
LECTURES

in

COMPUTATIONAL FLUID DYNAMICS

of

INCOMPRESSIBLE FLOW:

Mathematics, Algorithms and Implementations

J. M. McDonough

Departments of Mechanical Engineering and Mathematics

University of Kentucky

c©1991, 2003

PROLOGUE

Computational fluid dynamics (CFD) can be traced to the early attempts to numerically solve
the Euler equations in order to predict effects of bomb blast waves following WW II at the beginning
of the Cold War. In fact, such efforts were prime drivers in the development of digital computers,
and what would ultimately come to be termed supercomputers. Such work was motivated further
by the “Space Race” with the (former) Soviet Union, beginning in the late 1950s. The terminology
“computational fluid dynamics,” however, was seldom, if ever, used during this early period; more-
over, computational facilities were so inadequate that it was not until the late 1960s that anything
even remotely resembling a modern CFD problem could be attempted.

The first book devoted to CFD was written by Patrick Roache during a year-long visit to
the Mechanical Engineering Department of the University of Kentucky during 1970–71, and was
published the following year [1]. Computing power at that time was still grossly inadequate for what
we today would consider useful calculations, but significant efforts in algorithm development and
analysis were underway in many leading research universities and national laboratories within the
U.S., in Europe (especially France, Great Britain and Sweden) and in the (former) Soviet Union.

Today, at the beginning of the 21st Century, CFD can be viewed as a mature discipline, at least
in the sense that it has been universally recognized as essential for engineering analyses associated
with transport phenomena, and with regard to the fact that numerous commercial computer codes
are now available. Such codes can be executed even on PCs for fairly complex fluid flow problems.
Despite this, CFD is not always a part of university curricula and, indeed, it is almost never a
required component for a degree—primarily because faculty whose backgrounds do not include CFD
have yet to retire, and consequently badly-needed curriculum renovations have not been possible.

We have offered elective courses on CFD at both graduate and undergraduate levels for the
past 12 years at the University of Kentucky, but like most universities we do not have a formal
“CFD Program” in place. Such a program should consist of at least one required undergraduate
course in which students would learn to employ a well-known commercial CFD package in solving
“real-world” engineering problems involving fluid flow and heat and mass transfer (just has been
required in finite-element analysis of structures for many years). Then at least one (but preferably
two) graduate classes in computational numerical analysis should be available—possibly through an
applied mathematics program. The CFD graduate curriculum, per se, should consist of at least the
following four one-semester courses: i) CFD of incompressible flow, ii) CFD of compressible flow, iii)
turbulence modeling and simulation and iv) grid generation. Clearly, a fifth course on computational
transport processes and combustion would be very desirable. The two computational numerical
analysis courses and the first two CFD classes have been taught at the University of Kentucky
since 1990 with an introduction to grid generation provided in the second of the numerical analysis
classes, an advanced graduate numerical partial differential equations (PDEs) course.

The present lecture notes correspond to the first item of the above list. They are written to
emphasize the mathematics of the Navier–Stokes (N.–S.) equations of incompressible flow and the
algorithms that have been developed over the past 30 years for solving them. This author is thor-
oughly convinced that some background in the mathematics of the N.–S. equations is essential to
avoid conducting exhaustive studies (and expending considerable effort in doing so) when the math-
ematics of the problem shows that the direction being pursued cannot possibly succeed. (We will
provide specific examples of this in Chap. 2 of these lectures.) Thus, Chap. 1 is devoted to a fairly
advanced presentation of the known theory of the N.–S. equations. The main theorems regarding
existence, uniqueness and regularity of solutions will be presented, and put into a computational
context, but without proofs. Omission of these (which tend to be extremely technical, mathemat-

ically) is for the sake of engineering students, and we will provide essential references from which
mathematicians can obtain proofs and other details of the mathematics.

Chapter 2 will be devoted to presentation of a number of basically elementary topics that are
specifically related to CFD but yet impact details of the numerical analysis ultimately required to
solve the equations of motion (the N.–S. equations). They are often crucial to the successful im-
plementation of CFD codes, but at the same time they are not actually a part of the mathematical
aspects of numerical analysis. These topics include the different forms into which the N.–S. equa-
tions might be cast prior to discretization, the various possible “griddings” of the physical domain
of the problem that can be used in the context of finite-difference, finite-element and finite-volume
methods, treatment of the so-called “cell Reynolds number problem” and introduction to “checker-
boarding” associated with velocity-pressure decoupling. An understanding of these subjects, along
with competence in the numerical analysis of PDEs (a prerequisite for this course) will serve as
adequate preparation for analysis and implementation of the algorithms to be introduced in Chap.
3. Unlike what is done in most treatments of CFD, we will view numerical analysis as an essential
tool for doing CFD, but not, per se, part of CFD itself—so it will not be included in these lectures.

In Chap. 3 we present a (nearly) chronological historical development of the main algorithms em-
ployed through the years for solving the incompressible N.–S. equations, starting with the marker-
and-cell method and continuing through the SIMPLE algorithms and modern projection methods.
We remark that this is one of the main features of the current lectures that is not present in usual
treatments. In particular, most CFD courses tend to focus on a single algorithm and proceed to
demonstrate its use in various physical problems. But at the level of graduate instruction we feel
it is essential to provide alternative methods. It is said that “those who do not know history are
doomed to repeat it,” and one can see from the CFD literature that, repeatedly, approaches that
long ago were shown to be ineffective continue to resurface—and they still are ineffective but may
appear less so because of tremendous increases in computing power since the time of their last intro-
duction. This happens because researchers simply are not aware of earlier attempts with these very
“natural” methods. It is this author’s opinion that the place to prevent such wasted effort is in the
classroom—by presenting both “good” and “bad” (and maybe even “ugly”) algorithms so they can
be analyzed and compared, leading the student to a comprehensive and fundamental understanding
of what will and will not work for solving the incompressible N.–S. equations—and why.

We note at the outset that all details of algorithms will be presented in the context of finite-
difference/finite-volume discretizations, and in essentially all cases they will be restricted to two
space dimensions. But the algorithms, per se, could easily be implemented in a finite-element
setting (and in some cases, even for spectral methods). Furthermore, all details and analyses
are conceptually easy to transfer to three space dimensions. The actual construction of working
codes, however, is much more tedious in 3D, and students are expected to write and debug codes
corresponding to various of the algorithms to be presented. So we believe the 2-D treatment is
preferred.

As hinted above, this set of lectures is intended to be delivered during a (three-unit) one-semester
course (or, essentially equivalently, for a four-unit quarter course) to fairly advanced graduate
students who are expected to have had at least a first course in general graduate numerical analysis,
and should also have had a second course emphasizing numerical PDEs. It is desired to spend as
much time as possible focusing on topics that are specific to solution of the incompressible Navier–
Stokes equations without having to expend lecture time on more elementary topics, so these are
considered to be prerequisites. Lectures on these elements of numerical analysis can be obtained over
the Internet as pdf files that can be downloaded using the URLs www.engr.uky.edu/∼egr537
and www.engr.uky.edu/∼me690.

Contents

1 The Navier–Stokes Equations: a mathematical perspective 1

1.1 Introductory Remarks . 1

1.1.1 The Navier–Stokes equations . 1

1.1.2 Brief history of mathematical analyses of the N.–S. equations 2

1.1.3 Why study mathematics of the N.–S. equations? 2

1.2 Some Basic Functional Analysis . 3

1.2.1 Fourier series and Hilbert spaces . 3

1.2.2 Weak and strong solutions to PDEs . 8

1.2.3 Finite-difference/finite-volume approximations of non-classical solutions . . . 23

1.3 Existence, Uniqueness and Regularity of N.–S. Solutions 28

1.3.1 Function spaces incorporating physics of incompressible flow 29

1.3.2 The Helmholtz–Leray decomposition and Leray projection 31

1.3.3 Derivation of “mathematical” forms of the Navier–Stokes equations 33

1.3.4 The main well-known N.–S. solution results 41

1.4 Summary . 45

2 Special Numerical Difficulties of the Navier–Stokes Equations 47

2.1 Forms of the Navier–Stokes Equations . 47

2.1.1 Primitive-variable formulation . 47

2.1.2 Stream function/vorticity formulations . 49

2.1.3 Velocity/vorticity formulations . 50

2.1.4 Further discussions of primitive variables . 51

2.2 Pressure-velocity coupling . 53

2.2.1 Types of grid configurations . 54

2.2.2 Finite-difference/finite-volume discretization of the N.–S. equations 56

2.3 Treatments for the Cell-Re Problem and Aliasing . 79

2.3.1 The cell-Re problem—its definition and treatment 79

2.3.2 Treatment of effects of aliasing . 90

2.4 Summary . 99

3 Solution Algorithms for the N.–S. Equations 101

3.1 The Marker-and-Cell Method . 102

3.1.1 Momentum equations . 102

3.1.2 The pressure Poisson equation . 102

3.1.3 Implementation near boundaries . 104

3.1.4 Marker particle trajectories for free surface tracking 106

3.1.5 The MAC algorithm . 107

i

CONTENTS i

3.2 SOLA Method . 108
3.3 Artificial Compressibility . 111
3.4 Projection Methods . 114

3.4.1 Outline of Chorin’s projection method . 114
3.4.2 Analytical construction of a modern projection method 115
3.4.3 Numerical implementation of projection methods 117

3.5 The SIMPLE Algorithms . 124
3.6 Summary . 124

References 125

ii CONTENTS

List of Figures

1.1 Comparison of two boundary condition assignments for the Poisson equation. 11
1.2 Step function constructed by applying the characteristic function to a function f . . . 25
1.3 C∞

0 δε mollification functions for three values of ε. 26

2.1 Alternative grid structures for solving the 2-D incompressible N.–S. equations; (a)
natural unstaggered, (b) staggered, (c) partially staggered, (d) cell-centered unstag-
gered and (e) staggered w/ multiple momentum equations. 54

2.2 Lid-driven cavity streamlines for the viscous, incompressible N.–S. equations. 57
2.3 Basic unstaggered gridding of problem domain. 58
2.4 Non-constant grid function satisfying discrete 1-D continuity equation. 63
2.5 Non-physical grid function satisfying discrete 2-D continuity equation. 64
2.6 Non-physical checkerboard pressure distribution. 64
2.7 Staggered grid cell, Ωi,j. 66
2.8 Grid cell for x-momentum equation. 68
2.9 Grid cell for y-momentum equation. 70
2.10 Grid-cell indexing. 72
2.11 Staggered-grid boundary condition implementation schematic. 74
2.12 Cell-centered, unstaggered grid. 77
2.13 Grid point to grid point oscillations caused by cell-Re problem. 83
2.14 Dependence of z+ on cell Re. 84
2.15 Under-sampled sine function demonstrating effects of aliasing. 91
2.16 Schematic of a discrete mollifier. 94
2.17 Wavenumber response of Shuman filter for various values of filter parameter. 97
2.18 Shuman filter applied to solution of Burgers’ equation. 98

3.1 Location of averaged velocity components needed for mixed derivative approximations.104
3.2 Near-boundary grid cells for treatment of right-hand side of Eq. (3.9). 105
3.3 Introduction of massless marker particles. 106

iii

Chapter 1

The Navier–Stokes Equations: a

mathematical perspective

In this chapter we provide an introduction to the Navier–Stokes equations from a mainly mathe-
matical point of view in order to lay the proper groundwork for the numerical treatments to follow
in subsequent chapters. We begin with a very brief discussion of the equations, themselves, reserv-
ing details for later, and we provide an outline of the history of the analysis of these equations.
But we make no claim as to completeness of this; the intent is merely to indicate the tremendous
amount of work that has been done. We follow this with basic functional analysis relating to the
Navier–Stokes equations, including such key ideas as “weak” and “strong” solutions. We then
state, without proof, the main results concerning existence, uniqueness and regularity of solutions,
and we discuss these in the framework of the numerical procedures that will be needed to actually
produce solutions.

1.1 Introductory Remarks

As indicated above, this section will consist of presenting the Navier-Stokes equations with cursory
remarks regarding the physics embodied in them, and a brief outline of the history of their investiga-
tion by, mainly, mathematicians. It will conclude with some remarks on why a basic mathematical
study of these equations is important.

1.1.1 The Navier–Stokes equations

The equations of viscous, incompressible fluid flow, known as the Navier–Stokes (N.–S.) equations
after the Frenchman (Claude Louis Marie Henri Navier) and Englishman (George Gabriel Stokes)
who proposed them in the early to mid 19th Century, can be expressed as

ρ
Du

Dt
= −∇p+ µ∆u + FB (1.1a)

∇ · u = 0 , (1.1b)

where ρ is density of the fluid (taken to be a known constant); u ≡ (u1, u2, u3)
T is the velocity

vector (which we will often write as (u, v, w)T); p is fluid pressure; µ is viscosity, and FB is a body
force. D/Dt is the substantial derivative expressing the Lagrangian, or total, acceleration of a
fluid parcel in terms of a convenient laboratory-fixed Eulerian reference frame; ∇ is the gradient
operator; ∆ is the Laplacian, and ∇· is the divergence operator. We remind the reader that the

1

2 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

first of these equations (which is a three-component vector equation) is just Newton’s second law
of motion applied to a fluid parcel—the left-hand side is mass (per unit volume) times acceleration,
while the right-hand side is the sum of forces acting on the fluid element. Equation (1.1b) is
simply conservation of mass in the context of constant-density flow. In the sequel we will provide
alternative forms of these basic equations.

1.1.2 Brief history of mathematical analyses of the N.–S. equations

It is interesting to note that Navier derived Eq. (1.1a) in 1822 on a very fundamental physical
basis including effects of attraction and repulsion of neighboring molecules, but did not specify the
physics embodied in the coefficient that ultimately came to be taken as the viscosity. Indeed, the
effects of molecular interactions might be viewed as being somehow equivalent to viscosity (they
are certainly related to it, but Navier could not have known the details of this), but one must not
lose sight of the fact that the continuum hypothesis is actually required to make analysis of fluid
flow reasonable in the context of any equations less fundamental than the Boltzmann equation
(in particular, the N.–S. equations). The derivation by Stokes in 1845 was the first to explicitly
introduce viscosity.

During the 20th Century the N.–S. equations received increasing attention from mathematicians
following the early studies of Leray [2], [3] in the 1930s in which it was proposed that solutions
to these equations could possibly be singular and that this might be associated with turbulence.
The work of Leray spurred considerable development of 20th Century functional analysis, and it is
often claimed that the N.–S. equations are one of two main progenitors of modern 20th Century
mathematical analysis—the other being Schrödinger’s equation of quantum mechanics. Following
Leray’s work was the seminal contribution of Ladyzhenskaya [4] (first available in English in 1963)
which provided basic direction and results for further analysis of the N.–S. equations. Beginning
in the early 1970s numerous works began to appear that led to a rather different, and modern,
view of the equations of fluid motion, namely as dynamical systems. The best known of these
is probably that of Ruelle and Takens [5] in which it is proposed that the N.–S. equations are
capable of describing turbulent fluid motion, that such motion is not random but instead chaotic
and associated with a strange attractor of the flow of the dynamical system, and furthermore such
behavior must arise after only a small number (possibly as few as three) bifurcations of the equations
of motion.

It is interesting to note that this view of the N.–S. equations was in a sense foreseen in the
numerical work of Lorenz [6] in 1963 and the early attempts at direct numerical simulation (DNS)
of turbulence by, e.g., Orszag and Patterson [7] in the late 1960s and early 70s. It has in recent
years provided the context of numerous works on the Navier–Stokes equations beginning with
Ladyzhenskaya [8], [9], Temam [10], [11], [12], Constantin and Foias [13] and many others. In recent
years there have been a number of new monographs published on the Navier–Stokes equations.
These include the work by Doering and Gibbon [14] and the very up-to-date volume by Foias et al.
[15] that will be used extensively in the present chapter. We highly recommend both of these, but
especially the latter, to students interested in details of the mathematics that will be somewhat
diluted in the current lectures.

1.1.3 Why study mathematics of the N.–S. equations?

Before launching into a mathematical discussion of the N.–S. equations that to some may seem
a needless waste of time at best (and maybe worse, completely useless impractical ramblings) we
need to provide a rationale for doing so. The first point to be aware of is that in the 21st Century

1.2. SOME BASIC FUNCTIONAL ANALYSIS 3

most (probably eventually all) analyses of fluid flow will be performed via CFD. Moreover, such
analyses will almost always be carried out using commercial flow codes not written by the user—
and possibly (probably, in most cases) not even understood by the user. One of the main goals of
these lectures is to provide the reader with sufficient understanding of what is likely to be going on
“under the hood” in such codes to motivate caution in accepting computed results as automatically
being accurate. At the same time it is hoped that the reader will also develop an ability to test the
validity and accuracy of computed results. It will be apparent as we proceed that a fair amount of
mathematical understanding of the N.–S. equations, and the nature of their solutions, is required
to do this.

Beyond this is the fact, underscored by Eqs. (1.1), that the N.–S. equations comprise a system
of PDEs requiring the user of commercial software to prescribe sufficient data associated with any
given physical situation to produce a mathematically well-posed problem. Commercial CFD codes
tend generally to be quite robust, and they will often produce results even for problems that are
not properly posed. These can range from easily recognized “garbage out” due to “garbage in” to
solutions that look “physically correct” but which are wrong in subtle ways. Clearly, the latter are
far more dangerous, but in any case it behooves users of commercial software to know sufficient
mathematics of the N.–S. equations to reliably construct well-posed problems—and, sometimes
what is required to do so can be counter intuitive based on physics alone.

1.2 Some Basic Functional Analysis

In this section we will introduce some basic notions from fairly advanced mathematics that are
essential to anything beyond a superficial understanding of the Navier–Stokes equations. Indeed,
as we have already indicated, a not insignificant part of what we will present was developed by
mathematicians in their studies of these equations. As might be expected, much of this material is
difficult, even for students of mathematics and, as a consequence, we will usually dilute it consid-
erably (but, hopefully, not fatally) in an effort to render it comprehensible to those not especially
well trained in modern analysis.

There are numerous key definitions and basic ideas needed for analysis of the N.–S. equations.
These include Fourier series, Hilbert (and Sobolev) spaces, the Galerkin procedure, weak and strong
solutions, and various notions such as completeness, compactness and convergence. In some cases we
will provide precise and detailed definitions, while in others we may present only the basic concept.
As often as possible we will also discuss characterizations of the idea under consideration in terms
of simpler (hopefully, well-known) mathematics—and/or physics—to clarify these principles and to
make them seem more natural.

1.2.1 Fourier series and Hilbert spaces

In this subsection we will briefly introduce several topics required for the study of PDEs in general,
and the Navier–Stokes equations in particular, from a modern viewpoint. These will include Fourier
series, Hilbert spaces and some basic ideas associated with function spaces, generally.

Fourier Series

We begin by noting that there has long been a tendency, especially among engineers, to believe
that only periodic functions can be represented by Fourier series. This misconception apparently
arises from insufficient understanding of convergence of series (of functions), and associated with
this, the fact that periodic functions are often used in constructing Fourier series. Thus, if we

4 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

demand uniform convergence some sense could be made of the claim that only periodic functions
can be represented. But, indeed, it is not possible to impose such a stringent requirement; if it
were the case that only periodic functions could be represented (and only uniform convergence
accepted), there would be no modern theory of PDEs.

Recall for a function, say f(x), defined for x ∈ [0, L], that formally its Fourier series is of the
form

f(x) =
∞∑

k

akϕk(x) , (1.2)

where {ϕk} is a complete set of basis functions, and

ak = 〈f, ϕk〉 ≡
∫ L

0
f(x)ϕk(x) dx . (1.3)

The integral on the right-hand side is a linear functional termed the inner product when f and ϕk

are in appropriate function spaces. We will later return to requirements on f for existence of such
a representation. At this time we can at least discuss some terminology associated with the above
expressions.

First, the notion of basis functions is analogous to that of basis vectors in linear algebra. For
example, in the real N -dimensional Euclidean space RN we can construct a basis {ei}N

i=1 of the
form

ei = (0, 0, . . . ,

i︷︸︸︷
1 , 0, . . . , 0)T , (1.4)

with all components of the vector being zero except the ith one, which has a value of unity. We can
then represent every vector v ∈ RN as

v =

N∑

i=1

〈v, ei〉ei , (1.5)

where
v = (v1, v2, . . . , vN)T ,

and 〈v, ei〉 is just the usual “dot” product of two vectors. (Also note from our choice of the eis
that 〈v, ei〉 = vi.) We see from this that we can view Eq. (1.2) as an infinite-dimensional version
of (1.5) and, correspondingly, the set {ϕk} is the infinite-dimensional analogue of the basis set
with vectors defined as in Eq. (1.4). But care must be exercised in using such interpretations too
literally because there is no question of convergence regarding the series in (1.5) for any N < ∞.
But convergence (and, moreover, the specific type of convergence) is crucial in making sense of
Eq. (1.2). Furthermore, in the finite-dimensional case of Eq. (1.5) it is easy to construct the basis
set and to guarantee that it is a basis, using simple results from linear algebra. Treatment of the
infinite-dimensional case is less straightforward. In this case we need the idea of completeness.
Although we will not give a rigorous definition, we characterize this in the following way: if a
countable basis set is complete (for a particular space of functions, i.e., with respect to a specified
norm), then any (and thus, every) function in the space can be constructed in terms of this basis.

We remark that completeness is especially important in the context of representing solutions
to differential equations. In particular, in any situation in which the solution is not a priori
known (and, e.g., might have to be determined numerically), it is essential that the chosen solution
representation include a complete basis set. Otherwise, a solution might not be obtained at all
from the numerical procedure, or if one is obtained it could be grossly incorrect.

1.2. SOME BASIC FUNCTIONAL ANALYSIS 5

The question of where to find complete basis sets then arises. In the context of Fourier repre-
sentations being considered at present we simply note without proof (see, e.g., Gustafson [16] for
details) that such functions can be obtained as the eigenfunctions of Sturm–Liouville problems of
the form

− d

dx

(
p(x)

dϕ

dx

)
+ q(x)ϕ = λr(x)ϕ , x ∈ [a, b] (1.6a)

Baϕ = Bbϕ = 0 , (1.6b)

where Ba and Bb are boundary operators at the respective endpoints a and b of the interval;
p, q and r are given functions of x, and λ is an eigenvalue. It is shown in [16] that such problems
have solutions consisting of a countable infinity of λks, and associated with these is the countable
and complete set of ϕks.

At this point we see, at least in an heuristic sense, how to construct the series in Eq. (1.2). But
we have not yet indicated for what kinds of functions f this might actually be done. To accomplish
this we will need a few basic details regarding what are called Hilbert spaces.

Hilbert Spaces

We have already implied at least a loose relationship between the usual N -dimensional vector
spaces of linear algebra and the Fourier representation Eq. (1.2). Here we will make this somewhat
more precise. We will first introduce the concept of a function space, in general, and then that of
a Hilbert space. We follow this with a discussion of the canonical Hilbert space, denoted L2, and
relate this directly to Fourier series. Finally, we extend these notions to Sobolev spaces which, as
we will see, are Hilbert spaces with somewhat “nicer” properties than those of L2 itself.

First recall that vector spaces possess the linearity property: if v and w are in the vector space
S, for example, RN and a, b ∈ R (or a, b ∈ C), then

av + bw ∈ S .

This implies that S is closed with respect to finite linear combinations of its elements.

If we replace the finite-dimensional vectors v and w with functions f and g, both having Fourier
representations of the form Eq. (1.2), this linearity still holds (modulo a few technical details), and
we have the beginnings of a function space. But as we have already hinted, because of the infinite
basis set, convergence now becomes an issue, and we need tools with which to deal with it. If we
consider a sequence of functions {fn(x)}∞n=0, and a possible limit function, say f(x), then we need
a way to precisely characterize the heuristic fn → f as n → ∞. Recall from elementary analysis
that if instead of a sequence of functions we were to consider a sequence of numbers, say {an}, we
would say that an converges to a, denoted an → a, when |a − an| < ε ∀ ε > 0, but depending on
n. Furthermore, we remind the reader that it is often essential to be able to consider convergence
in a slightly different sense, viz., in the sense of Cauchy: |am − an| < ε ⇒ an → a. This property
does not always hold, but the class of sequences for which it does is large, and any space in which
convergence in the sense of Cauchy implies convergence (in the usual sense) is said to be complete.

The natural generalization of this to sequences of functions is to replace the absolute value | · |
with a norm ‖ · ‖. We will not at the moment specify how ‖ · ‖ is calculated (i.e., which norm is
to be used), but however this might be done we expect that ‖f − fn‖ < ε would imply fn → f
“in some sense.” This provides sufficient machinery for construction of a function space: namely, a
function space is a complete linear space of functions equipped with a norm. Such spaces are called

6 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

Banach spaces, and they possess somewhat less structure than is needed for our analyses of the
N.–S. equations. Independent of this observation, however, is the fact that because there are many
different norms, we should expect that the choice of norm is a key part of identifying/characterizing
the particular function space. Indeed, for an expression such as ‖f−fn‖ < ε to make sense, it must
first be true that ‖f − fn‖ exists; i.e., it must be that ‖f − fn‖ < ∞. This leads us to consider
some specific examples of norms.

It is worthwhile to first consider a particular vector norm in a finite-dimensional real Euclidean
space—the Euclidean length: let v = (v1, v2, . . . , vN)T ; then the Euclidean norm is simply

‖v‖2 =

(
N∑

i=1

v2
i

)1/2

,

which is recognized as the length of v. (We have used a “2” subscript notation to specifically
distinguish this norm from the infinity of other finite-dimensional p norms defined in an analogous
way.) It is also easy to see that the above expression is (the square root of) the vector dot product
of v with itself:

‖v‖2
2 = v · v = 〈v,v〉 ,

the last equality representing the notation to be used herein, and which is often termed a scalar
product—a generalization of inner product. We can see from these last two equations a close
relationship between norm and inner (dot) product in Euclidean spaces, and a crucial point is that
this same relationship holds for a whole class of (infinite-dimensional) function spaces known as
Hilbert spaces. In particular, a Hilbert space is any complete normed linear space whose norm
is induced by an inner product. Thus, one can think of Hilbert spaces as Banach spaces with
more structure arising from the “geometry” of the inner product. (Recall that in finite-dimensional
spaces the dot product can be used to define angles; this is true in infinite-dimensional inner product
spaces as well.)

As we will see shortly there are many different Hilbert spaces, but we will begin by considering
what is termed the “canonical” Hilbert space denoted L2. L2 is one member of the family of Lp

spaces having norms defined by

‖f‖
L

p ≡
(∫

Ω
|f |p dµ

)1/p

, (1.7)

where Ω is a domain (bounded, or unbounded) in, say RN ; | · | denotes, generally, the complex
modulus (or, if f is real valued, absolute value), and µ is a “measure” on Ω. We will neither
define, nor explicity use, the notion of measure to any extent in these lectures, despite its extreme
importance in intermediate to advanced analysis, in general. For those readers not familiar with
the concept, it will be sufficient for purposes herein to think of measure as being an interval (or
subinterval, possibly small), and to associate dµ with the usual differential dx.

The integral in Eq. (1.7) is a Lebesgue integral (hence, the notation Lp) which provides a crucial
generalization of the Riemann integral from elementary calculus. In light of our earlier discussions
we see that a function f is in the function space Lp(Ω) if and only if ‖f‖

L
p < ∞. In particular,

f ∈ L2(Ω) whenever ‖f‖
L

2 <∞, where

‖f‖
L

2 ≡
(∫

Ω
|f |2 dµ

)1/2

. (1.8)

In the sequel we will consider only real-valued functions f , obviating the need for the | · | notation
when considering L2 (or any other even p Lp space). In addition, we will replace the Lebesgue

1.2. SOME BASIC FUNCTIONAL ANALYSIS 7

measure µ with intervals contained in Ω and revert to the usual dx notation, even when the
integral formally must be of Lebesgue type.

There is an important easily proven inequality, applicable in any Hilbert space, known as the
Cauchy–Schwarz inequality, and expressed in L2(Ω) as

〈f, g〉 ≤ ‖f‖
L

2 ‖g‖
L

2 ∀ f, g ∈ L2(Ω) . (1.9)

Hence, the inner product of two functions in L2 is bounded by the product of their L2 norms,
both of which are finite. This turns out to be very important in constructing estimates needed
for proofs of existence of solutions to PDEs, and holds only in Hilbert spaces. A generalization to
other Lp spaces, known as Hölder’s inequality, is similarly important, but more difficult to employ
for technical reasons.

We now have in place the tools needed to return to the question of what classes of functions
may be represented by Fourier series. The basic answer to this is: any function in L2 (or any other
Hilbert space) can be expressed as a Fourier series. (There are other functions that also can be so
represented, but discussion of this would take us too far from the main topics of these lectures.)
There are several related heuristic justifications one can provide for this result. First, we recall that
for a function f(x) the formal calculation of its Fourier coefficients is performed with the formula
given in Eq. (1.3), repeated here as

ak = 〈f, ϕk〉 ≡
∫

Ω
f(x)ϕk(x) dx

for all k in a countably-infinite index set, and where in (1.3) Ω = [0, L] was used. We see by
comparing this with the Cauchy–Schwarz inequality, Eq. (1.9), that if the ϕks are only in L2(Ω),
and f is also in L2(Ω), we can guarantee boundedness (and hence, existence) of the ak.

There are two remarks that should be made at this point. First, in typical cases {ϕk} lies in
nicer spaces than simply L2(Ω), and second the preceding observation is not sufficient to guarantee
validity of the Fourier representation Eq. (1.2) for L2 functions. In particular, existence of the
inner products that produce the coefficients does not guarantee that they decay sufficiently fast
with increasing k to imply convergence of the Fourier series. The Riemann–Lebesgue lemma (see
any text on beginning graduate analysis), however, provides a suggestion that this must be true;
namely, it states that ak → 0 as k → ∞, even with quite weak hypotheses regarding f and {ϕk}.
But the strongest results come from the Riesz representation theorem that can be used to deduce
both existence of Fourier coefficients and convergence of the resulting series for f ∈ L2(Ω). A yet
more elementary way to see this is through the Parseval identity which, in the case that the ϕks
are orthonormal gives

‖f‖2

L
2

=
∞∑

k

|ak|2 .

Thus, for f ∈ L2(Ω), ‖f‖
L

2 <∞ ⇒∑∞
k |ak|2 <∞, and by orthonormality

∥∥∥∥∥

∞∑

k

akϕk(x)

∥∥∥∥∥

2

L2

=

∞∑

k

|ak|2 <∞ .

Consequently, the Fourier series converges in the L2 norm. The texts by Stakgold [17] provide
easily-understood discussions of these various concepts.

We emphasize that periodicity of f has never been used in any of these arguments, but we must
also note that the left-hand side of this expression does not imply uniform convergence in Ω. We

8 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

remark here that by nature of the Lp spaces, convergence in L2 does not even imply convergence
at every point of Ω—in sharp contrast to uniform convergence. This arises because the Lebesgue
integral is based on the concept of (Lebesgue) measure, and it is shown in beginning graduate
analysis classes that integration over a set of zero measure produces a null result. In turn, this
implies that we can ignore sets of measure zero when performing Lebesgue integration; hence, when
calculating the L2 norm, we are permitted to delete regions of “bad behavior” if these regions have
zero measure. Furthermore, this leads to the widely-used concept “almost everywhere.” When
dealing with Lp spaces one often specifies that a given property (e.g., convergence of a Fourier
series) holds almost everywhere, denoted a.e. This means that the property in question holds
everywhere in the domain under consideration except on a set of measure zero.

For later purposes it is useful to note that functions in L2 are often characterized as having
finite energy. This description comes from the fact that, up to scaling, U 2 ≡ U ·U is kinetic energy
of a velocity field having magnitude U . This notion extends naturally to functions in general,
independent of whether they have any direct association with actual physics. Hence, Eq. (1.8)
would be termed the “energy” of the function f , and this is clearly finite if f ∈ L2.

Sobolev Spaces

In the analysis of PDEs it is often necessary to estimate the magnitude of derivatives of the
solution and, morever, to bound these derivatives. In order to work more conveniently with such
estimates it is useful to define additional function spaces in terms of norms of derivatives. The
Sobolev spaces, comprise one class of such spaces that can be defined for any Lp space but herein
will be associated only with L2.

To obtain a concise definition of these spaces we will introduce some notation. First, let α =
(α1, α2, . . . , αd) denote a vector of d non-negative integers, a multi-index, and define |α| ≡ α1 +
α2 + · · · + αd. Then we denote the partial differential operator ∂ |α|/∂xα1

1 · · · ∂xαd

d by Dα. We can
now define a general Sobolev norm (associated with L2(Ω)) as

‖f‖
H

m
(Ω)

≡ 〈f, f〉
H

m
(Ω)

, (1.10)

where

〈f, g〉
H

m
(Ω)

≡
∑

|α|≤m

∫

Ω
DαfDαg dx . (1.11)

The Sobolev space, itself, is defined as

Hm(Ω) =
{
f ∈ L2(Ω);Dαf ∈ L2(Ω), |α| ≤ m

}
. (1.12)

Clearly, when m = 0, Hm = H0 = L2; m = 1 and m = 2 will be the most important cases
for the present lectures. The first of these implies that not only is f ∈ L2(Ω), but so also is the
first derivative of f , with analogous statements involving the second derivative when m = 2. We
remark that these notions and additional ones (especially the Sobolev inequalities) are essential
to the modern theory of PDEs, but we will not specifically use anything beyond the results listed
above in these lectures.

1.2.2 Weak and strong solutions to PDEs

In this section we will provide considerable detail on some crucial ideas from modern PDE theory
associated with so-called weak and strong solutions, and we will also note how these differ from the

1.2. SOME BASIC FUNCTIONAL ANALYSIS 9

“classical” solutions familiar to engineers and physicists. To do this we will need the concept of a
distribution (or “generalized” function), and we will also require an introduction to the Galerkin
procedure. We begin by making precise what is meant by a “classical” solution to a differential
equation to permit making a clear distinction between this and weak and strong solutions. We
then provide an example of a weak solution to motivate the need for such a concept and follow this
with an introduction to distribution theory, leading to the formal definition of weak solution. Next
we show that such solutions can be constructed using the Galerkin procedure, and we conclude the
section with a definition of strong solution.

Classical Solutions

It is probably useful at this point to recall some generally-known facts regarding partial differen-
tial equations and their (classical) solutions, both to motivate the need for and to better understand
the main topics of this section, namely weak and strong solutions. We let P(·) denote a general
partial differential operator, common examples of which are the heat, wave and Laplace operators;
P could be abstract notation for any of these, but also for much more general operators such as
the N.–S. operator. To make the initial treatment more concrete we will take P to be the heat
operator:

P(·) ≡
[
∂

∂t
− κ

∂2

∂x2

]
(·) , (1.13)

where κ is thermal diffusivity.

If we now specify a spatial domain and initial and boundary data we can construct a well-posed
problem associated with this operator. For example, if the spatial domain is Ω = R1, then no
boundary conditions need be given, and the complete heat equation problem can be expressed as

∂u

∂t
= κ

∂2u

∂x2
, x ∈ Ω ≡ (−∞,∞) (1.14a)

u(x, 0) = u0(x), x ∈ Ω , (1.14b)

where u0(x) is given data.

A classical solution to this problem is one that satisfies Eq. (1.14a) ∀ t > 0, and coincides
with u0(x) at t = 0 ∀ x ∈ Ω. For this to be true (assuming such a solution exists) it is necessary
that u ∈ C1 with respect to time, and u ∈ C2 with respect to the spatial coordinate; i.e., u ∈
C1(0,∞)×C2(Ω).

As we noted earlier, a modern view of the N.–S. equations is as a dynamical system, and it is
worthwhile to introduce this viewpoint here in the well-understood context of the heat equation.
A dynamical system is simply anything that undergoes evolution in time, and it is clear that Eqs.
(1.14) fit this description. Because of the emphasis on temporal behavior it is common to express
dynamical systems in the abstract form

du

dt
= F (u) , (1.15a)

u(0) = u0 , (1.15b)

even though F may be a (spatial) partial differential operator.

This leads to a slightly different, but equivalent, view of the solution and corresponding notation
associated with the function spaces of which it is a member. Namely, we can think of Eq. (1.15a) as

10 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

abstractly providing a mapping from the space of functions corresponding to the right-hand side,
that is, C2(Ω) in the present case, to those of the left-hand side, C 1(0,∞), and denote this as

u(t) ∈ C1(0,∞;C2(Ω)) . (1.16)

This notation will be widely used in the sequel, so it is worthwhile to understand what it implies. In
words, it says that u(t) is a function that is once continuously differentiable in time on the positive
real line, and is obtained as a mapping from the twice continuously differentiable functions in the
(spatial) domain Ω.

The final piece of terminology that is readily demonstrated in the context of classical solutions
(but which applies in general) is that of solution operator. Recall from elementary PDE theory
that Eqs. (1.14) have the exact solution

u(x, t) =
1√

4πκt

∫ ∞

−∞
u0(ξ)e

−
(x−ξ)2

4κt dξ ∀ (x, t) ∈ (−∞,∞)×(0,∞) . (1.17)

It is obvious from the form of (1.17) that it is a linear transformation that maps the initial data u0

to the solution of the PDE at any later time, and for all spatial locations of the problem domain
Ω. Such a mapping is called a solution operator, and the notation

S(t)u0 = u(t) (1.18)

is widely used. This corresponds to choosing a time t, substituting it into the kernel of the solution
operator, e−(x−ξ)2/4κt, and evaluating the integral for all desired spatial locations x. Suppression
of the x notation, as in (1.18), can to some extent be related to the dynamical systems viewpoint
described above. We remark that derivation of (1.17) is elementary, but it is particularly important
because its form permits explicit analysis of regularity (i.e., smoothness) of solutions to the problem
and, in particular, determination that indeed the solution is of sufficient smoothness to be classical
in the sense indicated earlier. Such an analysis is provided in Berg and McGregor [18], among many
other references.

Weak Solutions—Some Examples

The concept of weak solution is one of the most important in the modern theory of partial
differential equations—basically, the theory could not exist without this idea. It was first introduced
by Leray in his studies of the Navier–Stokes equations, but we will present it here first in a more
general abstract (and hence, simpler) setting and later apply it to the N.–S. equations.

The basic idea underlying the term weak solution is that of a solution to a differential equation
that is not sufficiently regular to permit the differentiations required to substitute the solution into
the equation. This lack of smoothness might occur on only small subsets of the domain Ω, or it
could be present for essentially all of Ω. In any case, there would be parts of the solution domain
on which the solution could not be differentiated enough times to satisfy the differential equation
in the classical sense.

For those readers who have had no more than a first course in PDEs such ideas may seem
rather counterintuitive, at best. Indeed, most solutions studied in a first course are classical; but
not all are. Unfortunately, in a beginning treatment the tools needed for analysis of non-classical
solutions (either weak or strong) are not available, so no attempts are usually made to address lack
of regularity of such solutions. Here we will present a simple example to demonstrate that solutions
to PDEs need not always be smooth. This is intended to provide motivation/justification for the
discussions of weak and strong solutions that follow.

1.2. SOME BASIC FUNCTIONAL ANALYSIS 11

We consider Poisson’s equation on the interior of the unit square Ω with Dirichlet conditions
prescribed on the boundary of Ω, denoted ∂Ω:

∆u = f , (x, y) ∈ (0, 1)×(0, 1) ≡ Ω , (1.19a)

u(x, y) = g(x, y) , (x, y) ∈ ∂Ω . (1.19b)

The reader can easily check that if

f(x, y) =
13

4
π2 sinπx sin

3

2
πy , ∀ (x, y) ∈ Ω , (1.20)

then the function

u(x, y) = − sinπx sin
3

2
πy (1.21)

is a solution to the differential equation (1.19a). Clearly this solution is a classical one if the
boundary function g satisfies

g(x, y) = u(x, y)
∣∣∣
∂Ω
. (1.22)

That is, g ≡ 0 except at y = 1, where g = sinπx holds.
But there is no a priori reason for such a boundary condition assignment. In fact, we will

later work with a problem for the N.–S. equations in which g ≡ 0 on ∂Ω except at y = 1, where
g ≡ 1. Figure 1.1 displays these two different boundary data to highlight the fact that what would
have been a C∞ (and thus, classical) solution with one set of boundary conditions will become a
much less regular solution near the boundary when a different set of boundary data is employed.
The implication is that with the nonhomogeneous function f in Eq. (1.19a) given as (1.20), the

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

x

g(
x,

y) 
y

=1

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.1: Comparison of two boundary condition assignments for the Poisson equation.

solution on the interior of Ω should be close to that given in (1.21). But this solution does not
coincide with the second set of boundary conditions considered above. This mismatch between the

12 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

right-hand side of (1.19a) and the boundary condition g ≡ 1 on the top boundary of Ω is a form
of incompatibility; but as already indicated, there is no reason to expect a relationship to exist
between f and g of problem (1.19). In general, these two functions will be prescribed completely
independently, so it is necessary to have a theory that is sufficiently general to treat the possibility
of nonsmooth solutions that could result.

There is an additional way to recognize that solutions need not be smooth. To consider this we
first note that Eq. (1.19a) has a formal solution of the form

u(x, y) = ∆−1f(x, y) =

∫

Ω
f̃(ξ, η)G(x, y|ξ, η) dξdη , (1.23)

where G(· | ·) is the Green’s function for the 2-D Laplacian with (homogeneous) Dirichlet boundary
conditions (see, e.g., Stakgold [17] for construction of Green’s functions), and f̃ is the original right-
hand side function f in Eq. (1.19a) modified to account for transformation of the nonhomogeneous
boundary data (1.19b) to the inhomogeneity of the differential equation (see Berg and McGregor
[18] for details).

First observe that Eq. (1.23) provides a second example of a solution operator, now acting only
on inhomogeneities and boundary data. But the terminology is more widely used in the context
of time-dependent problems discussed earlier; in this regard we also note that the kernel of the
solution operator in Eq. (1.17) is often called the causal Green’s function to emphasize the fact that
it is associated with time-dependent behavior.

We next notice that the right-hand side of Eq. (1.23) is in the form of an inner product. Thus,
if G is at least in L2(Ω), the Cauchy–Schwarz inequality guarantees boundedness of this integral
and, hence, existence of the solution u to problem (1.19) even if f̃ is no smoother than being in
L2(Ω) would imply. Indeed, this guarantees no smoothness at all—not even continuity in the usual
sense. For example, it is easily checked that the function defined by

f(x) =

{
1 , x irrational

0 , x rational ,

for x ∈ [0, 1] is in L2.

Suppose now that f ∈ L2(Ω), but not any smoother. Then we must ask what this implies
regarding regularity of u, the solution to (1.19). From Eq. (1.19a) we see that if f ∈ L2(Ω), then
it must be the case that ∆u ∈ L2(Ω), from which it follows that u ∈ H2(Ω); i.e., the second
derivative of u is in L2. This implies that the second derivative of u exists a.e., but may not be
smooth—hence, it may be the case that no higher derivatives exist. (Recall that even continuity of
the second derivative would not be sufficient to guarantee existence of the third derivative.)

Introduction to Distribution Theory

We emphasize at this point that this discussion has been heuristic and lacking precision. In
particular, u ∈ H2 does not necessarily imply existence of pointwise second derivatives a.e., but
rather existence only of what are termed distributional (or weak) derivatives. We will now summa-
rize some key elements from the theory of distributions to allow a more accurate description. We
first observe that what is called a distribution by mathematicians is usually called a “generalized
function” by physicists and engineers. Indeed, use of so-called “operational calculus,” especially
by engineers in the early 20th Century preceded by many years the rigorous distribution theory of
Schwartz [19] that ultimately provided justification for such techniques.

1.2. SOME BASIC FUNCTIONAL ANALYSIS 13

The main difficulty with generalized functions is that they are not functions. Hence, even
pointwise evaluation cannot necessarily be performed, and differentiation is completely meaningless
if viewed in the usual sense. We can see this by examining what is probably the best-known
generalized function, the Dirac δ-function which arises repeatedly in quantum mechanics, but
which can also be used to define the Green’s function discussed earlier (see, e.g., Stakgold [17] for
details). The Dirac δ-function possesses the following properties:

i) it is zero on all of R1 except at zero, where its value is infinity;

ii) it has the normalization ∫ ∞

−∞
δ(x) dx = 1 ;

iii) it exhibits the “sifting property,”

∫ ∞

−∞
f(x)δ(x− x0) dx = f(x0) .

It is clear from the first of the above properties that δ(x) cannot be a function in any reasonable
sense—it is zero everywhere except at a single point, where it is undefined! But the sifting property
turns out to be valuable. Our main reason for presenting this function here, however, is to introduce
a method of approximating generalized functions that suggests how they might be interpreted, and
at the same time can sometimes be valuable in its own right.

When applying operational calculus it is often useful to obtain the δ-function by differentiating
the Heaviside function, defined as

H(x) =

{
0 x < 0 ,

1 x ≥ 0 .

Clearly this function is not continuous at x = 0 and so cannot possibly be differentiable there.
So what sense can be made of the notion that the δ-function is the derivative of the Heaviside
function? To answer this question we employ what is sometimes called a δ-sequence (see Stakgold
[17]). The starting point (but not the one used in [17]) in the present case is the hyperbolic tangent
function tanh kx. This function is in C∞(R1) ∀ k <∞, but it is easily seen (at least heuristically)
that

1

2

[
tanh kx+ 1

]
→ H(x)

as k → ∞. Since tanh kx is differentiable (in fact, C∞) we can perform the differentiation and then
let k → ∞ to find that we obtain a function with precisely the properties of the δ-function. This
suggests that a useful way to define distributions would be in terms of C∞ functions. As we will
now show, however, this is not quite as direct as utilizing δ-sequences, but can be made to be very
general.

We begin with some additional notation and terminology. Let C∞
0 denote the space of infinitely

continuously differentiable functions having compact support, the latter meaning that such functions
vanish outside a bounded interval. It is common in the theory of generalized functions to term
functions of this type as test functions and denote the space of test functions by D. Next, recall
that when we introduced the inner product in Eq. (1.3) we noted that this is in the form of a
so-called linear functional. In particular, if neither f nor ϕk of (1.3) is in L2, then the expression
cannot be viewed as an inner product, but instead is a more general scalar product, and in the

14 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

context of Banach spaces this is (loosely—see below) referred to as a linear functional. It will be
convenient to define distributions (generalized functions) in terms of linear functionals 〈 · , · 〉 such
that one of the two entries comes from the space D of test functions. In particular, as in [17] we
have the following.

Definition 1.1 A linear functional on the space D of test functions is a mapping f that assigns
to each test function ϕ(x) a real number 〈f, ϕ〉 with the property that ∀ a, b ∈ R1 and ∀ ϕ1, ϕ2 ∈ D,

〈f, aϕ1 + bϕ2〉 = a〈f, ϕ1〉 + b〈f, ϕ2〉 . (1.24)

In the present context f need not be a function in the usual sense, and we apply the term linear
functional to f itself, rather than to the number 〈f, ϕ〉 that it generates when integrated against a
test function.

We can define a “weak” form of continuity for linear functionals in the following way. We first
observe that if ϕ ≡ 0, then 〈f, ϕ〉 = 0 for any f . Now let {ϕn} denote a sequence of functions in
D. Then continuity of a (linear) functional f is defined as follows.

Definition 1.2 A linear functional f on D is continuous if and only if 〈f, ϕn〉 → 0 whenever
ϕn → 0.

Observe that in contrast to the pointwise definition for continuity of functions, continuity of a
functional is defined in terms of an integral and is thus often termed weak continuity. Moreover,
a sequence of (test) functions is required to check continuity of a functional. Also note, however,
that for each n 〈f, ϕn〉 is a real number (from the definition of functional), so the test of continuity
of a functional is equivalent to checking convergence (to zero) of a sequence of real numbers. We
remark that, conceptually, this is not extremely different from the δ-ε definition of continuity in
elementary analysis where we must permit δ > 0 to be arbitrarily small.

We have now accumulated sufficient information to be able to give a precise meaning to the
term distribution; in particular, we have the following:

Definition 1.3 A distribution is a continuous linear functional on the space of test functions D.

Because of linearity we have not only (1.24), but also that ∀ ϕ ∈ D and a, b ∈ R1 (or in C) we can
define new distributions as linear combinations of other distributions. For example, suppose f1 and
f2 are distributions. Then f ≡ af1 + bf2 is also a distribution for we have

〈f, ϕ〉 = 〈af1 + bf2, ϕ〉 = a〈f1, ϕ〉 + b〈f2, ϕ〉 . (1.25)

Finally, we remark that not all distributions are defined via linear functionals. (Recall that no
test function was used to define the Dirac δ-function.) More details regarding this can be found in
[17], but we note that for our purposes Def. 1.3 will usually suffice.

From the standpoint of understanding weak solutions to differential equations, the most im-
portant operation associated with distributions clearly must be differentiation. (There are several
other operations, and we refer the reader to [17] for discussions of these.) Indeed, it was specifi-
cally the possibility that solutions might exist that were not sufficiently differentiable to satisfy the
differential equation that has motivated these discussions. But because distributions are defined in
terms of integrals, we first need to introduce some terminology associated with these.

1.2. SOME BASIC FUNCTIONAL ANALYSIS 15

We say that a function is integrable if

∫ ∞

−∞
|f | dx <∞ . (1.26)

From Eq. (1.7) it is clear that this implies f ∈ L1(R). In the sense of Riemann integration from
elementary analysis we might say that f is “absolutely integrable.” It is possible, of course, that
the integral over R might not exist in the sense of Eq. (1.26), but that integrals over subsets of R

might still be finite. Associated with this is the concept of local integrability. We say a function f
is locally integrable, denoted here as L1

loc, if for every subset Ω ⊂ R we have

∫

Ω
|f | dx <∞ , (1.27)

even though integrability in the sense of (1.26) might not hold. We can construct analogous
definitions corresponding to any of the other Lp spaces (and the Hm spaces, as well), but this is
not needed for our immediate purposes.

It is of interest to note that every locally-integrable function generates a distribution since local
integrability along with compact support of test functions is sufficient to guarantee continuity of
the associated linear functional.

Now let f be a differentiable function whose derivative f ′ is in L1
loc. In addition, let ϕ ∈ D.

From the preceding statement we see that f ′ generates the distribution

〈f ′, ϕ〉 ≡
∫ ∞

−∞
f ′(x)ϕ(x) dx

= fϕ

∣∣∣∣
∞

−∞

−
∫ ∞

−∞
f(x)ϕ′(x) dx .

But since ϕ ∈ D has compact support, we see that

fϕ

∣∣∣∣
∞

−∞

= 0 .

This suggests how we can construct the derivative of a distribution. Namely, now let f be any
distribution associated with a linear functional, and write

〈f ′, ϕ〉 = −〈f, ϕ′〉 . (1.28)

That is, we have used integration by parts to move (formal) differentiation off of a generally non-
differentiable distribution and onto a C∞

0 test function. Again, the compact support of ϕ removes
the need to deal with boundary terms that arise during the integration by parts. Furthermore, it
is clear that the right-hand side of (1.28) is also a distribution since ϕ′ is also a valid test function.

The derivative calculated in Eq. (1.28) in general possesses no pointwise values. It is termed a
distributional, or weak, derivative because it is defined only in terms of integration over the support
of the test function ϕ. We also note that higher distributional derivatives can be calculated via
repeated integrations by parts and satisfy the general formula

〈f (n), ϕ〉 = (−1)n〈f, ϕ(n)〉 (1.29)

for the nth distributional derivative of f .

16 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

An important—and in some sense surprising—observation is that distributions are infinitely
differentiable in the weak sense, even though they may have no derivatives at all (in fact, might
not even be continuous) in the pointwise sense. This follows from the fact that the test functions,
by definition, are in C∞, and it is only these that are actually differentiated when performing
distributional differentiation.

Weak Solutions—in General

We now have the tools needed to consider weak solutions to differential equations. There is
one additional piece of terminology required for a concise statement, and it furthermore has much
wider application that we will utilize herein. It is the (formal) adjoint of a differential operator. We
will explicitly consider only spatial operators, but the basic ideas can be extended to more general
cases. Let

L(·) ≡
[

n∑

k=0

ak(x)
dk

dxk

]
(·) (1.30)

be a general variable coefficient nth-order linear operator. Then the formal adjoint of L, denoted L∗,
is obtained by forming a linear functional—simply an inner product in Hilbert spaces, integrating
by parts, and ignoring boundary terms. This leads to

L∗(·) ≡
n∑

k=0

(−1)k d
k(ak(x) ·)
dxk

. (1.31)

Because the adjoint is such an important concept, in general, it is worthwhile to consider
constructing one in a specific case.

EXAMPLE 1.1: Consider the second-order linear operator

L = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x) ,

operating on C2 functions that do not necessarily possess compact support. As noted above, we
begin by forming the inner product

〈Lu, v〉 =

∫ (
a(x)u′′ + b(x)u′ + c(x)u

)
v dx

=

∫
a(x)u′′v dx+

∫
b(x)u′v dx+

∫
c(x)uv dx .

Application of integration by parts to the first integral on the right-hand side of the above produces

∫
au′′v = au′v

∣∣∣− u(av)′
∣∣∣+
∫

(av)′′u .

Similarly, from the second integral we obtain

∫
bu′v = buv

∣∣∣−
∫

(bv)′u ,

and the third integral remains unchanged.

1.2. SOME BASIC FUNCTIONAL ANALYSIS 17

Now disregard the boundary terms, and collect the above results to obtain

〈Lu, v〉 = 〈u, (av)′′〉 − 〈u, (bv)′〉 + 〈u, (cv)〉

= 〈u,L∗v〉 ,

with the last line following from Eq. (1.31).
There are two things to note at this point. First, if 〈u, v〉 had been a distribution on v ∈ D,

the the boundary terms would have automatically vanished due to the compact support of v.
Second, if the operator L were part of a boundary-value problem, then the boundary terms arising
in the integrations by parts would be used to determine the adjoint boundary conditions for the
corresponding adjoint boundary-value problem. In this situation, if it happens that L∗ = L and
the adjoint boundary conditions are of the same form as those for L, the boundary-value problem is
said to be self adjoint. In an abstract sense this is analogous to symmetry of a matrix, and indeed,
the matrices arising from, e.g., finite-difference discretization of such problems are symmetric.

With this notion of adjoint operators in hand, we can now give a precise definition of weak
solution to a differential equation.

Definition 1.4 Let P be a differential operator with formal adjoint P ∗, and let f be a distribution.
Then a weak solution to the differential equation

Pu = f

is any distribution u that satisfies

〈u,P∗ϕ〉 = 〈f, ϕ〉 ∀ ϕ ∈ D . (1.32)

We remark that while such definitions are extremely important for theoretical purposes, they are
of little practical (computational) use. Thus, we need to investigate how weak solutions might be
generated via numerical techniques.

The Galerkin Procedure

The best-known approach to obtaining weak solutions via numerical methods is the Galerkin
procedure. This approach is also very important in theoretical analyses, especially for the N.–S.
equations, as will become evident below. Here we will provide a somewhat general and abstract
treatment, and later study the N.–S. equations as a specific example.

The Galerkin procedure can be formally constructed via the following sequence of steps.

i) Represent each dependent variable and forcing term of the differential equation (DE) as a
Fourier series with basis functions depending on spatial coordinates. (Note that if the DE is
not time dependent, the Fourier coefficients are constants; otherwise, they are functions of
time.)

ii) Substitute these solution representations into the DE.

iii) Commute differentiation and series summation for each appropriate term, and differentiate
the basis functions and/or Fourier coefficients, as appropriate.

iv) Form inner products with the DE and every member of the basis set. This will formally result
in a countably-infinite system of equations (either algebraic or differential initial-value) for
the Fourier coefficients.

18 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

v) Truncate this system to a finite number N , and solve (or analyze—this may be all that is
possible in nonlinear cases) the result for the Fourier coefficients.

We emphasize that it is merely the Fourier coefficients that are to be determined from any nu-
merical procedure, and once these are found they can be substituted into the solution representation
to obtain the solution itself. Furthermore, as we have emphasized earlier, all that is required for
existence of such solutions is that they be in L2, so in general they are weak in the sense indicated
above; i.e., they are not necessarily sufficiently smooth to satisfy the differential equation in the
classical sense.

In the following examples we will demonstrate application of the Galerkin procedure for two
specific cases, both of which have particular importance with respect to the N.–S. equations. The
first will be linear and independent of time, corresponding to what we will later term a pressure
Poisson equation in the N.–S. context. The second will be nonlinear and time dependent and thus,
in a generic way, analogous to the N.–S. equations themselves.

EXAMPLE 1.2: Let the partial differential operator P be the Laplacian in two space dimensions,
and consider

∆u = f(x, y) , (x, y) ∈ Ω ⊂ R2 ,

with boundary conditions
u(x, y) = g(x, y) , (x, y) ∈ ∂Ω .

We assume these nonhomogeneous conditions can be transformed to the differential equation (see,
e.g., [18]) so that we actually solve the related problem

∆v = f̃(x, y) , (x, y) ∈ Ω ,

with boundary conditions
v(x, y) = 0 , (x, y) ∈ ∂Ω .

We assume f̃ ∈ L2(Ω) and choose a complete (in L2(Ω)) orthonormal basis {ϕk} vanishing on ∂Ω.
Then we express v and f̃ as the Fourier series

v(x, y) =
∑

k

akϕk(x, y) ,

f̃(x, y) =
∑

k

bkϕk(x, y) ,

respectively, with k = (k1, k2)
T .

Next, substitute these series into the differential equation:

∂2

∂x2

(∑
akϕk

)
+

∂2

∂y2

(∑
akϕk

)
=
∑

bkϕk .

Then commuting differentiation and summation leads to

∑
ak (ϕk)xx +

∑
ak (ϕk)yy =

∑
bkϕk ,

and we note that subscript notation such as xx indicates partial differentiation. Since the bks
all are known the only unknowns are the aks. To find these we construct the inner products

〈∑
ak

[
(ϕk)xx + (ϕk)yy

]
, ϕn

〉
=
〈∑

bkϕk, ϕn

〉
,

1.2. SOME BASIC FUNCTIONAL ANALYSIS 19

∀ n = n0, . . . ,∞. We observe that the specific value of n0 must be the same as the minimum k,
which typically will be one of −∞, 0, 1, depending on details of the particular problem and selected
basis set.

We will now assume, for simplicity, that derivatives of the ϕks also exhibit orthogonality but
not necessarily the same normality, and that they behave like complex exponentials with respect
to differentiation. It should be noted that this usually is not the case, but that the widely-used
complex exponentials and trigonometric functions obviously exhibit this behavior. This implies
that in the above summations only the nth term will be nonzero, and we obtain

[
C∗

1n
2
1 〈ϕn, ϕn〉 + C∗

2n
2
2 〈ϕn, ϕn〉

]
an = bn , ∀ n ,

with the C∗
i , i = 1, 2 depending on length scales associated with Ω, and in particular arising due to

possible non-normality of derivatives of basis functions. We can now solve for the ans and obtain
the exact solution

an =
bn

C∗
1n

2
1 + C∗

2n
2
2

,

for n = n0, . . . ,∞. Notice that in this simple linear case there was no need to truncate the
representations prior to solving for the Fourier coefficients because these are completely decoupled
and satisfy the given general formula.

The above result can now be substituted back into the Fourier series for v, which can then be
transformed back to the desired result, u. We leave as an exercise to the reader construction of
this transformation, but we comment that if g is not at least in C 2(Ω), the derivatives required for
this construction will truly be only distributional. It should be recalled that this was, in fact, the
case for a Poisson equation problem treated earlier.

As a further example of constructing a Galerkin procedure we consider a time-dependent non-
linear problem.

EXAMPLE 1.3: We now let

P ≡ ∂

∂t
+ N + L ,

where N is a nonlinear operator, and L is linear, and consider the initial boundary value problem
given as follows.

Pu =
∂u

∂t
+ N (u) + Lu = f , (x, y) ∈ Ω ⊂ R2 , t ∈ (0, tf] ,

with initial conditions

u(x, y, 0) = u0(x, y) , (x, y) ∈ Ω ,

and boundary conditions

u(x, y, t) = 0 , (x, y) ∈ ∂Ω ∀ t .

In this example we have assumed homogeneous Dirichlet conditions from the start. We again
begin by expanding u and f in the Fourier series

u(x, y, t) =
∑

k

ak(t)ϕk(x, y) ,

f(x, y, t) =
∑

k

bk(t)ϕk(x, y) .

20 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

We note that if it happens that f is independent of time, then the bks will be constants. In either
case, since f ∈ L2(Ω) is a given function we can calculate the bks directly as

bk(t) =

∫

Ω
f(x, y, t)ϕk(x, y) dxdy ,

in which t is formally just a parameter.
Substitution of these representations into the differential equation results in

∂

∂t

∑
ak(t)ϕk(x, y) + N

(∑
ak(t)ϕk(x, y)

)
+ L

∑
ak(t)ϕk(x, y) =

∑
bk(t)ϕk(x, y) ,

or, after commuting differentiation and summation,

∑
ȧkϕk + N

(∑
akϕk

)
+
∑

akLϕk =
∑

bkϕk .

We observe that the nonlinear operator N (u) can appear in many different forms, and clearly
details of its treatment depend crucially on the specific form. We consider two examples here to
demonstrate the range of possibilities. First, if N is quasilinear, as occurs in the N.–S. equations,
then, e.g.,

N (u, u) = u
∂u

∂x
,

and it follows that

N (u, u) =
∑

k

akϕk

∂

∂x

∑

`

a`ϕ`

=
∑

k,`

aka`ϕkϕ`,x .

The important feature of this case is that although the Fourier coefficients appear nonlinearly, it
is nevertheless possible to express the complete equation in terms only of these (and, of course,
the various constants that arise during subsequent construction of Galerkin inner products), as is
readily seen by substituting this expression into the Galerkin ordinary differential equation (ODE),
above, and computing the inner products. We leave this as an exercise for the reader.

By way of contrast, consider the nonlinearity that arises in reaction rate terms in the equations
of combustion chemistry:

N (u) = Auβ exp

(−C
u

)
,

where A, β and C are known constants for any particular chemical reaction, and the dependent
variable u is now temperature. Substitution of the Fourier series yields

N
(
∑

k

akϕk

)
= A

(
∑

k

akϕk

)β

exp

(−C∑
k
akϕk

)
.

It is often the case that β is not a rational number, and it can be either positive or negative.
Thus, there is no means of separating ak from ϕk in this factor; an even more complicated situation
arises for the exp factor. This leads to two related consequences. First, inner products must
be calculated via numerical methods (rather than analytically) and second, after each nonlinear
iteration for finding the aks, the solution representation for umust be constructed. These difficulties

1.2. SOME BASIC FUNCTIONAL ANALYSIS 21

are of sufficient significance to generally preclude use of Galerkin procedures for problems involving
such nonlinearities. Nevertheless, we will retain the full nonlinear formalism in the present example
to emphasize these difficulties.

If, as in the preceding example, we assume the ϕks are not only orthonormal but also are
orthogonal to all their derivatives, then construction of Galerkin inner products leads to

〈
∑

k

ȧk, ϕn

〉
+

〈
N
(
∑

k

akϕk

)
, ϕn

〉
+

〈
∑

k

akLϕk, ϕn

〉
=

〈
∑

k

bkϕk, ϕn

〉
,

or, upon invoking orthogonality of the ϕks,

ȧn +

〈
N
(
∑

k

akϕk

)
, ϕn

〉
+ an 〈Lϕn, ϕn〉 = bn , ∀ n0, . . . ,∞ .

We again emphasize that the ϕn and bn are known, so the above comprises an infinite system
of nonlinear ODE initial-value problems. It is thus necessary to truncate this after N = N1×N2

equations, where N = (N1, N2)
T is the highest wavevector considered (i.e., N terms in the Fourier

representation). For definiteness take n0 = 1. Then we can express the problem for finding the ans
as

ȧn +

〈
N
(
∑

k

akϕk

)
, ϕn

〉
+Anan = bn , n = 1, . . . , N,

with

an(0) ≡ 〈u0, ϕn〉 ,
and

An ≡ 〈Lϕn, ϕn〉 ,
Clearly, it is straightforward to solve this system, after which we obtain a N -term approximation

for u:

uN (x, y, t) =

N∑

k

ak(t)ϕk(x, y) .

But as we have already noted, if N is a general nonlinearity, evaluation of the second term on
the left in the above ODEs, possibly multiple times per time step, can be prohibitively CPU time
consuming.

In any case, just as was true in the preceding example, the fact that the solution is in the form
of a Fourier series guarantees, a priori, that it might be no more regular than L2. Hence, it may
satisfy the original PDE only in the weak sense.

In closing this discussion of the Galerkin procedure as a means of generating weak solutions
to differential equations, we first observe that although there are formal similarities between this
approach and the Def. 1.4 of a weak solution, they are not identical. The general linear functional
of the definition has been replaced with an inner product (a special case) in the Galerkin proce-
dure, hence restricting its use to Hilbert space contexts. At the same time, these inner products
are, themselves, constructed using the basis functions of the corresponding Fourier series solution
representations, rather than from C∞

0 test functions. As described briefly in Mitchell and Griffiths
[20], it is possible to calculate the inner products using other than the basis set, and in such a case
the basis functions are termed trial functions, and the functions inserted into the second slot of the
inner product are called test functions as usual. But, in any case, the Fourier coefficients that are

22 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

the solution of the Galerkin equations are, by construction, solutions to a weak form—that is, an
inner product (or linear functional) form of the original differential equation(s).

It is also important to recognize that typical Fourier series basis functions do not have compact
support, although they are usually in C∞. But details of construction of the Galerkin procedure
render compact support less important than is true in the definition of weak solution—where, as
observed earlier, it is crucial. Indeed, we should recall that in the Galerkin procedure, shifting of
differentiation to the test functions is not necessary provided the basis functions are sufficiently
smooth because differentiation is applied directly to the Fourier solution representation. In the
foregoing we have not been careful to emphasize that proof of the ability to commute the two
limit processes, differentiation and series summation, is not automatic. On the other hand, if the
basis functions are sufficiently smooth this can always be carried out formally. But the question of
convergence and, in particular, in what sense, must then be raised with regard to the differentiated
series. There are a number of techniques needed to rigorously address such questions, and it is not
our intent to introduce these in the present lectures. Our goal is simply to make the reader aware
that validity of the Galerkin procedure requires proof—it is not automatic, in general.

Strong Solutions

In this subsection we will briefly introduce the notion of strong solution to a differential equation.
It is somewhat difficult to find explicit definitions of this concept, and indeed, some equate these
to classical solutions. This is patently incorrect. The approach we follow in the present discussions
is similar to that used in Foias et al. [15]; but we will provide a specific definition, in contrast to
the treatment of [15].

There are several related ways to approach such a definition, and it is worthwhile to consider
these to acquire a more complete understanding than can be obtained from a single viewpoint. We
begin by recalling from our introductory discussions of weak solutions that a solution to a PDE
might be weak only locally in space at any given time and, except for very small subsets of the
problem domain Ω, might be classical. A somewhat similar notion can be associated with the fact,
vaguely alluded to earlier, that distributional solutions to differential equations can be considered
as comprising three specific types, described heuristically as:

i) classical solutions—these trivially satisfy the weak form of the differential equation;

ii) solutions that are differentiable, but not sufficiently so to permit formal substitution into the
differential equation;

iii) solutions that are not differentiable at all, and may possibly not even be continuous.

Further details may be found in Stakgold [17].
To arrive at what is a widely-accepted definition of strong solution we will, in a sense, combine

some of these ideas and cast the result in the notation introduced earlier in defining Sobolev spaces.
We consider the following abstract initial boundary value problem. Let

Pu = f in Ω×(t0, tf], Ω ⊆ RN , (1.33a)

with initial conditions

u(x, t0) = u0(x) , x ∈ Ω , (1.33b)

and boundary conditions

Bu(x, t) = g(x, t) , x ∈ ∂Ω , t ∈ (t0, tf] . (1.33c)

1.2. SOME BASIC FUNCTIONAL ANALYSIS 23

We assume P in (1.33a) is first order in time and of mth order in space; B is a boundary operator
consistent with well posedness for the overall problem (1.33). The operator P may be linear, or
nonlinear, and we assume f ∈ L2(Ω). As we have discussed earlier, this latter assumption has
the consequence that u ∈ Hm(Ω), and hence that u can be represented by a Fourier series on the
interior of Ω. If we require only that u0, g ∈ L2(Ω), then it is clear that u might not be in Hm(Ω)
at early times and/or up to ∂Ω for all time. (We remark that there are theorems known as “trace”
theorems dealing with such ideas; the reader is referred to e.g., Treves [21].) At the time we discuss
behavior of N.–S. solutions we will provide some further details of some of these concepts, but here
we consider only a case associated with strong solutions. Thus, we will suppose that both u0 and
g are sufficiently smooth that u ∈ Hm(Ω) holds. We then have the following definition.

Definition 1.5 A strong solution to Prob. (1.33) is any function u that satisfies

‖Pu− f‖
L

2
(Ω)

= 0 , and ‖Bu− g‖
L

2
(∂Ω)

= 0 , ∀ t ∈ (t0, tf] , (1.34)

and is in C1 with respect to time. That is,

u(t) ∈ C1(t0, tf ;Hm(Ω)) . (1.35)

From the theory of Lebesgue integration it follows that Eqs. (1.34) imply satisfaction of Eq.
(1.33) a.e. in Ω, and in particular, u is sufficiently smooth that its mth derivatives exist except on
sets of zero measure. This implies that over “most” of Ω, (spatial) differentiation can be performed
in the usual sense, but there could be some locations (that might move as the system evolves in
time) at which this cannot be done. We also comment that our requirement of u ∈ C 1 with respect
to time is slightly stronger than needed, and we will at times relax this in the sequel. Nevertheless,
it is worthwhile to note that this requirement (invoked somewhat implicitly) and the norms of Eqs.
(1.34) are widely used in the numerical solution of the N.–S. equations, as will be seen later. A final
remark is that (1.34) can be written for any of the Lp spaces, but only L2 will be needed herein.

1.2.3 Finite-difference/finite-volume approximations of non-classical solutions

Because essentially all of what we will later do in these lectures is finite-difference/finite-volume
based, and we have already demonstrated the likelihood that N.–S. equations may exhibit nonclas-
sical solutions, it is important to consider how (whether?) it is mathematically possible to produce
such a solution with these approaches.

We first observe that any finite-difference (or finite-volume) solution is an approximation, sup-
ported on a finite number of points, of a true solution (if it exists) for a given problem—supported
on an uncountable infinity of points. Moreover, for the low-order numerical methods we will utilize
herein, it is clear that such solutions are only piecewise C k, with k fairly small. For example, so-
lutions obtained from second-order methods are piecewise linear with two different slopes meeting
at each grid point (in 1D). This implies that at each such point the second derivatives are Dirac
δ-functions, and thus are distributions. Hence, the numerical solution, itself, is clearly weak when
viewed as a function on the continuum of the problem domain. The question that now arises is,
“What happens as we refine the computational grid?” Clearly, we need to know the answer to this
question in both the case of classical solutions and that of nonclassical ones. In particular, are we
able to obtain classical solutions when they exist, and is it possible to compute approximations to
weak (or strong) solutions via finite-difference methods when classical solutions do not exist?

The former case is the subject of standard numerical analysis, and we recall a few simple facts
here. We know for a grid function, {ui}N

i=1, computed on a grid of N points as an approximation

24 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

to a function u(x) that the relationship between ui and u(xi) at any of the N points is given by

ui = u(xi) +
∞∑

n=k

Cnh
n , (1.36)

where the Cn are constants (independent of h) that depend on derivatives of the true solution u(x)
at the point xi, and h is the (possibly local) discrete step size. It is well known from basic analysis
that if u ∈ C∞ in a neighborhood of xi, then the above series converges, and the corresponding
method is said to be of order k. In particular, each of the Cns is bounded independent of h, so
as h → 0, the difference between the true and numerical solutions approaches zero. Hence, the
numerical approximation converges to the true C∞ solution, despite the fact that any individual
solution with N finite is formally a distribution.

It is important to recognize, however, that if u ∈ Ck(Ω) with k < ∞, terms in the Taylor
expansion of (1.36) are not necessarily bounded for n > k + 1. Thus, even if the solution is
classical, it is still possible for a numerical method to perform poorly in attempting to approximate
it. For example, suppose the differential operators of the problem are of order no higher than
two (our usual case), and suppose the exact solution to the problem can be shown to be in C 2,
but not in C3. Clearly, by our earlier definition, this is a classical solution, but even a low-order
approximation will possess a truncation error whose dominant term will contain derivatives of at
least fourth order—which do not exist. The situation becomes even more severe as we attempt use
of higher-order methods with correspondingly higher-order derivatives as their leading truncation
error terms, and this raises a serious question as to the value of such methods for anything but
problems possessing Ck solutions with k quite large.

The foregoing provides a hint at the direction that must be taken when nonclassical solutions
are to be approximated using finite-difference or finite-volume methods. In both weak and strong
cases, it is possible that no derivatives in the typical truncation error expansion exist in the usual
sense, at least at some points in the solution domain Ω. In particular, in the case of weak solutions
there may be no derivatives at all, while in the strong case derivatives may exist only in the sense
of a global (over Ω) norm, and there may be a countable number of points in Ω where they do not
exist. In order to understand the numerical treatment of such problems it is worthwhile to briefly
look at what can be done analytically in such cases. We will need several specific results to carry
this out.

The first of these is that any Lp function can be approximated arbitrarily closely in the Lp norm
by step functions. This is a well-known result, the details of which can be found in any text on
graduate-level analysis, e.g., Royden [22]. Recall that step functions are piecewise constant, so they
are precisely what would be produced by a first-order finite-difference method. We can analytically
construct such functions very easily by first defining the characteristic function of a set A. Herein
we will assume A is any connected subset of a solution domain Ω ⊂ Rd, d = 1, 2, 3, but we note
that A could be a much more complicated set, and its characteristic function would still be well
defined. In terms of this we have the following:

Definition 1.6 For a subset A of a domain Ω, the characteristic function of A, denoted χ
A
, is

defined as

χ
A

=

{
1 ∀ x ∈ A ,

0 otherwise .
(1.37)

Thus, if we let Ω = [a, b] ⊂ R1, then for any (Lp) function f , the characteristic function can be
used to define the step function χ

A
f by dividing A into subintervals Ai = [ai, bi] with a1 = a and

bN = b, so that each Ai has length h = bi − ai. We display these features in Fig. 1.2.

1.2. SOME BASIC FUNCTIONAL ANALYSIS 25

bi
}

A i
χ f

ai b

f

a

h

x

f

Figure 1.2: Step function constructed by applying the characteristic function to a function f .

Clearly, χ
A
f is locally a Heaviside function, and is thus a distribution with a (Dirac) δ-function

as the distributional first derivative. Thus, although this type of approximation has advantages
for analysis in general, it is somewhat difficult to apply it in a straightforward way to approximate
solutions to differential equations because of this inherent lack of differentiability—but this is
exactly what we are doing in using finite-difference methods. So we need to consider this further
to justify use of such methods.

It should first be recalled that solutions to differential equations might be no smoother than
the functions described above, so it is possible that such a general approximation may be needed
in any case. Also, recall that in the context of distributions the remedy for nondifferentiability
was introduction of C∞

0 test functions and integration by parts, but we did not explain how such
functions might be constructed in practice. Here we will provide one possible approach (but it is
not the only one), and apply it in the context of solving PDEs. We will see that the details will be
different than those presented earlier, and that the method now being considered has the advantage
of producing functions that actually admit pointwise evaluation—which is not necessarily true of
the distributional solutions (defined in terms of linear functionals) considered earlier.

We begin by presenting a particular C∞
0 function defined as

δε(x) ≡
{
cεe

−1/(ε2−x2) |x| < ε ,

0 |x| ≥ ε ,
(1.38)

with

cε =

[∫ ε

−ε
e−1/(ε2−x2) dx

]−1

.

Now suppose we have a step function, say χ
A
f , approximating an arbitrary f ∈L2(a, b). It is shown

in Gustafson [16] that

fε(x) ≡
∫ b

a
χ

A
f(y)δε(x− y) dy (1.39)

26 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

is in C∞(a, b) provided ε is sufficiently small. Moreover, as already noted, this function can be
evaluated pointwise a.e. in [a, b]. This process of converting a nonsmooth function into a C∞ one is
known as mollification, and the function given in Eq. (1.38) is called a mollifier. Figure 1.3 provides
a plot of this function for several values of ε. Compact support of (1.38) is obvious, and the figure
is suggestive of infinite smoothness. We leave formal proof of these properties to the reader.

0

0.2

0.4

0.60.6

0.8

1

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.040.0−0.04 −0.02 0.02 0.04

δ
 ∋ (x

)

0.0

0.2

0.4

0.6

0.8

1.0

x

∋

∋

∋

= 0.1

= 0.075

= 0.05

Figure 1.3: C∞
0 δε mollification functions for three values of ε.

Use of mollification as indicated by Eq. (1.39) is somewhat difficult in the context of any but
linear PDEs, and even for these if coefficients are not constant it is necessary to estimate the
error caused by commuting differentiation and mollification. In particular, suppose we consider the
equation

Pu = f on Ω

for which it is somehow known (for example, by analysis of boundary conditions and/or the specific
nature of f) that u is not smooth. To treat this we apply mollification:

∫

Ω
Pu(y)δε(x− y) dy =

∫

Ω
f(y)δε(x− y) dy . (1.40)

Now recall that in the formal treatment of distributions δε might have been a test function from
the space D, and in that case we would have integrated by parts to shift derivatives appearing in
P onto δε.

But now the strategy is different (in a sense, more like that of the Galerkin procedure). If we
could move P outside the integration we would be left with simply

Puε = fε , (1.41)

1.2. SOME BASIC FUNCTIONAL ANALYSIS 27

as is clear from (1.40). But since the limits of integration are constants for each fixed ε, this is
possible whenever P is a constant-coefficient (and, in particular, linear) operator. Otherwise, there
is an inherent commutation error. Up to estimating the damage done by such errors we see that
in principle we can analytically treat the mollified equation for a nondifferentiable solution as if it
were a C∞ function a.e.

In the case of time-dependent problems such as will often be treated in the sequel, there is
an alternative approach for utilizing mollification. Recall that in such cases we can, in principle,
construct a solution opeerator such as Eq. (1.18), an example of which is provided by Eq. (1.17). (We
can always construct discrete versions of solution operators numerically.) We have not previously
discussed properties of solution operators, but a particularly important one for our purposes here
is

S(t+ s)u0 = S(t)S(s)u0 = u(t) . (1.42)

This is one of several properties required for a family of operators to constitute a continuous
semigroup (of operators). The interested reader is referred to texts on functional analysis such as
Aubin [23] and Goldstein [24].

The notation of Eq. (1.42) implies that we can solve initial value problems over extended
intervals by subdividing these into smaller subintervals and solving a new initial value problem on
each, using the final value attained on the previous interval as the initial data for the next succeeding
one. It is easily seen that essentially all techniques for numerical integration of differential equations
make use of this property, but we emphasize that it is not a trivial notion, as is clear from the cited
references. We can formally express the above as

S(t)u0 = S(t+ s)u0 = S(t)S(s)u0 = S(t)u(s) = u(t) ,

where 0 < s < t. It is clear from this (and more particularly, from extensions to larger numbers
of subintervals) that we can actually apply mollification to the solution, itself, rather than to the
PDE as done above, and this in turn permits us to treat even nonlinear problems in a natural way.
The overall process then begins with mollification of the initial data:

u0,ε(x) =

∫ ε

−ε
u0(y)δε(x− y) dy .

Then
S(s)u0,ε ' u(s) ,

with approximate equality because u0,ε(x) does not exactly equal u0(x) at all points of Ω.
Now, even though u0,ε ∈ C∞(Ω), it can easily be the case that u(s) = S(s)u0,ε 6∈ C∞(Ω). Thus,

to compute u(t) we should first apply mollification to u(s):

uε(x, s) =

∫ ε

−ε
u(y, s)δε(x− y) dy ,

where we have re-inserted explicit notation for spatial dependence of u for clarity. Then we obtain

S(t)uε(s) ' u(t) .

We remark that it is often the case, especially for nonlinear problems such as those associated
with the N.–S. equations, that existence of solutions can be proven only over finite (and sometimes
rather short) time intervals. The preceding suggests a way by means of which time of existence
might be extended. But it is important to recognize that this is not accomplished without a price.

28 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

In particular, error must accumulate as the result of repeated mollification, so it is necessary to
quantify and control such errors if the result at the final time is to be an accurate representation
of the solution to the original problem.

We can now relate the preceding to the ability to approximate nonclassical solutions using finite-
difference and finite-volume procedures. The first point to note is that, as discussed earlier, discrete
solutions by their basic nature are nonclassical, and we have already indicated how these are able
to converge to true classical solutions—at least in cases where these are sufficiently smooth. At
this point we need to reconsider what happens to a discrete solution approximating a nonclassical
one as discretization step sizes are decreased.

Suppose the true solution is sufficiently badly behaved that the formal dominant truncation
error (obtained via Taylor expansion) is already a δ-function. Then as grid spacing is decreased by
increasing the number of grid points, the number of points at which δ-function like errors occur will
also increase, making convergence in a pointwise sense impossible (as it must be for weak solutions,
and often will be for strong ones). Moreover, in the case of nonlinear problems such errors can
easily be amplified leading to numerical instability. So it might seem that attempts to accurately
approximate non-classical solutions using difference approximations are doomed to failure. But just
as was the case in the analytical treatment described above, the remedy is mollification. This has
been used in many different forms beginning as early as the 1940s, and in a sense all are equivalent.
Here, we emphasize a version of this that closely mimics the analytical procedure presented above.

For readers familiar with signal processing, or with any situation in which filters are employed
(for example, large-eddy simulation, LES, of turbulent fluid flow), it is readily apparent that Eq.
(1.39) represents application of a filter with kernel δε to the nonsmooth function χ

A
f . This implies

that if we can find a digital filter to apply to the numerical solution obtained after each step of
a discrete solution operator, then we can produce a smooth solution that can, in principle, be
made arbitrarily close to the exact non-classical solution. Figure 1.3 provides a hint as to the
nature of a filter applicable to numerical mollification. In particular, it is apparent from the figure,
that independent of the value of ε > 0, the graph of δε is fairly close to being triangular; i.e., it
consists, to a fairly good approximation, of two straight line segments. In turn, this implies that the
product of δε and any step function can be integrated exactly via trapezoidal integration provided
ε is sufficiently small that δε spans only three function values of the step function.

It turns out, as we will show in some detail in Chap. 2, that this heuristic argument can be
made more precise to derive a specific form of filter introduced by Shuman [25] for the analysis of
atmospheric data. For now we simply note that such procedures, as well as other similar approaches,
are available for converting nonsmooth numerical solutions to smooth ones. We will later provide
details of some of these, and furthermore explain exactly how they accomplish the desired end. But
we will do this more specifically in the context of the Navier–Stokes equations. In any case, at this
point we expect that we can actually produce approximations to non-classical solutions of PDEs
in general, so it is now time to begin study of the nature of solutions to the N.–S. equations, which
as we will see, are often nonclassical.

1.3 Existence, Uniqueness and Regularity of N.–S. Solutions

In this section we begin by introducing three physically-based ideas somewhat specific to the incom-
pressible Navier–Stokes equations and use these to define function spaces needed to precisely state
theorems associated with existence, uniqueness and regularity of N.–S. solutions. In particular, we
will define spaces of functions based on finite energy and enstrophy, along with satisfaction of the
divergence-free constraint. We will also present some specific mathematical techniques applied to

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 29

the N.–S. equations that will be valuable both in discussing the theorems alluded to above and
in understanding the foundations of some of the solution algorithms to be analyzed in the sequel.
These will include Helmholtz–Leray projection, construction of weak and Galerkin forms of the
N.–S. equations and energy (in)equalities. We conclude the section by stating and discussing some
of the main well-known results from the mathematical theory of the Navier–Stokes equations.

1.3.1 Function spaces incorporating physics of incompressible flow

We begin this treatment by reminding the reader of the relationship between functions in L2 and
finite kinetic energy, and we describe a corresponding notion associated with the Sobolev space H 1

and a physical quantity known as enstrophy.

Finite Energy and the Function Space H(Ω)

Recall from Eq. (1.8) that a function f is in L2(Ω) if (and only if)
∫

Ω
|f |2 dx <∞

where | · | denotes the modulus of f in the sense of complex numbers (and thus can be dropped
for real-valued scalar functions). We can readily extend this to vector-valued real functions, say
u = (u(x), v(x), w(x))T with x = (x, y, z), for example, by replacing the complex modulus with
Euclidean length (and retaining the same notation). Thus, for Ω ⊆ R3 we write

∫

Ω
|u|2 dx ≡

∫

Ω
u2 + v2 + w2 dxdydz , (1.43)

which up to a factor of 1
2ρ, with ρ being fluid density, is the kinetic energy per unit volume. For

incompressible flow, ρ ≡ const., and in mathematics it is common to set this constant to unity.
Hence, we define the (mathematical) energy of the flow field in a domain Ω as

e(u) ≡ 1

2

∫

Ω
|u|2 dx . (1.44)

Clearly, since e = 1
2‖u‖2

L
2
, if u ∈ L2(Ω) the flow has finite energy.

Now recall that the incompressible N.–S. equations comprise a system of initial boundary value
problems (whose solutions must be divergence free) and so must have initial and boundary data
prescribed to constitute a well-posed problem. From the perspective of mathematics, it is convenient
to include at least the boundary data and the divergence-free requirement in the definitions of
function spaces in which solutions might be sought. We thus define the space of functions denoted
H on a domain Ω as

H(Ω) ≡
{
f ∈ L2(Ω); ∇·f = 0 , B∂Ωf prescribed

}
, (1.45)

where B∂Ω denotes the boundary operators on ∂Ω appearing in the boundary conditions of the
given N.–S. problem. In words, we say a function f is in the space H(Ω) if it is divergence free,
satisfies the prescribed boundary conditions of the problem and has finite energy in Ω in the sense
of Eq. (1.44). This function space plays a key role in the theory of N.–S. solutions, as will become
apparent. We also remark that for vector-valued functions (herein denoted by bold type) containing
d components, as we are now treating, the corresponding function spaces are sometimes denoted
as, e.g., L2(Ω)d or H1(Ω)d. We will not, however, follow this practice in these lectures as it is
superfluous if the number of components of f is known.

30 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

Finite Enstrophy and the Function Space V (Ω)

The term “enstrophy” seldom arises in elementary fluid dynamics; but it occurs frequently in studies
of turbulence because, at least in classical analyses, much emphasis is placed on the role of vorticity
in turbulence generation.

We first recall from elementary fluid dynamics that vorticity is defined as the curl of the velocity
vector:

ω ≡ ∇×u .

This is, of course, a vector if u ∈ R3 (but only a scalar for u ∈ R2) so we can write ω = (ω1, ω2, ω3)
T

and calculate a quantity analogous to energy (but without the factor of 1/2):

E(u) ≡
∫

Ω
|ω|2 dx . (1.46)

This equation defines physical enstrophy.

The mathematical definition is slightly different, but equivalent in a sense we will indicate
below. Recall that the components of vorticity are computed as differences of velocity derivatives
(i.e., fluid parcel angular rotation rates); for example,

ω3 =

(
∂v

∂x
− ∂u

∂y

)
.

In light of (1.46) this suggests that enstrophy is associated with (first) derivatives of the velocity
field being in L2(Ω), and hence with the Sobolev space H1(Ω). In turn, this implies we instead
might consider the L2 norm of the velocity gradient matrix (tensor):

∫

Ω
|∇u|2 dx ,

where now | · | denotes the finite-dimensional matrix 2-norm.

Now observe that if we add and subtract the transpose of ∇u, we obtain

∇u =




ux uy uz

vx vy vz

wx wy wz




=
1

2







2ux uy + vx uz + wx

vx + uy 2vy vz + wy

wx + uz wy + vy 2wz


+




0 uy − vx uz −wx

vx − uy 0 vz − wy

wx − uz wy − vz 0





 .

The first matrix on the right-hand side is the strain rate (tensor), while the second contains the
components of the vorticity and is sometimes referred to as the rotation tensor. We leave as an
exercise to the reader demonstration that

√
2

2
|ω| ≤ |∇u| ,

and hence that using

E(u) =

∫

Ω
|∇u|2 dx (1.47)

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 31

is “conservative” in the sense that if E(u) is finite by Eq. (1.47) then it will also be by Eq. (1.46).
Equation (1.47) is the mathematical definition of enstrophy.

We can write this as

E(u) =
d∑

i,j=1

∫

Ω

(
∂ui

∂xj
(x)

)2

dx ,

where d = 2, 3, and we assume all partial derivatives take on only real values. If we recall Eq.
(1.11) and extend this in a natural way to the vector-valued functions we are now considering, we
see that the H1 norm of u will be greater than or equal to the square root of the enstrophy. This
leads us to a definition of the function space usually denoted as V :

V (Ω) ≡
{
f ∈ L2(Ω); ∇·f = 0 , B∂Ωf prescribed , ∇f ∈ L2(Ω)

}
. (1.48)

In words, the function space V (Ω) consists of those vector-valued functions on Ω that are divergence
free, satisfy boundary conditions for the given N.–S. problem and have finite enstrophy. It is clear
that one could replace the finite enstrophy requirement by f ∈ H 1(Ω).

1.3.2 The Helmholtz–Leray decomposition and Leray projection

In this subsection we will present two pieces if mathematics that are crucial to modern analysis of
the N.–S. equations. These are the Helmholtz–Leray decomposition of vector fields and the related
Leray projector. It will be evident in Chap. 3 that the latter of these is widely used in modern
numerical algorithms employed to solve the incompressible N.–S. equations.

Helmholtz–Leray Decomposition

The Helmholtz decomposition is fairly well known and widely used in specific situations in CFD,
for example in simulation of geophysical flows by spectral methods. It is a special case of a more
general mathematical result known as the Hodge decomposition which can be loosely paraphrased
as: any L2 vector field can be decomposed as the sum of curl-free and divergence-free parts. The
Helmholtz version of this actually applies to functions generally smoother than those simply in
L2 (but we could, in principle, use weak forms of the derivatives to circumvent this technicality).
It should be further noted that such decompositions are not unique, and they do not explicitly
account for boundary conditions associated with specific problems whose solutions might be the
vector fields in question.

Leray provided a modification of the above description that addresses both of these two diffi-
culties, and we present this here. We remark that this material is taken nearly verbatim from the
monograph by Foias et al. [15].

In constructing a Helmholtz–Leray decomposition we consider a vector field v on a bounded
domain Ω ⊂ Rd, d = 2, 3, with specified conditions on ∂Ω. We seek a representation of v of the
form

v = ∇φ+ u , with ∇ · u = 0 . (1.49)

We will consider any required differentiation in the classical sense, but note that formal (as opposed
to rigorous) extension to weak derivatives, if necessary, is straightforward. Now observe that in this
context ∇φ is clearly curl free (proof of this is left as an exercise to the reader), and u is divergence
free by stipulation (but we will shown below that this follows from the construction used to produce
it). The question is whether for a given arbitrary vector field v on Ω we can actually find a scalar
φ and a divergence-free vector field u such that Eq. (1.49) is satisfied.

32 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

Application of the divergence operator to (1.49) leaves

∆φ = ∇ · v , (1.50)

which is just a Poisson equation for φ and can be directly solved if boundary conditions for φ in
terms of v can be obtained. If v satisfies the no-slip condition, it follows that if we only require
u ·n = 0 on ∂Ω we can derive an appropriate boundary condition. In particular, if we take the dot
product of (1.49) with the outward unit normal vector n to ∂Ω, and use the condition just given
for u, we see that

∇φ · n = v · n ,

or, equivalently, in more suggestive notation,

∂φ

∂n
= v · n on Ω . (1.51)

Together, Eqs. (1.50) and (1.51) constitute a Neumann problem for the Poisson equation for φ. To
guarantee existence of a solution to such problems it is required that the right-hand side of the
boundary condition satisfy a consistency or compatibility condition of the form (see Stakgold, Vol.
II [17] or Garabedian [26]) ∫

∂Ω
v · n dA = 0 ,

which holds automatically when a no-slip condition is imposed on v. Thus, we are guaranteed
that φ is well defined and unique (only) to within an additive constant. Then u can be computed
directly from Eq. (1.49) rearranged as

u = v −∇φ . (1.52)

Furthermore, applying the divergence operator to both sides of this result, and using Eq. (1.50),
shows that u is indeed divergence free, as required.

We comment that we will encounter an identical construction associated with a particular class
of N.–S. solution algorithms (the projection methods) in Chap. 3 of these lectures, and that the
formalism just presented provides a rigorous justification for use of these methods. We should
also note that similar results can be obtained for periodic boundary conditions for u (see [15]).
We leave proof of uniqueness (up to an additive constant) as an exercise for the mathematically-
inclined reader. It requires only the most basic standard techniques used to prove uniqueness for
PDE solutions.

The Leray Projector

Assuming this has been done, we see that the mapping v 7−→ u(v) on Ω is well defined, and
we denote this as

PL : v 7−→ u(v) . (1.53)

This is formal symbolism for the Leray projector. Indeed, this is a projector, for if u is already
divergence free it will remain unchanged upon application of Eq. (1.52), as follows from the fact
that Eq. (1.50) becomes ∆φ = 0 which implies φ ≡ const. Hence, P 2

L = PL, as required.

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 33

1.3.3 Derivation of “mathematical” forms of the Navier–Stokes equations

There are three forms of the N.–S. equations that have been widely studied by mathematicians,
and indeed, the formal theorems to be presented below have been proven within the context of one
or more of these forms—and not in the form of Eqs. (1.1). This fact tends to lead engineers to
conclude that “the mathematicians don’t know what they are doing.” But we will show here that
the mathematical forms are equivalent to Eqs. (1.1), and in some cases are (almost) directly used
in modern simulation procedures. There are three such forms that we will discuss in these lectures:
i) an evolution equation (dynamical system) for the velocity field obtained by Leray projection, ii)
a weak form of the N.–S. equations and iii) the Galerkin form of the N.–S. equations (which is also
a dynamical system, but now expressing time evolution of the Fourier coefficients).

For convenience we begin by recalling Eqs. (1.1) and expressing them in a slightly different and
more useful form:

∂u

∂t
+ u · ∇u = −∇p+ ν∆u + FB (1.54a)

∇ · u = 0 , (1.54b)

where we have divided by the constant density to arrive at kinematic viscosity ν as the coefficient
of the Laplace operator; we have also absorbed the density into the pressure (sometimes referred
to as the “kinematic” pressure when in this form) and the body force terms without changing the
notation from that of Eqs. (1.1).

Leray Projection of the N.–S. Equations

The reader will recall that earlier (when the solution operator was introduced) we noted it is
sometimes convenient to view the N.–S. equations as a dynamical system. Here we will provide the
details of deriving this particular form. As already hinted, this can be done by Leray projection;
the treatment presented here follows very closely that found in [15].

From Eq. (1.54b) we see that u must be divergence free (without concern for how this might
actually occur—but we know it can be made divergence free via Leray projection). So application
of the Leray projector, given symbolically in (1.53) and “computationally” in (1.52), results in

PLu = u , PL
∂u

∂t
=
∂u

∂t
, and PL∇p = 0 .

Since u is divergence free, validity of the first two of these is obvious. We leave verification of the
last result to the reader as an exercise in applying Leray projection.

There are three terms remaining in (1.54a) yet requiring projection. The simplest is the body
force, and since we have not provided a specific form for this explicitly in terms of physical dependent
variables, we will simply represent it symbolically as f = PLFB . The next term we consider is
the Laplacian of the velocity field, for which the following notation is standard in mathematical
treatments:

Au = −PL∆u .

The operator A = −PL∆ is called the Stokes operator. It is worth noting that for periodic boundary
conditions A = −∆ holds, but the case of no-slip conditions is more complicated.

In any case, it can be shown that the eigenfunctions of the Stokes operator provide a complete
orthonormal basis for constructing Fourier representations of N.–S. solutions in the sense described
earlier for Sturm–Liouville problems in general (but only in one space dimension). We emphasize

34 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

that this is not a trivial result due to the nonlinearity of the N.–S. equations. The Leray projection
of the nonlinear terms is typically represented using the notation

B(u) = B(u,u) ≡ PL(u · ∇u) .

We now substitute these notations back into Eq. (1.54a) to obtain

du

dt
+ νAu +B(u) = f , (1.55)

where we have replaced ∂/∂t with d/dt to emphasize the view that spatial dependence is completely
absorbed in the operators A, B and in f , and that u = u(t) represents temporal evolution of the
vector field u(x, t). This suggests the usual notation employed for dynamical systems:

u′ = F (u, t) ,

or if FB is time independent,

u′ = F (u)

with

F (u) ≡ f − νAu −B(u) .

Weak Form of the N.–S. Equations

We begin by recalling that, in general, the weak form of a PDE is obtained by integrating the
PDE against C∞

0 test functions ϕ over the domain Ω. That is, we form the scalar product of
terms in the PDE with the test functions, and then integrate by parts to move derivatives from the
nondifferentiable PDE solution variable to the test function, as in Eqs. (1.28), (1.29) and (1.32).
The approach for the N.–S. equations is the same, in principle, but there are differences in details
that will be evident as we proceed.

The first difference occurs with the choice of test functions. In obtaining the weak form of the
N.–S. equations we employ test functions from the space V (Ω). Thus, instead of being infinitely
continuously differentiable as are the functions ϕ ∈ D used previously, the functions v ∈ V (Ω) are
only in H1(Ω); i.e., they have only a single derivative in L2. But we will see that this is all that is
needed. Also recall that functions v ∈ V must be divergence free, and they must satisfy the same
boundary conditions imposed on the N.–S. solutions, themselves, for the specific problem under
consideration. With these basic ideas in mind, we now consider each of the terms in Eq. (1.54a)
individually. We will carry this out only for the case of no-slip boundary conditions for a solid
boundary Ω, but most of what we present can be employed in cases of other standard boundary
conditions.

As is usual, the simplest term is the body-force term, and we write this in weak form as

〈FB,v〉 =

∫

Ω
FB · v dx ,

which clearly is in the form of the L2 inner product. For this to make sense we must require that
FB ∈ L2(Ω) hold. The next simplest term in Eq. (1.54a) is the time derivative. We have

∫

Ω

∂

∂t
u(x, t) · v(x) dx =

d

dt

∫

Ω
u(x, t) · v(x) dx ,

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 35

which emphasizes the fact that the test functions v depend only on the spatial coordinates, and not
on time. We also require Ω, itself, be independent of time. Then correctness of the above equality
is obvious, and we express this as

d

dt
〈u,v〉 =

∫

Ω

∂u

∂t
· v dx .

We next consider the pressure gradient term of Eq. (1.54a). This leads to

〈∇p,v〉 =

∫

Ω
∇p · v dV

=

∫

∂Ω
pv · n dA−

∫

Ω
p∇ · v dV

= 0 .

To see that this result holds, we first note that v ∈ V implies ∇ · v = 0 by the definition of the
function space V ; hence, the second term is zero. The first term is clearly zero as well in the
case of no-slip boundary conditions considered here. We note that other boundary conditions are
somewhat more difficult to analyze, but for conditions typical for the N.–S. equations the above
result holds generally.

Now we treat the viscous (Laplacian) term. We have, by a direct calculation (left to the
interested reader),

〈∆u,v〉 =

d∑

i,j=1

∫

∂Ω

∂ui

∂xj
vi dA−

d∑

i,j=1

∫

Ω

∂ui

∂xj

∂vi

∂xj
dV , d = 2, 3 .

(The notation being used here is sometimes referred to as “Cartesian tensor” notation, and is widely
used in classical turbulence formalisms. It corresponds to u = (u1, u2, u3) and x = (x1, x2, x3).)
But for no-slip boundary conditions vi = 0 on ∂Ω, so the first integral on the right-hand side
vanishes leaving

〈∆u,v〉 = −
d∑

i,j=1

∫

Ω

∂ui

∂xj

∂vi

∂xj
dV .

Similarity of the right-hand side of this equation to the H 1 inner product, Eq. (1.11), should be
noted. Indeed, in (1.11) we need only start the indexing of the first summation at k = 1 to obtain
the form given above. There are specific notations for this result, although none appear to be very
standard. Since by definition ∇v ∈ L2(Ω) must hold for v to be in V , we use the notation

〈u,v〉
V (Ω)

≡
d∑

i,j=1

∫

Ω

∂ui

∂xj

∂vi

∂xj
dV . (1.56)

Finally, we note that little can be done with the nonlinear term beyond introducing some
notation for it. The scalar product in this case takes the form

〈u · ∇u,v〉 =

d∑

i,j=1

∫

Ω
ui
∂uj

∂xi
vj dV ,

and we employ the fairly standard short-hand notation

b(u,u,v) ≡ 〈u · ∇u,v〉 . (1.57)

36 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

We now combine the various preceding results and express them in a form that emphasizes tem-
poral dependence, since now the spatial dependence will be integrated out in formally calculating
the inner products. Thus, the weak form of the N.–S. equations can be written as

d

dt
〈u(t),v〉 + ν〈u(t),v〉

V (Ω)
+ b(u(t),u(t),v) = 〈FB,v〉 , (1.58)

which holds ∀ v ∈ V (Ω). Once initial data u(0) = u0(x) have been specified, this equation can
be integrated in time to find 〈u(t),v〉. It should be clear that such a result must correspond to
u ∈ H1, but u ∈ H2 is required to have even a strong (but not a classical) solution. Furthermore,
the “algorithm” by means of which this might actually be carried out is not obvious. In particular,
note that there is no straightforward procedure for computing ∂ui/∂xj knowing only 〈u,v〉. Hence,
it is not clear how 〈u,v〉

V (Ω)
and b(u,u,v) might be evaluated. On the other hand, these forms

readily lend themselves to mathematical analysis.
One of the more practically (from a mathematical standpoint) useful things that can be obtained

from the weak form of the N.–S. equations is an energy equation that describes the time evolution
of energy of a velocity field, and hence whether the L2 norm of the solution remains bounded. Two
things are required to derive this. First, we choose a very special test function, viz., u itself. Then
we need to show that b(u,u,u) = 0 in order to obtain the desired result. To show this we observe
that using Eq. (1.57) with v = u and the equation preceding this results in

b(u,u,u) =
d∑

i,j=1

∫

Ω
uj
∂ui

∂xj
ui dV

=
1

2

d∑

i,j=1

∫

Ω
uj

∂

∂xj

(
u2

i

)
dV

= −1

2

d∑

i,j=1

∫

Ω

∂uj

∂xj
u2

i dV

= 0 ,

since

∇ · u =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0 ,

and boundary terms arising from integration by parts in going between the second and third steps
drop out due to the no-slip condition.

We also have
∫

Ω

∂u

∂t
· u dV =

1

2

∫

Ω

∂

∂t
(U2) dV =

1

2

d

dt

∫

Ω
U2 dV

=
d

dt
e(u) ,

where we have used the notation U 2 ≡ u · u. We can now identify Eq. (1.56) with (1.47) to arrive
at

d

dt
e(u) = −νE(u) + 〈FB ,u〉 , (1.59)

which shows that the growth (or decay) of energy of the flow field depends on a balance between
dissipation due to viscosity times enstrophy and forcing from body forces (or boundary conditions).

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 37

The Galerkin Procedure Applied to the N.–S. Equations

We have already presented a fairly detailed, general treatment of the Galerkin procedure in our
earlier discussions of weak solutions. Here we apply this specifically to the N.–S. equations which
for simplicity we treat in 2-D dimensionless form in the absence of body forces. We can express
this case as

ut + (u2)x + (uv)y = −px +
1

Re
∆u , (1.60a)

vt + (uv)x + (v2)y = −py +
1

Re
∆v , (1.60b)

ux + vy = 0 . (1.60c)

Here subscripts now denote partial differentiation; as usual, ∆ is the Laplacian, and Re is the
Reynolds number: Re = UL/ν with U and L being appropriate velocity and length scales, respec-
tively. We observe that Eqs. (1.60a) and (1.60b) are in so-called “conservation form,” which we
will discuss in more detail in Chap. 2. Here, we simply note that it is a convenient form of the
equations for application of the Galerkin procedure.

In Examples 1.2 and 1.3 we earlier expressed the dependent variables in Fourier series; we follow
the same approach here:

u(x, y, t) =

∞∑

k

ak(t)ϕk(x, y) , (1.61a)

v(x, y, t) =

∞∑

k

bk(t)ϕk(x, y) , (1.61b)

p(x, y, t) =

∞∑

k

ck(t)ϕk(x, y) . (1.61c)

As was true in earlier discussions of the Galerkin procedure, k ≡ (k1, k2), and the lower bound for
components of this wavevector is typically one of −∞, 0 or 1. Also, an analogous expansion would
be given for the body force if one were present.

For convenience we will assume Ω is a rectangle and that the boundary conditions used with
Eqs. (1.60) are periodicity conditions. Although this is a quite restrictive situation, our main goal
here is to introduce some mathematical notions associated with the N.–S. equations when viewed in
Fourier space, so the overall simplicity of this arrangement is an advantage. It is important to note,
however, that it is difficult to lift these conditions and retain a numerically efficient procedure; as
a consequence, most computer implementations of this method are quite similar to the version we
will discuss here.

In light of the periodicity conditions we can employ complex exponentials as basis functions;
that is, we set

ϕk(x, y) = eik·x = ei(k1x+k2y) = eik1xeik2y . (1.62)

The last form on the right is often termed a “tensor product” basis because its two factors are
defined in an uncoupled way on two separate subsets of R1.

To begin construction of the Galerkin form of Eqs. (1.60) we start with the simplest, Eq. (1.60c),
the divergence-free condition, or continuity equation. We substitute Eqs. (1.61a) and (1.61b) into

38 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

this equation and commute summation and differentiation to obtain

i

∞∑

k

(k1ak + k2bk)ϕk = 0 .

Since this must hold at all points of Ω, and ϕk 6≡ 0, we must have

k1ak + k2bk = 0 ∀ k . (1.63)

Similarly, if we substitute these expansions into the x-momentum equation (1.60a), we obtain

∂

∂t

∑

`

a`ϕ` +
∂

∂x

∑

`,m

a`amϕ`ϕm +
∂

∂y

∑

`,m

a`bmϕ`ϕm =

− ∂

∂x

∑

`

c`ϕ` +
1

Re

[
∂2

∂x2

∑

`

a`ϕ` +
∂2

∂y2

∑

`

a`ϕ`

]
.

Again commuting summation and differentiation yields

∑

`

ȧ`ϕ`+i
∑

`,m

(`1+m1)a`amϕ`ϕm+i
∑

`,m

(`2+m2)a`bmϕ`ϕm = −i
∑

`

`1c`ϕ`−
1

Re

∑

`

(
`21 + `22

)
a`ϕ` .

It can be seen that the solutions (the a`s, b`s, c`s) to this equation can be complex, but we are
only interested in those that are real if we are considering solutions corresponding to actual physics
of fluid flow. Indeed, if we had used sine and cosine as basis functions rather than the otherwise
more convenient complex exponentials, this would not have been a concern. Furthermore, the
reader will recall that sines and cosines may be expressed in terms of complex exponentials in any
case. This suggests that a means of avoiding the potentially complex solutions should be available.
In fact, all that is required is setting a−k = ak, where the overbar denotes complex conjugate, and
the imaginary parts become zero (see, e.g., [15]).

This permits us to consider the preceding equation without the imaginary factors i and proceed
formally. (This is not exactly what is actually done, but it is sufficient for our purposes.) We now
use orthonormality of {ϕk} and form inner products of each of these with the above equation to
obtain

ȧk +
∑

`,m

A
(1)
k`m

a`am +
∑

`,m

B
(1)
k`m

a`bm = −k1ck − |k|2
Re

ak , ∀ −∞ < k <∞ . (1.64)

In these equations the A
(1)
k`m

s and B
(1)
k`m

s, sometimes termed Galerkin triple products, are defined
as, for example,

A
(1)
k`m

≡ (`1 +m1)

∫

Ω
ϕkϕ`ϕm dV , (1.65)

where the (1) superscript denotes the x-momentum equation. Clearly, an analogous result holds
for the y-momentum equation:

ḃk +
∑

`,m

A
(2)
k`m

b`am +
∑

`,m

B
(2)
k`m

b`bm = −k2ck − |k|2
Re

bk . (1.66)

At this point we should recall that in both of the two forms of the N.–S. equations considered
previously (Leray projected and weak) it was possible to eliminate pressure from the momentum

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 39

equations, suggesting that this should be possible also in the present case. If we view Eqs. (1.64)
and (1.66) as a vector equation for the vector (ak, bk) of Fourier coefficients, we can take the dot
product of this with k = (k1, k2) to obtain

k1ȧk + k2ḃk +
∑

`,m

[
k1

(
A

(1)
k`m

a`am +B
(1)
k`m

a`bm

)
+ k2

(
A

(2)
k`m

b`am +B
(2)
k`m

b`bm

)]

= −
(
k2
1 + k2

2

)
ck − |k|2

Re
(k1ak + k2bk) ∀ −∞ < k <∞ .

From Eq. (1.63) we see that the first term on the left-hand side and the second on the right-hand
side are both zero, and moreover, we can solve what remains for ck in terms of only the aks and
bks:

ck = − 1

|k|2
∑

`,m

[
k1

(
A

(1)
k`m

a`am +B
(1)
k`m

a`bm

)
+ k2

(
A

(2)
k`m

b`am +B
(2)
k`m

b`bm

)]
. (1.67)

This implies, as we expected, that Eqs. (1.64) and (1.66) can be expressed in a form that is
independent of the pressure, just as was true in the previous cases. But beyond this it explicitly
demonstrates the quantitative dependence of pressure on the velocity field—in Fourier space.

Independent of this, it is worthwhile to examine some of the details of the Galerkin form of
the N.–S. equations. We first make the obvious observation that this form comprises a system
of equations for the time evolution of the Fourier coefficients of the velocity components, and as
such is a dynamical system. Furthermore, at each instant in time for which ak(t) and bk(t) are
known the Fourier coefficients for pressure can be calculated directly from Eq. (1.67), and these
coefficients can be inserted into Eqs. (1.61) to obtain values of u, v and p at any point x ∈ Ω. Of
course, in practice these Fourier representations can contain only a finite number N of terms, so
the results are only approximate. But at least for solutions possessing a high degree of regularity,
the Fourier representations converge very rapidly (in fact, exponentially), so not many terms are
needed to obtain accurate approximations. For the reader interested in this feature, as well as
numerous other details associated with these types of approximations, the monograph by Canuto
et al. [27] is recommended.

It is also of interest to note that a Galerkin procedure might be applied to the Leray-projected
form of the N.–S. equations given in Eq. (1.55). The natural basis set for this is the set of eigen-
functions of the Stokes operator, but other bases might be used as long as some provision is made
regarding satisfaction of the divergence-free constraint.

Our main purpose in presenting the Galerkin form of the N.–S. equations is to demonstrate how
this Fourier-space representation can be used to deduce qualitative mathematical (and physical)
features of N.–S. flows. We consider only the x-momentum equation (1.64); but the same treat-
ment applies to y-momentum, and extension to 3-D flows occurs in a natural way. We begin by
temporarily neglecting all nonlinear terms in Eq. (1.64). Then what remains is

ȧk = −|k|2
Re

ak , (1.68)

the solution of which is

ak(t) = ak(0)e−
|k|2

Re
t , (1.69)

where

ak(0) ≡
∫

Ω
u0(x)e−ik·x dV . (1.70)

40 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

Clearly, this solution decays in time and approaches zero as t → ∞. Moreover, the rate at
which this occurs is |k|2/Re. In particular, for fixed Re higher wavenumber Fourier modes decay
faster than do lower ones. From a mathematical perspective this suggests (but does not prove)
convergence of the Fourier series representation and, hence, existence of solutions of the form Eqs.
(1.61). On the other hand, if |k| is fixed, then the rate of decay of ak decreases with increasing Re.
Now if we recall that the right-hand side of Eq. (1.68) is precisely the Fourier-space representation
of the viscous terms of Eq. (1.60a), we see that we can associate the rate of decay of ak with viscous
dissipation; in particular, increasing Re implies decreasing viscous dissipation, and conversely.

We now consider effects of the nonlinear terms. To do this we first drop the linear viscous
dissipation term from Eq. (1.64), and we also drop the term containing ck arising from the pressure
gradient in Eq. (1.60a) since, as can be seen from Eq. (1.67), this is directly related to the nonlinear
terms, so nothing is lost at the qualitative level by ignoring it. Then we are left with

ȧk = −
∑

`,m

[
A

(1)
k`m

a`am +B
(1)
k`m

a`bm

]
. (1.71)

We first observe that when ` = m a quadratic term appears in the equation. It is worthwhile to
consider the effects of this alone since an analytical solution can be obtained, and this will provide
at least some insight into the qualitative behavior of the nonlinear terms in general. Thus, we solve
the initial-value problem

ȧk = −A(1)a2
k , (1.72)

with ak(0) again given by Eq. (1.70) and subscript notation for A
(1)
k`m

suppressed. We leave as a
simple exercise to the reader demonstration that

ak(t) =
1

A(1)t+ 1/ak(0)
.

It is clear from this that if A(1)ak(0) > 0, then |ak| → 0 as t → ∞, although only algebraically.
But if A(1) and ak(0) are of opposite signs, ak(t) → ∞ can occur in finite time. This implies a
potential for very ill behavior (including nonexistence after only a finite time) of N.–S. solutions.
We will see in the next section that more sophisticated analyses of the 2-D case considered here
show this does not actually occur, but in 3D it is still considered a possibility.

There is a further aspect of the behavior of the terms on the right-hand side of Eq. (1.71) that
deserves mention. It is that such nonlinearities can generate new Fourier modes not present in the
original representation (or in initial data for the problem). Consideration of this will be important
in Chap. 2 when we begin studies of discretization of the N.–S. equations. Here we consider only
the first advective term of the x-momentum equation, (u2)x, and recall its Fourier representation:

(u2)x =
∂

∂x

N∑

`,m

a`amϕ`ϕm ,

written now for only a finite number N of Fourier modes, as would be required for computer
implementation.

Now if the basis set {ϕk} is similar to complex exponentials or trigonometric functions we see
that, e.g.,

ϕ`(x)ϕm(x) = ei`·xeim·x = ei(`+m)·x .

Since each of ` and m can be as large as N , their sum can be greater than N , and the corre-
sponding nonlinear term a`am generates solution behaviors that cannot be resolved by the given

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 41

representation. We will return to this in Chap. 2. We note here that this does not occur for the
Galerkin procedure due to the values taken on by the Galerkin triple products; but it does occur for
the various Fourier collocation methods that are widely used as a more efficient alternative to the
Galerkin procedure (see [27]). Moreover, it is easily argued that this must occur for finite-difference
and finite-volume methods as well.

Finally, we emphasize that the actual time evolution of each of the aks is effected by combina-
tions of all the abovementioned behaviors, and as a consequence solutions can be very complicated—
and very difficult to simulate.

1.3.4 The main well-known N.–S. solution results

In this section we will present the key results of this chapter, the main theorems on existence,
uniqueness and regularity of solutions to the Navier–Stokes equations. While practitioners of CFD
have a general tendency to pay little attention to such results we emphasize, as we have already in
these lectures, that it is best to heed and, to the greatest extent possible, use the results from pure
mathematics. At the same time it is recognized that these are often difficult to comprehend, and it
has been the purpose of the foregoing sections to develop the material that should now make this
possible.

The theorems we will state and discuss can be classified as pertaining to 2-D or to 3-D flows,
and as to whether they relate to weak or strong solutions to the N.–S. equations. With regard to
these classifications, it is usually said that essentially everything worth proving for 2-D problems
has been proven. In particular, existence and uniqueness of solutions, both weak and strong,
have been proven for all time beyond any specified initial time for quite reasonable (physically)
problems. In 3D, long-time existence can be demonstrated for weak solutions, but uniqueness has
not been proven for this case. On the other hand, only short-time existence has been proven for
3-D strong solutions, but it is known that these are unique. Especially with regard to existence of
strong solutions, the constraints that must be imposed on the shape of the domain Ω (in particular,
smoothness of ∂Ω), the boundary and initial conditions, and especially on body-force terms and
Reynolds number (∼viscosity) can be quite stringent if solutions are to be proven to exist for any
but very short times.

Thus, the longstanding mathematical problem, first identified by Leray in the early 1930s, is
proof of existence and uniqueness of strong (but not necessarily classical) solutions to the N.–S.
equations for long times, and under reasonable physical conditions. It is of interest to mention that
this problem is considered to be one of the most important problems in mathematics for the 21st

Century, and it carries a $1 million “price on its head.” Quite literally, any person who succeeds
in rigorously solving this problem will be awarded a prize of a million dollars!

In the first two subsections of this section we will provide a few of the important well-known
results for solutions to the Navier–Stokes equations, first in 2D and then in 3D. This treatment
closely follows that of Foias et al. [15], and as noted in that work, the results were already known
to Ladyzhenskaya [4]. Then, in a final subsection we will summarize some basic conclusions that
impact the choice of numerical algorithms for solving the N.–S. equations, and at the same time
provide an indication of what we should expect regarding the qualitative nature of solutions.

Solutions to the N.–S. Equations in 2D

As we noted above, the mathematical 2-D N.–S. problem is generally viewed as being completely
solved. Here we present two of the main results that have contributed to this understanding. We

42 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

begin with the following theorem on existence and uniqueness for weak solutions, i.e., solutions to
Eq. (1.58) which we repeat here for easy reference:

d

dt
〈u(t),v〉 + ν〈u(t),v〉

V (Ω)
+ b(u(t),u(t),v) = 〈FB,v〉 .

Theorem 1.1 Let u0, FB and tf > 0 be given such that

u0(x) ∈ H(Ω) , and FB(x, t) ∈ L2(0, tf ;H) .

Then ∃ a unique solution u = (u1, u2)
T of Eq. (1.58) 3

ui ,
∂ui

∂xj
∈ L2(Ω×(0, tf)) , i, j = 1, 2 ,

and u is continuous from [0, tf] into H. Moreover, the following energy equation holds for t ∈ [0, tf]:

1

2

d

dt
‖u(t)‖2

L2
+ ν‖u(t)‖2

H1
= 〈FB(t),u(t)〉 .

There are a number of remarks to be made regarding this theorem. First, no restriction has
been placed on the value of the final time, tf , other than it be greater than zero (backward in time
N.–S. problems are ill posed, and tf = 0 would be trivial). Likewise, no restrictions are placed on
the domain Ω. Second, from the definition of H(Ω) (Eq. (1.45)), it is clear that u0, the initial data,
must be divergence free, and that it must satisfy whatever boundary conditions have been imposed
on u. Thus, initial and boundary data are compatible in the usual sense of elementary PDE theory.
Furthermore, again from the definition of the function space H, we see that both u0 and FB must
be in L2(Ω) with respect to spatial coordinates, but that FB must also be in L2 with respect to
the time interval (0, tf).

We next observe that the theorem statement conclusions indicate that the solution to the weak
form of the N.–S. equations (1.58) is unique. Rather generally, weak solutions typically are not
unique. Moreover, the fact that both ui and ∂ui/∂xj , i, j = 1, 2 are in L2 for all time implies
that the solutions are actually in H1(Ω). Thus, we see that the Navier-Stokes equations in this
2-D setting are providing smoothing; the solution operator is mapping L2 initial data (and forcing
function) into a solution in H1. In addition, the fact that u is continuous for [0, tf] to H means that
if only a small change in time is considered, then the change of the L2 norm of u during this time
will be small. Finally, satisfaction of the energy equality shows that the L2 norm of u is bounded
for all time, provided FB ∈ L2.

We now state an analogous result concerning strong solutions. We remind the reader of Def.
1.5 for a strong solution, viz., a solution possessing sufficient derivatives to permit evaluation of the
corresponding differential equation a.e. in the domain Ω, leading to an ability to calculate a desired
Lp norm of the equation “residual.”

Theorem 1.2 Suppose u0, FB are given and are such that

u0(x) ∈ V (Ω) , and FB(x, t) ∈ L2(0, tf ;H) ,

for tf > 0. Then ∃ a unique (strong) solution u = (u1, u2)
T with

ui ,
∂ui

∂t
,
∂ui

∂xj
,
∂2ui

∂xj∂xk
∈ L2(Ω×(0, tf)) , i, j, k = 1, 2 ,

and u is continuous from [0, tf] into V .

1.3. EXISTENCE, UNIQUENESS AND REGULARITY OF N.–S. SOLUTIONS 43

As was true for the preceding theorem, this result requires considerable explanation for those
not well versed in the mathematics involved. We should first note that the requirement on u0 is
stronger in this case; in particular, u0 must now be in V rather than in H, implying that it must be
once differentiable a.e. and thus in H1(Ω) instead of only in L2. On the other hand, requirements
on the forcing function FB remain the same as in the previous case.

As a result of this change in required smoothness of the initial data, the first derivative with
respect to time and the second with respect to space are now in L2, implying that Eqs. (1.60) can
be evaluated a.e. in Ω. Hence, the L2 norm of the differential equation exists, and the solution u

is strong in the sense of Def. 1.5. Here, we have relaxed the C 1 condition in time of that definition
to continuity in time, but we still must require that ∂ui/∂t exist a.e. in Ω for (almost) every
t ∈ (0, tf]. We should also again observe the smoothing properties of the N.–S. operator. Namely,
in the present case initial data were in H1, and the solution evolved so as to be in H2; this should be
expected, at least in an heuristic and qualitative way, due to the viscous dissipation of the diffusion
terms of Eqs. (1.60).

There are two other important points to make at this time. The first is that because both weak
and strong solutions can be proven to be unique, it follows that, in fact, there is only one solution—
and it is strong. It is easily checked (and we leave this as an exercise) that strong (and even classical)
solutions satisfy the weak form of the equations (as noted earlier in our initial discussions of strong
solutions); but, of course, the reverse is not true. Thus, if both weak and strong solutions exist
and are unique, the unique strong solution must also be the unique weak one. We comment that
it is often the practice in PDE theory to follow the path of first proving weak results followed by
proving strong results, and then attempting to show they are the same.

The final remark of this section is emphasis that although we have indicated existence of unique,
strong solutions to the N.–S. equations (1.60), for all time in 2D, this does not imply that such
solutions are any more regular than H2 in space and H1 in time. This has important implications
concerning the choice of numerical methods to be used in implementing CFD algorithms because
it indicates that the Taylor series needed for truncation error analysis may not exist, and in turn,
use of high-order methods is not likely to produce uniformly superior results. But in addition,
this suggests that mollification (often termed regularization, especially in the numerical analytic
context) will probably be needed, especially when coarse discretizations are used, to control growth
of effects from unrepresented high modes arising from the nonlinear terms. Details of this will be
provided in Chap. 2.

Solutions to the N.–S. Equations in 3D

The results we present in this subsection are in many respects quite similar to those given above
for two space dimensions. But there are important differences as we will note in the following
discussions. We will again first provide results associated with weak solutions, and follow this with
corresponding results for strong solutions.

Theorem 1.3 Let u0, FB and tf > 0 be given and such that

u0(x) ∈ H(Ω) , and FB(x, t) ∈ L2(0, tf ;H) .

Then ∃ at least one solution u = (u1, u2, u3)
T to Eq. (1.58) 3

ui,
∂ui

∂xj
∈ L2(Ω×(0, tf)) , i, j = 1, 2, 3,

and u is weakly continuous from [0, tf] into H.

44 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

We first remind the reader that weak continuity was introduced in Def. 1.2 in terms of linear
functionals based on C∞

0 functions. But here we will replace these test functions with functions
v(x) ∈ H(Ω). Then weak continuity implies that ∀ v ∈ H the mapping

t 7−→ 〈u(x, t),v(x)〉 =

∫

Ω
u(x, t) · v(x) dV

must be continuous (in the usual sense). We should note that this is different from the 2-D case
in which continuity of u into H was strong. A second difference from the 2-D case is that weak
solutions in 3D may not be unique (it is currently not known whether they are, or not). Finally, in
place of the energy equality given in Theorem 1.1, only an energy inequality can be proven for the
3-D case:

1

2

d

dt
‖u(t)‖2

L2
+ ν‖u(t)‖2

H1
≤ 〈FB(t),u(t)〉 ,

in which all differentiations must be taken in the sense of distributions.
Theorem 1.3 clearly is not a very favorable result; its one good feature is that there is no

restriction on tf ; i.e., we have global in time existence, but possibly nonuniqueness, of the weak
solution(s) in 3D. We will now see that, in a sense, just the opposite holds for strong solutions.

Theorem 1.4 Let u0, FB and tf > 0 be given and such that

u0(x) ∈ V (Ω) , and FB(x, t) ∈ L2(0, tf ;H) .

Then ∃ t∗ ∈ (0, tf] and depending on u0, FB, ν and Ω 3 there is a unique strong solution u =

(u1, u2, u3)
T to Eqs. (1.60) with the properties

ui,
∂ui

∂t
,
∂ui

∂xj
,
∂2ui

∂xj∂xk
∈ L2(Ω×(0, t∗)) , i, j, k = 1, 2, 3 ,

and u is a (strongly) continuous function from [0, t∗) into V .

It is of interest to note that by arguments analogous to those used in 2D, we see that uniqueness
of this solution implies that there is no other solution—strong or weak—on the interval [0, t∗). But
we cannot prove existence of any strong solution beyond the time t∗, while time of existence for
the possibly nonunique weak solution(s) is unlimited.

We should again observe that just as in 2D, we bought better solution behavior by requiring
more regular initial data. But in the present case we can only prove such a solution exists for a finite
time, a time which is influenced by essentially everything associated with the problem. Constantin
and Foias [13] can be consulted for more details on this aspect of N.–S. solutions; here we simply
note that, e.g., as Re becomes large (and hence dissipation becomes small), the time of existence
of a strong solution becomes short—as one might expect.

Some Conclusions

We end this section with some basic conclusions that are easily deduced from the foregoing
discussions. First, it is clear in both 2D and 3D that the nature of the initial data has a significant
impact on the ultimate regularity of N.–S. solutions. In particular, for the theorems quoted here
it is necessary that initial data be divergence free and be compatible with boundary conditions.
Without these restrictions it is not clear that even existence can be proven; but at the very least, if
these requirements are not met, smoothness of N.–S. solutions will be reduced. Thus, the first step

1.4. SUMMARY 45

in any computational algorithm for solving the incompressible N.–S. equations should be projection
of the given initial data to a divergence-free subspace via Leray projection.

Furthermore, there is no prescription for initial pressure in any of the theorem statements. In
the case of weak solutions pressure does not enter the problem in any direct way, so this is to
be expected. But for strong solutions this could be different, and in either case it leaves open
the question of how to handle this in the context of numerical methods that generally do not
employ divergence-free bases. In particular, it should be clear that regardless of any algorithmic
details, pressure (initial, or otherwise) must be obtained from the velocity field (recall the Galerkin
representation of the N.–S. equations, for example) so as to be consistent with the divergence-free
condition.

The next thing to note is that the forcing function FB has also been required to be divergence
free; it is a mapping from H to L2. In actual physical problems this might not be the case—and
there may be nothing that can be done to improve the situation. Hence, solution behavior may be
worse than indicated by the theorems of this section. On the other hand, with FB ≡ 0, as often
occurs, the given results probably represent a “worst case.” But even so, as we have already noted,
especially in the most important case of 3-D flows at high Re, it is unlikely that solutions will be
classical. As a consequence, much of Taylor series based numerical analysis is inapplicable without
modification. We will treat some details of this in the next chapter.

1.4 Summary

In this introductory chapter we have provided some basic notions from functional analysis—
definitions of various function spaces, linear functionals and distributions—that permit us to un-
derstand the concepts of weak and strong solutions to partial differential equations. In addition
we have presented various mathematical techniques that are crucial for being able to analyze the
N.–S. equations: mollification, Helmholtz–Leray decomposition, Leray projection and the Galerkin
procedure. These tools permitted us to discuss weak and strong solutions to PDEs in general and
to construct various forms of the N.–S. equations. We then stated and discussed some of the main
theorems describing existence, uniqueness and regularity properties of N.–S. solutions. We have
emphasized that in three space dimensions the theory of these equations is incomplete: existence
of weak solutions can be proven for all time, but it is not known whether such solutions are unique;
existence and uniqueness of strong solutions can be proven only for finite time. Finally, we have
stressed that even strong solutions are considerably different from classical ones, and generally do
not possess sufficient regularity for typical Taylor series based approaches to error analysis. This
casts doubt on, among other things, the utility of attempting to employ higher-order methods when
approximating solutions to the Navier–Stokes equations, and it implies that considerable care must
be exercised in constructing solution algorithms and in attempting to validate computed results.

46 CHAPTER 1. THE NAVIER–STOKES EQUATIONS: A MATHEMATICAL PERSPECTIVE

Chapter 2

Special Numerical Difficulties of the

Navier–Stokes Equations

In this chapter we present several mathematical/numerical analytic topics that are quite specific to
treatments of the Navier–Stokes equations. We begin by summarizing essentially all the different
forms into which the N.–S. equations have been cast during attempts to solve them. We follow
this with a description of the various grid structures one can consider and compare advantages and
disadvantages of these as they relate to the problem of pressure-velocity coupling. Finally, we treat
the problem associated with cell-Re restrictions on difference approximations and grid spacing, and
we conclude the chapter with discussions pertaining to the related problem of aliasing.

2.1 Forms of the Navier–Stokes Equations

The N.–S. equations have, through the years, been cast in many different forms during attempts
to solve them, especially in 2D. Here we will review essentially all of these. But we note that the
main purpose of this is to allow the reader to recognize that in the current era of very powerful
computing hardware it is seldom that anything but the so-called “primitive-variable” form of the
equations is employed. Thus, we will begin this section with this basic form. We follow this with the
stream function/vorticity formulation that once was widely used for 2-D calculations, and we then
consider the velocity/vorticity formulation. Finally, we return to the primitive-variable equations
and consider various modifications of these that sometimes can provide specific advantages.

2.1.1 Primitive-variable formulation

We previously presented the N.–S. equations in Chap. 1 as

ρ
Du

Dt
= −∇p+ µ∆u + FB , (2.1a)

∇ · u = 0 . (2.1b)

Here, ρ and µ are constant density and viscosity, and FB is a body force. The dependent variables
in this equation are the velocity vector u = (u, v, w)T and the pressure p. This set of variables is
termed “primitive” since in most typical laboratory experiments it includes the physical variables
that can be directly measured. Moreover, other quantity of interest in a fluid flow (e.g., vorticity
or circulation) can be computed directly from these. It is important to recognize, however, that
the body force FB may contain further dependent variables, e.g., temperature T , and when this

47

48 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

is the case additional transport (or other) equations will be required. For the present we ignore
such added complications beyond noting that typical body forces arise from buoyancy, rotation and
electromagnetic fields.

A fundamental observation associated with Eqs. (2.1) is that the momentum equations (2.1a)
should be viewed as the equations that describe the velocity field, while the divergence-free condition
(2.1b) provides an equation for pressure. This should seem rather natural in light of our discussions
in Chap. 1 where it was shown that the momentum equations can be solved for the velocity field in
the absence of pressure gradient terms. This leaves only ∇ ·u = 0 for finding the pressure; indeed,
it is often said that “pressure enforces the divergence-free constraint in an incompressible flow.”
But this equation does not explicitly contain the pressure, and this has caused significant problems
from a computational standpoint; we will consider several treatments of these difficulties in the
sequel.

The first attempts to rectify this problem arose from recognition that a Poisson equation for
pressure (the so-called PPE) can be derived by calculating the divergence of Eq. (2.1a): we have

ρ∇ · Du

Dt
= −∇ · (∇p) + µ∇ · ∆u + ∇·FB ,

or after commuting the divergence operator with other differential operators wherever this is con-
venient (and appropriate) we have (after expanding the substantial derivative)

ρ
∂(∇ · u)

∂t
+ ρ∇ · (u · ∇u) = −∆p+ µ∆(∇ · u) + ∇·FB ,

or

∆p = ∇·FB + µ∆(∇ · u) − ρ

[
∂(∇ · u)

∂t
+ ∇ · (u · ∇u)

]
. (2.2)

This implies that pressure can be calculated provided the velocity field is known, a result we
already deduced from the Galerkin form of the N.–S. equations. But Eq. (2.2) requires boundary
conditions at all points on the boundary of the solution domain Ω. This fact led to considerable
misunderstandings regarding solution of the N.–S. equations (see, e.g., Gresho and Sani [28]) and
was one of the motivations for solving various alternative forms of the equations of motion we will
discuss in subsequent sections. Before turning to these, however, there are two main points that
should be made regarding Eq. (2.2). The first is that if we assume that (2.1b) is satisfied, Eq. (2.2)
collapses to

∆p = ∇·FB − ρ∇ · (u · ∇u) . (2.3)

Thus, if we have somehow obtained a divergence-free velocity field we can determine the pressure
from this equation supplemented with appropriate boundary conditions, which we will treat in more
detail in a later section. But we note here that on solid surfaces the pressure usually is not known
and is typically a major part of the desired information to be obtained by solving the problem.

The second thing to note regarding use of (2.2) or (2.3) is that it does not accomplish the
desired task of forcing the velocity field to be divergence free. In fact, within the confines of the
description given here it is necessary to already have a divergence-free velocity in order to use Eq.
(2.3). Moreover, solutions to the momentum equations (2.1a) are not necessarily divergence free
(and this is all the more true of their discrete representations). Clearly, if they were, the constraint
(2.1b) would be unnecessary. But we have already seen in Chap. 1 a procedure for obtaining a
divergence-free velocity field—Leray projection, and we will later see that this provides a crucial
computational tool in the present context.

2.1. FORMS OF THE NAVIER–STOKES EQUATIONS 49

2.1.2 Stream function/vorticity formulations

Difficulties with satisfying the divergence-free condition and prescribing boundary conditions for
pressure led researchers to seek formulations that did not include the pressure, and which automat-
ically enforced the divergence-free constraint. The first, and probably the most successful, of these
is the stream function/vorticity formulation. The stream function was widely used in analytical
treatments of the N.–S. equations (e.g., in boundary-layer theory), so this was a natural approach.
But it possesses two major shortcomings, the first of which is that there is no straightforward
extension of the 2-D formulation to 3D.

We begin this section with the basic, well-known 2-D treatment, and follow this with a brief
discussion of a possible way to handle 3-D cases.

2-D Stream Function/Vorticity

Consider the velocity field u = (u, v)T defined on a domain Ω and the divergence-free constraint

ux + vy = 0 . (2.4)

We wish to find a way to automatically satisfy this condition. It is fairly clear that if we define a
function ψ ∈ C2(Ω) and consider its mixed partial derivatives, we would have

ψxy = ψyx .

It follows that if we set
u = ψy , and v = −ψx , (2.5)

then Eq. (2.4) will be satisfied. Thus, if we could find a PDE satisfied by ψ, and related to properties
of the flow field, we would be able to obtain a divergence-free velocity field via Eqs. (2.5).

To do this we first recall that in 2D the vorticity vector has only a single component,

ω = vx − uy . (2.6)

Now substitution of Eqs. (2.5) into this yields

∆ψ = −ω , (2.7)

so if we can find an equation for ω we will have obtained a formulation that automatically produces
divergence-free velocity fields. While the formal equivalence of this formulation with the N.–S.
equations requires rigorous proof, the construction we will employ is suggestive, and we will not be
further concerned with this approach in any case.

In 3D we would simply take the curl of the momentum equations to produce the desired result.
But in 2D it is easier to simply “cross differentiate” the two momentum equations, and then
subtract the x-momentum equation from the y-momentum equation. In 2D these equations are (in
the absence of body forces)

ρ (ut + uux + vuy) = −px + µ∆u , (2.8a)

ρ (vt + uvx + vvy) = −py + µ∆v , (2.8b)

and cross differentiation leads to

ρ (uyt + uyux + uuxy + vyuy + vuyy) = −pxy + µ∆uy ,

ρ (vxt + uxvx + uvxx + vxvy + vvxy) = −pxy + µ∆vx ,

50 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

where we have assumed sufficient smoothness to permit changing the order of differentiation when-
ever this is convenient.

Next substract the first of these from the second to obtain

ρ(vx − uy)t + (vx − uy)ux + (vxx − uxy)u+ (vx − uy)vy + (vxy − uyy)v = µ∆(vx − uy) .

We observe that the second and fourth terms on the left-hand side can be combined to give

(vx − uy)(ux + vy) = ω∇ · u = 0 ,

and what remains can be expressed as

ρ(ωt + uωx + vωy) = µ∆ω , (2.9)

or, after using Eqs. (2.5),

ωt + ψyωx − ψxωy = ν∆ω . (2.10)

This is the basic transport equation for vorticity, and it completes the system of PDEs comprising
the stream function/vorticity formulation of the 2-D incompressible N.–S. equations.

Clearly, boundary and initial conditions must be prescribed to complete a well-posed problem
for Eqs. (2.7) and (2.10). Initial conditions are needed only for the latter of these, and they
can be computed directly from the initial velocity field using Eqs. (2.5) and (2.6). Construction
of boundary conditions is less straightforward and, as it turns out, rather counterintuitive—the
second of the major shortcomings of this approach alluded to earlier. Much effort was devoted
to this and other aspects of these equations during the 1970s and 80s, but because they are now
seldom used, we will not here provide further details.

Extension to 3D

Extension of the stream function/vorticity formulation to 3D is not straightforward for two
main reasons. First, there is no natural definition of the stream function in 3D; in place of the
stream function one must employ a (vector) velocity potential φ such that u = ∇φ, with φ any
particular component of φ. But now the vorticity equation must be replaced with a system of
three equations for the components of the vorticity vector, each of which is more complicated than
Eq. (2.9) due to the “vortex stretching” terms that occur in 3D. The problems associated with
boundary condition formulation are now even more formidable, and since this 3-D version is almost
never used we will not devote any further space to it here.

A final remark on stream function/vorticity formulations in general is worthwhile. It is that
although they do accomplish the desired goal of automatic satisfaction of the divergence-free con-
dition, they merely shift problems associated with pressure boundary conditions to (even more
difficult—see, e.g., Gresho [29]) problems for vorticity boundary conditions.

2.1.3 Velocity/vorticity formulations

We will treat this formulation only in 2D. The corresponding 3-D treatment is similar but more
involved (again, because vorticity is a vector in 3D but only a scalar in 2D). Moreover, this approach
has not been widely used; our main purpose in presenting it is simply to make the reader aware that
such efforts have previously been made, and that there is little reason to re-invent these (basically
flawed) techniques.

2.1. FORMS OF THE NAVIER–STOKES EQUATIONS 51

The 2-D vorticity transport equation has already been derived in the previous section and given
as Eq. (2.9); we repeat this here in its more often-used form

ωt + uωx + vωy = ν∆ω . (2.11)

This equation contains three unknowns, vorticity and the two components of the velocity vector.
Thus we need two more equations. These are supplied by the definition of vorticity,

ω = vx − uy , (2.12)

and the divergence-free constraint,
ux + vy = 0 . (2.13)

This formulation is sometimes popular with mathematicians because the last two equations
comprise a Cauchy-Riemann system for which a great deal is known from complex analysis. Indeed,
this formulation has been employed by Kreiss and Lorenz [30] to prove existence of periodic C∞

solutions to the N.–S. equations via what is formally a numerical algorithm, allowing discretization
step sizes to approach zero, and examining the properties of the limits. Actual numerical simulations
using Eqs. (2.11)–(2.13) are relatively rare (an example can be found due to Gatski et al. [31]).
This is mainly because of problems with vorticity boundary conditions, as already briefly indicated.

As a consequence of these and various related problems, which are exacerbated in 3D, we will
give no further consideration to this formulation except to observe that although finding vorticity
boundary conditions to produce a well-posed problem for the vorticity equation (2.11) can be
difficult, using this equation on an outflow boundary as a boundary condition in conjunction with
Eqs. (2.12) and (2.13) may provide a useful augmentation to the boundary treatment of various
primitive-variable formulations.

2.1.4 Further discussions of primitive variables

As we have already emphasized, the primitive-variable form of the N.–S. equations is now employed
almost exclusively, both in new research codes and in commercial software. It will be the only
form treated in the remainder of these lectures. It is important to recognize, however, that this
form, itself, has many different subforms that are formally equivalent analytically in the context of
classical solutions but which can lead to different algorithmic behaviors when replaced by discrete
approximations, especially to non-classical solutions. The goal of this section is to provide an
overview of these various forms. We begin by noting that the information presented here has
appeared at numerous times in the archival literature, and the treatment here relies heavily on the
work of Gresho [29]. We will concentrate on alternative forms of the advective terms and note, in
passing, that additional forms of the diffusion terms can also be used—and often are in the context
of finite-element discretizations.

For purposes of comparisons, we first express the N.–S. equations in what might be viewed
as a “standard” form (termed the “advective/convective” form in [29]) for the case of constant
kinematic viscosity:

ut + u · ∇u = −∇p+ ν∆u , (2.14)

again with body-force terms omitted because they will not influence the present developments. It
is also to be noted that pressure is now the “kinematic” pressure, i.e., pressure divided by density
ρ; but we will make no specific notational distinction.

52 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

Conservation Form

The conservation (or divergence) form of the momentum equations can be written as

ut + ∇ · (uu) = −∇p+ ν∆u , (2.15)

and has already been encountered in applying the Galerkin procedure to the N.–S. equations in
Chap. 1. Since

uu =




u
v
w


 (u v w) =




u2 uv uw

vu v2 vw

wu wv w2


 , (2.16)

it follows that

∇ · (uu) = u · ∇u + u(∇ · u) .

But from the divergence-free constraint the second term on the right-hand side is zero, showing
that (2.15) is equivalent to (2.14) in the analytical sense. As noted in [29], Eq. (2.14) (the standard
form) provides the simplest form for discretization and is widely used; but such discretizations
generally do not “conserve” either momentum or kinetic energy. On the other hand, straightforward
discretizations of Eq. (2.15) do conserve momentum. We remark, however, that as has already been
shown in the mathematical analyses of Chap. 1, the N.–S. equations are not conservation laws, so
the importance, per se, of preserving conservation is not obvious. Nevertheless, in the absence of
the viscous terms they would be; so, especially for high-Re flows, it can possibly be advantageous
for discretizations of the advective terms to be conservative.

Rotation Form

The rotation form of the incompressible N.–S. equations is expressed as

ut + ω×u = −∇PT + ν∆u , (2.17)

where PT is the (kinematic) total pressure given by

PT = p+
1

2
U2 , with U 2 = u2 + v2 + w2 . (2.18)

To see that this is equivalent to the standard form of the momentum equations we first note that

ω×u = [w(uz − wx) − v(vx − uy)] e1

+ [u(vx − uy) −w(wy − vz)] e2 (2.19)

+ [v(wy − vz) − u(uz − wx)] e3 .

If we consider only the first component we see that

(ω×u)1 = vuy + wuz − vvx − wwx

= uux + vuy + wuz −
1

2

∂

∂x
(u2 + v2 + w2)

= u · ∇u− 1

2

∂

∂x

(
U2
)
,

2.2. PRESSURE-VELOCITY COUPLING 53

where uux has been added and subtracted in the second line. We leave complete verification of
Eqs. (2.17) and (2.18) as an exercise for the reader.

The rotation form is widely used, especially in the context of pseudo-spectral approximations to
the N.–S. equations where it, or the skew-symmetric form described below, is necessary for stability
(see, e.g., Canuto et al. [27]). It is clear that somewhat more arithmetic is required to evaluate
discretizations of Eq. (2.17) in comparison with that needed for corresponding evaluations of either
the standard or conserved forms. On the other hand, discrete conservation of both momentum
and kinetic energy is easily achieved with this formulation, so it could potentially be of value in
simulating very high-Re flows.

Skew-Symmetric Form

The skew-symmetric form of the N.–S. equations is constructed as the average of the conserved
and unconserved (standard) forms, i.e., the average of Eqs. (2.14) and (2.15); the form of the
momentum equations in this case is

ut +
1

2
[u · ∇u + ∇ · (uu)] = −∇p+ ν∆u . (2.20)

This form leads readily to discrete conservation of kinetic energy and, like the rotation form,
enhances stability of pseudo-spectral methods. Furthermore, it is claimed to be more accurate
than the rotation form in this context (see [29] and references cited therein).

This concludes our discussions of the forms of the Navier–Stokes equations. We once again
emphasize that the primitive-variable formulation is, by far, the most widely used in modern CFD,
and from this point on in the present lectures we will consider only this form.

2.2 Pressure-velocity coupling

The pressure-velocity coupling problem is a difficulty that is quite specific to the incompressible
N.–S. equations; it does not occur for numerical approximations of the compressible equations, and
it seldom if ever occurs in the analysis of other PDEs. It is a problem whose symptoms are easily
recognized, as we will demonstrate in more detail below, but one which is not easily understood
in the context of finite-difference/finite-volume approximations. On the other hand, it is well
understood in the finite-element analysis of the incompressible equations. In a superficial way
one might associate pressure-velocity “uncoupling” with the fact that pressure does not appear
explicitly in the equation that must be used to set the pressure (the divergence-free condition),
as we have already noted, and even more, the pressure itself does not appear in the momentum
equations. In particular, only its gradient is present, implying that at best pressure might only be
determined to within an additive function of time.

The correct treatment of the pressure-velocity coupling problem can be prescribed very precisely
for finite-element methods, as hinted above. In the case of finite-difference and finite-volume meth-
ods on which we will focus attention in these lectures, much of what is known is based on physical
arguments and trial-and-error approaches to algorithm development, although it is possible to draw
some analogies with the finite-element analyses. As we will describe in the following subsections,
the correct treatment requires specific combinations of grid structure and discrete approximation
of the equations of motion. We will begin by describing various grid structures that have been
employed, and we follow this with two specific discretizations of the N.–S. equations. We then
briefly discuss a necessary modification to one of these.

54 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

2.2.1 Types of grid configurations

There are three main types of grid structures (and some modifications of these) that have been em-
ployed in attempts to numerically solve the N.–S. equations. They are: i) unstaggered, ii) staggered
and iii) “partially staggered.” These, along with their common modifications, are shown in Fig. 2.1.
In each case we display a single 2-D grid cell and indicate the locations within such a cell where each
of the dependent variables is to be calculated. We have chosen to use 2D here for clarity; extension

(d)

u, v, p

hy

hx

u, v, p

(a) (b)

u, v

p u

v

u, v

p

(e)

(c)

p

u, v

Figure 2.1: Alternative grid structures for solving the 2-D incompressible N.–S. equations; (a)
natural unstaggered, (b) staggered, (c) partially staggered, (d) cell-centered unstaggered and (e)
staggered w/ multiple momentum equations.

to 3D is straightforward. We now briefly discuss the features and advantages/disadvantages of each
of these alternatives.

Unstaggered, Natural Grid

From the viewpoint of basic numerical analysis of partial differential equations the unstaggered
grid, shown in part (a) of the figure, with all variables defined at grid points in their natural loca-
tions at the cell vertices would be the likely choice for discretization of any system of PDEs. With
all discrete variables defined at each vertex, implementation of boundary conditions is straightfor-
ward. In particular, grid points will coincide with discrete boundary points, implying that Dirichlet
conditions can be implemented without any approximation—a highly desirable situation.

But in the context of the incompressible N.–S. equations there is a basic flaw with this grid
configuration; namely, as we will see below, it is possible to discretely satisfy the divergence-free
condition with velocity fields that are physically unrealistic, and in any given calculation there are

2.2. PRESSURE-VELOCITY COUPLING 55

essentially always some regions in the physical domain at which such velocities are produced. We
will discuss this in more detail later.

Staggered Grid

The grid configuration presented in part (b) of the figure is termed “staggered” because the
location at which each dependent variable is computed is different for all variables—the variables
are staggered about the grid cell. This type of grid was introduced by Harlow and Welch [32] in
constructing the marker-and-cell (MAC) method to be described in Chap. 3, and it was the first
configuration with which the N.–S. equations could be reliably solved. In particular, the problem
of pressure-velocity decoupling seen on the natural unstaggered grid does not occur. On the other
hand, without the benefit of physical arguments such an arrangement of variables might seem
counterintuitive, at best. But even worse is the fact that, as is easily seen, the no-slip condition
cannot be exactly satisfied with this type of gridding. This fact motivated the search for other
gridding arrangements.

Partially-Staggered (ALE) Grid

One such grid is the ALE (arbitrary Lagrangian-Eulerian) grid of Hirt et al. [33] which we
loosely term “partially-staggered” because pressure is computed at cell centers as is the case for
staggered grids, but both velocity components are calculated at the natural finite-difference grid
points as in the unstaggered case. It is clear that such gridding provides a remedy to the problem
of satisfying the no-slip boundary condition. But at any boundary point where pressure is to be
specified, it is not possible to do this exactly (which is also true for the staggered grid). The
major problems with this approach, however, are that the algorithm needed to implement the ALE
method is quite complicated, and pressure-velocity decoupling can still occur, albeit, usually with
less severity than is true for unstaggered grids. As a consequence of these difficulties ALE methods
are seldom used, and we will provide no further consideration of them in these lectures.

Cell-Centered Unstaggered Grids

The cell-centered “unstaggered” grid (sometimes, and more appropriately, termed a co-located
grid) has experienced much popularity following the paper by Rhie and Chow [34]. It is often
simply called an unstaggered grid, but as can be seen by comparing parts (a) and (d) of Fig. 2.1,
this is not the same configuration as the usual unstaggered grid. While all solution components are
computed at the same location (hence, the terminology “co-located”), this location corresponds to
the cell center rather than to a natural grid point at a cell vertex. Although one might imagine
shifting all the cell centers to the lower left-hand vertex of each cell to formally obtain the structure
of the natural unstaggered grid, this would not be consistent with details of constructing difference
approximations as done in [34]. Indeed, the approximations employed are quite similar to those
typically used for the compressible flow equations (see, e.g., Hirsch [35]). Namely, all dependent
variables are computed at cell centers, and the fluxes needed for these calculations are obtained at
the cell walls. But for reasons to be discussed in more detail below, it is necessary to also alter the
pressure Poisson equation for this approach to be successful in the incompressible case.

We also note that the original work of Rhie and Chow [34] was done in the context of 2-D
steady-state calculations using a solution procedure that is basically a SIMPLE algorithm (see
Patankar [36]) to be discussed in detail in Chap. 3 of these lectures. Zang et al. [37] later extended
this unstaggered formulation to 3-D time-dependent problems employing a projection method (see
Chap. 3) as the basic solution technique.

56 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

It is important to recognize that independent of whether the implementation is for steady
or unsteady problems, co-located, cell-centered variables lead to inability to exactly satisfy all
boundary conditions.

Staggered Grids with Multiple Momentum Equations

The final combination of gridding and dependent variable placement we consider here consists
of the usual staggered grid shown in Fig. 2.1(b) but with all velocity components computed on each
cell wall, as indicated in Fig. 2.1(e). This approach is motivated by concerns regarding accuracy
of interpolations of velocity components to locations where they have not been computed from the
corresponding momentum equation(s) during construction of advective terms of the momentum
equation associated with the particular cell wall location. (But note that very similar interpolations
must be performed in the cell-centered unstaggered approaches in order to construct the required
wall fluxes.) Moreover, computing all velocity components on all cell walls leads to exact satisfaction
of no-slip boundary conditions, which is not possible with the usual staggered gridding as we earlier
noted. But the multiple-momentum equation approach leads to twice the arithmetic required of the
usual staggered method for momentum equation solutions in 2D, and three times the amount in 3D.
As will be shown in more detail later, the averaging employed for the usual staggered-grid technique
does not result in loss of formal accuracy, and there is thus little reason to accept the extra arithmetic
required in the multiple-momentum equation methods. We will not give further consideration to
this approach in these lectures except to note that use of staggered grids has sometimes been
criticized specifically because of the perceived extra required arithmetic (see Zang et al. [37]). But
this involves a comparison between unstaggered methods and the multiple-momentum equation
versions of the staggered grid approach, rather than with the more widely-used one employing
only a single momentum equation on each cell wall. Thus, such criticisms are inaccurate and
misrepresent the actual situation. In fact, the arithmetic required for the typical staggered grid
formulation is actually slightly less than that required for co-located grid formulations due to the
additional arithmetic required for the modified Poisson equation solves of the latter. In the sequel
we will consider only the form of staggered grid depicted in Fig. 2.1(b).

2.2.2 Finite-difference/finite-volume discretization of the N.–S. equations

In this section we will treat the basic finite-difference spatial discretization of N.–S. equations. We
will leave details of time integration procedures to Chap. 3 where we will consider specific solution
algorithms, and here consider only the simple backward Euler integration scheme. In the present
subsection, we will employ only centered-difference approximations, and in the next section of this
chapter we will study some modifications to this that are sometimes used for the advective terms.
We will consider three main cases: i) the natural, unstaggered grid, ii) the staggered grid and iii)
the cell-centered (co-located) unstaggered grid. We will consider each of these in the context of a
straightforward model problem, the so-called “lid-driven cavity” problem, depicted in Fig. 2.2.

Lid-Driven Cavity Problem Statement

We begin by providing a complete problem statement constituting a mathematically well-posed
problem. We let Lx = Ly = 1 and define the domain Ω ≡ (0, 1)×(0, 1). Then we solve

ut + u · ∇u = −∇p+ ν∆u , (x, y) ∈ Ω , (2.21)

with initial data
u = 0 in Ω

2.2. PRESSURE-VELOCITY COUPLING 57

x

Ly

u v 0= =

u
v

0
=

=
u

v
0

=
=

v 0=u = 1,

L
x

y

Figure 2.2: Lid-driven cavity streamlines for the viscous, incompressible N.–S. equations.

except that
u = 1 for y = 1 .

The boundary conditions are as shown in Fig. 2.2 and correspond to no-slip and no mass flow on
and through solid boundaries.

To obtain an equation explicitly in terms of pressure, we use the PPE given in Eq. (2.3) in place
of the usual continuity equation. Thus, in the present case we have

∆p = −∇ · (u · ∇u) (2.22)

with the boundary conditions
∂p

∂n
= 0 on ∂Ω .

It is known that if ν is not too large, this problem possesses a steady solution. We shall assume
that is a possibility, but we will nevertheless construct a solution procedure capable of computing
a time-dependent solution as well.

Before starting discretization of this problem it is important to notice that the PDE boundary
value problem is of Neumann type, and as such does not possess a unique solution. Indeed, there
does not exist any solution for Poisson/Neumann problems in general unless

∫

Ω
f dx =

∫

∂Ω
g d` ,

where f is the right-hand side forcing of the Poisson equation (2.22), and g is the right-hand side of
the Neumann boundary condition. This follows directly from the divergence theorem (demonstra-
tion of which we leave as an exercise to the reader), and in the present case leads to the solvability
condition ∫

Ω
uyvx − uxvy dx = 0 .

58 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

We emphasize that this is not guaranteed to hold, a priori.

Discretization of the N.–S. Equations on an Unstaggered Grid

We begin this treatment with discretization of the momentum equations for which we use the
formal notation

D0,x ≡ ui+1,j − ui−1,j

2h

D2
0,x ≡ ui+1,j − 2ui,j + ui−1,j

2h
,

with analogous definitions for the y-direction centered differences D0,y and D2
0,y. Here, h is the grid

spacing. We follow this with a similar discretization for the PPE, and we then describe the nature
of the computed results arising from this treatment, in particular, discussing what has gone wrong
with this proposed formulation.

For the grid covering the problem domain displayed in Fig. 2.3, we see that hx = hy = h, and
we can apply very standard, straightforward difference techniques to approximate Eqs. (2.21) and
(2.22). We first express the former of these in component form as

(i,j)

hy

hx

Figure 2.3: Basic unstaggered gridding of problem domain.

ut + uux + vuy = −px + ν∆u , (2.23a)

vt + uvx + vvy = −py + ν∆v . (2.23b)

These are (coupled) quasilinear, parabolic PDEs, and if we use backward Euler time integration
with time step k (= ∆t) we can express these as

{
I + k

[
u

(m)
i,j D0,x + v

(m)
i,j D0,y − ν

(
D2

0,x +D2
0,y

)]}
u

(m)
i,j = un

i,j −D0,x p
(m)
i,j , (2.24a)

{
I + k

[
u

(m)
i,j D0,x + v

(m)
i,j D0,y − ν

(
D2

0,x +D2
0,y

)]}
v
(m)
i,j = vn

i,j −D0,y p
(m)
i,j . (2.24b)

2.2. PRESSURE-VELOCITY COUPLING 59

Here, parenthesized superscripts denote iteration counters associated with any chosen nonlinear
iterative procedure, and such that, e.g., u(m) → un+1 as m → ∞. The grid stencil for this dis-
cretization shown in Fig. 2.3 is the standard one. It is clear from this, and the fact that only
Dirichlet conditions are being imposed on Eqs. (2.23), that discrete boundary condition implemen-
tation is trivial, and we will not give further consideration to this here. (The reader unfamiliar
with the necessary procedure is referred to McDonough [38].)

It is also easily seen from the grid stencil that the coefficient matrices arising from collection
of the left-hand sides of Eqs. (2.24) must be of the form of 2-D discrete Laplacians, that is, non-
compactly banded five-band matrices. This implies that in the context of generating time-accurate
solutions the most efficient approach should be some form of time splitting. It is assumed readers
are familiar with such techniques; but for those who may not be, any of the following references
may be consulted: Mitchell and Griffiths [20], Douglas and Gunn [39], or McDonough [40].

Here, we will employ the Douglas and Gunn procedure [39] which is equivalent to the Douglas
and Rachford scheme (see [20]) in the present case, due to our use of backward Euler time integra-

tion. It is easily seen that once u
(m)
i,j and v

(m)
i,j have been specified Eqs. (2.24) are linear, and the

systems arising from the collection of these can be expressed as, e.g., for x-momentum,

(I + kA)un+1 + Bun = sn , (2.25)

where the n time level superscript on the right-hand side is formal and merely denotes known
quantities, independent of their specific time level—even an advanced one. Also, un-subscripted
quantities denote vectors or matrices, the latter if the notation is bold face.

It is clear from the form of Eqs. (2.24) that in either of these the matrix A can be decomposed
as

A = Ax + Ay , (2.26)

where each term on the right-hand side is a N×N matrix (N = NxNy) containing the coefficients
arising from discretizations of the form indicated earlier. In particular, each of Ax and Ay is a
tridiagonal matrix. As already noted, we will employ the Douglas and Gunn formalism, and further
use the δ form of this; details can be found in [39] and [40]. Here we mainly present the results and
leave details of obtaining them as an exercise for the reader.

If for the x-momentum equation we define

δu(`) ≡ u(`) − un , ` = 1, 2 , (2.27)

then we can compute the next iterate of u during calculations at time level n+ 1 via the following
sequence of steps:

{
I + k

[
u

(m)
i,j D0,x − νD2

0,x

]}
δu

(1)
i,j = −D0,xp

(m)
i,j − k

[
u

(m)
i,j D0,x + v

(m)
i,j D0,y − ν

(
D2

0,x +D2
0,y

)]
un

i,j ,

(2.28a)
{
I + k

[
v
(m)
i,j D0,y − νD2

0,y

]}
δu

(2)
i,j = δu

(1)
i,j , (2.28b)

together with rearrangement of (2.27) and using u(2) = u(m+1) to obtain

u
(m+1)
i,j = un

i,j + δu
(2)
i,j , ∀ (i, j) = (1, . . . , Nx; 1, . . . , Ny) . (2.29)

Clearly an analogous sequence of steps can be used to compute v(m+1). We remark that u(m+1)

would probably be used for all entries of u(m) in the corresponding y-momentum equation as this

60 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

would produce a block Gauss-Seidel iteration, compared with the block Jacobi scheme arising from
use of u(m).

It should be noted that quasilinearization (Newton–Kantorovich) iteration, δ form or otherwise,
might be used in place of the simple Picard iteration we have described here (see [40] for details). In
general, this would be preferred, and we will present this later in the context of a different method.

We next provide implementation of the PPE. Discretization of the PPE itself is straightforward
and uses the same mesh star shown for the momentum equations in Fig. 2.3. Boundary condition
implementation requires discretization of Eq. (2.22) on the boundaries and use of the Neumann
boundary condition to eliminate image points.

To begin, write the PPE as
∆p = −2(uyvx − uxvy) , (2.30)

and consider a point on the bottom boundary of Fig. 2.3, say (i, 1), for definiteness. At this point,
the left-hand side of Eq. (2.30) is approximated as

(
D2

0,x +D2
0,y

)
pi,1 =

1

h2
(pi−1,1 − 2pi,1 + pi+1,1 + pi,0 − 2pi,1 + pi,2) , (2.31)

which contains a value of p at the image point (i, 0). On this boundary the homogeneous normal
derivative boundary condition is

∂p

∂n
=
∂p

∂y
= 0 ,

which upon discretization with a centered difference implies that pi,0 = pi,2. Then substitution of
this into the right-hand side of (2.31) yields

1

h2
(pi−1,1 − 4pi,1 + pi+1,1 + 2pi,2) .

Similar results can be obtained for the remaining three boundaries, including the corner points.
We leave demonstration of this as an exercise for the reader. We note at this point that the
system matrix arising from this discretization is nearly singular—theoretically, it is singular; but
in machine arithmetic it misses being singular by the level of representation and rounding errors.
As a consequence, iterative solution methods perform very poorly.

We now consider treatment of the right-hand side of Eq. (2.30) on the boundaries. It should
be clear that for the present problem, we have ux = vx = 0 at all horizontal boundary points, and
similarly uy = vy = 0 at vertical boundary points. At the same time, the right-hand side of Eq.
(2.30) contains one x derivative and one y derivative in each term; hence, it is zero around the entire
boundary. So no further attention need be given to the boundary treatment for this equation, and
the basic problem discretization is complete.

There is a final detail to consider before presenting a pseudo-language algorithm for solving the
current problem. Recall that, as already noted, solutions to Neumann problems are not unique.
Two main approaches have been used to address this numerically. The first, and less often used, is
to set 〈p, 1〉 = 0. That is, at the end of the iterations associated with solving the PPE, we average
the result and subtract the average value from the solution. The main difficulty with this approach
is that it does nothing to improve the performance of the iterative technique being used to solve
the PPE.

The second alternative entails assigning a value of pressure at one boundary point. Formally,
this is equivalent to adding a constant value at all points, but since we do not yet know the pressure
at any point it does not matter whether we actually make the assignment anywhere except at the
chosen boundary point. Once this has been done, the PPE problem becomes a mixed Dirichlet–
Neumann one, possessing a unique solution and no longer exhibiting a singular coefficient matrix,

2.2. PRESSURE-VELOCITY COUPLING 61

although the condition number may still be quite large. Thus, numerical solution procedures
perform somewhat better. Moreover, adding a constant in this way is of no other consequence
since solutions to the original Neumann problem are unique only to within an additive function of
time in any case.

This completes the basic treatment required to formulate a pseudo-language algorithm; we
present this as follows.

Algorithm 2.1 (Basic unstaggered-grid treatment of N.–S. equations) Suppose n time steps (or
pseudo-time steps, if a steady solution is being sought) have been completed. To advance the solution
to time level n+ 1, perform the following steps.

1. Do m1 = 1,maxpitr
Do m2 = 1,maxitr
solve discrete x-momentum equations (2.28) with fixed p(m1)

solve discrete y-momentum equation analogous to (2.28) with fixed p(m1)

test convergence:

If max
(∥∥u(m2+1) − u(m2)

∥∥ ,
∥∥v(m2+1) − v(m2)

∥∥) < ε, then go to 2
Repeat m2

Write error message

2. Solve PPE
set p1,1 = 0
Iteratively solve discretization of Eq. (2.30)
test convergence of outer iterations:

If
(∥∥p(m1+1) − p(m1)

∥∥) < ε, then print results
stop

else Repeat m1

3. Write error message

Shortcomings of Basic Approach

As intuitively appealing as this algorithm might seem, it embodies many fundamental flaws
rendering it incapable of producing correct numerical solutions to the N.–S. equations. For the
most part these are related to the PPE and/or the divergence-free condition. We first list these,
and then provide some further details.

i) The PPE is constructed under the assumption of satisfaction of the divergence-free constraint,
but there is no mechanism within the algorithm to guarantee this.

ii) Boundary conditions for the PPE are not generally correct.

iii) Centered finite-difference approximations permit discrete satisfaction of the divergence-free
constraint by non-physical velocity fields.

iv) Similarly, centered approximations to the pressure gradient terms in the momentum equations
allow non-physical pressure fields to go “undetected.”

v) There exists a basic theorem from finite-element analysis of the N.–S. equations showing
that centered approximations of both velocity and pressure on an unstaggered grid will not
converge to a physically correct divergence-free solution.

62 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

Failure to Explicitly Satisfy ∇ · u = 0. With regard to the first of these we note that although
the divergence-free constraint has been employed to simplify the PPE, it has not been “solved.”
Moreover, solutions to the momentum equations are not necessarily divergence free. (It they
were, we would not need to satisfy the divergence-free constraint in the first place.) It is worth
noting, however, that if the initial data are divergence free, and pressure is calculated correctly, and
truncation and rounding errors are negligible, then time evolution of such initial data preserves this
property. It is well known that this can be accomplished for short times using spectral methods
and high-precision machine arithmetic, but eventually the divergence-free property is lost.

Correct PPE Boundary Conditions. We next consider the boundary conditions required to solve
the PPE, Eq. (2.30). We argued earlier that at least in flow situations not too different from
unseparated boundary layers the condition

∂p

∂n
= 0

might be adequate. Here, we will show more precisely under what circumstances this is true, and
that it cannot be used in general. In the course of doing this we provide the correct boundary
conditions.

To begin, we recall that to guarantee existence of solutions to Poisson/Neumann problems of
the form

∆p = f in Ω (2.32)

with boundary conditions
∂p

∂n
= g on ∂Ω , (2.33)

the following consistency condition, derived from the divergence theorem, must be satisfied (see,
e.g., [26]): ∫

Ω
f dx =

∫

∂Ω
g d` , (2.34)

as noted earlier.
Now recall that in constructing the PPE we started by taking the divergence of the momentum

equations, and then simplified the result using the divergence-free condition. We begin in the same
way here, but it is not appropriate to apply the divergence-free condition in this case because this
arises as a vector operator, and here we will want to identify scalar boundary condition. Thus, we
write

−∇ · ∇p = ∇ · (ut + u · ∇u − ν∆u) ≡ f .

Now, again from the divergence theorem, we see that
∫

Ω
∇ · ∇p dx =

∫

∂Ω
n · ∇p d` ,

and at the same time we have
∫

Ω
∇ · ∇p dx = −

∫

Ω
∇ · (ut + u · ∇u − ν∆u) dx

= −
∫

∂Ω
n · (ut + u · ∇u − ν∆u) d` .

Thus, we see that the consistency requirement is automatically satisfied if on vertical boundaries
we set

∂p

∂x
= − (ut + uux + vuy − ν∆u) , (2.35)

2.2. PRESSURE-VELOCITY COUPLING 63

and on horizontal boundaries we use

∂p

∂y
= − (vt + uvx + vvy − ν∆v) , (2.36)

as proposed by Gresho and Sani [28].
It is of interest at this point to see under what conditions the above essentially collapse to the

homogeneous Neumann conditions that are often used. First, it is clear that the boundary values
of u must be independent of time. Furthermore, if u and v are both zero on all boundaries, then
the only remaining terms are ν∆u on vertical boundaries and ν∆v on horizontal ones. (We remark
that such a combination of velocity boundary conditions will require that body forces be acting to
drive the flow unless there is the additional complication of inflow and outflow.) In any case, under
these assummed conditions we see that as ν → 0 (or, equivalently, as Re→ ∞), the above general
conditions collapse to

∂p

∂x
' 0 , and

∂p

∂y
' 0 .

Effects of Centered Differencing. We next consider the effects of centered differencing with respect
to satisfaction of the continuity equation. In particular, we will show that completely non-physical
velocity fields are able to satisfy the discrete divergence-free condition obtained by centered dif-
ferencing. We begin by considering the simple 1-D case for which the divergence-free condition
collapses to ux = 0. This, of course, implies u ≡ const. But in Fig. 2.4 we display a non-constant
grid function {ui} that satisfies D0,xui = 0.

u

−i 1 +i 1

}=

h

2 2 2 21 1 1 1 12

i

Figure 2.4: Non-constant grid function satisfying discrete 1-D continuity equation.

The same situation occurs also in 2D and 3D. We illustrate this here for the former case, and
leave a similar construction in 3D for the reader. Now the discrete divergence-free constraint is

D0,xui,j +D0,yvi,j = 0 ,

or with hx = hy = h,
ui+1,j − ui−1,j + vi,j+1 − vi,j−1 = 0 . (2.37)

Figure 2.5 presents a velocity field that exactly satisfies Eq. (2.37), but which makes no physical
sense. The reader can easily check that Eq. (2.37) is satisfied at all interior grid points. Clearly,
somewhat unrealistic boundary conditions would be needed to produce this uniform distribution of
values, and in practice the effect is not so perfectly obtained. Nevertheless, it is observed in signifi-
cant regions of a domain for actual calculations carried out with centered-difference approximations
on unstaggered and partially-staggered grids.

For reasons that should be obvious from the figure, this phenomenon is termed “checkerboard-
ing.” It is interesting to note that in the extreme case depicted in Fig. 2.5 the right-hand side of the
usual discrete PPE would be zero. Together with homogeneous Neumann boundary conditions this
would result in a constant pressure field, so its use in the discrete momentum equations would have
no effect on the computed velocity field. We see from this that once it occurs, the checkerboard
solution is very stable and cannot easily be corrected.

64 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

y

hx

h

=

(i,j)

1,3 2,4 1,3 1,32,4

1,3 2,4 1,3 1,32,4

1,3 2,4 1,3 1,32,4

2,4 1,3 2,4 1,3 2,4

2,4 1,3 2,4 1,3 2,4

u, v

Figure 2.5: Non-physical grid function satisfying discrete 2-D continuity equation.

It is clear from Fig. 2.5 that if we were to employ first-order forward differencing to approximate
the continuity equation, the checkerboard solution shown here would not be discretely divergence
free. On the other hand, if we were to use a combination of forward and backward differences such
as

D+,xui,j +D−,yvi,j = 0 ,

we would recover satisfaction of the discrete divergence-free constraint. This suggests that use of
low-order, one-sided difference approximations, as has sometimes been proposed, will not necessarily
correct the problem.

It can also be seen that centered approximations to the pressure-gradient terms of the momen-
tum equations can lead to similar checkerboarding—or, more accurately, such discretizations are
unable to aid in correcting the phenomenon. For example, consider the pressure field exhibited in
Fig. 2.6. Clearly, once this pressure field exists, it can no longer act to modify the velocity field

y

hx

h

=

(i,j)

2 1 2 21

2 1 2 21

2 1 2 21

1 2 1 2 1

1 2 1 2 1

p

Figure 2.6: Non-physical checkerboard pressure distribution.

that may have been responsible for creating it in the first place because the centered discretizations

2.2. PRESSURE-VELOCITY COUPLING 65

representing the pressure gradient, D0,xpi,j and D0,ypi,j produce identically zero results for both
components, and the momentum equations can no longer effect changes to this velocity distribution.

The Div-Stability Condition. The last main issue with the current algorithm to be considered here
is in many ways the most important, and at the same time the least well known and understood.
In the finite-element analysis of the Navier–Stokes equations there is a condition known as the
Ladyzhenskaya–Babuska–Brezzi (LBB) condition, more recently termed the div-stability condition
(see Gunzburger [41] and references therein) whose satisfaction guarantees that associated finite-
element spaces for velocity and pressure are such that divergence-free finite-element approximations
converge to divergence-free exact solutions as the element size approaches zero. The details of
this condition are technically difficult; moreover, the condition is not easily checked for practical
situations. As a consequence we will not present the mathematical representation of the condition,
itself, but rather list some well-known and important consequences. These are as follows:

i) the combination of centered finite-difference approximation and unstaggered gridding does
not satisfy the div-stability condition;

ii) in general, for finite-element methods it is necessary either to use different degree polynomial
approximations for velocity and pressure (so-called mixed finite elements) on the same mesh, or
use the same degree and different meshes (staggered grid) in order to satisfy the div-stability
condition;

iii) in the finite-element context, satisfaction of the div-stability requirement can be circumvented
via modifications to the discrete continuity equation.

We note that ii) can be taken to imply that staggered grids should be used in the finite-difference
context if the same order of accuracy is to be used in approximating both velocity and pressure.
In addition, within the confines of finite-difference approximations iii) implies that modifications
to the PPE might be made to permit calculations on unstaggered grids.

Finite-Volume Discretization of the N.–S. Equations on Staggered Grids

In this subsection we present a detailed analysis of finite-volume discretization of the N.–S.
equations on a staggered grid. We note that, in principle, this is equivalent to a finite-difference
approximation; indeed, the final results will be identical. But the finite-volume derivation is useful
in its own right, and in addition it actually provides the motivation for specific point location
and dependent variable location assignments on the staggered grid. Hence, we will emphasize it
here. We begin with discretization of the continuity equation which requires dependent variable
assignments at grid locations different from those of the natural finite-difference grid points; so this
permits us to set up the staggered-grid formalism in the simplest possible situation. We follow this
with a corresponding treatment of the x-momentum equation, and we conclude by briefly describing
boundary condition implementation.

Continuity Equation. Consider the continuity equation (divergence-free constraint) in 2D,

∇ · u = ux + vy = 0 , (2.38)

on a single grid cell, denoted Ωi,j and displayed in Fig. 2.7. As the figure shows, this cell is defined
as the region bounded by the i− 1 and i grid lines in the x-direction, and by the j − 1 and j lines
in the y-direction. These are separated by the grid spacings hx and hy, respectively. On each such
cell we must have ∫

Ωi,j

∇ · u dV = 0

66 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

p
i−1/2 , j−1/2

vi−1/2 , j−1

vi−1/2 , j

ui , j−1/2

ui−1 , j−1/2

hx

hy

Ω i,j

‘‘natural’’ grid point (i−1, j−1)

i−1

j−1

i

j

Figure 2.7: Staggered grid cell, Ωi,j.

(since Eq. (2.38) holds at every point in the continuum), and from Gauss’s theorem we obtain
∫

∂Ωi,j

u · n dA = 0 ,

or ∫

∂Ωi,j

unx + v ny dA = 0 . (2.39)

Here, the differential elements dV and dA correspond to the 3-D case, but we will retain this
notation here in 2D where they actually imply area and arclength, respectively.

If we let u denote the average velocity through a vertical segment of ∂Ωi,j and let ṽ be the
average through horizontal segments we can evaluate the above as

(ui − ui−1)hy + (ṽj − ṽj−1)hx = 0 . (2.40)

But it is convenient to view these averages as simply being values at the center of the corresponding
cell faces (which they are as the discretization step sizes approach zero). So, by using the notation
of Fig. 2.7, we can write Eq. (2.40) as

1

hx

(
ui,j−1/2 − ui−1,j−1/2

)
+

1

hy

(
vi−1/2,j − vi−1/2,j−1

)
= 0 . (2.41)

It should be noted that this is a centered approximation to the divergence-free constraint, but using
only one grid cell rather than the usual four cells that would be used in the context of unstaggered
gridding.

Now with this representation of the continuity equation it is natural to locate the associated
pressure at the cell center, as indicated in Fig. 2.7. In particular, recall that pressure must be
determined so as to satisfy the divergence-free constraint expressed here as Eq. (2.41), and the grid
location (i−1/2, j−1/2) is closest to (in fact, equidistant from, if hx = hy) all of the grid locations
used in (2.41). Indeed, it is the location at which the divergence is being calculated, as is clear
from Eq. (2.41); thus, it should be the preferred location for p.

Momentum Equations. Having established a rationale for grid function location we can now pro-
ceed to the more complicated derivation of the finite-volume form of the momentum equations.

2.2. PRESSURE-VELOCITY COUPLING 67

We will carry this out in detail for the x-momentum equation and merely give the result for y-
momentum, leaving the details of obtaining this as an exercise for the reader.

We start with the vector form of the equations (in the absence of body forces),

Du

Dt
= −∇p+ ν∇·∇u ,

which we integrate over the grid cell Ωi,j:

∫

Ωi,j

Du

Dt
dV =

∫

Ωi,j

−∇p+ ν∇·∇udV .

Application of the divergence theorem to the right-hand side results in

∫

Ωi,j

Du

Dt
dV =

∫

∂Ωi,j

−pn + ν∇u·n dA ,

and we write this in component form as

∫

Ωi,j

D

Dt

(
u
v

)
dV =

∫

∂Ωi,j

−
(
pnx

pny

)
+ ν

(
uxnx + uyny

vxnx + vyny

)
dA . (2.42)

We now consider the x-component of this,

∫

Ωi,j

∂u

∂t
+ u·∇u dV =

∫

∂Ωi,j

−pnx + ν(uxnx + uyny) dA , (2.43)

in detail. By assuming the problem geometry and grid configuration are independent of time we can
commute differentiation and integration in the first term on the left-hand side, and after applying
Gauss’s theorem to the second term on the left, we obtain

∂

∂t

∫

Ωi,j

u dV +

∫

∂Ωi,j

u2nx + vuny dA =

∫

∂Ωi,j

−pnx + ν(uxnx + uyny) dA . (2.44)

Here, we have used u·∇u = ∇·(uu) (which follows from the divergence-free constraint) in order to
obtain a form to which Gauss’s theorem applies.

The next step is to evaluate each of the terms in Eq. (2.44) on the grid cell shown in Fig.
2.8. We emphasize that this is not the same grid cell employed in the analysis of the continuity
equation. Indeed, when working with a staggered grid it is necessary to define separate grid cells
for each of the momentum equations, and for the continuity equation; pressure, and all other scalar
quantities, use the same grid cell as that used by the continuity equation. We observe that the
grid cell displayed in Fig. 2.8 is centered on the location of the x-component of velocity at the ith

grid line. The vertical cell walls correspond to locations i − 1/2 and i + 1/2, and horizontal cell
walls coincide with the j − 1 and j grid lines. There are two main factors motivating this choice
of cell boundaries. First, accurate evaluation of the first term on the left-hand side of Eq. (2.44) is
simpler if the velocity component is at the cell center. Second, because pressure is the main driving
force in the momentum equations (in the absence of body forces), it is natural to define pressure
on cell walls—pressure corresponds to a surface force. We remark that this is completely analogous
to the control-volume analyses learned in elementary fluid dynamics courses, but there the control
volume would usually be of macroscopic size, rather than the size used here that in principle will
be allowed to go to zero.

68 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

ui, j−1/2

i−1 i i+1

j−2

j−1

j

j+1

Figure 2.8: Grid cell for x-momentum equation.

In terms of the grid cell shown in Fig. 2.8 it is clear that the first term in Eq. (2.44) can be
evaluated as

∂

∂t

∫

Ωi,j

u dV =
∂

∂t
ui,j−1/2hxhy , (2.45)

under the assumption that ui,j−1/2 is the average x-component velocity within the cell. We note that
since ui,j−1/2 is cell centered, spatial integration over the grid cell presented in Fig. 2.8 corresponds
to midpoint quadrature, and thus is third-order accurate, locally.

The second term on the left-hand side is somewhat more difficult to evaluate because the x-
component of velocity is not defined at any of the cell walls. Thus, averages (or, possibly, more
general interpolations) must be used. On the i+ 1/2 face define

ui+1/2,j−1/2 ≡ 1

2
(ui,j−1/2 + ui+1,j−1/2) , (2.46)

with an analogous definition for the i− 1/2 face. Now on the j and j − 1 cell faces we must define
average values of both the x- and y-components of velocity. For the x-component we have

ũi,j ≡
1

2
(ui,j+1/2 + ui,j−1/2) , (2.47)

and for the y-component

vi,j ≡
1

2
(vi−1/2,j + vi+1/2,j) . (2.48)

It is of interest to note, as implied by the indexing, that these locations coincide with natural
finite-difference grid points.

Clearly, analogous definitions hold on the j − 1 face. Also, observe that the convention being
used here for notation is a “ ” to denote averages in the x direction and a “ ˜ ” for y-direction

2.2. PRESSURE-VELOCITY COUPLING 69

averaging. We can now approximate the second term on the left-hand side of (2.44) as
∫

∂Ωi,j

u2nx + vuny dA '
(
u2

i+1/2,j−1/2 − u2
i−1/2,j−1/2

)
hy + (vi,jũi,j − vi,j−1ũi,j−1) hx . (2.49)

On the right-hand side of Eq. (2.44) we evaluate the first term as
∫

∂Ωi,j

pnx dA =
(
pi+1/2,j−1/2 − pi−1/2,j−1/2

)
hy . (2.50)

The second term takes the form

ν

∫

∂Ωi,j

uxnx + uyny dA = ν

[(
ux

∣∣∣
i+1/2,j−1/2

− ux

∣∣∣
i−1/2,j−1/2

)
hy +

(
uy

∣∣∣
i,j

− uy

∣∣∣
i,j−1

)
hx

]

= ν

[(
ui+1,j−1/2 − 2ui,j−1/2 + ui−1,j−1/2

) hy

hx

+
(
ui,j+1/2 − 2ui,j−1/2 + ui,j−3/2

) hx

hy

]
. (2.51)

We now combine the right-hand sides of Eqs. (2.45), (2.49), (2.50) and (2.51) and divide by
hxhy to obtain

∂

∂t
ui,j−1/2 = ν

[
1

h2
x

(
ui+1,j−1/2 − 2ui,j−1/2 + ui−1,j−1/2

)
+

1

h2
y

(
ui,j+1/2 − 2ui,j−1/2 + ui,j−3/2

)]

− 1

hx

(
u2

i+1/2,j−1/2 − u2
i−1/2,j−1/2

)
− 1

hy
(vi,jũi,j − vi,j−1ũi,j−1) (2.52)

− 1

hx

(
pi+1/2,j−1/2 − pi−1/2,j−1/2

)
.

This is the semi-discrete form of the finite-volume x-momentum equation on a staggered grid, and
except for the 1/2-indices it looks very much like a typical finite-difference approximation. We
observe that (discrete) time integration can now be performed with any appropriate method to
complete the discretization.

We next outline an analogous treatment for the y-momentum equation. The control-volume
form of this equation is

∂

∂t

∫

Ωi,j

v dV +

∫

∂Ωi,j

uv nx + v2ny dA =

∫

∂Ωi,j

−pny + ν(vxnx + vyny) dA , (2.53)

analogous to Eq. (2.44) for the x-momentum equation. The required control volume is shown in
Fig. 2.9. We will need some additional definitions of averaged quantities in order to construct the
required finite-volume approximations. Namely, on the top and bottom faces of the control volume
the vertical velocity component must be defined as, for example on the top face,

ṽi−1/2,j+1/2 ≡ 1

2

(
vi−1/2,j + vi−1/2,j+1

)
. (2.54)

On the vertical faces the horizontal component of velocity is defined as given earlier in Eq. (2.47):

ũi,j ≡
1

2
(ui,j+1/2 + ui,j−1/2) , (2.55)

70 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

i−1 i i+1i−2

j−1

j

j+1

vi−1/2, j

Figure 2.9: Grid cell for y-momentum equation.

and similarly we have

vi,j ≡
1

2
(vi−1/2,j + vi+1/2,j) , (2.56)

as already given in Eq. (2.48).
Application of the same type of control-volume analysis employed for the x-momentum equation

results in

∂

∂t
vi−1/2,j = ν

[
1

h2
x

(
vi+1/2,j − 2vi−1/2,j + vi−3/2,j

)
+

1

h2
y

(
vi−1/2,j+1 − 2vi−1/2,j + vi−1/2,j−1

)]

− 1

hx
(ũi,jvi,j − ũi−1,jvi−1,j) −

1

hy

(
ṽ2
i−1/2,j+1/2 − ṽ2

i−1/2,j−1/2

)
(2.57)

− 1

hy

(
pi−1/2,j+1/2 − pi−1/2,j−1/2

)
,

for the semi-discrete y-momentum equation.
There are a number of observations we need to make regarding the semi-discrete system of

equations (2.41),(2.52) and (2.57). The first is that we have not included a pressure Poisson
equation, but we have noted that the same control volume would be used for this as is used
for the continuity equation. We will introduce PPEs later when we consider specific solution
methods. Second, we again emphasize that a different control volume is used to construct the
discrete equations for each variable, and in 3D yet a fourth control volume is needed for the z-
momentum equation. Next, we should note that the spatial discretizations are all formally centered,
so they are expected to be second-order accurate in space; also, there is now no violation of the div-
stability condition because of the staggered grid. Not only are the pressure gradient and advective
terms approximated with centered differences, but this is done over a single grid cell of spacing
h, rather than the 2h distances used with unstaggered grids. Thus, all things being equal, we
would expect the finite-volume discretization to be more accurate than a corresponding finite-
difference one. But, of course, “all things are not equal” because averaging has been used during
the construction of the finite-volume approximations. This has been a concern for some time and

2.2. PRESSURE-VELOCITY COUPLING 71

has motivated, among other things, use of the multi-momentum equation versions of staggered
gridding. It is thus worthwhile to see how much error is introduced by this use of averaging.

Truncation Error Due to Averaging. We first observe that no averaging is used in approximating
the diffusive or pressure-gradient terms, so our only concern here will be with the advective terms.
We specifically analyze the nonlinear term from the x-momentum equation,

1

hx

(
u2

i+1/2,j−1/2 − u2
i−1/2,j−1/2

)
, (2.58)

in Eq. (2.52), which is intended to approximate
(
u2
)
x

∣∣
i,j−1/2

. To simplify notation we will suppress

the j − 1/2 index since it is the same in all terms to be treated subsequently. We then recall from
Eq. (2.46) that

ui+1/2 =
1

2
(ui + ui+1) ,

and

ui−1/2 =
1

2
(ui + ui−1) .

We next note that

ui = ui+1/2 −
h

2
u′i+1/2 +

h2

8
u′′i+1/2 + · · · ,

ui+1 = ui+1/2 +
h

2
u′i+1/2 +

h2

8
u′′i+1/2 + · · · ,

which implies that

ui+1/2 = ui+1/2 +
h2

8
u′′i+1/2 + · · · ,

where “ ′ ” denotes differentiation (with respect to x in this case). Similarly, we obtain

ui−1/2 = ui−1/2 +
h2

8
u′′i−1/2 + · · · .

Substitution of the expansions for ui+1/2 and ui−1/2 into (2.58) results in

1

hx

(
u2

i+1/2 − u2
i−1/2

)
=

1

hx

(
u2

i+1/2 − u2
i−1/2

)
+
h2

x

4

[
1

hx

(
ui+1/2u

′′
i+1/2 − ui−1/2u

′′
i−1/2

)]

+
h4

x

64

[
1

hx

(
u′′i+1/2 − u′′i−1/2

)]
+ · · ·

=
(
u2
)
x

∣∣∣∣
i

+
h2

x

4
(uuxx)x

∣∣∣∣
i

+ O(h4
x) . (2.59)

It is easily checked that the O(h2) term on the right-hand side of this expression is of exactly the
same form as the dominant truncation error term of a conserved-form centered-difference approxi-
mation using the natural finite-difference grid points i− 1 and i+ 1, but it is actually smaller. In
particular, the latter is h2

3 uuxxx + h2uxuxx, so each term of this is larger than the corresponding
term in the staggered-grid finite-volume approximation, the second term on the right-hand side of
Eq. (2.59). Thus, we see that the combination of averaging and then differencing over an interval
half the usual size actually reduces the error, and concerns that have been raised regarding effects

72 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

of averaging are probably unwarranted—at least in many situations. We leave as an exercise for
the reader the task of comparing the corresponding errors in bilinear terms such as (uv)y.

Notation and Implementation Considerations. As we have already noted, the staggered-grid
formulation requires use of three separate control volumes in 2D (four in 3D), and in addition to
this the one-half indexing is very inconvenient from the standpoint of coding and implementation.
There is little doubt that these problems played at least some role in the use of the “NESW
indexing” that has been widely used in CFD at least since introduction of the SIMPLE algorithm
by Patankar, which we will study in detail in the next chapter. But this notation does not extend
in any natural way to 3D, and it is difficult to use for any but the simplest discretizations. Here
we intoduce an approach that removes the problem of one-half indices without requiring storage of
every point of the staggered grid. In particular, we will demonstrate how to employ “cell” notation
and storage instead of the usual grid-point notation (and storage). In light of the fact that our
discretizations have been constructed on grid cells via control-volume analysis on each such cell,
this will be a natural approach. We note that it was first introduced (using different notation) at
least by the time of publication of Patankar’s book [36].

Figure 2.10 provides a schematic of the notation, and a motivation for this approach in terms

i−1i−2 i i+1

j−2

j−1

j

j+1

(i,j) grid cellth

x momentum

y momentum

pressure, divergence

u

v

p

v

u

Figure 2.10: Grid-cell indexing.

of the three overlapping staggered-grid control volumes. In this figure we display with dashed lines
the three control volumes treated earlier, and we also indicate a mesh star associated with the
collection of staggered points, one from each of the three control volumes, corresponding to the
dependent variables associated with the grid cell (i, j), i.e., Ωi,j. We remark that this configuration
is not the only possible one, as the reader will quickly recognize, but in general all other alternatives
are of no more (or less) utility than the one shown; and this one is widely used.

2.2. PRESSURE-VELOCITY COUPLING 73

The important point to observe is that with this change of indexing, ui,j−1/2 7→ ui,j, vi−1/2,j 7→
vi,j, and pi−1/2,j−1/2 7→ pi,j, corresponding to the indicated mesh star, all cell values of dependent
variables are taken into account as i and j are ranged over the number of grid cells. Moreover,
there is no extra storage needed in simple implementations beyond the one storage location per
dependent variable, per grid cell. Finally, we can express the difference approximations obtained
earlier as Eqs. (2.41), (2.52) and (2.57) in the non-fractional index notation as follows.
Continuity (divergence-free constraint):

1

hx
(ui,j − ui−1,j) +

1

hy
(vi,j − vi,j−1) = 0 (2.60)

Momentum equations (Newton’s second law of motion):

∂

∂t
ui,j = ν

[
1

h2
x

(ui+1,j − 2ui,j + ui−1,j) +
1

h2
y

(ui,j+1 − 2ui,j + ui,j−1)

]

− 1

hx
(pi+1,j − pi,j) −

1

hx

(
u2

i+1,j − u2
i,j

)
− 1

hy
(vi,j ũi,j − vi,j−1ũi,j−1) , (2.61a)

∂

∂t
vi,j = ν

[
1

h2
x

(vi+1,j − 2vi,j + vi−1,j) +
1

h2
y

(vi,j+1 − 2vi,j + vi,j−1)

]

− 1

hy
(pi,j+1 − pi,j) −

1

hx
(ũi,jvi,j − ũi−1,jvi−1,j) −

1

hy

(
ṽ2
i,j+1 − ṽ2

i,j

)
. (2.61b)

The various averaged quantities used in these equations are now defined as

ui,j =
1

2
(ui,j + ui−1,j) , (2.62a)

vi,j =
1

2
(vi,j + vi+1,j) , (2.62b)

ũi,j =
1

2
(ui,j + ui,j+1) , (2.62c)

ṽi,j =
1

2
(vi,j + vi,j−1) . (2.62d)

We comment that, at face value, these approximations appear to correspond to first-order accurate
forward and backward differences, so it is important to recognize that this is only notation, and
not the actual form of the difference approximations.

A final note is needed here with regard to implementation. Namely, most CFD post-processing
tools (e.g., FieldView and TecPlot) construct their displays based on unstaggered, natural grid-point
locations. Thus, computed results from staggered (and also from cell-centered unstaggered) grids
must be interpolated to these cell-vertex locations. Clearly, there are many possible approaches
for doing this, and we leave selection of any specific one to the reader. We observe, however, that
in practice very simple multi-linear interpolations are often employed, for good or for ill—even in
commercial software.

Implementation of Boundary Conditions on Staggered Grids. Now that we have a practical
indexing system at our disposal we can consider the final topic of this section, implementation of
boundary conditions in the context of staggered-grid discretizations. Figure 2.11 displays a neigh-
borhood of the bottom horizontal boundary of a computational domain. We will consider boundary

74 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

j = 0

j = 1

j = 2

j = 3

i−2 i−1 i i+1

solid (no-slip) boundary

grid cell (i,2), Ω i,2

u

v

p

Figure 2.11: Staggered-grid boundary condition implementation schematic.

conditions for x- and y-momentum equations and the pressure Poisson equation at the grid cell
Ωi,2. Analogous treatments can be constructed on all other boundaries, and for other equations
associated with any specific physical problem (e.g., thermal energy or species concentration).

Since the grid line j = 1 coincides with the actual physical boundary, we observe that the no-
slip condition for the x-momentum equation cannot be exactly satisfied, as we have noted earlier.
In particular, this condition must be applied at the natural finite-difference grid point indicated
with a solid square in the figure, i.e., on the physical boundary. It is patently incorrect to attempt
to impose the no-slip condition for the x-momentum equation at the point corresponding to the
u-component of velocity in the (i, 2) grid cell.

But it is clear that discretizations in the y direction at this point will involve the u-component
image point (i, 1) whose value is unknown. Hence, in addition to attempting to satisfy a boundary
condition at a point that is not even a part of the calculation, we will in any case need a grid-
point value at a point outside the solution (and physical) domain for which we have no governing
equation. Fortunately, the remedy for both of these difficulties is the same—and it is well known.

We construct an interpolation formula between the (i, 1) and (i, 2) grid cell u-velocity locations
and evaluate this at the grid line j = 1 where the no-slip boundary condition is to be imposed.
In particular, for definiteness, suppose j = 1 corresponds to y = 0, and we have the boundary
condition

u(x, 0) = U0(x) , (2.63)

with U0(x) a prescribed function of x. Then straightforward linear interpolation yields

u|i,j=1 = U0(xi) =
1

2
(ui,1 + ui,2) + O(h2

y) , (2.64)

2.2. PRESSURE-VELOCITY COUPLING 75

and it follows that the image-point value needed for discretization of y derivatives in the x-
momentum equation in the grid cell (i, 2) is given by

ui,1 = 2U0(xi) − ui,2 . (2.65)

This can be substituted into the discrete x-momentum equation and used in precisely the same way
to eliminate the associated image point value as are Neumann conditions on natural, unstaggered
grids.

We next consider boundary conditions for the y-momentum equation at the (i, 2) grid cell.
We first treat a Dirichlet condition corresponding to specified mass flux across the physical j = 1
boundary, and note that a staggered-grid location exists where this can be applied exactly. Thus,
if the boundary condition is posed as

v(x, 0) = V0(x) ,

then the associated numerical boundary condition is

v|i,j=1 = V0(xi) .

But because the numerical boundary point in this case coincides with the physical boundary,
these values can be assigned, with no approximation, in the usual way. Moreover, the difference
approximation to the y-momentum equation is first employed in the (i, 2) cell. The y-direction
discretization will include the point at (i,1), and the value of V0(xi) can be directly substituted for
the corresponding grid-function value.

Just as the Dirichlet conditions are handled in the usual way for the y-momentum/horizontal
boundary case, so also are Neumann conditions. In this situation it is clear that the boundary at
j = 1 cannot be solid. Furthermore, as is always the case with Neumann boundary conditions,
the differential equation must be solved on the boundary. It is easily seen that the corresponding
discretization will include a grid-point value on the j = 0 line, i.e., an image-point value. But
the Neumann condition, when discretized in the usual way, will contain this same value; so it can
be eliminated in a manner that is identical to that used in the same circumstance on a natural,
unstaggered grid.

Finally, we consider the PPE. In the case of solid boundaries we have already seen that the
correct boundary condition for the present case is Eq. (2.36), which we repeat here:

∂p

∂y
= −(vt + uvx + vvy − ν∆v) . (2.66)

For definiteness we suppose v ≡ 0 holds on the j = 1 boundary, and we leave as an exercise for the
interested reader the task of identifying and treating other (v 6= 0) cases.

We first consider the left-hand side of this equation. The PPE, itself, will have been discretized
in the grid cell (i, 2), but not in general in the image cell (i, 1). Approximation of ∂ 2p/∂y2 in the
usual way then leads to

1

h2
y

(pi,1 − 2pi,2 + pi,3) ,

and pi,1 must be determined from the Neumann boundary condition.

Now just as was true for the x-momentum equation, the grid points for pressure do not occur
on the horizontal boundary (in fact, for pressure, they do not coincide with any boundaries), but

76 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

the Neumann condition must be applied on the physical boundary, i.e., at j = 1. This implies that
∂p/∂y|i,j=1 should be approximated as

∂p

∂y

∣∣∣∣
i,j=1

=
1

hy
(pi,2 − pi,1) , (2.67)

showing that pi,1 can be expressed in terms of pi,2 in order to eliminate it from the difference
equation for the latter.

What remains is to treat the right-hand side of Eq. (2.66). In the specific case of v ≡ 0 on the
boundary, as being considered here, it is clear that vt ≡ 0, and vx ≡ 0. Thus, the only nonzero
term in the right-hand side of (2.66) is ν∂2v/∂y2. Because of the Dirichlet condition applied to the
y-momentum equation in this case, there is no image-point value available with which to construct a
centered approximation on the boundary in any direct way, except to first perform an extrapolation.
A typically-better alternative is to employ a one-sided difference approximation. This can be done
to maintain second-order accuracy with the following discretization:

∂2v

∂y2
=

1

h2
y

(2vi,1 − 5vi,2 + 4vi,3 − vi,4) + O
(
h2

y

)
. (2.68)

Although this is somewhat complicated, it does not pose any serious difficulties because {vi,j} will
already have been determined prior to its use in a boundary condition for pressure of the form Eq.
(2.66).

The final case of boundary conditions to be considered is that of Dirichlet conditions for the
pressure Poisson equation. These often arise as part of outflow boundary specification for incom-
pressible flows, and they are sometimes used at inflows although this is generally ill posed for the
N.–S. equations. The treatment is analogous to that employed to implement the no-slip condition
for the x-momentum equation. In particular, the line j = 1 is the location at which pressure, p|i,j=1

is to be assigned a value. Discretization of the PPE in the y direction on the grid cell (i, 2) produces
the need for a value of pi,1. But this can be obtained as

pi,1 = 2p|i,j=1 − pi,2 ,

with p|i,j=1 given, just as in the x-momentum equation case.

We close this section by noting that more complicated Robin conditions, when appropriate,
can be constructed as linear combinations of Dirichlet and Neumann conditions, so the treatment
provided here covers essentially all cases of physical boundary conditions except more elaborate
outflow conditions for the momentum equations.

Finite-Difference Approximation of N.–S. Equations
on Cell-Centered Unstaggered Grids

In this subsection we will briefly treat an approach that in recent years has become quite popular
and, indeed, is now often used in commercial CFD codes. It is use of cell-centered unstaggered,
or co-located, grid systems in which all dependent variables are computed at the same locations.
Such an approach is conceptually simpler that the staggered gridding treated in detail in the
preceding section provided simple procedures can be found to circumvent the div-stability condition
requirement described earlier.

As might be inferred from those discussions, a remedy must involve applying different orders
of accuracy in approximating pressure and velocity on the same grid. In the finite-element context

2.2. PRESSURE-VELOCITY COUPLING 77

there are many natural ways by means of which this can be done because finite-element methods
are defined (and constructed) in terms of discrete function spaces used to approximate the required
dependent variables. For finite-difference/finite-volume methods this approach to satisfying the
div-stability condition is less clear cut. Nevertheless, there have been several successful algoithms.
We briefly describe the fundamentals of these here, leaving details to the specific references to be
cited.

We will consider two different implementations of to co-located grid system. The first is due
to Rhie and Chow [34]. This approach, while clearly only ad hoc, has had a major impact on
recent incompressible flow code implementations, probably in large part because as noted earlier
it is based on the highly-popular SIMPLE scheme of Patankar [36]. The modification required
to satisfy the div-stability condition is in this case made in discretization of the pressure-gradient
terms. The second approach we will treat is that of Zang et al. [37] which is based on the same
projection method studied earlier by Kim and Moin [42], and termed a “fractional-step” method.
In this case the modifications needed for satisfaction of the div-stability condition are introduced
in approximations to fluxes on cell boundaries.

Before proceeding to the main details of these two methods we provide a few general remarks
specifically associated with the cell-centered grid depicted in Fig. 2.12. We first observe that all
dependent variables are computed at cell centers, and no solution components are calculated at

hy

xh

(i,j) (i+1,j)(i−1,j)

(i,j+1)

(i,j−1)

Figure 2.12: Cell-centered, unstaggered grid.

the natural finite-difference grid points. If a control-volume analysis is employed to construct the
required approximations, the same control volume can be used for all variables. As a consequence
of this, boundary condition treatment is the same for all variables; in particular, it is carried out
in the same way as is done for pressure (and other scalars) in the staggered-grid arrangement.
This, in turn, implies that no boundary conditions can be implemented exactly. Recall that in
the staggered-grid case, while the no-slip condition could not be represented exactly, at least exact
representation of mass fluxes across a boundary was possible; this is no longer the case with a
co-located grid arrangement.

Second, we observe that the standard treatment of co-located grids is finite-volume based, and
as a consequence fluxes must be computed on all cell walls via interpolation, as is true for staggered

78 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

grids. Thus, the amount of required arithmetic, and the overall numerical accuracy, are generally
quite similar. It should be noted, however, that because no solution components are directly
computed on any cell wall, and in addition because of the need to circumvent the div-stability
condition, the averaging (interpolation) needed is usually more elaborate than that required on a
staggered grid for the same level of accuracy. Hence, the simplicity of a single control volume is for
the most part cancelled by the additional effort needed to construct the approximations required
because of the single control volume.

Finally, we again emphasize that calculation of all dependent variable at cell centers implies
that no computational points coincide with the boundary of the computational domain. This not
only leads to problems for implementing boundary conditions, as noted above, but it also imposes
as requirement for solution averaging prior to output to a post processor. As is clear from Fig.
2.12, these averages typically must be constructed from solution values at at least four (in 2D, and
eight in 3D) locations surrounding the natural finite-difference grid point, and unless this is done
carefully, significant numerical error can be introduced. (In the staggered-grid case, only two points
per velocity component are needed to construct averages, even in 3D; but, of course, averaging of
scalars must be done in the same way indicated here for the co-located grid.)

The Rhie & Chow Algorithm. As was mentioned earlier, the Rhie and Chow [34] approach was
first presented in the context of a 2-D, steady-state SIMPLE algorithm. We will provide details
of this algorithm in Chap. 3 and here be concerned only with the specific form of discretizations
employed to circumvent the div-stability problem.

We begin by noting three specific points. First, no special treatment of second-order derivative
diffusion terms has been employed for any of the methods treated herein. It appears that no such
treatment is needed (but see Tafti [43]). Second, as we have already seen, fluxes must be calculated
on cell walls for any approach based on a finite-volume formalism; in the case of co-located variables
this can be done in the same way for all required variables. Finally, for the SIMPLE method, the
pressure-gradient terms appear explicitly in the momentum equations.

In the Rhie & Chow algorithm, simple arithmetic averaging (which is second-order accurate) is
employed for constructing fluxes on cell walls, and from consequences of the div-stability condition
discussed earlier, we know this implies that pressure-gradient terms in the momentum equations
must be approximated to a different order. Indeed, in the finite-element context one might use
linear elements (second order) for velocity, and constant elements (first order) for pressure. In
fact, Rhie and Chow introduce an alternative approximation of the pressure gradient based on
a first-order difference approximation applied on cell walls. It is clear that in general this lower
order accuracy might not be desirable in flow situations where accurate representation of pressure
is crucial. On the other hand, we have earlier seen that theoretically it is not essential to calculate
pressure accurately in order to obtain a correct velocity field. Moreover, as we will see in Chap.
3, details of the SIMPLE algorithm are such as to correct inaccuracies of the type induced by the
above approximation as the calculations are iterated to steady state.

The Zang et al. Procedure. Zang et al. [37] provide a cell-centered, unstaggered grid procedure
for 3-D unsteady problems. Because their algorithm is based on a projection method for which
pressure-gradient terms do not directly occur in the momentum equations, it is more convenient to
alter discretization of velocity derivatives in order to circumvent the div-stability condition. This
is done in [37] in both the advective terms of the momentum equations and in approximating
the divergence of the velocity field appearing on the right-hand side of the (pseudo-) pressure
Poisson equation. In either case, in order to approximate velocity derivatives at the cell-centered
points, it is necessary to obtain velocity values interpolated to the cell walls. Because second-order
centered discretizations were used for pseudo-pressure gradients in the projection step, consistent

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 79

with standard second-order approximation of the Laplacian in the PPE, it is necessary to use
something other than linear interpolation to obtain the cell-wall velocities.

Zang et al. [37] report using the QUICK interpolation of Leonard [44] (also see Fletcher [45])
given, e.g., at the point (i+ 1/2, j) as

u1+1/2,j =
1

2
(ui,j + ui+1,j) −

q

3
(ui−1,j − 2ui,j + ui+1,j)

= −q
3
ui−1,j +

(
2

3
q +

1

2

)
ui,j −

(
q

3
− 1

2

)
ui+1,j ,

with q chosen to improve accuracy or stability. (q = 3/8 is generally associated with QUICK.)
Observe that q = 0 corresponds to linear interpolation, which does not lead to satisfaction of the
div-stability condition, but the results in [37] suggest the q = 3/8 does satisfy this.

We note that the required arithmetic for this form of interpolation is approximately double
that of the basic arithmetic average employed in a staggered grid, but in addition the differencing,
itself, is based on QUICK, so the total arithmetic for advective terms in the momentum equations
is as much as a factor of four higher than would be required on a staggered grid. Moreover, the
QUICK discretization of derivatives is only second-order accurate, so a considerable amount of
extra arithmetic beyond that needed for a staggered grid arrangement has been expended simply
to satisfy the div-stability condition imposed by the unstaggered grid.

2.3 Treatments for the Cell-Re Problem and Aliasing

In addition to the pressure-velocity decoupling treated in the preceding section, those writing CFD
codes for solving the incompressible N.–S. equations must be able to handle yet another form of
non-physical solution, namely, those arising from the so-called cell-Re problem, and from aliasing.
We will consider each of these in the current section. In the first subsection we will give a basic
treatment of the cell-Re problem, indicating how it arises and some well-known remedies. In a
second subsection we provide an introductory analysis of the more general problem of aliasing, the
treatments of which generally also work for the cell-Re problem as well.

2.3.1 The cell-Re problem—its definition and treatment

In this subsection we begin by showing how the cell-Re problem arises as a consequence of specific
properties of solutions to difference equations. This will provide some insight as to how the problem
might be treated, and we will introduce some examples of this. It will be seen that, contrary to what
has sometimes been claimed, the problem does not arise from the nonlinearities of the Navier–Stokes
equations. Indeed, linear equations can, when discretized, exhibit the same kind of behavior as is
seen in the N.–S. equations. Thus, our analysis will be performed with linear model problems for
which exact solutions can often be derived. Furthermore, introduction of time dependence has little
effect on the basic phenomenon involved, so we will restrict attention to the simpler steady-state
case.

A Burgers’ Equation Model Problem

Burgers’ equation has been widely used as a (usually) 1-D model of the incompressible (and,
sometimes, compressible) momentum equations of the N.–S. system. The homogeneous Burgers’
equation,

ut + uux = νuxx , (2.69)

80 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

is one of the few nonlinear equations to possess an exact solution. Here, we will consider a significant
simplification that will be adequate for our purposes. Namely, as noted above, we will treat the
steady-state, linearized form

Uux − νuxx = 0 , (2.70)

where U is an assigned constant.

This equation provides a 1-D model of the balance between advection and diffusion in a constant-
velocity flow. (In this context, we must clearly view u as some other flow property, say temperature.)
We now discretize Eq. (2.70) with centered differences to obtain

UD0,xui − νD2
0,xui = 0 ,

or
U

2h
(ui+1 − ui−1) −

ν

h2
(ui−1 − 2ui + ui+1) = 0 ,

where h is the discretization step size. Multiplication by h/U leaves this in the form

1

2
(ui+1 − ui−1) −

ν

Uh
(ui−1 − 2ui + ui+1) = 0 . (2.71)

We now define the cell Reynolds number as

Reh ≡ Uh

ν
. (2.72)

We note that if we were considering, e.g., convective heat transfer, then ν would be replaced with
κ, the thermal diffusivity, and we would replace cell Re with the cell Péclet number, defined as

Peh ≡ Uh

κ
. (2.73)

Analogous terminology applies for any advective-diffusive (transport) equation. It is of interest to
note that unlike the corresponding dimensionless counterparts, Reh and Peh may be negative; that
is, U may take on either sign. Furthermore, we point out that if the governing equation is already
cast in dimensionless form so that, e.g., ν → 1/Re, then the cell Reynolds number is calculated as
Reh = Reh, where Re is the usual dimensionless Reynolds number, and h is a dimensionless grid
spacing. Obviously, in this formulation Reh ≥ 0 must hold.

The Cell-Re Problem

In this subsection we will describe, both heuristically and with fairly rigorous mathematics,
how the cell-Re problem arises. The mathematical treatment will suggest ways to construct (par-
tial) remedies, but we will also see that there is no completely universal and affordable (from the
standpoint of computing run times) way to deal with this problem.

The starting point toward understanding what the cell-Re problem is comes from a property of
elliptic and parabolic differential equations known as a maximum principle. There are numerous of
these, and the reader is referred to the various references on PDEs already cited in these lectures
for detailed treatments. Here, we will provide just an heuristic description. Suppose L is a linear
partial differential operator of elliptic type, and consider the problem

Lu = 0 on Ω ⊆ Rd , d = 1, 2, 3 ,

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 81

with boundary conditions
u(x) = g(x) , x ∈ ∂Ω ,

where g(x) is a prescribed function. Then the maximum principle states that the maximum and
minimum values taken on by u ∈ Ω must occur on ∂Ω. We remark that this principle is widely
used in the theory of elliptic PDEs to demonstrate uniqueness of solutions without ever having to
actually construct the solution.

For our purposes herein it is useful to note that a similar principle exists for difference ap-
proximations to elliptic equations. Moreover, it can be shown (see [20]) that the following two
conditions are sufficient to guarantee satisfaction of such a maximum principle for discretizations
of the general form

Lhui = a0ui −
s+∑

α=s−

aαui+α = 0 .

i) nonnegativity: a0 > 0 and aα ≥ 0, α ∈ [s−, s+], the set of neighbors of i, where bold-faced
quantities represent multi-indices with dimension consistent with the spatial dimension of the
problem being considered.

ii) diagonal dominance:
∑

s+

α=s− |aα| ≤ a0 ∀ i in the grid function index set, and with strict
inequality for at least one i.

We note that these requirements do not depend on the spatial dimension of the problem or on
the specific form of differencing used to construct the approximation. In particular, the above
requirements are sufficient even on unstructured grids.

We remark that the importance of the maximum principle in the present context is with regard
to local, rather than global (over the whole spatial domain) behavior. In particular, if we consider
placing an “internal boundary” around each mesh star, the maximum principle implies that the
grid function value at the point (i, j) cannot exceed that of all its (nearest) neighbors, and because
there is a corresponding minimum principle, the grid function value cannot be lower than that of
all neighbors. In particular, it cannot oscillate from point to point.

As we implied at the beginning of this section, this initial treatment is intended to be heuristic.
We will now take a more precise look at the cell-Re problem by studying the theoretical behavior
of solutions to linear difference equations. In particular, we will solve Eq. (2.71) analytically and
investigate the nature of the solution(s) as cell-Re is varied.

If we use Eq. (2.72), the definition of Reh, in (2.71) we obtain

Reh
2

(ui+1 − ui−1) − (ui−1 − 2ui + ui+1) = 0 ,

or, after rearrangement,

−
(

1 − Reh
2

)
ui+1 + 2ui −

(
1 +

Reh
2

)
ui−1 = 0 . (2.74)

It is immediately clear from this form of the difference equation that Reh > 2 will result in failure
to satisfy the above the non-negativity condition, which in turn means (possible) failure of the
maximum principle and consequent local maxima and minima in the interior of the solution. We
will now show in some detail how this occurs.

In order to do this we will need to introduce some facts regarding linear difference equations.

Definition 2.1 The order of a difference equation is the difference between the highest and lowest
subscripts appearing on its terms.

82 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

Thus, in the present case we see that the order is (i+ 1) − (i− 1) = 2. We also have the following.

Theorem 2.1 The number of independent solutions to a linear difference equation is equal to its
order.

Finally, we note that (linear) difference equations are solved (analytically) in a manner quite
similar to what is done for differential equations, as we will now demonstrate for a simple example
that is of the same form as Eq. (2.74). In particular, consider the general second-order linear
difference equation

a2yi+1 + a1yi + a0yi−1 = 0 , (2.75)

whose characteristic equation is
a2z

2 + a1z + a0 = 0 ,

or

z2 +
a1

a2
z +

a0

a2
= 0. (2.76)

In the cases of second-, third- and fourth-order difference equations this characteristic equation
can be solved exactly (in terms of elementary functions) since it is just a polynomial of degree equal
to the order. In particular, the solutions to Eq. (2.76) are

z± =
−a1

a2
±
√(

a1
a2

)2
− 4

(
a0
a2

)

2
, (2.77)

and the corresponding independent solutions to Eq. (2.75) are

y± = (z±)i , i = 1, . . . , N , (2.78)

with N being the number of discrete points in space, or discrete time indices, as appropriate.
The final piece of information needed for a sufficient understanding of difference equations is

the following.

Theorem 2.2 The general solution to the difference equation (2.75) is a linear combination of the
independent solutions (2.78), given by (2.78).

Thus, we have

y = c1z
i
+ + c2z

i
− , (2.79)

where c1 and c2 are constants to be determined from either initial or boundary conditions associated
with a specific problem.

Before continuing, we remark that this level of information on difference equations can be found
in most standard texts on numerical analysis, and further details can be found in more advanced
treatments such as given in the monograph by Mickens [46].

At this point it is time to focus on the cell-Re “problem.” In numerical computations involving
transport equations the symptom of this problem is (non-physical) oscillation of the numerical
solution from one grid point to the next, as displayed schematically in Fig. 2.13. It is clear from
(2.78) and (2.79) that if z+ and z− are not both nonnegative, it it possible for cell-Re “wiggles,
as displayed in the figure, to occur. It should further be observed that the magnitude of these
oscillations tends to increase with increasing solution magnitude, corresponding to increasing cell
Re. Moreover, as we have already noted, such increases result in loss of the non-negativity and
diagonal dominance properties of the difference equation.

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 83

exact solution

numerical solution

x

y

h i i+1i−1{
Figure 2.13: Grid point to grid point oscillations caused by cell-Re problem.

As we have already noted, our model Burgers’ equation problem is in a form identical to that
of Eq. (2.75), and it follows that for this problem it can be shown (an exercise for the reader) that

z+ =
1 + 1

2Reh

1 − 1
2Reh

, and z− = 1 . (2.80)

We see from this that z+ → 1 as Reh → 0, and z+ → −1 as Reh → ±∞. Moreover, z+ first
becomes negative as |Reh| exceeds 2, the same result we obtained from the earlier heuristic analysis.
Thus, the well-known cell-Re restriction associated with centered-difference approximations can be
derived purely from the mathematical theory of difference equations without invoking any physical
arguments.

It is also worthwhile to plot values of z+ as a function of Reh. We note, from the definition of
Reh that we can view such a plot as representing effects of changing grid spacing with velocity and
viscosity fixed, of changing velocity with grid spacing and viscosity fixed or of changing viscosity
with velocity and grid spacing fixed. In actual physical problems any of these combinations might
be appropriate. Figure 2.14 displays the variation of the non-constant solution of Eq. (2.75) as a
function of Reh. There are several interesting points to be made with regard to this figure. First,
we see as is already evident from the analytical formula that z+ < 0 when |Reh| > 2. Second,
it is also clear that the range of cell Re over which the magnitude of z+ is much greater than
that of z− is rather limited. This means that for certain combinations of boundary conditions
the cell-Re problem might not be particularly significant even though the basic centered-difference
approximation may have been violated. Moreover, we also see that the situation is, in general, much
worse for Reh > 0 than for Reh < 0. Since U is the only factor in the definition of Reh that can
take on both signs, it is apparent that the cell-Re problem is evidently less severe in reversed-flow
situations than in high-speed forward flows.

But in addition, it is important to recognize that the numerical solution actually computed
depends on the constants c1 and c2 in Eq. (2.79), which are set by (in the present case) boundary
conditions. If it happens that c2 � c1, then cell-Re effects will be significant only for Reh slightly
greater than two. Even so, in a high-speed viscous flow in which |Reh| � 2 in much of the flow

84 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

-60

-40

-20

0

20

40

60

80

100

120

140

-4 -2 0 2 40 2 4−2−4

0

40

−40

80

120

Reh

z +

Figure 2.14: Dependence of z+ on cell Re.

field, it is still likely the |Reh| will be only slightly greater than two near solid boundaries, in some
regions of shear layers and in the cores of vortices. Thus, some cell-Re effects are likely to be seen in
essentially any simulation that is even slightly under resolved. Moreover, in multi-dimensional flow
fields the overall situation is considerably more complicated because all components of velocity, and
their associated boundary conditions, contribute (sometimes in ways leading to local cancellations)
to the final form of the solution.

We now demonstrate for the model problem that the conditions needed to prevent oscillations
in the exact solutions to the difference equation are, indeed, those that guarantee satisfaction of a
maximum principle. We first note that along with the required nonnegativity of z±, for physical
problems we should also require z± ∈ R. This latter requirement implies that in Eq. (2.75)

(
a1

a2

)2

≥ 4

(
a0

a2

)
,

or
|a1| ≥ 2

√
a0a2 . (2.81)

Now if we are to permit equality to hold in (2.81), the solution given by Eq. (2.77) can be
positive only if

sgn(a1a2) = −1 . (2.82)

On the other hand, if strict inequality holds in (2.81), then we must require in addition to (2.82)
that

a1

a2
≥
√(

a1

a2

)2

− 4

(
a0

a2

)
.

But this can be guaranteed only if
sgn(a0a2) = +1 . (2.83)

We note that conditions (2.82) and (2.83), taken together, are equivalent to the usual nonnegativity
requirement.

We will now show that satisfaction of the inequality (2.81) is equivalent to diagonal dominance.
Again using (2.82) and (2.83), we see that we can assume a0, a2 ≥ 0 and a1 < 0 hold. In this case,
diagonal dominance would imply

|a1| ≥ |a0| + |a2| . (2.84)

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 85

Now since a0 and a2 are nonnegative, their square roots are real, and we have

(
√
a0 −

√
a2)

2 ≥ 0 ⇒ a0 − 2
√
a0a2 + a2 ≥ 0 .

Thus,

2
√
a0a2 ≤ a0 + a2 = |a0| + |a2| . (2.85)

Now suppose diagonal dominance holds. Then

|a1| ≥ |a0| + |a2| ≥ 2
√
a0a2 ;

hence, inequality (2.81) is satisfied. On the other hand, suppose (2.81) does not hold; i.e.,

|a1| < 2
√
a0a2 .

Then, from inequality (2.85) it follows that diagonal dominance does not hold, completing the
equivalence proof.

Remedies for the Cell-Re Problem

In this subsection we will introduce several of the more widely-used treatments of the cell-Re
problem. As we have hinted earlier, none of these provide a complete solution to the problem;
moreover, from discussions in the preceding section, it would appear likely that there cannot be a
single approach that is guaranteed to always work without causing other difficulties. The specific
techniques we consider here are first-order upwinding, the so-called “hybrid” scheme, second-order
upwinding and QUICK. Nearly all commercial CFD codes provide options for employing all of
these except second-order upwinding—in addition to use of standard centered differencing, and in
some codes even further options are available, thus underscoring the significance attached to this
problem.

To understand why this is so recall the basic centered approximation of the Burgers’ equation
model problem, expressed here as

(
1 − Reh

2

)
ui+1 − 2ui +

(
1 +

Reh
2

)
ui−1 = 0 . (2.86)

We again note that to prevent non-physical oscillatory solutions it is generally necessary to
require

|Reh| ≤ 2 , (2.87)

which is termed the cell-Re restriction for centered-difference approximations. The consequence of
this restriction is readily seen. Namely, suppose the flow velocity is O(1) and viscosity ν ∼ O(10−4),
both of which are reasonable magnitudes for physical problems. Now from inequality (2.87) it
follows that the grid spacing h must satisfy

h ≤ 2ν

U
. (2.88)

Hence, in the present case we have h ≤ 2×10−4, which in a 3-D calculation on the unit cube
would require over 1011 grid points. Clearly, this is a completely intractable problem on current
computing hardware, and it will probably not be possible to achieve the industrial standard of
“overnight turnaround” for problems of this size any time in the next 10 years.

86 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

First-Order Upwinding. So-called first-order upwind differencing was probably the first proposed
remedy for the cell-Re problem. It was introduced on the basis of ad hoc “physical reasoning” (see,
e.g., Patankar [36]). Namely, it was argued that the reason centered differencing led to non-physical
solution oscillations was that it could sense both upstream and downstream flow behavior, and it
combined these in its representation of the velocity gradient. It was further argued that a difference
approximation using only information carried in the flow direction would be appropriate; i.e., the
difference approximations should be one-sided (or at least biased) into the flow direction. The
simplest such procedure is the basic first-order difference.

For the Burgers’ equation model problem with U > 0 this takes the form

UD−ui − νD2
0ui = 0 ,

or after expanding the difference operator symbolism, introducing the definition of cell Re, and
rearranging the results

1

Reh
ui+1 −

(
1 +

2

Reh

)
ui +

(
1 +

1

Reh

)
ui−1 = 0 . (2.89)

It is easily checked that this difference equation satisfies both the non-negativity and diagonal
dominance conditions needed to guarantee that no interior maxima or minima exist, and it is also
easy to directly solve this difference equation, as we have already done for the centered-difference
case. The result of this is that both independent roots are nonnegative, independent of the value
of Reh, provided Reh > 0. This latter requirement is guaranteed to hold if we switch to a forward
difference approximation in cases where U < 0. It is left as an exercise for the reader to analyze
this case; but the results are identical to those just given. Thus, we can summarize the first-order
upwind discretization as follows, expressed here for non-constant U in non-conserved form:

Uiux|i =





UiD−ui , Ui > 0 ,

UiD+ui , Ui < 0 .
(2.90)

There are at least two major difficulties with the first-order upwind treatment of the cell-Re
problem, and these were recognized fairly soon after its introduction. The analysis of this that
we present here follows that of de Vahl Davis and Mallinson [47], among the first to analyze this
approach in detail.

It is clear that the simple first-order differences employed in Eq. (2.90) degrade the overall
accuracy of a discretization in any case that second-, or higher-, order methods are being used for
terms other than advective terms, and in conjunction with this is the fact that this reduction in
accuracy is global since, presumably, we are usually solving boundary value problems. But there
are additional, more subtle, problems that arise from upwind differencing. To see this we consider
the dimensionless form of the Burgers’ equation model problem,

Uux − 1

Re
uxx = 0 , (2.91)

with U > 0. This implies that upwind differencing will employ the backward difference

D−ui =
ui − ui−1

h

in the advective term, and expansion of ui−1 yields the following:

ui−1 = ui − hu′i +
h2

2
u′′i − h3

6
u′′′i ± · · · .

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 87

This shows that Eq. (2.91) can be expressed as

Uux −
(

1

Re
+
Uh

2

)
uxx +

h2

6
Uuxxx ± · · · = 0 ,

or

Uux − 1

Re∗
uxx + O(h2) = 0 , (2.92)

where Re∗ is the effective Reynolds number defined as

Re∗ ≡ 1
1

Re + Uh
2

. (2.93)

Equation (2.92) is often termed the “modified equation,” and its significance is that it, rather
than the original PDE, is solved to within second-order accuracy instead of first-order accuracy
implied by the discretization. This shows that the numerical solution is a more accurate repre-
sentation of solutions to the modified equations than to solutions of the actual (in the case of the
N.–S. equations, physical) equation(s). Thus, it is important to consider this modified equation in
more detail.

What is rather obvious is that the only difference between physical and modified equations in
the case of first-order upwinding is the coefficient of the diffusion term. That is, in the modified
equation the original physical Reynolds number is replaced with the effective Reynolds number,
Re∗ given in Eq. (2.93), and it is essential to understand the consequences of this. Indeed, it has
often been argued that for very high Re, the flow is convection dominated, and since upwinding
imposes the “correct physics” use of this approximation should be quite accurate. But this is a
spurious argument, especially for simulating wall-bounded flows. In such flows, no matter what the
value of Re, some regions of the flow will be significantly affected by viscous forces; consequently, if
anything is done to the equations of motion to alter the physics of this it cannot be expected that
accurate solutions can be obtained.

With this in mind, it is of interest to examine the specific effects of Re → ∞ in the modified
equation. In particular, consider the limit of Re∗ as Re→ ∞. It is easily seen from Eq. (2.93) that

lim
Re→∞

Re∗ =
2

Uh
. (2.94)

Hence, as the physical Reynolds number approaches infinity, the computational one approaches a
finite limit—in fact, one that could be quite small. This provides an explanation for a phenomenon
observed in early uses of first-order upwinding; namely, it was seen that solutions for a given
physical situation and discrete approximation did not appear to change much with Re after the
value of this parameter exceeded ∼ O(103). Of course, in most situations this is counter intuitive
on a physical basis, and it provided motivation for investigations of the sort we have just presented.

Clearly, the ultimate effect of first-order upwinding is to increase the coefficient of the diffusion
term(s) in the governing equations. The factor producing this effect, 2/(Uh), (and similar factors
arising in other methods) is often called numerical diffusion or numerical viscosity. Although these
factors are related to, and in many ways similar to, “artificial viscosity, or artificial dissipation,”
in the present lectures we will consider them to be distinct. In particular, numerical diffusion is,
in general, an unwanted effect arising in an uncontrolled way from (usually) inadequate numerical
analytic procedures—basically mistakes, whereas in essentially all cases artificial dissipation is
added deliberately and at least to some extent, controllably, in a manner that has little or no effect
on the physics represented by the final discrete equations. Furthermore, as is evident from (2.94),

88 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

numerical diffusion can often completely dominate physical diffusion while this is not usually the
case with artificial dissipation.

One of the early modifications that is still widely used today, especially as an option in com-
mercial CFD software, is the so-called “hybrid” scheme of Spalding [48] (also, see [36]). In this
approach the solution is tested locally to determine whether a centered difference cell-Re restriction
violation is likely, and if it is the scheme is automatically switched to first-order upwinding. To
construct this method for the model Burgers’ equation problem, we now consider the conservation
form and allow U to be the variable Ui, leading to

(Uu)x − νuxx = 0 . (2.95)

We first express the discrete equation in the general form valid for any 1-D three-point grid stencil,

a1ui−1 + a2ui + a3ui+1 = 0 ,

and then define the difference equation coefficients as follows:

a1 = max

[
−Ui−1h, ν −

Ui−1h

2
, 0

]
, (2.96a)

a2 = −a1 − a3 − h (Ui+1 − Ui−1) , (2.96b)

a3 = max

[
Ui+1h, ν +

Ui+1h

2
, 0

]
. (2.96c)

It is important to recognize that if use of the hybrid method results in switching to first-order
upwinding at very many grid points, the solution behavior will be no different than that of first-
order upwinding itself, and this is often the case. Thus, we do not recommend its use; we have
included it here simply for the sake of completeness. As we have already mentioned, it is widely
used in commercial CFD codes.

In summarizing this presentation on first-order upwind differencing, we again emphasize that,
while it uniformly cures the cell-Re problem, its use results in a possibly drastic alteration of the
physics being considered; the end result is that solutions obtained in this way cannot, in general,
be trusted to accurately represent the physical phenomena being simulated. Thus, this approach
should almost never be employed. But we note that there is one particular valid application for
first-order upwind differencing. We will in Chap. 3 present a detailed algorithm for solving the
N.–S. equations in which δ-form quasilinearization will be used to treat nonlinearities appearing in
the momentum equations. In this particular instance it is quite convenient, and effective, to utilize
first-order upwinding in constructing the left-hand side Jacobian matrix with respect to which the
Newton iterations are computed. This is a valid approach provided the right-hand side of the
equation is discretized in a physically-correct manner (i.e., different from first-order upwinding)
because approximate Jacobian matrices can be useful in Newton iteration procedures, and the one
produced via first-order upwinding is numerically very stable.

Second-Order Upwinding. Here we will very briefly treat an approach at one time favored by Shyy
[49] and others, namely, use of second-order one-sided differences with switching similar to that
employed in first-order upwinding in order to difference into the flow direction. We again employ
the conserved-form Burgers’ equation, (2.95), as our model problem. Then second-order upwinding
takes the form

(Uu)x,i =
1

2h





3Uiui − 4Ui−1ui−1 + Ui−2ui−2 , Ui > 0 ,

−Ui+2ui+2 + 4Ui+1ui+1 − 3Uiui , Ui < 0 .
(2.97)

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 89

As is well known, this discretization is second-order accurate. Moreover, it turns out that the
leading terms of the modified equation are identical to those of the original equation. Thus, no
physics has been compromised by this approximation. It can also be checked (by setting U ≡ const.
that the roots of the corresponding difference equation are all nonnegative, independent of the value
of the cell Re. Hence, formally, there is no cell-Re restriction associated with this approximation. It
should also be noted that neither nonnegativity of the difference equation coefficients nor diagonal
dominance hold for this scheme, implying that it does not satisfy a maximum principle in the sense
described earlier. The lesson to be taken from this is that while satisfaction of these properties
is desirable, it is not necessary in general, and more emphasis should be placed on finding the
solutions to the difference equation.

Finally, we observe that actual computational experience with second-order upwinding has
been rather mixed. Shyy [49] claims it is the best of numerous methods that he tested. But other
investigators have shown less favorable results.

QUICK. The quadratic upstream interpolation for convective kinematics scheme of Leonard [44] is
one of the most widely-used methods for treating the cell-Re problem. It is available as an option
in most commercial CFD packages, and primarily for that reason we include it herein. The formula
given below corresponds to the same Burgers’ equation model problem we have been considering
throughout these discussions.

(Uu)x,i =
1

8h





3Ui+1ui+1 + 3Uiui − 7Ui−1ui−1 + Ui−2ui−2 , Ui > 0 ,

−Ui+2ui+2 + 7Ui+1ui+1 − 3Uiui − 3Ui−1ui−1 , Ui < 0 .
(2.98)

It is worthwhile to note that Leonard originally indicated third-order accuracy for this method,
but this was with respect to a location in the grid stencil that did not correspond to any grid
point. Careful analysis shows the scheme to be second-order accurate. This confusion likely still
persists to the present; at least some commercial flow codes claim to have on option for third-order
“upwinding,” and it is often a form of QUICK that is being used. It is also useful to note that
although this is a switching scheme like the two preceding upwind methods, it is not truly an
upwind approach, but rather an “upwind biased” scheme, because its stencil extends to both sides
of the grid point in question.

As was true of the second-order upwind method, QUICK does not lead to nonnegativity of
difference equation coefficients, nor do corresponding coefficients exhibit diagonal dominance. But
unlike the second-order upwinding procedure, QUICK does have a cell-Re restriction—and it is
nearly as severe as that found for simple centered-difference approximations; viz.,

|Reh| ≤ 8/3 . (2.99)

Nevertheless, computational experience with QUICK has been generally favorable.

There are numerous other upwind-like treatments of the cell-Re problem. Some have at times
been fairly widely used while most have been rather seldom employed. We do not intend to attempt
an encyclopedic coverage of such methods, in large part because all have their shortcomings; and the
ones discussed here are the most often used ones. It is worth mentioning, however, that a related
treatment has received considerable attention in recent years, and it is usually quite successful.
It is to employ techniques originally derived for use in shock capturing associated with solving
the Euler equations of compressible flow. There are several classes of these methods, and we
merely mention them here: flux-corrected transport (FCT), total variation diminishing (TVD) and
essentially non-oscillatory (ENO). While use of such methods can be highly effective in terms of

90 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

removing non-physical oscillations, they are in general somewhat more difficult to code, and they
typically increase required arithmetic very significantly.

In closing this section we provide in Table 2.1 a summary of the methods for treating the cell-
Re problem that we have discussed in at least a cursory way. The table contains the independent
roots of the difference equation and the cell-Re restriction, if any, for each procedure. The use of
absolute-value symbols in all of the formulas except that for centered differencing arises from the
fact that all other techniques involve a switch in formulas so as to always be differencing in the
(mainly) flow direction. As a consequence, there are actually two possible difference equations in
each such case; but they are the same if one always uses |Reh|.

Table 2.1 Difference equation roots and cell-Re restrictions for model problem

���������
	��
���
���������� ������� ���! �"������#� ������� � �%$�& � �����#�& ���

�"�('�)��� �� $ '�)���"� �*� �+�,�-	��/.10
� �"�2�34� �����#� � �! � �"�2�3�� �5����� � �
$ '� � �5����� � �"�2�6�� �����#� �& ���"�2�6 � ���"��� � ��� �+�,� 	 �/.87�9�:

st

QUICK

nd

nd

Restriction
Cell-ReScheme Roots of Difference Equation

1 -order upwind

2 -order upwind

2 -order centered

none

none

2.3.2 Treatment of effects of aliasing

In this section we will first indicate in fairly precise detail just what “aliasing” is, and how it arises.
We will see that its symptoms are somewhat similar to those of the cell-Re problem treated above,
but its root cause is rather different. We will then consider techniques for treating this problem. It
will be seen that since aliasing arises from an inability to represent high-wavenumber components
of a solution in its numerical approximation, the remedy must always be some form of smoothing,
or mollification, that introduces additional dissipation in the numerical scheme, and thus damping
of high wavenumbers.

In the context of the N.–S. equations there have been three main approaches used to do this:
i) flux modification, ii) artificial dissipation and iii) filtering. We mentioned the first two of these
during earlier discussion of the cell-Re problem; both have received considerable attention in the
CFD literature, especially in the context of shock capturing in high-speed compressible flow sim-
ulations. Here, however, we will emphasize the last possibility. This approach has been utilized
mainly in the context of meteorological flows, but Yang and McDonough [50] and McDonough and
Yang [51] have recently demonstrated its effectiveness in simulations involving a Burgers’ equation
model of turbulence. Moreover, applications of this approach to 2-D incompressible N.–S. flows

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 91

have previously been presented by McDonough et al. [52] and [53], and to 3-D incompressible flows
by McDonough and Yang [54].

How Aliasing Occurs

A straightforward, intuitive view of aliasing comes from the following simple plot, Fig. 2.15,
in which we demonstrate an extreme case of under sampling of a signal. The basic signal is a
sine function with wavelength h, plus its first subharmonic, and it is being sampled at this same

h
actual signal

sampled signal

Figure 2.15: Under-sampled sine function demonstrating effects of aliasing.

wavelength, presumably for later reconstruction. It is evident that the sampled signal is a (nonzero)
constant. Moreover, it can also be seen that a Fourier analysis of the actual signal would show
that its lowest mode (the average) has zero magnitude while the lowest (and only) mode of the
sampled signal has magnitude unity. We see from this that not only has the sampled signal lost
the high-wavenumber content of the original signal, but it has also misrepresented even the lowest
wavenumber, which in principle it should have been capable of representing. Thus, what we term
as aliasing has two main effects. It results in failure to represent high-wavenumber (and/or high-
frequency) behavior, and (as it turns out, a consequence of this) it incorrectly represents lower
wavenumbers.

The mathematics associated with this has been known for a long time, especially in the context
of signal processing. Here, we provide a description taken from the text by Ames [55]. Let f(x) be
a function in L2(−1, 1), and consider its Fourier representation given by

f(x) =

∞∑

k=−∞

ake
ikπx (2.100)

with

ak =
1

2

∫ 1

−1
f(x)e−ikπx dx .

Now if one partitions the interval [−1, 1] with 2N uniformly-spaced points such that xj = j/N ,
for −N ≤ j < N , one can construct the (exact) Fourier polynomial which when evaluated at x = xj

gives the value

fj =
N−1∑

m=−N

Ame
imπj/N ,

where

Am =
1

2N

N−1∑

j=−N

fje
−imπj/N . (2.101)

92 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

The basic question at this point is, “How are the Ams, obtained from the discrete approximation,
related to the actual Fourier coefficients, the aks?” To find this relationship we evaluate f(x) at
the discrete point x = xj = j/N :

f(xj) =

∞∑

k=−∞

ake
ikπxj =

∞∑

k=−∞

ake
ikπj/N .

At this point we observe that due to periodicity of the complex exponential there can be only 2N
distinct values of eikπj/N . Then for any finite N we can rewrite the infinite sum as

∞∑

k=−∞

ake
ikπj/N =

∞∑

k=−∞

N−1∑

n=−N

an+2Nke
i(n+2Nk)πj/N . (2.102)

We now substitute the right-hand side of Eq. (2.102) for fj in Eq. (2.101) to obtain

Am =
1

2N

N−1∑

j=−N

∞∑

k=−∞

N−1∑

n=−N

an+2Nke
i(n+2Nk)πj/Ne−imπj/N

=
∞∑

k=−∞

am+2Nk

= am +
∑

|k|>0

am+2Nk , (2.103)

with the second equality following from discrete orthonormality of the complex exponentials.
The first thing to notice regarding this result is that if it happens that only 2N Fourier co-

efficients are nonzero, the coefficients of the Fourier polynomial will agree with these. Similarly,
if the function being represented by the Fourier series and Fourier polynomial is very smooth so
that high-wavenumber coefficients in the Fourier series go to zero rapidly as wavenumbers become
large, the Fourier polynomial coefficients will not differ greatly from the Fourier series coefficients.
On the other hand, if the function f is not very smooth so that high-wavenumber coefficients have
significant magnitude, and at the same time N is not sufficiently large, the difference between am

and Am will be significant because am+2Nk will still be large enough, even at very high values of k
(and for all m, including m = 0), to contribute to the discrepancy. This is the fundamental cause
of aliasing.

At this point one might question what any of this has to do with the finite-difference/finite-
volume approximations that are the main topic of these lectures. But the answer to this is quite
straightforward. It is easily checked that the relationship between the discrete function values fj

and the coefficients Am of the Fourier polynomial in Eq. (2.101) is a linear transformation consisting
of a 2N×2N matrix. That is, given any set of 2N function values we can construct the 2N Ams.
Furthermore, the result of computing with a finite-difference or finite-volume method is a grid
function consisting of a finite number of values that is supposed in some sense to approximate the
exact solution to the PDE that has been discretized. We also expect, based on discussions in Chap.
1, that this exact solution possesses a Fourier series representation. Thus, our finite-difference
approximation is, to within a linear transformation, a Fourier polynomial intended to approximate
the Fourier series of the exact solution. Hence, it is clear that if there are insufficient grid points
in the representation, the effect will be identical to under sampling of a signal, and the result will
be aliased.

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 93

It is important to recognize that in the case of attempting to solve the N.–S. equations, this
situation is exacerbated by nonlinearity capable of generating high-wavenumber modes even when
they are not present in initial data, and related to this, the time evolving solutions of these equations.
This combination makes the problem of aliasing very serious, especially for high-Re flows, and it
is thus crucial to be able to treat it effectively.

Treatment of the Aliasing Problem

We have already mentioned the three main approaches currently employed to treat aliasing, and
we have also noted that independent of the details the end result must be an increase in dissipation
in order for a treatment to be effective. As noted earlier, flux-modification schemes can provide a
suitable approach despite the fact that they were originally designed to mitigate a rather different
problem (Gibbs phenomenon oscillations in the presence of shocks), but one exhibiting similar
symptoms. The same can be said for use of artificial dissipation. The main difference between these
approaches is in the details of implementation. Flux modification is specifically numerical whereas
introduction of artificial dissipation can be viewed also in an analytical context. Furthermore, flux-
modification methods are relatively difficult to implement while addition of artificial dissipation
terms is fairly straightforward, except possibly near boundaries. But it should also be mentioned
that the end result of flux modification is introduction of additional truncation error of a diffusive
nature. Thus, in principle, given a flux-modification scheme it is possible to find an equivalent
artificial dissipation, although this is not generally easy. Finally, we note (as we have already
hinted) that considerable programming effort and/or extra floating-point arithmetic is involved
with implementing either of these general classes of methods.

In the current lectures we will present a different treatment of the aliasing problem. This
treatment is not new; indeed, it is actually older than flux modification and cell-Re treatments
(that sometimes are mistakenly attempted). It is use of post-processing filters as is routinely done
in essentially all signal processing. (After all, a collection of numbers comprising a discrete solution
can easily be interpreted as a “signal.”) Use of filters in the manner to be described here was
probably first introduced by Shuman [25] and analyzed in considerable detail by Shapiro [56]. But
our description herein will be based on the modern treatment of PDEs given in Chap. 1 of these
lectures.

We first recall the idea of a solution operator discussed in Chap. 1 and consider a discrete
case of this. Recall that a solution operator is a mathematical construct that acts on initial data
(prescribed at t = t0) to produce a solution at a later time t > t0. For example, if u0(x) provides
initial data for some PDE and S is its solution operator, then we can formally express the solution
at time t as

u(t) = S(t)u0 .

It is useful for our purposes here to associate S(t) with some form of integration over the interval
(0, t] (cf., the solution operator for the heat equation given in Eq. (1.17)).

We next observe that discrete solution operators can be easily constructed via formal numerical
integration. Consider a nonlinear PDE with the representation

ut = N (u) .

We can integrate this to obtain

u(t) = u(t0) +

∫ t

t0

N (u) dτ ,

94 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

and replacing the integral on the right-hand side with a quadrature will yield a discrete solution
operator. For example, if we were to use simple forward-Euler time integration, we would obtain

un+1 = un + kN (un) ,

and we can express this formally as
un+1

h = Sh(k)un
h (2.104)

to indicate that spatial discretization has been done with a grid of spacing h, and discrete time
integration is being performed with time step k.

We next recall that one of the tools introduced in Chap. 1 for treating nonclassical solutions
to PDEs was use of mollification. This was applied both to initial data and to solutions as they
evolved, by composition with the solution operator. We also noted at that time that mollification
is actually just a filtering process. In particular, mollified variables were constructed as

uε(x) =

∫ ε

−ε
u(y)δε(x− y) dy , (2.105)

where δε was a normalized C∞
0 function with support → 0 as ε → 0. This corresponds to a filter

with kernel δε. We also observed that a very typical δε possessed a graph that did not differ
significantly from a triangular shape (except that it is C∞). We will utilize these ideas here to
construct a numerical mollification process that can be composed with discrete solution operators
as was done for the continuous case in Chap. 1.

We now define a function δh (which is not C∞ but which does have compact support) as
indicated in Fig. 2.16. Notice, in particular, that the support of δh is slightly greater than 2h about

ξ
η h 

xi−1 i+1xxi

grid point value

δh
1.0

δhu,

x

Figure 2.16: Schematic of a discrete mollifier.

any particular point xi, and that δh is constructed from two straight lines. It is easily seen from
the figure that

δh(−h) = δh(h) =
ξ

h+ ξ
≡ η ,

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 95

where ξ is an adjustable parameter, and such that ξ � h is assumed to hold. We remark that while
this appears very different from δε shown in Fig. 1.3, as noted in Majda et al. [57], δε cannot be
effective in the presence of finite grid spacing, and must be modified.

Next we define the discretely-mollified grid function

ũh(xi) =

∫ xi+h

xi−h
uh(y)δh(xi − y) dy . (2.106)

We first observe that formally integration should be over the interval [xi − h − ξ, xi + h + ξ], but
there are no grid function values in the border regions of length ξ, so results from the above formula
would be unchanged by including this. We now perform trapezoidal quadrature between xi − h
and xi, and again between xi and xi + h. This results in

ũh(xi) =
h

2
[2uh(xi)δh(xi − xi) + uh(xi−1)δh(xi − xi + h) + uh(xi+1)δh(xi − xi − h)]

=
h

2
[ηuh(xi−1) + 2uh(xi) + ηuh(xi+1)]

=
ηh

2

[
uh(xi−1) +

2

η
uh(xi) + uh(xi+1)

]
. (2.107)

But for proper normalization of this discrete case we must require ũh(xi) = uh(xi) if uh ≡ const.
Thus, we must have

ũh(xi) =
uh(xi−1) + βuh(xi) + uh(xi+1)

2 + β
, (2.108)

with β ≡ 2/η. This is the filter used by Shuman [25], and we call β the filter parameter.

It is clear that η → 0 as ξ → 0, and in this limit β → ∞. This has the same effect as ε→ 0 in the
definition of mollifier given in Eq. (2.105) and would be equivalent if h→ 0 also holds. Furthermore,
it is clear from Eq. (2.106), the definition of the discrete mollifier, that ũh(xi) → uh(xi) as h→ 0.
While this is not immediately obvious from the final form of the Shuman filter given in Eq. (2.108),
it can be demonstrated via a simple truncation error analysis which we now carry out as follows.

We first express (2.108) in the more concise notation

ũi =
ui−1 + βui + ui+1

2 + β
, (2.109)

and then expand ui−1 and ui+1 in Taylor series:

ui−1 = ui − hu′i +
h2

2
u′′i − h3

6
u′′′i ± · · · ,

and

ui+1 = ui + hu′i +
h2

2
u′′i +

h3

6
u′′′i + · · · .

(We remark here that existence of derivatives needed to construct these expansions is, in general,
open to question, especially for the N.–S. equations, and it may be necessary to view these in the
sense of distributions, as discussed in Chap. 1.) Then substitution of these into the above yields

ũi = ui +
h2

2 + β
u′′i + O(h4) . (2.110)

96 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

This representation highlights two important features of this filter. First, it demonstrates
that ui is being replaced with a quantity explicitly containing added dissipation—one of the main
requirements for successful treatment of aliasing. In particular, it can be seen that the dominant
truncation error is diffusive. At the same time, the actual amount of added diffusion is controllable
through the parameter β. Thus, even though a modified equation would contain extra diffusion at
the level of the (physical) second-order operators, this goes to zero with h2 rather than only as h
in first-order upwinding. In addition, it turns out that the O(h4) term is anti-diffusive, leading to
some cancellation of the effects at second order.

There are several additional items that should be investigated for the filter given in Eq. (2.109).
The first of these is what is usually termed “frequency response” in the context of signal processing
(in which the signals are typically functions of time), and which we will here more appropriately
for our purposes call wavenumber response since we will usually apply the filter spatially. The
wavenumber response shows the effect of the filter on the magnitude of the Fourier coefficients as
a function of wavenumber.

There are several ways in which this can be derived. Here, we will begin by writing the Fourier
coefficient corresponding to each term in the expansion given in Eq. (2.110) but now expressed
completely analytically as

ũ = u+
1

2 + β

(
h2uxx +

h4

12
uxxxx +

h6

360
uxxxxxx + · · ·

)
. (2.111)

Then it is easily checked that the Fourier coefficients of the filtered and unfiltered function are
related as

ãk =

[
1 − 1

2 + β

(
k2h2 − k4h4

12
+
k6h6

360
∓ · · ·

)]
ak . (2.112)

Furthermore, we see that with θ ≡ kh the expansion inside the parentheses is just 2(1 − cos θ).
Thus, we obtain

ãk =

[
1 − 2

2 + β
(1 − cos kh)

]
ak , (2.113)

with scaling such that if there are N grid points, h = π/N .
It is of interest to observe that as h→ 0 (or N → ∞), ãk → ak ∀ k, independent of the value of

the parameter β. At the same time, for fixed h, as β → ∞ we obtain the same result. In addition,
we can see the specific wavenumber response for fixed h, as a function of wavenumber, plotted
in Fig. 2.17. From the figure we see that for small values of β the high-wavenumber content of
the Fourier representation is almost completely removed—exactly what is needed to treat aliasing
(recall Eq. (2.103)), and as β is increased less of the original Fourier coefficients is removed by the
filter.

The next task is to determine, at least in a qualitative way, the effects of filtering on the
numerical solution. We will again employ Burgers’ equation, but unlike what was done in our
previous analyses we will retain both the time dependence and the nonlinearity because these both
are major aspects of the filtering problem, as will be apparent. We remark that in the case of
steady solutions, if they are computed directly (as opposed to employing pseudo-time integration)
it is possible to apply the filter only once, at the end of the calculation. In this case, the error is
given in Eq. (2.110) which indicated second-order accuracy.

The case of time evolution is more complicated. We have already implied that the process
involves composition of the filter and the discrete solution operator, so our analysis must reflect
this. In particular, especially because of the nonlinearities present in Burgers’ equation (and the
analogous ones in the N.–S. equations), it is generally necessary to apply the filter after every

2.3. TREATMENTS FOR THE CELL-RE PROBLEM AND ALIASING 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

wavenumber

res
po

ns
e

β = 4

β = 2

β = 3

β = 5

β = 10

β = 100

Figure 2.17: Wavenumber response of Shuman filter for various values of filter parameter.

time step because new high-wavenumber information will have been generated. For simplicity, we
consider a simple forward-Euler integration of Burgers’ equation; that is, the semi-discrete solution
operator takes the form

un+1 = un + k
[
νun

xx −
(
un2
)
x

]
, (2.114)

where k again denotes a time step (∆t), and we have suppressed spatial grid point indexing.

The first step is to note that because of the composition of discrete solution and filtering
operators, the values of un on the right-hand side of this equation must be the filtered ones. Thus,

un+1 = ũn + k
[
νũn

xx −
(
ũn2
)
x

]

= un +
h2

2+β
un

xx + k

[
νun

xx +
h2

2+β
un

xxxx −
((

un +
h2

2+β
un

xx

)2)

x

]

= un +
h2

2+β
un

xx + k

[
νun

xx+
h2

2+β
un

xxxx−
(
un2+

2h2

2+β
unun

xx+
h4

(2+β)2
un2

xx

)

x

]
. (2.115)

We next regroup terms in powers of the grid spacing h to obtain

un+1 = un + k
[
νun

xx −
(
un2
)
x

]
+

h2

2+β
un

xx +
kh2

2+β
(un

xxxx − 2 (unun
xx)x) − kh4

(2+β)2
(
un2

xx

)
x
.

This demonstrates the effect of the discrete solution operator on the filtered solution from the
previous time step. But to complete the current time step, and thus be ready to repeat the process,
we must filter the result at time level n + 1. This will permit us to see the effects of repeated
application of the filter.

Thus, we must consider

ũn+1 = ũn + k
[
νũn

xx − (̃un2)x

]

+
h2

2+β
ũn

xx +
kh2

2+β

(
ũn

xxxx − 2 ˜(unun
xx)x

)
− kh4

(2+β)2
(̃un2

xx)x . (2.116)

98 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

It should first be observed that the effects of filtering at this point are somewhat different from
what we have already analyzed. The preceding analysis merely treated the effects of using a filtered
result, but now we must determine specifically what are the effects of filtering in the first place.
Clearly, the filter commutes with all of the linear operators; so there is nothing new with regard to
any of these terms. But it does not commute with the nonlinear terms, and these must be treated
differently.

We first observe that the two filtered nonlinear terms in the second line of (2.116) are higher
order, and it is not imperative that we consider them in detail. On the other hand, the nonlinear
term in the first line of this equation is at lowest order and must be treated. It is easily shown via
the usual truncation error analysis procedure that

ũ2
i ≡ 1

2+β

(
u2

i−1 + βu2
i + u2

i+1

)
= u2

i +
2h2

2+β
(uiui,x)x + O(h4) . (2.117)

It then follows that the nonlinear term in the main part of the filtered result from the discrete
solution operator (2.116) is

(
ũ2
)
x

=
(
u2
)
x

+
2h2

2+β
(uux)xx + O(h4) . (2.118)

Thus, as in the case of the linear terms, the leading truncation error occurs at second order in h. But
the form of this error is important to note. As observed by Shapiro [56], symmetry of the Shuman
filter formula with respect to the discrete point at which it is applied leads to zero phase error
in the filtered result—a desirable property. But we can see from the form of the truncation error
shown here that now third-order (dispersive) derivatives occur, and beyond this terms associated
with nonlinear diffusion. Thus, the qualitative behavior is not easily predicted, but clearly one
should expect some generation of phase error.

Figure 2.18 displays a comparison of a single time slice from a solution to Burgers’ equation

Scaled Length

u

0.8 1 1.2 1.4 1.6 1.8

0.0 0.2 0.4 0.6 0.8 1.0
0.8 1 1.2 1.4 1.6 1.80.8 1 1.2 1.4 1.6 1.8

Analytical Solution
Filtered numerical solution

-3

5

6

0

-3

-2

0

1

3

4

5

−2

2

4

Figure 2.18: Shuman filter applied to solution of Burgers’ equation.

having the exact solution indicated in the figure (see Yang and McDonough [50]). In attempts to
compute this solution directly (without treatment of aliasing) grids of greater than 4096 points
were necessary. The grid employed for the calculations displayed here utilizing the filter contained
only 512 points. It is clear that the main features of the exact solution have been captured in
the coarse-grid filtered solution, but at the same time one can also see occasional significant phase
errors as predicted by the preceding analysis.

2.4. SUMMARY 99

We now note that introduction of Eq. (2.110), and additional results analogous to (2.117), into
the remaining terms of (2.116) will show that with each application of the filter an additional factor
of the basic truncation error is added. Thus, after n time steps, the dominant error arising from
the filtering process is

n
h2

2 + β
un

xx . (2.119)

(In fact, this occurs also for other terms in the overall truncation error expansion. We leave
demonstration of this as an exercise for the reader.) It is important to realize that if the number of
time steps becomes excessive, this term could potentially completely damp essentially all aspects of
the computed solution; this is the major disadvantage in this approach. But it is seen from (2.119)
that at least in principle this can be controlled with the parameter β, and it is generally seen that
this is adequate to guarantee robust behavior of this treatment of aliasing.

Now that it has been demonstrated that the Shuman filter is able to accomplish the desired
goal, the remaining issue is the cost of the additional required arithmetic. It is well known that flux-
modification approaches can easily double the required arithmetic, while use of artificial dissipation
is considerably less expensive (and often less effective) if it can be implemented explicitly (which is
not always the case. It is clear from Eq. (2.109) that in 1D the Shuman filter requires only two adds
and two multiplies per grid point, per application (time step). The forward-Euler discrete solution
operator uses five adds and six multiplies per grid point, per time step. Thus, even in the context
of this very simple explicit solution operator, application of the filter increases total arithmetic by
less than 50%.

The final topic upon which we will touch briefly regarding use of filtering is the multi-dimensional
case. All of our analyses have been one-dimensional, but we note that there is a very straightforward
extension to multi-dimensions. Clearly, it can be derived in the manner we employed earlier for the
present case, and the result in 2D is

ũi,j =
ui−1,j + ui,j−1 + βui,j + ui,j+1 + ui+1,j

4 + β
. (2.120)

Moreover, the extension to 3D is obvious. We leave as an exercise to the reader derivation of these
more general formulas.

2.4 Summary

In this chapter we have attempted to present a number of somewhat special aspects of the Navier–
Stokes equations that require more than just a basic knowledge of numerical analysis to in order
to successfully treat them. We began the chapter by discussing the various forms of the N.–S.
equations that have been employed through the years in efforts to mitigate some of the difficulties
that arise in numerical simulations. We observed that of these only the stream function/vorticity
and primitive-variable formulations have seen wide application. But in modern 3-D simulations
the latter of these is essentially the only viable approach because the former has no extension from
2D to 3D. The primitive-variable form, itself, has numerous distinct subforms, all of which are
analytically equivalent but which produce different behaviors in numerical implementations.

Following the discussions of N.–S. equation forms we considered the problem of pressure-velocity
coupling. We began with fairly detailed descriptions of the three main types of grid structures that
have been employed in efforts to achieve this coupling; these are: i) (natural) unstaggered, ii)
partially staggered and iii) (fully) staggered. There is also an important modification of the un-
staggered grid, aften termed nonstaggered, or more appropriately, co-located. It was noted that

100 CHAPTER 2. SPECIAL NUMERICAL DIFFICULTIES OF THE NAVIER–STOKES EQUATIONS

there is a very fundamental mathematical constraint, known as the div-stability condition, which
imposes restrictions on the combination of grid structure and form of discretization of the governing
equations that must be used to guarantee that discretely divergence-free velocity fields converge to
continuously divergence-free ones as grid spacing is refined. These restrictions are automatically
satisfied by centered discretizations on a staggered grid, and with modifications to the discretization
of either the advective terms of the momentum equations or treatment of the pressure Poisson equa-
tion, or both, they can be satisfied on co-located (cell-centered, unstaggered) grids. We observed
that failure to satisfy the div-stability condition can lead to so-called “checkerboard” solutions
containing non-physical, and yet very stable, oscillatory behaviors. The natural unstaggered and
partially staggered grid configurations are prone to producing such behaviors.

The final topics treated in this chapter, like checkerboarding, are associated with the tendency
of discrete solutions to the N.–S. equations to exhibit physically unrealistic oscillations. These can
arise from either (or both) of two forms of under resolution, and their treatment has constituted a
significant portion of the archival literature of CFD. The first of these, termed the cell-Re problem,
is very specifically a property of the difference approximations employed to treat the combination of
advection and diffusion terms, as appear in any transport equation—even linear ones. In this linear
case it is possible to exactly solve the corresponding difference equations, thus permitting detailed
analysis of the cell-Re problem and its origins. We presented such analyses above, and we discussed
several proposed remedies. But it must be emphasized that the most important consequence of
these analyses is that there is no single modification to the discrete equations that is guaranteed to
always be effective for all flow conditions, or sometimes even at all locations of a flow under fixed
conditions.

The second topic covered in the last section of this chapter is that of aliasing. We described the
basic nature of aliasing—what it is, and how it arises—and provided a specific representation of its
effects in terms of a Fourier expansion. We noted that the basic problem arises when discretization
step sizes are too large to permit resolution of high-wavenumber components of the true solution.
It can be expected from the form of the Fourier representation that the observed consequence of
aliasing will be spurious oscillations in a computed solution—the same symptom as seen in the
cell-Re problem. It is well known in the field of signal processing that the universal treatment of
aliasing is application of a filter to the aliased signal. (Of course, the filter needed for this is not
universal, and depends strongly on the type of signal being treated.) Moreover, we saw in Chap.
1 that the analytical treatment of nonsmooth solutions (those having significant high-wavenumber
content)to PDEs was use of a mollifier, which is in fact a filter. Thus, in the present chapter we
derived a discrete form of the typical analytical mollification operator and found that this was
precisely the Shuman filter [25]. We then showed in a formal way how this can be applied to treat
both cell-Re and aliasing problems. In particular, it was shown how to construct a formal discrete
solution operator that employs the filter to smooth the solution at the end of each time step (post
processing) before starting the next time step.

Chapter 3

Solution Algorithms for the N.–S.

Equations

In this chapter we will present many of the main solution algorithms that have been developed and
used through the years in efforts to solve the incompressible Navier–Stokes equations. We will do
this in a more or less chronological ordering to provide a sense of how the current understanding of
solution methods has evolved. For each method treated we will usually provide a fairly complete
derivation along with details of implementation, and in most cases a detailed pseudo-language
algorithm.

Thus, in the first section we will derive and discuss the marker-and-cell (MAC) method of Harlow
and Welch [32]. We follow this with a presentation of the SOLA method. At this point, it turns out
that at least two methods were introduced nearly simultaneously: these are artificial compressibility
and projection methods. We will treat these in this order because there is a fairly direct relationship
between artificial compressibility and SOLA, and also between projection methods and the SIMPLE
algorithms that will be the last to be discussed, but are at present the most widely used—especially
in commercial CFD software.

Before beginning these treatments we again present the Navier–Stokes equations in the form
that they will most often be encountered in the remainder of these lectures; namely

ut + (u2)x + (u v)y = −px + ν∆u , (3.1a)

vt + (u v)x + (v2)y = −py + ν∆v , (3.1b)

and

ux + vy = 0 . (3.2)

We observe that the algorithms to be presented in the sequel are of two main types. MAC, SIM-
PLE and the projection methods employ a pressure Poisson equation to satisfy the divergence-free
constraint, Eq. (3.2), while SOLA and the artificial compressibility method attempt to satisfy this
condition by directly solving modifications of (3.2). Both approaches have been fairly successful;
the latter is widely used in the context of finite-element implementations. On the other hand,
essentially all commercial CFD software makes use of the former approach. In what follows we will
have the opportunity to compare these two classes of techniques.

101

102 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

3.1 The Marker-and-Cell Method

The marker-and-cell technique was first proposed by Harlow and Welch [32] as a method for solv-
ing free-surface problems, but the staggered arrangement of dependent variables proved to be so
effective at preventing checkerboard solutions (because it automatically satisfies the div-stability
condition) that it has become an important method in its own right. Here, we will put little
emphasis on the free-surface aspects of its implementation. We begin with formal discretization
of the momentum equations, followed by more detailed treatment of the PPE. We then discuss
implementation of boundary conditions for this latter equation and briefly describe computation of
marker trajectories. We then conclude with a coarse-grained pseudo-language algorithm suitable
for MAC implementation.

3.1.1 Momentum equations

The momentum equations (3.1) are discretized in space in the typical staggered-grid (control-
volume) manner presented in Chap. 2 with simple forward Euler integration employed in time
except for pressure-gradient terms which are formally integrated via backward Euler. Thus, the
discrete forms of these equations are

un+1
i,j = un

i,j + k
{
ν
(
D2

0,x +D2
0,y

)
un

i,j −
[
D+,xp

n+1
i,j +D+,x

(
un 2

i,j

)
+D−,y

(
ũn

i,jv
n
i,j

)]}
, (3.3a)

vn+1
i,j = vn

i,j + k
{
ν
(
D2

0,x +D2
0,y

)
vn
i,j −

[
D+,yp

n+1
i,j +D−,x

(
ũn

i,jv
n
i,j

)
+D+,y

(
ṽn 2
i,j

)]}
. (3.3b)

We note that the formal difference operator notation is to be interpreted in the context of the
control-volume analysis of these equations in Chap. 2, as presented in expanded form in the semi-
discrete equations (2.61) and (2.62). In particular, the indices correspond to those of grid cells, and
not grid points, and as a consequence what we have denoted as forward and backward differences
are actually centered across a single grid cell.

3.1.2 The pressure Poisson equation

The distinguishing feature of the MAC method is its treatment of pressure. Recall that the pressure
Poisson equation is derived by taking the divergence of the N.–S. equations and then invoking the
divergence-free condition, Eq. (3.2) in the present case, to effect a simplification. But as noted in
Chap. 2, rather than leading to a pressure field that enforces the divergence-free constraint, this
requires that the velocity field already be divergence free in order to calculate a correct pressure. A
somewhat different approach is taken in constructing MAC techniques. The first step is the usual
one, viz., calculate the divergence of the momentum equations to obtain

(ux + vy)t +
(
u2
)
xx

+ (u v)xy + (u v)yx +
(
v2
)
yy

= −∆p+ ν∆(ux + vy) . (3.4)

For notational convenience we define
D ≡ ux + vy , (3.5)

and write the preceding equation as

∆p = ν∆D −
[(
u2
)
xx

+ (u v)xy + (u v)yx +
(
v2
)
yy

]
−Dt . (3.6)

We remark that in contrast to the earlier use of the PPE in Chap. 2, in this case the computed
pressure field has the ability to respond to lack of satisfaction of the divergence-free constraint on

3.1. THE MARKER-AND-CELL METHOD 103

the velocity field. Nevertheless, it is important to recognize that this alone does not guarantee
satisfaction. As noted by Roache [1], failure to include the term Dt in (3.6) leads to a nonlinear
instability in the momentum equation solution which has been caused by failure to maintain the
divergence-free property of the velocity field. On the other hand, omitting the Laplacian of diver-
gence term seems to not necessarily be damaging, especially if Re is large; successful algorithms
have been constructed without this term. These ideas will be somewhat more apparent from the
discrete form of Eq. (3.6) that follows:

(
D2

0,x +D2
0,y

)
pn+1

i,j = ν
(
D2

0,x +D2
0,y

)
Dn

i,j −
[
D2

0,x

(
u2

i,j

)
+ 2D0,xD0,y (ũi,jvi,j) +D2

0,y

(
ṽ 2
i,j

)]n

−
(
Dn+1

i,j −Dn
i,j

k

)
, (3.7)

where ui,j , vi,j, ũi,j and ṽi,j are defined in Eqs. (2.62) and which we repeat here for easy reference.

ui,j =
1

2
(ui,j + ui−1,j) , (3.8a)

vi,j =
1

2
(vi,j + vi+1,j) , (3.8b)

ũi,j =
1

2
(ui,j + ui,j+1) , (3.8c)

ṽi,j =
1

2
(vi,j + vi,j−1) . (3.8d)

Now because we want the divergence of the velocity field to be zero at the end of time step
n+ 1 we formally set Dn+1 = 0 in Eq. (3.7) and write this as

(
D2

0,x +D2
0,y

)
pn+1

i,j = ν
(
D2

0,x +D2
0,y

)
Dn

i,j −
[
D2

0,x

(
u2

i,j

)
+ 2D0,xD0,y (ũi,j vi,j)

+ D2
0,y

(
ṽ 2
i,j

)]n
+

1

k
Dn

i,j . (3.9)

It is important to note the time levels used for the various terms in this equation. The velocities
(or divergences) are all evaluated at time level n to produce pressure at time level n+1, equivalent
in a sense to forward Euler integration used for the momentum equations. But since pn+1 is now
available for use in these equations, backward Euler is employed for the pressure gradient terms as
indicated in Eqs. (3.3).

The new aspect of MAC that was not treated earlier in Chap. 2 when staggered gridding was
introduced is the right-hand side of the PPE. Here we will first consider this away from boundaries
at an arbitrary interior grid cell. We begin by recalling that divergence, like all other scalars, is
calculated at the cell centers, i.e., at the same locations as is the pressure. Furthermore Di,j, itself,
is easily calculated at all interior cell centers. This implies that away from boundaries we can easily
implement the approximation

(
D2

0,x +D2
0,y

)
Di,j =

1

h2
x

(Di−1,j − 2Di,j +Di+1,j) +
1

h2
y

(Di,j−1 − 2Di,j +Di,j+1) (3.10)

by first calculating the Di,js at all cell centers and then directly evaluating this expression at each
required location.

104 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

Next we consider the remaining terms on the right-hand side of Eq. (3.9). We observe that ui,j

and ṽi,j are also a cell-centered quantities, implying that

D2
0,xu

2
i,j =

1

h2
x

(
u2

i−1,j − 2u2
i,j + u2

i+1,j

)
, (3.11)

and

D2
0,y ṽ

2
i,j =

1

h2
y

(
ṽ 2
i,j−1 − 2ṽ 2

i,j + ṽ 2
i,j+1

)
. (3.12)

What remains are approximations of the mixed derivatives of products of the various averaged
velocity components. Figure 3.1 displays the various averages as defined in Eqs. (3.8) that are
needed for these calculations. First consider D0,xD0,y (ũi,jvi,j). We see from the figure that ũi,j

u, v∼ 

∼
u, vu, v ∼

u, v
∼

(i, j)

Figure 3.1: Location of averaged velocity components needed for mixed derivative approximations.

and vi,j are both defined on the natural finite-differnce grid points occurring at the corners of the
grid cell. At the same time, it is clear that the desired mixed derivative approximation must be
at the cell center because this is where pressure is defined. We can construct this as a centered
difference approximation with indexing that associates the lower right-hand finite-difference grid
point of a cell with the cell index (i, j), using grid spacings hx and hy. Thus, we obtain

D0,xD0,y (ũ v)i,j =
1

hxhy
((ũ v)i,j+1 − (ũ v)i,j − (ũ v)i−1,j+1 + (ũ v)i−1,j) . (3.13)

This completes discretization of the right-hand side of the MAC pressure poisson equation at interior
grid points. We next need to consider special treatment required near boundaries.

3.1.3 Implementation near boundaries

We have previously given a thorough treatment of the usual boundary conditions for velocity and
pressure on a staggered grid in Chap. 2. But further treatment is needed here for the right-hand
side of the PPE. In particular, because of the details of staggered-grid discretizations, if the right-
hand side function contains any derivative approximations information on, or beyond, the adjacent
boundary will be needed. In this section we will show how each of the terms in the right-hand
side of (3.9) is treated at the boundaries of the domain, analogous to what we have already done

3.1. THE MARKER-AND-CELL METHOD 105

for interior locations. We will do this at a corner of the domain; this represents the severest case
because it demands boundary treatments in two directions simultaneously. Away from corners the
treatment will be similar, but only one direction will require special care. Figure 3.2 provides a
modification of Fig. 3.1 that emphasizes the lower right-hand corner of the boundary region of the

u, v∼ 

∼
u, vu, v ∼

u, v
∼

(N , 2)x

right boundary

bottom boundary

Figure 3.2: Near-boundary grid cells for treatment of right-hand side of Eq. (3.9).

computational domain.
We begin by observing that the first term on the right-hand side of Eq. (3.9) is approximated

exactly as in Eq. (3.10); that is

(
D2

0,x +D2
0,y

)
DNx,2 =

1

h2
x

(DNx−1,2 − 2DNx,2 +DNx+1,2) +
1

h2
y

(DNx,1 − 2DNx,2 +DNx,3) . (3.14)

This is made possible by the fact that the divergence-free condition is required to hold on all
boundaries (because it is needed to set the pressure), and this implies that, e.g., DNx+1,2 = −DNx,2

and DNx,1 = −DNx,2. The remainder of the points appearing in the above approximation are
interior grid point values of Di,j and so need no special treatment.

Next we consider Eq. (3.11) evaluated at the point (Nx, 2). This now takes the form

D2
0,xu

2
Nx,2 =

1

h2
x

(
u2

Nx−1,2 − 2u2
Nx,2 + u2

Nx+1,2

)
,

where only the term u2
Nx+1,2 needs any special attention. But this value occurs at the cell center

in the image cell to the right of the interior point (Nx, 2). The u-component of velocity on the
vertical boundary of this cell must satisfy a zero mass flux condition because of the solid wall. As a
consequence, we must have u2

Nx+1,2 = −u2
Nx,2, and this completes evaluation of this approximation.

The approximation of D2
0,yṽ

2
i,j corresponding to Eq. (3.12) is done in a completely analogous way,

using the same reasoning.
Similarly, approximation of the first mixed-derivative term, D0,xD0,y (ũ v)i,j, given in Eq. (3.13),

is completely trivial. Three of its four entries on the right-hand side are products of velocity
components residing on physical (solid) boundaries, and the remaining entry is an interior point.
Hence, no special treatment is needed.

106 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

3.1.4 Marker particle trajectories for free surface tracking

The final item we treat with regard to the MAC method is its ability to predict the location of free
surfaces. This is accomplished by introducing massless marker particles in the flow and following
their Lagrangian trajectories as the flow field evolves in time. Figure 3.3 provides an indication of

marker particles

Figure 3.3: Introduction of massless marker particles.

how this is done in practice. In particular, at the time marker particles are first introduced it is
common to place four or five markers in each grid cell, as noted in [1]. Because these are massless,
they follow the velocity field to produce Lagrangian pathlines, and this is implemented by noting
that the (x, y) position of a particle is given by

dxp

dt
= u ,

dyp

dt
= v , (3.15)

or

xn+1
p = xn

p +

∫ tn+1

tn
u dt , (3.16a)

yn+1
p = yn

p +

∫ tn+1

tn
v dt . (3.16b)

Forward-Euler integration, e.g., then leads to

xn+1
p = xn

p + kup , (3.17a)

yn+1
p = yn

p + kvp , (3.17b)

where up and vp represented appropriately interpolated velocity components at the location (xp, yp),
as discussed next, and k is the time step used to integrate the momentum equations.

Clearly, there are two main problems to be treated associated with this approach. The first is in-
terpolation of the velocity field at each time step to provide computed results at correct Lagrangian
locations so that the numerical integration can be conducted. It has been typical to employ multi-
linear interpolation, but obviously for very complicated flow behavior this would prove to be very

3.1. THE MARKER-AND-CELL METHOD 107

inaccurate except on very fine grids. Thus, higher-order methods might be desirable, including use
of cubic splines. It should also be noted that on highly non-orthogonal generalized-coordinate grids
it may be necessary to employ contravariant velocity components

The second problem is the numerical integration itself. Here, we have employed simple forward-
Euler integration as was done in the original presentation of the MAC method in [32]. This is
consistent with the order of accuracy of the velocity field simulation. But, especially if a higher-
order integration scheme is used to solve the momentum equations, as will be done later for other
techniques (and could be done here, as well), then it would be desirable to employ more accurate
integrations to obtain the particle trajectories. Another approach is to use multiple time steps of
smaller size than the momentum equation time steps to produce smoother particle trajectories.

It should be clear that the initial placement of marker particles indicated in Fig. 3.3 is rather
arbitrary, as is the number of particles per grid cell. Handling details such as these is generally left
to the specific implementation. A related problem is introduction of new particles at later times
in situations that result in some (or even all) of the original particles exiting the computational
domain. There are numerous cases to be dealt with in this regard, and methods of treatment tend
to be ad hoc. Thus, we will not provide further discussions here.

Finally, we mention that despite the fact that the MAC method is intended for treating free
surfaces, no effects of surface tension have been incorporated in this basic formulation. Similarly, no
specific effort is made to guarantee satisfaction of free surface kinematic conditions. Despite all this,
MAC has been a quite successful tool, both for simulating free surface flows, and for incompressible
flow in general—and it was the first method to have this capability. Nevertheless, there are by
now more modern (and better) approaches, and we will discuss these in the sequel. Before doing
that, however, we will end this section with a presentation of the formal MAC algorithm and some
closing discussions associated with it.

3.1.5 The MAC algorithm

In this final subsection we present a coarse-grained pseudo-language algorithm that summarizes
the essential parts of the MAC approach.

Algorithm 3.1 (Marker and Cell) Suppose n time steps have been completed. To advance the
solution to time level n+ 1, perform the following steps:

1. load right-hand side of discrete PPE (3.9) using time level n results to calculate divergences;

2. solve the PPE for time level n+ 1 pressure using any appropriate elliptic solver;

3. apply explicit Euler integration to advance the momentum equations to time level n+ 1 using
time level n information for all terms except those corresponding to pressure gradients;

4. if marker particles are active, perform required interpolations and ODE integrations of Eqs.
(3.16) to advance particle locations to the n+ 1 time level.

It should be noticed that because forward Euler (explicit) integration is used in the momentum
equations, the time stepping is only conditionally stable. In particular, if Re is small, we expect
the time step to be limited by diffusive stability requirements similar to those needed for the heat
equation. On the other hand, if Re is relatively large we would expect that a CFL-type condition
would be required. Results presented in Fletcher [45] confirm the first of these, but a somewhat

108 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

different requirement is found in the second case. According to [45], linear stability analyses carried
out by Peyret and Taylor [58] show that the time step size for a 2-D problem is limited by

k ≤ min

[(
1

4
Reh2

)
,

(
4/Re

maxi,j (|ui,j| + |vi,j|)2

)]
. (3.18)

This stability condition is quite restrictive, and in recent years the trend has been toward use of
explicit schemes in the present context.

Finally, it must be cautioned that although the MAC algorithm formally leads to satisfaction
of the divergence-free constraint, it does this indirectly through details of the PPE; so fairly tight
convergence tolerances must be employed for the PPE iterations to be sure the pressures computed
from Eq. (3.9) actually correspond to a mass-conserved velocity field. Moreover, the approximation
used for the time derivative of the divergence on the right-hand side of this equation introduces
further error with respect to satisfying the divergence-free constraint, and the velocity field at time
level n+1 is calculated only from the momentum equation, thus introducing additional divergence.
Finally, if we recall the theoretical analyses of the N.–S. equations from Chap. 1, we recognize that
in the context of the MAC algorithm it is essential that the initial velocity field be very accurately
divergence free. On the other hand, consistent with well-posedness requirements for the N.–S.
equations it is not necessary to specify initial data for the pressure field.

3.2 SOLA Method

The SOLA algorithms were originally developed at the Los Alamos National Laboratories as a
simplification of the MAC methods. Solution of the PPE at each time step in MAC procedures
was considered overly expensive, and in addition it was recognized that for many flows there was
not any real need to track the Lagrangian marker particles. Ultimately, versions of SOLA were
developed to treat free surfaces in a rather different way from that done in MAC methods. In the
present discussions, however, we will consider only the simplest form of the algorithm. With only
a few minor modifications, we will basically follow the original treatment of Hirt et al. [59].

We begin by recalling that there are two main classes of approaches to satisfying the divergence-
free constraint associated with solving the incompressible N.–S. equations: i) direct solution of the
continuity equation, and ii) use of a PPE. The MAC method treated in the preceding section is an
example of the latter, and SOLA is based on the former. This is accomplished by constructing a
fixed-point iteration of the continuity equation as follows.

As we have noted previously, although the pressure does not appear explicitly in the divergence
of the velocity field, it is certainly present implicitly since the velocity components are calculated
from the momentum equations which contain the pressure gradient. Thus, we can formally express
the solenoidal condition as

D(p) = 0 , (3.19)

where D represents the divergence as in the preceding section.

Now if we were to solve this locally in a single grid cell via Newton iterations we would obtain

p
(m+1)
i,j = p

(m)
i,j − Di,j

∂Di,j/∂pi,j
. (3.20)

We next calculate ∂Di,j/∂pi,j using the discrete form of the momentum equations substituted into
the divergence. Since SOLA employs forward Euler time integration, as used in MAC methods,

3.2. SOLA METHOD 109

the discrete momentum equations take the form

un+1
i,j = un

i,j + k
{
ν
(
D2

0,x +D2
0,y

)
un

i,j −
[
D+,xpi,j +D+,x

(
un 2

i,j

)
+D−,y

(
ũn

i,jv
n
i,j

)]}
, (3.21a)

vn+1
i,j = vn

i,j + k
{
ν
(
D2

0,x +D2
0,y

)
vn
i,j −

[
D+,ypi,j +D−,x

(
ũn

i,jv
n
i,j

)
+D+,y

(
vn 2

i,j

)]}
. (3.21b)

These equations are the same as Eqs. (3.3) used in the MAC method except we have suppressed
the time level indexing on pressure. It will be seen that in the context of the SOLA algorithm these
equations provide only estimates of the velocity field, and these are, in turn, corrected in a manner
that will later be seen to be closely related to Leray projection.

We now differentiate Eq. (3.21a) with respect to x, thus obtaining an expression for the first
term in the discrete divergence Di,j, and then we differentiate the result with respect to pi,j. This
leads to

∂

∂pi,j
un+1

x,i,j ' − ∂

∂pi,j
(D−,xD+,xpi,j)

=
2k

h2
. (3.22)

Exactly the same result is obtained by differentiating (3.21b) with respect to y and again differen-
tiating with respect to pi,j. Thus, we can combine these to obtain

∂Di,j

∂pi,j
=

4k

h2
, (3.23)

and it follows that (3.20) can be written as

p
(m+1)
i,j = p

(m)
i,j − h2

4k
Di,j , (3.24)

or

δpi,j = −h
2

4k
Di,j . (3.25)

We next observe that because discretization of the momentum equations is explicit, a change in
pressure as given in (3.25) will be the only direct effect leading to a change in velocity. In particular,
replacing ui,j with ui,j + δui,j in Eq. (3.21a) shows that

δui,j =
k

h
δpi,j ,

and thus

u
n+1 (m+1)
i,j = u

n+1 (m)
i,j +

k

h
δpi,j . (3.26)

We obtain a completely analogous result from the y-momentum equation:

v
n+1 (m+1)
i,j = v

n+1 (m)
i,j +

k

h
δpi,j . (3.27)

Now note that the iterations indicated in Eqs. (3.24) through (3.27) are intended to achieve
mass conservation; viz., δpi,j → 0 as Di,j → 0. But this implies that whenever ui,j and vi,j are
modified, it will be necessary to also adjust ui−1,j and vi,j−1 in the same grid cell in order to
satisfy the divergence-free constraint for the entire grid cell. Thus, we also perform the following
calculations:

u
n+1 (m+1)
i−1,j = u

n+1 (m)
i−1,j − k

h
δpi,j , (3.28)

110 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

and

v
n+1 (m+1)
i,j−1 = v

n+1 (m)
i,j−1 − k

h
δpi,j . (3.29)

The minus signs on δpi,j in this second set of formulas should be noted. These arise directly from
the requirement that Di,j = 0 in each grid cell. In particular, observe that for uniform grid spacing
that is equal in both directions we have

D
(m)
i,j =

1

h

(
u

(m)
i,j − u

(m)
i−1,j + v

(m)
i,j − v

(m)
i,j−1

)
. (3.30)

If one solves each of Eqs. (3.26) through eq29:ch3 for the value at the mth iterate and substitutes
the result into (3.30), one obtains

D
(m)
i,j = D

(m+1)
i,j − 4k

h2
δpi,j .

But we want the divergence to be zero at the advanced iteration; that is, D
(m+1)
i,j = 0 should hold.

This implies that

D
(m)
i,j = −4k

h2
δpi,j ,

which is identical to (3.25) after rearrangement. Clearly, this can only be achieved with the com-
bination of signs employed in the above equations.

In executing the SOLA algorithm the preceding equations, (3.24) through eq29:ch3 are evaluated
successively for each grid cell. This represents a Gauss-Seidel iteration, suggesting that introduction
of a relaxation parameter, ω, might be of value in speeding convergence. In SOLA this is done by
replacing (3.25) with

δpi,j = −ωh
2

4k
Di,j . (3.31)

In [59] it is recommended that ω be selected from 0 < ω < 2; but we know from the theory of
linear fixed-point iteration that in general ω should be increased as h is decreased. In addition we
would expect that ω might decrease as k is decreased if we assume there is an optimal value of the
parameter

C ≡ −ωh
2

4k
(3.32)

corresponding to a minimum of the spectral radius of the iteration matrix that arises from this
iteration process. We also note that because the point iteration scheme constructed with the
preceding equations is so similar to SOR, it would be reasonable to consider various other forms
such as line SOR and red-black ordering.

We are now prepared to provide a pseudo-language algorithm by means of which SOLA can be
implemented.

Algorithm 3.2 (SOLA) Suppose n time steps have been completed. Then velocities and pressures
for time step n+ 1 can be calculated as follows.

1. Estimate
{
un+1

i,j

}
and

{
vn+1
i,j

}
using a forward Euler discretization of the momentum equa-

tions with the time-level n pressure, Eqs. (3.21).

2. Compute a mass-conserved velocity field, and the corresponding pressure, by carrying out the
iterations corresponding to Eqs. (3.24) through (3.29)

3.3. ARTIFICIAL COMPRESSIBILITY 111

This algorithm is quite straightforward and easily coded. Boundary condition implementation
is the same as for any other staggered-grid algorithm, so we will not present any further details.
In contrast to the MAC method, the divergence-free condition is explicitly satisfied at the end of
each time step; but the manner in which this is done is such as to potentially cause considerable
error in the discrete momentum equations. So although in principle one might expect to be able
to employ SOLA for time-accurate simulations, this has not been very successful. In particular,
besides the error in the momentum balances induced by this approach, the iteration procedure is
actually no faster than very primitive procedures for solution of the Poisson equation for pressure.
Thus, the original goal of improving the efficiency of MAC methods has not actually been realized
with SOLA.

3.3 Artificial Compressibility

Of the methods treated so far in these lectures, artificial compressibility is probably the most
widely-used. It is a second example of an attempt to solve the continuity equation (in contrast
to solving a pressure Poisson equation) as was SOLA, and we will see that it is in some respects
very similar to SOLA. The method of artificial compressibility was originated by Chorin [60] and
[61] and was developed into a practical method by Kwak and coworkers (see, e.g., Kwak et al.
[62]). The first work by Chorin actually preceded development of SOLA by nearly a decade, but
artificial compressibility did not become well known or widely used until the work by Kwak. Here,
we will very briefly outline the early approach of Chorin and then discuss changes made by Kwak
in producing the NASA code known as INS3D which is documented in the report by Rogers et al.
[63]. We will follow this with some more recent updates due to Soh [64].

In the original development of the artificial compressibility method Chorin [60] and [61] starts
with the usual incompressible N.–S. equations in unconserved form but replaces the divergence-free
condition with

ρt + ux + vy = 0 , (3.33)

and defines an “artificial compressibility” by

δa ≡ ρ

p
, (3.34)

where ρ is density, and p is pressure. Recall from basic fluid mechanics that compressibility is
defined as

δ ≡ ∂ρ

∂p
. (3.35)

It should be observed that although Eq. (3.33) is intended to appear as the compressible continuity
equation, it is, in fact, quite different. Furthermore, it is easy to see that the divergence-free
condition will be recovered only as ρt → 0, so this is intrinsically a steady-state approach.

In [61] Eq. (3.34) is solved for pressure, and the result is substituted into the momentum
equations while taking δa to be constant. Then (3.33) is discretized via centered differences in
both space and time (except adjacent to boundaries, where one-sided spatial discretizations are
employed). The momentum equations are approximated with the Dufort–Frankel scheme (see
[20]), and all calculations are performed on an unstaggered grid. The solution is marched forward
in (pseudo) time until

∂ρ

∂t
= δa

∂p

∂t
= 0 .

At this point the velocity field is divergence free, and the discrete momentum equations have also
been satisfied. But it is important to note, as hinted above, that this scheme is only consistent with

112 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

the steady form of the N.–S. equations. Chorin [61] views δ as a relaxation parameter similar to
those used in SOR schemes, and in addition he employs red-black ordering in his solution procedure.

Kwak et al. [62] present a fully-implicit version of artificial compressibility, also employing an
unstaggered grid. They replace Eq. (3.33) with

∂p

∂t
+

1

δa
(ux + vy) = 0 , (3.36)

and they provide the following bounds on the artificial compressibility:

O(h) . δa � 1
[
1 + 4

Re

(
L
Lω

)2 (Lp

L

)]2

− 1

. (3.37)

As discussed in [62], the left-hand inequality arises from stiffness considerations associated with
typical solution procedures. In the right-hand inequality L is a characteristic length used to define
the Reynolds number, and Lω and Lp are lengths over which vorticity and pressure, respectively,
propagate in a single time step.

In [62] a generalized-coordinate formulation of the N.–S. equations is utilized with trapezoidal
time integration and centered spatial differencing. Because this combination of discretization meth-
ods has no dissipation, a fourth-order artificial dissipation term is employed. The implicit formu-
lation is fully coupled and solved at each time step using δ-form Douglas and Gunn time splitting;
however, quasilinearization is not employed. Also, the fourth-order dissipation is replaced with a
second-order term on the left-hand side of the discrete equations to preserve the block tridiagonal
matrix structure. The calculations are marched forward in (pseudo) time until a steady state is
reached, as was the case with Chorin’s implementation.

Artificial compressibility has also been implemented on staggered grids, for example by Soh
[64]; we will provide a modification of this treatment herein. We note from the start that we will
consider computing only steady solutions. The nature of the basic formulation is such that the time
scales of temporal derivatives in the continuity and momentum equations would need to be very
different in order for unsteady calculations to be performed correctly, and this is quite inefficient.
Thus we express the incompressible N.–S. equations as

uτ +
(
u2
)
x

+ (uv)y = −px + ν∆u , (3.38a)

vτ + (uv)x +
(
v2
)
y

= −px + ν∆u , (3.38b)

pτ +
1

δa
(ux + vy) = 0 , (3.38c)

where τ is pseudo time.
We will employ the control-volume centered-difference approximations as done previously be-

cause we are again working with a staggered grid, and because only steady solutions are to be
considered we will implement a backward-Euler temporal integration procedure with linearization
about the previous time step in the momentum equations. The continuity equation will be dis-
cretized with forward Euler in time and centered (with respect to a single cell) differencing in space.
Thus, the system of fully-discrete equations takes the form

{
1 − k

[
ν
(
D2

0,x +D2
0,y

)
−D+,x

(
un

i,j ·
)
−D−,y

(
vn

i,j ·
)]}

un+1
i,j = un

i,j − kD+,xpi,j , (3.39a)

{
1 − k

[
ν
(
D2

0,x +D2
0,y

)
−D+,x

(
ũn

i,j ·
)
−D−,y

(
ṽn
i,j ·
)]}

vn+1
i,j = vn

i,j − kD+,ypi,j , (3.39b)

pn+1
i,j = pn

i,j −
k

δah
(D−,xui,j +D−,yvi,j) . (3.39c)

3.3. ARTIFICIAL COMPRESSIBILITY 113

In these equations the notation D+,x

(
un

i,j ·
)
, e.g., has the following interpretation:

D+,x

(
un

i,j ·
)

= D+,x

(
un

i,j u
n+1
i,j

)

→ D+,x

(
un

i,ju
n+1
i,j

)

=
1

h

(
un

i+1,ju
n+1
i+1,j − un

i,ju
n+1
i,j

)

=
1

2h

[
un

i+1,j

(
un+1

i+1,j + un+1
i,j

)
− un

i,j

(
un+1

i,j + un+1
i−1,j

)]
, (3.40)

with similar expansions for the various other nonlinear terms in Eqs. (3.39a) and (3.39b). Also we
note that time-level notation has been suppressed on velocity component entries in the continuity
equation (3.39c) because this will depend on details of the implementation, as will be discussed
below. Furthermore, it is of interest to observe that Eq. (3.39c) is of precisely the same form as
the pressure update formula in SOLA, Eq. (3.24).

We are now prepared to consider some details of implementation of artificial compressibility.
There are actually several ways by which this might be done; here we will provide a pseudo-language
algorithm that is similar in structure to a MAC method. In particular, the first step at each new
pseudo-time step will be computation of pressure at the new time level. Once this has been done
the momentum equations will be solved for {ui,j} and {vi,j}. Although these will not be mass-
conserved, we expect that as τ → ∞ mass conservation will occur. The pseudo-language algorithm
is the following.

Algorithm 3.3 (Artificial Compressibility) Suppose n pseudo-time steps have been completed. The
n+ 1th step is calculated as follows.

1. Update pressure to time level n+1 using Eq. (3.39c) with velocities from the nth time level.

2. Solve the momentum equations (3.39a) and (3.39b) for velocity components u and v using
advanced time level pressure computed in step 1., and employing a fully implicit backward-
Euler time stepping procedure implemented with Douglas–Rachford time splitting.

3. Test convergence to steady state; if not converged, return to step 1.

There are a number of observations to be made regarding this algorithm. Probably the most
important is that even if ∂p/∂t→ 0 occurs, there is nothing to guarantee, a priori, that the associ-
ated pressure is in any way related to the physical pressure. In particular, Eq. (3.39c) depends on
a parameter δa (the artificial compressibility) that is only approximately related to true physical
compressibility, and the continuity equation being employed is very different from the actual com-
pressible continuity equation. On the other hand, the pressure field obtained via (3.39c) is such
as to lead to satisfaction of the divergence-free constraint, but it does not satisfy any particular
boundary conditions. Moreover, because the pressure is in no (theoretical) way directly related to
the pressure gradient appearing in the momentum equations (in contrast to the case of pressures
computed from a true pressure Poisson equation, as in the MAC method), it is difficult to justify its
use in the momentum equations as done here. Finally, the pressure computed from Eq. (3.39c) is
unique only up to an arbitrary function of (x, y). Thus, pressure gradients used in the momentum
equations could be very inaccurately predicted. Nevertheless, the steady-state pressures produced
by this algorithm generally appear to be in accord with physical expectations although it is not
clear that many detailed investigations of this have been conducted.

114 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

We next observe that there are other alternatives to implementing artificial compressibility.
In light of the close relationship to SOLA, an obvious one would be to compute a provisional
velocity from the momentum equations at the beginning of each time step, as done in SOLA, and
follow this with a pressure update obtained from Eq. (3.39c). This could then be iterated (within
the momentum equation time step) with the SOLA velocity updates to produce a divergence-free
velocity field at the end of each time step, thus permitting solution of time-dependent problems.
There are also other alternatives, but it is not clear that any of these deserve much serious attention
because the algorithms to be presented in the next two sections of these notes have proven to be
so effective that it is unlikely that other approaches will be very competitive.

3.4 Projection Methods

Projection methods as a class of Navier–Stokes equation solution procedures can be viewed as
arising in the work of Leray [2] and [3] dating back to the early 20 th Century, but they were
introduced in the context of numerical simulations of the N.–S. equations by Chorin [60] and [65].
The basic ideas, however, were already known to Krzywicki and Ladyzhenskaya [66], although they
were not implemented in computational procedures. Furthermore, Fujita and Kato [67] employed
similar ideas for proofs of existence and uniqueness of N.–S. solutions.

One of the most attractive features of projection methods is that unlike all of the previously
discussed techniques which have been constructed mainly on the basis of ad hoc (often physical)
arguments, projection methods, at least in an abstract setting, (disregarding what actually is
necessary to produce an implementation) have a quite sound mathematical underpinning.

There have been numerous versions of the projection method following its introduction by
Chorin, but it is not the purpose of these notes to provide a detailed survey of these. We will
briefly review Chorin’s original approach because it contains elements that are important for a basic
understanding of the method in general, and we will then proceed to a fairly detailed description
of a modern approach that contains parts of the method presented by Kim and Moin [42] and
also aspects studied by Gresho [68]. We will carry this out first in an analytical framework in
which it is easy to understand the basic principles being used, and we then provide details needed
for implementation of a computational algorithm. We note that much has been accomplished by
various investigators, beyond what we present in these lectures, including early work of Fortin et
al. [69] published soon after Chorin’s method, a second-order method by Bell et al. [70] and fairly
recent studies by Shen [71] and [72], to name only a few.

3.4.1 Outline of Chorin’s projection method

The basic idea underlying construction of any projection method is the following theorem often
referred to as the Hodge decomposition theorem.

Theorem 3.1 Every vector-valued function v ∈ L2(Ω), Ω ⊂ Rd, d = 2, 3, can be decomposed as

v = ∇q + ∇×φ,

where q and φ are appropriately smooth in the sense of distributions.

This theorem is stated more precisely, and proven (for Ω ⊂ R2), in Girault and Raviart [73], and
it is of course reminiscent of the Helmholtz–Leray projection discussed in Chap. 1, which should
not be surprising. Clearly, since curl of a gradient is automatically zero, as is the divergence of
a curl (demonstration of which we leave to the reader), it follows that in words we could state

3.4. PROJECTION METHODS 115

this theorem as “any L2 vector-valued function can be decomposed as the sum of curl-free and
divergence-free parts.”

Chorin makes direct use of this in the following way. Write the momentum equations as

ut + ∇p = F (u) , (3.41)

where, as usual, u = (u, v)T , and where F (u) must contain the advective and diffusive terms of the
N.–S. equations. Now if we suppose F (u) ∈ L2, (i.e., u ∈ H2) the Hodge decomposition theorem
implies that it can be expressed as a sum of curl-free and divergence-free parts. But it is clear that
the second term on the left in (3.41) is curl-free, and moreover if we assume the velocity field is
divergence-free, as it must be for an incompressible flow, then the first term on the left is divergence
free.

We observe that specific details of application of these ideas are somewhat complicated, and the
resulting algorithm is no longer used; so we will not spend much time on this. But we do note that
from the standpoint of implementation, the above equation was split in the sense of fractional-step
operator splitting (as in Yanenko [74]), discretized on an unstaggered grid, and stepped forward in
time using the Dufort–Frankel procedure (see, e.g., [20]). The spatial discretizations were centered
except near boundaries, where they were one-sided, and the algorithm employed an iteration of
velocity and pressure similar to what we have already seen in the SOLA algorithm. It is of interest
to note that Chorin’s algorithm preceded SOLA by nearly 10 years, but the authors of SOLA were
apparently not aware of its existence. Finally, we note that as in Rhie and Chow [34], the div-
stability condition was circumvented via alterations to both advective term discretizations (only
near boundaries) and use of specific averaging procedures in constructing pressure gradient terms.
It does not appear, however, that these authors were aware of Chorin’s work, which preceded theirs
by nearly 15 years.

3.4.2 Analytical construction of a modern projection method

In this subsection we provide a detailed analysis of a more modern projection method, probably
first used by Kim and Moin [42] in a form somewhat similar to what we present here. Considerable
analysis of many of the steps employed here can be found in the paper by Gresho [68], and the
method emphasized here is termed projection-1 in [68].

We begin with the incompressible Navier–Stokes equations expressed in conservation form as

ut + ∇·
(
u2
)

= −∇p+ ν∆u , (3.42a)

∇·u = 0 . (3.42b)

These equations can be viewed as being either two or three dimensional; our treatment would be
the same in either case, so we will simply employ the vector notation given here until we begin
construction of computational algorithms.

The first step in most basic projection methods is to solve the momentum equations without
the pressure gradient terms, and then “solve” a simple equation including the pressure gradient.
Formally, this is a fractional-step procedure as studied extensively by Yanenko [74], and we can
express this as

ût + ∇·
(
û2
)

= ν∆û , (3.43a)

ut = −∇p . (3.43b)

116 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

The first of these is a vector system of Burgers’ equations to be solved for û, an “auxiliary velocity”
that is not divergence free, which is relatively easy, assuming that such difficulties as the cell-Re
problem and aliasing can be handled. The second equation is converted to a pressure Poisson
equation whose solution leads to construction of the Leray projector needed to obtain the required
divergence-free solution.

Taking the divergence of Eq. (3.43b) yields

∇·ut = (∇·u)t = −∇·∇p = −∆p .

At this point we recognize that this is not the pressure Poisson equation for the true pressure (recall
Eq. (2.22)), and we introduce the notation φ ∼ p for the “pseudo pressure.” Thus, we write the
above as

−∆φ = (∇·u)t , (3.44)

and we approximate the right-hand side as

(∇·u)t '
(∇·u)n+1 − (∇·û)

k
. (3.45)

Here, as usual, k denotes a time step size (the same one used to numerically solve Eq. (3.43a).
Now we require (∇·u)n+1 = 0 as was done in the MAC method, and this allows us to write

(3.44) as

∆φ =
∇·û
k

. (3.46)

It is clear that for any û, no matter how obtained, if φ satisfies (3.46) then constructing un+1 as

un+1 = û − k∇φ (3.47)

implies (∇·u)n+1 = 0, as required. The reader will recognize Eq. (3.47) as the Leray projector of
Chap. 1, except for the factor of k. The need for this factor will become clear as we proceed.

A few observations regarding this procedure are in order. First, it is equivalent to Gresho’s
projection-1 [68] method provided we set

pn+1 = φ ,

with p being the physical pressure. Considerable analysis of this is provided in [68], but the most
notable result is one given by Kim and Moin [42]; namely

p = φ+ O(k/Re) . (3.48)

We remark that a proof of this is alluded to in [42], but the approach suggested is spurious except
possibly in the 2-D case where it can be guaranteed that N.–S. solutions are unique. Even then,
however, the same uniqueness would need to be proven for the discretized equations in order for
the proposed “proof” to be valid.

Second, we should observe that because of the fractional-step construction of this projection
method, independent of the integration procedure used to advance the momentum equations in
time, the final result for u can have order of accuracy no better than O(k)—and it could be worse.
We can, in fact, obtain a rough estimate in the following way. For simplicity consider a forward-
Euler time integration of the momentum equations, so we can express the semi-discrete form of Eq.
(3.43a) as

û = un + k
[
νun

xx −
(
u2
)n
x

]
.

3.4. PROJECTION METHODS 117

Then from (3.47) it follows that
û = un+1 + k∇φ ,

and substitution of this into the above yields, after rearrangement,

un+1 = un + k
[
νun

xx −
(
un 2

)
x
−∇φ

]
. (3.49)

We first notice that this would be exactly the forward-Euler integration of the momentum equations
(and, thus, would be first-order accurate in time) if φ were replaced with the physical pressure p.
But from Eq. (3.48) we see that φ and p differ by O(k), so this substitution will result in a local
O(k2) error, and thus a global error that is O(k). We emphasize that this is separate from the
integration error. It comes from the fractional-steps operator splitting, and it cannot be removed
by simply increasing the order of accuracy of the integration scheme. Nevertheless, the overall
projection scheme constructed in this way is first order in time and is thus an acceptable practical
approach.

Finally, we note that for simulations of fluid flow in which high-order accuracy is needed for
the pressure (e.g., flows with free surfaces in which pressure is involved in a force balance needed
to set the location of the free surface), it may be necessary to solve the actual Poisson equation
for pressure. This can now be done without any but the usual numerical approximations because
the velocity field is divergence free, and Eq. (2.22) can be used directly with appropriate boundary
conditions given in Eqs. (2.35) and (2.36), in contrast to what was necessary, for example, in the
MAC method. The disadvantage of this is, of course, that an additional PPE must be solved, and
this can be quite expensive. In cases where the physical pressure is not needed in the solution
process, but might be desired at particular times during the simulation, it is possible to perform
this second PPE solve only at those desired times because the exact pressure is not needed in
advancing the projection method forward in time.

3.4.3 Numerical implementation of projection methods

As we have already noted, there have been numerous versions of the basic idea first implemented by
Chorin [60], and what is to be presented here is a fairly modern approach, due in part to Kim and
Moin [42] and to Gresho [68]. We begin by providing an outline of the steps needed to implement
this procedure, and we follow this with subsections detailing each of these steps. Finally, we will
present a fairly detailed, but still coarse-grained, pseudo-language algorithm casting the original
outline in a more computational form.

Outline of Basic Steps

The basic steps needed to construct a projection method of the form we will consider herein
are the following:

1. Solve the “Burgers’ equation” form of the momentum equations via the following steps/techni-
ques

(a) generalized trapezoidal integration in time

(b) δ-form quasilinearization (or Newton’s method)

(c) spatial discretization of right-hand sides of equations

(d) spatial discretization of left-hand sides of equations

(e) Douglas & Gunn time splitting

118 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

(f) boundary condition treatment during Newton iterations

2. Filter solution û obtained from Burgers’ equation, if necessary

3. Construct divergence of û and solve PPE for pseudo pressure φ

4. Perform Leray projection using φ to construct the projector

5. Solve PPE for physical pressure, if needed

6. Prepare results for output to post processing software

We observe that Chorin’s original projection method was used by him only for steady-state
problems. Indeed, it does not seem possible to rigorously prove that its temporal order of accuracy
is any better than O(k1/4). However, this low accuracy appears to be caused by near-boundary
discretizations employed to circumvent the div-stability condition on the (natural) unstaggered grid
employed by Chorin [60]. On staggered grids as we are using herein, the preceding algorithm is
temporally O(k), and we will later see that it is relatively easy to upgrade it to O(k2) accuracy, at
least for the velocity components. Thus, it is a viable procedure for time-dependent problems and,
in fact, probably the best that is available.

The fact that this approach is useful for such problems leads us to summarize it via a formal
discrete solution operator expressed as

un+1 = PLF (δh)Sh(k)un , (3.50)

where Sh is any chosen basic discrete solution operator constructed on a grid of spacing h; F (δh)
is a discrete mollifier with kernel δh such as the Shuman filter [25] described in Chap. 2, and PL is
the Leray projector of Chap. 1. We will consider each of these in more detail in what follows.

Solution of Burgers’ equation form of momentum equations

As the preceding outline shows, there are numerous tasks associated with this first step corre-
sponding to construction of the discrete solution operator Sh, and from the standpoint of program-
ming a computer code this is the most difficult part. We will be working with the staggered-grid
formulation of the governing equations, but most of what we do here could be done on cell-centered,
co-located grids, as presented in Zang et al. [37]. We begin by presenting the staggered-grid finite-
volume equations in a formal analytical form to provide a reminder of the various averages that
must be employed in this formulation:

ut +
(
u2
)
x

+ (ũ v)y = −px + ν∆u , (3.51a)

vt + (ũ v)x +
(
ṽ 2
)
y

= −py + ν∆v , (3.51b)

where “ ” and “ ˜ ” denote horizontal and vertical averages, repectively, as given in Eqs. (3.8).
To obtain the corresponding Burgers’ equations we simply delete the pressure-gradient terms and
introduce the “ ̂ ” notation to indicate auxiliary velocity components.

Generalized Trapezoidal Integration. We can now immediately apply generalized trapezoidal
integration to these equations to obtain, for example, for the x-momentum equation,

un+1 = un + θk
[
ν∆u−

(
u2
)
x
− (ũ v)y

]n+1
+ (1 − θ)k

[
ν∆u−

(
u2
)
x
− (ũ v)y

]n
. (3.52)

3.4. PROJECTION METHODS 119

Here, θ is a user-provided parameter that when set equal to 1.0 produces a backward-Euler in-
tegration scheme, and when set to 0.5 produces trapezoidal integration. (The “ ̂ ” notation has
been temporarily suppressed for simplicity, but it is understood that the solution to this equation
is û in the absence of a pressure-gradient term.) We remark that the former can be valuable when
only a steady-state solution is sought because backward-Euler integrations are somewhat more sta-
ble for nonlinear problems than are trapezoidal, and temporal accuracy is of no importance for a
steady-state solution. Thus, with θ = 1 it is possible to employ larger time step sizes k, and reach
a steady state somewhat sooner—in principle. But the reader should be cautioned that very large
time steps are not guaranteed to be optimal because the essential aspect of any such calculation
is the spectral radius of the corresponding iteration matrix (see [40]), and this is not necessarily a
monotone function of the time step size k.

Quasilinearization. Quasilinearization (the Newton-Kantorovich procedure) is in one form or an-
other the most widely-used form of linearization of the N.–S. equations. In many problems it is
completely equivalent to ordinary Newton iteration, but in the present case this is not true due to
averaging of the velocity field needed to construct the control-volume implementation on a stag-
gered grid. In this section we will see that in this case it is possibly better to completely discretize
the governing equations, and then apply the usual Newton method approach rather than linearizing
first and then discretizing the linear PDEs, as done in quasilinearization. Nevertheless, we provide a
complete treatment of quasilinearization, if for no other reason than to contrast the two approaches
in the case of a staggered-grid implementation.

We will demonstrate the difficulty that arises by considering the x-direction advection term
from the x-momentum equation in detail: that is,

(
u2
)
x
. We first perform quasilinearization in the

usual way by defining
F (u) ≡ u2 , (3.53)

and writing

F (u) ' u(m) 2 +

(
∂F

∂u

)(m)

δu+ · · · ,

where as usual (m) denotes an iteration counter, and

δu ≡ u− u(m) . (3.54)

We first observe that because some terms in Eq. (3.52) involve averaged quantities, and others
do not, it is somewhat difficult to directly apply the above definitions. We must ultimately solve a
system for δu consisting of the Jacobian matrix (constructed from the (∂F/∂u)(m)) and a right-hand
side function, but the right-hand side will be expressed in terms of both averaged and unaveraged
quantities on a staggered grid, ultimately introducing discrete values of δu other than δui,j . This
then complicates construction of the left-hand side (Jacobian) matrix; but if this is carried out
properly, the usual band structure is not altered.

To see this replace u with u in Eq. (3.53):

F (u) = u2 .

Now substitute the definition of u, Eq. (3.8a), on the right-hand side, and suppress the constant j
indexing for simplicity, to obtain

F (u) =

[
1

2
(ui + ui−1)

]2

=
1

4

(
u2

i−1 + 2uiui−1 + u2
i

)
.

120 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

This shows that, discretely, F (u) depends on u at two different grid points, implying there must
be two different contributions to δu, viz., δui and δui−1.

Thus, in this case we see that

F (u) = F (u(m)) +

(
∂F

∂ui−1

)(m)

δui−1 +

(
∂F

∂ui

)(m)

δui + · · ·

= u
(m) 2
i + u

(m)
i δui−1 + u

(m)
i δui + · · · . (3.55)

It then follows that

(F (u))x =
(
u

(m) 2
i

)
x

+
(
u

(m)
i δui−1

)
x

+
(
u

(m)
i δui

)
x

+ · · ·

' 1

h

(
u

(m) 2
i+1 − u

(m) 2
i

)
+

1

h

(
u

(m)
i+1δui − u

(m)
i δui−1

)
+

1

h

(
u

(m)
i+1δui+1 − u

(m)
i δui

)
, (3.56)

rather than simply

(F (u))x =
1

h

(
u

(m) 2
i+1 − u

(m) 2
i

)
+

1

h

(
u

(m)
i+1δui+1 − u

(m)
i δui

)
,

as would be obtained without taking into account the dependence of F on both ui and ui−1.
If, on the other hand, we quasilinearize with respect to u instead of with respect to u, despite

the fact that it is δu (and not δu) that is needed, we obtain

F (u) ≡ u(m) 2 +

(
∂F

∂u

)(m)

δu+ · · · , (3.57)

and in this case (
∂F

∂u

)(m)

= 2u(m) .

Thus, we have
F (u) = u(m) 2 + 2u(m)δu+ · · · ,

and

(
u(m) 2

)
x

∣∣∣∣
i

' 1

h

(
u

(m) 2
i+1 − u

(m) 2
i

)
+

2

h

(
u

(m)
i+1δui+1 − u

(m)
i δui

)

=
1

h

(
u

(m) 2
i+1 − u

(m) 2
i

)
+

1

h

(
u

(m)
i+1(δui+1 + u

(m)
i δui) − u

(m)
i (δui + δui−1)

)

=
1

h

(
u

(m) 2
i+1 − u

(m) 2
i

)
+

1

h

(
u

(m)
i+1δui − u

(m)
i δui−1

)
+

1

h

(
u

(m)
i+1δui+1 − u

(m)
i δui

)
. (3.58)

We again remind the reader that indexing is that of cells, and not of grid points (see Fig. 2.10), and
as a consequence what appear as one-sided difference approximations are actually centered with
respect to an appropriate cell (and are thus, formally, second-order accurate).

We see that Eqs. (3.56) and (3.58) are identical; but the analysis leading to the latter is somewhat
nonintuitive. As a consequence, it is possibly better in this situation to directly apply Newton’s
method to the fully-discrete equations rather than attempting to use quasilinearization in this
somewhat ambiguous situation; we will do this in the next section. In any case, it is clear from
these results that the Jacobian matrix needed on the left-hand side of the equation is somewhat
different than would be the case in the absence of averaging.

3.4. PROJECTION METHODS 121

Since we see that the correct result can be recovered by a slight modification of the usual
approach to quasilinearization, we will carry this out here for the second advective term of the
x-momentum equation, and check this later via Newton’s method. Thus, we consider

G(ũ) ≡ ũ v , (3.59)

Then formal quasilinearization with respect to ũ results in

G(ũ) = (ũ v)(m) +

(
∂G

∂ũ

)(m)

δũ+ · · · ,

where we have not linearized with respect to v because we intend to ultimately employ a sequential
solution process for the momentum equations, and in this case nothing is gained by introducing
terms associated with δv in the x-momentum equation.

From Eq. (3.59) we see that
∂G

∂ũ
= v ,

so we have

G(ũ) = (ũ v)(m) + v(m)δũ+ · · · . (3.60)

Then differentiation with respect to y, as required in (3.52), yields

(G(ũ))y = (ũ v)(m)
y +

(
v(m)δũ

)
y

+ · · · ,

and evaluation at a vertical grid location j (x-direction indices are now constant) results in

(ũ v)y

∣∣∣∣
j

=
1

h
(ũj vj − ũj−1 vj−1)

(m) +
1

h

(
v

(m)
j δũj − v

(m)
j−1δũj−1

)

=
1

h
(ũj vj − ũj−1 vj−1)

(m) +
1

2h

(
v
(m)
j (δuj + δuj+1) − v

(m)
j−1(δuj−1 + δuj)

)

=
1

h
(ũj vj−ũj−1 vj−1)

(m)+
1

2h

(
v
(m)
j δuj − v

(m)
j−1δuj−1

)
+

1

2h

(
v

(m)
j δuj+1−v(m)

j−1δuj

)
. (3.61)

For the sake of completeness we present analogous results for the advective terms of the y-
momentum equation, but leave details of their derivations to the interested reader. We have

(ũ v)x

∣∣∣∣
i

=
1

h
(ũi vi−ũi−1 vi−1)

(m) +
1

2h

(
ũ

(m)
i δvi−ũ(m)

i−1δvi−1

)
+

1

2h

(
ũ

(m)
i δvi+1−ũ(m)

i−1δvi

)
, (3.62)

and

(
ṽ(m) 2

)
y

∣∣∣∣
j

=
1

h

(
ṽ

(m) 2
j+1 − ṽ

(m) 2
j

)
+

1

h

(
ṽ

(m)
j+1δṽj+1 − ṽ

(m)
j δṽj

)
+

1

h

(
ṽ

(m)
j+1δṽj − ṽ

(m)
j δṽj−1

)
, (3.63)

with

δv ≡ v − v(m) , (3.64)

analogous to Eq. (3.54).

At this point only treatment of linear terms remains, but of course there is no actual linearization
to be done. One simply needs to substitute the definitions of δu and δv, Eqs. (3.54) and (3.64),

122 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

respectively, into the corresponding time level n+ 1 entries of the Burgers’ equation forms of the
x- and y-momentum equations. Thus, for example, from Eq. (3.52) we consider

∆u = ∆
(
u(m) + δu

)

'
(
D2

0,x +D2
0,y

) (
u

(m)
i,j + δui,j

)
. (3.65)

We will close this section on quasilinearization by presenting the complete δ-form of the mo-
mentum equations and noting some of the features of this representation. The preceding analyses
can be combined to produce the following semi-discrete (discrete in time only) result:

{
I−θk

[
ν∆ −

(
u(m) ·

)
x
−
(
v(m) ·̃

)
y

]}
δu = un−u(m)+θk

[
ν∆u(m)−

(
u(m) 2

)
x
−
(
ũ(m)v(m)

)
y

]

+ (1 − θ)k

[
ν∆un−

(
un 2

)
x
−(ũnvn)y

]
,

(3.66a)

and
{
I−θk

[
ν∆ −

(
ũ(m) ·

)
x
−
(
ṽ(m) ·̃

)
y

]}
δv = vn−v(m)+θk

[
ν∆v(m)−

(
ũ(m)v(m)

)
x
−
(
ṽ(m) 2

)
y

]

+ (1 − θ)k

[
ν∆vn−(ũnvn)x−

(
ṽn 2
)
y

]
.

(3.66b)

In the above representations notation such as, e.g.,
(
u(m) ·

)
x

implies that an appropriately-averaged
value of δu is to be inserted into the slot indicated by the “ · ” and then discretized by a chosen
method consistent with what was done earlier in arriving at results given in Eqs. (3.58) and (3.61).

It should be observed that the right-hand sides of these equations are, in fact, the complete
original equations in the limit m → ∞, and they can be directly (explicitly) evaluated for any m;
the left-hand sides are equivalent to the Jacobian matrices of a Newton’s method. In this regard
we note that the former should be discretized to gain as much accuracy as is appropriate, and the
left-hand side should be approximated so as to obtain maximum numerical stability. In particular,
it is not necessary that the left-hand side be the exact Jacobian matrix corresponding to the right-
hand side, although if the differences are too great convergence properties of Newton’s method may
be lost. We will make use of these ideas in what follows.

Spatial Discretization of Right-Hand Side. Spatial discretization of the right-hand sides of Eqs.
(3.66) is straightforward, at least if relatively low-order approximations are employed as we will do
here. We will carry out details for the x-momentum equation, and simply state the corresponding
result for y momentum.

We begin by introducing formal difference operators into the right-hand side of Eq. (3.66a) in
place of the differential operators: thus, we obtain

un
i,j − u

(m)
i,j + θk

[
ν
(
D2

0,x +D2
0,y

)
u

(m)
i,j −D+,x

(
u

(m) 2
i,j

)
−D−,y

(
ũ

(m)
i,j v

(m)
i,j

)]

+ (1 − θ)k
[
ν
(
D2

0,x +D2
0,y

)
un

i,j −D+,x

(
un 2

i,j

)
−D−,y

(
ũn

i,j v
n
i,j

)]
.

The next step is to expand the difference operators. We do this only for the first line of terms
involving the mth quasilinearization iterate because this is all that will be needed to construct the

3.4. PROJECTION METHODS 123

Newton method Jacobian matrix, as we will do momentarily, and the second line of terms will take
an identical form in any case. We thus obtain

un
i,j − u

(m)
i,j + θk

[
ν

(
1

h2
x

(ui−1,j − 2ui,j + ui+1,j) +
1

h2
y

(ui,j−1 − 2ui,j + ui,j+1)

)(m)

(3.67)
− 1

hx

(
u

(m) 2
i+1,j − u

(m) 2
i,j

)
− 1

hy

(
ũ

(m)
i,j v

(m)
i,j − ũ

(m)
i,j−1 v

(m)
i,j−1

)]
.

The analogous result for the y-momentum equation is

vn
i,j − v

(m)
i,j + θk

[
ν

(
1

h2
x

(vi−1,j − 2vi,j + vi+1,j) +
1

h2
y

(vi,j−1 − 2vi,j + vi,j+1)

)(m)

(3.68)
− 1

hx

(
ũ

(m)
i,j v

(m)
i,j − ũ

(m)
i−1,j v

(m)
i−1,j

)
− 1

hy

(
v
(m) 2
i,j+1 − v

(m) 2
i,j

)]
.

The next step is to introduce appropriate definitions of the averaged quantities so that it will
be possible to apply Newton’s method only to unaveraged ones. Recall that we are solving the
momentum equations sequentially, so the x-momentum equation will be linearized only with respect
to the discrete entries of u (and not with respect to those of v)—and, conversely for the y-momentum
equation. Thus, in Eq. (3.67) we will need to insert the definitions of u and ũ from Eqs. (3.8a) and
(3.8c), respectively into the advective terms. For the first of these we obtain

u2
i+1,j − u2

i,j =
1

4

[
(ui+1,j + ui,j)

2 − (ui,j + ui−1,j)
2
]

=
1

4

[
u2

i+1,j + 2 (ui+1,j − ui−1,j) ui,j − u2
i−1,j

]
, (3.69)

where we have suppressed the iteration index since it is understood that this will occur on all terms.
Similarly, for the second advective term we have

ũi,j vi,j − ũi,j−1 vi,j−1 =
1

2

[
(ui,j + ui,j+1)vi,j − (ui,j−1 + (ui,j)vi,j−1

]
. (3.70)

The fully-discrete time-level n+ 1 part of the x-momentum equation can now be expressed as

Fn+1
x = −ui,j + θk

{
ν

[
1

h2
x

(ui−1,j − 2ui,j + ui+1,j) +
1

h2
y

(ui,j−1 − 2ui,j + ui,j+1)

]

− 1

4hx

[
u2

i+1,j + 2 (ui+1,j − ui−1,j) ui,j − u2
i−1,j

]
(3.71)

− 1

2hy

[
(ui,j + ui,j+1)vi,j − (ui,j−1 + (ui,j)vi,j−1

]}
.

At this point we recognize that there is a completely analogous term F n
x corresponding to known

time level n information, and that at each time step we require

Fx(ui−1,j , ui,j−1, ui,j, ui,j+1, ui+1,j) = 0 ,

where Fx ≡ Fn+1
x + Fn

x . Then the Jacobian matrix required for implementing a Newton iteration
procedure is obtained by differentiating the right-hand side of (3.71) with respect to each of the
five entries of u for every grid point. The corresponding matrix, J(Fx), will have the structure of

124 CHAPTER 3. SOLUTION ALGORITHMS FOR THE N.–S. EQUATIONS

a discrete Laplacian, and the system to be solved at each Newton iteration within a time step is of
the form

J(Fx)δu = −F§ ,

with δu as defined earlier in Eq. (3.54) in the context of quasilinearization. An analogous equation
can be derived for δv in terms of functions Fy for solving the y-momentum equation.

What now remains is to construct the elements of J(Fx).

3.5 The SIMPLE Algorithms

3.6 Summary

References

[1] P. J. Roache. Computational Fluid Dynamics. Hermosa Publishers, Albuquerque, NM, 1972.

[2] J. Leray. Etude de diverses équations intégrals non linéaires et de quelques problèmes que pose
l’hydrodynamique. J. Math. Pures Appl. 12, 1–82, 1933.

[3] J. Leray. Essai sur les mouvemnts d’ un liquide visqueaux que limitent des parois. J. Math.
Pures Appl. 13, 331–418, 1934.

[4] O. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow, revised English
edition (translated from the Russian by Richard A. Silverman). Gordon & Breach, New York,
1963.

[5] D. Ruelle and F. Takens. On the nature of turbulence. Comm. Math. Phys. 20, 167–192, 1971.

[6] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141, 1963.

[7] S. A. Orszag and G. S. Patterson. Numerical simulation of turbulence: statistical models and
turbulence, Lecture Notes in Physics 12, 127–147, Springer-Verlag, Berlin, 1972.

[8] O. Ladyzhenskaya. A dynamical system generated by the Navier–Stokes equations. J. Soviet
Math. 3, 458–479, 1973.

[9] O. Ladyzhenskaya. Attractors for Semigroups and Evolution Equations, Cambridge University
Press, Cambridge, 1991.

[10] R. Temam. Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland Pub.
Co., Amsterdam, 1979. (new edition published by Amer. Math. Soc., Providence, RI, 2001)

[11] R. Temam. Navier–Stokes Equations and Nonlinear Functional Analysis, Soc. Indust. Appl.
Math., Philadelphia, 1983. (2nd edition published by SIAM, 1995)

[12] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-
Verlag, New York, 1988.

[13] P. Constantin and C. Foias. Navier–Stokes Equations, University of Chicago Press, Chicago,
1988.

[14] C. R. Doering and J. D. Gibbon. Applied Analysis of the Navier–Stokes Equations, Cambridge
University Press, Cambridge, 1995.

[15] C. Foias, O. Manley, R. Rosa and R. Temam. Navier–Stokes Equations and Turbulence,
Cambridge University Press, Cambridge, 2001.

125

126 REFERENCES

[16] K. E. Gustafson Introduction to Partial Differential Equations and Hilbert Space Methods,
John Wiley & Sons, New York, 1980.

[17] I. Stakgold. Boundary Value Problems of Mathematical Physics I, II. SIAM, Philadelphia,
2000. (Originally published by Macmillan Co., New York, 1967)

[18] P. W. Berg and J. L. McGregor. Elementary Partial Differential Equations. Holden-Day, San
Francisco, 1966.

[19] L. Schwartz. Théorie des Distributions I, II. Hermann, Paris, 1950, 1951.

[20] A. R. Mitchell and D. F. Griffiths. The Finite Difference Method in Partial Differential Equa-
tions, John Wiley & Sons, Inc., Chichester, 1980.

[21] F. Treves. Basic Linear Partial Differential Equations, Academic Press, New York, 1975.

[22] H. L. Royden. Real Analysis, 2nd ed. Macmillan, New York, 1971.

[23] J.-P. Aubin. Applied Functional Analysis, John Wiley & Sons, New York, 1979.

[24] J. A. Goldstein. Semigroups of Linear Operators and Applications, Oxford University Press,
New York, 1985.

[25] F. G. Shuman. Numerical method in weather prediction: smoothing and filtering, Mon.
Weath. Rev. 85, 357–361, 1957.

[26] P. R. Garabedian. Partial Differential Equations, John Wiley & Sons, New York, 1964.

[27] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Tang. Spectral Methods in Fluid Dynamics,
Springer-Verlag, New York, 1988.

[28] P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incompressible Navier–
Stokes equations, Int. J. Numer. Methods Fluids 7, 1111–1145, 1987.

[29] P. M. Gresho. Incompressible fluid dynamics: some fundamental formulation issues, Annu.
Rev. Fluid Mech. 23, 413–453, 1991.

[30] H.-O. Kreiss and J. Lorenz. Initial-Boundary Value Problems and the Navier–Stokes Equations,
Academic Press, Boston, 1989.

[31] T. B. Gatski, C. E. Grosch and M. E. Rose. A numerical study of the two-dimensional Navier–
Stokes equations in vorticity–velocity variables, J. Comput. Phys. 48, 1–22, 1982.

[32] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface, Phys. Fluids 8, 2182–2189, 1965.

[33] C. W. Hirt, A. A. Amsden and J. L. Cook. An arbitrary Lagrangean-Eulerian computing
method for all flow speeds, J. Comput. Phys. 14, 227, 1774.

[34] C. M. Rhie and W. L. Chow. Numerical study of the turbulent flow past an airfoil with trailing
edge separation, AIAA J. 11, 1525–1532, 1983.

[35] C. Hirsch. Numerical Computation of Internal and External Flows, Volume 2: Computational
methods for inviscid and viscous flows, John Wiley & Sons, Chichester, 1990.

REFERENCES 127

[36] S. V. Patankar. Numerical Heat Transfer and Fluid Flow, McGraw-Hill Book Co., New York,
1980.

[37] Y. Zang, R. L. Street and J. R. Koseff. A non-staggered grid, fractional step method for time-
dependent incompressible Navier–Stokes equations in curvilinear coordinates, J. Comput.
Phys. 114, 18–33, 1994.

[38] J. M. McDonough. Lectures in Basic Computational Numerical Analysis, available in PDF
format at the following URL: http://www.engr.uky.edu/∼egr537

[39] J. Douglas, Jr. and J. E. Gunn. A general formulation of alternating direction methods, part
I. parabolic and hyperbolic problems, Numer. Math. bf 6 428–453, 1964.

[40] J. M. McDonough. Lectures in Computational Numerical Analysis of Partial Differential Equa-
tions, available in PDF format at the following URL: http://www.engr.uky.edu/∼me690

[41] M. D. Gunzburger. Finite Element Methods for Viscous Incompressible Flows, Academic
Press, Boston, 1989.

[42] J. Kim and P. Moin. Application of a fractional step method to incompressible Navier–Stokes
equations, J. Comput. Phys. 59, 308–323, 1985.

[43] D. Tafti. Alternate formulations for the pressure equation Laplacian on a collocated grid for
solving the unsteady incompressible Navier–Stokes equations, J. Comput. Phys. 116, 143–153,
1995.

[44] B. P. Leonard. A stable and accurate convection modelling procedure based on quadratic
upstream interpolation, Comput. Meth. Appl. Mech. Engrg. 19, 59–98, 1979.

[45] C. A. J. Fletcher. Computational Techniques for Fluid Dynamics, Volume II, Springer-Verlag,
Berlin, 1988.

[46] R. E. Mickens. Difference Equations, Van Nostrand Rheinhold Co., New York, 1987.

[47] G. de Vahl Davis and G. D. Mallinson. An evaluation of upwind and central difference ap-
proximations by a study of recirculating flow, Computers and Fluids 4, 29–43, 1976.

[48] D. B. Spalding. A novel finite-difference formulation for differential expressions involving both
first and second derivatives, Int. J. Num. Methods Eng. 4, 551, 1972.

[49] W. Shyy. A study of finite difference approximations to steady-state convection-dominated
flow problems, J. Comput. Phys. 57, 415–438, 1985.

[50] T. Yang and J. M. McDonough. Solution filtering technique for solving Burgers’ equation,
accepted for special issue of Discrete and Continuous Dynamical Systems, 2003.

[51] J. M. McDonough and T. Yang. Solution filtering technique for solving turbulence problems,
to be submitted to J. Comput. Phys., 2003.

[52] J. M. McDonough, Y. Yang and E. C. Hylin. Modeling Time-dependent turbulent flow over
a backward-facing step via additive turbulent decomposition and chaotic algebraic maps, pre-
sented at First Asian Computational Fluid Dynamics Conference, Hong Kong, Jan. 16–19,
1995.

128 REFERENCES

[53] J. M. McDonough, V. E. Garzon and D. Schulte. Effect of film-cooling hole location on
turbulator heat transfer enhancement in turbine blade internal air-cooling circuits, presented
at ASME TURBO EXPO 99, Indianapolis, IN, June 7–10, 1999.

[54] J. M. McDonough, T. Yang and M. Sheetz. Parallelization of a modern CFD incompressible
turbulent flow code, to be presented at Parallel CFD 2003, Moscow, May 13–15, 2003.

[55] W. F. Ames. Numerical Methods for Partial Differential Equations Second Edition, Academic
Press, New York, 1977.

[56] R. Shapiro. Smoothing, filtering and boundary effects, Rev. Geophys. and Space Phys. 8,
359–387, 1970.

[57] A. Majda, J. McDonough, and S. Osher. The Fourier method for nonsmooth initial data,
Math. Comput. 32, 1041–1081, 1978.

[58] R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow, Springer-Verlag, New
York, 1983.

[59] C. W. Hirt, B. D. Nichols and N. C. Romero. SOLA—A Numerical Solution ALgorithm for
Transient Fluid Flows, Report LA-5852, Los Alamos Scientific Laboratories, Los Alamos, NM,
1975.

[60] A. J. Chorin. Numerical Study of Thermal Convection in a Fluid Heated from Below, Ph.D.
Dissertation, Department of Mathematics, New York University, 1966.

[61] A. J. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems, J.
Comput. Phys. 2, 12–26, 1967.

[62] D. Kwak, J. L. C. Chang, S. P. Shanks and S. R. Chakravarthy. A Three-Dimensional In-
compressible Navier–Stokes Flow Solver Using Primitive Variables, AIAA J. 24, 390–396,
1986.

[63] S. E. Rogers, D. Kwak and J. L. C. Chang. INS3D–An Incompressible Navier–Stokes Code
in Generalized Three-Dimensional Coordinates, NASA Tech. Memo. 100012, NASA Ames
Research Center, 1987.

[64] W. Y. Soh. Time-Marching Solution of Incompressible Navier–Stokes Equations for Internal
Flow, J. Comput. Phys. 70, 232–252, 1987.

[65] A. J. Chorin. On Convergence of Discrete Approximations to the Navier–Stokes Equations,
Math. Comput. 23, 341–353, 1969.

[66] A. Krzywicki and O. A. Ladyzhenskaya. A grid method for the Navier–Stokes equations, Soviet
Phys. Dokl. 11, 212, 1966.

[67] H. Fujita and T. Kato. On the Navier–Stokes initial value problem, Arch. Rational Mech.
Anal. 16, 269–316, 1964.

[68] P. M. Gresho. On the theory of semi-implicit projection methods for viscous incompressible
flow and its implementation via a finite element method that also introduces a nearly consistent
mass matrix. Part 1: Theory, Int. J. Numer. Meth. Fluids 11, 587–620, 1990.

REFERENCES 129

[69] M. Fortin, R. Peyret and R. Temam. Résolution numérique des équations de Navier–Stokes
pour un fluide incompressible, J. de Mécanique 10, 357–390, 1971.

[70] J. B. Bell, P. Colella and H. M. Glaz. A Second-Order Projection Method for the Incompressible
Navier–Stokes Equations, J. Comput. Phys. 85, 257–283, 1989.

[71] J. Shen. On error estimates of some higher order projection and penalty-projection methods
for Navier–Stokes equations, Numer. Math. 62, 49–73, 1992.

[72] J. Shen. A remark on the projection-3 method, Int. J. Numer. Meth. Fluids 16, 249–253,
1993.

[73] V. Girault and P.-A. Raviart. Finite Element Methods for the Navier–Stokes Equations,
Springer, Berlin, 1986.

[74] N. N. Yanenko. The Method of Fractional Steps, Springer-Verlag, Berlin, 1971.

