1.7 Fatiga Térmica de los tubos.

También la fatiga térmica y choques térmicos son términos que se usan parar denotar los efectos de los cambios de temperaturas o exposiciones alternativas a bajas y altas temperaturas, sobre la vida del material. La diferencia entre fatiga térmica y choques térmicos radica principalmente en los cambios de temperatura y en la severidad del gradiente de temperatura. Es decir cuando la vida de servicio es determinada por el número de ciclos térmicos, la rotura se dice que es debido a Fatiga Térmica. Sin embargo, cuando la severidad del gradiente de temperatura o el rápido cambio de temperatura es la causa principal de la rotura se dice que es debido a un Choque Térmico. En sí, que la rotura se deba a un choque térmico o a una fatiga térmica dependerá del material. El mismo ciclo de temperatura puede tener un efecto de fatiga térmica en un material dúctil y un efecto de choque térmico en un material frágil. Las fatigas y choques térmicos pueden ser por calentamiento o por un enfriamiento súbito, recibiendo los nombres de choques calientes y choques fríos. Los calentamientos súbitos localizados, producen esfuerzos de compresión en las zonas calentadas, los cuales pueden ocasionar una deformación permanente. Posteriormente cuando desciende la temperatura pueden quedar tensiones residuales, que si son de suficiente magnitud pueden producir roturas por deformación plástica que acarrean normalmente agrietamiento intragranular o por fatiga térmica o de corrosión que pueden producir propagación transcristalina de la grieta. (Rogers, D.K. and Sidey D, 1982).

1.8 Corrosión y Erosión de los Tubos de las Calderas.

1.8.1 Corrosión a altas temperaturas.

Los compuestos que provocan corrosión a altas temperaturas son los siguientes:

- El Vanadio, el cual puede formar pentóxido de Vanadio y vanadatos de bajo punto de fusión.
- La combinación del Sodio (Na) y el Vanadio (Va) es un peligro potencial de corrosión a altas temperaturas. Si el contenido de Na₂O > V₂O₅, existe gran posibilidad de que ocurra la formación de vanadatos de bajo punto de fusión; Si Na₂O < V₂O₅, se puede reducir la posibilidad de corrosión a elevadas temperaturas ya que se forman compuestos con altos puntos de fusión.
- El contenido de Azufre favorece la formación de elementos sulfatados de bajo punto de fusión.
- El contenido de Níquel puede dar origen a la formación de vanadatos de Níquel, con bajo punto de fusión.
- El ión Cloruro forma HCL que reacciona con los óxidos de Azufre y el ácido formado ataca el metal, surge el Cloruro de Hierro todo lo cual produce un severo ataque íntergranular en la superficie.

La presencia del Níquel en las aleaciones de alta temperatura es necesaria para la resistencia, mientras que las aleaciones con alto contenido de Níquel y Cromo pueden ser totalmente resistentes al ataque de las cenizas del fuel. El elevado costo de este material se justifica por el alargamiento de la vida útil, aunque esto no es siempre predecible. (Bilmes, 1999)

1.8.2 Corrosión por Vanadio.

Cuando la ceniza contiene Vanadio y esta se funde y deposita sobre la superficie del tubo, el mecanismo de la corrosión producido se puede desarrollar por tres vías:

- 1. Ataque alternativo; las escorias fundidas disuelven la capa de oxido protectora exponiendo el metal no pasivo a repetidas reoxidaciones
- 2. Ataque en zonas localizadas; las sustancias ácidas penetran la capa protectora y producen bajo pH.
- 3. Ataque superficial; los compuestos de la ceniza funden dentro de la masa metálica distorsionando la estructura cristalina y pueden provocar fallas mecánicas.

1.8.3. Corrosión a bajas temperaturas.

Este tipo de corrosión se refiere a la que ocurre en la superficies (frías) de salida del calentador de aire, la cual se encuentra en la región de temperatura más baja de los gases, así como también la del medio de trabajo (el aire). Este tipo de corrosión está determinado por la acción de la solución de ácido sulfúrico sobre el metal en presencia de una película de humedad sobre la superficie.

Los factores que intensifican la corrosión a baja temperatura son: la presencia en los gases de vapores de ácido sulfúrico H₂SO₄ y la temperatura de los gases de escape.

Tabla 1.1 Contenido de Vanadio y Sodio en los petróleos residuales

- and a second of tanaday				• • • • •	7		3. 3. 3. 3. 3 3	
	Va	Na	Procedencia	Va	Na	Procedencia	Va	Na
Procedencia	(mg/l)	(mg/l)	(mg/l) (mg/l)		Procedencia	(mg/l)	(mg/l)	
EU 1	13	350	Venez. 1	300	10	URRS 1	7	52
EU 2	6	120	Venez. 2	57	72	URRS 2	44	29
EU 3	11	88	Venez. 3	3	93	URRS 3	53	40
Méx. 1	109	24	M. Orient. 1	7	1	África	55	22
Méx. 2	103	10	M Orient. 2	173	1	África 2	7	1
Méx. 3	84	20	M Orient. 3	17	8			
Mex. 4	91	20	Crud.	99	360			
			Varadero					

Durante la combustión, el Azufre del combustible SO₂ en el núcleo de la llama el cual se oxida hasta SO₃ en presencia de exceso de aire. El SO₃ puede destruirse sólo con elevadas temperaturas. El proceso general de formación y destrucción del SO₃ en la zona de la llama se puede expresar por la siguiente expresión:

Donde: k_1 y k_2 constantes, de la velocidad de reacción directa e inversa, normalmente $k_1 > k_2$. En resumen, en la periferia de la llama se forma una concentración notable de SO_3 la cual, después de concluida la reacción hasta la salida del horno, disminuye puesto que en esa zona, solo tiene lugar la reacción inversa.

Sobre la superficie de calentamiento que tengan deposiciones que se encuentren a elevadas temperaturas (600 --- 700 °C) unido a la presencia de exceso de aire en los gases, puede tener lugar la reoxidación de cierta cantidad de SO₂ hasta SO₃

reforzado con la presencia de catalizadores en las deposiciones como son los sulfatos de Hierro y las partículas de hollín. En la zona donde la temperatura de los gases es menor que $500\,^{\circ}$ C comienza la formación de los vapores de ácido sulfúrico, debido a la reacción del SO_3 con el vapor de agua que se encuentra en los gases: $SO_3+H_2O-------H_2SO_4$ (vapores).

Este proceso se termina a una temperatura alrededor de los 260 °C. De esta forma, la superficie de baja temperatura se encuentra bañada por gases que contienen vapores de ácido sulfúrico, con una concentración no muy alta. La corrosión puede comenzar bajo las condiciones en las que la temperatura de la pared y la capa se encuentran por debajo de la temperatura de condensación de los vapores de humedad (agua) o los vapores de ácido sulfúrico, en correspondencia con sus presiones parciales en los gases. La temperatura a la cual comienza la condensación de la humedad sobre la superficie se llama temperatura termodinámica del punto de rocío ($T_{rocío}$) o simplemente temperatura de rocío. La temperatura del punto de rocío de los vapores de agua, a su presión parcial en los productos de la combustión $P_{H2O} = 0,1-0,15$ bares, es del orden de:

$$T_{rocio} = 45 - 54$$
 °C (1.1)

Debido a la presencia de vapores de ácido sulfúrico en la corriente de los gases, la temperatura de rocío ácido $T^{s}_{rocío}$, aumenta considerablemente y puede alcanzar

$$T^{\rm s}_{rocio} = 140 - 160 \,{}^{\rm o}{\rm C}$$
 (1.2)

Con el aumento del contenido de Azufre en el combustible y el coeficiente de exceso de aire. La formación de SO₃ se incrementa lo cual provoca un crecimiento en el valor del punto de rocío.

La velocidad de la corrosión del metal está relacionada con la temperatura de la pared del tubo. La corrosión del metal ocurre por la presencia de una capa de humedad sobre su superficie, la cual contiene H₂SO₄. La velocidad de corrosión es proporcional a la velocidad de condensación del ácido sulfúrico y su intensidad depende del porciento de H₂SO₄ que se encuentre en la película condensada sobre la superficie. A medida que la temperatura sea más baja en la capa, aumenta la masa de humedad y disminuye la parte o proporción del ácido sulfúrico. La velocidad de corrosión del metal en la zona de temperatura más peligrosa 90 - 110°C, disminuye considerablemente al reducir el exceso de aire en los productos de la

combustión, lo cual está relacionado con la brusca disminución de la formación de SO₃. Igualmente, si se reduce el contenido de Azufre en el combustible disminuye la velocidad de corrosión. Cuando se quema un combustible sólido en los gases de chimenea existen una cantidad de partículas, de uniones de Calcio y óxidos de Vanadio, que tienen propiedades alcalinas. Como resultado de la interacción de las partículas volátiles (VOLANTES) y los vapores del ácido sulfúrico, ocurre una absorción parcial del ácido de Azufre, disminuyendo su concentración en los gases y por ende su intensidad de corrosión. Al aumentar el contenido de ceniza en el combustible, incrementa el valor del exponente n, disminuyendo la temperatura de rocío ácido. Para eliminar la corrosión a baja temperatura, se recomienda que:

$$T_{pared} = T_{rocio} + (10 - 15) \, ^{\circ}\text{C}$$
 (1.3)

1.9 Conclusiones del Capítulo I.

- Como resultado de la búsqueda bibliográfica se logró recopilar un volumen elevado de documentación técnica sobre el estado del arte de las fallas metalúrgicas en general, todas ellas presentes en los tubos de Calderas en el ámbito mundial, nacional y algunas de ellas presentes en la CTE "Carlos Manuel de Céspedes".
- 2. Se profundizó en particular en la falla por "Creep" objeto de estudio específico del presente trabajo donde se localizó información relacionada con el proceso de falla en sí y con la predicción de la vida útil bajo este fenómeno.

Capítulo II Influencia del material, de la temperatura y de la diferencia de temperatura entre la superficie exterior e interior de los tubos en las tensiones y en la vida pronosticada por "Creep".

2.1 Análisis de las expresiones empleadas por diferentes autores e instituciones al calcular las tensiones en la determinación de la vida útil por "Creep" en el caso de los tubos de los Generadores de Vapor.

2.1.1 Estado tensional de la pared del tubo.

Uno de los aspectos en los cuales existe una gran diversidad de criterios entre las distintas instituciones y autores que investigan este tipo de avería es en lo referente a la expresión empleada para el cálculo de las tensiones en la pared de los tubos. En la estimación de la vida útil por "Creep" según la Norma ISO/TR 7468-1981, desempeña un papel importante el valor de la tensión de trabajo. A continuación se realizará un análisis de las expresiones utilizadas en la literatura técnica para calcular la tensión en los tubos sometidos a presión interior y calentamiento exterior:

2.1.2 Considerando el tubo como una bóveda de pared Delgada.

El estado tensional que existe en la pared de los tubos de pared delgada es un estado tensional triaxial en el cual las tensiones principales son:

$$\sigma_1 = \sigma_t = \frac{p \cdot D}{2 \cdot h}; \qquad \sigma_2 = \sigma_m = \frac{p \cdot D}{4 \cdot h}; \qquad \sigma_3 = \sigma_r = -p$$
 (2.1)

La tensión equivalente en la pared se puede obtener considerando el estado tensional triaxial: $\sigma_3 \neq 0$ ó Plano: $\sigma_3 = 0$. Esta última consideración es posible asumirla dado el hecho de que la presión que soportan las bóvedas es relativamente pequeña, por su condición de poseer la pared delgada (Feodosiev, 1985). Esta consideración es aplicada cuando la relación D/h \geq 20, (Jusmatulin, 1990). Para obtenerla se utilizará la Cuarta Hipótesis de Resistencia o de la Energía Potencial Unitaria de Deformación de la Distorsión (Hipótesis de Huber-Mises-Henke).

2.1.3 Bóveda estado tensional triaxial (ETT).

$$\sigma_{eq} = \sqrt{\sigma_1 + \sigma_2 + \sigma_3 - \sigma_1 \cdot \sigma_1 - \sigma_2 \cdot \sigma_3 - \sigma_3 \cdot \sigma_1}$$
 (2.2)

Sustituyendo los valores de las tensiones principales en este caso:

$$\sigma_{eq} = \sqrt{\left(\frac{p \cdot D}{2 \cdot h}\right)^2 + \left(\frac{p \cdot D}{4 \cdot h}\right)^2 - \mathbf{P} - \left(\frac{p \cdot D}{2 \cdot h}\right) \cdot \left(\frac{p \cdot D}{4 \cdot h}\right) + \left(\frac{p \cdot D}{4 \cdot h}\right) \cdot \mathbf{P} - \mathbf{P} - \left(\frac{p \cdot D}{2 \cdot h}\right) \cdot \left(\frac{p \cdot D}{4 \cdot h}\right) \cdot \mathbf{P} - \mathbf{P} - \mathbf{P} - \left(\frac{p \cdot D}{2 \cdot h}\right) \cdot \left(\frac{p \cdot D}{4 \cdot h}\right) \cdot \mathbf{P} - \mathbf{P}$$

$$\sigma_{eq} = \frac{\sqrt{3}}{4} \cdot \frac{p \cdot D}{h} \sqrt{1 + 4 \cdot \left(\frac{p \cdot D}{2 \cdot h}\right)^2 + \left(\frac{p \cdot D}{4 \cdot h}\right)^2 - \left(\frac{p \cdot D}{2 \cdot h}\right) \cdot \left(\frac{p \cdot D}{4 \cdot h}\right)}$$
(2.3)

2.1.4 Bóveda estado tensional plano (ETP).

De la ecuación (2.2) para $\sigma_3 = 0$ se tiene que:

$$\sigma_{eq} = \sqrt{\left(\frac{p \cdot D}{2 \cdot h}\right)^2 + \left(\frac{p \cdot D}{4 \cdot h}\right)^2 - \left(\frac{p \cdot D}{2 \cdot h}\right) \cdot \left(\frac{p \cdot D}{4 \cdot h}\right)}$$
 (2.4)

De donde:

$$\sigma_{eq} = \frac{\sqrt{3}}{4} \cdot \frac{p \cdot D}{h} \tag{2.5}$$

2.1.5 Considerando el tubo como un cilindro de pared gruesa aplicando las Ecuaciones del Problema de Lamé.

Es necesario aclarar que ésta es la solución exacta para cualquier relación de D/h, solo que en el caso de las relaciones grandes el problema se puede simplificar utilizando la Teoría Membranal o Ecuación de Laplace, considerando entonces el tubo como de pared delgada (Feodosiev, 1985).

En este caso del estado tensional, considerando: $R_e = \frac{D}{2} + \frac{h}{2}$ y $R_i = \frac{D}{2} - \frac{h}{2}$

$$\sigma_{1} = \sigma_{t} = p \cdot \frac{\operatorname{Re}^{2} + Ri^{2}}{\operatorname{Re}^{2} - Ri^{2}} = p \frac{\left(\frac{D}{2} + \frac{h}{2}\right)^{2} + \left(\frac{D}{2} - \frac{h}{2}\right)^{2}}{\left(\frac{D}{2} + \frac{h}{2}\right)^{2} - \left(\frac{D}{2} - \frac{h}{2}\right)^{2}} = p \cdot \frac{D^{2} + h^{2}}{2 \cdot D \cdot h}$$
(2.6)

$$\sigma_{2} = \sigma_{m} = \frac{p \cdot Ri^{2}}{\text{Re}^{2} - Ri^{2}} = p \frac{\left(\frac{D}{2} - \frac{h}{2}\right)^{2}}{\left(\frac{D}{2} + \frac{h}{2}\right)^{2} - \left(\frac{D}{2} - \frac{h}{2}\right)^{2}} = p \cdot \frac{\mathbf{\Phi} - h^{2}}{4 \cdot D \cdot h}$$
(2.7)

$$\sigma_3 = \sigma_r = -p \tag{2.8}$$

Sustituyendo en la ecuación (2.2):

$$\sigma_{eq} = \sqrt{\left[p \cdot \frac{D^{2} + h^{2}}{2 \cdot D \cdot h}\right]^{2} + \left[p \cdot \frac{\mathbf{\Phi} - h^{2}}{4 \cdot D \cdot h}\right]^{2} + \left[p^{2} - p^{2} \cdot \frac{\mathbf{\Phi}^{2} + h^{2} \cdot \mathbf{\Phi}^{2} - h^{2}}{8 \cdot D^{2} \cdot h^{2}} + p^{2} \cdot \frac{\mathbf{\Phi} - h^{2}}{2 \cdot D^{2} \cdot h^{2}}\right]}$$

$$+ p^{2} \cdot \frac{\mathbf{\Phi} - h^{2}}{4 \cdot D^{2} \cdot h^{2}} + p^{2} \cdot \frac{\mathbf{\Phi} + h^{2}}{2 \cdot D^{2} \cdot h^{2}}$$
(2.9)

Se obtiene que:

$$\sigma_{eq} = \frac{\sqrt{3}}{4} \cdot p \cdot \frac{\mathbf{Q} + h^{2}}{D \cdot H} = \frac{\sqrt{3}}{4} \cdot p \cdot \frac{\left(\frac{D}{H} + 1\right)^{2}}{\frac{D}{H}}$$
(2.10)

2.2 Otras ecuaciones para el cálculo de tensiones.

2.2.1 Metodología propuesta por la Universidad de New South Wales en Australia (UNSW).

En la literatura se utilizan otras ecuaciones para el cálculo de las tensiones de los tubos con vista a su utilización en lo que se refiere al pronóstico de vida útil. Así por ejemplo (Zarrabi, 1993) en la metodología propuesta por la Universidad de New South Wales en Australia (UNSW), para la estimación de la Vida de los tubos de calderas en presencia del fenómeno erosión corrosión propone la siguiente ecuación:

$$\sigma = \frac{\sqrt{3}}{2} \cdot K \cdot \frac{p}{\ln[\frac{D+h}{D-h}]}$$
 (2.11)

Donde:

K es una constante que depende la forma en que la pared del tubo es adelgazada por el fenómeno erosión corrosión. Si el adelgazamiento de la pared del tubo es uniforme se propone en (Zarrabi, 1993), *K*=1. Si el adelgazamiento se produce de forma de picaduras locales aisladas *K*>1. En (Kitchin y Zarrabi, 1981 y 1982) han obtenido valores de *K* para picaduras locales aisladas en forma rectangular.

2.2.2 Metodología propuesta por el Buró Central de Generación Eléctrica (Central Electric Generating Board) de Canadá (CEGB).

En un reporte de Ontario Hidro (OH) en Toronto, Canadá (Rogers et. al. 1982) se dan otras metodologías para la estimación de la Vida Útil en presencia del fenómeno de erosión corrosión en las cuales se utilizan otras expresiones de cálculo de las tensiones. Así por ejemplo: En la metodología propuesta por el Buró Central de Generación Eléctrica (Central Electric Generating Board) de Canadá (CEGB) se propone calcular las tensiones por expresión de la tensión circunferencial \P_t en las bóvedas multiplicadas por un factor de seguridad de 1,25 o sea:

$$\sigma_{t} = 1,25 \cdot \frac{p \cdot D}{2 \cdot h} \tag{2.12}$$

Según el criterio de los autores del presente trabajo este factor de seguridad es excesivo.

2.2.3 Metodología propuesta por la Central de Servicios Técnicos del Reino Unido (Central Technical Services, CTS).

En la metodología propuesta por la Central de Servicios Técnicos del Reino Unido (Central Technical Services, CTS) (Rogers et. al. 1982) se propone simplemente calcular la tensión para la expresión de la tensión circunferencial:

$$\sigma_{t} = \frac{p \cdot D}{2 \cdot h} \tag{2.13}$$

2.3 Comparación entre las diferentes expresiones para el cálculo de las tensiones.

En la Figura 2.1 se muestran graficados los valores de σ en función de la relación D/h para las diferentes expresiones analizadas anteriormente, en el rango en que D/h varía en la práctica, o sea, $0 < D/h \le 20$. Las gráficas han sido obtenidas para una presión de p = 1 MPa. Como se aprecia, la expresión de Lamé para el cálculo de tensiones de cuerpos cilíndricos con presión interior (expresión exacta según la Teoría de la Elasticidad) proporciona valores de la tensión que se encuentran por encima de las restantes expresiones en todo el rango, con excepción de la expresión utilizada por el Buró Central de Generación Eléctrica de Canadá (CEGB) que utiliza la ecuación de las bóvedas para paredes delgadas (Ecuación de Laplace) aumentada en un 25%. De esta comparación queda claro que la ecuación de Lamé ofrece una exactitud adecuada en el cálculo de σ y por lo tanto proveerá una estimación más racional de la Vida Útil del elemento. Queda claro también que el coeficiente de 1,25 empleado por CEGB es excesivo sobre todo cuando la

relación D/h ≥ 5, lo que provocará que la Vida Útil estimada por esta metodología sea inferior a la real. De todo esto se concluye que en los análisis que serán realizados en el presente trabajo, se utilizará la Ecuación de Lamé para el cálculo de las tensiones.

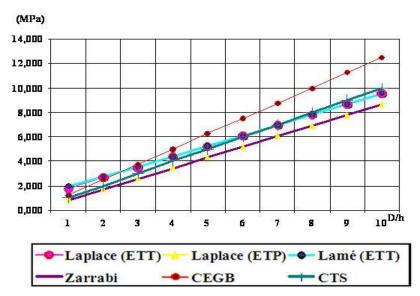


Figura 2.1 Comparación entre las diferentes expresiones para el cálculo de las tensiones.

2.4 Consideración de la diferencia de temperatura entre la superficie interior y exterior de la pared de los tubos en la magnitud de las tensiones.

En las metodologías descritas en la literatura para la estimación de la vida útil por "Creep" y otros tipos de falla en tubos, no se toma en cuenta la influencia de la diferencia de la temperatura Δt entre la superficie exterior e interior de la pared en la magnitud de las tensiones. Según la referencia (Jusmatulin, 1990), para el cálculo de la tensión en la pared (ya sea de recipientes o de tubos) tomando en cuenta la diferencia de temperatura Δt entre la superficie exterior e interior de la pared del componente en cuestión, para calentamiento exterior, se tiene que:

$$\Delta t = t_e - t_i$$

Donde: t_i = temperatura interior y t_e = temperatura exterior.

$$\sigma_{eq} = \frac{(+1)^{2}}{4 \cdot \varepsilon} \cdot \sqrt{3 \cdot p^{2} + 3 \cdot p \cdot m \cdot \Delta t + (n_{1} \cdot \Delta t)^{2}}$$
(2.14)

Donde:

$$m_{1} = \frac{E \cdot \alpha \cdot a_{1}}{1 - \mu} \quad a_{1} = \frac{2 \cdot \varepsilon}{\left(\varepsilon + 1 \right)^{2} \cdot \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right)} - 1 \quad y \quad \varepsilon = \frac{D}{h}$$
 (2.15)

P presión interior en el tubo, E Módulo de Elasticidad del material del tubo, α coeficiente de dilatación térmica del material del tubo, μ coeficiente de Poisson del material del tubo, D diámetro medio del tubo, h espesor de la pared del tubo.

Se hace necesario destacar que el hecho de que incorporar la diferencia de temperatura Δt en las expresiones de cálculo de las tensiones, juega un papel importante en el valor de las tensiones calculadas en comparación con el valor cuando no se considera la misma. Por otra parte hay que agregar que es muy importante disponer de datos de las propiedades físicas y mecánicas, tales como: E, α y μ en función de la temperatura de trabajo para el material en cuestión (Maslienkov, 1981); (Birger, 1975).

2.5 Predicción de la Vida Útil por fractura, bajo Creep en presencia de la diferencia de temperatura de la pared para el Acero AISI 210 A1.

2.5.1 Datos de los Tubos de la CTE "Carlos M. de Céspedes"

$$p = 14.32 \text{ MPa}, D = 58.60 \text{ mm}, h = 4.90 \text{ mm}$$

2.5.2 Composición química del acero actualmente utilizado en los tubos AISI 210 A1.

Según las especificaciones técnicas, el material de los tubos actuales de las calderas de la CTE "Carlos M. de Céspedes" es un acero de resistencia media que se corresponde con el acero AISI (American Iron and Steel Institute) y SAE (Society of Automotive Engineers): 210 A1, cuya composición química es:

Tabla 2.1 Composición química del acero de los tubos de la						
CTE "Carlos M. de Céspedes"						
С	Mn P S Si					
0,27	0,93	0,93 0,048 0,058 0,10 (Mínimo)				

Este acero según, las Tablas de Homologación de Aceros, se le corresponde con bastante aproximación al, acero Norma GOST Grado 25 cuya composición química según la Norma GOST (Metallurgist's Hanbook, 1965) se da en la Tabla 2.2:

Tabla 2.2 Composición química del acero Grado 25 según la Norma GOST.						
С	Mn	Р	S	Si		
0,22 - 0,30	0,50 - 0,80	0,040	0,040	0,17 – 0,37		

2.5.3 Propiedades mecánicas en función de la temperatura.

En la Tabla 2.3 se muestran las propiedades mecánicas de este acero en función de la temperatura según los datos de (Maslienkov, 1981).

Tabla 2.3 Propiedades mecánicas del Acero 25 en función de la temperatura.						
Temp. (°C)	Temp. (ºK)	σ_u (MPa)	$\sigma_{0,2}$ (MPa)	ψ (%)	δ (%)	Ksj (kJ/m`2)
20	293	510	320	67	30,7	1000
100	373	-	-	-	-	1300
200	473	505	280	61,5	21	1300
300	573	530	210	66,5	26	1200
400	673	420	200	75	25	900
450	723	330	175	76,5	27	700
500	773	255	170	76	28	700
600	873	130	100	79	36	

En la Tabla 2.4 se dan las propiedades físicas de este acero en función de la temperatura según el mismo autor (Maslienkov, 1981).

Tabla 2.4 Propiedades físicas del Acero 25 en función de la temperatura					
Temp. (°C)	Temp. (ºK)	E⋅10 ⁻⁵ (MPa)	G·10 ⁻⁴ (MPa)	μ	
20	293	2,1	8,4	0,27	11,6
100	373	2,03	7,9	0,27	12,6
200	473	1,99	7,8	0,27	13,1
300	573	1,9	7,4	0,27	13,6
400	673	1,82	7	0,2	14,1
450	723	1,72	6,75	0,3	14,6
500	773	1,6	6	0,32	14,8

Las propiedades físicas fundamentales fueron ajustadas por el método de los mínimos cuadrados. Las ecuaciones obtenidas en los ajustes son:

$$E = 2,1867309 - 0,000156 \cdot T - 5,855798 \cdot 10^{-7} \cdot T^2$$
 Para $293 \le T \le 873^0 K$ (2.16)

$$\mu = 0.297147 - 0.000192 \cdot T - 2.5 \cdot 10^{-7} \cdot T^2$$
 Para $293 \le T \le 873^0 K$ (2.17)

$$\alpha = 11,564083 + 0,008750 \cdot T - 5,601299 \cdot 10^{-6} \cdot T^2 \text{ Para } 293 \le T \le 873^{\circ} K$$
 (2.18)

2.5.4 Metodología de Pronóstico de la Vida Útil por "Creep" de acuerdo con la Norma ISO/TR 7468 - 1981.

La Vida Útil por fractura bajo "Creep" se puede calcular partiendo del Parámetro Larson Miller según los datos dados por la Norma ISO / TR7468-198. Según esta Norma para el acero AISI 210 A1 de los tubos de la CTE "Carlos Manuel de Céspedes" se tiene que:

$$P \bullet = \frac{\log t - 10,656877}{T - 500} = a + b \cdot \bullet \circ \sigma + c \cdot \bullet \circ \sigma^{2} + d \cdot \bullet \circ \sigma^{3} + e \cdot \bullet \circ \sigma^{3}$$
 (2.19)

Donde: a, b, c, d, e son constantes del ajuste de la curva. Los valores de las constantes se dan en la Tabla 2.5.

Tabla 2.5 Constantes de la ecuación de correlación.				
а	-0,68628			
b	1,459851			
С	-1,18513			
d	0,424568			
е	-0,05725			

En esta expresión de cálculo, t es la Vida Útil en horas, T la temperatura de trabajo en grados Kelvin y σ es la tensión equivalente en la pared del tubo. Esta tensión σ se calcula por la expresión 2.14 para el caso de calentamiento exterior.

Conociendo el valor de la tensión σ se pude calcular el valor del Parámetro de Larson Miller partiendo del lado derecho de la ecuación (2.19) y teniendo entonces la temperatura de trabajo T (°K) del material, se puede despejar del lado izquierdo de la misma, el tiempo de rotura en el cual dicho material a esa tensión y a esa temperatura se deformará plásticamente por el fenómeno de "Creep" alcanzando la

deformación de rotura y ésta y será la vida útil por "Creep" para esas condiciones de trabajo.

Esta ecuación del Parámetro de Larson Miller, incluyendo las ecuaciones que caracterizan las propiedades físicas del acero con la temperatura se montaron en un software hecho en MatLab para calcular la vida útil por "Creep" para cualquier material del cual se posean las constantes de correlación y para cualquier temperatura de trabajo.

En la Figura 2.2 se muestra el algoritmo empleado en el programa.

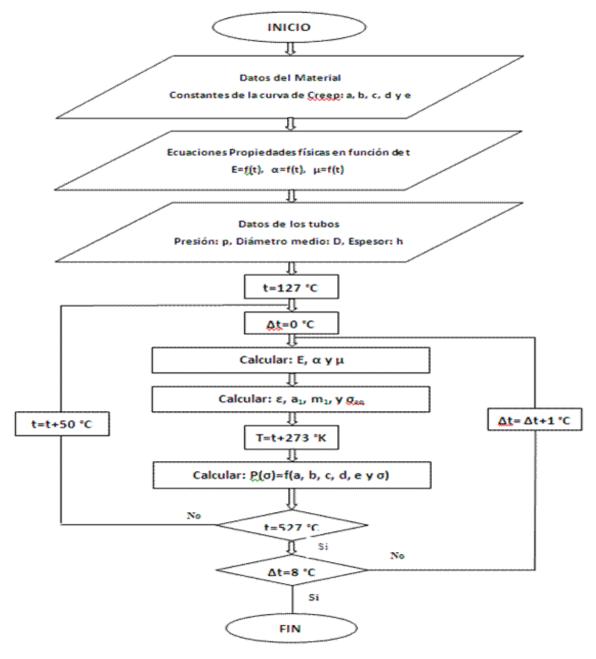


Figura 2.2 Algoritmo para la estimación de la Vida Útil por "Creep" para un material dado.

Los parámetros de los tubos de la CTE "Carlos Manuel de Céspedes" son:

 $D = 58,6 \ mm \text{ (nominal)}$

 $h = 4.9 \ mm \text{ (nominal)}$

 $p = 146 \text{ Kgf/cm}^2 = 14,323 \text{ MPa}$ (presión de diseño)

Los valores de E_T , α_T y μ_T se calculan para cada una de las temperaturas del lazo según las iteraciones sucesivas. Se realizaran los cálculos para diferentes valores de diferencia de la temperatura entre la pared exterior e interior del tubo (ΔT) desde 0 a 8 ^{o}C . Los resultados obtenidos se muestran en las Tablas 2.6 a la 2.14 para diferentes valores de T (^{o}K) y ΔT (^{o}K).

Para comprender la influencia de la Temperatura en la vida se graficó el comportamiento de esta para el acero AISI 210 A1, los resultados obtenidos se dan en la Figura 2.3.

Figura 2.3 Influencia de la temperatura en la vida por "Creep".

Como se aprecia de la gráfica mostrada, la temperatura de trabajo tiene una notable influencia en la Vida Útil por Fractura bajo "Creep". Así por ejemplo si la temperatura de la pared del tubo es de 650 °K (377 °C), la Vida Útil por Fractura bajo Creep es casi es 7 millones de horas. Sin embargo para una temperatura de 725 °K (452 °C) la Vida Útil se reduce a menos de 60 000 horas. Esto para $\Delta t = 0$ °C.

Para poder evaluar comparativamente la influencia de la temperatura de la pared y la diferencia de temperatura entre la superficie exterior e interior de la pared se realizó también el cálculo con la restantes ecuaciones mencionadas para el cálculo de las tensiones utilizadas por diferentes instituciones que no toma en cuenta la influencia de la temperatura, ni la variación de las propiedades físicas en función de esta, o sea, las ecuaciones (2.10, 2,11, 2,12 y 2,13) con el objetivo de precisar la diferencia en los valores. Los resultados se muestran en las Tablas 2.16 a 2.19.

Tabla 2.6 Resultados para los tubos de acero AlSI 210 A1 con $\Delta t = 0$ ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	87.094029	3.42886e+016
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	87.094029	1.15711e+015
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	87.094029	3.90479e+013
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	87.094029	1.31772e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	87.094029	4.44679e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	87.094029	1.50062e+009
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	87.094029	5.06401e+007
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	87.094029	1.70891e+006
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	87.094029	57669.1
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	87.094029	1946.11
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	87.094029	65.6738
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	87.094029	2.21624
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	87.094029	0.0747895
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	87.094029	0.00252386
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	87.094029	8.51705e-005
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	87.094029	2.87418e-006
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	87.094029	9.69924e-008

Tabla 2.7: Resultados para los tubos de acero AlSI 210 A1 con Δt = 1 ° C

T °K	t °C	Е	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	98.089155	1.04855e+017
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	98.106744	2.67818e+015
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	98.108275	6.82912e+013
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	98.094108	1.74056e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	98.064638	4.43934e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	98.020301	1.13435e+009
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	97.961562	2.90704e+007
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	97.888916	747958
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	97.802884	19340
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	97.704008	503.035
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	97.592850	13.1729
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	97.469984	0.347591
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	97.336001	0.00924887
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	97.191497	0.000248342
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	97.037078	6.73336e-006
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	96.873349	1.84455e-007
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	96.700922	5.10807e-009

Tabla 2.8 Resultados para los tubos de acero AISI 210 A1 con Δt = 2 ° C

T °K	t °C	Е	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	109.400428	3.16004e+017
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	109.436442	6.13114e+015
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	109.439578	1.18565e+014
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	109.410568	2.29074e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	109.350228	4.43201e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	109.259449	8.60597e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	109.139189	1.68076e+007
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	108.990467	330834
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	108.814354	6575.98
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	108.611970	132.239
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	108.384470	2.69503
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	108.133043	0.0557545
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	107.858903	0.00117265
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	107.563285	2.51093e-005
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	107.247434	5.48073e-007
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	106.912606	1.22092e-008
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	106.560058	2.77867e-010

Tabla 2.9 Resultados para los tubos de acero AISI 210 A1 con Δt = 3 °C

T °K	t °C	Е	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	120.939174	9.36095e+017
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	120.994112	1.38554e+016
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	120.998895	2.04081e+014
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	120.954642	3.00194e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	120.862597	4.4248e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	120.724121	6.55708e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	120.540676	9.80005e+006
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	120.313821	148171
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	120.045194	2272.84
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	119.736503	35.4675
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	119.389517	0.564506
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	119.006055	0.0091861
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	118.587974	0.000153177
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	118.137162	2.62276e-006
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	117.655526	4.62016e-008
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	117.144989	8.3877e-010
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	116.607474	1.5718e-011

Tabla 2.10 Resultados para los tubos de acero AISI 210 A1 con Δt = 4 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	132.646043	2.7259e+018
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	132.720208	3.09104e+016
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	132.726666	3.48277e+014
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	132.666925	3.91719e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	132.542666	4.41771e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	132.355724	5.01733e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	132.108077	5.76245e+006
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	131.801826	67193.7
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	131.439183	798.517
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	131.022455	9.70587
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	130.554031	0.121074
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	130.036367	0.00155493
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	129.471970	2.06207e-005
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	128.863391	2.83149e-007
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	128.213209	4.03594e-009
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	127.524018	5.98533e-011
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	126.798420	9.25443e-013

Tabla 2.11 Resultados para los tubos de acero AISI 210 A1 con Δt = 5 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	144.480173	7.81245e+018
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	144.573755	6.8139e+016
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	144.581904	5.89638e+014
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	144.506522	5.09127e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	144.349731	4.41075e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	144.113846	3.85442e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	143.801358	3.41502e+006
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	143.414919	30828
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	142.957316	284.869
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	142.431460	2.70656
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	141.840361	0.0265508
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	141.187114	0.000269977
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	140.474884	2.85598e-006
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	139.706886	3.15379e-008
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	138.886371	3.64682e-010
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	138.016612	4.4283e-012
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	137.100893	5.66136e-014

Tabla 2.12 Resultados para los tubos de acero AISI 210 A1 con Δt = 6 ° C

T °K	t °C	Е	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	156.412682	2.20713e+019
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	156.525800	1.48594e+017
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	156.535650	9.91117e+014
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	156.444532	6.59362e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	156.255007	4.40388e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	155.969874	2.97168e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	155.592141	2.03826e+006
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	155.125009	14293.4
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	154.571845	103.046
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	153.936160	0.767763
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	153.221589	0.00594126
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	152.431870	4.79737e-005
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	151.570822	4.05962e-007
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	150.642325	3.61469e-009
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	149.650307	3.39915e-011
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	148.598719	3.3873e-013
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	147.491525	3.588e-015

Tabla 2.13 Resultados para los tubos de acero AISI 210 A1 con Δt = 7 ° C

T °K	t °C	Е	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	168.422660	6.15622e+019
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	168.555392	3.20948e+017
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	168.566949	1.65533e+015
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	168.460032	8.51214e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	168.237646	4.39712e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	167.903070	2.29844e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	167.459832	1.22427e+006
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	166.911683	6689.71
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	166.262567	37.74
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	165.516601	0.22115
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	164.678042	0.00135379
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	163.751269	8.70402e-006
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	162.740756	5.90705e-008
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	161.651050	4.25128e-010
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	160.486752	3.25855e-012
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	159.252493	2.67047e-014
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	157.952918	2.34827e-016

Tabla 2.14 Resultados para los tubos de acero AISI 210 A1 con Δt = 8 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	180.494644	1.69774e+020
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	180.647039	6.87329e+017
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	180.660307	2.74903e+015
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	180.537553	1.09579e+013
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	180.282222	4.39043e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	179.898078	1.78278e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	179.389168	739494
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	178.759792	3157.27
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	178.014473	13.98
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	177.157931	0.0645767
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	176.195046	0.000313507
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	175.130837	1.60886e-006
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	173.970434	8.77701e-009
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	172.719049	5.11705e-011
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	171.381954	3.20361e-013
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	169.964460	2.16338e-015
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	168.471891	1.58214e-017

Si se analizan las Tablas anteriores obtenidas para el acero utilizado actualmente en los tubos de las calderas de la CTE "Çarlos M. de Céspedes", AlSI 210 A1, se puede observar que por ejemplo a la temperatura de 600 °K, en la medida en que aumenta la diferencia de temperatura Δt entre la superficie exterior e interior de los tubos, desde 0 °C hasta 8 °C, la vida de los tubos se reduce drásticamente. Esto se aprecia más claramente en la Tabla 2.15.

Т	Tabla 2.15 Influencia de Δt en la vida en horas											
Δt °C 0 1 2 3 4 5 6 7 8												
Vida en horas 57 669 19 340 6 576 2 272 798 284 103 37 14												

En la Figura 2.3 se han ploteado los resultados obtenidos en una misma gráfica de vida en horas contra temperatura en ${}^{\circ}$ K, para poder evaluar la influencia de la temperatura y del Δt de la pared. Como se puede apreciar de dicha gráfica, para la temperatura de T = 500 ${}^{\circ}$ K la diferencia de temperatura Δt no influye en la vida de los tubos. Esta temperatura representa un punto de inflexión en la influencia de Δt , para temperaturas menores que esta el incremento de Δt resulta favorable en la vida y por encima de esta desfavorable.

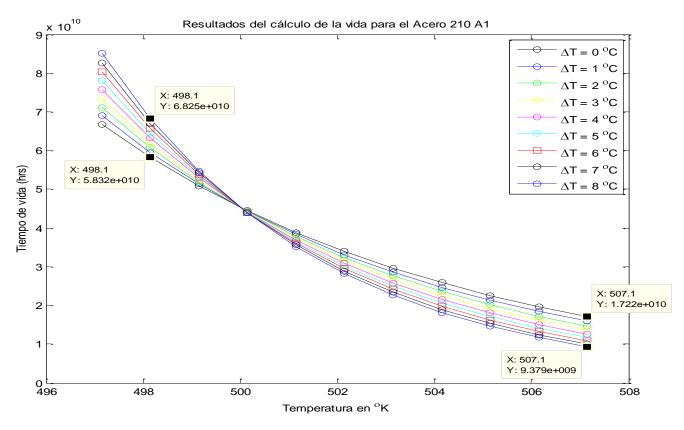


Figura 2.3: Comportamiento de la Vida Útil por "Creep" del Acero 210 A1 con diferentes valores de ΔT.

$$\sigma = \frac{\sqrt{3}}{4} \cdot p \cdot \frac{(\mathbf{Q} + h)^2}{D + h}$$

Tabla 2.16: Resultados para los tubos de acero AISI 210 A1 con la ecuación anterior del Problema de Lamé.

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	87.094029	3.42886e+016
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	87.094029	1.15711e+015
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	87.094029	3.90479e+013
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	87.094029	1.31772e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	87.094029	4.44679e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	87.094029	1.50062e+009
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	87.094029	5.06401e+007
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	87.094029	1.70891e+006
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	87.094029	57669.1
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	87.094029	1946.11
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	87.094029	65.6738
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	87.094029	2.21624
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	87.094029	0.0747895
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	87.094029	0.00252386
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	87.094029	8.51705e-005
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	87.094029	2.87418e-006
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	87.094029	9.69924e-008

Esta expresión es la ecuación clásica de Lame, que es la ecuación exacta para tubos cilíndricos, y como se aprecia el pronóstico de vida coincide con la ecuación de Jusmatulin para $\Delta t = 0$ °C, lo que permite avalar la exactitud del pronóstico en este caso.

$$\sigma = \frac{\sqrt{3}}{2} \cdot K \cdot \frac{p}{\ln \left[\frac{D+h}{D-h} \right]}$$

Tabla 2.17: Resultados para los tubos de acero AISI 210 A1 con la ecuación anterior de la Universidad de New South Wales en Australia.

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	73.998156	8.416e+015
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	73.998156	4.0371e+014
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	73.998156	1.93657e+013
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	73.998156	9.28963e+011
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	73.998156	4.45618e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	73.998156	2.1376e+009
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	73.998156	1.0254e+008
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	73.998156	4.91876e+006
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	73.998156	235950
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	73.998156	11318.4
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	73.998156	542.936
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	73.998156	26.0443
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	73.998156	1.24933
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	73.998156	0.0599296
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	73.998156	0.00287479
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	73.998156	0.000137902
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	73.998156	6.61507e-006

Como se aprecia con esta ecuación el pronóstico de vida para T = 600 °K es de 235 950 horas, cuatro veces superior que con la ecuación exacta para el cálculo de tensiones de Lamé. El pronóstico con esta ecuación es completamente inexacto..

$$\sigma = 1,25 \cdot \frac{p \cdot D}{2 \cdot h}$$

Tabla 2.18: Resultados para los tubos de acero AISI 210 A1 con la ecuación anterior del Buró Central de Generación Eléctrica de Canadá

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	107.057117	2.52303e+017
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	107.057117	5.16568e+015
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	107.057117	1.05763e+014
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	107.057117	2.1654e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	107.057117	4.43347e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	107.057117	9.07716e+008
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	107.057117	1.85847e+007
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	107.057117	380506
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	107.057117	7790.52
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	107.057117	159.504
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	107.057117	3.26571
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	107.057117	0.0668626
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	107.057117	0.00136895
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	107.057117	2.80281e-005
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	107.057117	5.73852e-007
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	107.057117	1.17491e-008
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	107.057117	2.40553e-010

Como se aprecia, con esta ecuación que es la Ecuación de Laplace multiplicada por un factor igual a 1.25, para T = 600 $^{\circ}$ K la vida pronosticada se reduce a sólo 7 790 horas.

Queda absolutamente claro que el coeficiente de 1,25 empleado por CEGB es excesivo lo que provoca que la Vida Útil estimada con esta ecuación para el cálculo de las tensiones sea muy inferior a la real.

$$\sigma = \frac{p \cdot D}{2 \cdot h}$$

Tabla 2.19: Resultados para los tubos de acero AISI 210 A1 con la ecuación anterior de Laplace de las Bóvedas de Paredes Delgadas

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
400	127	2.157434e+005	0.268794	1.258504e-005	0.956357	3.551181	85.645694	2.94795e+016
425	152	2.149441e+005	0.262263	1.276473e-005	0.956357	3.556772	85.645694	1.03318e+015
450	177	2.140717e+005	0.255419	1.293742e-005	0.956357	3.557259	85.645694	3.62103e+013
475	202	2.131261e+005	0.248263	1.310311e-005	0.956357	3.552756	85.645694	1.26908e+012
500	227	2.121072e+005	0.240794	1.326179e-005	0.956357	3.543387	85.645694	4.4478e+010
525	252	2.110152e+005	0.233013	1.341348e-005	0.956357	3.529291	85.645694	1.55884e+009
550	277	2.098500e+005	0.224919	1.355816e-005	0.956357	3.510614	85.645694	5.46333e+007
575	302	2.086115e+005	0.216513	1.369584e-005	0.956357	3.487512	85.645694	1.91476e+006
600	327	2.072999e+005	0.207794	1.382652e-005	0.956357	3.460146	85.645694	67107.3
625	352	2.059151e+005	0.198763	1.395020e-005	0.956357	3.428688	85.645694	2351.94
650	377	2.044571e+005	0.189419	1.406688e-005	0.956357	3.393313	85.645694	82.4295
675	402	2.029259e+005	0.179763	1.417655e-005	0.956357	3.354201	85.645694	2.88894
700	427	2.013215e+005	0.169794	1.427922e-005	0.956357	3.311535	85.645694	0.10125
725	452	1.996439e+005	0.159513	1.437490e-005	0.956357	3.265502	85.645694	0.00354855
750	477	1.978931e+005	0.148919	1.446356e-005	0.956357	3.216292	85.645694	0.000124368
775	502	1.960691e+005	0.138013	1.454523e-005	0.956357	3.164094	85.645694	4.35877e-006
800	527	1.941718e+005	0.126794	1.461990e-005	0.956357	3.109098	85.645694	1.52764e-007

Como se aprecia esta ecuación es la Ecuación de Laplace que no es más que una simplificación de la Ecuación de Lamé aplicable solamente a los tubos de paredes delgadas con D/h \geq 20, En el caso de los tubos de las calderas de la CTE "Carlos M. de Céspedes" para los cuales: D/h = 12, para T = 600 ° K la vida pronosticada es de 67 107 horas, mayor que el pronóstico según la Ecuación de Lamé, o sea un 16 % mayor, cuando realmente la vida será menor pues la tensión real es mayor.

2.6 Predicción de la Vida Útil por fractura, bajo "Creep" en presencia de la diferencia de temperatura de la pared para el Acero 9% Cr - 1% Mo.

2.6.1 Composición química del acero 9% Cr - 1% Mo.

En el Evento Científico "Creep" 2012 celebrado en Mayo 2012 en Kyoto Japón y en el cual la autora y los tutores del presente trabajo presentaron un artículo (Goytisolo, et. al, 2012) y en el cual no se pudo participar, pero se recibió información de los trabajos que fueron presentados, resultando muy significativo que una gran parte de los trabajos presentados se referían al empleo del acero con 9 % de cromo. (Danielsen H. K., Hald J. 2012), (Fujio Abe, 2012). (Maile K. and Klenk A. 2012), (Mastaka Y. et. al. 2012), (Mayr P. et. al, 2012), (Minami Y., Caminada S., Fukui T, Ono T, 2012), (Ukai S. et. al. 2012), (Yamasaki S. et. al. (2012). Esto motivó que se incluyera este acero en el análisis realizado en el presente trabajo, lo que será presentado a continuación.

Tabla 2.20 Composición química del acero 9% Cr - 1% Mo.									
С	Mn	Р	S	Si					
0,075 - 0,16	0,24 - 0,54	0,008 - 0,025	0,006 - 0,034	0,22					

2.6.2 Propiedades mecánicas y físicas en función de la temperatura.

En la Tabla 2.21 se muestran las propiedades mecánicas de este acero en función de la temperatura según los datos de (Maslienkov, 1981).

Tabla 2.21 I	Tabla 2.21 Propiedades mecánicas del acero 9% Cr - 1% Mo en función de la temperatura.										
Temp. (°C) Temp. (°K) $\sigma_{u \text{ (MPa)}}$ $\sigma_{0,2 \text{ (MPa)}}$ ψ (%) δ (%)											
20	293	700	590	75	24						
565	838	430	410	83	22						
585	858	410	350	84	23						
620	893	340	330	89	28						

En la Tabla 2.22 se dan las propiedades físicas de este acero en función de la temperatura según el mismo autor (Maslienkov, 1981).

Tabla 2.22 Pro	opiedades físi	cas del acero 9% C	r - 1% M	o en función de la
		temperatura.		
Temp. (°C)	Temp. (°K)	E⋅10 ⁻⁵ (MPa)	μ	α ·10 ⁻⁶ (°K-1)
20	293	2,46	0,29	10,25
100	373	2,396	0,28	11,6
200	473	2,39	0,25	12,4
300	573	2,195	0,22	12,75
400	673	2,066	0,18	13,25
500	773	1,92	0,14	13,6
600	873	1,85	0,09	13,4
700	973	1,658	0,04	13,38
800	1073	1,445	-0,01	13,76

Las propiedades físicas fundamentales fueron ajustadas por el método de los mínimos cuadrados y utilizadas en el software.

2.6.3 Pronóstico de la Vida Útil por "Creep" de acuerdo con la Norma ISO/TR 7468 - 1981.

La Vida Útil por fractura bajo "Creep" se puede calcular partiendo del Parámetro Larson Miller según los datos dados por la Norma ISO / TR7468-198. Según esta Norma para el acero 9% Cr - 1% Mo se tiene que:

$$P \bullet = \frac{\log t - 11,692613}{T - 600} = a + b \cdot \bullet \circ \sigma + c \cdot \bullet \circ \sigma^{2} + d \cdot \bullet \circ \sigma^{3} + e \cdot \bullet \circ \sigma^{3}$$
 (2.23)

Donde: a, b, c, d, e son constantes del ajuste de la curva. Los valores de las constantes se dan en la Tabla 2.23.

Tabla 2.23 Constantes de							
la ecuación de correlación.							
а	-0,80630						
b	1,75733						
С	-1,45750						
d	0,53256						
е	-0,07342						

Tabla 2.24: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 0 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	87.094029	1.51152e+022
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	87.094029	2.78844e+019
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	87.094029	1.06609e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	87.094029	4.07596e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	87.094029	1.55834e+009
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	87.094029	595795
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	87.094029	227.788
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	87.094029	0.0870892
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	87.094029	3.32965e-005

Tabla 2.25: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 1 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	97.651176	4.35438e+022
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	98.459352	6.46298e+019
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	98.788227	1.7286e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	97.673896	4.47221e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	96.969629	1.23037e+009
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	96.046211	358444
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	95.145149	110.607
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	93.895644	0.0377371
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	92.845589	1.355e-005

Tabla 2.26: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 2 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)		
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	108.503839	1.23777e+023		
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	110.158574	1.48212e+020		
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	110.832324	2.78576e+016		
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	108.550338	4.90124e+012		
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	107.109491	9.74295e+008		
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	105.222113	216984		
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	103.382643	54.1615		
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	100.835938	0.016499		
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	98.699924	5.56211e-006		

Tabla 2.27: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 3 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	119.571579	3.51377e+023
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	122.095749	3.40005e+020
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	123.123680	4.49192e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	119.642500	5.37083e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	117.445190	7.71971e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	114.567995	131613
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	111.765308	26.6179
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	107.888150	0.00724983
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	104.639786	2.29623e-006

Tabla 2.28: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 4 ° C

T °K	t °C	E	μ .	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	130.799811	1.00705e+024
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	134.207399	7.87804e+020
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	135.595071	7.28896e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	130.895553	5.89038e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	127.929268	6.10686e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	124.045443	79670.6
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	120.262792	13.0668
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	115.031699	0.00318878
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	110.651401	9.50394e-007

Tabla 2.29: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 5 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	142.150508	2.93921e+024
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	146.450241	1.85736e+021
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	148.201054	1.19547e+017
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	142.271325	6.47055e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	138.528040	4.8146e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	133.626464	47966.1
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	128.852381	6.38041
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	122.250574	0.00139867
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	116.723684	3.93171e-007

Tabla 2.30: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 6 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	153.596524	8.79216e+024
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	158.793933	4.47922e+021
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	160.909999	1.98781e+017
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	153.742577	7.1233e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	149.217068	3.77774e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	143.290285	28643.2
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	137.516817	3.08808
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	129.532181	0.000609756
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	122.847640	1.62118e-007

Tabla 2.31: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 7 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	165.118036	2.70762e+025
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	171.216666	1.10878e+022
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	173.699307	3.35761e+017
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	165.289431	7.86198e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	159.978262	2.94713e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	153.021220	16929.7
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	146.242798	1.47731
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	136.866510	0.000263468
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	129.015909	6.64614e-008

Tabla 2.32: Resultados para los tubos de acero 9% Cr - 1% Mo con Δt = 8 ° C

	Tabla Fiori Robaltados para 100 tabos de acore 670 en 170 inio con Et							
T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	176.700278	8.60933e+025
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	183.702405	2.8232e+022
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	186.552451	5.76773e+017
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	176.897083	8.7017e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	170.797981	2.28436e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	162.807234	9889.12
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	155.019929	0.697039
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	144.245517	0.00011257
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	135.222428	2.70305e-008

En la Figura 2.4 se han ploteado los resultados obtenidos en una misma gráfica de vida en horas contra temperatura en °K, para poder evaluar la influencia de la temperatura y del Δt de la pared.

Como se aprecia de todas estas Tablas la vida pronosticada con este acero para T = 600 ° K es varias veces superior a la del acero: AlSI 210 A1 y la influencia del Δt es más pequeña, pero similar al caso anterior. El punto de inflexión para este acero es a T = 600 ° K.

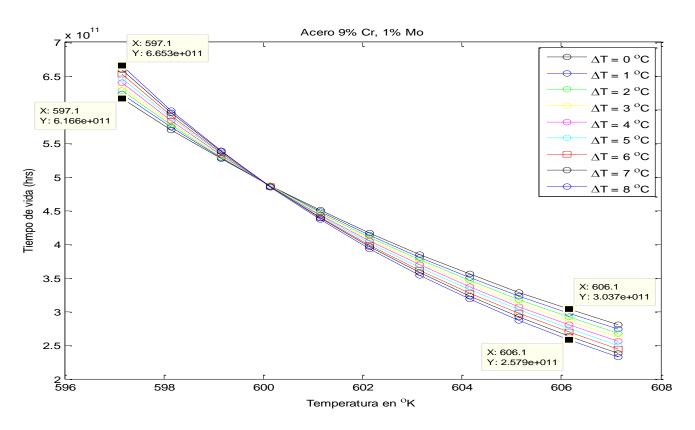


Figura 2.4: Comportamiento de la Vida Útil por "Creep" del Acero de 9% Cr - 1% Mo con diferentes valores de ΔT.

$$\sigma = \frac{\sqrt{3}}{4} \cdot p \cdot \frac{\mathbf{Q} + h^{2}}{D + h}$$

Tabla 2.33: Resultados para los tubos de acero 9% Cr - 1% Mo con la ecuación anterior del Problema de Lamé.

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	87.094029	1.51152e+022
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	87.094029	2.78844e+019
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	87.094029	1.06609e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	87.094029	4.07596e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	87.094029	1.55834e+009
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	87.094029	595795
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	87.094029	227.788
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	87.094029	0.0870892
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	87.094029	3.32965e-005

$$\sigma = \frac{\sqrt{3}}{2} \cdot K \frac{p}{\ln \left[\frac{D+h}{D-h} \right]}$$

Tabla 2.34: Resultados para los tubos de acero 9% Cr - 1% Mo con la ecuación anterior de la Universidad de New South Wales en Australia.

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ ΜΡΑ	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	73.998156	3.68004e+021
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	73.998156	9.81214e+018
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	73.998156	5.94501e+015
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	73.998156	3.60198e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	73.998156	2.18238e+009
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	73.998156	1.32227e+006
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	73.998156	801.14
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	73.998156	0.485397
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	73.998156	0.000294094

$$\sigma = 1,25 \cdot \frac{p \cdot D}{2 \cdot h}$$

Tabla 2.35: Resultados para los tubos de acero 9% Cr - 1% Mo con la ecuación anterior del Buró Central de Generación Eléctrica de Canadá

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	107.057117	1.07864e+023
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	107.057117	1.1921e+020
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	107.057117	2.40221e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	107.057117	4.84071e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	107.057117	9.75454e+008
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	107.057117	196564
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	107.057117	39.6098
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	107.057117	0.00798178
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	107.057117	1.60841e-006

$$\sigma = \frac{p \cdot D}{2 \cdot h}$$

Tabla 2.36: Resultados para los tubos de acero 9% Cr - 1% Mo con la ecuación anterior de Laplace de las Bóvedas de Paredes Delgadas

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σMPA	Vida (hrs)
293	20	2.460000e+005	0.293217	1.025000e-005	0.956357	3.411876	85.645694	1.30118e+022
373	100	2.396000e+005	0.275497	1.160000e-005	0.956357	3.668808	85.645694	2.49604e+019
473	200	2.390000e+005	0.248847	1.240000e-005	0.956357	3.773215	85.645694	1.00206e+016
573	300	2.195000e+005	0.217197	1.275000e-005	0.956357	3.419106	85.645694	4.02286e+012
673	400	2.066000e+005	0.180547	1.325000e-005	0.956357	3.194791	85.645694	1.61502e+009
773	500	1.920000e+005	0.138897	1.360000e-005	0.956357	2.900049	85.645694	648363
873	600	1.850000e+005	0.092247	1.340000e-005	0.956357	2.611735	85.645694	260.291
973	700	1.658000e+005	0.040597	1.337614e-005	0.956357	2.210725	85.645694	0.104496
1073	800	1.445000e+005	-0.016053	1.376804e-005	0.956357	1.872595	85.645694	4.1951e-005

El análisis realizado anteriormente con todas estas ecuaciones es válido totalmente para este acero.

2.7 Predicción de la Vida Útil por fractura, bajo "Creep" en presencia de la diferencia de temperatura de la pared para el Acero 1% Cr – 0,5% Mo.

2.7.1 Composición química del acero 1% Cr - 0,5% Mo.

Para este acero los datos disponibles son:

Tabla 2.	Tabla 2.37 Composición química del acero 1% Cr-0,5%.						
С	Mn	Р	S	Si			
0,08- 0,18	0,42 - 0,80	0,005 - 0,039	0,004 - 0,050	0,14 – 0,67			

2.7.2 Propiedades mecánicas y físicas en función de la temperatura.

En la Tabla 2.37 se muestran las propiedades mecánicas de este acero en función de la temperatura según los datos de (Maslienkov, 1981).

Tabla 2.38 Pr	Tabla 2.38 Propiedades mecánicas del acero 1% Cr – 0,5% Mo en función de la						
	temperatura.						
Temp. (°C)	Temp. (°K)	$\sigma_{f ext{(MPa)}}$	Ψ (%)	δ (%)	a _K (kJ/m`2)		
20	293	350	67	25	2700		
350	623	250	67	22	2500		
400	673	250	69	23	1600		
450	723	250	74	21	1700		
500	773	270	75	20	-		
550	823	250	78	21	-		
600	873	240	51	22	-		

En la Tabla 2.39 se dan las propiedades físicas de este acero en función de la temperatura según el mismo autor (Maslienkov, 1981).

Tabla 2.39	Tabla 2.39 Propiedades físicas del acero 1% Cr-0,5% Mo en función de la							
temperatura.								
Temp. (°C)	Temp. (°K)	E·10 ⁻⁵ (MPa)	λ (W/m $^{\circ}$ K)	μ	α ⋅10 ⁻⁶ (ºK-1)			
20	293	2,08	-	0.29	11,9			
100	373	2,05	44,38	0.28	12,6			

200	473	2,00	42,70	0.25	13,2
300	573	1,95	41,45	0.22	13,7
450	723	1,72	38,52	0.160	14,0
500	773	1,66	36,00	0.14	14,3
600	873	1,53	33,49	0.09	14,6

Las propiedades físicas fundamentales fueron ajustadas por el método de los mínimos cuadrados y utilizadas en el software.

2.7.3 Metodología de Pronóstico de la Vida Útil por "Creep" de acuerdo con la Norma ISO/TR 7468 - 1981.

La Vida Útil por fractura bajo "Creep" se puede calcular partiendo del Parámetro Larson Miller según los datos dados por la Norma ISO / TR7468-198. Según esta Norma para el acero 1% Cr – 0,5% Mo se tiene que:

$$P \bullet = \frac{\log t - 13,29}{T - 500} = a + b \cdot \bullet g \sigma + c \cdot \bullet g \sigma^{2} + d \cdot \bullet g \sigma^{2} + e \cdot \bullet g \sigma^{2}$$

$$(2.24)$$

Donde: a, b, c, d, e son constantes del ajuste de la curva. Los valores de las constantes se dan en la Tabla 2.39.

Tabla 2.4	Tabla 2.40 Constantes de					
la ecuación de correlación.						
а	-0,3052					
b	-0,0491					
С	0,01438					
d	-0,00500					
е	-0,00563					

Tabla 2.41: Resultados para los tubos de acero 1% Cr-0.5% Mo con $\Delta t = 0$ ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	87.094029	9.79707e+059
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	87.094029	8.49719e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	87.094029	2.24905e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	87.094029	0.000595281
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	87.094029	8.10602e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	87.094029	4.17032e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	87.094029	1.10381e-071

Tabla 2.42: Resultados para los tubos de acero 1% Cr-0,5% Mo con Δt = 1 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	97.454364	9.92552e+059
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	97.662184	8.56663e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	97.492007	2.25287e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	97.186143	0.000592612
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	95.554148	8.01261e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	95.199110	4.11392e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	94.314935	1.08558e-071

Tabla 2.43: Resultados para los tubos de acero 1% Cr-0.5% Mo con Δt = 2 ° C

T °K	t °C	E	μ	α°C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	108.101080	1.00455e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	108.526369	8.63111e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	108.178106	2.2564e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	107.552332	0.000590155
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	104.217307	7.92612e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	103.492734	4.06165e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	101.689957	1.06862e-071

Tabla 2.44: Resultados para los tubos de acero 1% Cr-0.5% Mo con Δt = 3 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	118.957309	1.01576e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	119.605942	8.69098e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	119.074782	2.25966e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	118.120461	0.000587892
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	113.036831	7.846e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	111.933000	4.01319e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	109.187870	1.05284e-071

Tabla 2.45: Resultados para los tubos de acero 1% Cr-0,5% Mo con Δt = 4 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	129.970560	1.02625e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	130.846200	8.74668e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	130.129146	2.26268e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	128.840845	0.000585801
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	121.978808	7.77163e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	120.489095	3.96818e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	116.785006	1.03813e-071

Tabla 2.46: Resultados para los tubos de acero 1% Cr-0,5% Mo con Δt = 5 ° C

T °K	t °C	Е	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	141.104072	1.03608e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	142.209047	8.79864e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	141.304195	2.26549e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	139.678434	0.000583863
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	131.018169	7.70242e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	129.137998	3.92628e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	124.463197	1.02439e-071

Tabla 2.47: Resultados para los tubos de acero 1% Cr-0.5% Mo con Δt = 6 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σМРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	152.331477	1.04532e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	153.667290	8.84729e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	152.573412	2.26811e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	150.607926	0.000582061
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	140.136069	7.63785e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	137.862242	3.88716e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	132.208323	1.01154e-071

Tabla 2.48: Resultados para los tubos de acero 1% Cr-0.5% Mo con $\Delta t = 7$ ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	163.633451	1.05404e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	165.201081	8.89297e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	163.917377	2.27056e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	161.610678	0.00058038
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	149.318122	7.57742e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	146.648383	3.85054e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	140.009274	9.99474e-072

Tabla 2.49: Resultados para los tubos de acero 1% Cr-0,5% Mo con Δt = 8 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σМРа	Vida (hrs)			
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	174.995545	1.06228e+060			
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	176.795634	8.93601e+041			
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	175.321580	2.27286e+019			
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	172.672686	0.000578805			
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	158.553182	7.52071e-038			
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	155.485927	3.81617e-049			
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	147.857216	9.88131e-072			

De estas Tablas se aprecia que este acero de % Cr-0.5% Mo tiene muy mal comportamiento para elevadas temperaturas pues para T = 600 $^{\circ}$ K con cualquier valor de Δt , la vida es extremadamente pequeña.

En las Figuras 2.5 y 2.6 se han ploteado los resultados obtenidos en una misma gráfica de vida en horas contra temperatura en $^{\circ}$ K, para poder evaluar la influencia de la temperatura y del Δt de la pared. No se observa en este caso el mismo comportamiento anterior sin embargo el punto de inflexión se mantiene en los 500 $^{\circ}$ K pues en la gráfica de la Figura 2.5 construida para valores de T < 500 $^{\circ}$ K el incremento de Δt favorece la resistencia y sin embargo para la gráfica de la Figura 2.6, la cual fue construida para valores de T \geq 500 $^{\circ}$ K el incremento de Δt perjudica la resistencia. El punto de inflexión se mantiene entonces para T = 500 $^{\circ}$ K.

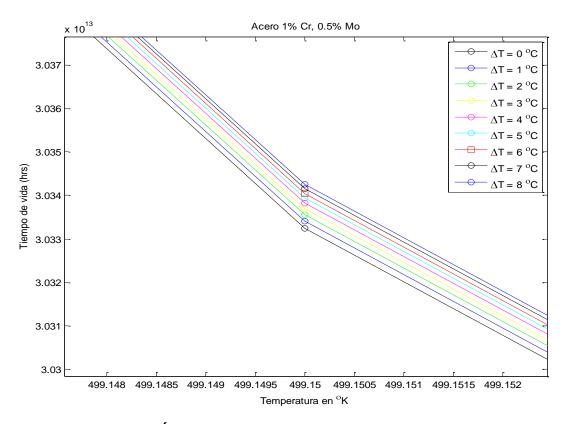


Figura 2.5: Comportamiento de la Vida Útil por "Creep" del Acero de 1% Cr – 0,5% Mo con diferentes valores de ΔT.

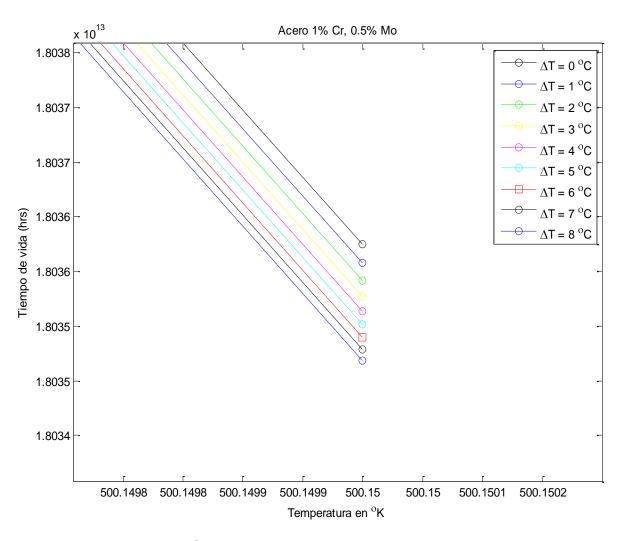


Figura 2.6: Comportamiento de la Vida Útil por "Creep" del Acero de 1% Cr – 0,5% Mo con diferentes valores de ΔT.

$$\sigma = \frac{\sqrt{3}}{4} \cdot p \cdot \frac{\mathbf{Q} + h^{2}}{D + h}$$

Tabla 2.50: Resultados para los tubos de acero 1% Cr-0,5% Mo con la ecuación anterior del Problema de Lamé.

T °K	t °C	E	μ	α°C ⁻¹	a1	m1	σМРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	87.094029	9.79707e+059
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	87.094029	8.49719e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	87.094029	2.24905e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	87.094029	0.000595281
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	87.094029	8.10602e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	87.094029	4.17032e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	87.094029	1.10381e-071

$$\sigma = \frac{\sqrt{3}}{2} * K \frac{p}{\ln \left[\frac{D+h}{D-h} \right]}$$

Tabla 2.51: Resultados para los tubos de acero 1% Cr–0,5% Mo con la ecuación anterior de la Universidad de New South Wales en Australia.

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σ МРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	73.998156	9.61384e+059
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	73.998156	8.39937e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	73.998156	2.24354e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	73.998156	0.000599269
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	73.998156	8.27281e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	73.998156	4.2756e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	73.998156	1.14205e-071

$$\sigma = 1.25 * \frac{p * D}{2 * h}$$

Tabla 2.52: Resultados para los tubos de acero 1% Cr–0,5% Mo con la ecuación anterior del Buró Central de Generación Eléctrica de Canadá

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σМРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	107.057117	1.00342e+060
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	107.057117	8.62275e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	107.057117	2.25604e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	107.057117	0.000590267
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	107.057117	7.89952e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	107.057117	4.04065e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	107.057117	1.05719e-071

$$\sigma = \frac{p * D}{2 * h}$$

Tabla 2.53: Resultados para los tubos de acero 1% Cr-0,5% Mo con Δt = 0 ° C

T °K	t °C	E	μ	α °C ⁻¹	a1	m1	σМРа	Vida (hrs)
293	20	2.080000e+005	0.293217	1.190000e-005	0.956357	3.349227	85.645694	9.77805e+059
373	100	2.053469e+005	0.275497	1.260000e-005	0.956357	3.415379	85.645694	8.48707e+041
473	200	2.000000e+005	0.248847	1.320000e-005	0.956357	3.361212	85.645694	2.24848e+019
573	300	1.950000e+005	0.217197	1.370000e-005	0.956357	3.263797	85.645694	0.000595691
723	450	1.720000e+005	0.160347	1.400000e-005	0.956357	2.742692	85.645694	8.12303e-038
773	500	1.655361e+005	0.138897	1.430000e-005	0.956357	2.629021	85.645694	4.18104e-049
873	600	1.528517e+005	0.092247	1.456475e-005	0.956357	2.345450	85.645694	1.10768e-071

2.8 Conclusiones del Capítulo II

- 1. En los cálculos a elevadas temperaturas para realizar el pronóstico de la vida a la falla por "Creep" no se toma en cuenta la variación de las propiedades físicas (módulo de elasticidad E, el coeficiente de Poisson μ y coeficiente de dilatación térmica lineal α), con la temperatura, cuando estos cambios pueden ser significativos del orden del 30% o más. En el presente trabajo se han introducido ecuaciones de correlación de estas propiedades con la temperatura, que permiten tomar en cuenta la influencia de estos cambios en la magnitud de las tensiones de trabajo en los tubos.
- 2. Se realizó un estudio detallado de las Metodologías establecidas en las Normas Técnicas y sobre las Investigaciones que realizan diversas instituciones en el mundo para pronosticar la Vida de Servicio de los Tubos de Calderas y se perfeccionaron algunos aspectos involucrados en ellas que se detallarán a continuación:
 - a. A través de los años se ha establecido la costumbre de utilizar la Ecuación de Laplace, basada en la Teoría Membranal para el cálculo de tensiones en tuberías y recipientes, aspecto este que simplifica notablemente los cálculos y que está validado por la totalidad de las Normas Internacionales relacionadas, los que ha conducido a que en los últimos años con el desarrollo de la Mecánica de la Fractura y la introducción en la industria de la Metodología de Gestión de Vida, cuando se hacen cálculos de tensiones que inciden en la Vida Útil del componente, se continua utilizando esta ecuación, sin percatarse de que la misma es solo una aproximación y que no resulta adecuada para el pronóstico de Vida Útil, donde las tensiones deben ser calculadas con exactitud. Algunas Metodologías han usado con este fin modificaciones en la ecuación de Laplace o han introducido coeficientes de corrección para resolver este problema.
 - b. En el presente trabajo se demuestra que la ecuación de Lamé, que es la ecuación exacta para el cálculo de las tensiones en cuerpos de configuración cilíndricas es la ecuación adecuada para el cálculo de las tensiones en el pronóstico de Vida Útil. Para relaciones de D/h ≤ 2,5, las tensiones calculadas por esta ecuación dan mayor que de todas las restantes ecuaciones utilizadas en las diferentes

Metodologías (incluso hasta 50% mayor) y dan valores mayores que la ecuación de Laplace para relaciones de $D/h \le 20$ rango este en el cual se mueve la inmensa mayoría de los recipientes a presión, tuberías y en particular los tubos de calderas.

- c. Otra insuficiencia detectada en las metodologías existentes e incluso en las Normas Técnicas y que limita la exactitud de los pronósticos de Vida Útil, es que no se toma en cuenta en el cálculo de las tensiones de los tubos de calderas, la diferencia de temperatura que existe entre las superficies exterior e interior de los tubos por efecto de calentamiento externo lo que implica diferencia en las tensiones que pueden llegar hasta un 10%. En los cálculos realizados en el presente trabajo se incorporan estas ecuaciones que toman en cuenta estas diferencias de temperatura utilizando la ecuación de Lamé.
- 3. Se elaboró una Metodología y un Programa en MatLab para perfeccionar el pronóstico de vida por "Creep" de los tubos de calderas resolviendo todas las insuficiencias mencionadas mediante el cual se realizaron los pronósticos de vida por "Creep" para los diferentes aceros analizados.
- 4. De los cálculos realizados con dicho programa se pueden obtener las siguientes conclusiones:
 - a) Para el acero utilizado actualmente en los tubos de las calderas de la CTE "Carlos M. de Céspedes", AISI 210 A1, se observa que, por ejemplo a la temperatura de 600 °K, en la medida en que aumenta la diferencia de temperatura Δt entre la superficie exterior e interior de los tubos, desde 0 °C hasta 8 °C, la vida de los tubos se reduce drásticamente, concluyendo que esta diferencia de temperatura es importante en los pronósticos.
 - b) Para el acero utilizado actualmente en los tubos de las calderas de la CTE "Carlos M. de Céspedes", AISI 210 A1 para la temperatura de T= 500 °K la diferencia de temperatura Δt no influye en la vida de los tubos. Esta temperatura representa un punto de inflexión en la influencia de Δt, para temperaturas menores que esta el incremento de Δt resulta favorable en la vida y por encima de esta desfavorable.
 - c) La realización del pronóstico de vida calculando las tensiones por la ecuación clásica de Lame, que es la ecuación exacta para tubos cilíndricos, el pronóstico de

- vida coincide con la ecuación de Jusmatulin para Δt = 0 °C, lo que permite avalar la exactitud del pronóstico en este caso.
- d) La realización del pronóstico de vida calculando las tensiones por la ecuación de la Universidad de New South Wales en Australia, .arroja para los tubos de la CTE Carlos M. de Céspedes" una vida para T= 600 °K de 235 950 horas, cuatro veces superior que con la ecuación exacta para el cálculo de tensiones de Lamé. El pronóstico con esta ecuación es completamente inexacto.
- e) La realización del pronóstico de vida calculando las tensiones por la Ecuación de Laplace multiplicada por un factor igual a 1.25, tal como propone Buró Central de Generación Eléctrica de Canadá, para T = 600 °K da vida pronosticada se reduce a sólo 7 790 horas, muy inferior a la real obtenida por la Ecuación de Lamé. Queda absolutamente claro que el coeficiente de 1,25 empleado por CEGB es excesivo, lo que provoca que la vida útil estimada con esta ecuación para el cálculo de las tensiones sea muy inferior a la real.
- f) El pronóstico realizado por la Ecuación de Laplace, que no es más que una simplificación de la Ecuación de Lamé, aplicable solamente a los tubos de paredes delgadas con D/h ≥ 20, en el caso de los tubos de las calderas de la CTE "Carlos M. de Céspedes" para los cuales: D/h = 12, para T = 600 °K la vida pronosticada es de 67 107 horas, mayor que el pronóstico según la Ecuación de Lamé, o sea un 16 % mayor, cuando realmente la vida será menor pues la tensión real es mayor.
- g) Con el acero de 9% Cr 1% Mo, muy empleado en la actualidad en los tubos de calderas, tal como se refleja en los trabajos presentados en el Evento: "Creep 2012, celebrado en Mayo 2012 en Kyoto, Japón se aprecia de los cálculos realizados que la vida pronosticada con este acero para T = 600 °K es varias veces superior a la del acero: AISI 210 A1 y la influencia del Δt es más pequeña, pero similar a la de este acero. El punto de inflexión para este acero se cambia a T = 600 °K.
- h) Para el acero de de 1% Cr 0,5% Mo se observa muy deficiente comportamiento a elevadas temperaturas y para 600 $^{\circ}$ K con cualquier Δt es de sólo unas pocas

horas. No se observa exactamente el mismo comportamiento de los aceros anteriores, sin embargo el punto de inflexión se mantiene en los 500 °K.

Capítulo III. Costo de las averías de los tubos de las Unidades CMC 3 y CMC 4 de la Central Termoeléctrica "Carlos M. de Céspedes".

3.1 Introducción.

Las averías o fallas en los tubos de paredes de agua (pantallas) del homo y los sobrecalentadores de las unidades japonesas aparecen reportadas desde el año 1980, tal y como se menciono anteriormente en este trabajo.

En cuanto al análisis económico de estos tipos de averías es necesario precisar que en la Central Termoeléctrica de Cienfuegos con anterioridad se han realizados algunos cálculos económicos caracterizados, en su casi totalidad por el hecho de tomar en consideración solamente el concepto de la indisponibilidad de la planta producido por las mismas. Aunque es necesario destacar que en el control económico implantado se cuantifica por separado todos los gastos en que se incurren.

En este capítulo se pretende conceptuar diferentes aspectos económicos que se deben incluir en la valoración económica de la falla de un tubo de la pared de agua. Una vez que se tenga determinado el costo unitario de una falla se puede estimar a cuanto ha ascendido la erogación en divisa por concepto de fallas tubos de las paredes de agua, para cada una de las unidades japonesas, en los más de 30 años que se tiene registradas estas fallas.

3.2. Valoración Económica de una avería por falla de tubo en las Unidades Japonesas de la Central Termoeléctrica "Carlos Manuel de Céspedes" de Cienfuegos.

3.2.1 Aspectos que serán tomados en cuenta.

Para la realización de la valoración económica se tomará como referencia la avería ocurrida el día 19 de Mayo de 2003, en la cual se produjo un disparo de caldera con pérdida de nivel por la explosión de un tobo de las paredes de agua. En múltiples ocasiones cuando se detecta que existe un salidero en algún tubo de caldera se

mantiene la unidad trabajando hasta que las condiciones del Sistema Electroenergético Nacional permiten la salida del bloque o hasta que se produce la avería tal como ocurrió en el caso para el cual se realizará el análisis.

Para la realización del cálculo del costo de la avería tenemos que tomar en cuenta varios factores entre los que se tienen:

- Sobreconsumo o gasto de agua desmineralizada, producto de la operación de la unidad con el salidero, el enfriamiento de la caldera, la realización de las pruebas hidráulicas y el arranque de la unidad.
- 2. El incremento del consumo de combustible en el SEN por la generación con unidades cuyo consumo específico bruto es mayor al de la unidad que se encuentra fuera de servicio en la CTE "Carlos M. de Céspedes".
- 3. El consumo de energía eléctrica del SEN para el enfriamiento de la caldera, la realización de las pruebas hidráulicas y el arranque de la unidad.
- 4 El consumo de combustible para el arranqué de la unidad.
- 5, El costo de los materiales para la realización de la reparación de la avería..
- 6. Mano de obra utilizada en la reparación.

3.2.2 Cálculo del costo de una avería de un tubo en una de las Unidades Japonesa de la CTE "Carlos Manuel de Céspedes" de Cienfuegos.

3.2.2.1 Costo por sobreconsumo de agua desmineralizada.

A partir del día 11 de Mayo de 2003 se detecta que existía un incremento del consumo de agua de reposición en la Unidad CMC-4, el cual iba incrementándose con el transcurso de los días hasta que el día 19 se produce la avería. En la Tabla 3,1 se muestra el comportamiento de este incremento y de su costo.

Tabla 3.1 Sobreconsumo de agua desmineralizada						
Día	Consumo m³ Real	Consumo m³ Plan	Sobreconsumo m³	Valor/m ³ CUP/m ³ USD/m ³	Costo CUP USD	
11	199	130	69	O,43 CUP 0,36 USD	29,67 24.84	
12	223	130	93	O,43 CUP 0,36 USD	39.99 33,48	

Capítulo III. Costo de las averías de los tubos de las Unidades CMC 3 y CMC 4 de la Central Termoeléctrica "Carlos M. de Céspedes".

			T 100		
13	252	130	122	O,43 CUP	52,46
				0,36 USD	43,92
14	289	130	159	O,43 CUP	68,37
				0,36 USD	57,24
15	352	130	222	O,43 CUP	95,46
				0,36 USD	79,92
16	608	130	478	O,43 CUP	205,54
				0,36 USD	172,08
17	643	130	513	O,43 CUP	220,59
				0,36 USD	184,68
18	676	130	546	O,43 CUP	234,78
				0,36 USD	196,56
19	616	130	486	O,43 CUP	208,98
				0,36 USD	174,96
20-22	1163	-	1163	O,43 CUP	500,09
				0,36 USD	418,69
Costo Total Sobreconsumo de agua desmineralizada				1 655,93 CUP	
	•			1 386,36 USD	

El costo de materiales y de salarios vinculados, de 1 m³ de agua desmineralizada es de \$ 0,79 lo cual incluye el costo de los productos químicos los sacados del almacén, los salarios de los operarios vinculados y el costo del agua, de estos 0,43 son en CUP y 0,36 en USD. En la Figura 3.1 se muestra la gráfica del incremento del consumo de agua. Se observa que, en los primeros cuatro días de haberse detectado el salidero, la pendiente del incremento es creciente con cierta estabilidad. Pero a partir de quinto día se produce un salto brusco en el sobre consumo de agua desmineralizada, lo cual es un indicativo de el desarrollo de la grieta, Cuando la rajadura del tubo llega a tal magnitud resulta obligatorio parar la unidad y proceder a la reparación de la misma.

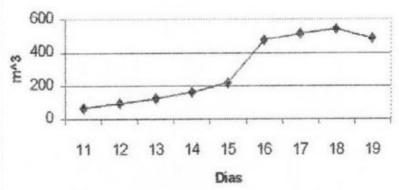


Figura 3.1 Comportamiento del consumo de agua durante el desarrollo de la avería del tubo.

3.2.2.2 Incremento del consumo de combustible en el SEN.

Teniendo en cuenta que la unidad estuvo fuera de servicio durante 59.82 horas y que la carga promedio de dicha unidad después del mantenimiento efectuado a la misma y el comienzo de la quema de PCM-650 era de 128.8 MW-h, el SEN tuvo que asumir una generación de 7 705 MW, con un CEB de 275 g/kW-h lo que significa un incremento de 29 g/kW-h generado debido a que el CEB de CMC-4 después del mantenimiento era de 245.97 g/kW-h.

Lo anteriormente planteado nos da que el sobre consumo de crudo para el país será de 223.455 teq de combustible lo cual representa de acuerdo al precio del crudo, en esa fecha, un gasto de 24 652.50 USD, para este cálculo se tomó que el valor de la tonelada de crudo era de 109.21 USD/ton.

3.2.2.3 Consumo de energía eléctrica del SEN.

La energía eléctrica que se consume del SEN durante la avería de una unidad es la que se utiliza para:

- a) El proceso de enfriamiento.
- b) Las pruebas hidráulicas.
- c) Para el arranque de la unidad.
- d) El consumo para la avería en cuestión fue de 129 MW-h, el precio del kW-h consumido es de 0.044 S/kW-h por lo que representa un costo de 5 676 CUP y 3 913.75 USD.

3.2.2.4 Costo de Diesel en el arrangue.

Durante el proceso de arranque de la unidad se consumieron un total de 17.94 toneladas de Diesel, teniendo en cuenta que el precio de este combustible era de 363.00 USD/ton, el costo por este concepto fue de 6 512 USD.

3.2.2.5 Costo de los Materiales empleados en la reparación.

En la Tabla 3.2 se relacionan los materiales empleados durante la reparación del tubo averiado y su costo.

Tabla 3.2 Costo de Materiales durante la reparación.					
Materiales	Tipo	Valor	Cantidad	Peso (kg)	Costo
Electrodos	E 7018	5,05 USD/kg	3 kg	3 kg	15,15 USD
Mocheta (Tubo)	STB -42	0.14 USD/kg	3 m	26,73 kg	3,74 USD
Oxígeno	-	0,23 CUP/m ³ 2,95 USD/m ³	0,15 m ³	-	0,0345 CUP 0,4425 USD
Acetileno	-	0,03 CUP/m ³ 0,52 USD/m ³	0,13 m ³	-	0,0039 CUP 0,0676 USD
Costo Total					0,0384 CUP 19,40 USD

3.2.2.6 Costo de la mano de obra durante la reparación.

En la Tabla 3.3 se muestran los operarios que intervinieron en la reparación, el salario horario de cada uno, el tiempo que empleo la brigada en la reparación y los costos de la misma en salarios.

Tabla 3.3 Costo de la Mano de Obra				
Operario	Salario horario (CUP/h)	Tiempo empleado (h)	Costo en salarios (CUP)	
Soldador A	1,48		45,14	
Soldador B	1,33		40,57	
Soldador C	1,20		36,60	
Pailero A	1,80		54,90	
Mecánico C	1,33	30,5	40,57	
Insulador A	1,07		32,64	
Insulador C	1,48		45,14	
Jefe Brigada	1,95		59,48	
	355,04 CUP			

3.2.2.7 Costo Total de una avería.

El costo Total de una avería es la suma de los costos calculados para cada moneda, o sea:

• Costo en CUP:

Costo de una avería en CUP = C_{scad} + C_{energía} + C_{materiales} + C_{salarios}

Costo de una avería en CUP = 1 655,93 + 5 676,00 + 0,0384+ 355,04

Costo de una avería en CUP = 7 687,01

Costo en USD:

Costo de una avería en USD = $C_{scad} + C_{crudo} + + C_{diesel} + C_{materiales}$

Costo de una avería en USD = 1 396,36 + 24 652,50 + 6 512,22 + 19,40

Costo de una avería en USD = 32 570,48

Este costo total igual a 7 687,01 CUP y 32 570.48 USD corresponde a un solo tubo, que es el caso analizado, sin embargo, en muchas ocasiones se produce la falla de varios tubos, puesto que por lo general y como mínimo el chorro del salidero de un tubo al impactar sobre la superficie del tubo colindante termina con la avería de otros tubos, por esta razón se hará la consideración de que el costo unitario de un tubo averiado es sólo un tercio del total obtenido, lo que es bastante conservador, o sea:

Costo unitario de un tubo averiado = 1/3 x Costo Total = 2 562,3 CUP + 10 856,83 USD

3.2.2.8 Costo Total en averías desde el año 1980 hasta la fecha.

Para tener una idea aproximada de cuanto es el daño económico para el total de averías ocurridas desde el año 1980 hasta la fecha se realizará el siguiente análisis: En el trabajo (Pérez Ramos, 2003) se reportaron hasta el año 2000 un total de 222 averías por tubos ponchados: 109 en la Unidad CMC 3 y 113 en la CMC 4. En el presente trabajo se completó esta investigación hasta el año 2011 con un total de 59 averías en la Unidad CMC 3 y 64 en la CMC 4, lo que representa en gran total desde 1980 hasta finales del 2011 de 345 averías.

Total de Tubos Ponchados = Tubos ponchados CMC 3 + tubos ponchados CMC 4

Total de Tubos Ponchados = 168 + 177 = 345

Costo total = Costo unitario x total de tubos ponchados

Costo total = $2.562,3 \times 345 + 10.856,63 \times 345 = 883.993,50 \text{ CUP} + 3.745.537,35 \text{ USD}$

Es decir desde el año 1980 hasta el año 2011, las averías ocurridas ascienden económicamente a casi cuatro millones de dólares lo que significa que se gastan anualmente como promedio más de 60 000,00 USD/unidad - año, debido a las fallas en los tubos de las paredes de agua de los hornos o de los sobrecalentadores, en las unidades Japonesas de la Central Termoeléctrica "Carlos Manuel de Céspedes".

3.3 Conclusiones del Capítulo III.

- 1. Como se puede apreciar la falla de un tubo de una cualquiera de las Unidades Japonesas de la Central Termoeléctrica "Carlos Manuel de Céspedes", puede parecer una cosa sin gran trascendencia económica, sin embargo la avería de un solo tubo representa un gasto de 2 562,3 CUP + 10 856,83 USD, lo cual es muy importante, sin considerar la afectación que una avería representa en la eficiencia de la Central.
- 2. Desde el año 1980 hasta el año 2011, las averías ocurridas representan económicamente un costo total de casi cuatro millones de dólares.

Conclusiones

Conclusiones Generales

- 1. Se realizó un estudio detallado de las Metodologías establecidas en las Normas Técnicas y sobre las Investigaciones que se realizan para pronosticar la Vida de Servicio de los Tubos de Calderas y se perfeccionaron algunos aspectos involucrados en ellas que se detallan a continuación:
 - a. A través de los años se ha establecido la costumbre de utilizar la Ecuación de Laplace, basada en la Teoría Membranal para el cálculo de tensiones en tuberías y recipientes, aspecto este que simplifica notablemente los cálculos y que está validado por la totalidad de las Normas Internacionales relacionadas, los que ha conducido a que en los últimos años con el desarrollo de la Mecánica de la Fractura y la introducción en la industria de la Metodología de Gestión de Vida, cundo se hacen cálculos de tensiones que inciden en la Vida Útil del componente, se continua utilizando esta ecuación, sin percatarse de que la misma es solo una aproximación y que no resulta adecuada para el pronóstico de Vida Útil, donde las tensiones debe ser calculadas con exactitud. Algunas Metodologías han usado con este fin modificaciones en la ecuación de Laplace o han introducido coeficientes de corrección para resolver este problema.
 - b. En el presente trabajo se demuestra que la ecuación de Lamé, que es la ecuación exacta para el cálculo de las tensiones en cuerpos de configuración cilíndricas es la ecuación adecuada para el cálculo de las tensiones en el pronóstico de Vida Útil. Para relaciones de D/h < 2,5, las tensiones calculadas por esta ecuación dan mayores que de todas las restantes ecuaciones utilizadas en las diferentes Metodologías (incluso hasta 50% mayor) y dan valores mayores que la ecuación de Laplace para relaciones de D/h < 20, rango este en el cual se mueve la inmensa mayoría de los recipientes a presión, tuberías y en particular tubos de calderas.</p>
 - c. Otra insuficiencia detectada en las Metodologías existentes e incluso en las Normas Técnicas y que limita la exactitud de los pronósticos de Vida Útil, es que no se toma en cuenta en el cálculo de las tensiones de los tubos de calderas, la diferencia de temperatura que existe entre las superficies exterior e interior de los tubos por efecto de calentamiento externo lo que implica diferencia en las

- tensiones que pueden llegar hasta un 10%. En los cálculos realizados en el presente trabajo se incorporan estas ecuaciones que toman en cuenta estas diferencias de temperatura utilizando la ecuación de Lamé.
- 2. Se elaboró una Metodología y un Programa en MatLab para perfeccionar el pronóstico de vida por "Creep" de los tubos de calderas resolviendo todas las insuficiencias mencionadas mediante el cual se realizaron los pronósticos de vida por "Creep" para los diferentes aceros analizados.
- 3. De los cálculos realizados con dicho programa para los diferentes aceros evaluados se pueden obtener las siguientes conclusiones:
 - i) Para el acero utilizado actualmente en los tubos de las calderas de la CTE "Carlos M. de Céspedes", AISI 210 A1, se observa que, por ejemplo a la temperatura de 600 °K, en la medida en que aumenta la diferencia de temperatura Δt entre la superficie exterior e interior de los tubos, desde 0 °C hasta 8 °C, la vida de los tubos se reduce drásticamente, concluyendo que esta diferencia de temperatura es importante en los pronósticos.
 - j) Para el acero utilizado actualmente en los tubos de las calderas de la CTE "Carlos M. de Céspedes", AISI 210 A1para la temperatura de T = 500 oK la diferencia de temperatura Δt no influye en la vida de los tubos. Esta temperatura representa un punto de inflexión en la influencia de Δt, para temperaturas menores que esta el incremento de Δt resulta favorable en la vida y por encima de esta desfavorable.
 - k) La realización del pronóstico de vida calculando las tensiones por la ecuación clásica de Lame, que es la ecuación exacta para tubos cilíndricos, el pronóstico de vida coincide con la ecuación de Jusmatulin para $\Delta t = 0$ o C, lo que permite avalar la exactitud del pronóstico en este caso.
 - I) La realización del pronóstico de vida calculando las tensiones por la ecuación de la Universidad de New South Wales en Australia, .arroja para los tubos de la CTE Carlos M. de Céspedes" una vida para T = 600 °K de 235 950 horas, cuatro veces superior que con la ecuación exacta para el cálculo de tensiones de Lamé. El pronóstico con esta ecuación es completamente inexacto.
 - m) La realización del pronóstico de vida calculando las tensiones por la Ecuación de Laplace multiplicada por un factor igual a 1.25, tal como propone Buró Central de

Generación Eléctrica de Canadá, para T = 600 °K da vida pronosticada se reduce a sólo 7 790 horas, muy inferior a la real obtenida por la Ecuación de Lamé. Queda absolutamente claro que el coeficiente de 1,25 empleado por CEGB es excesivo, lo que provoca que la vida útil estimada con esta ecuación para el cálculo de las tensiones sea muy inferior a la real.

- n) El pronóstico realizado por la Ecuación de Laplace, que no es más que una simplificación de la Ecuación de Lamé, aplicable solamente a los tubos de paredes delgadas con D/h ≥ 20, en el caso de los tubos de las calderas de la CTE "Carlos M. de Céspedes" para los cuales: D/h = 12, para T = 600 °K la vida pronosticada es de 67 107 horas, mayor que el pronóstico según la Ecuación de Lamé, o sea un 16 % mayor, cuando realmente la vida será menor.
- o) Con el acero de 9% Cr 1% Mo, muy empleado en la actualidad en los tubos de calderas, tal como se refleja en los trabajos presentados en el Evento: "Creep 2012, celebrado en Mayo 2012 en Kyoto, Japón se aprecia de los cálculos realizados que la vida pronosticada con este acero para T = 600 °K es varias veces superior a la del acero: AISI 210 A1 y la influencia del Δt es más pequeña, pero similar a la de este acero. El punto de inflexión es en este caso: T = 600 °K.
- p) Para el acero de de 1% Cr 0,5% Mo se observa muy deficiente comportamiento a elevadas temperaturas y para 600 °K con cualquier Δt es de sólo unas pocas horas. No se observa exactamente el mismo comportamiento de los aceros anteriores, sin embargo el punto de inflexión se mantiene en los 500 °K.
- La recopilación de los datos acerca de las averías de los tubos de las unidades CMC 3 y CMC 4 y de sus costos asociados, permitió caracterizar desde el punto de vista técnico económico, que representan las averías de los tubos, así por ejemplo, a falla de un tubo de una cualquiera de las Unidades Japonesas de la Central Termoeléctrica "Carlos Manuel de Céspedes", puede parecer una cosa sin gran trascendencia económica, sin embargo la avería de un solo tubo representa un gasto de 2 562,3 CUP + 10 856,83 USD, lo cual es muy importante, sin considerar la afectación que una avería representa en la eficiencia de la Central. Desde el año 1980 hasta el año 2011, las averías ocurridas representan económicamente un costo total de casi cuatro millones de dólares.

Recomendaciones

Recomendaciones

- 1. Se recomienda continuar la investigación, realizando las siguientes tareas no abordadas en el presente trabajo:
 - Elaborar Metodologías de Pronóstico para las diferentes averías caracterizadas en el Capítulo I.
 - Estudiar particularmente el fenómeno de adelgazamiento de la pared por las siguientes causas:
 - Erosión corrosión.
 - Doblado de los tubos en los codos, donde se generan muchas averías.
- 2. Continuar investigando el impacto económico de las averías.
- 3. Evaluar otros aceros, incorporando su costo.

Recomendar a la CTE "Carlos M. de Céspedes" evaluar el empleo de acero de alto contenido de cromo

Bibliografía

- Bilmes P.D. (1999). *Análisis y Prevención de Fallas Metalúrgicas*. Argentina: Universidad Nacional de la Plata.
- Bilmes, Pablo D. (1999). Análisis y prevención de Fallas Metalúrgicas.
- Birger, I. (1975). Termoresistencia de piezas de máquinas. Moscú: Mashinostroenie.
- Danielsen, H. K, & Hald, J. (2012). Precipitation process of Z phase in 9-12% Cr steels. (Technical university of Denmark, Denmark; DONG Energy, Denmark). Proceedings "Creep 2012".
- David, E. (2002). Diccionario de Ciencias de Materiales. Retrieved from http://labrm.mecaest. hetsii.upm.es/media/diccionario_frances.htm.
- David. E. (1997). Definition of Discipline Activities. Retrieved from www.ela-iet.com/el00010.htm.
- David. E. (1997). Definition of Discipline Activities: Metallurgical Engineering. Retrieved from www.ela-iet.com/el00008.htm.
- Dear. J. P. (2001). Strength of Materials Research Review. Retrieved from www.me.ic.ac.uk/department/review94/sm/smreview.html.
- Fujio, Abe. (2012). Creep deformation behavior and deciding factors for creep life of tempered martensitic 9% Cr-steels. (National Institute for Materials Science, Japan). Proceedings "Creep 2012".
- Goytisolo, L. (2012). Improvement of the calculation of stresses during creep life prediction of tubes steam generators. Evento, Carlos Rafael Rodríguez.
- International Combustion Engineering. (2012). Retrieved from www.ice-ict.com/html/prod_.
- ISO/TR. (1981). Summary of average stress rupture properties of wrought steels for boiler and pressure vessels.
- Jusmatulin, E. R. (1990). Manual de recipientes y tuberías de alta presión. Moscú: Mashinostroenie.
- Kitching, R, & Zarrabi, K. (1982). Limit and burst peruses for cylindrical shells with parts-through slot .Ind. J. Pres. Ves. and Piping.
- Kitching, R, & Zarrabi, K. (1981). Lower Board to Limit Pressure Cylindrical Shells with parts-through slot. Ind. J. Mech. Sci.
- Maile, K, & Klenk, A. (2012). Creep damage evolution in martensitic 9% Cr-steels. Stuttgar.

Mastaka, Y. (2012). Creep crack growth behavior and application of Fracture.

Mayr, P. (2012). Analysis of low-stress creep testing data and its implication on the life-time prediction for 9-12% Cr steels. Chemnitz University of Technology.

Mechanics parameter for high Cr steels. (2012). . National Institute for Material Science.

Narayanan T. V. (1998). State of art of life assessment and extension of power and chemical plants in North America. Proceedings of International Conference on Integrity Evaluation on Life Extension of Industrial Equipments. Brasil.

NRIB-397. (1982). Control de los Metales y Uniones Soldadas. Control de la Fluencia lenta.

Nuclear Electric. (2000). . Retrieved from http://department/review97/sm/smrr57.html.

Resistencia de Materiales. (1985). . Moscú: Mir.

Rogers, D.K, & Sidey, D. (1982). Comparison of boiler tube residual life prediction models. Canada.

Ross, B. (1995). Investigating Mechanical Failures.

Taipa, C, & Omani, P. (1986). Teoría de la Resistencia a Altas Temperaturas de los Materiales. Moscú.

Ukai, S. (2012). Advanced high-temperature mechanical properties by hotrolling in 9 % Cr ODS steels.

Yamasaki S. (2012). Creep behavior at ultra-low strain rate in 9% Cr steel studied by helical spring creep test.

Zarrabi, K. (1993). Estimation of Boiler Tube Life presence of corrosion and erosion process. Int. J. Pres Ves.