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Notation

This section includes the most commonly used notation in this book. In
order to avoid departing too much from conventions normally used in liter-
ature on turbulence modeling and general fluid mechanics, a few symbols
denote more than one quantity.

English Symbols

Symbol

a

@55kl
An,Bn,Cn, Dy,
Af

b.;'j

B

Ch1, Cp2

cr

Cloo

Cwly Cw2, Cw3
Cl) CZ
Ccpa ka
Cp,Cg
Ciis, Ckies
Ck

CLls CLZ
Cp

C,, Ce

Cs

Cy

Cs

Definition

Speed of sound

Rapid pressure-strain tensor

Coefficients in tridiagonal matrix equation

Van Driest damping constant

Slow pressure-strain tensor

Dimensionless Reynolds-stress anisotropy tensor
Additive constant in the law of the wall

Closure coefficients

Skin friction based on edge velocity, 7, /(3pUZ)

Skin friction based on freestream veloc1ty, Tw/(3pU%)
Closure coeflicients
Closure coefficients
Closure coefficients
Closure coeflicients
Closure coefficients
Kolmogorov constant
Closure coefficients
Dpecmc heat at constant pressiire; pressure CoOencicn
Closure coefficients

Smagorinsky constant

Specific heat at constant volume

Shear-layer spreading rate
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NOTATION

Closure coefficients

Closure coefficients

Closure coefficient

LES cross-term stress tensor

Turbulent transport tensor

Drag per unit body width

Production tensor, 74m0Um /0x; + TimOUp, [8x;
Specific internal energy ; small-eddy energy
'Total energy; viscous damping function

5 snectral dencitv
Energy sp
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Dimensionless self-similar dissipation rate
Discretization error

Viscous damping functions

Turbulence flux vectors

Dimensionless self-similar streamfunction

Klebanoff intermittency function

Mean-flow flux vectors

Amplitude factor in von Neumann stability analysis

LES filter

Specific enthalpy

Total enthalpy; channel height; shape factor, 6* /8
Heaviside step function

Unit vectors in z, y, z directions

Unit (identity) matrix

Stress tensor invariants

Two-dimensional (j = 0), axisymmetric (j = 1) index
Specific momentum flux (flux per unit mass)
Kinetic energy of turbulent fluctuations per unit mass
Geometric progression ratio

Surface roughness height

Distortion parameter

Dimensionless self-similar turbulence kinetic energy
Effective Karmén constant for compressible flows
Knudsen number

‘Turbulence length scale; characteristic eddy size
Mean free path

Mixing length

Characteristic length scale

Leonard stress tensor

Mach number

Rapid pressure-strain tensor

Convective Mach number



NOTATION

M;
Mto

N(n)

NcriL
N,

szui)

r, 0,z

Ry

Ri; (x)t;r)
R

Rij (x,t;t’)

Rﬁ) Rk: Rw
Rej,

Re,

X1l

Turbulence Mach number, v/2k/a

Closure coefficient

Dimensionless self-similar eddy viscosity
CFL number

Constant in near-wall solution for w
Navier-Stokes operator

Instantaneous static pressure

Instantaneous momentum-flux tensor

Mean static pressure

Production tensor, Tim8U;/0zm + TimOU;/0zm
Net production per unit dissipation of k, w, ¢
Laminar, turbulent Prandtl number
Heat-flux vector

Surface heat flux

Laminar, turbulent mean heat-flux vector
LES stress tensor, Cj; + R;;

mandant varianhla vartAar

Deycuucub variaoic veciorl

Cylindrical polar coordinates

Pipe radius; channel half height; perfect gas constant
SGS Reynolds stress tensor

Two-point velocity correlation tensor

Radius of curvature

Autocorrelation tensor

Sublayer scaled radius or half height, u,R/v
Closure coefficients in viscous damping functions
Reynolds number based on length L

Turbulence Reynolds number, k1/2¢/v

Sublayer scaled radius or half height, R*
Turbulence Richardson number

Near-wall turbulence Reynolds number, k/2y/v
Instantaneous strain-rate tensor

Source-term vectors

Source term — production minus dissipation
Mean strain-rate tensor

Oldroyd derivative of 5;;

Source terms in a similarity solution
Dimensionless surface mass injection function
Dimensionless surface roughness function
Time

Instantaneous viscous stress tensor
Temperature; characteristic time scale
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Urms, Urms
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NOTATION

Freestream turbulence intensity

Instantaneous velocity components in z, y, z directions

Instantaneous velocity in tensor notation
Instantaneous velocity in vector notation

Fluctuating velocity components in z, y, z directions

Fluctuating velocity in tensor notation
Fluctuating velocity in vector notation

Favre-averaged velocity components in z, y, z directions

Favre-averaged velocity in tensor notation

+r + 4 ety
Favre-averaged velocity in vector notation

Favre fluctuating velocity components in z, y, z directions

Favre fluctuating velocity in tensor notation

Favre fluctuating velocity; fluctuating molecular velocity
RMS fluctuating velocity components in z, y directions

Temporal average of fluctuating velocities

Friction velocity, \/Tw /pw

Mean velocity components in z, y, z directions
Mean velocity in tensor notation

Mean velocity in vector notation
Dimensionless, sublayer-scaled, velocity, U/u.
Maximum or centerline velocity

Dimensionless self-similar streamwise velocity
Mixing velocity

Thermal velocity

Surface injection velocity
Dimensionless self-similar normal velocity
Dimensionless self-similar specific dissipation rate
Rectangular Cartesian coordinates

Position vector in tensor notation

Position vector in vector notation

Dimensionless, sublayer-scaled, distance, u,y/v
y* at first grid point above surface

Inner/outer layer matching point

Greek Symbols

Symbol

o, o*

&, B, %
Ed
a,,

Definition

Closure coefficients

Closure coefficients

Closure coefficients in viscous damping functions
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ar, 0T, Wr
B, B*

Br

Y

6

&*

by

by

A

A(z)

AQ, Az, Ay
At

€

€d

€.
-8

o, o*

Ok, O¢

oL1, OL2
Ory, 011, 072

Defect-layer similarity parameters
Closure coefficients

Equilibrium parameter, (6* /7y, )dP/dz
Specific heat ratio, Cp/Cy

Boundary layer or shear layer thickness

Displacement thickness, f(;s (1 - ﬁ--g:) dy
Velocity thickness, f: ( 1-— -g:) dy

Finite-difference matrix operator
Kronecker delta

LES filter width

Clauser thickness, U.8* fu,
Incremental change in Q, z, ¥
Timestep

Dissipation per unit mass
Dilatation dissipation
Solenoidal dissipation
Dissipation tensor
Permutation tensor

Second viscosity coefficient

Kolmogorov length scale; similarity variable
. ] U U
Momentum thickness, [ f:'{,'r: (1 — -ﬁ:—) dy

Karman constant: thermal conductivity; wavenumber

XV

Effective Karman constant for flows with mass injection

Taylor microscale
Largest eigenvalue

L.V PN ] 1 1 1
Molecular viscosity

Eddy viscosity

Inner-layer eddy viscosity
Outer-layer eddy viscosity
Kinematic molecular viscosity, u/p
Kinematic eddy viscosity, pur/p
Dimensionless streamwise distance
Closure coeflicients

Coles’ wake-strength parameter
Pressure-strain correlation tensor
Mass density

Closure coefficients

Closure coeflicients

Closure coefficients

Closure coefficients
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NOTATION

Nonequilibrium parameter

Instantaneous total stress tensor

Kolmogorov time scale; turbulence dissipation time
Reynolds stress tensor

Eddy turnover time

Reynolds shear stress

Normal Reynolds stresses

Surface shear stress

Kolmogorov velocity scale; closure coefficient

Dimensionless parameter, (.v /pud)dP/dz

Free shear layer closure coefficient

Streamfunction

Parabolic marching scheme coefficients

Specific dissipation rate; vorticity vector magnitude

Symbol Definition

of /0q Turbulence flux-Jacobian matrix
OF/0Q Mean-flow flux-Jacobian matrix
ds/0q Source-Jacobian matrix
Subscripts

Symbol Definition

DNS Direct Numerical Simulation

e Boundary-layer-edge value

eq Equilibrium value

LES Large Eddy Simulation

0 Centerline value

v Viscous

w Wall (surface) value

00 Freestream value
Superscripts

Symbol Definition

+ Sublayer-scaled value



Preface

This book has been developed from the author’s lecture notes used in pre-
senting a post-graduate course on turbulence modeling at the University of
Southern California. While several computational fluid dynamics (CFD)
texts include some information about turbulence modeling, very few texts
dealing exclusively with turbulence modeling have been writien. As a con-
sequence, turbulence modeling is regarded by many CFD researchers as
“black magic,” lacking in rigor and physical foundation. This book has
been written to show that turbulence modeling can be done in a systcmatic
and physically sound manner. This is not to say all turbulence modeling
has been done in such a manner, for indeed many ill-conceived and ill-fated
turbulence models have appeared in engineering journals. Even this au-
thor, early in his career, devised a turbulence model that violated Galilean
invariance of the time-averaged Navier-Stokes equations! However, with
judicious use of relatively simple mathematical tools, systematic construc-
tion of a well-founded turbulence model is not only possible but can be an
exciting and challenging research project.

Thus, the primary goal of this book is to provide a systematic approach
to developing a set of constitutive equations suitable for computation of
turbulent flows. The engineer who feels no existing turbulence model is
suitable for his or her needs and wishes to modify an existing model or to
devise a new model will benefit from this feature of the text. A methodology
is presented in Chapters 3 and 4 for devising and testing such equations.
The methodology is illustrated in great detail for two-equation turbulence
models. However, it is by no means limited to such models and is used
again in Chapter 6 for a full Reynolds-stress model, but with less detail.

A secondary goal of this book is to provide a rational way for deciding
how comnlex a model i needed for a given nrnh]em The png'mem‘ who

how complex a model is needed gt roblem. The engine
wishes to select an existing model that is sufﬁaent for his or her needs
will benefit most from this feature of the text. Chapter 3 begins with the
simplest turbulence models and subsequent chapters chart a course leading
to some of the most complex models that have been applied to a nontrivial

xvil
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turbulent flow problem. Two things are done at each level of complexity.
First, the range of applicability of the model is estimated. Second, many of
the applications are repeated for all of the models to illustrate how accuracy
changes with complexity.

The methodology makes extensive use of tensor analysis, simnilarity so-
lutions, singular perturbation methods, and numerical procedures. The
text assumes the user has limited prior knowledge of these mathemati-
cal concepts and provides what is needed both in the main text and in
the Appendices. For example, Appendix A introduces rudiments of tensor.

analysis to facilitate manipulation of the Navier-Stokes equation, which is

done extensively in Chapter 2. Chapter 3 shows, in detail, the way a sim-
ilarity solution is generated. Similarity solutions are then obtained for the
turbulent mixing layer, jet and far wake. Appendix B presents elements
of singular perturbation theory. Chapters 4, b and 6 use the methods to
dissect model-predicted features of the turbulent boundary layer.

No book on turbulence-model equations is complete without a discus-
sion of numerical solution methods. Anyone who has ever tried to obtain a
numerical solution to a set of turbulence transport equations can attest to
this. O umt:n standard numerical pfoceuures_jubu won’t work and alternative
methods must be found to obtain accurate converged solutions. Chapter 7
focuses on numerical methods and elucidates some of the commonly encoun-
tered problems such as stiffness, sharp turbulent-nonturbulent interfaces,
and difficulties attending turbulence related time scales.

The concluding chapter presents a brief overview of new horizons in-
cluding direct numerical simulation (DNS), large-eddy simulation (LES)
and the interesting mathematical theory of chaos.

Because turbulence modeling is a key ingredient in CFD work, the text
would be incomplete without companion software implementing numerical
solutions to standard turbulence model equations. Appendices C and D
describe several computer programs that are included on the floppy disk
accompanying the book. The programs all have a similar structure and can
be easily modified to include new turbulence models.

The material presented in this book is appropriate for a one-semester,
first or second year graduate course, or as a reference text for a CFD course.
Successful study of this material requires an understanding of viscous-flow
and boundary-layer theory. Some degree of proficiency in solving partial
differential equations is also needed. A knowledge of computer program-
ming, preferably in FORTRAN, will help the reader gain maximum benefit
from the companion software described in the Appendices.

I extend my thanks to Dr. L. G. Redekopp of USC for encouraging and
supporting development of the course for which this book is intended. A
friend of many years, Dr. P. Bradshaw, reviewed the entire manuscript as 1
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wrote it, and taught me a lot through numerous discussions, comments and
suggestions that greatly improved the final draft. Another long time friend,
Dr. D. D. Knight, helped me understand why 1 had to write this book,
reviewed the manuscript from cover to cover and offered a great deal of
physical and computational insight in the process. My favorite mathematics
teacher, Dr. D. S. Cohen, made sure 1 omitted the dot over every ¢ and
crossed every z in Appendix B. Drs. F. R. Menter and C. C. Horstman were
kind enough to provide results of several of their computations in digital
- form. Thanks are also due for the support and help of several friends and
colleagues, most notably Drs. P. J. Roache, C. G. Speziale and R. M. C.
So.

I thank the nine students who were the first to take the course that this
book was written for. Their patience was especially noteworthy, partic-
ularly in regard to typographical errors in the homework problems! That
outstanding group of young engineers is D. Foley, R. T. Holbrook, N. Kale,
T.-S. Leu, H. Lin, T. Magee, S. Tadepalli, P. Taniguchi and D. Wallace.

Finally, I owe a lifelong debt to my loving wife Barbara for tolerating
the hectic pace first in college and then in the business world. Without her,

th
this book would not have been possible.

David C. Wilcoz



1.1 Definition of an Ideal Turbulence Model

Dynamlcs (CFD) Very precise mathema,mcal theorles have evolved for the
other two key elements, viz., grid generation and algorithm development.
By its nature — in creating a mathematical model that approximates the
physical behavior of turbulent flows — far less precision has been achieved
in turbulence modeling. This is not really a surprising event since our
objective has been to approximate an extremely complicated phenomenon.

The field is, to some extent, a throwback to the days of Prandtl, Taylor,
von Karman and all the many other clever engineers who spent a good
pOII‘lOH OI Eﬂell’ mme GEVISIHg englneerlng dppf(_)xu_ﬂabl()ﬂb dli(l IIIUUCID U.ti"
scribing complicated physical flows. Simplicity combined with physical in-
sight seems to have been a common denominator of the work of these great
men. Using their work as a gauge, an ideal model should introduce
the minimum amount of complexity while capturing the essence
of the relevant physics. This description of an ideal model serves as the
main keystone of this text.

1.2 How Complex Does a Turbulence Model
Have to Be?

Aside from any physical considerations, turbulence is inherently three di-
mensional and time dependent. Thus, an enormous amount of information
is required to completely describe a turbulent flow. Fortunately, we usually

1



2 CHAPTER 1. INTRODUCTION

require something less than a complete time history over all spatial coordi-
nates for every flow property. Thus, for a given turbulent-flow application,
we must pose the following question. Given a set of initial and/or boundary .
conditions, how do we predict the physically meaningful properties of the
flow? What properties of a given flow are meaningful is generally dictated
by the application. For the simplest applications, we may require only
the skin friction and heat-transfer coeflicients. More esoteric applications
may require detailed knowledge of energy spectra, turbulence fluctuation
magnitudes and scales.

Certainly, we should expect the complexity of the mathematics needed
for a given application to increase as the amount of required flowfield detail
increases. On the one hand, if all we require is skin friction for an attached
flow, a simple mixing-length model (Chapter 3) may suffice. Such mod-
els are well developed and can be implemented with very little specialized
knowledge. On the other hand, if we desire a complete time history of
every aspect of a turbulent flow, only a solution to the complete Navier-
Stokes equation will suffice. Such a solution requires an extremely accurate
numerical solver and may require use of subtle transformm techniques, not
to mention vast computer resources. Most engineering problems fall some-
where between these two extremes.

Thus, once the question of how much detail we need is an-
swered, the level of complexity of the model follows, qualitatively
speaking. In the spirit of Prandtl, Taylor and von Karman, the consci-
entious engineer will strive to use as conceptually simple an approach as
possible to achieve his ends. Overkill is often accompanied by unexpected

difhiculties that in CFD nnnhrnhnnq almost alwavs manifest themselves
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as numerical difficulties!

1.3 Comments on the Physics of Turbulence

Before plunging into the mathematics of turbulence, it is worthwhile to
first discuss physical aspects of the phenomenon. The following discussion
is not intended as a complete description of this complex topic. Rather,
we focus upon a few features of interest in engineering applications, and in
construction of a mathematical model. For a more-complete introduction,
refer to a basic text on the physics of turbulence such as those by Tennekes
and Lumley (1983) or Landahl and Mollo-Christensen (1992).

In 1937, Taylor and von Karman {see Goldstein (1938)] proposed the
following definition of turbulence: “Turbulence is an irregular motion which
in general makes its appearance in fluids, gaseous or liquid, when they flow
past solid surfaces or even when neighboring streams of the same fluid flow
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past or over one another.” It is characterized by the presence of a large
range of excited length and time scales. The irregular nature of turbulence
stands in contrast to laminar motion, so called historically, because the fluid
was imagined to flow in smooth laminae, or layers. Virtually all flows of
practical engineering interest are turbulent. Turbulent flows always occur
when the Reynolds number is large. For slightly viscous fluids such as water
and air, large Reynolds number corresponds to anything stronger than a
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Stokes equation, or more typically to its bounda.ry layer form, show that
turbulence develops as an instability of laminar flow.

To analyze the stability of laminar flows, virtually all methods begin by
linearizing the equations of motion. Although some degree of success can be
achieved in predicting the onset of instabilities that ultimately lead to tur-
bulence with linear theories, the inherent nonlinearity of the Navier-Stokes
equation precludes a complete analytical description of the actual transi-
tion process, let alone the fully-turbulent state. For a real (i.e., viscous)
fluid, the instabilities result from interaction between the Nav:er Stokes
equation’s nonlinear inertial terms and viscous terms. The interaction is
very complex because it is rotational, fully three dimensional and time de-
pendent.

The strongly rotational nature of turbulence goes hand-in-hand with
its three dimensionality. Vigorous stretching of vortex lines is required to
maintain the ever-present fluctuating vorticity in a turbulent flow. Vortex
stretching is absent in two-dimensional flows so that turbulence must be
three dimensional. This inherent three dimensionality means there are no
satisfactory two-dimensional approximations and this is one of the reasons
turbulence remains the most noteworthy unsolved scientific problem of the
twentieth century.

The time-dependent nature of turbulence also contributes to its in-
tractability. The additional complexity goes beyond the introduction of
an additional dimension. Turbulence is characterized by random fluctua-
tions thus obviating a deterministic approach to the problem. Rather, we
must use statistical methods. On the one hand, this aspect is not really a
problem from the engineer’s view. Even if we had a complete time history
of a turbulent flow, we would usually integrate the flow properties of inter-
est over time to extract time-averages. On the other hand, time averaging
operations lead to statistical correlations in the equations of motion that
cannot be determined a priori. This is the classical closure problem, which
1s the primary focus of this text.

In principle, the time-dependent, three-dimensional Navier-Stokes equa-
tion contains all of the physics of a given turbulent flow. That this is true
follows from the fact that turbulence is a continuum phenomenon. As noted
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by Tennekes and Lumley (1983), “Even the smallest scales occurring in a
turbulent flow are ordinarily far larger than any molecular length scale.”
Nevertheless, the smallest scales of turbulence are still extremely small.
They are generally many orders of magnitude smaller than the largest scales
of turbulence, the latter being of the same order of magnitude as the di-
mension of the object about which the fluid is flowing. Furthermore, the
ratio of smallest to largest scales decreases rapidly as the Reynolds number
increases. To make an accurate numerical simulation (i.e., a full time-
dependent three-dimensional solution) of a turbulent flow, all physically
relevant scales must be resolved. While more and more progress is being
made with such simulations, computers of the early 1990’s have insufficient
memory and speed to solve any turbulent flow problem of practical inter-
est. To underscore the magnitude of the problem, Speziale (1985) notes
that a numerical simulation of turbulent pipe flow at a Reynolds number
of 500,000 would require a computer 10 million times faster than a Cray
Y/MP. However, the results are very useful in developing and testing tur-
bulence models in the limit of low Reynolds number.

Turbulence consists of a continuous spectrum of scales ranging from
largest to smaliest, as opposed to a discrete set of scales. In order to visu-
alize a turbulent flow with a spectrum of scales we often refer to turbulent
eddies. A turbulent eddy can be thought of as a local swirling motion whose
characteristic dimension is the local turbulence scale (Figure 1.1). Eddies
overlap in space, large ones carrying smaller ones. Turbulence features
a cascading process whereby, as the turbulence decays, its kinetic energy

transfers from larger eddies to smaller eddies. Ultimately, the smallest ed-
dies dissipate into heat through the action of molecular viscosity. Thus, we
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observe that turbulent flows are always dissipative.

Perhaps the most important feature of turbulence from an engineer-
ing point of view is its enhanced diffusivity. Turbulent diffusion greatly
enhances the transfer of mass, momentum and energy. Apparent stresses
often develop in turbulent flows that are several orders of magnitude larger
than in corresponding laminar flows.

The nonlinearity of the Navier-Stokes equation leads to interactions be-
tween fluctuations of differing wavelengths and directions. As discussed
above, the wavelengths of the motion usually extend all the way from a
maximum comparable to the width of the flow to a minimum fixed by vis-
cous dissipation of energy. The main physical process that spreads the mo-
tion over a wide range of wavelengths is vortex stretching. The turbulence
gains energy if the vortex elements are primarily oriented in a direction
in which the mean velocity gradients can stretch them. Most importantly,
wavelengths that are not too small compared to the mean-flow width in-
teract most strongly with the mean flow. Consequently, the larger-scale
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Figure 1.1: Large eddies in a turbulent boundary layer. The flow above
the boundary layer has a steady velocity U; the eddies move at randomly-
fluctuating velocities of the order of a tenth of U. The largest eddy size (£)
is comparable to the boundary-layer thickness (6). The interface and the
flow above the boundary is quite sharp [{Corrsin and Kistler (1954)].

turbulent motion carries most of the energy and is mainly responsible for
the enhanced diffusivity and attending stresses. In turn, the larger eddies
randomly stretch the vortex elements that comprise the smaller eddies,
cascading energy to them.

An especially striking feature of a turbulent shear flow is the way large
bodies of fluid migrate across the flow, carrying smaller-scale disturbances
with them. The arrival of these large eddies near the interface between
the turbulent region and nonturbulent fluid distorts the interface into a
highly convoluted shape (Figure 1.1). In addition to migrating across the
flow, they have a lifetime so long that they persist for distances as much
as 30 times the width of the flow {Bradshaw (1972)}. Hence, the turbulent
stresses at a given position depend upon upstream history and cannot be
uniquely specified in terms of the local strain-rate tensor as in laminar flow.

As we progress through the following chapters, we will introduce more
specific details of turbulence properties for common flows on an as-needed
basis.

1.4 A Brief History of Turbulence Modeling

The primary emphasis in this book is upon the time-averaged N avier-Stokes
equation. The origin of this approach dates back to the end of the nine-
teenth century when Reynolds (1895) published results of his research on
turbulence. His pioneering work proved to have such profound importance
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for all future developments that we refer to the standard time-averaging
process as one type of Reynolds averaging.

The earliest attempts at developing a mathematical description of tur-
bulent stresses sought to mimic the molecular gradient-diffusion process. In
this spirit, Boussinesq (1877) introduced the concept of an eddy viscosity.
As with Reynolds, Boussinesq has been immortalized in turbulence liter-
ature. The Boussinesq eddy-viscosity approximation is so widely known
that few authors find a need to reference his 0‘15111‘_“1 paper.

Neither Reynolds nor Boussinesq attempted solution of the Reynolds-
averaged Navier-Stokes equation in any systematic manner. Much of the
physics of viscous flows was a mystery in the nineteenth century, and further
progress awaited Prandtl’s discovery of the boundary layer in 1904. Focus-
ing upon turbulent flows, Prandtl (1925) introduced the mixing length (an
analog of the mean-free path of a gas) and a straightforward prescription for
computing the eddy viscosity in terms of the mixing length. The mixing-
length hypothesis, closely related to the eddy- viscosity concept formed
the basis of virtually all turbulence-modeling research for the next twenty
years. Important early contributions were made by several researchers,
most notably by von Kérméan (1930). In modern terminology, we refer to a
mixing-length model as an algebraic model or a zero-equation model
of turbulence. By definition, an n-equation model signifies a model
that requires solution of n additional differential transport equations in
addition to those expressing conservation of mass, momentum and energy.

To improve the ability to predict properties of turbulent flows and to
develop a more realistic mathematical description of the turbulent stresses,
Prandtl (1945) postulated a model in which the eddy viscosity depends
upon the kinetic energy of the turbulent fluctuations, k. He proposed a
modeled differential equation approximating the exact equation for k. This
improvement, on a conceptual level, takes account of the fact that the eddy
viscosity is affected by where the flow has been, i.e., upon flow history.
Thus was born the concept of the so-called one-equation model of tur-
bulence.

While having an eddy viscosity that depends upon flow history provides
a more physically realistic model, the need to specify a turbulence length
scale remains. Since the length scale can be thought of as a characteristic
eddy size and since such scales are different for each flow, turbulence models
that do not provide a length scale are incomplete. That is, we must
know something about the flow, other than initial and boundary conditions,
in advance in order to obtain a solution. Such models are not without
merit and, in fact, have proven to be of great value in many engineering
applications.

To elaborate a bit further, an incomplete model generally defines a
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turbulence length in a prescribed manner from the mean flow, e.g. the
displacement thickness, §*, for an attached boundary layer. However, a
different length in this example would be needed when the boundary layer
separates since 8* may be negative. Yet another length might be needed for
free shear flows, etc. In essence, incomplete models usually define quantities
that may vary more simply or more slowly than the Reynolds stresses (e.g.
eddy viscosity and mixing length). Presumably such quantities are easier

Py 1 +than
to correlate than the actual stresses.

A particularly desirable type of turbulence model would be one that can
be applied to a given turbulent flow by prescribing at most the appropriate
boundary and/or initial conditions. ldeally, no advance knowledge of any
property of the turbulence should be required to obtain a solution. We
define such a model as being complete. Note that our definition mmplies
nothing regarding the accuracy or universality of the model, only that it
can be used to determine a flow with no prior knowledge of any flow details.

Kolmogorov (1942) introduced the first complete model of turbulence.
In addition to having a modeled equation for k, he introduced a second
parameter w that he referred to as “the rate of dlSSlpatluu of encrgy in unit
volume and time.” The reciprocal of w serves as a turbulence time scale,
while k/2/w serves as the analog of the mixing length. In this model,
known as a k-w model, w satisfies a differential equation similar to the
equation for k. The model is thus termed a two-equation model of
turbulence. While this model offered great promise, it went with virtually
no applications for the next quarter century because of the unavailability

of computers to solve its nonlinear differential equations.

Rotta (1951) laid the foundation for turbulence models that obviate use
of the Boussinesq approximation. He devised a plausible model for the
differential equation governing evolution of the tensor that represents the
turbulent stresses, i.e., the Reynolds-stress tensor. This approach is called
second-order or second-moment closure. The primary conceptual ad-
vantage of second-order closure is the natural manner in which nonlocal
and history effects are incorporated. Such models automatically accommo-
date complicating effects such as streamline curvature, rigid-body rotation,
and body forces. This stands in contrast to eddy-viscosity models that
fail to properly account for these effects. For a three-dimensional flow, a
second-order closure model introduces seven equations, one for the turbu-
lence scale and six for the components of the Reynolds-stress tensor. As
with Kolmogorov’s k-w model, second-order closure models awaited ade-
quate computer resources.

Thus, by the early 1950’s, four main categories of turbulence models
had evolved, viz.,
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1. Algebraic (Zero-Equation) Models
2. One-Equation Models

3. Two-Equation Models
4. Second-Order Closure Models

With the coming of the age of computers since the 1960’s, further devel-
opment of all four classes of turbulence models has occurred. The following

to Far ~aanls
overview lists a few of the most important modern developments for each

of the four classes.

Algebraic Models. Van Driest (1956) devised a viscous damping cor-
rection for the mixing-length model that is included in virtually all alge-
braic models in use today. Cebeci and Smith (1974) refined the eddy-
viscosity /mixing-length model to a point that it can be used with great
confidence for most attached boundary layers. To remove some of the diffi-
culties in defining the turbulence length scale from the shear-layer thickness,
Baldwin and Lomax (1978) have proposed an alternative algebraic model
that enjoys widespread use.

One-Equation Models. Of the four types of turbulence models de-
scribed above, the one-equation model has enjoyed the least popularity and
success. Perhaps the most successful model of this type was formulated by
Bradshaw, Ferriss and Atwell (1967). In the 1968 Stanford Conference on
Computation of Turbulent Boundary Layers [Coles and Hirst (1969)] the
best turbulence models of the day were tested against the best experimen-
tal data of the day. In this author’s opinion, of all the models used, the
Bradshaw-Ferriss-Atwell model most faithfully reproduced measured flow
properties. There has been some renewed interest in one-equation models
[c.f. Baldwin and Barth (1990), Goldberg (1991) and Spalart and Allmaras
(1992)], motivated primarily by the ease with which such model equations
can be solved numerically, relative to two-equation models and second-order
closure models.

Two-Equation Models. While Kolmogorov’s k-w model was the first
of this type, it remained in obscurity until the coming of the computer.
By far, the most extensive work on two-equation models has been done by
Launder and Spalding (1972) and a continuing succession of students and
colleagues. Launder’s k-¢ model, where ¢ is proportional to the product of k
and w, is as well known as the mixing-length model and is the most widely
used two-equation model. Even the model’s demonstrable inadequacy for
flows with adverse pressure gradient [c.f. Rodi and Scheuerer (1986) and
Wilcox (1988a)] has done little to discourage its widespread use. With no
prior knowledge of Kolmogorov’s work, Saffman (1970) formulated a k-w
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model that enjoys advantages over the k-¢ model, especially for integrating
through the viscous sublayer and for predicting effects of adverse pressure
gradient. Wilcox and Alber (1972), Saffman and Wilcox (1974), Wilcox
and Traci (1976), Wilcox and Rubesin (1980), and Wilcox (1988a), for
example, have pursued further development and application of k-w models.
As pointed out by Lakshminarayana (1986), k-w models are the second
most widely used type of two-equation turbulence model.

Second-Order Closure Models. By the 1970’s, suffictent computer
resources became available to permit serious development of this class of
model. The most noteworthy efforts were those of Donaldson [Donald-
son and Rosenbaum (1968)], Daly and Harlow (1970) and Launder, Reece
and Rodi (1975). The latter has become the baseline second-order clo-
sure model: more recent contributions by Lumley (1978), Speziale (1985,
1987a) and Reynolds (1987) have added mathematical rigor to the closure
process. However, because of the large number of equations and complexity
involved in second-order closure models, they have thus far found their way
into a relatively small number of applications compared to algebraic and
two-equation models.

This book investigates all four classes of turbulence models. The pri-
mary emphasis is upon examining the underlying physical foundation and
upon developing the mathematical tools for analyzing and testing the mod-
els. The text is not intended to be a catalog of all turbulence
models. Rather, we approach each class of models in a generic sense. De-
tailed information is provided for models that have stood the test of time;
additionally, references are given for most models.



Chapter 2

The Closure Problem

N’ o S P e m— o — L

Because turbulence consists of random fluctuations of the various flow prop-
erties, we use a statistical approach. Our purposes are best served by using
the procedure introduced by Reynolds (1895) in which all quantities are
expressed as the sum of mean and fluctuating parts. We then form the
time average of the continuity and Navier-Stokes equations. As we will see
in this chapter, the nonlinearity of the Navier-Stokes equation leads to the
appearance of momentum fluxes that act as apparent stresses throughout
the flow. These momentum fluxes are unknown a priori. We then derive
equations for these stresses and the resulting equations include additional
unknown quantities. This illustrates the issue of closure, i.e., establishing
a sufficient number of equations for all of the unknowns.

2.1 Reynolds Averaging

We begin with the averaging concepts introduced by Reynolds (1895). In
general, Reynolds averaging assumes a variety of forms involving either an
integral or a summation. The three forms most pertinent in turbulence-
model research are the time average, the spatial average and the en-
semble average.

Time averaging is appropriate for stationary turbulence, ie., a
turbulent flow that, on the average, does not vary with time. For such a
flow, we express an instantaneous flow variable as f(x,t). Its time average,
Fp(x), is defined by

1 t+T

11



12 CHAPTER 2. THE CLOSURE PROBLEM

Spatial averaging is appropriate for homogeneous turbulence, which
is a turbulent flow that, on the average, is uniform in all directions. We
average over all spatial coordinates by doing a volume integral. Calling the
average Fy, we have

o = Jin o [ [ [ rxnav (2.2)

Ensemble averaging is the most general type of averaging. As an
idealized example, in terms of measurements from N identical experiments

where f(x,t) = f,(x,t) in the n'* experiment, the average is Fg, where

N
Fe(x,1)= Jim Kl;z falx, ) (2.3)
n=1

For turbulence that is both stationary and homogeneous, we may as-
sume that these three averages are all equal. This assumption is known as
the ergodic hypothesis.

Because virtually all engineering problems involve inhomogeneous
turbulence, time averaging is the most appropriate form of Reynolds aver-
aging. The time-averaging process is most clearly explained for stationary
turbulence. For such a flow, we express the instantaneous velocity, u;(x, 1),

as the sum of a mean, U;(x), and a fluctuating part, uf(x,1), so that

ui(x,t) = Us(x) + uj(x,1) (2.4)
As in Equation (2.1), the quantity U;(x) is the time-averaged, or mean,
velocity defined by
1 t+T :
U,;(X) = TJLH‘;O Tl ui(x,t) dt (25)

The time average of the mean velocity is again the same time-averaged

value, i.e.,
— 1 i+T
Ui(x) = lim — U;(x) dt = Ui(x) (2.6)
T—oo 1 t

where an overbar is shorthand for time average. The time average of the

fluctuating part of the velocity is zero. That is, using Equation {2.6)
) 5 Yy L IE

T .
ul = Th_r’réO T /t [us(x,t) — Us(x)] dt = Us(x) — Usi(x) =0 (2.7)

While Equation (2.5) is mathematically well defined, we can never truly
realize infinite 7' in any physical flow. This is not a serious problem in
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practice however. In forming our time average, we just select a time T' that
is very long relative to the maximum period of the velocity fluctuations,
Ty. In other words, rather than formally taking the limit T — oo, we do
the indicated integration in Equation (2.5) with T > T;. As an example,
for flow at 10 m/sec in a 5 cm diameter pipe, an integration time of 20
seconds would probably be adequate. In this time the flow moves 4,000
pipe diameters.

There are some flows for which the mean flow contains very slow vari-
ations with time that are not turbulent in nature. For instance, we might
impose a slowly varying periodic pressure gradient in a duct or we might
wish to compute flow over a helicopter blade. Clearly, Equations (2.4) and
(2.5) must be modified to accommodate such applications. The simplest,
but a bit more arbitrary, method is to replace Equations (2.4) and (2.5)
with

wi(x,8) = Ui(x, 1) +uj(x, t) (2.8)
and o
1 [ i 4
Ui(x,t) = — / ui(x,t)dt, T1 KT KT (2.9)
4 Jt

where T» is the time scale characteristic of the slow variations in the flow
that we do not wish to regard as belonging to the turbulence. Figure 2.1
illustrates these concepts.

ui(x,1)

Figure 2.1: Time averaging for nonstationary turbulence.

A word of caution is in order regarding Equation (2.9). We are im-
plicitly assuming that time scales Ty and Ty exist that differ by several
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orders of magnitude. Very few unsteady flows of engineering interest are
guaranteed to satisfy this condition. We cannot use Equations (2.8) and
(2.9) for such flows because there is no distinct boundary between our im-
posed unsteadiness and turbulent fluctuations. For such flows, the mean
and fluctuating components are correlated, i.e., the time average of their
product is non-vanishing. In meteorology, for example, this is known as the
spectral gap problem. If the flow is periodic, Phase Averaging (see
Problems) can be used; otherwise, ensemble averaging is necessary. For a
rigorous approach, an alternative method such as Large Eddy Simulation
(Chapter 8} will be required.

Clearly our time averaging process, involving integrals over time, com-
mutes with spatial differentiation. Thus, for any scalar p and vector u;,

Di= P,,: and Ui = U,"j (2.10)

Because we are dealing with definite integrals, time averaging is a linear
operation. Thus if ¢; and ¢, are constants while @ and b denote any two

flow properties, then
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16+ esb=c1A+ B (211)

The time average of an unsteady term like du;/8t is obviously zero for
stationary turbulence. For nonstationary turbulence, we must look a little
closer. We know that

H-T { L

(2.12)
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T effectlvel pproaches 0o on the time scale of the turbulent fluctuations.
By contrast, T is very small relative to the time scale of the mean flow,
so that the first term is the value corresponding to the limit T — 0, i.e.,
aU;/dt. Hence,

Ou;  OU;
o (2.13)

Although it may seem a bit unusual to be taking the limit T — oo
and 7" — 0 in the same equation, the process can be fully justified using
the two-timing method from perturbation theory [see Kevorkian and Cole
(1981)]. The notion is simply that we have. a slow time scale and a fast
time scale, similar to the case of small damping on a linear oscillator. In
a perturbation analysis of such a problem, dependent variables become
functions of two independent time variables (essentially ¢/77 and ¢/73). In
the normal spirit of perturbation theory, the limit ¢/77 — oo corresponds
to the limit ¢/73 — 0.
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2.2 Correlations

Thus far we have considered time averages of linear quantities. When we
time average the product of two properties, say ¢ and v, we have the
following;:

W=+ T +¢) =B+ ¢/ + ¥ +¢'¥ =T + &Y (214)

where we take advantage of the fact that the product of a mean quantity
and a fluctuating quantity has zero mean. There is no a priori reason for the
time average of the product of two fluctuating quantities to vanish. Thus,
Equation {2.14) tells us the mean value of a product, &, differs from the
product of the mean values, @¥. The quantities ¢’ and ¢’ are said to be
correlated if ¢’y # 0. They are uncorrelated if Y =0.

Similarly, for a triple product, we find

FYE = QUE + ¢7Y/E + YT + GV + §P'E’ (2.15)

Again, terms linear in ¢’, ¥’ or £’ have zero mean. As with terms quadratic
in fluctuating quantities, there is no a priori reason for the cubic term,

—————

¢’'Y'E', to vanish.

2.3 Reynolds-Averaged Equations

For simplicity we confine our attention to incompressible flow. Effects of
compressibility will be addressed in Chapter 5. The equations for conser-
vation of mass and momentum are

0u,:

5 =0 (2.16)

Uj Ou; Op 3tji
- + pu; = — 2.17
p@t te ’ax,- 6:Cg+ Oz; ( )
The vectors u; and z; are velocity and position, t is time, p is pressure, p
is density and t;; is the viscous stress tensor defined by

tij = 2us;; (2.18)

where p is molecular viscosity and s;; is the strain-rate tensor,

1 Ou;  Ou;
% =g (ax,- + 83:,—) (2.19)
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To simplify the time-averaging process, we rewrite the convective term
in conservation form, i.e.,

3'&,’_3 o ‘3713'_(9 .
ujé?c;- = 317]' (u,u,) - U; 513]' = 623]' (uju,) (2.20)

where we take advantage of Equation (2.16) in order to drop u;0u;/dz;.
Combining Equations (2.17) through (2.20) yields the Navier-Stokes equa-
tion in conservation form.

a'U:; 1 8 F N\ 8p P 8 /2 s Y /2 21\
(F remrees t e Uy | TS — m— — .. .
Pt T Por, M) = gy, t gy, (o) (221)

Time averaging Equations (2.16) and (2.21) yields the Reynolds av-
eraged equations of motion in conservation form, viz.,

oU;

5o =0 (2.22)
6Ug' a v/ ——\ _ oP J
PW‘ + Pa—mj kUJ Ui + uju,-) = _EBT + 5-;;(2[15];) (2.23)

The time-averaged comservation of mass, Equation (2.22), is identical to
the instantaneous Equation (2.16) with the mean velocity replacing the
instantaneous velocity. Subtracting Equation (2.22) from Equation (2.16)
shows that the fluctuating velocity, uf, also has zero divergence. Aside from
replacement of instantaneous variables by mean values, the only difference
between the time-averaged and instantaneous momentum equations is the
appearance of the correlation u/ uj.

Herein lies the fundamental problem of turbulence for the en-

i 1 o tanhalane O
gineer. In order to compute all mean-flow properties of the turbulent flow

under consideration, we need a prescription for computing uiu;-.
Equation (2.23) can be written in its most recognizable form by using
Equation (2.20) in reverse. There follows

3Uﬁ' an _ (9P 3 - — 7
P AU dr; — Oz + Oz (2#5" - pujui-) (2.24)

Equation (2.24) is usually referred to as the Reynolds-averaged Navier-
Stokes equation. The quantity —pu;u; is known as the Reynolds-stress
tensor and we denote it by 7;;. Thus,

Tij = —pulul; 2.25
J J

By inspection, 7;; = 7j; so that this is a symmetric tensor, and thus has
six independent components. Hence, we have produced six unknown quan-
tities as a result of Reynolds averaging. Unfortunately, we have gained no
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additional equations. So, for general three-dimensional flows, we have four
unknown mean-flow properties, viz., pressure and the three velocity com-
ponents. Along with the six Reynolds-stress components, we thus have ten
unknowns. Qur equations are mass conservation [Equation (2.22)] and the
three components of Equation (2.24) for a grand total of four. This means
our system is not yet closed. To close the system, we must find enough
equations to solve for our unknowns.

2 A
LiX

In quest of additional equations, we can take moments of the Navier-Stokes
equation. That is, we multiply the Navier-Stokes equation by a fluctuating
property and time average the product. Using this procedure, we can derive
a differential equation for the Reynolds-stress tensor. To illustrate the
process, we introduce some special notation. Let A (u;) denote the Navier-
Stokes operator, viz.,

N Ou; " Ou; Op 3 &%y,
(W)= pgr tru gt 5~ g,

£y xON
kA.LO)

The viscous term has been simplified by noting from mass conservation (for
incompressible flow) that sg; x = u; . Thus, the Navier-Stokes equation
can be written symbolically as

N(ui) = (2.27)
In order to derive an equation for the Reynolds stress tensor, we form the
following time average.
! . / Y —
wN (uj) + wjN () = 0 (2.28)

Note that, consistent with the symmetry of the Reynolds stress tensor,
the resulting equation is also symmetric in i and j. For the sake of clarity, we
proceed term by term. Also, for economy of space, we use tensor notation
for derivatives throughout the time averaging process. First, we consider
the unsteady term.

ui(pui) e +ui(pui)e = pui(Uj + u))e + puj(Ui + )¢
= pullUs e + puin) , + puiUss + pu]

= pulu}, + pujul,
= (P“iuj),t
_0mij

5 (2.29)
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‘Turning to the convective term, we have

il

pUULY; § + p’u;- Uk Us & pu;(Ur + w, )(U; + u.;)’"’

+ pu;-(Uk +’u';c)(U; +u:-),k
= puiUru} , + puiu(Us +uj)x
+  puUs o + puju (Us + uf) &

It

Uk(puiu}) x + puiui Uk

+  puiuUie + pug (winf) &

O7i; oU; U,
- _Uka k ~ Tik 6$k ~ ik 3.1:;,
O —
+ a—m'(lmi"“} uj,) (2.30)

In order to arrive at the final line of Equation (2.30), we use the fact that
Ouj, [0z = 0. The pressure gradient term is straightforward.

uipj tuipi = u(P+p);+ui(P+p):
= uwp;t
/ /
o0 L o
(91']' J 6223'

F
U;

(2.31)

Finally, the viscous term yields

pluig pe +ujuire) = pu{(U; +uf) ek + puf (Ui + uf) ke

= pugul g+ puiug g
= p(uiug )k + puiug )k~ 2pu; pus g
= p(uiu})px ~ 2#U§,ku§,k
627',']' W
dzxkdry #-C;’_&E;-é_;l:

= -V

(2.32)

Collecting terms, we arrive at the equation for the Reynolds stress tensor.

81-,;,- 37‘,;1' B 6Uj . oU; 8u: 3“3 , oy , oy’
R T P L il v P e e
9 [ or; ——
+ Bor [u&f + pu;u;uk] (2.33)
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We have gained six new equations, one for each independent compo-
nent of the Reynolds-stress tensor. However, we have also generated 22
new unknowns! Specifically, accounting for all symmetries, we have the
following.

pujwiup  — 10 unknowns

!, O,
2u—t—L 6 unknowns
ox, 0xy
3p a0/
U =— 4 u;- — — 6 unknowns
61’j 6:(:,'

With a little rearrangement of terms, we can cast the Reynolds-stress
equation in its most recognizable form, viz.,

o7 1 SU: o P .
Y4 —t = 1y ——Tip et — s+ —— i 4oy 934
ot + e Tk6Zk ‘rgkﬁkach ,+3$k {V()xk + ;k] (2.34)
where
Ou’  Oul
M =v {5+ 520 2.35
" p (31’] t 39:1) ( )
ou’ ou
i = gt ot 2.36
i1 Haxk 33:’6 ( )
Cijk = puju;uy + p'ubjp + p'uj;bip (2.37)

This exercise iliustrates the closure problem of turbulence. Because of
the nonlinearity of the Navier-Stokes equation, as we take higher and higher
moments, we generate additional unknowns at each level. At no point
will this procedure balance our unknowns/equations ledger. On physical
grounds, this is not a particularly surprising situation. After all, such op-
erations are strictly mathematical in nature, and introduce no additional
physical principles. The function of turbulence modeling is to devise ap-
proximations for the unknown correlations in terms of flow properties that
are known so that a sufficient number of equations exists. In making such
approxtmations, we close the system.
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Problems

2.1 Suppose we have a velocity field that consists of: (i) a slowly varying
component U(t) = Uye~*/" where Uy and 7 are constants and (ii) a rapidly
varying component u' = al/y cos (27t /¢27) where a and ¢ are constants with
€ € 1. We want to show that by choosing 7' = e7, the limiting process in
Equation (2.9) makes sense.

(a) Compute the exact time average of u = U + «'.

(b) Replace T by er in the slowly varying part of the time average of u
and let t; = €7 in the fluctuating part of u to show that

U+u =U(t)+ O(e)
where O(¢) denotes a quantity that goes to zero linearly with ¢ as

e —{).

Y

(¢) Repeat Parts (a) and (b) for du/dt.

2.2 For an imposed periodic mean flow, a standard way of decomposing
flow properties is to write

u(x,t) = U(x) + @(x,1) + u'(x,1)

where U(x) is the mean-value, @(x, t) is the organized response component
due to the imposed organized unsteadiness, and u'(x,t) is the turbulent
fluctuation. U(x) is defined as in Equation (2.5). We also use the Phase
Average defined by
1 N-l
<u(x,)>= lim — u(x,t + nr
( ) ) Neroo N Z ( ’ + )

n=0
where 7 is the period of the imposed excitation. Then, by definition,
<u(x,t)> = U(x) + a(x,t), <u(x,t)> =U(x), <i(x,t)>=a(x,t)
Verify the following,.
(a) <U>=U (d) <u/'>=0 (g) <av'>=0

(b) 4 =0 (e) 2o’ = 0 (h) <Uv>=U<v>
(¢)w =0 ) <tv>=d<v>
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2.3 For an incompressible flow, we have an imposed freestream velocity
given by

u(z,t) = Up(1 — azx) + Upaz sin 27 ft

where a is a constant of dimension 1/length, Uy is a constant reference
velocity, and f is frequency. Integrating over one period, compute the
average pressure gradient, dP/dz, for f = 0 and f # 0 in the freestream
where the inviscid Euler equation holds, 1.e.,

2.4 Compute the difference between the Reynolds average of a quadruple
product ¢¥€v and the product of the means, PPET.

2.5 Consider the Reynolds stress equation as stated in Equation (2.34).

(a) Show how Equation (2.34) follows from Equation (2.33).

(b) Contract Equation (2.34), i.e., set ¢ = j and perform the indicated
summation, to derive a differential equation for the kinetic energy of

the turbulence per unit mass defined by k = %u:u:



Chapter 3

Algebraic Models

The simplest of all turbulence models are known as algebraic models. These
models use the Boussinesq eddy-viscosity approximation to compute
the Reynolds stress tensor as the product of an eddy viscosity and the mean
strain-rate tensor. For computational simplicity, the eddy viscosity, in turn,
is often computed in terms of a mixing length that is analogous to the mean
free path in a gas. We will find that, in contrast to the molecular viscosity
that is an intrinsic property of the fluid, the eddy viscosity (and hence the
mixing length) depends upon the flow. Because the eddy viscosity and
mixing length depend upon the particular flow under consideration they
must be specified in advance. Thus, algebraic models are, by definition,
incomplete models of turbulence.

We begin this chapter by first discussing molecular transport of momen-
tum. Next we introduce Prandtl’s mixing-length hypothesis and discuss its
physical implications and limitations. The mixing-length model is then ap-
plied to free shear flows for which self-similar solutions hold. We discuss two
modern algebraic turbulence models that are based on the mixing-length
hypothesis, including applications to attached and separated wall-bounded

flows. The latter applications illustrate the limit to the algebraic model’s

range of applicability. An interesting separated-flow replacement for alge-
braic models, known as the Half-Equation Model, improves agreement
between computed and measured flow properties. The chapter concludes
with a discussion of the range of applicability of algebraic models.

23
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3.1 Molecular Transport of Momentum

To understand the motivation for the Boussinesq approximation, it is in-
structive to discuss momentum transport at the molecular level. However,
as a word of caution, molecules and turbulent eddies are funda-
mentally different. They are so different that we will ultimately find,
in Section 3.2, that the analogy between turbulent and molecular mixing
is questionable, to say the least! It is nevertheless fruitful to pursue the
analogy to illustrate how important it is to check the premises underlymg
turbulence closure approximations. At first glance, mmm,mng the molecu-
lar mixing process appears to be a careful exercise in physics. As we will
see, the model just cannot stand up under close scrutiny.

We begin by considering a shear flow in which the velocity is given by

U=U(y)i (3.1)

where i is a unit vector in the x direction. Figure 3.1 depicts such a flow.
We consider the flux of momentum across the plane y = 0, noting that
molecular motion is random in both ma,gmtude and direction. Molecules
uusraumg, across y = ( are typical of where they come from. That 1s,
molecules moving up bring a momentum deficit and vice versa. This gives
rise to a shear stress ..

\ -
P / i1
—>
/

Figure 3.1: Shear flow schematic.

At the molecular level, we decompose the velocity according to

u=U+1u" (3.2)
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where U is the average velocity defined in Equation (3.1} and u” repre-
sents the random molecular motion. The instantaneous flux of any prop-
erty across y = 0 is proportional to the velocity normal to the plane which,
for this flow, is simply v”. Thus, the instantaneous flux of z-directed mo-
mentum, dpgy, across a differential surface area dS is

dpesy = p(U + u" )" dS (3.3)
Performing an ensemble average over all molecules, we find
dPpy = pu''v" dS (3-4)

By definition, the stress acting on y = 0 is given by o,y = dPy,/dS.
It is customary in fluid mechanics to set o;; = pbi; — ti;, where ¢,; is the
viscous stress tensor. Thus,

toy = —pu'’v” (3.5)

PP W NN

This is not a comcxdence As pointed out by Tennekes and Lumiey (195.5),
a stress that is generated as a momentum flux can always be written in
this form. The only real difference is that, at the macroscopic level, the
turbulent fluctuations, «' and v/, appear in place of the random molecular
fluctuations, v’ and v”. This similarity is the basis of the Boussinesq
eddy-viscosity approximation.

Referring again to Figure 3.1, we can appeal to arguments from the
Linatie theory Af gaces [o o , Jeans (10601 to determine t..., in terms of U('H\

ALIBCUIL LLITULY Ul FASUO [Lug.; dUGLIS | AUV& J] VY ML LY S yoes vhalaas AL

and the fluid viscosity, p. First, consider the average number of molecules
moving across unit area in the positive y direction. For a perfect gas,
molecular velocities follow the Maxwellian distribution so that all directions
are equally probable. The average molecular velocity is the thermal velocity,
vsn, Which is approximately 4/3 times the speed of sound in air. On average,
half of the molecules move in the positive y direction while the other half
move in the negative y direction. Also, the average vertical component of
the velocity is vg, cos ¢ where ¢ is the angle from the vertical. Integrating
over a hemispherical shell, the average vertical speed is vy /2. Thus, the
average number of molecules moving across unit area in the positive y
direction is nvs, /4, where n is the number of molecules per unit volume.
Now consider the transfer of momentum that occurs when molecules
starting from point P cross the y = 0 plane. We assume molecules are typ-
ical of where they come from which, on the molecular scale, is one mean
free path away, the mean free path being the average distance a molecule
travels between collisions with other molecules. Each molecule starting from
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a point P below y = 0 brings a momentum deficit of m[U(0) — U(—£myp)l,
where m is the molecular mass and £,,y, is the mean free path. Hence, the
momentum flux from below is

1 1 du
AP = 2pvn[U(0) = U(—Lmsp)] ~ i (3.6)

We have replaced U(—£sp) by the first two terms of its Taylor-series
expansion in Equation (3.6) and used the fact that p = mn. Similarly,
molecules moving from a point Q above y = 0 bring a momentum surplus

ALY & MaAAl N

of m[U(€mysp) — U(0)], and the momentum flux from above is

dUJ
PVtRLmfp Ty (3.7)

e | -

1
AP+ = ZP’Uth[U(gmjp) - U(O)] ~

Consequently, the net shearing stress is the sum of AP_ and APy,
wherefore

A T ' A ™ 1 n dU 7 4y P
I‘wy =Ar- +Ary & §pvth£mfp-d—y— (6.8)

Hence, we conclude that the shear stress resulting from molecular trans-
port of momentum in a perfect gas is given by

dU _

where 4 is the molecular viscosity defined by

1
= 5PVinbmyp (3.10)

The arguments leading to Equations (3.9) and (3.10) are approximate
and only roughly represent the true statistical nature of molecular mo-
tion. Interestingly, Jeans (1962) indicates that a precise analysis yields
p = 0.499v:4€y, 1p, wherefore our approximate analysis is remarkably accu-
rate! However, we have made two implicit assumptions in our analysis that
require justification.

First, we have truncated the Taylor series appearing in Equations (3.6)
and (3.7) at the linear terms. For this approximation to be valid, we must
have £,7,|d°U/dy?| < |dU/dy|. The length scale L defined by

|dU / dy|

L= —r=
|d2U/dy?|

(3.11)
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is a length scale characteristic of the mean flow. Thus, the linear relation
between stress and strain-rate implied by Equation (3.9) is valid provided
the Knudsen number, Kn, is very small, 1.e.,

Kn=tn,/L <1 (3.12)

For most practical flow conditions, the mean free path is several orders of
magnitude smaller than any characteristic length scale of the mean flow.

Thuu, Equatlon (3.1 1‘)\ 1S Qnt}Sﬁed Fnr' ‘nrfnn"v 911 enﬂ'}neerinﬂ’ nrnh]qu

Second, in computlng the rate at whlch molecules cross y = 0, we
assumed that u” remained Maxwellian even in the presence of shear. This
will be true if molecules experience many collisions on the time scale of
the mean flow. Now, the average time between collisions is £, ¢p /vin. The
characteristic time scale for the mean flow is |{dU/dy}~'. Thus, we also
require that

Uih
fmfp < T&W (313)

b cnrne arder AF 1aon an 1
Since Uth is of the same order of ma.guwudc as the spced of SG‘dﬂd, ther

hand side of Equation (3.13) defines yet another mean-flow length scale. As
above, the mean free path is several orders smaller than this length scale
for virtually all flows of engineering interest.

3.2 The Mixing-Length Hypothesis

Prandt] (1925) put forth the mixing-length hypothesis. He visualized a
simplified model for turbulent fluid motion in which fluid particles coalesce
into lumps that cling together and move as a unit. He further visualized
that in a shear flow such as that depicted in Figure 3.1, the lumps retain
their z-directed momentum for a distance in the y direction, £,;,, that he
called the mixing length. In analogy to the molecular momentum trans-
port process with Prandtl’s lump of fluid replacing the molecule and £y,
replacing £m¢p, we can say that similar to Equation (3.8),

1 dU
Try =~ Epvmixemix@ (314)

The formulation is not yet complete because the mixing velocity, vmiz,
has not been specified. Prandtl further postulated that

du
dy

VUmiz = constant - £,z

(3.15)

which makes sense on dimensional grounds. Because £,,;, is not a physical
property of the fluid, we can always absorb the constant in Equation (3.15)
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and the factor 1/2 in Equation (3.14) in the mixing length. Thus, in analogy
to Equations (3.9) and (3.10), Prandtl’s mixing-length hypothesis leads to

dU
where pp is the eddy viscosity given by
dU
HT = .pezmx O (317)
| ¢y |

Our formulation still remains incomplete since we have replaced Boussi-
nesq’s empirical eddy viscosity, g7, with Prandtl’s empirical mixing length,
£miz. Prandtl postulated further that for flows near solid boundaries the
mixing length is proportional to distance from the surface. This turns out
to be a reasonably good approximation over a limited portion of a tur-
bulent boundary layer. As we will see in Section 3.3, for free shear flows

such as jets, wakes and mixing layers, the mixing length is proportional to
the width of the ]avpr 5. “nwnvpr each of these flows reguires a different

Nail Alavid vail ilvy Vi LOLEL R VIAUOT LAUYYD 1T a NLLLUL S,

coefficient of proport,lonahty between £ir and 8. The point is, the mixing
length is different for each flow (its ratio to the flow width, for example)
and must be known in advance to obtain a solution.

Note that Equation (3.17) can be deduced directly from dimensional
analysis. Assuming molecular transport of momentum is unimportant rel-
ative to turbulent transport, we expect molecular viscosity has no signif-
icance in a dimensional analysis. The only other dimensional parameters
available in a shear flow are the fluid density, p, our assumed mixing length,

o » an s PPN rrQenat cannnt deneand
‘gmzxa and the velumty g;adu:ut, dU/dy (Thc cduy VlDbUBll-y Callllol acpena

upon U since that would violate Galilean invariance.) A straightforward
dimensional analysis yields Equation (3.17).
Another interesting observation follows from replacing 7., by its defini-

tion so that
, duf?
mir dy

(3.18)

—uy =

The mixing velocity, vp,iz, must be proportional to an appropriate average
of v’ such as the RMS value defined by vpm, = (v/2)!/2. Also, Townsend
(1976) states that in all turbulent shear flows, experimental measurements

1nr11r'5|+o

S RV S AWV TTLw)

|——u’—v’| 72 0.4%pmsVrms (3.19)

Consequently, if vrms ~ ¥miz, comparison of Equations (3.15) and (3.18)
shows that the mixing-length model implies v,y,, and uyp,, are of the same
order of magnitude. This is generally true although wu,.,, is usually 25% to
75% larger than vpm,.
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At this point, we need to examine the appropriateness of the mixing-
length hypothesis in representing turbulent transport of momentum. Be-
cause we have made a direct analogy to the molecular transport process, we
have implicitly made the same two basic assumptions we made for molec-
ular transport. Specifically, we have assumed that the Boussinesq approx-
imation holds and that the turbulence is unaltered by the mean shear.
Unfortunately, neither condition is rigorously satisfied in practice!

Concerning the Boussinesq approximation, its applicability de-
pends upon the Knudsen number being small. Close to a solid boundary,
for example, the mixing length is approximately linear with distance from
the surface, y. Specifically, measurements indicate that £,;; = 0.41y. In
the same vicinity, the velocity follows the well-known law of the wall [see
Schlichting (1979)], and the velocity gradient varies inversely with y. Thus,
the length L defined in Equation (3.11) is equal to y. Consequently, the
Knudsen number is of order one, i.e.,

Kn =/ L =~ 041 (3.20)

Hence, the linear stress/strain-rate relation of Equation (3.16) is suspect.

Concerning the effect of the mean shear on the turbulence,
the assumed lifetime of Prandtl’s lumps of fluid is £ynip /Umiz. Reference to
Equation (3.15) shows that this time is proportional to {dU/dy|~". Hence,
the analog to Equation (3.13) is

Umiz
bmiz A /dy] (3.21)
Equation (3.21) tells us that the lumps of fluid will undergo changes as
they travel from points P and Q toward y = 0. This is indeed consistent
with the observed nature of turbulent shear flows. Tennekes and Lumley
(1983) describe the situation by saying, “the general conclusion must be
that turbulence in a shear flow cannot possibly be in a state of equilib-
rium which is independent of the flow field involved. The turbulence is
continually trying to adjust to its environment, without ever succeeding.”
Thus, the theoretical foundation of the mixing-length hypothesis is a bit
flimsy to say the least. On the one hand, this is a forewarning that a turbu-
lence model built on this foundation is unlikely to possess a very wide range
of applicability. On the other hand, as the entire formulation 1s empirical 1n
its essence, the usefulness of and justification for any of its approximations
ultimately lies in how well the model performs in applications, and we defer
to the applications of the following sections as its justification.
As a pleasant surprise, we will see that despite its theoretical shortcom-
ings, the mixing-length model does an excellent job of reproducing experi-
mental measurements. It can be easily calibrated for a specific class of flows,
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and the model’s predictions are consistent with measurements provided we
don’t depart too far from the established data base used to calibrate the
mixing length. Eddy viscosity models based on the mixing length have
been fine tuned for many flows since 1925, most notably by Cebeci and
Smith (1974). Strictly speaking, the term equilibrium is nonsensical in
the context of turbulent shear flows since, as noted above, turbulence is
continually attempting to adjust to its environment, without ever succeed-
ing. Nevertheless, most turbulence researchers describe certain flows as
equilibrium turbulent flows. What they actually mean is a relatively
simple flow with slowly varying properties. Most flows of this type can
be accurately described by a mixing-length computation. In this spirit, a
fitting definition of equilibrium turbulent flow might be a flow that can be
accurately described using a mixing-length model!

3.3 Application to Free Shear Flows

Our first applications will be to incompressible free shear flows. A flow
is termed free if it is not bounded by solid surfaces. Figure 3.2 illustrates
three different types of free shear flows, viz., the far wake, the mixing
layer, and the jet. A wake forms downstream of any object placed in a
stream of fluid; we will consider only the two-dimensional wake. A mixing
layer occurs between two parallel streams moving at different speeds; for
the case shown in the figure, the lower stream is at rest. A jet occurs when
fluid is ejected from a nozzle or orifice. We will assume the jet issues into
a quiescent fluid, and we will analyze both the (two-dimensional) plane jet
and the (axisymmetric) round jet.

All three of these flows approach what is known
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¢ = 0 become unimportant. The velocity component U/ (z,y), for example,
can be expressed in the form

U(z,y) = o) Fly/6(2)) (3.22)

This amounts to saying that two velocity profiles located at different z sta-
tions have the same shape when plotted in the scaled form U{z, y)/uo(z)
versus y/6(z). Flows with this property are also referred to as self pre-
serving.

Free shear flows are interesting building-block cases to test a turbulence
model on for several reasons. First, there are no solid boundaries so that
we avoid the complications boundaries add to the complexity of a turbulent
flow. Second, they are mathematically easy to calculate because similarity
solutions exist, where the Reynolds-averaged equations of motion can be
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(a) (b) (c)

Figure 3.2: Free shear flows: (a) far wake; (b) mixing layer; and, (c) jet.

reduced to ordinary differential equations. This greatly simplifies the task
of obtaining a solution. Third, there is a wealth of experimental data
available to test model predictions against.

The standard boundary-layer approximations hold for all three of the
shear flows considered in this Section. Additionally, molecular transport of
momentum is negligible compared to turbulent transport. Since all three
flows have constant pressure, the equations of motion are (with j = 0 for
two-dimensional flow and j = 1 for axisymmetric flow):

=t 75 (YV) =0 (3.23)
U@U V@U 1 8 1., 3 94°
p ax"—P Ty—-@"'gg( Try) (3.24)

Of course, while the equations are the same for all three flows, boundary
conditions are different. The appropriate boundary conditions will be stated
when we discuss each flow.

As a historical note, in addition to the mixing-length model, Prandtl
also proposed a simpler eddy viscosity model specifically for free shear flows.
In this model,

#1 = XplUmaz(2) — Unmin(2)]6(x) (3.25)
where Upar and Upin are the maximum and minimum values of mean ve-
locity in the layer, & is the half width of the layer, and y is a dimensionless
empirical parameter. This model is very convenient for free shear flows
because it is a function only of z by construction, and excellent results
can be obtained if x is assumed to be constant across the layer. Conse-
quently, laminar flow solutions can be generalized for turbulent flow with,
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at most, minor notation changes. We leave application of this model to the
Problems section. All of the applications in this Section wﬂl be done using
Equations (3.16) and (3.17).

We begin by analyzing the far wake in Subsection 3.3.1. Complete
details of the similarity solution method are given for the benefit of the
reader who has not had much experience with the method. The far wake
is especially attractive as our first application because a simple closed-form
solution can be obtained using the mixing-length model. Then, we proceed
to the mixing layer in Subsection 3.3.2. While an analytical solution is
possible for the mixing layer, numerical integration of the equations proves
to be far simpler. Finally, we study the plane jet and the round jet in
Subsection 3.3.3.

3.3.1 The Far Wake
Clearly the flow in the wake of the body indicated in Figure 3.2(a) is sym-

2 ~m Ty malacrod
metric about the = ?..X}S Thus we solve for G < Yy < ©O. 1ne reievaiit

boundary conditions follow from symmetry on the axis and the require-
ment that the velocity approach its freestream value far from the body.
Hence, the boundary conditions are

Ulz,y) > U as y— o0 (3.26)
ou
—_— = t = 2
B 0 at y=0 (3.27)

The classical approach to this problem is to linearize the momentum
equation, an approximation that is strictly valid only in the far wake
[Schlichting (1979)]. Thus, we say that

U(z,y) = U i—1 (3.28)

where || € Uy. The linearized momentum equation and boundary con-
ditions become

di i
pUgg— = -2 (3.29)
a ay \ /
u(z,y) -0 as y—o oo (3.30)
o4 =0 at y=0 (3.31)
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There is also an integral constraint that must be satisfied by the solution.
If we consider a control volume surrounding the body and extending to
infinity, conservation of momentum leads to the following requirement [see
Schlichting (1979)],

oC
1
f pU(Us — U) dy = §D (3.32)
0
where D is the drag of the body per unit width.
We use the mixing-length model to specify the Reynolds stress 7, so
that
Oul O
2 .
Tey = —pt — 3.33
Ty P mu.-‘ 3y | dy ( )

Finally, to close our set of equations, we assume the mixing length 1s
proportional to the half-width of the wake, §(z) [see Figure 3.2(a)]. Thus,
we say that

where o is a constant that we refer to as a closure coefficient.
fondest hope would be that the same value of o works for all free shear
flows. Unfortunately, this is not the case so that the mixing-length model
must be recalibrated for each type of shear flow.

To obtain the similarity solution to Equations (3.29) through (3.34), we

proceed in a series of interrelated steps. The sequence is as follows.

—~

F‘JJ
O e
jort wh
o g

1. Assume the form of the solution.
2. Transform the equations of motion.
3. Transform the boundary conditions and the integral constraint.

4. Determine the conditions required for existence of the similarity so-
lution.

5. Solve the resulting ordinary differential equation subject to the trans-
formed boundary conditions.

In addition to these 5 steps, we will also determine the value of the closure
coefficient « in Equation (3.34) by comparison with experimental data.
Step 1. We begin by assuming the similarity solution can be written
in terms of an as yet unknown velocity scale function, u,(z), and the wake
half width, 8(z). Thus, we assume that the velocity can be written as

a(z,y) = uo(x) F(n) (3.35)
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where the similarity variable, 5, is defined by

n= y/&(:c) (3.36)

Step 2. In order to transform Equation (3.29), we have to take account
of the fact that we are making a formal change of dependent variables.
We are transforming from (,y) space to (z,n) space which means that
dertvatives must be transformed according to the chain rule of calculus.
Thus, derivatives transform according to the following rules. Note that a
subscript means that differentiation is done holding the subscripted variable
constant.

&), = &), ®),+(5), (%)
aa:y_(’ia:yaxn dz /), \0n/,
_ d on d
} (5;),,*‘(57),,, )
0 8'(z) 0
= 5] — == - (3.37)
(&), 75, a7

( 9 (3.38)

A prime denotes ordinary differentiation so that §(z) = dé/dz in Equa-
tion (3.37). We now proceed to transform Equation (3.29). For example,
the dertvatives of @ are

ou u,’ dF

5y = Uo'(m) — — e (3.39)
du  u, dF
—65 = -6_% (3.40)

Proceeding in this manner for all terms in Equation (3.29) and using the
mixing-length prescription for the Reynolds stress leads to the transformed
momentum equation.

Uty o _ Vo' dF (‘ ) (3.41)

2
U, U, 'I]
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Step 3. Clearly, ¥ — oo corresponds to § — oo and y — 0 corresponds
to n — 0. Thus, the boundary conditions in Equations (3.30) and (3.31)
transform to

Fp) -0 as n—ooo (3.42)

dF
— = = A4
an 0 at 75=0 (3.43)

and the integral constraint becomes
(o ¢
D

F(p)dn = ———— 3.44
| P = (3.4

Step 4. In seeking a similarity solution, we are attempting to make
a separation of variables. The two terms on the left-hand side of Equa-
tion (3.41) have coefficients that in general vary with r. Also, the right-
hand side of Equation (3.44) is a function of #. The condition for exis-

e f it cmliiian e tha oo throe coefBelents ho
tence of the similarity solution is that these three coefficients be

independent of x. Thus, we require the following three conditions.

Uso O, Uy b D

= ai, = az,

u? U, 2pU o u,d -

The quantities a; and a, must, of course, be constant. Note that we

could have introduced a third constant in the integral constraint, but it is

unnecessary (we, in effect, absorb the third constant in §). The solution to
these three simultaneous equations is simply

1 (3.45)

‘ agf)i?
8(z) = \/ 7 (3.46)
1 D
Uo(.’L‘) = 5 a2pz (347)
a; = —ay (348)

Step 5. Finally, we expect that F(5) will have its maximum value on

the axis, and then fall monotonically to zero approaching the freestream.

If this is true, then F’(n) will be negative for all values of 5 and we can
replace its absolute value with —F’(n). Taking account of Equations (3.45)
through (3.48), the momentum equation now simplifies to

o g ((PY] - P + ) =0 (349)
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The second term is a perfect differential so that Equation (3.49) can be
rewritten as

d
dn

Integrating once and imposing the symmetry condition at n = 0 [Equa-
tion (3.43)] yields

[e*(F')? — asnF] =0 (3.50)

where we observe that F'(7) is everywhere less than zero. Integrating once
more, we find that the solution for F'(n) is
2 a/2]?
Fn)=C [1 - (n/7e) ] (3.52)
where C' is a constant of integration and 7. is given by
= (3aC/ /a3 )3 (3.53)

ition has a peak value at § = 0 and decreases monotonically to

zero as n — 1,. It then increases without limit for n > n.. The only way
we can satisfy the far field boundary condition [Equation (3.42)] is to use
Equation (3.52) for 0 < < 5, and to use the trivial solution, F(n) = 0,
for values of 1 in excess of ,. -

With no loss of generality, we can set 7. = 1. To understand this,
note that n/n. = y/[n.6(z)]. Hence, by setting 5, = 1 we simply rescale
the 7 coordinate so that é(z) is the wake half width as originally planned.
Therefore,

3aC = /a3 (3.54)

Finally, imposing the integral constraint, Equation (3.44), yields an
equation for the constant C'. Performing the integration, we have

9
2 3/4 — 22
f o2 dn= 5 C? =1 (3.55)
Therefore, -
C =v20/3 = 1.491 (3.56)
and

= \/az/20 (3.57)

If the closure coefficient & were known, our solution would be com-
pletely determined at this point with Equation (3.57) specifying as. This
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Figure 3.3: Comparison of computed and measured velocity profiles for the
far wake; Mixing length; o Fage and Falkner.

is the nature of an incomplete turbulence model. The coefficient « 1s un-
known because the mixing length [Equation (3.34)] is unknown a priori for
this flow. To complete the solution, we appeal to experimental data [c.f.
Schlichting (1979))], which show that the wake half width grows according
to

Dz

o(x) 0805 | 777

(3.58)

Comparison of Equations (3.46) and (3.58) shows that the value of a3 1s
az = 0.648 (3.59)
The value of the coefficient o then follows from Equation (3.57), i.e.,
a=0.18 (3.60)

Collecting all of this, the final solution for the far wake, according to
the mixing-length model is

Uz, y) = Uso — 1.38\/,)2: [1 - (y/é)slz} i (3.61)
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where 6(z) is given by Equation (3.58). Figure 3.3 compares the theoretical
profile with experimental data of Fage and Falkner (1932). As shown, the
mixing-length model, once calibrated, does an excellent job of reproduc-
ing measured values. As a final comment, this solution has an interesting
feature that we will see in many of our applications. Specifically, we have
found a sharp turbulent/nonturbulent interface. This manifests itself in the
nonanalytic behavior of the solution at y/§ = 1, i.e., all derivatives of U
above 02U /0y? are discontinuous at y/§ = 1. Measurements confirm exis-
tence of such interfaces in all turbulent flows. However, the time-averaged
interface is continuous to high order, being subjected to a near-Gaussian
jitter. Time averaging would thus smooth out the sharpness of the phys-
ical interface. Consistent with this smoothing, we should actually expect
analytical behavior approaching the freestream. Hence, the mixing-length
model is predicting a nonphysical feature.

3.3.2 The Mixing Layer

For the mixing layer, we consider two parallel streams with velocities Uy
and Us. By convention, the stream with velocity U; lies above y = 0 and
Uy > U,. The boundary conditions are thus

Ul,y) > U1y a y— oo (3.62)

U,y)—» Uz as y— —o© (3.63)

The most convenient way to solve this problem is to introduce the
streamfunction, 1. The velocity components are given in terms of v as

follows.

_ oy __9%
_ay and V= 52

Equation (3.23) is automatically satisfied and the momentum equation

U (3.64)

becomes
anz‘bn%@_ﬁ_[ﬁ. .82_'/)@. (3.65)
dy dxdy Oz Oy? Oy | ™" |0y | dy? |
The boundary conditions on 1 are
0
%%Ul as Yy — 400 (3.66)
%1'5 —U; as y— —o0 (3.67)
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Because the velocity is obtained from the streamfunction by differenti-
ation, 1 involves a constant of integration. For the sake of uniqueness, we
can specify an additional boundary condition on %, although at this point
it 1s unclear where we should impose the extra boundary condition. The
choice will become obvious when we set up the similarity solution. As with
the far wake, we assume

¥(z,y} = ¥o(z)F(n) (3.68)
where the similarity variable, g, is defined by
n=y/éz) (3.69)

As can be verified by substituting Equations (3.68) and (3.69) into Equa-
tion (3.65), a similarity solution exists provided we choose

Yo(z) = AUz (3.70)

where A 1s a constant to be determined. Using Equation (3.34) to determine
the mixing length, Equation (3.65) transforms to

a2% [(F")] + AFF" =0 (3.72)

Note that we have removed the absolute value sign in Equation (3.65) by
noting that we expect a solution with U /8y = 8%y /dy? > 0. As an imme-
diate consequence, we can simplify Equation (3.72). Specifically, expanding
the first term leads to the following linear equation for the transformed
streamfunction, F'(n).

3
2a2d—1: + AF =0 (3.73)
dn

To determine the constant of integration in the streamfunction, note
that our assumed form for ¢ [Equation (3.68)] is consistent with letting
F(n) vanish at 7 = 0. This is known as the dividing streamline. Thus, our
boundary conditions are

dF
i — 74
p 1 as n—+0© (3.74)
d
a UxfUs as 15— —o0 (3.75)

dn
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Figure 3.4: Comparison of computed and measured velocity profiles for a
mixing layer; Mixing length; o Liepmann and Laufer.

F(0)=0 (3.76)

For simplicity, we consider the limiting case Us = (0. This problem can
be solved in closed form using elementary methods. Unfortunately, the
solution is a bit complicated. Furthermore, as with the far-wake solution,
the mixing-length model predicts a sharp turbulent /nonturbulent interface
and it becomes a rather difficult chore to determine a straightforward rela-
tionship between the closure coefficient o and the constant A. The easier
way to proceed is to solve the equation numerically for various values of
a?/A and compare with experimental measurements to infer the values of
o and A. Proceeding in this manner (see Program MIXER in Appendix
C), optimum agreement between computed and measured [Liepmann and
Laufer (1947)] velocity profiles occurs if we choose

A=0.247 and a=0.071 (Mixing Layer) (3.77)

This value of « is nearly identical to the value (0.070) quoted by Launder
and Spalding (1972). Figure 3.4 compares computed and measured velocity
profiles. The traditional definition of spreading rate, Cj, for the mixing
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layer is the difference between the values of y/z where (U —U,)? /(U1 —U,)?
is 9/10 and 1/10. The values of A and « have been selected to match the
experimentally measured spreading rate, viz.,

Cs =0.115 (3.78)

While the computed velocity goes to zero more rapidly than measured

n the low speed side of the mixing layer the overall agreement between
]’\ 1] 1

anrLr o
11CVL Y ol

O

(=g
£

3.3.3 The Jet

We now analyze the two-dimensional, or plane jet, and the axisymmetric,
or round jet. Referring to Figure 3.2(c), we assume the jet issues into a
stagnant flutd. The jet entrains fluid from the surrounding fluid and grows
in width downstream of the origin. Equations (3.23) and (3.24) govern the

motion with j = 0 corresponding to the plane jet and j = 1 corresponding
ta tha rannd et Ag with the Fnr 11'791213 we talke nr]\mnfna‘p (YF the svmmetrv
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about the x axis and solve for 0 < y < co. The boundary conditions for
both the plane and the round jet are

Uz,y) =0 as y—o00 (3.79)
au
gy =0 & ¥=0 (3.80)

To insure that the momentum in the jet is conserved, our solution must
satisfy the following integral constraint:

00
19 4 3 -

] U2y dy= ~J (3.81)
jo y dy=3 (3.81)

where J is the momentum flux per unit mass, or, specific momentum
flux.

To solve, we introduce the streamfunction, which can be generalized to
account for the axisymmetry of the round jet, i.e.,

oy
Oy
The momentum equation thus becomes
Y 00 ( -j Qﬂ)

Oy 0zdy 31‘ By Oy

o

oy

and YV =— Ba

YU = (3.82)
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Assuming a similarity solution of the form given in Equations (3.68)
and (3.69), the appropriate forms for 1,(z) and 6(z) are

T A Higit]
Vo(z) = ;Q,f_ (3.84)
8(z) = Az (3.85)

where A is a constant that will be determined by comparison with exper-
imental data. For the jet, we expect to have 8U/8y < 0. Using this fact
to replace the absolute value in Equation (3.83) with a minus sign, the fol-
lowing ordinary differential equation for the transformed streamfunction,

F(n), results.
wEE () e

This equation must be solved subject to the following conditions.

F(0)=0 (3.87)
%%—»0 as Y- 00 (3.88)
J{)‘C’O (-—];;l?- dnp=1 (3.90)

Performing a numerical solution of Equation (3.86) subject to Equa-
tions (3.87) through (3.90), and comparing with experiment yields

A=0246 and o=0098  (Plane Jet) (3.91)

A=0233 and a=0080 (Round Jet) (3.92)

The values for « are about 8% larger than corresponding values (0.090
and 0.075) quoted by Launder and Spalding (1972). The Launder-Spalding
results were obtained using numerical procedures of the 1960’s and are
unlikely to be free of numerical error. By contrast, the values quoted in
Equations (3.91) and (3.92) have been obtained using an accurate solver (see
Program JET in Appendix C). Figures 3.5 and 3.6 compare computed and
measured [Wygnanski and Fiedler (1968), Bradbury (1965)] velocity profiles
for the plane and round jets. Somewhat larger discrepancies between theory
and experiment are present for the plane jet than for the round jet.
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Figure 3.5: Comparison of computed and measured velocity profiles for the
plane jet; Mixing length; o Wygnanski and Fiedler.
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Figure 3.6: Comparison of computed and measured velocity profiles for the
round jet; —— Mixing length; o Bradbury.
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The traditional definition of spreading rate, Cjs, for the jet is the value
of y/z where the velocity is half its peak value. Experimental data indicate
Cs is between 0.100 and 0.110 for the plane jet and between 0.086 and
0.095 for the round jet. The mixing-length computational results shown in
Figures 3.5 and 3.6 correspond to

Cs :{ 0.100 (Plane Jet) (3.93)

0.086 (Round Jet)

This co
flows. A few final comments will help put this model into proper perspec-
tive. We postulated in Equation (3.34) that the mixing length is propor-
tional to the width of the shear layer. Our theory thus has a single closure
coefficient, a, and we have found that it must be changed for each flow.
The following values are optimum for the four cases considered.

ncludes our application of the mixing-length model to free shea

1AL CRUANALL VY URIND RRRESNEXR A\dllovll mode! Lo 1Ir el 3 Awte 23

Far Wake o = 0.180
Mixing Layer a = 0.071
r]aﬁe Jet a = 0. 098
Round Jet o = 0.080

While fairly close agreement has been obtained between computed and
measured velocity profiles, we have not predicted the all important spread-
ing rate. In fact, we established the value of our closure coefficient by
forcing agreement with the measured spreading rate. If we are only inter-
ested in far-wake applications or round jets we might use this model with
the appropriate closure coefficient for a parametric study in which some flow
property might be varied. However, we must proceed with some degree of
trepidation knowing that our formulation lacks in universality.

3.4 Modern Variants of the Mixing-Length
Model

For free shear flows, we have seen that the mixing length is constant across
the layer and proportional to the width of the layer. For flow near a solid
boundary, turbulence behaves differently and, not too surprisingly, we must
use a different prescription for the mixing length. Prandtl originally postu-
lated that for flows near solid boundaries the mixing length is proportional
to the distance from the surface. As we will demonstrate shortly, this pos-
tulate is consistent with the well-known law of the wall, which has been
observed for a wide range of wall-bounded flows.
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Figure 3.7: Typical velocity profile for a turbulent boundary layer.

Figure 3.7 shows a typical velocity profile for a turbulent boundary
layer. The quantity y+, which will be defined below [Equation (3.101)}, is
dimensionless distance from the surface. From an experimenter’s point of
view, three distinct regions are discernible, viz., the viscous sublayer, the
log layer and the defect layer. By definition, the log layer, sometimes
referred to as the “fully turbulent wall layer,” is the portion of the boundary
layer sufficiently close to the surface that inertial terms can be neglected
yet sufficiently distant that the molecular, or viscous, stress is negligible
compared to the Reynolds stress. This region typically lies between yt =30
and y = 0.1, where the upper boundary is dependent upon Reynolds
number. Of particular interest to the present discussion, the law of the
wall holds in the log layer. The viscous sublayer is the region between
the surface and the log layer. Close to the surface, the velocity varies
approximately linearly with y*, and gradually asymptotes to the law of
the wall for large values of y*. The defect layer lies between the log layer
and the edge of the boundary layer. The velocity asymptotes to the law of
the wall as y/6 — 0, and makes a noticeable departure from the law of the
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wall approaching the freestream. Chapter 4 discusses these three layers in
great detail.

From a mathematician’s point of view, there are actually only two layers,
viz., the viscous sublayer and the defect layer. In the parlance of singular
perturbation theory (Appendix B), the defect layer is the region in which
the outer expansion is valid, while the viscous sublayer is the region where
the inner expansion holds. In performing the classical matching procedure,
we envision the existence of an overlap region, in which both the viscous
sublayer and defect-layer solutions are valid. In the present context, we
choose to call the overlap region the log layer. Strictly speaking, the log
layer is not a distinct layer, but rather the asymptotic limit of the inner and
outer layers. Nevertheless, we will find the log layer to be useful because of
the simplicity of the equations of motion in the layer .

Consider a constant-pressure boundary layer. The flow is governed by
the standard boundary-layer equations.

W+ =0 (3.94)
oz Oy 19:9)

oU ov g | oU
pU§;+pV-5!7— By [#E;Jrfxy] (3.95)

Because the convective terms are negligible in the log layer, the sum of the
viscous and Reynolds shear stress must be constant. Hence, we can say

..a_.U.,l— M./aU\ —

©w
=2

—~~
(I%)
~——

where subscript w denotes value at the wall and 4, = \/7,/p is known as
the friction velocity. As noted above, the Reynolds stress is much larger
than the viscous stress in the log layer. Consequently, according to the
mixing-length model,

AN
2. =) ~u? 97
t (52) mu (3.97)
If we say that the mixing length is given by
bmiz = KY (3.98)

where & is a constant, Equation (3.97) can be integrated immediately to
yield

U=~ %En y + constant (3.99)
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This equation assumes a more familiar form when we introduce the
dimensionless velocity and normal distance defined by

Ut =U/u, (3.100)

y* = u,y/v (3.101)

Introducing Equations (3.100) and (3.101) into Equation (3.99) yields the
classical law of the wall, viz.,

(3.102)
\U.J.U‘l}
The coefficient « is known as the KArmén constant, and B is a dimension-
less constant. Coles and Hirst (1969) found from correlation of experimental

data for a large number of attached, incompressible boundary layers with
and without pressure gradient that

K & 0.41 (3.103)
B~5.0 (3.104)

Note that this is not intended as a derivation of the law of the wall.
Rather, it simply illustrates consistency of Equation (3.98) with the law of
the wall.

Using Equation (3.98) all the way from y = 0 to y = 4, the mixing-
length model fails to provide close agreement with measured skin friction
for boundary layers. Of course, not even Prandtl expected that £,;x = Ky
throughout the boundary layer. Since the mixing length was first postu-
lated, considerable effort has been made aimed at finding a suitable pre-
scription for boundary-layer computations. Several key modifications to
Equation (3.98) have evolved, three of which deserve our immediate atten-
tion. See Schlichting (1979) or Hinze (1975) for a more-complete history of
the mixing-length model’s evolution.

The first key modification was devised by Van Driest (1956) who
proposed that the mixing length should be multiplied by a damping func-
tion. Specifically, Van Driest proposed, with some theoretical support but
mainly as a good fit to data, that the mixing length should behave according

to
g oa

[ —ytsat] o A
brniz = KY ll —e ”‘OJ (3.105)

where the constant A} is
A =26 (3.106)

Aside from the primary need to improve predictive accuracy, the Van
Driest modification improves our description of the Reynolds stress in the
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limit y — 0. With £,,,;, given by Equation(3.98), the Reynolds shear stress
Tzy ~ Y as y — 0. However, the no-slip boundary condition tells us that
u' = 0 at y = 0. Since there is no a priori reason for du' /0y to vanish at the
surface, we conclude that v’ ~ y as y — 0. Since the fluctuating velocity
satisfies the continuity equation, we also conclude that v’ ~ y%. Hence,
the Reynolds shear stress must go to zero as y>. Results of DNS studies
(Chapter 8) indicate that indeed 7,y ~ y* as y — 0. However, as noted by
Hinze (1975), the coefficient of the y® term in a Taylor series expansion for
Tzy must be very small as measurements are as close to 7, ~ y* as they
are to Tpy ~ y° when y — 0. In the limit of small y the Van Driest mixing
length implies 7,, goes to zero as y* approaching the surface.

The second key modification was made by Clauser (1956) who ad-
dressed the proper form of the eddy viscosity in the defect layer. In analogy
to Prandtl’s special form of the eddy viscosity for wake flows given in Equa-
tion (3.25), Clauser specifies that

where up 1s the eddy viscosity in the outer part of the layer, §* is the
displacement thickness, U, is the velocity at the edge of the layer, and « is
a closure coefficient.

In a similar vein, Escudier (1966) found that predictive accuracy is
improved by limiting the peak value of the mixing length according to

(bmiz)maz = 0.096 (3.108)

where & is boundary-layer thickness. Escudier’s modification is the same
approximation we used in analyzing free shear flows [Equation (3.34)], al-
though the value 0.09 is half the value we found for the far wake.

Using an eddy viscosity appropriate to wake flow in the outer portion of
the boundary layer also improves our physical description of the turbulent
boundary layer. Measurements indeed indicate that the turbulent boundary
layer exhibits wake-like characteristics in the defect layer. As pointed out by
Coles and Hirst (1969), “a typical boundary layer flow can be viewed
as a wake-like structure which is constrained by a wall.” Figure 3.8
illustrates Coles’ notion that the defect layer resembles a wake flow while
the wall constraint is felt primarily in the sublayer and log layer. Strictly
speaking, turbulence structure differs a lot between a boundary layer and
a wake. Hence, the terminology “wake component” is conceivably a bit
misleading from a conceptual point of view. Nevertheless, the mathematical
approximations that yield accurate predictions for a wake and for the outer
portion of a turbulent boundary layer are remarkably similar.
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Figure 3.8: Coles’ description of the turbulent boundary layer. [From Coles
and Hirst (1969) — Used with permission.]

The third key modification is due to Corrsin and Kistler (1954) and
Klebanoff (1956) as a corollary result of their experimental studies of in-
termittency. They found that approaching the freestream from within
the boundary layer, the flow is not always turbulent. Rather, it is some-
times laminar and sometimes turbulent, ie., it is intermittent. Their
measurements indicate that for smooth walls, the eddy viscosity should be

multiplied by
r o611t

Fries(y;6) = l1 +55 (-g—) J (3.109)
where § is the boundary-layer thickness. This provides a measure of the
effect of intermittency on the flow.

All of these modifications have evolved as a result of the great increase
in power and accuracy of computing equipment and experimental measure-
ment techniques since the 1940’s. The next two subsections introduce the

two most noteworthy models in use today that are based on the mixing-
length concept. Both include variants of the Van Driest, Clauser, and
Klebanoff modifications. Although it is not used in these two models, the
Escudier modification has also enjoyed great popularity.

As a final comment, we have introduced two new closure coefficients,
At and a, and an empirical function, Fgep. As we continue in our journey
through this book, we will find that the number of such coefficients increases

as we attempt to describe more and more features of the turbulence.
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3.4.1 Cebeci-Smith Model

The Cebeci-Smith model [Smith and Cebeci (1967)] is a two-layer model
with pr given by separate expressions in each layer. The eddy viscosity is

pry ¥ < Ym
T = v 3.110
IUT { ﬂ'Toa 'U > ym ( )

where y,, is the smallest value of y for which pr, = pr,. The values of prp
in the inner layer, pr,, and the outer layer, ur,, are computed as follows.

Inner Layer:

ou\?  rov\2]"
o= pt2 | =— — 3.111
ur = ploiy (ay) +<a$) (3.111)
P [1 - e-y+/f‘+] (3.112)
Outer layer:
BT, = aPUe6;FKleb(y;6) (3113)

Closure Coeflicients:

dP/dz

2
ur

~1/2
k=040, o=0.0168, A" =26 [1 +y ] (3.114)
The function Fiep is the Klebanoff intermittency function given by
Equation (3.109), U, is boundary-layer edge velocity, and &, is the velocity
thickness defined by

&
* = 1~ e) d 3.
6 [] (1-U/UL) dy (3.115)

Note that velocity thickness is identical to displacement thickness for in-
compressible flow. The coefficient A™ differs from Van Driest’s value to im-
prove predictive accuracy for boundary layers with nonzero pressure gradi-
ent. The prescription for u7, above is appropriate only for two-dimensional
flows; for three-dimensional flows, it should be proportional to a quantity
such as the magnitude of the vorticity vector. There are many other subtle
modifications to this model for specialized applications including surface
mass transfer, streamline curvature, surface roughness, low Reynolds num-
ber, etc. Cebeci and Smith (1974) give complete details of their model with

all its variations.
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The Cebeci-Smith model is especially elegant and easy to implement.
Most of the computational effort, relative to a laminar case, goes into
computing the velocity thickness. This quantity is readily available in
boundary-layer computations so that a laminar flow program can usually be
converted to a turbulent flow program with just a few extra lines of instruc-
tions. Figure 3.9 illustrates a typical eddy viscosity profile constructed by
using pr, between y = 0 and y = y,, and pr, for the rest of the layer. At
Reynolds numbers typical of fully-developed turbulence, matching between
the inner and outer layers will occur well into the log layer.

v 4

Figure 3.9: Eddy viscosity for the Cebeci-Smith model.

Wao ran satimata tha valn at ac fallawse S‘n{‘p we ey

YYyYv vauia \JDUI.I.I.].CIIU\.; ULLN. Vﬂ}.he 01 W xuxl.u.“v’u ARV, TV L \J.l\}’.)

ctt

ing point to lie well within the log layer, the exponential term in th
Driest damping function will be negligible. Also, the law of the wall |
tion (3.99)] tells us U /0y = u. /(ky). Thus,

us .
A pn‘?yz—y ~ pru,y = Kyt (3.116)

Since the matching point also lies close enough to the surface that we can
say y/6 < 1, the Klebanoff intermittency function will be close to one so
that (with &5 = 6*):

pr, = apl6™ = apRess (3.117)

Hence, equating 7, and pr,, we find that
yh & = Rese % 0.04Res, (3.118)
K

Assuming a typical turbulent boundary layer for which Rese ~ 10%, the
matching point will lie at g}, ~ 400.
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3.4.2 Baldwin-Lomax Model

The Baldwin-Lomax model [Baldwin and Lomax (1978)] was formulated
for use in computations where boundary-layer properties such as §, 6, and
U, are difficult to determine. This situation often arises in numerical sim-
ulation of separated flows, especially for flows with shock waves. Like the
Cebeci-Smith model, this is a two-layer model. The eddy viscosity is given
by Equation (3.110), and the inner and outer layer viscosities are as follows:

Inner Layer:

BT, = pliiy|w] (3.119)
lopiz = KY [1 - e“y+/A°+] (3.120)
QOuter Layer:
nr, — PaCchwakeFKleb(yi ymam/,CKleb) (3121)
Fyake = min [ymaa:Fmaa:; kaym.angif/Fmaz] (3122)
1
Fraz = - mg.x(ﬂmiﬂwl) (3.123)

where ymaz 15 the value of y at which £,,;.|w| achieves its maximum value.

Closure Coefficients:

(3.124)

k= 0.40, o =0.0168, Aj = 26
Cop =16, Ckieb = 03, Cur=1

The function Fgiep is Klebanoff’s intermittency function [Equation (3.109)]
with & replaced by ymaez/Ckieb, and w is the magnitude of the vorticity
vector, i.e.,

" -1/2
oV oU 2+ oaw oV 2+ ou  aw\?|’
W = —_—— — —_— —_—— —
Ox Oy dy 0z 0z oz

for fully three-dimensional flows. This simplifies to w = |8V /8z — U /dy|
in a two-dimensional flow. If the boundary layer approximations are used
in a two-dimensional flow, then w = |3U/dy|.

(3.125)
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Ugis is the maximum value of U for boundary layers. For free shear
layers, Ugis is the difference between the maximum velocity in the layer
and the value of U at ¥y = Ymaz-

The primary difference between the Baldwin-Lomax and Cebeci-Smith
models is in the outer layer, where the product C.pFyare replaces Ugdy.
To avoid the need to locate the boundary-layer edge, the Baldwin-Lomax
model establishes the outer-layer length scale in terms of the vorticity in
the layer. On the one hand, using Fyote = Ymaz Fmaz, we in effect replace
&2 by y2 ,.w/U.. On the other hand, using Fyuze = kaymaa,Uffif/Fmax
effectively replaces the shear layer width, 6, in Prandtl’s eddy-viscosity
model [Equation (3.25)] by Ugs/|w|.

As a final comment, while Equation (3.124) implies this model has six
closure coefficients, there are actually only five. The coeflicient C., appears
only in Equation (3.121) where it is multiplied by «, so aC.;, can be treated
as a single constant.

3.5 Application to Wall-Bounded Flows

We turn our attention now to application of the Cebeci-Smith and Baldwin-
Lomax models to wall-bounded flows, i.e., to flows with a solid boundary.
The no-slip boundary condition must be enforced for wall-bounded flows,
and we expect to find a viscous layer similar to that depicted in Figure 3.7.
This Section first examines two internal flows, viz., channel flow and pipe
flow. Then, we consider external flows, i.e., boundary layers growing in a

cerni-infinite medinm

wosxix aaiaaxazws A3 AQI2222.

3.5.1 Channel and Pipe Flow

Like the free shear flow applications of Section 3.3, constant-section channel
and pipe flow are excellent building-block cases for testing a turbulence
model. Although we have the added complication of a solid boundary, the
motion can be described with ordinary differential equations and is therefore
easy to analyze mathematically. Also, experimental data are abundant for
these flows.

The classical problems of flow in a channel, or duct, and a pipe are the
idealized case of an infinitely long channel or pipe (Figure 3.10). This ap-
proximation is appropriate provided we are not too close to the inlet of the
channel/pipe so that the flow has become fully-developed. For turbulent
flow in a pipe, flow becomes fully developed approximately 50 pipe diame-
ters downstream of the inlet. Because, by definition, properties no longer
vary with distance along the channel/pipe, we conclude immediately that
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Figure 3.10: Fully-developed flow in a channel or pipe.

du
— =0 (3.126)
ox
Denoting distance from the center of the channel or pipe by r, conser-
vation of mass is aU 9
1 A
de ~ rigr ( )

where j = 0 for channel flow and j = 1 for pipe flow. In light of Equa-
tion (3.126), we see that V does not vary across the channel /pipe. Since V
must vanish at the channel/pipe walls, we conclude that V' = 0 through-
out the fully-developed region. Hence, for both channel and pipe flow, the
inertial terms are exactly zero, so that the momentum equation simplifies

to
dP 1 d | .({ dU

In fully-developed flow pressure gradient must be independent of z and if
V = 0 it is also exactly independent of y. Hence, we can integrate once to
obtain

U r dP
U— + Tpp = = —_ 3.129
dr j+1dz ( )
Now, the Reynolds stress vanishes at the channel/pipe walls and this

establishes a direct relationship between the pressure gradient and the shear
stress at the walls. If we let R denote the half-height of the channel or the
radius of the pipe, applying Equation (3.129) at r = R tells us that

R dP

Tw = —]_-i——l"(E (3130)
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Hence, introducing the friction velocity, u,, the momentum equation for
channel/pipe flow simplifies to the following first-order, ordinary differential

equation.
du 9 T

e rr — = 131

p + T pu (3.131)

Noting that both channel and pipe flow are symmetric about the cen-
terline, we can obtain the complete solution by solving Equation (3.131)
with r varying between 0 and R. It is more convenient however to define y
as the distance from the wall so that

y=R—r (3.132)

Hence, representing the Reynolds stress in terms of the eddy viscosity, ur,
we arrive at the following equation for the velocity.

dU g Yy
(1wt nr)= it (1- ) (3.133)

Finally, we introduce sublayer coordinates, Ut and y* from Equa-
tions (3.100) and (3.101), as well as puf = pr/p. This results in the dimen-
sionless form of the momentum equation for channel flow and pipe flow,
viz.,

dU+ yt
where
Rt =u,R/v (3.135)

U+(0)=0 (3.136)

At first glance, this appears to be a standard initial value problem that
can, in principle, be solved using an integration scheme such as the Runge-
Kutta method. However, the problem is a bit more difficult, and we find
that for both the Cebeci-Smith and Baldwin-Lomax models, the problem
must be solved iteratively. That is, for the Cebeci-Smith model, we don’t
know U, and &' a priori. Similarly, with the Baldwin-Lomax model we
don’t know the values of Uiy and ymq, until we have determined the entire
velocity profile. This is not a serious complication however, and the solution
can be obtained after just a few iterations.

The equations for channel and pipe flow can be conveniently solved using
a standard over-relaxation iterative procedure. Appendix C describes a
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program called PIPE that yields a numerical solution for several turbulence
models, including the Cebeci-Smith and Baldwin-Lomax models.

Figure 3.11 compares computed two-dimensional channel-flow profiles
with direct numerical simulation (DNS) results of Mansour, Kim and Moin
(1988) for Reynolds number based on channel height and average velocity
of 13,750. As shown, the Cebeci-Smith and Baldwin-Lomax velocity pro-
files are within 8% and 5%, respectively, of the DNS profiles. Computed
Reynolds shear stress profiles for both models differ from the DNS profiles
by no more than 2%. Computed skin friction for both models differs by
less than 2% from Halleen and Johnston’s (1967) correlation of experimen-
tal data, viz.,

¢; = 0.0706Re"/* (3.137)

where the skin friction and Reynolds number are based on the average
velocity across the channel and the channel height H,i.e., ¢y = 7, /( -é—pUgvg)
and Rey = UsygH .

Figure 3.12 compares mo

pr
perimental data of Laufer (1952) for a Reynolds number based on pipe
diameter and average velocity of 40,000. Baldwin-Lomax velocity and
Reynolds shear stress differ from measured values by no more than 3%.
As with channel flow, the Cebeci-Smith velocity shows greater differences
(8%) from the data. Computed skin friction is within 7% and 1% for the
Cebecl-Smith and Baldwin-Lomax models, respectively, of Prandtl’s uni-
versal law of friction for smooth pipes [see Schlichting (1979)] given by

1
ok logio (2Rep\/c7) — 1.6 (3.138)

where ¢; and Rep are based on average velocity across the pipe and pipe
diameter, D.

These computations illustrate that subtle differences in the Reynolds
shear stress can lead to much larger differences in velocity for pipe and
channel flow. This means we must determine the Reynolds shear stress very
accurately in order to obtain accurate velocity profiles. To some extent this
seems odd. The Reynolds stress is a higher-order correlation while velocity
is a simple time average. Our natural expectation is for the mean velocity
to be determined with great precision while higher-order quantities such
as Reynolds stress are determined with a bit less precision. The dilemma
appears to stem from the fact that we need the same precision in 7,y as in
OU/dy. As we advance to more complicated turbulence models, we will see
this accuracy dilemma repeated, although generally with less severity. As
applications go, channel and pipe flow are not, very forgiving.
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Interestingly, for the higher Reynolds number pipe flow, more accel-
eration is predicted with the Cebeci-Smith model than with the Baldwin-
Lomax model. The opposite is true for the lower Reynolds number channel-
flow case. Cebeci and Smith (1974) have devised low-Reynolds-number cor-
rections for their model which, presumably, would reduce the differences
from the DNS channel-flow results.

In general, for a typical boundary layer, we must account for pressure gra-
dient. Ignoring effects of normal Reynolds stresses and introducing the
eddy viscosity to determine the Reynolds shear stress, the two-dimensional
(j = 0) and axisymmetric (j = 1) boundary-layer equations are as follows.

ou 1 0

—+==(V)=0 3.139
oz + Wy 6y (yJ ) ( )

oU U _ 4P 18T, e
U+ oy =~ t oy [V A5 (3.140)

The appropriate boundary conditions follow from the no slip condition
at the surface and from insisting that U — U, as we approach the boundary-
layer edge. Consequently, we must solve Equations (3.139) and (3.140)
subject to

U(z,0) 0
V(z,0) 0
Ule,y) — Uda) as y—6) )

where §(z) is the boundary-layer thickness.

The Cebeci-Smith model has been applied to a wide range of boundary-
layer flows and has enjoyed a great deal of success. Figure 3.13, for example,
compares computed skin friction, ¢y, and shape factor, H, for a constant-
pressure (flat-plate) boundary layer with Coles’ [Coles and Hirst (1969)]
correlation of experimental data. Results are expressed as functions of
Reynolds number based on momentum thickness, Reg. As shown, model
predictions virtually duplicate correlated values.

The model remains reasonably accurate for favorable pressure gradient
and for mild adverse pressure gradient. Because the model has been fine
tuned for boundary-layer flows, differences between computed and mea-
sured velocity profiles generally are small. However, integral parameters
such as momentum thickness and shape factor often show 10% differences
from measured values.

Figure 3.14 compares computed and measured boundary layer prop-
erties for two of the flows considered in the 1968 AFOSR-IFP-Stanford

ol

(3.141)
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Figure 3.13: Comparison of computed and correlated shape factor and
skin friction for flat-plate boundary layer flow; @ Coles; Cebeci-Smith
model. [From Kline et al. (1969) -— Used with permission.]

Conference on the Computation of Turbulent Boundary Layers (this con-
ference is often referred to colloquially as Stanford Olympics I). For both
cases, computed and measured velocity profiles are nearly identical. Flow
3100 1s two dimensional with a mild favorable pressure gradient. Despite
the close agreement in velocity profiles overall, differences in shape fac-
tor are between 8% and 10%. Flow 3600 is axisymmetric with an adverse
pressure gradient. For this flow, shape factors differ by less than 5%.

The Baldwin-Lomax model also closely reproduces correlated values of
flat-plate boundary-layer properties. It performs reasonably well even for
adverse pressure gradient as evidenced in Figure 3.15. The flow considered
i1s an incompressible boundary layer in an increasingly adverse pressure
gradient which has been studied experimentally by Samuel and Joubert [see
Kline et al. (1981)]. The close agreement between theory and experiment
for this flow is actually remarkable. This boundary layer was presumed
to be a “simple” flow for the 1980-81 AFOSR-HTTM-Stanford Conference
on Complex Turbulent Flows (known colloquially as Stanford Olympics IT).
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Figure 3.14: Comparison of computed and measured boundary layer ve-
locity profiles and shape factor for flows with nonzero pressure gradient;
Cebeci-Smith model. [From Kline et al. (1969) — Used with permission.]

However, as we will discuss further in Chapter 4, it proved to be the Achilles
heel of the best turbulence models of the day.
kin

kin friction for Flow
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-
FIgUre o.10 COINNpaics COoMpuLca anda measure

3300 of the 1968 AFOSR-IFP-Stanford Conference on the Computation of
Turbulent Boundary Layers. This flow, also known as Bradshaw Flow C,
has a strongly adverse pressure gradient that is gradually rclaxed and cor-
responds to an experiment performed by Bradshaw (1969). It was generally
regarded as one of the most difficult to predict of all flows considered in
the Conference. As shown, both models predict skin friction significantly
higher than measured. The Cebeci-Smith value for ¢; at the final station
(z = 71t.) is 22% higher than the measured value. The Baldwin-Lomax
value exceeds the measured value at z = 7 ft. by 36%.

3.6 Separated Flows

All of the applications in the preceding section are for attached boundary
layers. We turn now to flows having an adverse pressure gradient of suffi-
cient strength to cause the boundary layer to separate. Separation occurs
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Figure 3.15: Computed and measured skin friction for Samuel-Joubert’s
adverse pressure gradient flow; Baldwin-Lomax model; o Samuel-
Joubert.
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in many practical applications including stalled airfoils, flow near the stern
of a ship, flow through a diffuser, etc. Engineering design would be greatly
enhanced if our turbulence model were a reliable analytical tool for pre-
dicting separation and its effect on surface pressure, skin friction and heat
transfer. Unfortunately, algebraic models are quite unreliable for separated
flows.

When a boundary layer separates, the streamlines are no longer nearly
parallel to the surface as they are for attached boundary layers. We must
solve the full Reynolds-averaged Navier-Stokes equation [Equatlon (2 24)],
which includes all components of the Reynolds-stress tensor. in analogy to
Stokes hypothesis for laminar flow, we set

Tij = 207 Sij (3.142)
where S;; is the mean strain-rate tensor defined by

S:: = l[U.- Ul (3.143)

Dij = F1Vig + Vsl

Figure 3.17 is typical of separated flow results for an algebraic model.
Menter (1992b) applied the Baldwin-Lomax model to an axisymmetric flow
with a strong adverse pressure gradient. The experiment was conducted by
Driver (1991). Inspection of the skin friction shows that the Baldwin-Lomax
model yields a separation bubble nearly twice as long as the experimentally
observed bubble. The corresponding rise in pressure over the separation
regiOn is 16% to 20% higher than measured. As pointed out by Menter,
the Cebeci-Smith model yields similar results.

It is not surprising that a turbulence model devoid of any information
about flow history will perform poorly for separated flows. On the one
hand, the mean strain-rate tensor undergoes rapid changes in a separated
flow associated with the curved streamlines over and within the separation
bubble. On the other hand, the turbulence adjusts to changes in the flow on
a time scale unrelated to the mean rate of strain. Rotta (1962), for example,
concludes from analysis of experimental data that when a turbulent bound-
ary layer is perturbed from its equilibrium state, a new equilibrium state is
not attained for at least 10 boundary-layer thicknesses downstream of the
perturbation. In other words, separated flows are very much out of “equi-
librium.” The Boussinesq approximation, along with all the “equilibrium”
approximations implicit in an algebraic model, can hardly be expected to
provide an accurate description for separated flows.

Attempts have been made to remedy the problem of poor separated
flow predictions with the Cebeci-Smith model. Shang and Hankey (1975)
introduced the notion of a relaxation length, L, to account for upstream
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Figure 3.17: Computed and measured flow properties for Driver’s separated
flow; Baldwin-Lomax; o Driver.

turbulence history effects. They introduced what they called a relaxation
eddy viscosity model and determined the eddy viscosity as follows.

pr = pr,, — (pr,, — pr, Y~ EE (3.144)

The quantity pp,, denotes the equilibrium eddy viscosity given by Equa-
tions (3.110) through (3.113), while pp, is the value of the eddy viscosity at
a reference point, z = z1, upstream of the separation region. Typically, the
relaxation length is about 58,, where é; is the boundary-layer thickness at
z = x1. The principal effect of Equation (3.144) is to reduce the Reynolds
stress from the “equilibrium” value predicted by the Cebeci-Smith model.
This mimics the experimental observation that the Reynolds stress remains
nearly frozen at its initial value while it is being convected along streamlines
in the separation region, and approaches a new equilibrium state exponen-
tially.
In a similar vein, Hung (1976) proposed a differential form of Equa-
tion (3.144), viz.,
dur  pr., ~ pr
de L
Hung (1976) exercised these relaxation models in several supersonic shock-
separated flows. He was able to force close agreement between computed
and measured locations of the separation point and the surface pressure dis-
tribution. However, he found that these improvements came at the expense
of increased discrepancies between computed and measured skin friction,
heat transfer and reattachment-point location.

(3.145)
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3.7 The 1/2-Equation Model

Johnson and King (1985) [see also Johnson (1987) and Johnson and Coakley
(1990)] have devised a “non-equilibrium” version of the algebraic model.
Their starting point is a so-called “equilibrium” algebraic model in which
the eddy viscosity 1s

pr = pr, tanh(ur,/pr,) (3.146)

inner Layer:

The inner layer viscosity, pr,, is similar to the form used in the Cebeci-
Smith and Baldwin-Lomax models. However, the dependence on velocity
gradient has been replaced by explicit dependence on distance from the
surface, y, and two primary velocity scales, u, and up, as follows:

2
U1, = p [1 — exp (- uiyi/y)] KtsY (3.147)
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v9 = tanh(y/L.)
Pw Uz

L= Lo (3.150)
Puw Ur + /Pm Um

| Kym, Ym/6 < Ci/k
Lm_{ G5 s Crfr ~ (3.151)

Um =V Tm/Pm (3.152)

up = max|[um, ur) (3.153)

where subscript m denotes the value at the point, y = ym, at which
the Reynolds shear stress, 7yy, assumes its maximum value denoted by
Tm = (Tzy)maz. Additionally u, is the conventional friction velocity and
pw is the density at the surface, y = 0. In its original form, this model
used only the velocity scale up, in Equation (3.147). This scale proved to
provide better predictions of velocity profile shape for separated flows than
the velocity-gradient prescription of Prandtl [Equation (3.15)]. Later, the
secondary velocity scales u, and up were added to improve predictions for
reattaching flows and for flows with nontrivial effects of compressibility.

Outer Layer:
The “non-equilibrium” feature of the model comes in through the ap-
pearance of a “nonequilibrium parameter,” o(z), so that:

pr. = aplUc8; Fries(y; 6)o(x) (3.154)
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Comparison of this equation with Equation (3.113) shows that the outer
layer viscosity, pr,, is equal to the prescription used in the Cebeci-Smith
model multiplied by o(z). The Johnson-King model solves the following
ordinary differential equation for the maximum value of the Reynolds
shear stress:

5 () ) () -l

where (%, )., is the value of u,, according to the “equilibrium alg_b_a.lr
model [a(:c) = 1]. The first term on the rlght hand side of Equation (3.155)
is reminiscent of Hung’s relaxation model [Equation (3.145)]. The second
term is an estimate of the effect of turbulent diffusion on the Reynolds
shear stress. Equation (3.155) is solved along with the Reynolds-averaged
equations to determine 7,,. As the solution proceeds, the coefficient o(x)

is determined so that the maximum Reynolds shear stress is given by

[2% AN

(8]
- E) (3.156)
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That is, the yr distribution is adjusted to agree with 7,,. In using this
model, computations must be done iteratively since ¢(z) is unknown a
priori, wherefore the value from a previous iteration or an extrapolated
value must be used in solving Equation (3.155) for 7.

Closure Coeflicients:

k = 0.40, a=0.0168, At =17 )

a; =025, () =0.09, Cqy = 0.70 (3.157)
Caiy =050 for o(z) > 1; 0 otherwise

The general i1dea of this model is that the Reynolds shear stress adjusts
to departures from “equilibrium” at a rate different from that predicted by
the algebraic model. The ordinary differential equation for 7, is used to
account for the difference in rates. Because this equation is an ordinary,
as opposed to a partial, differential equation, the turbulence community
has chosen the curious terminology 1/2-Equation Model to describe this
model. It is unclear whether this means it has half the number of dimensions
(but then, it would have to be a 1/3-Equation Model for three-dimensional
applications) or if partial differential equations are twice as hard to solve
as ordinary differential equations.

Menter (1992b) has applied the Johnson-King model to the attached
boundary-layer flow of Samuel and Joubert [see Kline et al. (1981)] and
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Figure 3.18: Computed and measured skin friction for Samuel-Joubert’s
adverse pressure gradient flow; —— Johnson-King; - - - Baldwin-Lomax;
o Samuel-Joubert.

to Driver’s (1991) separated flow. Figures 3.18 and 3.19 compare com-
puted and measured values; results for the Baldwin-Lomax model are also
included. As shown, the Johnson-King model predictions are somewhat
closer to measured values for the Samuel-Joubert flow. For the separated
case, Johnson-King predictions are much closer to measurements, most no-
tably in the size of the separation region.

3.8 Range of Applicability

Algebraic models are the simplest and easiest to implement of all turbulence
models. They are conceptually very simple and rarely cause unexpected nu-
merical difficulties. Because algebraic models are so easy to use, they should
be replaced only where demonstrably superior alternatives are available.

The user must always be aware of the issue of incompleteness. These
models will work well only for the flows for which they have been fine tuned.
There is very little hope of extrapolating beyond the established data base
for which an algebraic model is calibrated. We need only recall that for
the four free shear flows considered in Section 3.3, four different values for
the mixing length are needed—and none of these lengths is appropriate for
wall-bounded flows!

On balance, both the Cebeci-Smith and Baldwin-Lomax models faith-
fully reproduce skin friction and velocity profiles for incompressible tur-
bulent boundary layers provided the pressure gradient is not too strong.
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Figure 3.19: Computed and measured flow properties for Driver’s separated
flow; Johnson-King; - - - Baldwin-Lomax; o Driver.

Neither model is clearly superior to the other: the accuracy level is about
the same for both models. The chief virtue of the Baldwin-Lomax model
over the Cebeci-Smith model is its independence from properties such as
6y that can be difficult to compute accurately in complex flows. Its other
differences from the Cebeci-Smith model are probably accidental. How-
ever, neither model is reliable for separated flows. Despite this well-known
limitation, many incautious researchers have applied these models to ex-
traordinarily complex flows where their only virtue is that they don’t cause
the computations to blow up.

The Johnson-King model offers a promising modification that removes
much of the inadequacy of algebraic models for separated flows. However,
like algebraic models, the Johnson-King model provides no information
about the turbulence length scale and is thus incomplete. Consequently, it
shares many of the shortcomings of the underlying algebraic model. On the
negative side, the improved agreement between theory and experiment
has been gained at the expense of the elegance and simplicity of the Cebeci-
Smith model. The number of ad hoc closure coefficients has increased
from three to seven, and the model inherently requires an iterative solution
procedure. The model is also formulated specifically for wall-bounded flows
and is thus restricted to such flows, i.e., the model is highly geometry
dependent. On the positive side, the Johnson-King model has been
applied to many transonic flows that tend to be particularly difficult to
predict with modern turbulence models. The model’s track record has
been quite good with such flows. On balance, this model appears to be a
useful engineering design tool, within its verified range of applicability.
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Problems

3.1 For the far wake, verify that the solution to Equations (3.45) is given
by Equations (3.46) - (3.48).

3.2 For the mixing layer, beginning with Equation (3.65), introduce Equa-
tions (3.68) - (3.71) and derive Equation (3.73).

£ nn 'I an

3.3 For the jet, begin with Equation (3.83) derive Equation (3.86).

3.4 Using Equation (3.25) to represent the eddy viscosity, generate a sim-
ilarity solution for the far wake. Obtain the exact closed-form solution,
and determine the value of x by forcing agreement with the corresponding
uo(x) and 8(z) derived in this chapter. The following integral will be useful
when you apply the integral constraint.

[eeag= LT

Jo

3.5 Using Equation (3.25) to represent the eddy viscosity, generate a simi-
larity solution for the plane jet. Obtain the exact closed-form solution, and
determine the value of y by forcing agreement with the corresponding u,(x)
and &(z) derived in this chapter. The following integrals will be useful in
deriving the solution.

[ dz
j o2 _ 2

]oo [l—tanhzf]zdﬁzz
A 3
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3.6 Show that using Equation (3.98) for the mixing length in the viscous
sublayer yields a velocity that behaves according to:

2
K

3.7 Using a standard numerical integration scheme such as the Runge-
Kutta method, determine the constant, B, in the law of the wall implied
by the rmxmg—length model. That is, solve the following equation for U*.

dUu+
(1+ﬂT)_:1
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Integrate from y+ = 0 to y* = 500 and calculate the limiting value of B as
y+ — oo from examination of

B=Ut - lfny+ at ¢t = 200,300,400 and 500
K

Do the computation with the mixing length given by:

(b) Equation (3.105)

NOTE: To avoid truncation error, verify the following limiting form of the
equation for dUt /dy*t.

+
——~1- ('emw) +2 (emz:c) +--- as ‘e;tx 0

Use this asymptotic form very close to y* =

3.8 For a constant-pressure turbulent boundary layer, the skin friction and
displacement thickness are approximately

- 1
c; ~0.045Re; " and 6 20
where Res = U.6/v is Reynolds number based on §. Note also that, by
definition, ¢; = 2u2/U2?. Assuming the matching point always occurs in
the ]nn‘ ‘HVPI‘ SO fhai‘ F)U/F)w = u; /(k"u\ make a eranh of ym/é and yfTL

Fe v Hiopr Ul

versus R€5 for the Cebec1 Smlth model Let Res vary between 10% and
10°. You should first rewrite the equations for py, and ur, in terms of
y/6 and Res. Then, solve the resulting equation for y,, /6 with an iterative
procedure such as Newton’s method. Compare your numerical results with
Equation (3.118).

3.9 Assume the velocity in a boundary layer for y* >> 1 is given by

Ut~ Il?n t+50+ 1sin2 (ZY)
~ e ’ K k%)

Also, assume that Y45 > 26v/u, for the Baldwin-Lomax model. Compute
the quantities Yy az Frnar and kayma,Ud,f/Fmax for this boundary layer.
Then, noting that ¢y = 2u2/ Uez, determine the largest value of ¢; for which

Fwake = Ymaz Fmas-
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3.10 For a turbulent boundary layer with surface mass transfer, the mo-
mentum equation in the sublayer and log layer simplifies to:

LAY YA
Iy dy |y

where vy, is the (constant) vertical velocity at the surface.

(a) Integrate once using the appropriate surface boundary conditions.
Introduce the friction velocity, u,, in stating your integrated equation

b) Focusing now upon the log layer where vp > v, what is the ap-
g g
proximate form of the equation derived in Part (a) if we use the
Cebeci-Smith model?

(¢) Verify that the solution to the simplified equation of Part (b) is

Ur 77 L

2= /149, U/u2 = —¥fny + constant

Uy ™

3.11 Generate a solution for channel and pipe flow using a mixing-length
model with the mixing length in the inner and outer layers given by

Ky [1 - e*y+/26} , Inner Layer
bniz =

09R , Outer Layer
where R is channel half-height or pipe radius. Use a numerical integration
scheme such as the Runge-Kutta method, or modify Program PIPE (Ap-
pendix C). Compare computed skin friction with Equations (3.137) and
(3.138). See NOTE below.

3.12 Generate a solution for pipe flow using a mixing-length model with
the mixing length given by Nikuradse’s formula, ie.,

bmic/R = 0.14 — 0.08(1 — y/R)? ~ 0.06(1 — y/R)*

where R is pipe radius. Use a numerical integration scheme such as the
Runge-Kutta method, or modify Program PIPE (Appendix C). Compare
computed skin friction with Equation (3.138). See NOTE below.

NOTE: To assist in presenting your results, verify that ¢ = 2/(U},,)?
and Rep = 2U} R* where Rt = u, R/v and U,y is the average velocity

avyg
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across the channel /pipe. Also, to avoid truncation error, verify the following
limiting form of the equation for dUt /dy™ in the limit £'. - 0.

mr

dU+ yt yt + oo yt 2 b
@Tﬁv(l—ﬁ') [1—(1~;{; (bric)” +2 (1= 5 ) (Gniz)

Use this asymptotic form very close to y+ = 0.



Chapter 4

As computers have increased in power since the 1960, turbulence mod-
els based upon the equation for the turbulence kinetic energy have be-
come the cornerstone of modern turbulence modeling research. This chap-
ter discusses two types of turbulence energy equation models, viz., One-
Equation Models and Two-Equation Models, with most of the empha-
sis on the latter. These models both retain the Boussinesq eddy-viscosity
approximation, but differ in one important respect. One-equation models
are incomplete as they relate the turbulence length scale to some typical
flow dimension. By contrast, two-equation models provide an equation for

I TR, TN 1 1l canla 1 1
the turbulence length scale or its equivalent and are thus complete.

The chapter begins with a derivation and discussion of the turbulence
energy equation. We proceed to a general discussion of one-equation models
including examples of how such models fare for several flows. Next, we in-
troduce two-equation models with specific details of the two most commonly
used models. Our first applications are to the same free shear flows consid-
ered in Chapter 3. Then, our attention focuses upon a very powerful tool,
singular perturbation theory, that we use to analyze model-predicted fea-
tures of the turbulent boundary layer. We apply the two-equation model to
attached wall-bounded flows and compare to corresponding algebraic-model
predictions. We discuss the issue of asymptotic consistency approaching a
solid boundary, and the ability of two-equation models to predict transi-
tion from laminar to turbulent flow. Our final applications are to separated
flows. The concluding section discusses the range of applicability of one-
and two-equation models.

73
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4.1 The Turbulence Energy Equation

Turbulence energy equation models have been developed to incorporate
nonlocal and flow history effects in the eddy viscosity. Prandtl (1945) pos-
tulated computing a characteristic velocity scale for the turbulence, vz,
thus obviating the need for assuming that v,z ~ £miz|0U/dy| [c.f. Equa-
tion (3.15)]. He chose the kinetic energy (per unit mass) of the turbulent
fluctuations, k, as the basis of his velocity scale, i.e.,

) (4.1)

Thus, in terms of the density, p, a turbulence length scale, ¢, and k, dimen-
sional arguments dictate that the eddy viscosity is given by

pr = constant - pk'/2¢ (4.2)

Note that we drop subscript “mix” in this chapter for convenience, and to
avoid confusion with the mixing length used in algebraic models.

The question now arises as to how we determine k. The answer is
provided by taking the trace of the Reynolds stress tensor, which yields the
following.

Tii = —pujul = —2pk (4.3)

Thus, the trace of the Reynolds stress tensor is proportional to the kinetic
energy per unit volume of the turbulent fluctuations. The quantity & should
strictly be referred to as specific turbulence kinetic energy (“specific”
meaning “per unit mass”), but is often just called turbulence kinetic
energy.

In Chapter 2 we derived a differential equation describing the behavior
of the Reynolds stress tensor, 7;;, i.e., Equation (2.34). We can derive a

corresponding equation for k by taking the trace of the Reynolds stress
equation. Noting that the trace of the tensor II;; vanishes for incompress-
ible flow, contracting Equation (2.34) leads to the following transport
equation for the turbulence kinetic energy.

Ok ok oU; 0 ok 1
P‘5;+PU16—%'-1‘£:'6$ — pe +3x3 [”8@,- - PUY; P’U] (4.4)

The quantity ¢ is the dissipation per unit mass and is defined by the
following correlation.

BT o
€= V?—u—'% (4.5)

The various terms appearing in Equation (4.4) represent physical pro-
cesses occurring as the turbulence moves about in a given flow. The sum
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of the two terms on the left-hand side, i.e., the unsteady term and the
convection, is the familiar Eulerian derivative of k that gives the rate of
change of k following a fluid particle. The first term on the right-hand side
is known as Production, and represents the rate at which kinetic energy
is transferred from the mean flow to the turbulence. Rewritten as 7;;5;;,
this term is seen to be the rate at which work is done by the mean strain
rate against the turbulent stresses. Dissipation is the rate at which tur-
bulence kinetic energy is converted into thermal internal energy, equal to
the mean rate at which work is done by the fluctuating part of the strain
rate against the fluctuating viscous stresses. The term involving udk/dz;
is called Molecular Diffusion, and represents the diffusion of turbulence
energy caused by the fluid’s natural molecular transport process. We re-
fer to the triple velocity correlation term as Turbulent Transport, and
regard it as the rate at which turbulence energy is transported through
the fluid by turbulent fluctuations. The last term on the right-hand side
of the equation is called Pressure Diffusion, another form of turbulent

mnmcr et maci i fan
transport resulting from correlation of pressure and velocity fluctuations.

The unsteady term, convection and molecular diffusion are exact while
production, dissipation, turbulent transport and pressure diffusion involve
unknown correlations. To close this equation, we must specify 7;;, dissipa-
tion, turbulent transport and pressure diffusion.

The conventional approach to closure of the k equation was initiated
by Prandtl (1945) who established arguments for each term in the equa-
tion. This term-by-term modeling approach amounts to performing drastic
surgery on the exact equation, replacing unknown correlations with clo-
sure approximations. This process is by no means rigorous. The closure

o +
approximations are no better than the turbulence data upon which they

are based. Our hope is that we can find universally valid closure approxi-
mations that make accurate solutions possible. We will discuss this point
in greater detail when we introduce two-equation models.

Reynolds-Stress Tensor: For the class of turbulence models con-
sidered in this chapter, we assume the Boussinesq approximation is valid.
Thus, we say that the Reynolds stress tensor is given by

2
Tij = 20T Sij ~ §Pk5ij (4.6)

where S;; is the mean strain-rate tensor. Note that the second term on the
right-hand side of Equation (4.6) is needed to obtain the proper trace of 7;.
That is, since S;; = 0 for incompressible flow, contracting Equation (4.6)
yields 7;; = ~2pk in accord with Equation (4.3).
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Turbulent Transport and Pressure Diffusion: The standard ap-
proximation made to represent turbulent transport of scalar quantities in a
turbulent flow is that of gradient-diffusion. In analogy to molecular trans-
port processes, we say that —u’¢’ ~ prd®/0z;. Unfortunately, there is no
corresponding straightforward analog for the pressure diffusion term. For
want, of definitive experimental data, the pressure diffusion term has gen-
erally been grouped with the turbulent transport, and the sum assumed
to behave as a gradient-transport process. Fortunately, recent DNS results
[e.g., Mansour, Kim and Moin (1988)] indicate that the term is quite small
for simple flows. Thus, we assume that

1 pr Ok
DAL I A A v (4.7)

where o}, is a closure coefficient. Note that Equation (4.7) simply defines 0.
As stressed by Bradshaw (1992), this statement applies to all turbulence

closure coefficients. At this point, no ;mnrmnmnhnn has entered although,
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of course, we hope the model 1s rea.hstlc enough that o3 can be chosen to
be constant.

Dissipation: The manner in which we determine the dissipation is
not unique amongst turbulence energy equation models. It suffices at this
point to note that we still have two unknown parameters, which are the
turbulence length scale, ¢, and the dissipation, e¢. If both properties are
assumed to be strictly functlons of the turbulence independent of natural

f m m
fluid properties such as molecular viscosity, purely dimensional argumen

[Taylor (1935)] show that
e~ k32 /8 (4.8)

Hence, we still need a prescription for the length scale of the turbulence in
order to close our system of equations. In the following sections, we will
explore the various methods that have been devised to determine the length
scale.

Combining Equations (4.4) and (4.7), we can write the modeled ver-
sion of the turbulence kinetic energy equation that is used in virtually all
turbulence energy equation models. The equation assumes the following
form,

ok ok oU; 0 Ok
Por Y Pigy, T TGy, “ MY 5 [(l"*'ﬂT/ak)gaTj] (4.9)

where 7;; is given by Equation (4.6).
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4.2 One-Equation Models

To complete closure of the turbulence kinetic energy equation, Prandtl
postulated that the dissipation assumes the form quoted in Equation (4.8).
Introducing a closure coefficient that we will call Cp, the dissipation is

2
¢=Cpk®?/t (4.10)
1 | 2 F, U R, e araln mariaiIng n o~ 3
and the turbulence length scale remains the only unspecified part of the

model. Given twenty years of experience with the mixing-length model,
Prandtl had sufficient confidence that he could generalize established pre-
scriptions for the turbulence length scale £. Of course, { x £z only
if the ratio of production to dissipation is constant. To see this, note
that in a thin shear layer, production balancing dissipation means we have
AU /3y = (— w0 )12/l ;.. Hence, we obtain (~w/v")¥%/bmiz = Cp k32 /¢
so that ¢ o £,,,; if —uw/v'/k = constant. Thus, the first One-Equation
Model appears as follows:

Ok Ok 8U; K32 9 T, Ok ]
-4 rT. — .. — ral . 1 PY R Ny g i e (4.11‘
Pat + pU; _arj Tij __Ba:j Lop=—p— T _Ba:j lurr';u [Tk} ij_] \ J

where 7;; is given by Equation (4.6) and the eddy viscosity is
pr = pk/?¢ (4.12)

Note that at this point we make an implicit assumption regarding the
“constant” in Equation (4.2), which has been set equal to one. That is,
there is no a priori reason why pp should depend only upon k and £, ie.,
no reason why “constant” should really be constant. In reality, pp is the
ratio of a turbulence quantity (e.g., — u'v') to a mean flow quantity (e.g.,
dU |8y + 8V/0x). Consequently, pr will not, in general, precisely follow
mean-flow scales such as U, and 6* or turbulence scales such as k and £.
Only in equilibrium flows for which production and dissipation balance
are mean-flow and turbulence scales proportional — and then either can
be used for pp. Otherwise, an unknown mix of scales is needed.

Emmons (1954) proposed essentially the same model in an independent
research effort. Before the model can be used in applications, the length
scale, £, and the closure coefficients o and Cp must be specified. Em-
mons (1954) and Glushko (1965) applied this model to several flows with
some degree of success using o = 1 and Cp ranging between 0.07 and
0.09. Their length scale distributions were similar to those used for the
mixing-length model. Wolfshtein (1967) found that by introducing damp-

ing factors in the dissipation and eddy viscosity similar to the Van Driest
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factor [Equation (3.105)], more satisfactory results can be obtained with
this model for low-Reynolds-number flows. More recently, Goldberg (1991)
has refined the model even further.

Although more complex than an algebraic model, the Prandtl-Emmons-
Glushko one-equation model is certainly straightforward and elegant. As
originally postulated it involves two closure coefficients and one closure
function (the length scale). Even with Wolfshtein’s low-Reynolds-number
corrections, the number of closure coefficients increases by only two so that
the model actually has fewer closure coefficients than the Baldwin-Lomax
and Johnson-King models. For attached flows, the Goldberg model has
five closure coefficients, two damping functions, and a closure function for
the length scale. Goldberg’s number of closure coefficients and empirical
functions more than doubles for separated flows.

Bradshaw, Ferriss and Atwell (1967) formulated a one-equation model
that avoids introducing a gradient-diffusion approximation. Rather than

introduce the Boussinesq approximation, they argue that for a wide range
of flows, the ratio of the Reynolds shear stress, 7, to the turbulence kinetic
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energy, k, is constant. Measurements [Townsend (1976)] indicate that for
boundary layers, wakes and mixing layers the ratio is very nearly the same
and given by ,
Tey & 0.3pk (4.13)

Building upon this presumably universal result, Bradshaw, Ferriss and
Atwell formulated a one-equation model based on the turbulence kinetic
energy. A novel feature of their formulation is that the equations are hy-

pprhnhr for boundarv ]nvprg rather than naraboalic. This is a direct con-
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sequence of introducing Equatlon (4.13) in modeling the & equation’s tur-
bulent transport term rather than a gradient-diffusion approximation. The
resulting equations are thus solved using the method of characteristics.
Figure 4.1 compares computed and measured skin friction for Flow 3300
of the 1968 AFOSR-IFP-Stanford Conference on the Computation of Tur-
bulent Boundary Layers. As shown, the differences between theory and
experiment are much less than those obtained using the Cebeci-Smith and
Baldwin-Lomax models [see Figure 3.16]. Overall, the Bradshaw-Ferriss-
Atwell model’s skin friction for boundary layers in adverse pressure gradient
was closest of the various models tested in the 1968 Conference to measured
values.

One-equation models have been formulated that are based on something
other than the turbulence energy equation. Nee and Kovasznay (1968), for
example, postulated a phenomenological transport equation for the kine-
matic eddy viscosity, »r = pr/p. The equation involves terms similar to
those appearing in Equation (4.11). The model has four closure coefficients
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Figure 4.1: Comparison of computed and measured skin friction for Brad-
shaw Flow C; Bradshaw-Ferriss-Atwell; o Bradshaw.

and requires prescription of the turbulence length scale.

More recently, Baldwin and Barth (1990) and Spalart and Allmaras
(1992) have devised even more elaborate model equations for the eddy
viscosity. The Baldwin-Barth model, for example, includes seven closure
coefficients, two empirical damping functions and a function describing the

turbulence length scale. The Baldwin-Barth model is as follows.

Kinematic Eddy Viscosity

vp = Cpuf:fTﬂlDz (4.14)
Turbulence Reynolds Number
d / = Féj - ~
- (vRr) + Ui 3o (vRr) = (Cafs ~ Ca)\/vRrP
- .
oS ) LRLIURD) 1)

OzyOzy o Oz Oxyg
Closure Coefficients

Ca=12 Cwu=20, C,=009, Af=26 Af=10 (4.16)

;1_ = (Cu — Ca)/Ca/k?, &=041 (4.17)
Auxiliary Relations
8U;  8U;\ U; 20Uy U
P= z - = 4.1
vr [(83,— + ax,-) 9z; 3 0 6zk} (4.18)
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Di=1-e ¥4 and Dy=1-e¥/4 (4.19)

The Spalart-Allmaras model is also written in terms of the eddy vis-
cosity. The model includes eight closure coefficients and three damping

PSS S el BN SLEY RUAE L ohy Clunlil o P L 1 Lil el =]

functions. Its defining equations are as follows.

Kinematic Eddy Viscosity

vr = Ufy1 (4.21)
Eddy Viscosity Equation
00 O s %
at Jamj_Cbl vV —Cyl wkd)
1 0 .. Ov chy OU Ov
_ —_— —_ 4.22
+O‘ Oz [(V +7) (9xk} - o Oz Oxg ( )
Closure Coefficients
cp1 = 0.1355, epp =0.622, ¢,y =71, 0 =2/3 (4.23)
cp1 (l +Cbg) N
Cwl = — + ————, Cu2 = 0.3, cuwz =2, k=041 (4.24)
K o
Auxiliary Relations
3 6 11/6
= el =1 —) w =g | ——a— 4.25
ful X3 T 631 fv2 1+ x fur f g [96 T 03;3] ( )
v 6 7
=, = w —r), = — 4.26
X y g=r-—+c 2(7" r) T T2 ( )
§=5+ %‘2 foz, S = /200, (4.27)
k4d

The tensor §);; = 1(0U;/0z; — OU;/0x;) is the rotation tensor and d is
distance from the closest surface. Although not listed here, the model
even includes a transition correction that introduces four additional closure
coefficients and two more empirical functions.
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Figure 4.2: Comparison of computed and measured flat-plate boundary
layer skin friction at Mach 0.1 and Mach 2.0; Baldwin-Barth model. [From
Baldwin and Barth (1990).]

Figure 4.2 illustrates how well the Baldwin-Barth model reproduces
correlations of measured skin friction [see Hopkins and Inouye (1971)] for
constant-pressure boundary layers.

Figures 4.3 and 4.4 show how the Baldwin-Barth model fares for the
two key flows considered by Menter (1992b). For both flows, the Baldwin-
Barth model skin friction deviates from measured values even more than the
Baldwin-Lomax model (see Figures 3.15 and 3.17). Although not shown,
the Spalart-Alimaras model yields c¢; for the Samuel-Joubert case that lies
about as far above the measurements as the Baldwin-Barth ¢ lies below
[see Spalart and Allmaras (1992)].

In summary, only a modest advantage is gained in using a one-equation
model rather than a mixing-length model. While the recent developments
by Goldberg, Baldwin and Barth and Spalart and Allmaras show improved
predictive capability (relative to early one-equation models) for some flows,
their track record remains spotty. On the one hand, the Goldberg, Baldwin-
Barth and Spalart-Allmaras models have achieved closer agreement with
measurements for a limited number of separated flows than is possible with
algebraic models. On the other hand, the Baldwin-Lomax model appears to
be superior to the Baldwin-Barth model for the relatively simple Samuel-
Joubert flow and for Driver’s separated flow. While these newer models
appear promising for separated flows, more research and testing is needed.

Given all of these facts, we clearly have not yet arrived at anything
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Figure 4.3: Computed and measured skin friction for Samuel-Joubert’s
adverse pressure gradient flow; —— Baldwin-Barth; o Samuel-Joubert.
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Figure 4.4: Computed and measured flow properties for Driver’s separated
flow; —— Baldwin-Barth; o Driver.
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resembling a universal turbulence model. While there is a smaller need for
adjustment from flow to flow than with the mixing-length model, abrupt
changes from wall-bounded to free shear flows (e.g., flow at a trailing edge
of an airfoil) cannot be easily accommodated. In general, one-equation
models share a few of the failures as well as most of the successes of the
mixing-length model. To reach a more-nearly universal model, especially
for separated flows, we must seek a model in which transport effects on the
turbulence length scale are also accounted for. The rest of this chapter is
devoted to investigating models that indeed include transport effects on the
turbulence length scale.

4.3 Two-Equation Models

Two-Equation Models of turbulence have served as the foundation for
much of the turbulence model research during the past two decades. For ex-
ample, almost all of the computations done for the 1980-81 AFOSR-HTTM-
Stanford Conference on Complex Turbulent Flows used two-equation turbu-
lence models. These models provide not only for computation of &, but also
for the turbulence length scale or equivalent. Consequently, two-equation
models are complete, i.e., can be used to predict properties of a given
turbulent flow with no prior knowledge of the turbulence structure. They
are, in fact, the simplest complete model of turbulence.

The starting point for virtually all two-equation models is the Boussi-
nesq approximation, Equation (4.6), and the turbulence kinetic energy
equation in the form of Equation (4.9). As pointed out at the end of Sec-
tion 4.1, there is a non-uniqueness in the way we determine the dissipation,
€, or equivalently, the turbulence iength scale, £.

Kolmogorov (1942), for example, pointed out that a second transport
equation is needed to compute the so-called specific dissipation rate, w.
This quantity has dimensions of (time)™'. On dimensional grounds, the
eddy viscosity, turbulence length scale and dissipation can be determined
from

pr ~ pkjw, L~k jw, e ~wk (4.28)

Chou (1945) proposed modeling the exact equation for ¢. In terms of
this formulation, the eddy viscosity and turbulence length scale are

pr ~ pk?le, £~ k3?%/e (4.29)

Rotta (1951) first suggested a transport equation for the turbulence
length scale and later (1968) proposed an equation for the product of k and
£. In either case,

pr ~ pk'%8, e~ k320 (4.30)
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More recently, Zeierman and Wolfshtein (1986) introduced a transport
equation for the product of k and a turbulence dissipation time, 7,
which is essentially the reciprocal of Kolmogorov’s w. Also, Speziale, Abid
and Anderson (1990) have postulated an equation for 7. For these models,

ur ~ pkr, £~ kY?%r,  e~k/T (4.31)

Regardless of the choice of the second variable in our two-equation
model, we see a recurring theme. Specifically, the dissipation, eddy vis-
cosity and length scale are all related on the basis of dimensional argu-
ments. Historically, dimensional analysis has been one of the most powerful
tools available for deducing and correlating properties of turbulent flows.
However, we should always be aware that while dimensional analysis is ex-
tremely useful, it unveils nothing about the physics underlying its implied
scaling relationships. The physics is in the choice of variables.

One of the key conclusions of the 1980-81 AFOSR-HTTM-Stanford Con-
ference on Complex Turbulent Flows was that the greatest amount of un-
certainty about two-equation models lies in the transport equation com-

AT AT +ho atin~n T L
Plculeuuué the €quation 10T «. Ldi‘*{;h%l', it was even unclear about what

the most appropriate choice of the second dependent variable is. In the
decade following the Conference, interesting developments have occurred,
most notably with the k-w model that help clear up some, but not all, of
the uncertainty.

Before proceeding to details of two-equation models, it is worthwhile
to pause and note the following. As with one-equation models, there is
no fundamental reason that gy should depend only upon turbulence pa-
rameters such as k, £, € or w. In general, the ratio of individual Reynolds
stresses to mean strain raie components depends upon both mean-flow and
turbulence scales. Thus, two-equation turbulence models are no more likely
than one-equation models to apply universally to turbulent flows, and can
be expected to be inaccurate for many non-equilibrium turbulent flows.

4.3.1 The k-w Model

As noted above, Kolmogorov (1942) proposed the first two-equation model
of turbulence. Kolmogorov chose the kinetic energy of the turbulence as
one of his turbulence parameters and, like Prandtl (1945), modeled the
differential equation governing its behavior. His second parameter was the
dissipation per unit turbulence kinetic energy, w. In his k-w model, w sat-
isfies a differential equation similar to the equation for k. With no prior
knowledge of Kolmogorov’s work, Saffman (1970) formulated a k-w model
that would prove superior to the Kolmogorov model. As part of the Imperial



4.3. TWO-EQUATION MODELS 85

College efforts on two-equation models, Spalding [see Launder and Spalding
(1972)] offered an improved version of the Kolmogorov model that removed
some of its flaws. Shortly after formulation of Saffman’s model and contin-
uing to the present time, Wilcox et al. [Wilcox and Alber (1972), Saffman
and Wilcox (1974), Wilcox and Traci (1976), Wilcox and Rubesin (1980),
and Wilcox (1988a)] have pursued further development and application of
k-w turbulence models in earnest. Coakley (1983) has developed a k'/%-w
model. In their critical review of two-equation turbulence models, Speziale,
Abid and Anderson (1990) also propose a k-w model.

In formulating his model, Kolmogorov referred to w as “the rate of
dissipation of energy in unit volume and time.” To underscore its physical
relation to the “‘external scale’ of turbulence, £,” he also called it “some
mean ‘frequency’ determined by w = ck!/2/f, where c is a constant.” On
the one hand, the reciprocal of w is the time scale on which dissipation
of turbulence energy occurs. While the actual process of dissipation takes
place in the smallest eddies, the rate of dissipation is the rate of transfer

of turbulence kinetic energy to the smallest eddies. Hence, this rate is

set by the properties of the large eddies, and thus scales with k& and ¢,
wherefore w is indirectly associated with dissipative processes. On the
other hand, in analogy to molecular viscosity, we expect the eddy viscosity
to be proportional to the product of length and velocity scales characteristic
of turbulent fluctuations, which is consistent with Kolmogorov’s argument
that w ~ k'/2/¢. Of course, we should keep in mind that analogies between
molecular and turbulent processes are not trustworthy, and Kolmogorov’s
argument is essentially an exercise in dimensional analysis, not fundamental
physics.

The development of the Kolmogorov model (1942) is quite brief and
doesn’t even establish values for all of the closure coefficients. Since little
formal development of the equations is given, we can only speculate about
how this great turbulence researcher may have arrived at his model equa-
tions. Since he makes no specific reference to any exact equations, it seems
unlikely that he attempted to close the k equation or other moments of
the Navier Stokes equation term by term. Rather, as the great believer in
the power of dimensional analysis that he was, it is easy to imagine that
Kolmogorov’s original reasoning may have gone something like this (note
that for the sake of clarity the arguments below are in terms of kinematic
eddy viscosity, vy = pr/p).

e Since k already appears in the postulated constitutive relation [Equa-
tion (4.6)], it is plausible that vr o< k.

e The dimensions of vr are (length)?/(time) while the dimensions of k
are (length)?/(time)?.
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e Consequently v /k has dimensions (time).
e Turbulence dissipation ¢ has dimensions (length)?/(time)3.
e Consequently ¢/k has dimensions 1/(time).

e We can close Equations (4.6) and (4.9) by introducing a variable with
dimensions (time) or 1/(time).

The next step is to postulate an equation for w. In doing so, the avenue

that Kolmogorov took was to recognize that there are a fairly small number
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of physical processes commonly observed in the motion of a fluid. The
most common processes are unsteadiness, convection (often referred to as
advection), diffusion, dissipation, dispersion and production. Combining
physical reasoning with dimensional analysis, Kolmogorov postulated the
following equation for w.
n@w + U-a— = —Bpw? + i [mm—,a—ui]
"ot “ dz; o dz; | " Oz |
We have taken some notatlona.l liberties in writing Equation (4.32), and
3 and o are two new closure coefficients. This equation has three partic-
ularly noteworthy features. First, there is no analog to the k-equation’s
turbulence production term. The absence of a production term is consis-
tent with Kolmogorov’s notion that w is associated with the smallest scales
of the turbulence, and thus has no direct interaction with the mean mo-
tion. Note that his logic is flawed on this issue as the large-scale, energy-

bearing eddies are primarily responsible for determining the appropriate

time scale of the turbulence, and the rate of dlSSlpatlon itself. Second, the
equation Is written in terms of w rather than w?. As will be shown when
we analyze the defect layer in Subsection 4.6.2, Kolmogorov s decision to
write his equation in terms of w was a somewhat prophetic choice. Third,
there is no molecular diffusion term so that this equation applies strictly to
high-Reynolds-number flows and cannot be integrated through the viscous
sublayer as it stands.

In subsequent development efforts, the interpretation of w has behaved
a bit like the turbulent fluctuations it 18 intended to describe. Saffman
(1970) described w as “a frequency characteristic of the turbulence decay
process under its self-interaction.” He stated further, “The rough idea is
that w? is the mean square vorticity of the ‘energy containing eddies’ and
[k] is the kinetic energy of the motion induced by this vorticity.” Spalding
[Launder and Spalding (1972)] and Wilcox and Alber (1972) identify w as
the RMS fluctuating vorticity, which is also known as enstrophy. Wilcox
and Rubesin (1980), Wilcox (1988a) and Speziale et al. (1990) regard w as

(4.32)
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the ratio of € to k, i.e., the rate of dissipation per unit turbulence kinetic
energy.

The form of the equation for w has changed as the k-w model has evolved
over the past five decades. A production term has been added by all model
developers subsequent to Kolmogorov. Like Kolmogorov, Wilcox (1988a)
and Speziale et al. (1990) write the equation for w in terms of w. By
contrast, most other k-w models known to this author use an equation for
w?. Because it has been tested more extensively than any other k-w model,
we present the Wilcox (1988a) model as the state-of-the-art formulation.

Eddy Viscosity

pr = pkfjw (4.33)
Turbulence Kinetic Energy
ok Ok oU; ad Ok
— 4 pU; =— = 13, —— — " pk — Yur)=— 4.34
p3t+p'76:r_,- 7181:_,- 6Pw+3mj [(“-‘-aﬂT)az.j] (434)
Specific Dissipation Rate

Ow ow w0V s 0 Ow
Por YUy, =% g, ~ PP Y o [(‘”“"‘T)axj] (435)

Closure Coeflicients
a=5/9, B=3/40, B*=9/100, o=1/2, o¢*=1/2 (4.36)
Auxiliary Relations

¢=fwk and €=k'*fu (4.37)

4.3.2 The k-¢ Model

By far, the most popular two-equation model is the k-¢ model. The ear-
liest development efforts based on this model were those of Chou (1945),
Davidov (1961) and Harlow and Nakayama (1968). The central paper how-
ever, is that by Jones and Launder (1972) that, in the turbulence modeling
community, has nearly reached the status of the Boussinesq and Reynolds
papers. That is, the model is so well known that it is often referred to as the
Standard k-e model and reference to the Jones-Launder paper is often
omitted. Actually, Launder and Sharma (1974) “retuned” the model’s clo-
sure coefficients and most researchers use the form of the model presented
in the 1974 paper.
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Again, we begin with Equations (4.6) and (4.9). In formulating the k-¢
model, the idea is to derive the exact equation for ¢ and to find suitable
closure approximations for the exact equation governing its behavior. Re-
call that ¢ is defined by Equation (4.5). The exact equation for ¢ is derived
by taking the following moment of the Navier-Stokes equation.

where A {w;) is the Navier-Stokes o
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ac onmderabl e amount of algebra,

O¢ Je aU; 0*U;
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—2p u:‘,ku;',mu;c,m —2pv u; kmu;,km
d J
+-’\ [Na‘s—ﬂuﬁu:m m_QVplm nm-| (439)
oz; | Ox; 7 "

'This equation is far more complicated than the turbulence kinetic energy
equation and involves several new unknown double and triple correlations
of fluctuating velocity, pressure and velocity gradients. The terms on the
three lines of the right-hand side of Equation (4.39) are generally regarded
as Production of Dissipation, Dissipation of Dissipation, and the
sum of Molecular Diffusion of Dissipation and Turbulent Transport
of Dissipation, respectively. These correlations are essentially impossible

th artl 41, b
to measure with any degree of accuracy so that there is presently little hope

of finding reliable guidance from experimentalists regarding suitable closure
approximations. Recent DNS studies such as the work of Mansour, Kim and
Moin (1988) have helped gain some insight on the exact ¢ transport equation
for low-Reynolds-number flows. However, the database for establishing
closure approximations similar to those used for the k equation remains
Very sparse.

Many researchers have proceeded undaunted by the lack of a rational
basis for establishing closure approximations with a feeling of security that
using Equation (4.39) as their foundation adds rigor to their approach. The
strongest claim that can actually be made is that the conventional closure
approximations used for Equation (4.39) are dimensionally correct. But
this is not very different from the Kolmogorov (1942) and Saffman (1970)
approaches that are guided almost exclusively by physical reasoning and
dimensional analysis. An important point we should keep in mind is to
avoid modeling the differential equations rather than the physics
of turbulence. That is not to say we should avoid any reference to the
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differential equations, for then we might formulate a model that violates
a fundamental physical feature of the Navier-Stokes equation. Rather, we
should avoid deluding ourselves into thinking that the drastic surgery
approach to something as complex as Equation (4.39) is any more rigorous
than dimensional-analysis arguments.

As a final comment, even if we had demonstrably accurate closure ap-
proximations for the exact ¢ transport equation, there is a serious question
of their relevance to our basic closure problem. That is, the length or time
scale required is that of the energy-containing, Reynolds-stress-bearing ed-
dies rather than the dissipating eddies represented by the exact ¢ equation.
So, we must ask whether the modeled € equation represents the dissipation
as such [as Equation (4.39) does], or whether it is actually an empirical
equation for the rate of energy transfer from the large eddies {equal, of
course, to the rate of dissipation in the small eddies). The answer seems
clear since the closure approximations normally used parametrize the vari-
ous terms in the modeled ¢ equation as functions of large-eddy scales (our
use of dimensional analysis does this implicitly). As a consequence, the
relation between the modeled equation for € and the exact equation is so
tenuous as to not need serious consideration.

The Standard k-€ model is as follows.

Eddy Viscosity

A = 8G S (4.40)
Turbulence Kinetic Energy S
ok Ok aU; P o]
x by~ Vs oz; 7 4.41
g T Pige T g, TPt B l(# +NT/ak)aij (4.41)

Dissipation Rate

Je Oe e OU; €2 %, Oe
p5; t AU Bz, Ca ¥ g, T Cezpp + 7z, [(»u + #T/O'e)‘g;;] (4.42)

Closure Coeflicients
Ca=14, C,=192 C,=009, o0,=10, oc=13 (4.43)

Auxiliary Relations

~

w=e/(Cuk) and £=C,k%[c = (4.44)
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4.3.3 Other Two-Equation Models

Two-equation models based on the turbulence length scale, £, and the tur-
bulence time scale, 7, have received less attention than the k-w and k-¢
models. Generally speaking, the level of agreement between measurements
and predictions made with other models is comparable to k-w and k-¢ pre-
dictions for simple constant-pressure flows, but these models have not been
pursued to any great extent. This subsection presents a brief overview of
some of the length-scale and time-scale models. More details can be found
in the various papers referenced in the discussion.

2xx Uail V@i i ALatlaiTalllRL LA LRIoLRaa2VL

The proposed foundation for Rotta’s (1968) k-kf model is the two-
point velocity correlation tensor. The correlation functions we have
dealt with thus far are known as single-point correlations and involve
products of fluctuating properties at a single point in the flow, x. In a two-
point correlation, we consider two points in the flow, say x and x+r, and
do our time average. The two-point velocity correlation tensor is defined
as

Ri;(x,t;r) = ul(x,t) uj(x + r,1) (4.45)

The turbulence kinetic energy is simply one half the trace of R;; with a
displacement r = 0. Rotta’s second variable is the product of k¥ and the
integral scale, ¢, which is the integral of R;; over all displacements, » = |r|.
Thus Rotta’s variables are given by

= %R,-i(x,t; 0) (4.46)

3 [ , . o

kf = -I'E R,,','(X,t; r) dr (4.47)

As with attempts to model the exact dissipation equation, no particular

advantage has been gained by introducing the double velocity correlation

tensor. While an exact equation for k¢ can indeed be derived, Rotta (1968)

still must perform drastic surgery on the exact equation. For example,

using standard closure approximations based largely on the strength of

dimensional analysis, the following modeled version of the exact k£ equation
results.

oU;
pat(k£)+pU, oz, (ke) Criplrij — 52 — Cpapk®?

g Ok il
+5‘m_j [ua(kf) + (IJT/ULI)f%; + (ﬂT/O‘Lz)ka—%—] (4.48)
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For this model, k and pp are given by Equations (4.11) and (4.12).
Rodi and Spalding (1970) and Ng and Spalding (1972) developed this model
further. More recently, Smith (1990) has pursued development of the k-k¢
model. Ng and Spalding found that for wall-bounded flows, the closure
coefficient Cro must vary with distance from the surface. They propose
the following set of closure coeflicients.

Cr1 =098, Crz=0.0594702(¢/y)°, Cp=009, or=0op1=0r2=1
(4.49)
108 ) bage their model
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upon the autocorrelation tensor that involves the time average of fluc-
tuating quantities at the same point in space but at different times. Thus,
they work with the tensor

N

Rij(x,4;t") = ui(x, t)u;(x,t + 1) (4.50)
The turbulence kinetic energy is half the tra f R;; with ¢ = 0, while the
u.l.bt:""“ [ P [T T R imntegra 1 ~fD. all nnccihle
slﬂl u,luc ScCau€ l.b piropul tionail vo uiic 51 L UL Ivgg Oover al puUboLviIc
values of ¢'. Thus,
1

k= E'R,,',f(x,t;()) (451)

1 oQ
_— / Ra(x, t;1') dt (4.52)

4 -0

The Zeierman-Wolfshtein k-kT model is as follows.

Eddy Viscosity

pr = pCukr (4.53)
Turbulence Kinetic Energy
Ok Ok oU; k0 ok
S [+ nrsonge| s
Integral Time Scale
0 's} oU;
P (k7) 4 pUj5—(kT) = Cr1 7 13 5—= = Crapk
to [0+ o) 5 k)] (4.55)
8.’.17]' 31‘]‘

Closure Coeflicients

Cy1 =0.173, Cyp=0225, C, =009, o, =146, o, =108 (4.56)
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Auxiliary Relations
w=1/(C,7), e=k/r and £=C,k'/?r (4.57)

Note that because the eddy viscosity is proportional to k7, Equation (4.55)
can also be regarded as an equation for ur.

Speziale, Abid and Anderson (1990) have taken a different approach
in devising a k-7 model. Specifically, they introduce the formal change of
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resulting equation for 7 is as follows.

or ar oU;
s Ua—:( —Ca)x T”a +(Cea—1)p

o
t5— [(# + #T/ffrz)—'_'
J £j
2 Ok Ot or oOr
o = - _Z . 4.
+r(p+ HT/Jrl)a - (.U +pr/0r2) 5— s Boe (4.58)

Speziale, Abid and Anderson use the following revised set of closure co-
efficient values for their k-7 model that make it a bit different from the
Standard k-¢ model.

Ca=144, Cp =183, C, =009, o =0, =0,5=136 (4.59)

In summary, the models listed above are representative of the various
two-equation models that have been devised since Kolmogorov’s (1942) k-w
model. While other models have been created, the intent of this text is to
study models in a generic sense, as opposed to creating an encyclopedia of
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of two-equation models including: (a) details on how the closure-coefficient
values are chosen; (b) surface boundary conditions for wall-bounded flows;
and, (¢) applications to a variety of flows.

4.4 Closure Coefficients

All of the two-equation models have closure coefficients that have been
introduced in replacing unknown double and triple correlations with al-
gebraic expressions involving known turbulence and mean-flow properties.
The Wilcox k-w model, for example, has five, viz., a, #, §*, ¢ and ¢*. If
our theory were exact, we could set the values of these coefficients from
first principles much as we use the kinetic theory of gases to determine the
viscosity coefficient in Stokes’ approximation for laminar flows. Unfortu-
nately, the theory is not exact, but rather a model developed mainly on the
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strength of dimensional analysis. Consequently, the best we can do is to
set the values of the closure coefficients to assure agreement with observed
properties of turbulence.

This section describes the manner in which the closure coefficients have
been determined for the Wilcox k-w model. There is no loss of generality
in doing this however, since these same general arguments have been
used in establishing the values of the closure coefficients in most
two-equation models. The Problems section at the end of the chap-
ter examines some of the (relatively minor) differences among the various
models.

We can establish the ratio of 8* to 3 by applying the model to decaying
homogeneous, isotropic turbulence. In this kind of turbulence, there are no
spatial gradients of any mean-flow properties wherefore Equations (4.34)
and (4.35) simplify to

%;E = —fB*wk and %"{- = —fw? (4.60)
from which the asymptotic solution for k is readily found to be
ko~ tP /P (4.61)

Experimental observations [Townsend (1976)] indicate that k ~ ¢t~ where
n = 1.25+ 0.06 for decaying homogeneous, isotropic turbulence. Choosing
* /8 = 6/5 sets the ratio at the lower end of the range of accepted values.

Values for the coefficients o and #* can be established by examining
the log layer. Recall from Section 3.4 that the log layer is defined as
the portion of the boundary layer sufficiently distant from the surface that
molecular viscosity is negligible relative to eddy viscosity, yet close enough
for convective effects to be negligible. In the limiting case of an incom-
pressible constant-pressure boundary layer, defining vy = pr/p, the mean-

momentum equation and the equations for £ and w simplify to

o= 2 [w] |
~ oy | oy
oUN? . ok
0=wvp (5-3;-) —B'wk+o -@[VT%] > (4.62)
_fouNt L, 9 Ow
0-“(5.«7) A “@[”T@] )

We will justify the limiting form of these equations when we use pertur-
bation methods to analyze the log layer in Subsection 4.6.1. We seck the
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conditions under which these simplified equations yield a solution consis-
tent with the law of the wall. As can be easily verified, Equations (4.62)
possess such a solution, viz.,

2

Uy Uy
U = —fny + constant, k= , W= —— 4.63
K v VB Ky (163)

where u, is the conventional friction velocity and & is Kdrman’s constant.
There is one constraint imposed in the solution to Equations (4.62), namely,

2 + f and
a unique relation exists between the implied value of Kdrman’s constant and

the various closure coefficients. Specifically, the following equation must

hold.
a=p/8" — ok /B (4.64)

Additionally, according to our solution the Reynolds shear stress, 7.y, is
constant and equal to pu?. Inspection of Equations (4.63) shows that this
implies ., = \/B*pk in the log layer. A variety of measurements [Townsend
(1976)] indicate the ratio of 7,y to pk is about 3/10 in the log layer. This
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ing their one-equation model [c.f. Equation (4.13)]. Thus, the predicted
log-layer solution is consistent with experimental observations provided we
select #* = 9/100.

We must work a bit harder to determine the values of ¢ and o*. As
we will see in Subsections 4.6.2 and 4.6.3, detailed analysis of the defect
layer and the sublayer indicates that the optimum choice is 0 = ¢* = 1/2.
Finally, Equation (4.64) shows that selecting a = 5/9 is consistent with
Coles’ value for the Karman constant of 0.41.

Other arguments have been used to determine closure coefficients prior
to any applications or computer optimization. Saffman (1970), for example,
uses estimates based on vortex-stretching processes in simple shear and
pure extension to effectively establish bounds on a coefficient similar to .
He also requires that the length scale, ¢, be discontinuous at a turbulent-
nonturbulent interface and finds that his model requires o = o* = 1/2 to
guarantee such behavior.

Zeierman and Wolfshtein (1986) use the fact that very close to sep-
aration, measurements [Townsend (1976)] indicate the law of the wall is

replaced by
1 /y dp
U— (-)—'2'2 pdx as y— 0 (465)

They also observe from measurements of Laufer (1950) and Clark (1968)
that, for flow near the center of a channel, the turbulence kinetic energy
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and velocity are closely approximated by

k/k, ~ 1+ 6.67(y/R)?
UlU, ~ 1 —0.242(y/R)? as y— R (4.66)
u? 7 0.048U, k.2

In conclusion, the specific arguments selected for determination of the
closure coefficients are a free choice of the developer. For example, using
arguments based on uuulugcucuub turbulence and buun"““ ]"y‘"" assumes
we have a degree of universality that may be grossly optimistic. That is,
we are implicitly assuming our model is valid for grid turbulence, boundary
layers, and many flows in between. Dropping this argument in favor of
another boundary-layer argument may yield a model optimized for bound-
ary layers but restricted to such flows. Ideally, we would find arguments
that isolate each closure coefficient. Often, more than one is involved [e.g.,
Equation (4.64)]. In any event, for the sake of clarity, the arguments should
be as simple as possible.

4.5 Application to Free Shear Flows

Our first applications will be for free shear flows. As with the mixing-
length model, we seek similarity solutions to determine far-field behavior
for the plane wake, mixing layer, plane jet and round jet. There are two
noteworthy changes in our approach to obtaining a solution for free shear

flows. First, for the mixing layer and the jets we can choose our sirmmilarity
variable to be n = y/z. That is, with no loss of generality, we can set all
scaling constants such as A in Equations (3.70) and (3.71) equal to one. We
had to carry such scaling coefficients for the mixing-length model because,
by hypothesis, the mixing length is proportional to the width of the layer,
which is proportional to the coefficient A. With two-equation models, the
turbulence length scale is determined as part of the solution so that the way
in which we scale the similarity variable 7 is of no consequence. Second,
while the rest of the methodology is the same, the addition of two extra
differential equations complicates the problem somewhat. Because they
are the most widely used two-equation models, we confine our attention
to the k-w and k-¢ models. With the standard boundary-layer/shear-layer
approximations, the equations of motion become:

U 18
o= = 4.
5 T 7oy V] =0 (4.67)

pU—-;+pV—y = —— [ 1oy (4.68)
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o 4.69
k-w Model:
ok Ok oU 10 . ok )
U— Ve =1py— — P pok + —— *pp —
UG+ PV 5o = oy = Bk o [y’auray]
Jw w oU s 1 8. dw s (4.70)
U Ve—=a-1,— — O _— '
pr = pkjw J
k-¢ Model:
ok Ok oU 1 & - pr Ok )
J— e [tk
P oz + Va = Tzy 6'3} p6+ 'l}J 6:!] [yJ o 6y_|
I ¥ cutn, oS L [pande] ¢ (47)
HT = Cupk2/€ /

The similarity solution for the various free shear flows can be written in

the following compact form.

Far Wake:

wla,y) = “2W() e(z,y) =

>

[pUS
=y Dz J
Mixing Layer:

U(z,y) = UiU(n), k(z,y) = U7K(n) ‘

Uy U

w(z,y) = — W), ezy)= —E(n) )

n="2
T

(4.72)

(4.73)
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Jet:

J1/2 J ]

J1/2 J3/2
(.U(:B,y) = ;(JT)/Q.W(H)! E(:E, y) (3J+5)/2 (77) ( (474)
Yy
n=-
Xz /

S, k¢ o tan ke

Substituting these self-similar representation
equation yields the following transformed equation.

dU 1 d dU]
V— — —— N—| =5U 4.75
an wmifcm (+.75)

where the function N(n) is the transformed eddy viscosity, j = 1 for the

round jet, and j = 0 for the other three cases. The two terms on the

left-hand side of Equation (4.75) are essentially vertical convection and

diffusion. The term on the right-hand side is a source term that originates
from the streamwise convection of momentum; Table 4.1 lists the coeflicient
S, and the normal velocity-like function, V(7), for each of the free shear
flows considered. The transformed k, w and ¢ equations are:

k-w Model:
dk  1d [, . dK du\? )
V—v-——-.-—-[ *N——]:S K+N(—) —B'WK
dn n’dn_nja dn | ¢ dn o
dw _1d; W) o W (dUN" e b (a76)
_ = = —N (=) -
dn 7/ dy lnja d wW ey ( n) p
K
N=i ‘
k-e¢ Model:
dK 1 d - N dK dU )
pdf _1d SK+N(——)
dn nfdn[ akdn] * dn
1 d N dE di E?
— e — SE C N —Cc - }
vdn W dn waedn] + UK (dn) K
h2
N P

24.77)
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Table 4.1: Free Shear Flow Parameters

[ Flow Su_ Sk 8w 8. V() |
Far Wake : 1 1 2 0 —%n
Mixing Layer 0 0 U U 0 — [JU(y)dy
Plane Jet U U U U 0 U’ dy’
Round Jet U U 22U AU L =3 [TUMW )y dny

The k, w and € equations contain convective terms, diffusion terms, and
additional source terms corresponding to streamwise convection, production
and dissipation. Table 4.1 lists the convective source term coefficients, Sk,
Sw and Se.

Boundary conditions on the velocity are the same as in Chapter 3. We
must also specify boundary conditions for K, W and E. Solutions to all

™ antnira cha rhailant Aantrirhiilant intar
t‘fv’ﬂvequat}.@n model eq‘dat;ﬁn% fccwdrb snarp turbulent-nonturbulent inter-

faces for free shear flows, i.e., interfaces at which derivatives of flow prop-
erties are discontinuous. Consequently, the most sensible boundary condi-
tions in the freestream are those corresponding to non-turbulent flow, i.e.,
K(n), W(n) and E(n) all vanish approaching the edge of the shear layer.
As it turns out, k-e¢ model solutions are unaffected by finite values of K
and F in the freestream while k-w model solutions are very sensitive to
the freestream value of W. Subsection 7.2.2 gives complete details on the
nature of two-equation model behavior near turbulent/nonturbulent inter-
faces. The boundary conditions that appear most appropriate for K, W
and E are as follows.

Wake and Jet:
K'(0)=w'(0)=E'(0)=0 (4.78)

Wake, Jet and Mixing Layer:

K(n)—0, W(n) —Wsx, ad E(n)—0 as [|9f— oo (479)
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Table 4.2: Free Shear Flow Spreading Rate

l Flow k-w Model k-e¢ Model Measured [
Far Wake .301-.500 256 .365
Mixing Layer  .103-.141 098 115
Plane Jet .090-.136 .109 .100-.110
Round Jet .073-.371 120 .086-.095

The conventional definition of spreading rate for the wake is the
value of n given in Equation (4.72) where the velocity defect is half its
maximum value. Similarly for the plane and round jet, the spreading
rate is the value of y/z where the velocity is half its centerline value. For
the mixing layer, the spreading rate is usually defined as the difference
between the values of y/z where (U — Ug)?/{U; — U2)? is 9/10 and 1/10.
Table 4.2 compares cornputed and measured spreading rates for the k-w and
k-e models. A range of values is quoted for the k-w model corresponding to
values of Weo ranging from 0 to 1 for the far wake and mixing layer, 0 to 10
for the plane jet, and 0 to 100 for the round jet. Using larger values of W
for these flows causes numerical difficulties, so these values appear to cover
the permissible values for W,. The largest spreading rate corresponds to
Woo = 0.

These results show that having a complete model guarantees nothing
regarding accuracy. Overall, the k-¢ model behaves best from a compu-
tational point of view because of its insensitivity to freestream boundary
conditions. However, its predicted spreading rate is 30% lower than mea-
sured for the far wake, 15% lower than measured for the mixing layer, and
between 25% to 40% higher than measured for the round jet. Only for the
plane jet does its predicted spreading rate fall within the range of measured
values.

Using Woo = 0, the k-w model consistently predicts spreading rates
larger than measured. Specifically, computed spreading rates exceed cor-
responding measurements by 37%, 23%, 24% and 291% for the far wake,
mixing layer, plane jet and round jet, respectively. There are values of W
that yield spreading rates much closer to the measured values. Specifically,
using W = 0.4 for the far wake, Wo, = 0.5 for the mixing layer, Weo =9
for the plane jet, and Wy, = 50 for the round jet yields spreading rates
of .358, .115, .101 and .095, respectively. Figures 4.5 through 4.8 compare
computed and measured velocity profiles obtained using these values for
W... However, since there is no obvious reason for the choice of W, this
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Figure 4.5: Comparison of computed and measured velocity profiles for the
far wake; k-w model; - - - k-¢ model; o Fage and Falkner.

amounts to having an adjustable parameter in the model. Clearly, this is
not much of an improvement over the mixing-length model predictions of
Chapter 3. As a final comment, we can reasonably expect that the opti-
mum values of W, used with the k-w model for the self-preserving cases
should give good results for non-self-preserving cases.

Menter (1992c) has developed a k-w model that has no sensitivity to the
freestream value of w. He accomplishes this by including a cross-diffusion
term in the w equation. That is, Menter writes the w equation as follows.

LA L\ L S O SN PR
pat P Ja.’l}j _ak’ i 6.’1,‘]' pw 8.’!3]' (u IJ'T sz
P 0k Ow

+0dw Oz; Oz; (4.80)

The term proportional to 4 in Equation (4.80) is Menter’s cross-diffusion
term. The effect of this term 18 to replace the entrainment velocity, v, in
the w equation by (v — oqw~'0k/0y). Since k decreases approaching the
shear layer edge (assuming o4 > 0), the net effect is to make the effective
entrainment velocity positive (or at least less negative). As a result, w
diffuses from the turbulent region into the nonturbulent region, which is
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Figure 4.6: Comparison of computed and measured velocity profiles for the
mixing layer; k-w model; - - - k-¢ model; o Liepmann and Laufer.

the opposite of what happens with the k-w model. Thus, the freestream
value of w has no effect on the solution.

Menter also introduces a “blending function” that makes o4 = 0 close to
solid boundaries, while o4 — 20 away from such boundaries. Additionally,
his blending function causes all of the model’s closure coefficients to assume
the values in Equation (4.36) near solid boundaries, and to asymptotically
approach values similar to those used with the k-e¢ model otherwise. The
net result is a model that behaves very much like the Wilcox (1988a) k-w
model for wall-bounded flows, and that is nearly identical to the k-¢ model
for free shear flows.

The author has research in progress at the time of this writing that
indicates it may be sufficient to let:

(o Okow _,
7 Oz Oz —
o4 = (4.81)
’ 6&1‘j c%zj

Additionally, the value of o* must assume a value larger than 0.5. As we
will see in Subsection 4.6.2, it is important to suppress this cross-diffusion
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Figure 4.7: Comparison of computed and measured velocity profiles for the
plane jet; k-w model; - - - k-€ model; o Wygnanski and Fiedler.

term close to solid boundaries for wall-bounded flows. Just as Menter’s
blending function causes o4 to approach 0 near a solid boundary, so does
Equation (4.81) since k increases and w decreases in the viscous sublayer.
As with Menter’s approach, this modification to the w equation eliminates
the model’s sensitivity to the freestream value of w. However, while simpler
than Menter’s blending function approach, this straightforward modifica-
tion yields shear layer spreading rates that are a bit farther from measure-
ments than those predicted by the k-e¢ model. Other values of the k-w
model’s closure coefficients exist that yield closer agreement with measured
spreading rates, but that also compromise the model’s accuracy for wall-
bounded flows. Consequently, research continues in quest of an optimum
formulation.

Pope (1978) has proposed a modification to the € equation that resolves
the so-called round-jet/plane-jet anomaly. That is, while experimental
measurements indicate the spreading rate for the round jet is less than
that of the plane jet, two-equation turbulence models predict the opposite.
In Pope’s modification, the Dissipation of Dissipation term in the ¢
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Figure 4.8: Comparison of computed and measured velocity profiles for the
round jet; k-w model; - - - k-¢ model; o Bradbury.

equation is replaced by

2

€
Ces =
k

— [Cer — CeaX] (4.82)

?rl"L,

where y is a “nondimensional measure of vortex stretching” given by

— il 8 3
X = WijWikSki

- 1k
§ij = 57 (Vi +Ujs) 3 (4.83)

- ik
wij:g;’(U,J Ui i) )

Using C.3 = 0.79 reduces the k-¢ model’s predicted spreading rate to
0.86, consistent with measurements. However, as pointed out by Rubel
(1985), the Pope correction has an adverse effect on model predictions for
the so-called radial jet, which we have not discussed here. This is the
case of two jets of equal strength colliding and spreading radially. Without
the Pope correction, the k-¢ model predicts a radial-jet spreading rate of
0.095 which is close to the measured range of 0.096 to 0.110 [see Tanaka
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and Tanaka (1976) and Witze and Dwyer (1976)]. Using the Pope correc-
tion for the radial jet reduces the k-¢ model-predicted spreading rate to
0.040. Hence, as noted by Rubel, “the round jet/plane jet anomaly has
been exchanged for a round jet/radial jet anomaly.”

This concludes our analysis of free shear flows. In the following sec-
tions we turn our attention to wall-bounded flows. To demonstrate how
two-equation models fare for such flows, we are going to use a powerful
mathematical tool to analyze fine details of model-predicted structure of
the turbulent boundary layer. In particular, we will use perturbation
methods to analyze the various regions in the turbulent boundary layer.

4.6 Perturbation Analysis of the Boundary
Layer

The differential equations for all but the simplest turbulence models are
sufficiently complicated for most flows that closed-form solutions do not
exist. This is especially true for boundary layers because of nonlinearity of
the convection terms and the turbulent diffusion terms attending introduc-
tion of the eddy viscosity. Our inability to obtain closed-form solutions is
unfortunate because such solutions are invaluable in design studies and for
determining trends with a parameter such as Reynolds number, or more
generally, for establishing laws of similitude. Furthermore, Wlthout analyt-
ical solutions, our ability to check the accuracy of numerical solutions is
limited.

There is a powerful mathematical tool available to us to generate ap-
proximate solutions that are valid in special limiting cases, viz., perturba-
tion analysis. The idea of perturbation analysis is to develop a solution
in the form of an asymptotic expansion in terms of a parameter, the
error being small for sufficiently small values of the parameter. Qur desire
in developing such an expansion is for the first few terms of the expansion
to illustrate all the essential physics of the problem and to provide a close
approximation to the exact solution. Fortunately, this is usually the case
in fluid mechanics.

This section shows how perturbation analysis can be used to dissect
model-predicted structure of the turbulent boundary layer. Appendix B
introduces basic concepts of perturbation theory for the reader with no
prior background in the field.
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4.6.1 The Log Layer

We direct our focus to the turbulent boundary layer. Experimental obser-
vations provide a strong argument for using perturbation analysis. Specif-
ically, Coles’ description of the turbulent boundary layer as a “wake-like
structure constrained by a wall” (see Figure 3.8) suggests that different
scales and physical processes are dominant in the inner (near-wall) and
outer (main body) of the layer These are clearly concepts upon which
perturbation analysis is based. Coles [see Coles and Hirst (1969)] makes an

explicit connection with perturbation theory when he remarks:

“The idea that there are two distinct scales in a turbulent bound-
ary layer is an old one, although gquantitative expressions of this
idea have evolved very slowly... To the extent that the outer ve-
locity boundary condition for the inner (wall) profile is the same
as the inner velocity boundary condition for the outer (wake)
profile, the turbulent boundary layer is a singular perturbation
problem of classical type. In fact, we can claim to have discov-

ered the ﬁrst two terms in a composite expansion, complete with
logarithmic behavior.”

Often perturbation solutions are guided by dimensional considerations
and a knowledge of physical aspects of the problem. For the turbulent
boundary layer, we can draw from empirically established laws to aid us
in developing our perturbation solution. We observe that close to a sohd
boundary, the law of the wall holds. We can write this symbolically as

Uz,y) = ur(&)f(ury/v);  tr = /Tufp (4.84)

Similarly, the main body of the turbulent boundary layer behaves ac-
cording to Clauser’s (1956) well-known defect law, viz.,

U(z,y) = U(z) — ur () Fly/A(2)];  A(z) = Ueb™ [u, (4.85)

The reader should keep in mind that Equation (4.85) only applies to a
special class of boundary layers, i.e., boundary layers that are self preserv-
ing. Thus, we seek solutions where F(y/A) is independent of z. As we will
see, the model equations predict existence of such solutions under precisely
the same conditions Clauser discovered experimentally.

We develop the leading terms in a perturbation solution for the tur-
bulent boundary layer in the following subsections. There are two small
parameters in our problem, the first being the reciprocal of the Reynolds
number. This is consistent with the standard boundary-layer approxima-
tions. The second small parameter is u, /U.. Clauser’s defect law suggests
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this parameter since the velocity is expressed as a (presumably) small devi-
ation from the freestream velocity that is proportional to u,. The analysis
will lead to a relation between these two parameters.

The analysis in this section, which is patterned after the work of Bush
and Fendell (1972) and Fendell (1972), shows in Subsection 4.6.3 that the
inner expansion is of the form quoted in Equation (4.84) and is valid in the
viscous sublayer (see Figure 3.7). We also show in Subsection 4.6.2 that
the outer expansion is identical in form to Equation (4.85) and holds in the
defect layer. Formal matching of the sublayer and defect-layer solutions
occurs in an overlap region that is often described as the log layer. In fact,
the common part of the inner and outer expansions is precisely the law of
the wall. Thus, although it is not formally a separate layer, establishing
flow properties in the log layer permits independent analysis of the sublayer
and defect layer. It also forms the basis of surface boundary conditions for
many two-equation turbulence models. We discuss the log layer in this

subsection.
Before performing any analysis, we anticipate that we will be solving a

..... wLAMLAILLLSs ) L) —-4-.-, W SGlav

singular perturbation problem. We expect this, but not because of a
reduction in order of the differential equations. Rather, we have no hope
of satisfying the no-slip condition with our outer solution because of the
assumed form in the defect layer, i.e., velocity being a small perturbation
from the freestream value. Likewise, the sublayer solution, if it is consis-
tent with measurements, predicts velocity increasing logarithmically with
distance from the surface as y — co so that we cannot satisfy the freestream
boundary condition with our inner solution. This is the irregular behav-
ior near boundaries alluded to in nppendu. B where we define a muguld.r
perturbation problem.

We begin our analysis with the incompressible boundary layer equations.
Conservation of mass and momentum are sufficient for establishing the form
of the expansions, so that we have no need to introduce the model equations

now. For two-dimensional flow, we have

oUu oV
—_— — = 4.
5z + 5y 0 (4.86)
poU 20 142 0 [ . 3] (4.87)
Oz dy pdz Oy | "0y | )

The easiest way to arrive at the log-layer equations is to derive the
sublayer equations and then to determine the limiting form of the sublayer
equations for y* — co. Consistent with the normal boundary-layer concept
that variattons in the streamwise (&) direction are much less rapid than
those in the normal (y) direction, we scale ¢ and y differently. Letting L
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denote a dimension characteristic of distances over which flow properties
change in the z direction, we scale z and y according to

=z/L and yt =usy/v (4.88)

The appropriate expansion for the streamfunction and kinematic eddy vis-
cosity are

-+ -

winner(ma y) ~ V[_f()(é,y ' ) ' ;r (

+ /g

y ")+ o(¢1)] (4.89)
VT (2,y) ~ v[NO(E,4™T) + $1N1(E, uT) + o(¢1)] (4.90)

where the asymptotic sequence {1, ¢1, ¢2,...} is to be determined. Conse-
quently, the streamwise velocity becomes

. . . 0 fn
Ulz,y) ~ urlio€y™) + dr81(&v7) +o(d);  dn= G;Ci (4.91)
Substituting into the momentum equation, we obtain
o0 Oug 1 6%\ 1
1+ N O of{— 4.92
pes [( O)Oy } +0(¢1) = Ten- [ﬂT + (L )] (4.92)

where Res~ is Reynolds number based on displacement thickness, and the

quantity B is the so-called equilibrium parameter [see Coles and Hirst
(1969)] defined by

(4.93)

the defect layer this will be the key parameter quantifying the effect of
pressure gradient on our solution. Addmonally, Reg» > 1 and 6™ <« L.
Hence, we conclude that

In general, we regard A1 as being of order one. In fact, when we analyze

$1 = 1/Regn (4.94)
and
0 O
— (1 + No)—| = 4.95
= [( =] (4.95)
To enhance physical understanding of what we have just proven, it is
worthwhile to return to dimensional variables. We have shown that, to

leading order, the convective terms and the pressure gradient are small
compared to the other terms in the sublayer so that the momentum equation
simplifies to

0
r» [(V + VT)_] = (4.96)
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Integrating once tells us that the sum of the molecular and Reynolds shear
stress is constant in the sublayer, i.e.,

oU
(n+ HT)% = Tw (4.97)

Equation (4.96) or (4.97) is the equation for the leading order term in
the inner expansion for a turbulent boundary layer. As we will demonstrate
in greater detail in Subsection 4.6.3, we can satisfy the no-slip condition
(U = 0) at y = 0 while the solution as y* — oo asymptotes to the law of the
wall, i.e., velocity increasing logarithmically with distance from the surface.
Another feature of the solution is that the eddy viscosity increases linearly
with yt as yt — oo so that the eddy viscosity becomes very large compared
to the molecular viscosity. Consistent with this behavior, the molecular
viscosity can be neglected in Equation (4.96) or (4.97) for the limiting case
yt — oo. As noted above, we refer to the form of the differential equations
in this limit as the log-layer equations. Thus, we conclude that in the log
layer we can neglect convection, pressure gradient and molecular diffusion.
The momentum equation thus simplifies to the following equation.

i} oU
0 = 5"y- [UT '5;:' (498)

To the same degree of approximation, in the log layer, the k-w model equa-
tions simplify to:

k-w Model:
0o (29N~ gkt o2 [n ] )
—VTkay) R By lUTayJ
LA , 0 bw > (4.99)
0—“(5‘5) Rt [”T@]
UT:k/w J

As can be shown by direct substitution, the solution to Equations (4.98)
and (4.99) is

2

Uy

u u
U= Tg'ny + constant, k = , W = ——
K vB* VB*ky

where the implied value of the Karman constant, &, is given by

K2 =B (B8 - o)]o (4.101)

(4.100)
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Note that the term proportional to ¢* disappears because dk/dy = 0. For
the closure coefficient values specified by Wilcox [Equation (4.36)], we find
k = 0.408. We discussed the log-layer solution in Section 4.4 to illustrate
how values for some of the closure coefficients have been selected. There
are additional features of the solution worthy of mention. For example, the
eddy viscosity varies linearly with distance from the surface and is given by

VT = KirY (4.102)
This variation is equivalent to the mixing-length variation, ¢,,,;, = &y. Also,
the ratio of the Reynolds shear stress to the turbulence energy is constant,

ie.,
Toy = \/ B*pk (4.103)

In a similar way, the k-¢ model equations simplify to the following:

k-e€ Model:
) A
= vr (?E —€+ _2_ {EQI{'
\ 3y / Oy Lok Oy ]
U \? e 0 [vrde] ¢ (4.104)
0= Celcﬂk (a_y) - 62-’&‘— + Oy [0—5%]
vp = Cpk2/€ ’

The solution to Equations (4.98) and (4.104) is

u u? ud ,
U= —Ffny+ constant, k= —ZL= €= i (4.105)
K Cu Ky

where we again find an implied value for the Karman constant, &, viz.,

k? = \/Cu(Cez — Cer)oe (4.106)

Using the closure coefficient values for the Standard k-e¢ model [Equa-
tion (4.43)], the value of « is 0.433.

Keep in mind that the turbulent boundary layer consists of the sub-
layer and the defect layer. The sublayer is a thin near-wall region, while
the defect layer constitutes most of the boundary layer. In the spirit of
matched asymptotic expansions, the log layer is the overlap region which,
in practice, often appears to be much thicker than the sublayer (see Fig-
ure 3.7). Part of our reason for focusing on this region of the boundary
layer is of historical origin. Aside from the k-w model, most two-equation
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models fail to agree satisfactorily with experiment in the viscous sublayer
unless the coefficients are made empirical functions of an appropriate tur-
bulence Reynolds number. Consequently, the log-layer solution has often
been used as a replacement for the no-slip boundary condition. Most k-¢
model solutions, for example, are generated by enforcing the asymptotic
behavior given in Equation (4.105). We must postpone further discussion
of surface boundary conditions pending detailed analysis of the sublayer.
Analysis of the log layer can also prove useful in determining leading-order
effects of complicating factors such as surface curvature, coordinate-system
rotation, and compressibility. As our most immediate goal, we have, in
effect, done our matching in advance. Thus, we are now in a position to
analyze the defect layer and the sublayer independent of one another. We
turn first to the defect layer.

4.6.2 The Defect Layer

In this subsection we use singular perturbation methods to analyze model-
predicted structure of the classical defect layer, including effects of pressure
~ gradient. Our analysis includes three turbulence models, viz.: the Wilcox
k-w model; the Standard k-¢ model; and the Wilcox-Rubesin (1980) k-w?
model. First, we generate the perturbation solution. Next, we compare
solutions for the three models in the absence of pressure gradient. Then,
effects of pressure gradient are studied for the three models. Finally, as
promised in Section 4.4, we justify the values chosen for ¢ and ¢* in the
k-w model.

To study the defect layer, we continue to confine our analysis to in-
compressible flow so that we begin with Equations (4.86) and (4.87). The
perturbation expansion for the defect layer proceeds in terms of the ra-
tio of friction velocity to the boundary-layer-edge velocity, u,/Ue, and the

dimensionless coordinates, £ and 7, defined by
E=z/L and n=y/Az); A=Ub"fu, (4.107)

where 6* 1s displacement thickness and L is a characteristic streamwise
length scale that is presumed to be very large compared to 6*. As in our
approach to the log layer, we first establish the general form of the solution

for the mean momentum eaguation. We exnand the streamfunction and

£3SE 0 MARL RIaLANNR Aial AT Viaaas Uhnquvaisias e VARD U Cikaiiwaiavuaisas dvaale

kinematic eddy viscosity as follows.

boun(a9) ~ U [ = R m) +o ()] (4.108)

VTputer (2, Y) ~ Ueb™ [No(€, 1) + o(1)] (4.109)
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Observe that, as is so often the case in perturbation analysis, we needn’t
continue the expansions beyond the first one or two terms to capture most
of the important features of the solution. For the specified streamfunction,
the velocity becomes:

U(z,y) ~ [1 - ——U1(§ n+ o (U)] . Uy = %% (4.110)

- ’

Substituting Equations (4. 107 (' 110) into the mean conservation

equations [Equations (4.86) and (4.87)] yields the transformed momentum
equation, viz.,
oU. U d ou
207& 51 (O!T 28p— QwT)T] n1+(ﬁT QWT)U1+5- [No 3 1] (4 111)

where the parameters ar, Or, or and wy are defined in terms of 6*, u
and skin friction, ¢; = 2(u./U.)?, i.e.,

2 do” 0 dP 0" 6" du
ar = ———, Br = — =y 0T =T, Wr=_—— J:‘ (4'112)
Cy axr Ty dZ e Cfur AT

Equation (4.111) must be solved subject to two boundary conditions.
First, to satisfy the requirement that U — U, as y — 0o, necessarily

Uy—0 as 15— (4.113)

Also, we must as asym ptote to the log-layer solution as n — 0. One way to
1 is t a

il ! 0 4.114
T Ty 2T (4.114)

At this point, we have not greatly simplified our problem. Equation (4.111),
like the original momentum equation, is a partial differential equation. The
only simplification thus far is that molecular viscosity is negligible relative
to the eddy viscosity. However, even this is not necessarily advantageous
since the no-slip velocity boundary condition has been replaced by singular
behavior approaching the surface. And, of course, we are now working in
a transformed coordinate system (£, n) rather than the familiar Cartesian
coordinate system (z,y). So why go to all this trouble? The answer is, we
have only just begun.

Reexamination of the steps we have taken thus far should reveal a fa-
miliar tack; specifically, we appear to be developing a similarity solution.
Indeed this is intentional, and inspection of Clauser’s defect law [Equa-
tion (4.85)] shows that there has been method in our madness. Comparison
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of Equation (4.85) with the assumed form of our perturbation expansion
for U given in Equation (4.110) shows that U/; must be a function only of
7. Thus, we now pose the question as to what conditions must be satisfied
in order for a similarity solution to exist.

Clearly, the coefficients ar, 87 and wp must be independent of z, for
then the coefficients of all terms on the right-hand side of Equation (4.111)
will be independent of . The coefficient o7 is of no consequence since, if
gardless of the value of op. The coefficient wr is also unimportant because,
to leading order, it is zero. This becomes obvious if we now perform the
formal matching of the defect-layer and sublayer solutions. As shown in
the preceding section,

1
Uinne- (&, 47) ~ u, [;fny+ + B] as yt— o0 (4.115)

Assuming that a similarity solution exists so that U; depends only upon
n, straightforward substitution into Equation (4.111) with a vanishing left-
hand side shows that

1
Uy~ ;[~€nn+u0—u1n£nr;+ -] as np—0 (4.116)

where the constants ug, ui, ...depend upon the complete solution which,
in turn, depends upon what turbulence model is used. We now do a for-
mal matching of the inner and outer expansions noting that y* = nRes»
el TT fe N . [rr ar FT.fax) 1 1 Mo —nndal. 1l 2l Lo 4 T e
ana U,yeerll, ) ~ [Ue —Ur-U1(7) + -+ -], 10 MatCh tOrougn nrst oraer, we

require the following:

1 1
[—Bny++B] — [_Qg+_£nn_f‘_2] —0 a ytT—o00, p—0
K Ur K K
(4.117)
Hence, we conclude from matching that:
1
Ye _ (B + @) + ~fnRess (4.118)
Ur K K

This is a useful result that enables us to compute the skin friction from
our defect-layer solution, a point we will return to later. For our present
purpose, Equation (4.118) provides us with an estimate of the orders of
magnitude of u, and ¢y, i.e.,

U, q 1
{nReg» an Kl fn?Reg»

as Resg — o0 (4.119)

Uy ~~
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As a consequence, estimating that dé* /dz ~ 6™ [z, we expect to have

du, U. -(Zi U,
dz  Resgfn?Res« v  r fn?Res

Substituting Equations (4.119) and (4.120) into the definition of wr [see
Equation (4.112)], we arrive at the important result

(4.120)

) a8 z—o00 (4.121)
The validity of the final estimate follows from the fact that £nReg+ is tran-
scendentally small compared to any power of Ress, and 6* € z as £ — oo.

Thus, we can ignore the parameter wr in solving for Uj, although it
will appear in the equation at some higher order. This leaves us with the
reduced requirement for existence of a similarity solution that only apr and
Pr are independent of x. However, we can also show that ap and B
are uniquely related to leading order. To see this, we examine the classi-
cal momentum-integral equation that follows from integrating the mean-
momentum equation across the boundary layer [c.f., Schlichting (1979)],

Viz., -
[ep df 6 dP

ot — e
2'-—da: (2+ Uzd:r:

where 0 is momentum\fhickness and H = é6*/0 is the shape factor. In terms
of ap and fBr, the momentum-integral equation can be rewritten as

4 _ [, @QHH), ] de

ap—=— =
ar

(4.122)

H | dzx

If we evaluate the displacement and momentum thickness using our
perturbation expansion for the velocity profile we find two important facts.
First, evaluating the displacement thickness integral yields an integral con-
straint on our solution for Uy, Us, etc. Second, we find to leading order
that 6* and 6 are equal, i.e., the shape factor approaches 1 as Res — 00
and/or u, /U, — 0. The proof of these facts is straightforward and thus
left for the Problems section; the results are:

(4.123)

J/O ” Ui(n) dp =1 (4.124)

/ Un(n)dn=0, n>?2 (4.125)
0

and

H~140 (g—:) as Regs — 00, -;LJ—Z — 0 (4.126)
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Note that the perturbation solution for U;(n) provides sufficient informa-
tion to determine the O(u, /U.) term (see Problems section). Hence, Equa-
tion (4.123) yields the following relationship between a7 and fr.

ar =14+ 387 (4.127)

Thus, the requirement for existence of a similarity solution to Equa-
tion (4.111) for large Reynolds number is simply that the equilibrium
parameter, Or, be constant. This is a very satisfactory state of affairs be-
cause it is consistent with experimental observations at finite (laboratory-
scale} Reynolds numbers. That is, Clauser found that, above the viscous
sublayer, turbulent boundary layers assume a self-similar form when the
equilibrium parameter is constant. The problem we must solve to deter-
mine U,(n) is:

d dlU: dU,

- [No dn]+( + B+ U =0 (4.128)
dU, 1
- as n—0 and Ui(n) >0 as n-—oo (4.129)

The integral constraint, Equation (4.124), must also be enforced. The di-
mensionless eddy viscosity, No(n), depends upon the turbulence model se-
lected. For our purposes, we will consider three different turbulence mod-
els, viz.: the Wilcox k-w model [Equations (4.33)-(4.36)]; the Standard
k-¢ model [Equations (4.40)-(4.43)]; and the Wilcox-Rubesin (1980) k-w?
model whose equations are as follows.

Eddy Viscosity
pr = pkfw (4.130)

Turbulence Kinetic Energy

Ok ok ou; ., d « Ok
'D-(§?+ PUj axj = Tij axj — B pkw + axj [(ﬂ"r 4 ”T)axj] (4131)

Specific Dissipation Rate

Ow? Ow? w?  9U; of of 3
-"W“’Uv"}%,—-— EXT‘&’J’EE“ [ﬂ+205x—j§$—j}pw (4.132)

g Ow?
+5;; [(/i + aﬂT)_a_x?jl (4.133)

Closure Coeflicients

a=10/9, B=3/20, B*=9/100, c=1/2, o*=1/2 (4.134)
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Auxiliary Relations
e=PFwk and £=k"%|w (4.135)

Mai(ing standard boundary-layer approximations for the model equa-
tions, we seek a perturbation solution for k, w and ¢ of the following form.

2 3

“;;,,. [Ko(n) + o(1)]
Uy

w ~ —m==[Wo(n) + o(1)]

FA Y

k ~

$

oV

(4.136)

3

u3
e~ Z[Bo(n) +o(1)]

Note that for the k-¢ model, #* = C,. For all three turbulence models,
the transformed equation for £ can be written as

All Models:
2
ol [NDdK”] + 1+ Re 7 v, (49 E] =0 (4.137)
dp 7 dyg [T T dy TV T dp )T T

where, for the k-¢ model, we note that o* = 1/o%. The second equation and
auxiliary equations are specific to each model. The transformed equations
are:

k-w Model:
d rN dWﬂ1 1 QvYo 1 2 W
o [Nomg| (14 Brn=g . + (14 280)Wo
v\’ B, , (4.138)
+ ﬂ* OZ(—-—) —-——W :0
dn g0
NO = I(o/Wo and Eo = I(OWO J
k-w? Model:
2 2
o [y, e (1 4+ 8y % 4 o1 4 287)W2 \
an |~ dn dn

-y

- au\?> |8 dLo\*| . 5| _ (4.139)
P ["‘W"(E‘;‘) "‘{F”"(W) }Wo]—‘]

No = Ko/Wo, Eo=KoW,, and Lo=Ky*/W, |
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k-e¢ Model:

d [, dE dE \
Sl [No—=| + (1 220 4 (14 287)E
e i + (14 Br)n an + (14 28r)E,

[ dU,\? E2 |
+/C, |Ca Ko (d_l) .28~ , (4.140)
n Ky

No=K2/Ey and Eo= KW, J

We must specify boundary conditions on Ky, Wy and Ey both in the
freestream and approaching the surface. For non-turbulent flow in the
freestream, we require that the turbulence parameters all vanish as n — oc.
However, we also stipulate that these quantities approach zero in such a
way that Ny vanishes. Thus, the freestream boundary conditions are:

Ko(n) — 0, Wo(n) =0, Eg(n) =0, Ur(n) =0 as n—o00 (4.141)

As it turns out, we can also specify Wy = /(1 + 267)/8 for the k-w
model and Wy = 2¢/B*(1 + 2837)/8 for the k-w? model. Regardless of the
choice of Wy, neither model displays the excessive sensitivity to freestream
values observed for the k-w model in free shear flows.

Approaching the surface, we must formally match to the law of the wall.
Matching 1s a bit different for each model but is nevertheless straightfor-
ward; details of the algebra will thus be omitted in the interest of brevity.

The limitineg forms used for n — 0 follow
he | 7 U 1ollow.

ting forms used

Ko(n) ~ [1 + kynénn + - -] \

1
Eo(n) ~ n—n[l +einénn + - -]

. > (4.142)
Wo(n) ~ ;‘n‘[l + winfny + - -]

1
Us(n) ~ =[~tnn+ wo — urnbnn + -] |
The coefficients kq, uy, w, and e; are as follows, where for notational con-

sistency, we define
a* =B =/Cyu (4.143)

Also, we again write some of the results in terms of o¢* with the under-
standing that o* = 1/6y for the k-¢ model.
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All Models: Br/
K
by = T (4.144)
k-w Model:
o = Bl@B[o" K [(2a7)]
1= 1— B/(ap*) 1
e (4.145)
"= T ) J
k-w?® Model:
o 1Bl Nio" 62/ 20")] + 0w
te 200 (1 - B/(af*)] + 20K? (4.146)
_ aa*[o*k*/(20")] 4+ oK |
“ 7 Zaa’ 1= B/(ap*)]+ 2082
k-¢ Model:
_ (14 0*k2/a*)Cer — Ca
= 2(Ca — Ce2) ; (4.147)
_(+or/a’)Co ~Ca | |
&1 = 2(Ca1 — Cea) 1

Additionally, the coefficient uy is determined from the integral con-
straint for mass conservation, which is guaranteed by the integral constraint
in Equation (4.124). Table 4.3 summarizes the equations for the leading-
order terms in the defect-layer solution.

Before proceeding to discussion of the defect-layer similarity solution,
there are two quantities of interest that follow from the leading order so-
lution, viz., the skin friction, ¢;, and Coles’ wake-strength parameter,
7. Recall that from matching defect-layer and sublayer velocity profiles, we
deduced Equation (4.118). Noting that ¢; = 2(u,/U.)?, we conclude that

‘ /2 _ (B+ =)+ L tnRes (4.148)
Cy K K

The composite law of the wall, law of the wake profile according

to Coles’ meticulous correlation of experimental data [see Coles and Hirst
(1969)] is given by

1 2t . TY
+ — Zppyt L gin? (=2
Ut = HEny + B + — sin (26) (4.149)



118 CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

Table 4.3: Summary of the Defect-Layer Equations

Mass (Integral Constraint) Equation (4.124)
Momentum Equation (4.128)
Turbulence Kinetic Energy Equation (4.137)

Specific Dissipation (k-w Model)  Equation (4.138)
Specific Dissipation (k-w” Model) Equation (4.139)
Dissipation (k-¢ Model) Equation (4.140)

Rnunrlm—v Canditions for n — oo Eouation (A 141)

araiiaiae NALIRL VAN AL AL A uuaan il ]

Boundary Conditions for n — 0 Equation (4.142)

The sin? function is purely a curve fit: several other functions have been
suggested, including forms that yield U /3y = 0 at y = é [which is not the
case for Equation (4 149)]. Defect—layer solutions include sharp turbulent-

Lo e i o PN FOU P RN I PR

llollbu[l)ulellb ulb(ﬂ'ld;(,eb SO blldh bllU EU&U O1 bllt? UClULb'ld»yUr }lb’b db a ﬁulbc
value 1 = 7,. Thus, combining Equations (4.118) and (4.149) leads to the
following expression for the wake-strength parameter.

7= %(ug — {nn,) (4.150)

Figure 4.9(a) compares the defect-layer solution for the three models
with corresponding experimental data of Wieghardt as tabulated by Coles
and Hirst (1969) The experimental data presented are those at the highest
n,eynoms HUIIID(ﬂ' IOI' WIll(.Il uana are reporuca J..{uB lb COﬂSlSLerlb Wib[! LII('}
defect-layer solution that is formally valid for very large Reynolds number.
As shown, all three models predict velocity profiles that differ from mea-
sured values by no more than about three percent of scale. Interestingly, the
k-w model shows the smallest differences from the Wieghardt data. Cor-
responding computed and measured skin friction values are summarized in
the insert on Figure 4.9(a); the largest difference is less than three percent.
Thus, based on analysis of the constant-pressure defect layer, there is little
difference amongst the three models.

Turning now to the effect of pressure gradient, we consider defect-layer
solutions for the equilibrium parameter, By, ranging from -0.5 to +9.0,
where positive 3r corresponds to an adverse pressure gradient. The choice
of this range of fr has been dictated by the requirement of the perturbation
solution that Br be constant. This appears to be the maximum range over
which experimental data have been taken with Sr more-or-less constant.

Figure 4.9(b) compares computed velocity profiles with experimental
data of Clauser [see Coles and Hirst (1969)] for fr = 8.7. As with the
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Figure 4.9: Computed and measured defect-layer velocity profiles; k-w
model; - - - k-w? model; — - — k-¢ model. [From Wilcox (1988a) — Copyright
© AIAA 1988 — Used with permission.]

constant pressure case, computed and measured skin friction are included
in the insert. As shown, the k-w model yields a velocity profile and skin
friction closest to measurements while the k-¢ model shows the greatest
differences. The k-w? profile and skin friction lie about midway between
those of the other two models.

Figure 4.10 compares computed wake strength, #, with values inferred
by Coles and Hirst (1969) from experimental data. Inspection of Figure 4.10
reveals provocative differences amongst the three models. Most notably,
the k-w model yields wake strengths closest to values inferred from data
over the complete range considered. Consistent with the velocity profile
discrepancies shown in Figure 4.9(b), the k-¢ model exhibits the largest
differences, with predicted wake strength 50%-100% lower than inferred
values when Sr is as small as two!

The explanation of the k-¢ model’s poor performance for adverse pres-
sure gradient can be developed from inspection of the asymptotic behavior
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b+ ® COLES AND HIRST

n
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Pr
Figure 4.10: Computed and measured wake-strength parameter; k-w

model; - - - k-w? model; — - — k-¢ model. [From Wilcox (1988a) — Copyright
© ATAA 1988 — Used with permission.]

of solutions as n — 0. For the models analyzed, the velocity behaves as

U.—U

Ur

1
~——;€nn+A-ﬂr_rC'n£nn+--- as n—90 (4.151)

where Table 4.4 summarizes the constants A and C. Note that, while the
coefficient A = uy/« is determined as part of the solution (from the integral
constraint that mass be conserved), the coefficient C' = u;/(Br«) follows
directly from the limiting form of the solution as 7 — 0. As seen from
Table 4.4, C is largest for the k-¢ model and is smallest for the k-w model.
The presence of the nfnn term gives rise to an inflection in the velocity
profile as 7 — 0 that is most pronou ced for the k-¢ model. In terms of

d b

5 11

crala 0 Lol oaenc o
stailc, ., peraves dubbUlU..llls l.uU

T g | +L w1

oy A | JRPRE [pus
bulUulUIILE plUPb‘lble bllU I;U..l.UUJ.C]. AW &} b'l

L~ (B Yyl + Brintnn+--] as n—0 (4.152)

Table 4.4 also includes the coefficient L for each model. Again, we see that
the contribution of the pénn term is largest for the k-¢ model and smallest
for the k-w model. Thus, in the presence of adverse pressure gradient,
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Table 4.4: Coefficients A, C and L for Br = 9

[ Model A C L I

k-w 131 290 -2.20
k-w* 98 639 -3.62
k-€ 54 13.57 -6.50

the k-¢ model’s turbulence length scale tends to be too large in the near-
wall region. Note, of course, that this shortcoming is not evident in the
constant-pressure case, which has fr = 0.

The manner in which the k-w model achieves smaller values of ¢ than

does the k-¢ model can be seen by changing dependent variables. That is

ot i1 —
starting with the k-w formulation and defining ¢ = #*wk, we can deduc

the following incompressible equation for € implied by the k-w model.

de B au\” . %, e
U5”+V-a—-=(l+a)k( y) - (1+ﬁ/ﬁ )_+5—-[0VT63}]
Ok d(e/k)
- ovrg—5 = (4.153)

All terms except the last on the right-hand side of Equation (4.153) are
identical in form to those of the Standard k-¢ model [see Equation (4.42)].
This so-called cross-diffusion term is negligibly small as  — 0 for
constant-pressure boundary layers because k — constant as n — 0. How-
ever, 0k /8y is nonvanishing when Sy # 0 and d(¢/k)/0y generally is quite
large as n — 0. The net effect of this additional term is to suppress the
rate of increase of £ close to the surface.

Unlike the three closure coefficients discussed in Section 4.4, simple
arguments have not been found to establish the values of o and ¢* for the
k-w model. In Subsection 4.6.3, we will find that using o = 1/2 yields an
excellent solution in the viscous sublayer, almost independent of the value
of o*. Equation (4.145) shows that the coefficient C is proportional to
o*, so that smaller values of o* should improve the model’s predictions for
boundary layers with variable pressure. The computed variation of 7 with
Br (Figure 4.10) closely matches experimental results when ¢* = 1/2, and
this is the value that has been chosen for the k-w model.
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4.6.3 The Viscous Sublayer

In order to facilitate integration of the model equations through the viscous
sublayer, we must, at a minimum, have molecular diffusion terms in the
equations of motion. Potentially, we might also have to allow the various
closure coefficients to be functions of viscosity (i.e., turbulence Reynolds
number) as well. This should come as no surprise since even the mixing-
length model requires the Van Driest damping factor and one-equation
models need similar viscous damping {Wolfshtein (1967)]. In this section, we
use perturbation methods to analyze viscous sublayer structure predicted
by several two-equation models. As we will see, with the exception of some
k-w models, virtually all two-equation models require Reynolds number
dependent corrections in order to yield a realistic sublayer solution.

We have already derived the sublayer solution in Subsection 4.6.1 when
we discussed the log layer. Recapping the highlights of the expansion
procedure, the velocity is given by an expansion of the form

Ulz,y) ~ ur[ao(y") + Rezlas (€, y+) + o( Rejh)] (4.154)

To leading order, the convective terms and pressure gradient are negligible.
Thus, for example, the leading order equations for the k-w model expressed
in terms of dimensional quantities are given by

dU
wtor)go = u;
] 2

i (,/-J—g*,/r‘n)ﬁ.l + vy (d—U\ - B'wk=0
dy | dy | \dy/
d [ dw dU\ 2 ) > (4.155)
£fovemgon () -2

k
vr = ~

W

Because the Reynolds shear stress is constant, the viscous sublayer is
often referred to as the constant-stress layer. Five boundary conditions

are needed for this fifth-order system, two of which follow from matching

to the law of the wall as y* — oo, viz.,

u? Uy

k— —Z and w —

vB* VP ry

where y* = u,y/v. Two more boundary conditions follow from no slip at

as  yt — oo (4.156)
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the surface, which implies that U and k& vanish at y = 0. Thus,
U=k=0 at y7=0 (4.157)

The final condition follows from examination of the differential equations
for k and w approaching the surface. The k-w model possesses two kinds of
solutions. The first type of solution has a finite value of w at the surface.
This fact was first observed by Saffman (1970) who speculated that the
constant in the law of the wall, B, would vary with the surface value of
w. This feature is unique to k-w and k-w? models and will be explored in

Antail 32 Q
detail in Section 4.7. The second type of solution is common to all two-

equation models and this is the one we will focus on now. Examination of
the differential equations approaching y = 0 shows that for all two-equation
models,

k~y™ and B*y?w/v~constant as y—0 (4.158)

Table 4.5 lists the values of n and the constant for several models.
As shown, none of the models predicts the exact theoretical value of 2
for both n and 8*y%w /1/ This can only be accomplished with additional

¢ al

nnv\n

~AIR A A~y mo
modification of t he model equations.

Table 4.5: Sublayer Behavior Without Viscous Damping

rMOdel Type B n B*y*w/v I
Wilcox-Rubesin (1980) k-w? 7.1 4.00 12.00
Saffman (1970) k-w? 60 3.7-4.0 12.00
Launder-Spalding (1972) k-w? 5.7 3.79 12.00
Wilcox (1988a) k-w 51 3.23 7.20
Kolmogorov (1942) k-w 3.1 3.62 7.20
Launder-Sharma (1974)  k-e -2.2 1.39 0.53
Speziale (1990) k- -2.2 1.39 0.53
Exact/Measured 5.0 2.00 2.00

The exact values follow from expanding the fluctuating velocity in Tay-
lor series near a solid boundary. That is, we know that the fluctuating
velocity satisfies the no-slip boundary condition and also satisfies conserva-
tion of mass (see Section 2.3). Consequently, the three velocity components
must behave as follows.

w ~ Az, z,t)y +0(y%)
v ~ B(z,z t)y? + 0(y®) as y—0 (4.159)
w ~ C(z,2,t)y +0(y?)
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Hence, the turbulence energy and dissipation are given by
k ~ % A2+ 0 > +0(°) and e~v(AZ+C2)+0(y) (4.160)
Assuming that ¢ = f*wk, Equation (4.160) tells us that
k~y> and F'vw/v~2 as y —0 (4.161)

Hence, using the asymptotic behavior of w for y — 0 appropriate to
each model as the fifth buuud&i'y CGi’idluuu we can solve the uublayer €qua-
tions (see Subsection 7.2.1 for an explanatlon of how to handle the singular
behavior of w numerically). One of the most interesting features of the
solution is the constant in the law of the wall, B, that is evaluated from
the following limit.

B = lim [U+ - lzngﬁ] (4.162)
yt—oo K

~ ~ g ~
Laul ed4.b a}.SU llth the bun’ip‘dted value f B fOi‘ the v?ﬁ'iGuS t'w"(}-ﬁfjua.tluu

models. Asshown, the Spalding k-w? and Wilcox k-w models are sufficiently
close to the standard value of 5.0 to be used with no additional viscous
modifications. The Standard k-¢ model and the Speziale et al. k-7 model
are farthest from the generally accepted value for B.

Figure 4.11(a) compares k-w model velocity profiles with corresponding
measurements of Laufer (1952), Anderson, Kays and Moffat (1972), and
Wieghardt [as tabulated by Coles and Hirst (1969)]. As shown, computed
velocities generally fall within experimental data scatter. In Figure 4.11(b),
we compare computed turbulence production and dissipation terms with
Laufer’s (1952) near-wall pipe-flow measurements. Again, predictions fall
well within experimental error bounds.

This concludes our perturbation analysis of the turbulent boundary
layer. As we have seen, using perturbation analysis, we have been able
to dissect model-predicted structure of the defect layer, log layer and sub-
layer, never having to solve more than an ordinary differential equation.
This is a great advantage in testing a turbulence model in light of the ease
and accuracy with which ordinary differential equations can be solved. The

equations are not trivial to solve however since we are dealing with two-
nmnf boundary- value nrnh]pmq and the resulting systems of pmmtmnq are

asal MlaaalaGva WRFAL aday aaA vddL LA TORRANIiie [eR R 3 3 Do) LuaJila

of sixth order for the defect layer and fifth order for the sublayer. How-
ever, this is far easier to handle than the partial differential equations we
started with, and parametric studies (e.g., varying the equilibrium param-
eter, Or) are much simpler in the context of the perturbation solution. As
a final comment, results obtained in this section should make the following
statement obvious.



4.6. PERTURBATION ANALYSIS OF THE BOUNDARY LAYER

Ut
25 v T T T T T T
© LAUFER
20 M ® ANDERSEN, ET AL
O WIEGHARDT
== COMPUTED
15 - n O —d

10 -
5 nny
0 | N
100 200 500
+
Y
IO\ ‘fﬁ]f\l‘;i’"
\a} Y Ciuuviv
aut
r+Ur et
'3 L Ll ¥ T L} L] L) T 1
o LavFEr | |
.2 — COMPUTED
.1 .
0
-.1 -
-2 .
-3 _ e e 1 n " 1 i 1
o 10 20 30 40 50 60 70 80 9o 100
y+

(b) Production and dissipation

125

Figure 4.11: Computed and measured sublayer properties; k-w model.
[From Wilcox (1988a) — Copyright © ATAA 1988 — Used with permis-

sion.|
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Given the demonstrated power and utility of perturbation
analysis in analyzing the turbulent boundary layer, this type of
analysis can, and should, be used in developing all turbulence
models.

4.7 Surface Boundary Conditions

In order to apply a two-equation turbulence model to wall-bounded flows,
we must specify boundary conditions appropriate to a solid boundary for
the velocity and the two turbulence parameters. As shown in the preceding
section, most two-equation models fail to predict a satisfactory value of the
constant B m the law of the wall (see Table 4.5). Consequently, for most
two-equation turbulence models, applying the no-slip boundary condition
and integrating through the viscous sublayer yields unsatisfactory results.

One approach we can take to remove this deficiency is to introduce viscous
damping factors analogous to the Van Driest correction for the mixing-
length model. Since introduction of damping factors accomplishes much
more than allowing integration through the sublayer, we defer detailed dis-
cussion of such modifications to Section 4.9. An alternative approach is
to circumvent the inability to predict a satisfactory log-layer solution by
simply matching to the law of the wall using a suitable value for B. This
is what we did in analyzing the defect layer, and the procedure is equally

valid for general wall-bounded flows.

4.7.1 Wall Functions

Historically, researchers implementing this matching procedure have re-
ferred to the functional forms used in the limit y — 0 as wall functions.
This procedure uses the law of the wall as the constitutive relation between
velocity and surface shear stress. That is, in terms of the velocity at the
mesh point closest to the surface, we can regard the law of the wall, viz.,

U=u, [—};—En (=) + B] (4.163)

v

as a transcendental equation for the friction velocity and, hence, the shear
stress. Once the friction velocity is known, we use Equations (4.100) for
the k-w model or Equations (4.105) for the k-¢ model to define the values
of k and w or ¢ at the grid points closest to the surface. Because w and ¢
are odd functions of u, and both quantities are positive definite, care must
be taken for separated flows. We can either use the absolute value of u, or
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combine the equations for k and w or k and ¢ so that the wall functions
for k, w and ¢ become:

u? L1/2 574 k3
S — — ()34
k= /i w= (3 ing’ e=(0") oy (4.164)

, The wall-function approach is not entirely satisfactory for several rea-
sons. Most importantly, numerical solutions generally are sensitive to the
point above the surface where the wall functions are used, i.e., the point
where the matching occurs (see Subsection 7.2.1 for an in—depth discussion
of this problem). Furthermore, the law of the wall doesn’t always hold for
flow near solid boundaries, most notably for separated flows.

There is a more subtle danger attending the use of wall functions.
Specifically, when poor resulis are obtained with a two-equation model,
researchers sometimes mistakenly blame their difficulties on the use of non-
optimum wall functions. This assessment is too often made when the wall
functions are not the real cause of the problem. For example, the k-€
model just doesn’t perform well for boundary layers with adverse pressure
gradient. Many articles have appeared claiming that discrepancies between
k-¢ model predicted skin friction and corresponding measurements for such
flows are caused by the wall functions. This incorrectly assumes that the
surface shear is a localized force that depends only upon sublayer structure.
As shown in the defect-layer solution of the preceding section, no viscous
modification is likely to remove the curious inflection in the k-e¢ model’s
velocity profile unless viscous effects (unrealistically) penetrate far above

the viscous sublayer. We mustn’t lose sight of the fact that the momentum

fAux th L a bo
flux through a boundary layer affects the surface shear and vice versa [see

Equation (4.122)]. Hence, inaccurate skin friction predictions go hand in
hand with inaccuracies in the velocity profile throughout the layer.

As a final comment on wall functions, Wilcox (1989) demonstrates that
pressure gradient must be included in order to achieve grid-independent
solutions for flows with pressure gradient. Retaining pressure gradient in
the log-layer equations (i.e., retaining 87 /Res+), then the asymptotic be-
havior for the k-w model approaching the surface is given by the following
equations:

A

U=u, [K (“Ty\ +B—0. 48“’y¢+ O(qs?-)]

2

\/B*'
- g l-onero]

k=

[1+ 116226 1 0(6?)| & (4.165)
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where ¢ is the dimensionless pressure gradient parameter defined by
¢ = —— (4.166)

The expansions in Equation (4.165) have been derived assuming ¢ is a small
parameter.

As noted in the preceding section, a key advantage of the k-w? and k-w
formulations over the k-¢ formulation is the fact that w-oriented equations
possess solutions in which the value of w may be arbitrarily specified at the
surface. This is an advantage because it provides a natural way to incorpo-
rate effects of surface roughness through surface boundary conditions. This
feature of the equations was originally recognized by Saffman (1970). If we
write the surface boundary condition on w as
.

w=-—8g at y=0 (4.167)
we can generate sublayer solutions for arbitrary Sg, including the limiting
cases Sg — 0 and Sg — oo0. Figure 4.12 shows the computed value of
B for a wide range of values of Sg. As shown, in the limit S — oo, B
tends to 5.1. In the limit Sg — 0, an excellent correlation of the numerical
predictions is given by

B 844 ~fn(Sp/100) as Sk —0 (4.168)

Bkl A e + A O e

&

By experimental means, Nikuradse [see Schlichting (1979)] found that
for flow over very rough surfaces,

B — 85+ %En (1/kk);  kf = u-kn/v (4.169)

where kg is the average height of sand-grain roughness elements. (Note
that the computations use ¥ = 0.41 while Nikuradse used x = 0.40.) Thus,
if we make the correlation

H

1 i

EE > 1 (4.170)
Vas 7

Ve

then Equations (4.168) and (4.169) are nearly identical. Figure 4.13 com-
pares computed velocity profiles with the analytical fit obtained by using
Equations (4.168) and (4.169) in the law of the wall, viz.,

1
Ut = ~tn(y/kg) +8.4 (4.171)
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Figure 4.12: Variation of the constant in the law of the wall, B, with the
surface value of the specific dissipation rate. [From Wilcox (1988a) -—
Copyright © AIAA 1988 — Used with pelrmission.]

for three values of k;. The correlation is nearly exact. The most remarkable
fact about this correlation is that Equation (4.171) is the form the law of
the wall assumes for flow over “completely-rough” surfaces, including the
value of the additive constant (8.4 and 8.5 differ by one percent).

By making a qualitative argument based on flow over a wavy wall,
Wilcox and Chambers (1975) [see Problems section] show that for small

roughness heights, we should expect to have
Sp~(1/k%)* as kf—0 (4.172)

Comparison with Nikuradse’s data shows that the following correlation be-
tween Sk and k} reproduces measured effects of sand-grain roughness for
values of k}; up to about 400.

(50/k})?, Kk} <25
Sg = (4.173)
100/k%, kL >25
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Figure 4.13: Sublayer velocity profiles for “completely rough” surfaces;
o Computed, k} = 400; o Computed, k}; = 225; « Computed, k} = 50.
[From Wilcox (1988a) — Copyright €) AIAA 1988 — Used with permis-

sion.

As a final comment, the solution for IcE — 0 is identical to the sublayer
solution discussed in Subsection 4.6.3 [see Equation (4.158)]. The analysis
of this section shows that the singular case corresponds to the perfectly-
smooth surface. In practice, Equation (4.173) should be used rather than
Equation (4.158) even if a perfectly-smooth surface is desired. The advan-
tage in using Equation (4.173) is obvious for several reasons.

e Local geometry (e.g., distance normal to the surface) does not appear
so it can be applied even in three-dimensional geometries.

e kg need only be small enough to have a hydraulically smooth surface,
Le., - kr/v < 5. Resulting surface values of w are rarely ever large
enough to cause numerical error provided a sensible finite-difference
grid is used (see Subsection 7.2.1).

e Experience has shown Equation (4.173) works well for separated flows.
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4.7.3 Surface Mass Injection

For boundary layers with surface mass injection, the introduction of an ad-
ditional velocity scale (v, = normal flow velocity at the surface) suggests
that the scaling for w at the surface may differ from Equation (4.167). An-
dersen, Kays and Moffat (1972) provide further evidence that the specific-
dissipation-rate boundary condition must be revised when mass injection is
present by showing, from correlation of their experimental data, that both
k and B are functions of v} = v, /u,. Because rough-surface computa-
tions show that the value of B is strongly affected by the surface value of
the specific dissipation rate, this suggests that the surface value of w will
depend in some manner upon v,,. Examination of the limiting form of the
model equations for y* — oo (i.e., in the log layer) shows immediately that
the effective Karman “constant”, «,, varies with v} according to

K

Ry = ee——am—
YT =ud

(4.174)

where = is given by
Z=3.11 + 0.61fny™ (4.175)
The variation of , predicted in Equations (4.174) and (4.175) is consis-
tent with the Andersen et al. data. Including appropriate convective terms
in Equations (4.155), Wilcox (1988a) performed sublayer computations for
the cases experimentally documented by Andersen et al. In each case, the
surface value of w is given by

0

w="ISp at y=0 (4.176)

Wilcox varied the value of Sp to achieve optimum agreement between mea-
sured and computed velocities. The correlation between Sg and v is given
in analytical form as

20
v (1 4 5vih)

Figure 4.14 compares measured velocities with values computed using Equa-
tions (4.176) and (4.177).

Sp = (4.177)

4.8 Application to Wall-Bounded Flows

Using the surface boundary conditions devised in Section 4.7, we can now
turn to application of two-equation turbulence models to wall-bounded
flows. Because of their relative simplicity, we consider pipe and channel
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ek

flow first using the k-w model. Then, we will consider several incompress-
ible boundary-layer applications. In these applications we exercise the k-w
model and the k-¢ model.

4.8.1 Channel and Pipe Flow

Figures 4.15 and 4.16 compare computed and measured channel and pipe
flow properties, respectively. Six different comparisons are shown in each
figure, including mean velocity, skin friction, Reynolds shear stress, turbu-
lence kinetic energy, turbulence energy production and dissipation rate.
Figure 4.15 compares k-w model channel flow predictions with the Di-
rect Numerical Simulation (DNS) computations performed by Mansour,
Kim and Moin (1988). Reynolds number based on channel height and av-
erage velocity is 13,750. Velocity profiles and Reynolds shear stress profiles
differ by less than 3%. Computed skin friction differs from Halleen and
Johnston’s (1967) correlation [Equation (3.137)] by less than about 2% ex-
cept at the lowest Reynolds number shown. Although the model fails to
predict the peak value of k near the channel wall, the computed k profile dif-
fers from the DNS profile by less than 5% over 80% of the channel. Despite
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the fact that the model is not asymptotically consistent (Subsection 4.9.1)
approaching the surface, even the turbulence-energy production, ., 0U /0y,
and dissipation, ¢, nearly duplicate the DNS results except very close to the
surface. On balance, the k-w results are a bit closer to the DNS resuits than
either the Cebeci-Smith or Baldwin-Lomax models (Subsection 3.5.1).
Figure 4.16 compares k-w model pipe flow results with Laufer’s (1952)
measurements at a Reynolds number based on pipe diameter and aver-
age velocity of 40,000. As shown, computed and measured velocity and
Reynolds shear stress profiles differ by less than 6%. As with channel flow,
computed and measured turbulence kinetic energy differ by about 4% ex-
cept close to the surface where the sharp peak occurs. Although computed
turbulence energy production and dissipation differ from measured values
by less than 5%, it is unclear whether this is a desirable result. That is,
some controversy exists about the accuracy of Laufer’s dissipation mea-
surements, and the model may be reproducing erroneous results. Finally,

computed skin friction is within 4% of Prandtl’s universal law of friction
fF‘mm'rmn (3 1‘1R\1 Overall. nredictions are as close to measurements as

YULUINVIL (\weawT) WY UAdvaly pabiAab VA2 AT LA Hltayullciincil

those obtamed w1th the Cebeci-Smith and Baldwin-Lomax models.

It is interesting, and perhaps illuminating, that the most important
flow properties are accurately predicted even though the sharp peak in
turbulence energy is underestimated by 40% and 25%, respectively, for
channel and pipe flow. That is, for engineering applications, the most
important quantity is the skin friction. The next most important quantity
typically is the velocity profile. Only for specialized applications is a subtle
feature such as the peak value of k important. Thus, we see that even

IPR A 4 +hia Wila fantir it annaront

A1 £.:1- P
buuugu l.uc m—w modaer 1ais 1o plcuu,b tnis suptie ieature, it 1s apparcniiy

of little consequence for most engineering applications.

4.8.2 Boundary Layers

We turn now to application of the k-w and k-¢ model equations to four
incompressible boundary layers. All of the k-w model results use the surface
boundary conditions described in Subsections 4.7.2 and 4.7.3. By contrast,
the k-¢ model computations were done using wall functions.

The first application is for the constant-pressure incompressible bound-
ary layer. The computation begins at a plate-length Reynolds number,
Re; = 1-10° and continues to Re, = 10.9 - 10°. Figures 4.17(a) and (b)
compare computed and measured [Coles and Hirst (1969)] skin friction and
velocity profiles. As shown, for the k-w model, computed ¢; virtually dupli-
cates measurements for the entire range of Reynolds numbers considered.
Differences between computed and measured k-w velocity profiles are no
more than 3% of scale for the three Reynolds numbers indicated.
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Thus, as no great surprise, the k-w model is quite accurate for the flat-
plate boundary layer. Skin friction results [Chambers and Wilcox (1977)]
for the k-¢ model are included in Figure 4.17(a). Note that, as predicted
in the defect-layer analysis of Subsection 4.6.2, computed ¢; is about 3%
higher than measured.

The next two applications are for boundary layers with adverse pressure
gradient. The first case is for moderate adverse pressure gradient, the
experimental data being those of Bradshaw (1969). The second case has
increasingly adverse pressure gradient, the experimental data being those
of Samuel and Joubert [see Kline et al. (1981) - Flow 0141].

For the Bradshaw case, streamwise distance extends from z = 2.5 ft to
x = 7.0 ft, corresponding to Re, increasing from about 2-10° to about 4-10°.
Figures 4.17(c) and (d) compare computed and measured skin friction and
a velocity profile. Inspection of both graphs shows that differences between
k-w model predictions and experiment nowhere exceed 5% for this flow.
The figure includes k-¢ results obtained by Chambers and Wilcox (1977);

gnmhnfpd cy exceeds measured values hv as much as 20%. Because the
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equilibrium parameter F7 ~ 2 for this ﬂow, the poor results for the k-¢
model are unsurprising. Note also that the k-w model’s skin friction is
much closer to measured values than either the Cebeci-Smith or Baldwin-
Lomax models (see Figure 3.16).

In the Samuel-Joubert case, we integrate from £ = 1 m to z = 3.40 m,
corresponding to an Re, range of about 2-10° to 4-105. Figures 4.17(e) and
(f) compare computed and measured skin friction and two velocity profiles
for this flow. For the k-w model, computed and measured skin friction
differ by less than 5% of scale. Also, velocity profiles at ¢ = 2.87 m are
within 5% percent while those at x = 3.40 m differ by no more than 9%.
The figure also shows skin friction for the k-¢ model obtained by Rodi and
Scheuerer (1986). Since r exceeds 9 toward the end of the computation,
the poor performance of the k-¢ model (computed c¢; exceeds measured
values by as much as 35%) is again consistent with the defect-layer analysis
of Subsection 4.6.3.

As the final application of the models, we consider a boundary layer with
surface mass injection. The case considered was included in the 1980-81
AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (Flow
0241) and data for the flow were taken by Andersen et al. (1972). Surface
mass Injection rate, vy, is .003750,, where U, is the constant boundary—
layer-edge velocity, i.e., the flow has constant pressure. Figures 4.17(g) and
(h) compare computed and measured skin friction and velocity profiles. As
shown, for the k-w model computed and measured skin friction differ by
less than 4% of scale while computed and measured velocity profiles are
within 3% of each other. Although this flow has zero pressure gradient,



4.8. APPLICATION TO WALL-BOUNDED FLOWS

137

.005 T T T T T 30 1
c. (a) at | |
S04 T 25
. F 4
003 T S 1 <0
= 15 L 4
.002 T 7 SYMBOL| 10-€Re
10 &
. 2.45
001 T 5 F o 5.00 |
o 10.90
O n " O L H
n 2 I £, B 10 19 P - N
o 2 o3 o 10 12 10 Q= 10° + 104
10-6Re ¥
OQS =5 T T 50 T T - T I

Ca (¢) (d)

* 004 ¢+ k 4o b
.003 1 30 T
L0022 F TSe e — 20 4
.001 ¢ E 10 R

0 = A 0 1 1
2 3 4 5 6 7 10 102 0%, 10%
x{(ft) N
. 005 T T
(e) 10
¢ Loou t ] y(cm)
6
il
2
0
0 . A A N
.0 1.5 2.0 2.5 3.0 3.5 0 .5 1 0 .5 1
x(m) u/u u/u
e e
. 005 T T T T 60  p— T T
c (g) ut 50 L
£ .o04 | b 7
40 L 4
.003 ¢ b
30 F .
.002 4
20 | -
. 001 : 10 L i
0 2 " . n 0 L 1 i
0 0.51.0 1.5 2.0 2.5 1 10 102 103
x(m) y+

Figure 4.17: Computed and measured skin-friction and velocity profiles for
incompressible boundary layers; —— k-w model; — - — k-¢ model; o ® mea-
sured. [From Wilcox (1988a) — Copyright © AIAA 1988 — Used with
permission.| ~



138  CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

corresponding skin friction predicted by the k-¢ model [see Kline et al.
(1981)] is as much as 50% higher than measured.

4.9 Low-Reynolds-Number Effects

Thus far, the turbulence models we have considered are restricted to high-
Reynolds number applications. Even in the case of the k-w model, while we
have been able to integrate through the viscous sublayer, we have paid no
attention to low-Reynolds-number effects. For example, the model fails to
predict the sharp peak in turbulence kinetic energy close to the surface for
pipe and channel flow (see Figures 4.15 and 4.16). Most importantly, most
two-equation models fail to predict a realistic value of the additive constant,
B, in the Jaw of the wall. All such models require viscous damping in order
to achieve a realistic value for B. Finally, there are applications for which
viscous effects must be accurately represented, and this section will discuss

commonly used low-Reynolds-number corrections.

4.9.1 Asymptotic Consistency

In formulating viscous corrections for two-equation models, we can obtain
some guidance from looking at the limiting behavior of the fluctuating
velocities approaching a solid boundary. That is, we assume standard Tay-
lor series expansions for each of the fluctuating velocities and substitute
into the exact equations of motion, viz., the instantaneous continuity and
Navier-Stokes equations. We did this in Subsection 4.6.3 when we were for-
mulating surface boundary conditions for the viscous sublayer perturbation
solution. Thus, we again begin by assuming

v~ Az, z,t)y +O(y?)
v/ ~ B(z,z,t)y* + O(y?) as y—0 (4.178)
W'~ C(z,2,t)y +O0(y*)

where A(z,z2,t), B(z,z,t) and C(z, 2,t) must have zero time average and
satisfy the equations of motion. Note that the no-slip surface boundary
condition dictates the fact that w’ must go to zero as y — 0. Since we
expect Navier-Stokes solutions to be analytic everywhere, we conclude that
the fluctuating velocity components %’ and w’ vary linearly with y. Also,
substituting Equations (4.178) into the continuity equation shows that v’
varies quadratically with y. While we don’t know the precise values of A,
B and C without solving the complete Navier-Stokes equation, we can still
use the exact asymptotic variations of u’/, v’ and w’ with y to deduce the
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limiting behavior of time-averaged properties approaching the surface. For
example, the turbulence kinetic energy and dissipation are

] ——— —
ke~ (A% + CHy? +0(%®) and e~v(A24+CH+0(y) (4.179)
Also, the Reynolds shear stress is given by
Toy ~ —ABY® + O(y*) (4.180)

A model that duplicates the exact limiting forms of k, ¢ and 7, given in
Equations (4.179) and (4.180) is said to be asymptotically consistent
with the near-wall behavior of the exact equations of motion.

Many researchers have attempted to devise viscous corrections for the
k-¢ model to permit its integration through the viscous sublayer. All have
achieved some degree of asymptotic consistency. Jones and Launder
(1972) were the first to propose viscous modifications for the k-¢ model.

Other proposals have been made by Launder and Sharma (1974}, Hoffmann
1Q7R) Dnvnn]ﬂa (1078 Haceid unt] Dnrn]’\ {1078)Y T.am nnr] anmhnrqf
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(1981), Dutoya and Michard (1981), Chien (1982), Myong and Kasagi
(1990), Speziale, Abid and Anderson (1990), Shih and Hsu (1991), Zhang,
So, Speziale and Lai (1992), Yang and Shih (1993), and Fan, Lakshmi-
narayana and Barnett (1993). For steady, incompressible boundary layers,
all of these models can be written compactly as follows:

ok ok U \? 8 Ok
U6 + V-é—g; vy (-537) — €+ -5-3; [(V + VT/Uk)_ay] (4.181)
9% o€ ¢ (oU 2 €2 9 0]
U 4 Vi =Cifimvp =) —Coofo—+ E + ( r/ ,\—
am —t- ay ClLyJg 4 k F \ 69/ LLd L k 6y I. V + U {T yJ
(4.182)

where the dissipation, ¢, is related to the quantity € by
€=€,+ € (4.183)

The quantity ¢, is the value of € at y = 0, and is defined differently for each
model. The eddy viscosity is defined as

vp = Cufuk? /€ (4.184)

Equations (4.181) - (4.184) contain five empirical damping functions,
fi, f2, fu, €0 and E. These functions depend upon one or more of the
following three dimensionless parameters.

k2 kl/Zy L Uy

Rer=—, Ry= Y= (4.185)




140 CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

The models devised by Jones and Launder (1972), Launder and Sharma
(1974), Lam and Bremhorst (1981), and Chien (1982) exemplify most of
the features incorporated in k-¢ model viscous damping functions. The
damping functions and closure coeflicients for these four models are as
follows.

Jones-Launder Model

fu= o~ 2.5/(14 Rer [50) w
fi=1
fo=1—0.3efet
2
€ = 2v (aaﬂ) > (4.186)
Yy
o
E=2vvp { —
\oy"/
Ca =145, Cep =200, C, =009, 0=10, o.=13

Launder-Sharma Model

fa= 6—3.4/(1+Re-1-/50)2 A
=1 .
ﬁ._1—03€RW
= % 8\/—\ v (4.187)
\ 7
\ oy )
o*U
b=z (%‘)
Ca=14, C2=192, C,=009, o,=10, 6.=13 )
Lam-Bremhorst Model
f,u = (l—e 06165R”) (1+20 5/R8T) )
ﬁ=1+wnymﬁ
— —Rerp
f2=1-ce , (4.188)
€, =0
E=0
Ca=144, C=192 C,=009 o0,=10, o, =13 ,
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Chien Model

fa=1- p— 00115y )
fi=1
fo=1— 022 (Rer/6)
¢, = W _ki , (4.189)
ye .
E —opLevti2
y*
Ca =135 Ceo=180, C,=009, o0r=10, o.=13 |

By examining the limiting behavior of each of these models close to a
solid boundary where y = 0, it is easy to demonstrate that, consistent with
Equation (4.179), all four models guarantee

k~y? and ¢/k—20/y> as y—0 (4.190)

Additionally, the Lam-Bremhorst model predicts 7oy ~ y* while the
other three models predict 75y ~ y3. Thus, all except the Lam-Bremhorst
model are consistent with Equation (4.180) as well.

Surface boundary conditions for low-Reynolds-number k-¢ models are
not entirely straightforward. On the one hand, the no-slip boundary con-
dition tells us that k& must vanish at a solid boundary. On the other hand,
the strongest thing we can say about the surface value of ¢ is the second
of Equations (4.190). That is, we invariably must tie the surface value of €
to the second derivative of k& at the surface. The Jones-Launder, Launder-
Sharma and Chien models build in the proper asymptotic behavior through
introduction of the function €,. Consequently, the boundary conditions ap-

prupudtc at the surface are
k=¢=0 at =0 4.191
y

By contrast, Lam and Bremhorst deal directly with ¢ and specify the surface
boundary condition on € by requiring

2k
€= ug;; at y=0 (4.192)
As an alternative, Lam and Bremhorst also propose using
Je
—_— = t =0 4.19
9y =0 v (4.193)

While Equation (4.193) is easier to implement than Equation (4.192), there
is no a priori reason to expect that the next term in the Taylor series
expansion for ¢ should vanish.



142 CHAPTER 4. TURBULENCE ENERGY EQUATION MODELS

In a review article, Patel, Rodi and Scheuerer (1985) compare seven
low—Reynolds-number variants of the k-¢ model and the Wilcox-Rubesin
(1980) k-w? model. Figure 4.18 compares computed and measured veloc-
ity and k* = k/u? profiles for the flat-plate boundary layer. As shown,
the Dutoya-Michard, Hassid-Poreh and Hoffmann models fail to prov1de
accurate solutions for the incompressible flat-plate boundary layer. Fig-
ure 4.19(a) shows that for adverse pressure gradient, the Wilcox-Rubesin
model (which was not designed with low-Reynolds-number applications in
mind) most faithfully matches measured [Anderson et al. (1972)] skin fric-
tion. Figure 4.19(b) shows that none of the models reproduces the measured
skin friction for the low-Reynolds-number, favorable pressure gradient flow
of Simpson and Wallace (1975). This further demonstrates that the only
thing low-Reynolds-number modifications do is fix the k-¢ model’s problems
in predicting the constant B in the law of the wall.

There is a popular misconception that low-Reynolds-number modifi-
cations to the k-e model can remove its deficiencies for adverse pressure

u‘rnr‘hpnf flows. This mistaken notion overlocks the volumes of data on and

RT3y Ak izl RS UinaSCar AU vAl AR VUL AWAAIAD vaatl VI aaatr Vi Audvvy via eaalua

phys1cal understanding of turbulent boundary layers established during the
twentieth century, most notably by Clauser and Coles. Recall from Subsec-
tion 4.6.1 that Coles describes the turbulent boundary layer as a “wake-like
structure constrained by a wall” and notes that different scales and physical
processes are dominant in the sublayer and defect layer. Since perturbation
analysis shows that the k-¢ model is inconsistent with observed defect-layer
structure, we cannot reasonably expect viscous corrections (which are neg-
ligible in the physical defect layer) to correct the inconsistency.

Figure 4.20 clearly illustrates this point. The figure compares computed
and measured skin friction for twelve incompressible boundary layers with
adverse pressure gradient. Results are presented for the Jones-Launder,
Launder-Sharma, Lam-Bremhorst, Chien, and Wilcox (1988a) k-w models.
Eleven of the cases are from the 1968 AFOSR-IFP-Stanford Conference,
and the flow numbers from the conference are included for each case. Flow
0141 is the Samuel-Joubert case from the 1980-81 AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows.

As shown, for Bradshaw Flow C (Flow 3300) and the Samuel-Joubert
case (Flow 0141), skin friction is similar to results obtained with wall func-
tions [see Figure 4.17(e)]. As categorized by Coles and Hirst (1969), Flows
1100, 2100, 2500 and 4800 have “mild” adverse pressure gradlent Flows
2400, 2600, 3300 and 4500 have “moderate” adverse pressure gradient, and
Flows 0141, 1200, 4400 and 5300 have “strong” adverse pressure gradient.
Discrepancies between computed and measured ¢y increase dramatically for
all four k-¢ models as the strength of the pressure gradient increases. By
contrast, k-w results are remarkably close to measured values for all twelve
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Figure 4.18: Flat-plate boundary layer properties. CH = Chien; DM
= Dutoya-Michard; HO = Hoffman; HP = Hassid-Poreh; LB = Lam-
Bremhorst with ¢ = v§%k/8y?; LB1 = Lam-Bremhorst with 9¢/9y = 0;
LS = Launder-Sharma; WR = Wilcox-Rubesin. [From Patel, Rodi and
Scheuerer {1985) — Copyright © AIAA 1985 — Used with permission.]
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Figure 4.19: Comparison of computed and measured skin friction for low-
Reynolds-number flows with pressure gradient. CH = Chien; LB1 = Lam-

Brembhorst with Je/dy = 0; LS = Launder-Sharma; WR = Wilcox-Rubesin.
[From Patel Rodi and Scheunerer {1985 — Convricht (2 ATAA 1085 —.
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cases, including the nearly separated Flow 5300 (the Chien model predicts
separation for this case). In terms of the final values of c;, the average
difference between computation and measurement is 7% for the k-w model,
46% for the Launder-Sharma model, 46% for the Chien model, 58% for the
Lam-Bremhorst model, and 74% for the Jones-Launder model.

These results confirm the defect-layer perturbation solution presented

in Subsection 4.6.2, which shows that [see Equation (4.151)]:

Ue_U

Ur

1
~ —;Em; +A—BrCntny+ O (n*fny) as n—0 (4.194)

where the coefficient C' is given in Table 4.4. Combining Equation (4.194)
with Equation (4.148), the effective law of the wall predicted by the k-¢
model is

;
Ut ~ i-ﬁny'*’ + B+ prCnénp  as yt — oo (4.195)

Figure 4.21 compares the computed Launder-Sharma model near-wall ve-
locity profile with experimental data, the standard law of the wall and
Equation (4.195). Examination of the numerical solution shows that the
implied constant in the law of the wall, B, is 5.5. As shown, the asymptotic
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Figure 4.20: Computed and measured skin friction for boundary layers
with adverse pressure gradient; CH = Chien; JL. = Jones-Launder; LB =
Lam-Bremhorst; LS = Launder-Sharma; kw = k-w.
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Figure 4.21: Computed and measured near-wall velocity profiles for Samuel
and Joubert’s adverse pressure gradient flow, * = 3.40 m.; Launder-
Sharma model with & = .43 and B = 5.5; o Samuel-Joubert.

formula provides an excelient approximation to the numerical results in the
region between y* = 20 and 100. If we included the O(n2£nn) term or used
the exact defect-layer solution, the match would extend even farther above
the sublayer. The important point to note is the impact of the term in
Equation (4.195) proportional to the equilibrium parameter, fr. Its effect
is to distort the velocity profile throughout the defect layer, including its
asymptotic form approaching the sublayer from above.

b e

.
As a final comment on low-Reynolds-number corrections for th

model, using the dimensionless parameters R, and y* [Equation (4.185)]
is 1}l advised. Both depend upon distance normal to the surface, which
can cause difficulty in complex geometries such as a wing-fuselage junction.
Also, it is ironic that several additional closure coefficients and functions
are needed for the k-¢ model to behave properly in the near-wall region
of a turbulent boundary layer. Dissipation is, after all, a phenomenon
that occurs in the smallest eddies, and that is all we find in the near-
wall region., This further underscores the fact that there is virtually no
connection between the exact equation for € and its modeled counterpart.

4.9.2 Transition

Turbulence model equations can be used to predict transition from laminar
to turbulent flow, although most models predict transition to turbulence
at Reynolds numbers that are at least an order of magnitude too low. To
understand why and how the k-w model predicts transition, consider the



4.9. LOW-REYNOLDS-NUMBER EFFECTS 147

flat-plate boundary layer. For the k-w model, the incompressible, two-
dimensional boundary-layer form of the equations for k and w is as follows.

oU W _ 3§ oU
PG+ PV 5= [(u + VT)——} (4.196)
‘?k V(?_k = ur (8U\ — Fwk + — [(u+ c” Vrr)(?—k] (4.197)
oz " By dy / dy | 0yl

2 0 Ow
— 2 ——— —
y) - Buw? + 3 [(V +our) ay] (4.198)

vp = o"kfw (4.199)

With one exception, all notation and closure coefficients are as defined
in Equations (4.33) to (4.37). The only difference is the appearance of
an additional closure coefficient o* in Equation (4.199). This coefficient
is equal to one for the standard high- Reynold&number version of the k-w
model. We can most clearly illustrate how the model equations predict

transition by rearranging terms in Equations (4.197) and (4.198) as follows.

ok 0k i} Ok
— =P k+ — Yvp)— 4.200
Ugg tVg, = Dbrwk+ 6y[(v+aw)3y] (4.200)
U(')w V@w s 07 Ow ] 4,901
ot i wBw +8yL(u+0uT)ayJ (4.201)
The net production per unit dissipation for the two equations, P; and

P,,, are defined by:
oU/dy
- .202
Py = ﬁ* ( ” ) 1 (4.202)
N 2
8 w

There are two important observations worthy of mention at this point.
First, if the turbulence energy is zero, Equation (4.201) has a well-behaved
solution. That is, when ¥ = 0, the eddy viscosity vanishes and the w
equation uncouples from the k equation. Consequently, the k-w model
has a nontrivial laminar-flow solution for w. Second, the signs of P, and
P, determine whether k and w are amplified or reduced in magunitude.
However, it is not obvious by inspection of Equations (4.202) and (4.203)
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how the signs of these terms vary with Reynolds number as we move from
the plate leading edge to points downstream. We can make the variation
obvious by rewriting Equations (4.202) and (4.203) in terms of the Blasius
transformation.

Before we introduce the Blasius transformation, we must determine the
appropriate scaling for w. To do this, we note that close to the surface of
a flat-plate boundary layer, the specific dissipation rate behaves according
to [see Equation (4.158) and Table 4.5]:

L s g0 (4.204)
“ T By Y (4259

In terms of the Blasius similarity variable, 7, defined by

Y
= S 4.205

1= e (4.205)
where U, is freestream velocity, the asymptotic behavior of w approaching
the surface is

o Us 6

W — TW‘
Consequently, we conclude that the appropriate scaling for w in the Blasius
boundary layer is given by

as n—0 (4.906)
[ AN /

ERR SAVAN

w = %OEW(Q;‘, 1) (4.207)

where W(z,n)} is a dimensionless function to be determined as part of the

solution. Hence, if we write the velocity in terms of dimensionless velocity,

Z’l{m n) 1e
Wz, ), ey,

u=UsxlU(z,n) (4.208)
the net production per unit dissipation terms become
a” U /on\?
Pp = —He, - 4.2
= g Re ( - ) 1 (4.209)
aa™ aujon\?
= - - 4.21
P, g Re ( 7 ) 1 (4.210)

Thus, both Py and P, increase linearly with Reynolds number, Re,. From
the exact laminar solution for X4(n) and W(n) [the & dependence vanishes
for the Blasius boundary layer], the maximum value of the ratio of 9l /7

to W is given by
aU [0 1
R 211
(&), ~m (21
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The precise value of this ratio is actually a weak function of the freestream
value of w, ranging between 0.0025 and 0.0040. The maximum occurs about
midway through the boundary layer (y/é = 0.56), a point above which the
exact near-wall behavior of w [Equation (4.206)] does not hold. Hence,
a complete boundary-layer solution is needed to determine the maximum
ratio of OU [On to W.

As long as the eddy viscosity remains small compared to the molecular
viscosity, we can specify the precise points where Py and P, change sign.
Using Equation (4.211), we conclude that the sign changes occur at the
following Reynolds numbers.

(Res)e =9+ 104%— (4.212)
(Rey)y = 9-10* ﬁ* (4.213)
oo
With no Viscous modifications, the closure coefficients o, a*, § and g*

are 5/9. 1. 3/40 and 9/100, respectively. Using thcse f'c.ll" t"rbuleﬂt
y 1y / ) P Y- 5 J

values, we find (Re;);r = 8,100 and (Re;), = 12,150. Thus, starting
from laminar flow at the leading edge of a flat plate (see Figure 4.22), the
following sequence of events occurs.

1. The computation starts in a laminar region with & = 0 in the bound-
ary layer and a small freestream value of k.

2. Initially, because P; < 0 and P, < 0, dissipation of both k and w ex-
ceeds production. Turbulence energy is entrained from the freestream
and spreads through the boundary layer by molecular diffusion. Nei-
ther k nor w is amplified and the boundary layer remains laminar.

3. At the critical Reynolds number, Re, = 8,100, production over-
takes dissipation in the k equation. Downstream of z., production
exceeds dissipation in the k equation and turbulence energy is ampli-
fied. At some point in this process, the eddy viscosity grows rapidly
and this corresponds to the transition point.

4. k continues to be amplified and, beyond Re, = 12,150 production
overtakes dissipation in the w equation. w is now amplified and con-
tinues growing until a balance between production and dissipation is
achieved in the k equation. When this balance is achieved, transition
from laminar to turbulent flow is complete.

Consistent with experimental measurements, the entire process is very
sensitive to the freestream value of k. There is also a sensitivity to the
freestream value of w, although the sensitivity is more difficult to quantify.
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Figure 4.22: Skin friction variation for a boundary layer undergoing tran-
sition from laminar to turbulent flow.

v O foct B hooing orowing =
ly obvious. First, & begins growing at a

Reynolds number of 8, 100 By contrast 11near~sta.b1hty theory tells us that
Tollmien-Schlichting waves begin formmg in the Blasius boundary layer at
a Reynolds number of 90,000. This is known as the minimum critical
Reynolds number. Correspondingly, we find that the model predicts
transition at much too low a Reynolds number. Second, inspection of
Equations (4.212) and (4.213) shows that the width of the transition region
is controlled by the ratio of # to ae*. Third, transition will never occur if
P, reaches zero earlier than P;. Thus, occurrence of transition requires

aa” < a*B/B* as Rer — 0 (4.214)

This fact must be preserved in any viscous modification to the model. Qur
goal is to devise viscous modifications that depend only upon Rer. As noted
in the preceding subsection, this quantity is independent of flow geometry
and thus preserves the universal nature of the model. We also proceed with
two key objectives in mind. The most important objective is to match the
minimum critical Reynolds number. Reference to Equation (4.212)

met rasnTIITe
shows that we must require

f*fe® -1 as Rep —0 (4.215)

Our secondary objective is to achieve asymptotic consistency with
the exact behavior of £ and dissipation, ¢ = f*kw, approaching a solid
boundary. That is, we would like to have k/y? — constant and ¢/k — 2v/y?
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as y — 0. Close to a solid boundary, the dissipation and molecular diffusion
terms balance in both the ¥ and w equations. The very-near-wall solution
for w is given by Equation (4.204). The solution for k is of the form

k/y"™ — constant as y—0 (4.216)

where n is given by

1 [_, J- “.ﬁ*] PV B A
n:ill+V1+z4FJ (4.217)
Noting that dissipation is related to k and w by
€= Fkw (4.218)
we can achieve the desired asymptotic behavior of k provided
B*/B—1/3 as Rer —0 (4.219)

Requiring this limiting behavior as Rer — 0 is sufficient to achieve the
desired asymptotic behavior as y — 0 since the eddy viscosity, and hence,
Rep vanishes at a solid boundary.

If we choose to have 3 constant for all values of Rer, Equations (4.214),
(4.215) and (4.219) are sufficient to determine the limiting values of o* and
#* and an upper bound for aa* as turbulence Reynolds number becomes
vanishingly small. Specifically, we find

o — 3/3 $ as Rep —0 (4.220)

Wilcox and Rubesin (1980) make the equivalent of aa* and o* in their k-w?
model approach the same limiting value and obtain excellent agreement
with measured transition width for incompressible boundary layers. Nu-
merical experimentation with the k-w model indicates the optimum choice
for incompressible boundary layers is aa* — 0.743, or

ac® —1/18 as Rer — 0 (4.221)

Wilcox (1992a) postulates the following functional dependencies upon Rer
that guarantee the limiting values in Equations (4.220) and (4.221), as well
as the original fully turbulent values for Rep — oo.

. _ a’,',—f— RCT/Rk
~ 14 Rer /R

(4.222)
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é o, + RGT/Rw

*y—1
e . 4.223
o 9 1+RCT/Rw (Q’ ) ( )
9 b5/18+ (RGT/R;;)4
— . 4.224
g 100 14 (Rer/Rp)* ( )
B=3/40, ¢*=0=1/2, o) =p/3, a,=1/10 {4.225)
Rz =8, Rp=6, R,=27/10 (4.226)
The quantity Rer is turbulence Reynolds number defined by
k
Rer = — (4.227)
wv

The three coefficients Rs. R: and R.. control the rate at which the
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closure coefficients approach their fully-turbulent values. We can determine
their values by using perturbation methods to analyze the viscous sublayer.
Using the procedure discussed in Subsection 4.6.3, we can solve for the
constant in the law of the wall, B. For given values of Rg and Ry, there
i1s a unique value of R, that yields a constant in the law of the wall of
5.0. For small values of Rg the peak value of k near the surface is close
to the value achieved without viscous corrections, viz., u2/v/B*. As Rg
increases, the maximum value of k near the surface increases. Comparison

: AT

of computed sublayer structure with Direct Numerical Simulation {DNS)
results of Mansour, Kim and Moin (1988} indicates the optimum choice for
these three coefficients is as indicated in Equation (4.226).

The only flaw in the model’s asymptotic consistency occurs in the
Reynolds shear stress, 7,,. While the exact asymptotic behavior is 7, ~ Y3,
the model as formulated predicts 5, ~ y*. This discrepancy could easily
be removed with another viscous modification. However, as will be shown
later in this subsection, this is of no significant consequence. It has no obvi-
ous bearing on either the model’s ability to predict transition or properties
of interest in turbulent boundary layers. The additional complexity and
uncertainty involved in achieving this subtle feature of the very-near-wall
behavior of 7., does not appear to be justified.

Given the information developed above, it is a simple matter to explain
why little progress has been made in predicting transition with the k-¢
model. The primary difficulties can be easily demonstrated by focusing
upon incompressible boundary layers. If we use the standard form of the

k-¢ model, Equations (4.197) - (4.199) are replaced by
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Ok ok U
— _— = -] = — 25
U6x+vay (8 ) €+3 [(V+VT/Uk)a ] (4.228)
O¢ Je U €? 0 e
Uos Va—- = Ce1— LT (—6—) 2yt 5, [(V + ﬂT/ffe)b—y'] (4.229)
vr = Cuk*/e (4.230)

One critical difference from the k-w model is obvious by inspection of
Equations (4.228) - (4.230). Specifically, if the turbulence energy is zero,
¢ must also be zero. We cannot simply drop the eddy viscosity in the ¢
equation because of the presence of k in the denominator of the € equation’s
dissipation term. The model does possess a laminar-flow solution for the
ratio of ¢ to k. That is, if we make the formal change of variables

€= Cukw (4.231)

and assume vy < v, the following laminar-flow equation for w results.

Ow Ow oU 2w 2w 0k Ow
UE;+V8_—( 1)fp( y) — (Cea — )Cpuw® trgs 2+—k—0—y*3?

(4.232)

Equation (4.232) is nearly identical to the limiting form of Equation (4.198)

for vp/v — 0. The only significant difference is the last term on the right-
hand side of Equation (4.232). Except close to the surface where k must be
exactly zero, this term is unlikely to have a significant effect on the solution
for small nonzero values of k. However, in a numerical solution, products of
dependent-variable gradients are generally destabilizing, and the problem
can only be aggravated by having a coefficient inversely proportional to
k. This is not an insurmountable problem. However, establishing starting
conditions is clearly more difficult with the k-¢ model than with the k-w
model.

Given the diverse nature of viscous modifications that have been pro-
posed for the k-¢ model, it is impossible to make any universal statements
about why a specific model fails to predict realistic transition Reynolds
numbers. Perhaps the strongest statement that can be made 1s, no one
has approached the problem from the transition point of view.
Most researchers have sought only to achieve asymptotic consistency (Sub-
section 4.9.1) and attempted transition predictions only as an afterthought.
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We can gain some insight by examining the net production per unit dissipa-
tion terms for the k and € equations that are analogous to Equations (4.209)
and (4.210), viz.,

N/ 661/377)2
P = C, e,;( W 1 (4.233)
p, = Cafup, (3U[9)" (4.234)
€ ‘EZC# r \ W } \ /

On the one hand, without viscous damping, if we assume Equa-
tion (4.211) is valid, we find (Re,); = 8,100 and (Re;). = 10,800. Con-
sequently, as with the high-Reynolds-number version of the k-w model,
transition will occur at too low a Reynolds number. On the other hand,
because €}, C2 and sometimes C; are multiplied by functions of dis-
tance from the surface and/or functions of Rer (c.f. fy, fi and fs in Sub-
section 4.9.1) in low-Reynolds-number k-¢ models, we cannot simply use

Eauation {A 211). Furthermore ag discussed in an nreceding subsection
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some modelers add terms to the k£ and ¢ equations in addition to damping
the closure coeflicients. Each set of values for the closure coefficients and
additional terms must be used in solving Equation (4.232) to determine
the laminar-flow solution for ¢/k. While it is clearly impossible to make a
quantitative evaluation of all variants of the k-¢ model, we can nevertheless
make some general observations.

From the analysis of the k-w model, it is obvious that having f, < 1
will tend to delay transition. Virtual]y all modelers implement an f, that

WIH d-LLUHlpubll Llllb GIIU. HUWUVCI bl!ﬁ [IlU(IlIlLdblUIlb Ol JOIleS dﬂ(.l Laun(]el'
(1972), Chien (1982), and Lam a.nd Bremhorst (1981), for example, damp
Ceq to the extent that (Re,), is smaller than (Re; ). This is the opposite
of what 1s needed and will have an undesirable effect on both the onset of
and the extent of the transition region.

This discussion is not intended as an exhaustive survey of the numer-
ous low-Reynolds-number versions of the k-¢ model. Rather, it is intended
to illustrate how difficult it is to apply the model to the transition prob-
lem. Given enough additional closure coeflicients and damping functions,
the k-¢ model can probably be modified to permit satisfactory transition
predictions. However, even if this is done, establishing starting conditions
will ultimately require a solution to Equation (4.232). That is, to initialize
the computation, we must effectively transform to the k-w model. Since
this is the natural starting point, it seems illogical to perform subsequent
computations in terms of k£ and e.

Figure 4.23 compares computed channel-flow skin friction, ¢s, with the
Halleen and Johnston (1967) correlation [see Equation (3.137)] for Reynolds
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number based on channel height, H, and average velocity ranging from 10°
to 10° using the k-w model. As shown, computed c; differs from the corre-
lation by less than 3% except at the lowest Reynolds number shown where
the correlation probably is inaccurate. Velocity, Reynolds shear stress, and
turbulence kinetic energy profiles differ by less than 7%. Most notably,
the model predicts the peak value of k near the channel wall to within
4% of the DNS value. The low-Reynolds-number modifications have been
designed to capture this feature. Additionally, approaching the surface,
the turbulence-energy production, 7,y,0U /8y, and dissipation, ¢, are within
10% of the DNS results except very close to the surface.

Figure 4.24 compares computed pipe flow ¢; with Prandtl’s universal
law of friction [see Equation (3.138)]. Reynolds number based on pipe
diameter, D, and average velocity varies from 102 to 10°. As with channel
flow, computed c; falls within 5% of the correlation except at the lowest
Reynolds number shown where the correlation is likely to be in error.

Computed and measured velocity and Reynolds shear stress profiles
differ by less than 8%. As with channel flow, computed and measured
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turbulence kinetic energy differ by about 5% mcludmg close to the surface
where the sharp peak occurs. Note that, at this high a Reynolds number,
the k profile has a sharp spike near y = 0 and this feature is captured in
the computations. Except very close to the surface, computed turbulence
energy production and dissipation differ from measured values by less than
10%. This may actually be a desirable result. That is, some controversy
exists about the accuracy of Laufer’s dissipation measurements close to the
surface.

Turning now to transition, Figure 4.25 compa mput
sured transition Reynolds number, Req,, for an incompressible flat- plat;e
boundary layer. We define the transition Reynolds number as the point
where the skin friction achieves its minimum value. Results are displayed
as a function of freestream turbulence intensity, 77, defined by

/2 ke
=1 4.2
T' =100 3 U2 (4.235)

where subscript e denotes the value at the boundary-layer edge. As shown,
consistent with the data compiled by Dryden (1959), Rey, increases as the
freestream intensity decreases. Because w can be thought of as an averaged
frequency of the freestream turbulence, it is reasonable to expect the pre-
dictions to be sensitive to the freestream value of w. To assess the effect, the
freestream value of the turbulence length scale £ = k/2 /w has been varied
from .0016 to .1006 where 6 is boundary-layer thickness. As shown, com-
puted Res, values bracket virtually all of the data. Unlike the situation for
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free shear flows, the k-w model’s sensitivity to the freestream value of w is a
desirable feature for transition applications. Physical transition location
is not simply a function of T, but rather is frequency dependent. While it
is unclear how the freestream value of w should be specified, consistent with
measurements, the model is not confined to a single transition location for
a given T’ regardless of the frequency of the disturbance.

Figure 4.26 compares computed width of the transition region with
measurements of Dhawan and Narasimha (1958), Schubauer and Skram-
stad (1948), and Fisher and Dougherty (1982). We define transition width,
Ar¢, as the distance between minimum and maximum skin-friction points,
The computed width, Rea,,, falls within experimental data scatter for
10% < Reg, < 107. Az, is unaffected by the freestream value of w.

While these transition results are interesting, keep in mind that transi-
tion 1s a complicated phenomenon. Transition is triggered by a disturbance
in a boundary layer only if the frequency of the disturbance falls in a spe-
cific band. Reynolds averaging has masked all spectral effects, and all the

model can represent with £ and w is the intensity of the disturbance and an
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average frequency. Hence, it is possible for the turbulence model to predict
transition when it shouldn’t occur. The model equations thus are sensible
in the transition context only if the triggering disturbance is broad band,
i.e., contains all frequencies.

Additionally, we have only guaranteed that the point where k is first
amplified matches the minimum critical Reynolds number for the incom-
pressible, flat-plate boundary layer. To simulate transition with complicat-
ing effects such as pressure gradient, surface heat transfer, surface rough-

nwaqoihi] At 4ho raliian ~AF % Laal] ot l,..w.,.m lonn YATFT e
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(1977)]. Their values can be deduced from linear-stability theory results,
or perhaps from a correlation based on stability theory. Nevertheless, some
information must be provided regarding the minimum ecritical Reynolds
number for each new application.

Perhaps the most practical way to use the model for transitional flows is
in describing the transitional region. Of course, the question of sensitivity to
spectral effects in the transition region must be raised. Using linear-stability
computations, Wilcox (1981a) shows that after the initial disturbance has
grown to a factor of e? times its initial value, the turbulence model closure
coefficients lose all memory of spectral effects. Thus, we can conclude that
not far downstream of the minimum critical Reynolds number, Reynolds
averaging is sensible.

As a final comment regarding low-Reynolds-number corrections for two-
equation turbulence models, note that the complexity of the model increases
significantly. The Standard k-w model has just 5 closure coefficients. The
low-Reynolds-number version described in this subsection has 10 closure
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Figure 4.25: Transition location for an incompressible flat-plate boundary
layer; - - - £/6 = .001; £/ = .010; - - - £/6 = .100; o Dryden.
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Figure 4.26: Transition width for an incompressible flat-plate boundary
layer; k-w model; o Dhawan-Narasimha; A Schubauer-Skramstad;
o Fisher-Dougherty.
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coefficients and 3 empirical damping functions. The various low-Reynolds-
number models discussed in Subsection 4.9.1 involve a similar increase in
the number of closure coefficients and damping functions. If viscous effects
are insignificant for a given application, it is advisable to use the simpler
high-Reynolds-number version of the model. In the case of the k-¢ model,
if you need to integrate through the viscous sublayer, you have no choice
but to use one of the low-Reynolds-number models, preferably one that
yields a satisfactory solution for simple flows such as the incompressible
flat-plate boundary layer. In the case of the k-w model, integration through
the sublayer can be done without introducing the viscous corrections, and
there is virtually no difference in model-predicted skin friction and velocity
profiles with and without viscous corrections for boundary layers.

4.10 Separated Flows

Turning to separated flows, we first consider the axisymmetric flow with
strong adverse pressure gradient that has been experimentally investigated
by Driver (1991). Figure 4.27 compares Menter’s (1992b) computed and
measured skin friction and surface pressure for the k-w model. As shown,
the k-w model yields results almost as close to measurements as those ob-
tained with the Johnson-King model [see Figure 3.19], although pressure
downstream of reattachment is somewhat higher than measured. Results
are clearly much closer to measurements than those obtained with the
Baldwin-Lomax and Baldwin-Barth models.

1031:'fm Gy
4 : 1 | ] L} -8 | | J 1
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Figure 4.27: Computed and measured flow properties for Driver’s separated
flow; —— k-w model; o Driver.
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Figure 4.28: Backward-facing step flow geometry and inlet conditions for

the Driver-Seegmiller (1985) experiments. [From Drwer and Seegmiller
(108K pnnvrur]ni D) ATAA 1985 — Used

w1
\Auuul l.fJLl v u LAALLALE AT ouva Yyl

.
o
E=.
]
w
e
Q
P
o

——

The backward-facing step (Figure 4.28) is a popular test case for tur-
bulence models because the geometry is simple. Additionally, separation
occurs at the sharp corner so the flow is easier to predict than a flow for

which the separation point is unknown a priori. Figure 4.29 compares
comnhuted and measured fn‘rlvnr and Seeomiller (1QRR\I Sk}q fl'ict;l()ﬂ for
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backstep flow with the upper channel wall inclined to the lower wall at (°
and 6°. Computed results are shown for the Standard k-w model and for
the Standard k-¢ model with wall functions; neither model includes viscous
corrections. As summarized in Table 4.6, the k-c model predicts reattach-
ment well upstream of the measured point for both cases, while the k-w
model is within 3% of the measured location for both cases.

Table 4.6: Backstep Reattachment Length

[ Model Reference a=0" a=6°|
k-¢ Launder-Sharma (1974)  5.20 5.50
k-w Wilcox (1988a) 6.40 8.45
Measured  Driver-Seegmiller (1985)  6.20 8.10
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Figure 4.29: Computed and measured skin friction for flow past a backward-
facing step; —— k-w model; - - - k-¢ model; e Driver-Seegmiller data.
[Partially taken with permission from Menter (1992c).]

Many researchers have proposed modifications to the k-¢ model aimed
at improving its predictions for this flow. Driver and Seegmiller (1985),
for example, compare four different versions of the model with their ex-
perimenial data. We will discuss some of the proposed fixes for the k-¢
model in Chapter 6. By contrast, the k-w model’s solution for flow past
the backward-facing step is satisfactory with no special modifications.

Han (1989) has applied the k-¢ model with wall functions to flow past
a simplified three-dimensional bluff body with a ground plane. The object
considered is known as Ahmed’s body [Ahmed et al. (1984)] and serves as
a simplified automobile-like geometry. In his computations, Han considers
a series of afterbody slant angles. Figure 4.30(a) illustrates the shape of
Ahmed’s body with a 30° slant angle afterbody. Figure 4.30(b) compares
computed and measured surface pressure contours on the rear-end surface
for a 12.5° slant angle. As shown, computed pressure contours are sim-
ilar on the slanted surface, but quite different on the vertical base. For
slant angles up to 20°, the computed base pressures are significantly lower
than measured. Consequently, the computed drag coeflicient is about 30%
higher than measured. Considering how poorly the k-¢ model performs for
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boundary layers in adverse pressure gradient and for the two-dimensional
backward-facing step, it is not surprising that the model would predict such
a large difference from the measured drag in this extremely complicated
three-dimensional, massively-separated flow.

This is a quintessential example of how important turbulence model-
ing is to Computational Fluid Dynamics. Recall that there are three key
elements to CFD, viz., the numerical algorithm, the grid and the turbu-
lence model. Han uses an efficient numerical procedure and demonstrates
grid convergence of his solutions. Han’s computational tools also include
state-of-the-art grid-generation procedures. Han’s research efforts on this
problem are exemplary on both counts. However, using the k-¢ model un-
dermines the entire computation for the following reasons. Because the
model fails to respond in a physically realistic manner to the adverse pres-
sure gradient on the read-end surface, the predicted skin friction is too high.
This means the vorticity at the surface is too large, so that too much vortic-
ity diffuses from the surface. This vorticity is swept into the main flow and

too strong a vortex forms when the flow senarates. This. of course. reduces
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the base pressure. Thus, the k-¢ model’s inability to accurately respond to
adverse pressure gradient distorts the entire flowfield.

4.11 Range of Applicability

Turbulence-energy equation models include both incomplete one-equation
models and complete two-equation models As discussed in Section 4.2,

m : od ation model rath
only a modest advantage is gained in using a one-equation model rather

than an algebraic model. The primary difficulty is the need to specify the
length scale for each new application. There is no natural way to accom-
modate an abrupt change from a wall-bounded flow to a free shear flow
such as near an airfoil trailing edge or beyond the trunk lid of an automo-
bile. The only real advantage of using a one-equation model rather than
a two-equation model stems from the relative difficulty often encountered
in solving the model equations numerically. One-equation models tend to
be nearly as well behaved as algebraic models. By contrast, two-equation
models, especially the k-¢ model, are often very difficult to solve. However,
the user must establish his or her priorities on a key issue. Specifically,
the user must decide if it is more desirable to have an easy-to-implement,
inaccurate model, or a more-difficult-to-implement, accurate model. Those
preferring the latter should probably select a two-equation model.
Certainly the k-¢ model is the most widely used two-equation model.
It has been applied to many flows with varying degrees of success. Un-
fortunately, it is inaccurate for flows with adverse pressure gradient and
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Figure 4.30: Flow past Ahmed’s body. [From Han (1989) — Copyright

© AIAA 1989 — Used with permission.]
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that poses a serious limitation to its general utility. The model is also
extremely difficult to integrate through the viscous sublayer and requires
viscous corrections to simply reproduce the law of the wall for an incom-
pressible flat-plate boundary layer. No consensus has been achieved on the
optimum form of the viscous corrections as evidenced by the number of
researchers who have created low-Reynolds-number versions of the model
(see Subsection 4.9.1). While the model can be fine tuned for a given ap-
plication, it is not clear that this represents an improvement over algebraic
models. The primary shortcoming of algebraic models is their need of fine
tuning for each new application. While saying the k-¢ model always needs
such fine tuning would be a bit exaggerated, it still remains that such tuning
is too often needed.

The k-w model, although not as popular as the k-¢ model, enjoys sev-
eral advantages. Most importantly, the model is very accurate for two-
dimensional boundary layers with variable pressure gradient (both adverse
and favorable). Also, without any special viscous corrections, the model

L 1
can be easily integrated through the viscous sublayer. Finally, for the lim-

ited cases tried to date, the model appears to match measured properties
of recirculating flows with no changes to the basic model and its closure
coefficients. With viscous corrections included, the k-w model accurately
reproduces subtle features of turbulence kinetic energy behavior close to
a solid boundary and even describes boundary-layer transition reasonably
well. The only weakness of the k-w model appears to be its sensitivity to
freestream boundary conditions for free shear flows. While the k-¢ model
does not share this sensitivity, its predicted spreading rate matches mea-
surements only for the plane jet.

Other two-equation models have been created, but they have had even
less use than the k-w model. Before such models can be taken seriously, they
should be tested for simple incompressible boundary layers with adverse
pressure gradient. How many interesting flows are there, after all, with
constant pressure?

While two-equation models, especially the k-w model, are far more gen-
eral than less complex models, they nevertheless fail in some applications.
In Chapter 5, we will see that these models are unreliable for boundary-layer
separation induced by interaction with a shock wave. In Chapter 6, we will
see that two-equation models are inaccurate for flows over curved surfaces.
Also, two-equation models as presented in this chapter cannot predict sec-
ondary motions in noncircular duct flow. In all three of these examples, the
difficulty can be traced to the Boussinesq eddy-viscosity approximation.
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Problems

4.1 Verify that the exact equation for the dissipation, ¢, is given by Equa-
tion (4.39). That is, derive the equation that follows from taking the fol-
lowing moment of the Navier-Stokes equation.

Ou}

2v 8_::;6_— M(u;)] =0

where N (u;) is the Navier-Stokes operator defined in Equation (2.26).

4.2 Starting with Equations (4.4) and (4.39), define ¢ = f*wk and derive
an “exact” w equation.

4.3 Derive the exact equation for the enstrophy, w?, defined by

]....._
w?= FWi] fw!  where w] = €;p0uy/0z;
That is, w} is the fluctuating vorticity. HINT: First derive the equation

for the vorticity, multiply by w{, and time average.

4.4 We wish to create a new two-equation turbulence model. Our first
variable is turbulence kinetic energy, k, while our second variable is the
“eddy acceleration,” a. Assuming a has dimensions (length)/(time)?, use
dimensional arguments to deduce plausible algebraic dependencies of eddy
viscosity, vy, turbulence energy dissipation rate, ¢, and turbulence length
scale, £, upon k and a.
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of variables ¢ = k and derive the im plled k-¢ model. Express your ﬁnal
results in standard k-¢ model notation and determine the implied values
for Cy, Cq1, Ce2, o and o in terms of o, §, 8*, o and o*.

4.6 Beginning with the k-¢ model, make the formal change of variables
¢ = Cuwk and derive the implied k-w model. Express your final results in
standard k-w model notation and determine the implied values for «, 3,
p*, o and ¢* in terms of C,;, C¢q, Ceg, 03 and o.

4.7 Simplify the k-¢, k-kf, k-kT and k-7 models for homogeneous, isotropic
turbulence. Determine the asymptotic decay rate for k£ as a function of
the closure coefficient values quoted in Equations (4.43), (4.49), (4.56) and
(4.59). Make a table of your results and include the decay rate of ¢~1-2° for
the k-w model. (NOTE: You can ignore the (¢£/y)¢ contribution to Cp,
for the k-k€ model.)
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4.8 Simplify the k-¢, k-k£, k-kr and k-7 models for the log layer. Determine
the value of Karman’s constant, x, implied by the closure coefficient values
quoted in Equations (4.43), (4.49), (4.56) and (4.59). Make a table of
your results and include the value 0.41 for the k-w model NOTE: For all
models, assume a solution of the form dU/dy = u, /(ky), k = u2/ \/—_ and
vy = ku,y. Also, Cy, = Cp for the k-kf model.

4.9 Beginning with Equations (4.73), derive the self-similar form of the k-w
model equations for the mixing layer between a fast stream moving with
velocity Uy and a slow stream with velocity Us.

(a) Assuming a streamfunction of the form 9(z,y) = U1z F(n), transform
the momentum equation, and verify that V is as given in Table 4.1.

(b) Transform the equations for k and w.

(c) State the boundary conditions on & and K for |n| — oo and for V(0).

ASbUlue ﬁ, —> U ad |y| — 00,

(d) Verify that if w # 0 in the freestream, the only boundary conditions
consistent with the similarity solution are:

W(n) — U, /Us

4.10 Exercise Plusrams WAKE, MIXER

the results quoted in Table 4.2. Cover the following ranges of values for
WTIN:

-rid 1]:"11 !AY\‘I’\DY‘II“:V h\ nht‘] ‘mrifv

J LA \ﬂk—'t)’bllum \J} LLIN viLary

Far Wake 1075 < WTIN < 1
Mixing Layer 107® < WTIN <1
Plane Jet 107% < WTIN < 10

Round Jet ~ 10-% < WTIN < 100

- TN - b i r 11

4.11 Derive Equation (4.118).

4.12 Demonstrate the integral constraint on the defect-layer solution, Equa-
tion (4.124).

4.13 Determine the shape factor to O(u, /U.) according to the defect-layer
solution. Express your answer in terms of an integral involving Ui ().
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4.14 For the k-w model, very close to the surface and deep within the
viscous sublayer, dissipation balances molecular diffusion in the w equation.
Assuming a solution of the form w = w,, /(1 + Ay)?, solve this equation for
W = Wy, at y = 0. Determine the limiting form of the solution as w,, — oc.

4.15 Consider a flow with freestream velocity Uy, past a wavy wall whose
shape 1s

where kg is the peak to valley amplitude and Nkg is wavelength. The
linearized incompressible solution valid for N > 1is U = U + u', V =2/

where
, _wU 27y \ . 2my
u = 7 exp( NkR) sin (———-NkR)

o= TU (_2my )\ f2my )
v = N exp\ NkR}COS\NkR}

Making an analogy between this linearized solution and the fluctuating
velocity field in a turbulent flow, compute the specific dissipation rate,
w = ¢/(B"k). Ignore contributions from the other fluctuating velocity com-
ponent, w'.

4.16 Using Program SUBLAY (Appendix C), determine the variation of the
constant B in the law of the wall for the k-w model with the surface value of
w. Do your computations with (nvisc = 0) and without (avisc = 1) viscous
modifications. Let w] assume the values 1, 3, 10, 30, 100, 300, 1000 and
co. Be sure to use the appropriate value for input parameter iruff. Present
your results in tabular form.

4.17 Consider incompressible Couette flow with constant pressure, i.e., flow
between two parallel plates separated by a distance H, the lower at rest
and the upper moving with constant velocity U, .

A e e e e e P S R e e e i R P S RO SR R AR
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(a) Assuming the plates are infinite in extent, simplify the conservation
of mass and momentum equations and verify that

v+ o) o = o

(b) Now ignore molecular viscosity. What boundary condition on U is
appropriate at the lower plate?

(c) Introducing the mixing length given by

Emix = K'y(]- - y/H)

solve for the velocity across the channel. HINT: Using partial
fractions:

Don’t forget to use the boundary condition stated in Part

(b).

(d) Develop a relation between friction velocity, u,, and the average ve-

1 H
Uav_q = ‘-E{-./O U(y) dy
(e) Using the k-w model, simplify the equations for k and w with the
same assumptions made in Parts (a) and (b).

(f) Deduce the equations for k£ and w that follow from changing indepen-
dent variables from y to U so that

(g) Assuming k = u?/\/B*, simplify the equation for w. NOTE: You
might want to use the fact that (3 — a8*) = o/F*k?%.
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4.18 For incompressible, laminar Couette flow, we know that the velocity
is given by

where U, is the velocity of the moving wall, y is distance form the stationary
wall, and H is the distance between the walls.

(a) What is the maximum Reynolds number,
Rey, = UyH/v

at which the flow remains laminar according to the high-Reynolds-
number version of the k-w model? To arrive at your answer, you may
assume that

O
w_[ ng;; OSySH/2
- 74
Y H2<y<H

(b) Above what Reynolds number is w amplified?

4.19 This problem studies the effect of viscous-modification closure coeffi-
rinnta far thao by mndal niaing Pragrarn QTITRT AV fAnnandiv 1)
CICILUD LUl LIIC Avmul ELHIVJUTT upu.15 i J.Usl.alll [CAVS DNy W3 \n})ycuu.uk \_/].

(a) Modify Subroutine START to permit inputting the values of Ry and
R, (program variables rk and rw). Determine the value of R, that
yields a smooth-wall constant in the law of the wall, B, of 5.0 for
Ry =4, 6, 8, 10 and 20.

(b) Now make provision for inputting the value of Rs (program variable
rb). For Ry = 6, determine the value of R, that yields B = 5.0 when
R = 0, 4, 8, and 12. Also, determine the maximum value of k¥ for
each case.



Chapter 5

Effects of Compressibility

For flows in which compressibility effects are important, we must intro-
duce an equation for conservation of energy and an equation of state. Just
as Reynolds averaging gives rise to the Reynolds-stress tensor, so we ex-
pect that similar averaging will lead to a turbulent heat-flux vector. We
should also expect that new compressibility related correlations will appear
throughout the equations of motion. These are important issues that must
be addressed in constructing a turbulence model suitable for application to
compressible flows. This chapter focuses upon these issues.

We begin with a brief discussion of common observations pertaining to
compressible turbulence. Then, we introduce the Favre mass-averaging pro-
cedure and derive the mass-averaged equations of motion. Next, we demon-
strate an elegant development in turbulence modeling for the compressible

mixing layer. We follow this analysis with an application of perturbation

methods to the compressible log layer. We then apply several models to
attached compressible boundary layers, including effects of pressure gra-
dient, surface cooling and surface roughness. The chapter concludes with
application of various turbulence models to shock-separated flows.

5.1 Physical Considerations

By definition, a compressible flow is one in which significant density changes
occur, even when pressure changes are small. Generally speaking, compress-
ibility has a relatively small effect on turbulent eddies in wall-bounded flows.
This appears to be true for Mach numbers up to about 5 (and perhaps as
high as 8), provided the flow doesn’t experience large pressure changes over
a short distance such as we might have across a shock wave. At subsonic
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speeds, compressibility effects on eddies are usually unimportant for bound-
ary layers provided Ty, /T, < 6. Based on these observations, Morkovin
(1962) hypothesized that the effect of density fluctuations on the turbu-
lence are small provided they remain small relative to the mean density.
This is a major simplification for the turbulence modeler because it means
that, in practice, he need only account for the nonuniform mean density in
computing compressible, shock-free, non-hypersonic turbulent flows.
There are limitations to the applicability of Morkovin’s hypothesis
even at non-hypersonic Mach numbers. For example, because p’/p is typ-
ically not small, it applies neither to flows with significant heat transfer
nor to flows with combustion. Also, because density fluctuations generally
are much larger in free shear flows, models based on Morkovin’s hypothe-
sis fail to predict the measured reduction in spreading rate with increasing
freestream Mach number for the compressible mixing layer [Papamoschou
and Roshko (1988)]. As we will see in Section 5.5, the level of p//p for

a boundary layer at Mach 5 is comparable to the level found in a mixing
layer at Mach 1. For Mach numbers in excess of 1, the spreading rate for
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a mixing layer decreases. This is consistent with Mach b representing the
hypersonic limit for the boundary layer.

As a final observation, note that the difficulty in predicting properties
of the compressible mixing layer is reminiscent of our experience with free
shear flows in Chapters 3 and 4. That is, we find again that the seemingly
simple free shear flow case is more difficult to model than the wall-bounded
case.

5.2 Favre Averaging

In addition to velocity and pressure fluctuations, we must also account for
density and temperature fluctuations when the medium is a compressible
fluid. If we use the standard time-averaging procedure introduced in Chap-
ter 2, the mean conservation equations contain additional terms that have
no analogs in the laminar equations. To illustrate this, consider conserva-
tion of mass. We write the instantaneous density p as the sum of mean, p,
and fluctuating, p’, parts, 1.e.,

p=p+p (5.1)

Expressing the instantaneous velocity in the usual way [Equation (2.4)],
substituting into the continuity equation yields

a J
5P+ + 5—(pUi + p'Ui + pui + o' i)=0 (5.2)
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After time averaging Equation (5.2), we arrive at the Reynolds-averaged
continuity equation for compressible flow, viz.,
ap

" 0
It Ox;

(7U: +777) = 0 (5.3)

Some authors refer to this as the primitive-variable form of the con-
tinuity equation. Note that in order to achieve closure, an approxima-

+3 far +thao alati haot I'and o/
U10n IOT i€ COITCiatiton oeiweeil g ana U, 18 ﬂeedcd Thn pTOblcux is even

more complicated for the momentum equation where the Reynolds-stress
tensor originates from time averaging the product pu;u; that appears in
the convective acceleration. Clearly, a triple correlation involving p’, u},
and ug appears, thus increasing the complexity of establishing suitable clo-
sure approximations. The problem of establishing the appropriate form of
the time-averaged equations can be simplified dramatically by using the
density-weighted averaging procedure suggested by Favre (1965). That is,
we introduce the mass-averaged velocity, @;, defined by

—~
w
W

p—

where 5 is the conventional Reynolds-averaged density. Thus, in terms of
conventional Reynolds averaging, we can say that

pl; = pu; (5.5)

where an overbar denotes conventional Reynolds average. The value of this
averaging process, known as Favre averaging, becomes obvious when we

':-Xpaud thc Llah‘ﬂ-ha-ud jxdc uf Equatlﬂn (5 5) Perfuj.mlﬂg the lndlcated
Reynolds-averaging process, there follows

T oo

pi; = pU; + p'u; (5.6)

Inspection of Equation (5.3) shows that conservation of mass can be rewrit-
ten as

Bp o

ot T oz (pui) =0 (5.7)

This is a remarkable simplification as Equation (5.7) looks just like the
laminar mass-conservation equation. What we have done is treat the mo-
mentum per unit volume, pu;, as the dependent variable rather than the
velocity. This is a sensible thing to do from a physical point of view, es-
pecially when we focus upon the momentum equation in the next section.
That is, the rate of change of momentum per unit volume, not velocity, is

equal to the sum of the imposed forces per unit volume in a flow.
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When we use Favre averaging, it is customary to decompose the instan-
taneous velocity into the mass-averaged part, 4;, and a fluctuating part,
u;', wherefore

U; = U; + U:-’ (58)

Now, to form the Favre average, we simply multiply through by p and
do a time average in the manner established in Chapter 2. Hence, from
Equation (5.8) we find

— If B O\

;= pit; + pu; (5.9)

Duu, from the definition of the Favre ave sc BIVU.U. in EQUatLGi'i (9. u; We See

immediately that, as expected, the Fav verage of the fluctuating velocity,
u}, vanishes, i 1.e.,

pu? =0 (5.10)

By contrast, the conventional Reynolds average of u! is not zero. To see
this, note that
ul = u; — % (6.11)

Hence, using Equation (5.6) to eliminate ;,

7
= uy — Ui — (5.12)
Therefore, performing the conventional Reynolds average, we find

— T
ul = L2 g (5.13)
p
As a final comment, do not lose sight of the fact that while Favre aver-
aging eliminates density fluctuations from the averaged equations, it does

not remove the effect the density fluctuations have on the turbulence Con-
sequently, Favre averaging is a mathematical simplification, not a

physical one.

5.3 Favre-Averaged Equations

For motion in a compressible medium, we must solve the equations gov-
erning conservation of mass, momentum and energy. The instantaneous
equations are as follows:

dp
at
0 o _ Op | Oty
E(pua) + 8T(pu.7uz) - _6335 + 5 oz z; (515)

J

+ —-(puz) =0 (5.14)
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0 Lo M 42 (o (ht Lo )| = Q&
el la (e+ 2u,u,)] +6:1:J- [,puJ (h—l— Qu,u,)] = (uﬁ z])-—— (5.16)

where e is specific internal energy and h = ¢ + p/ p 1s specific enthalpy.
For compressible flow, the viscous stress temsor, t;;, involves the second
viscosity, ¢, as well as the conventional molecular viscosity, u. Although it
is not necessary for our immediate purposes, we eventually must specify an
equation of state. For gases, we use the perfect gas law so that pressure,

r]o'ncﬂ'v n'nrl amnaratiira aro rn]nfﬁd by

f17Y
\9.11i)

where R is the perfect gas constant. The constitutive relation between
stress and strain rate for a Newtonian fluid is

0
tij = 2usij + ¢ “: (5.18)

where s;; is the instantaneous strain-rate tensor [Equation (2.19)] and é;;

is the Kronecker deita. The heat-flux vector, g;, is usually obtained from
Fourier’s law so that -

;= —K— 5.19

q; 633] ( )

where & is thermal conductivity. We can simplify our analysis somewhat

by introducing two commonly used assumptions. First, we relate second

viscosity to p by assuming
2
¢=—2u (5.20)

This assumption 1s correct for a monatomic gas, and is generally used for
all gases 1 1 standard CFD npnhnnfrnne Accnmtnn‘ F'nnahnn (R ‘)n\ holdg in

AIVTUUIN/IINT . 4RI lAtisian

general guarantees ¢;; = 0 so that viscous stresses do not contnbute to the
pressure, even when s;; = du;/0z; # 0. This is tidy, even if not necessarily
true. Second, we assume the fluid is calorically perfect so that its specific
heat coeflicients are constant, and thus

e=C,T and h=0CT (5.21)

where C, and C, are the specific heat coefficients for constant volume and
pressure processes, respectively. Then, we can say that
oT i Oh

o —_ 5.22
9 Rc‘?xj P’PL 6:cj ( )

where Pry is the laminar Prandtl number defined by

}%ng%i (5.23)
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In order to mass average the conservation equations, we now decompose
the various flow properties as follows.

wp = 4w )

p = ptyo

p = P+p

h = h+h" (5.24)
e = é~+e”

T = T+T"

g = qr;+4q; )

Note that we decompose p, p and ¢; in terms of conventional mean and
fluctuating parts. Substituting Equations (5.24) into Equations (5.14) -
(5.17) and performing the mass-averaging operations, we arrive at what are
generally referred to as the Favre (mass) averaged mean conservation
equations.

= o
—ﬁ-i-a:_ pu;) = (5.25)

puy u;’] (5.26)

o ~ o~ T o N ~ o~ _(TT-
= [P (é+ u'u’) R — [ﬁﬂj (h+ -————u’;') +ﬁj—pu’2u’

_ "Lt T 1L n
[ qu; = pui R+ tjiul — puisuiu

y L

O (- (7 =7
+8:cj [u, (t,, pul uf ) (5.27)
P = pRT (5.28)

Equations (5.25), (5.26) and (5.28) differ from their laminar counter-
parts only by the appearance of the Favre-averaged Reynolds-stress tensor,
ViZ.,

Tij = —puiu (5.29)

As in the incompressible case, the Favre-averaged 7;; is a symmetric tensor.
The Favre-averaged mean energy equation for total energy, 1.e., the sum

of internal energy, mean-flow kinetic energy and turbulence kinetic energy
has numerous additional terms, each of which represents an identifiable
physical process or property. Consider first the double correlation between
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uf and itself that appears in each of the two terms on the left-hand side of
Equation (5.27). This is the kinetic energy per unit volume of the turbulent
fluctuations, so that it makes sense to define

pk = %pu”u” (5.30)

-~
Al
.
o

w2l A BRI o th
1 LIk

itnrhiztlant tranan
1 %, ana 7t Iis U

rt ~F
Ul VUuivilvy \JLGILDPULU uL

otation selected for the molecular transport of

o

heat. In analogy to the
heat, we define

gr; = pujh” (5.31)

The two terms W and pujsu;juf on the right- hand side of Equa-
tion (5.27) correspond to molecula.r dlﬂ'uswn and turbulent transport of
turbulence kinetic energy, respectively. These terms arise because the mass-
averaged total enthalpy appearing in the convective term of Equation (5.27)
is the sum of mass-averaged enthalpy, mean kinetic energy and turbulence
kinetic energy. They represent transfers between mean energy and turbu-
lence kinetic energy, that naturally arise when we derive the Favre-averaged
turbulence kinetic energy equation. The simplest way to derive the equa-
tion for k is to multiply the primitive-variable form of the instantaneous
momentum equation by u} and time average.

du du; u'! op » Ot 539
pzat‘"puuja taxg+uz_;j- ( )

As in Chapter 2, the most illuminating way to carry out the indicated
time-averaging operations is to proceed term by term, and to use tensor
notation for all derivatives. Proceeding from left to right, we first consider
the unsteady term.

pu’»’ (t; + ul')e

#H H

= U:t+PU
— p(l " h’)

d 0
= = (pk) - buful o (5.33)

"
PU; Ui ¢
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Turning now to the convective term, we have the following.

pulujui; = pul[(%; + Uy i+ z,j]

— LYY 1
= pu; uju”—i—pu u; U; j + pU;u; uU

— SRR
= —Tijli; + pui(5uiy])

= =Tt ; + (pu; fuluf); — Fuiu (pu;) ;

= —7ili + (ouo Ll ! Lul ”\
"W \'

Y+ pul — guiu (py;) ;

Ou; 9 ——
= -1 +-——(puk+pu’” Ty )_Iuﬂ ”-—-(puj)
7 a 617] J 72 u;u
(5.34)
The pressure gradient term simplifies immediately as follows.
—JP ou”
s = WP+ a7 = e+ 2 (7l % (5.35)
dz; Oy '/ &
Finally, the viscous term is simply rewritten as
— 0 — oul
i = o (G "-’)—t--—’ 36
Uit g ij jith Je 62:]' (5 )

Thus, substituting Equations (5.33) through (5.36) into Equation (5.32),
we arrive at the Favre-averaged turbulence kinetic energy equation.
In arriving at the final result, we make use of the fact that the sum of the
last terms on the right-hand sides of Equations (5.33) and (5.34) vanish
since their sum is proportional to the two terms appearing in the instanta-
neous continuity equation. Additionally, to facilitate comparison with the
incompressible turbulence kinetic energy equation [Equation (4.4)], we use
the Favre-averaged continuity equation to rewrite the unsteady and con-
vective terms in non-conservation form. The exact equation is as follows.

ok __ Ok du; ouy’ 0

7 oeem — — . i — pu Ay n 7]
p8i+pujam_,~ TﬁJaI tﬂa1+8j[tﬁu pu; Y p’UJ
—3dP T oul’
- u;'ajc— + P'"a?’. (5.37)
\—\»—:’ \—v—tf
Pressure Work Pressure Dilatation

Comparing the mean energy Equation (5.27) with the turbulence ki-
netic energy Equation (5.37), we see that indeed the two terms t;;u; and
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puy tuul on the right-hand side of the mean-energy equation are Molec-

ular Dlﬂ'usmn and Turbulent Transport of turbulence kinetic energy.
Inspection of the turbulence kinetic energy equation also indicates that the
Favre-averaged dissipation rate is given by

_ o
pe =1t 9z, (5.38)
Comparison of Equation (5.37) with the incompressible equation for &
fF‘nua,t;on (4 4“ shows that all except the last two terms, i.e., the Pressure
‘Work and Pressure-Dllatatmn terms, have analogs in the mcompresmb]e
equation. Both of these terms vanish in the limit of incompressible flow with
zero density fluctuations. The Pressure Work vanishes because the time
average of u! is zero when density fluctuations are zero. The Pressure-
Dilatation term vanishes because the fluctuating field has zero divergence
for incompressible flow. Hence, Equation (5.37) simplifies to Equation (4.4)
for incompressible flow with zero density fluctuations.

Note that the turbulence kinetic energy production, 7;;0%;/0x;, and

pressure correlation terms represent a transfer from mean kinetic energy

to turbulence kinetic energy. Also, dissipation is a transfer from turbu-
lence kinetic energy to internal energy. Thus, since these transfers simply
redistribute energy, they must cancel in the overall energy conservation
equation. Consequently, only the two terms involving spatial transport of
turbulence kinetic energy appear in Equation (5.27).

Using a similar derivation (we omit the details here for the sake of
brevity), the Favre-averaged Reynolds-stress equation assumes the
following form.

Oy a . 01 0,
—5;"1' + ‘%;’(Ukrij) = —Tikﬁ - 7}'&;6—:6: + €5 — 1y

%,
o L [T

Ba:k
— 0P + -FGP

+ uf
' Oz 7 Ox;

(5.39)

where

V7] "

P B e B
I = p ( el 61:,—) (5.40)

ou 3“}'
g =1 i 41
€ij kj Er. +irig—— Bk (5.41)

(43'5 = pu”u”u;c' + p’u:f ik +P'U§’5ik (5.42)



180 CHAPTER 5. EFFECTS OF COMPRESSIBILITY

Taking advantage of the definitions given in Equations (5.29), (5.30),
(5.31) and (5.38), we can summarize the Favre-averaged mean equations
and turbulence kinetic energy equation in conservation form.

Py o (pi) = 0 (5.43)
o, a . . apr o .
"a—t_ (ﬁu,) + -:;'_](phj "”3) = _633:5 + (923] ["JZ + 733’] (544)
a a . d
G B+ G ) = g [man, = e+ G = R
o . .-
+ g [El + )] (5.45)
j
—a—(,ék} + i(ro‘fl;k\ = T?—%— — pE+ — [t;éu{’ — pu!! Lullul #p’ui’]
i N F TR " Oz; dz; L7 ° st 71
— 0P oul!
— u;"a—%' + P"é';f’ (5.46)
P = jRT (5.47)

The quantities £ and H are the total energy and total enthalpy, and
include the kinetic energy of the fluctuating turbulent field, viz.,

E=é+Lia;+k and H=h+ L +k (5.48)

=

5.4 Compressible-Flow Closure Approxima-
tions

As discussed in the preceding section, in addition to having variable mean
density p, Equations (5.39) through (5.48) reflect effects of compressibility
through various correlations that are affected by fluctuating density. For
all but second-order closure models, closure approximations must be pos-
tulated for the mass-averaged Reynolds-stress tensor and heat-flux vector.
Depending on the type of turbulence model used, additional closure ap-
proximations may be needed to close the system of equations defining the
model.
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This section briefly reviews some of the most commonly used closure
approximations for compressible flows. Because of the paucity of measure-
ments compared to the incompressible case, and the additional complexities
attending compressible flows, far less is available to guide development of
closure approximations suitable for a wide range of applications. As a re-
sult, modeling of compressibility effects is in a continuing state of flux as
we approach the end of the twentieth century. The closure approximations
discussed in this, and following, sections are those that have stood the test
of time.

Before focusing upon specific closure approximations, it is worthwhile to
cite important guidelines that should be followed in devising compressible-
flow closure approximations. Adhering to the following items will lead to
the simplest and most elegant models.

1. All closure approximations should approach the proper limiting value
for Mach number and density fluctuations tending to zero.

2. All closure terms should be written in proper tensor form, e.g., not
dependent upon a specific geometrical configuration.

3. All closure approximations should be dimensionally consistent and
invariant under a Galilean transformation.

It should be obvious that Items 2 and 3 apply for incompressible flows
as well. In practice, Galilean invariance seems to be ignored more often
than any other item listed, especially for compressible flows. Such models
should be rejected as they violate a fundamental feature of the Navier-
Stokes equation, and are thus physically unsound.

Reynolds-stress Tensor: For zero-, one- and two-equation models,
nearly all researchers use the Boussinesq approximation with suitable gen-
eralization for compressible flows. Specifically, denoting the eddy viscosity

by pr, the following form is generally assumed.

Ti; = —pu;,’u-f’! = 2[1'1" (S, —_ %g—z—é:—ﬁ”) - -;—ﬁkém (549)

The most important consideration in postulating Equation (5.49) is guar-

anteeing that the trace of 7;; is —2pk. Note that this means the “second
eddy viscosity” must be —Zpur [recall Equation (5.20)].

Turbulent Heat-Flux Vector: The most commonly used closure ap-

proximation for the turbulent heat-flux vector, qr;, follows from appealing

to the classical analogy [Reynolds (1874)] between momentum and heat
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transfer. It is thus assumed to be proportional to the mean temperature
gradient, so that

_L”Tcp 8T - KT 6il
PT’T aa:j - P’I‘T 337j

qr; = pujh” = (5.50)
where Prp is the turbulent Prandtl number. A constant value for
Pry 1s often used and this is usually satisfactory for shock-free flows up

to low supersonic speeds, provided the heat transfer rate is not too high.
The most common values assumed for Prp are 0.89 or on in the raca
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of a boundary layer. Heat-transfer predictions can usually be improved
somewhat by letting Pryr vary through the boundary layer. For free shear
layers, values of the order of 0.5 are more appropriate for Pry.
Molecular Diffusion and Turbulent Transport: If a zero-equation
model is used, the gpkéw contribution in Equation (5.49) is ignored as are

the molecular diffusion, t ;u;, and turbulent transport, pu;’ ;u! u!, terms
appearing in the mean-energy equation. Some researchers ignore these
terms for higher-order models as well. This is usually a good approxi-
mation for flows with Mach numbers up to the supersonic range, which
follows from the fact that pk < P (and hence k < h) in most flows of
engineering interest. However, at hypersonic speeds, it is entirely possible
to achieve conditions under which pk is a significant fraction of P. To en-
sure exact conservation of total energy (which includes turbulence kinetic
energy), additional closure approximations are needed. The most straight-
forward procedure for one-equation, two-equation and second-order closure
models is to generalize the low-speed closure approximations for the molec-

ular diffusion and turbulent transport terms. The most commonly used
approximation is:

T R P (5.51)
7

Pressure Diffusion and Pressure-Dilatation Term: Section 4.1
discusses the lack of information regarding diffusion by pressure fluctua-
tions in incompressible flows. So little is known that it is simply ignored.
Even less is known for compressible flows. However, given the fundamen-
tally different role that pressure plays in a compressible medium relative
to its essentially passive role at low speeds, ignoring pressure diffusion and
pressure dilatation ultimately must lead to significant error. Purely em-
pirical proposals, especially for the pressure-dilatation mean product, have
been made by many authors, but none has received general acceptance.
The best prospect for immediate progress at the present time may be to
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use Direct Numerical Simulations (DNS). Such work is in progress [e.g.,
Sarkar et al. (1991) and Zeman (1991)}, and preliminary proposals have
been made. No generally accepted approximation has emerged at the time
of this writing however.

Pressure Work: The pressure work term, v/ P; (or u? P; + u” P for
second-order closure models), arises because the time average of u; u ' does
not vanish. It is proportional to the density/velocity correlation p'u;, and
illustrates how Favre averaging does not completely eliminate the need
to know how these fluctuating properties are correlated. Wilcox and Al-
ber (1972) postulate an empirical model for this term that improves two-
equation model predictions for hypersonic base flows. Oh (1974) proposes
a closure approximation postulating existence of “eddy shocks” and accu-
rately simulates compressible mixing layers with a one-equation turbulence
model. Neither model is entirely satisfactory however as they both in-
volve the mean velocity in a manner that violates Galilean invariance of
the Navier-Stokes equation. As with pressure diffusion and pressure dilata-
tion, the best hope for progress in the short term is probably through use

of DNS.

5.5 Dilatation Dissipation

Using a program such as MIXER (see Appendix C), it is a simple matter to
verify that both the k-w model and k-¢ model fail to predict the observed
decrease in spreading rate with increasing Mach number for the compress-
ible mixing layer [Kline et al. (1981) and Papamoschou and Roshko (1988)].

Focusing upon the k-¢ model, Sarkar et al. (1989) and Zeman (1990) have

devised particularly elegant models for the k equation that correct the defi-

ciency for the compressible mixing layer. Building upon the Sarkar/Zeman
formulations, Wilcox (1992b) has postulated a similar model that enjoys
an important advantage for wall-bounded flows. This section shows how a
straightforward and elegant modification can dramatically improve a tur-
bulence model’s predictive accuracy.

To understand the Sarkar/Zeman innovation, we must examine the tur-
bulence energy dissipation rate more closely. Recall from Equation (5.38)
that

pE = tj,'-é-j; (552)

Hence, in terms of the instantaneous strain-rate tensor, s;;, we have

—

2
pe = p 2.9]'3‘8;‘_’7- - guk,kug’,,] (553)
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Assuming, that the correlation between velocity-gradient fluctuations and
kinematic viscosity fluctuations is negligible, we can rewrite this equation
as

2
pe = v |29y ~ Sp ] (5.54)
In terms of the fluctuating vorticity, w/, there follows
= [ 23— ] TELL
pe =10 lpw ‘wi + 2pu jul — gﬂ“i,i“i,i_l (5.55)

Finally, we can say u!'; uy i~ (] ;)?, which is exactly true for homogeneous
turbulence, and is a very good approximation for high-Reynolds-number,
inhomogeneous turbulence [see, for example, Tennekes and Lumley (1983)].

Hence, we conclude that the dissipation can be written as

pe = pes + peg (5.56)

X
S
-
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Thus, we have shown that the compressible turbulence dissipation rate
can logically be written in terms of the fluctuating vorticity and the di-
vergence of the fluctuating velocity. Equivalently, we could have writ-
ten the fluctuating velocity as the sum of a divergence free and a curl
free component. At high Reynolds number, these components presum-
ably are uncorrelated (again an exact result for homogeneous turbulence)
and Equation (5.55) would follow directly. The quantity ¢, is known as the
solenoidal dissipation, while ¢; is known as the dilatation dissipation.
Clearly, the latter contribution is present only for compressible flows.

Sarkar and Zeman postulate that the dilatation dissipation should be a

function of turbulence Mach number, M;, defined by
M} = 2k/a® (5.58)

where a is the speed of sound. They argue that the k and ¢ equations
should be replaced by

dk _
por = —ples tea)+ - (5.59)
_deg - 2

_dt = _Ce2pfs/k + - (5'60)

where C is a closure coefficient. Only the dissipation terms are shown
explicitly in Equations (5.59) and (5.60) since no changes occur in any
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other terms. Particularly noteworthy, both Sarkar and Zeman postulate
that the equation for ¢, is unaffected by compressibility. The dilatation
dissipation is further assumed to be proportional to ¢; so that we say

€q = " F(M) ¢ (5.61)

where £* is a closure coefficient and F(M;) is a prescribed function of M.
The Sarkar, Zeman and Wilcox formulations differ in the value of £* and
the functional form of F(M,).

Interestingly, while both Sarkar and Zeman arrive at similar formu-
lations, their basic postulates are fundamentally different. Sarkar et al.
postulate that ¢; “varies on a fast compressibility time scale relative to ¢;.”
As a consequence, they conclude that dilatation dissipation increases with
M; in a monotone manner. By contrast, Zeman postulates the existence
of eddy shocklets that augment only the dilatation dissipation, so that a
threshold exists below which dilatation dissipation is zero.

To implement the Sarkar or Zeman modification in the k-w model, we
begin by making the formal change of variables given by ¢, = f*wk. This

tells us immediately that

(5.62)

Consequently, a compressibility term must appear in the w equation as well
as in the k equation. Note that if we identify w as the RMS fluctuating
vorticity, a case could be made that the w equation should be unaffected by

dilatation dissipation rather than the ¢ equation. While this may be true, it
would obscure direct comparisons between effects of dilatation dissipation
on the two types of models if we depart from the Sarkar/Zeman conventions.

Inspection of Equations (4.34) and (4.35) shows that the Sarkar/Zeman
compressibility modifications correspond to letting closure coefficients 3
and 3* in the k-w model vary with M,. In terms of £* and the compress-

ibility function F(M;), 8 and B* are:
B* = B5[l + & F(My)] (5.63)
B = Bo — B8 F(My) (5.64)

where 3 and 3, are the corresponding incompressible values of * and /3.
The values of £* and F(M,) for the Sarkar, Zeman and Wilcox models are
as follows:

Sarkar’s Model
£ =1, F(M)=M (5.65)
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Zeman’s Model
E* = 3/4’ F(Mt) — [l —_ e_é‘(’Y**’l)(Mt—Mto)z/Az] H(Mt _ Mto) (566)

Wilcox’s Model
*=3/2, M, =1/4, F(My)= M- M\ H(M, ~M,) (567)

where « is specific heat ratio and 'H(x) is the Heaviside step function. Ze-
man recommends using A = 0.60 and M;, = 0. }GV‘2/’(7 + 1) for free
shear flows. For boundary layers, their values must increase to A = (.66
and My, = 0.25y/2/(v+1). Zeman uses a different set of closure coeffi-
cients for boundary layers because he postulates that they depend upon the
kurtosis, w%/(u2)2. The kurtosis is presumed to be different for free shear
flows as compared to boundary layers. While this is most likely true, it is
not much help for two-equation or second-order closure models since such
models only compute double correlations and make closure approximations
for triple correlations. Quadruple correlations such as u'* are beyond the
scope of these models.

To illustrate how well these models perform, we consider mixing of a
supersonic stream and a quiescent fluid with constant total temperature.
For simplicity, we present results only for the k-w model as k-¢ results are
nearly identical. The equations of motion have been transformed to simi-
larity form for the far field and integrated using Program MIXER, which

1s described in Appendix C. Figure 5.1 compares computed and measured
rQPP Kline et al. {IQRIH spreading rate. Cs. As in the incomnpressible case,

ELEIRIC C© 201 P SAALME LGULy WAG. 430 aad vl aulULbapr oSt Laotc
spreadmg rate is deﬁned as the difference between the values of y/x where
(U = Ug)?*/(Uy — Us)? is 9/10 and 1/10. The quantity Cs_ denotes the

incompressible spreading rate and M. is convective Mach number, viz.,

M, = =0 (5.68)
a; + az

Since Uy = 0, Equation (5.68) simplifies to

M,
- (5.69)

M. = r L 11
e

As shown, the unmodified k-w model fails to predict a significant de-
crease in spreading rate as Mach number increases. By contrast, the Sarkar,
Zeman and Wilcox modifications yield much closer agreement between com-
puted and measured spreading rate.
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Figure 5.1: Comparison of computed and measured spreading rate for a
compressible mixing layer; — — Unmodified k-w model; Wilcox,
£ = 3/2; - - - Sarkar, £&* = 1; - - — Zeman, & = 3/4; o Langley

curve [Kline et al. (1981)].

We turn now to the adiabatic-wall flat-plate boundary layer. The equa-
tions of motion for the k-w model have been solved with Program EDDYBL
(see Appendix D). Figure 5.2 compares computed skin friction, ¢;, with a
correlation of measured values for freestream Mach number between ( and
5. As shown, the unmodified model virtually duplicates measured skin fric-
tion. By contrast, the Sarkar compressibility modification yields a value
for ¢; at Mach 5 that is 18% lower than the value computed with ™ = 0.
Using the Wilcox dilatation-dissipation model yields very little difference
in skin friction.

Using A = 0.60 and M, 6 = 0.10y/2/(y + 1) in Zeman’s model, com-
puted c; at Mach 5 is 15% smaller than the value obtained with the un-
modified model. Increasing A and M;_ to 0.66 and 0.25\/2/(vy + 1), respec-
tively, eliminates this discrepancy. However, using this large a value for
M;, for the mixing layer results in discrepancies in excess of 100% between
computed and measured spreading rate for M. in excess of 1.

These results make it clear that neither the Sarkar nor the Zeman com-
pressibility term is completely satisfactory for both the mixing layer and
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cr/cs,

02 F "

Figure 5.2: Comparison of computed and measured skin friction for a com-
pressible flat-plate boundary layer; k-w with £&* = 0 and £&* = 3/2;
- - - Sarkar, £ = 1; - .- Zeman, £€* = 3/4; o Van Driest correlation.

boundary layers. The Wilcox dilatation-dissipation model was formulated
to resolve this dilemma. Decomposing the dissipation into solenoidal and
dilatation components is an important innovation, and is not the root cause
of the problem. Rather, the postulated form of the function F(M,) is the
weak hnk. The Wilcox model provides a satisfactory alternative.

Inspection of the magnitude of turbulence Mach number in mixing lay-
ers and boundary layers shows that all is needed is an alternative to the
Sarkar and Zeman functional dependencies of €5 upon M;. Table 5.1 shows
why the Sarkar term improves predictions for the mixing layer. The un-
modified k-w model predicts peak values of M, in the mixing layer that are
more than twice the values in the boundary layer for the same freestream
Mach number. Using the Sarkar compressibility term reduces ( M;)maz by
about one third for the mixing layer when My, > 2. Even with this much
reduction, (M;)mqr for the mixing layer remains higher than the largest
value of (M})maz in the boundary layer all the way up to Mach 5.

For Mach 1, the Sarkar term reduces mixing-layer spreading rate below
measured values (Figure 5.1). Zeman'’s term predicts a somewhat larger
spreading rate at Mach 1, mainly because of the Mach number threshold in
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Table 5.1: Maximum Turbulence Mach Number, (M¢)mnqz

Boundary Layer | Mixing Layer
Mo [£&=0 &=118=0 &=1

0 0 0 0 0

1 061 .061 180 159
2 114 107 309 227
3 149 135 384 245
4 174 154 424 254
] 191 171 453 266

Zeman’s model. That is, Zeman postulates that the compressibility effect is
absent for M; < M;,. Zeman’s Mach number threshold also yields smaller
differences between computed and measured boundary-layer skin friction
at lower Mach numbers (see Figure 5.2). These observations show that
an improved compressibility term can be devised by extending Zeman’s
threshold Mach number to a larger value of M;. The Wilcox model simply
combines the relative simplicity of Sarkar’s functional form for F'(M;) with

Zeman’s Mach number threshold to accomplish this end.

5.6 Compressible Law of the Wall

TR

In this section, we use perturbation methods to examine k-w and k-¢ model
predicted, compressible log-layer structure. The results are particularly
illuminating and clearly demonstrate why the Sarkar and Zeman compress-
ibility terms adversely affect boundary-layer predictions.

Recall from Section 4.6.1 that the log layer is the region sufficiently
close to the solid boundary for neglect of convective terms and far enough
distant for molecular diffusion terms to be dropped. In the log layer, the
equations of motion based on the k-w model simplify to the following.

dii
UT&% S pwug (5'70)

d |C,T 1.
[JT@ ﬁ%; + —2-’112 +oc*k| = —qu (5.71)
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Ld [ dk AR -
o E!;_WF&;]_{—#F (dJ) — Fpwk =0 (5.72)
d ( dw du - 9
— — =0 5.73
de dJ] +ap(dy) Ao (6.73)
oT = pu Ty (5.74)

The quantity u, 1s friction velocity defined as /71, /pn where 7, is
surface shear stress and f,, is density at the surface. Also, T}, is surface
temperature, ¢,, is surface heat flux and C, is specific heat at constant
pressure. Finally, y is distance from the surface.

Following Saffman and Wilcox (1974), we change independent variables
from y to @. Consequently, derivatives transform according to

d dud o d

—_ O Uy — 15

With this change of variables, we replace Equations (5.71)-(5.73) by the
following.

d |C,T 1. G
ET:I_ PI':'T + §u2 + a*k] = —f)wl;‘z (5.76)
ot =0 (5.77)
2 =2
cLY  GY _Prke (5.78)
dii? k  p2ui

Integrating Equation (5.76) yields the temperature, and hence the den-
sity, as a function of velocity and Mach number based on friction velocity,
M, = u;fay.

r . ) . N . .
P w\° o u Lk
=Ry _(y-nP X X *
p =1 NP l? (u) W (u,)“’ (uz)

Next, we assume a solution of the form:

S =

pk = Tpyu? (5.80)
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where T is a constant to be determined. Substituting Equations {5.79) and
(5.80) into Equation (5.77), and noting that M? = 2I'M?, leads to the
following quartic equation for T'.

B [1+26*M2T] [1+ (y = 1)Prpo*MIT| % =1 (5.81)
As can easily be verified, when M? <« 1, the asymptotic solution for I is
1 [er + O pPrpot]
:\/6_;—[ 7 JMT+--- (5.82)
Finally, in terms of [', Equation (5.78) simplifies to

r

2

d W * v pw
oo+ {a—[8,— 282" M2T| T?} dT - 0 (5.83)

Combining Equations (5.79) and (5.80) yields the density as a function of
velocity and TI'.

o, )
1 — Qb prp 2 (&) +_3_2m,,{_,u_ﬂ

Pu TN pur NPT (5.84)
P 1+ (y—1)Prpo*I'M? '

Equation (5.84) assumes a more compact form if we introduce the
freestream velocity, Us. A bit more algebra yields

1 + Bv — A%p?

Pw
Puw _ 5.85
p 1+ {(y—-1)Prpro*I'M?2 ( )
where
v = '&/’Uoo
A2 = b.;_.llpr,r M2 (’f’oo /f’w) > (5.86)
B = —PTquUoo/(CpTwTw) J

Using Equations (5.82), (5.85) and (5.86), and retaining terms up to O(M?),
Equation (5.83) assumes the following form,

Pu [ K3(Uu/ur) ]

dv? ~ |T+ Bu— A% w=0 (5.87)
where the constant K, 1s defined by
K2 - m? _ [(2 + a-+ ﬁo/ﬁ:)g* + (7 - l)PT’T(30{ - ﬁo/)@;)a*] M2 4
v o 20 7

(5.88)
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and & is Karman’s constant. Because Uy /u, 3> 1, we can use the WKB
method [see Kevorkian and Cole (1981)] to solve Equation (5.87). Noting
that w decreases as 4/U. increases, the asymptotic solution for w is

w~ C [1+ Bv— A% /e exp [~ K, u" /u,] (5.89)

where C 1s a constant of integration and u* is defined by

o* 1 ) R\

”»
w

A2,
U = Zsin (m)

Combining Equations (5.70), (5.80) and {5.89), we can relate velocity
and distance from the surface.

(5.90)

-~ C
/ [1+ Bv — A% 14 exp [K u" fu,] dv ~ i (5.91)
I'Us
We integrate by parts to generate the asymptotic expansion of the integral
;1'1 F‘.n]]ﬂ ‘;n“ {R 01\ ag I]— I’ll e e O "ﬂ'l"ll‘ﬂ
111l 2ifudvviviig \U»(JL/ T3 le wr A . 11\111\1\4’
L - Y
[1+ Bv — A%?] % exp [Kou® fuy] ~ nl:uuy (5.92)
Uy

Finally, we set the constant of integration C' = T'u?/(K,v,). Taking the
natural log of Equation (5.92), we conclude that

*

oL, (”“’”) +B, (5.93)

ur Ky Vyy

The quantity B, is the effective “constant” in the law of the wall defined
by

) 5\ 1/
=B+ —fn|— 94
B, + K. n(ﬁw) (5.94)

where B is a true constant.
Most of the analysis above holds for the k-¢ model. The only significant
difference is in the € equation which is as follows.

d de da\? je2
0-6_1 1., ['UT ,.r..] + C»“Cflpk (,1“) — VYe2 pre =0 (5'95)

Equations (5.80), (5.82) and (5.85) are still valid for the turbulence ki-
netic energy and density, provided o* is replaced by a;l. The transformed

equation for € is
2 2 2
d € _ [IKC(UOQ/UT) ] 620 (5.96)

dv? + Bv — A%y?
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where the constant K, is defined by

— 1) Prp(3Ceq — Cea)oe

M2 4. ..
20;., T+

(5.97)
In arriving at Equation (5.97), recall from Equation (4.106) that the k-¢
model’s closure coefficients are related by

K? =K% - [(Cel + 062)666* + (7

2 ey, ~ O\ 7 00N
The asymptotic solution for € is
¢~ C [1+ Bv— A%%]"" exp [~ K.u* [u,] (5.99)
Velocity and distance from the surface are related by
[ [+ Bv — A2v2]3/4 exp [K.u* /u,] dv ~ Coy (5.100)
where C, is a constant of integration. Consequently, Equation (5.92) is
replaced b
[1+ B — A%0%)™* exp [K.u” fur] ~ Cry (5.101)

where C} is another constant of integration. Finally, the law of the wall for
the k-¢ model is

u* 1 Uy
—~ —f B, 5.102
Ur K. " ( Uy ) * ( )
where B, is given by
1 5 5/4
B, —B+--—En( ) 5.103

Equations (5.93) and (5.102) are very similar to the compressible law of
the wall deduced by Van Driest (1951). There are two ways in which these
equations differ from the Van Driest law.

The first difference is the effective Karman constants, K, and K., which
vary with M, according to Equation (5.88) for the k-w model and Equa-

43 (0 Q7Y T, +h ’
tion (5.97) for the k-c model. In terms of each model’s closure coeflicients,

K. and K, are given by (for M, < 1):
K2 ~ k% [1 - (40.29¢" + 0.87)M? + - -] (5.104)

and

K2 ~ k% [1—(23.92¢* +3.0T)M7? + - -] (5.105)
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Table 5.2: Effective Karman Constant

MTlf‘:O I{w M‘rlf‘:l Kw |
0 410 0 410

032 410 031 .402

0438 410 046 .392
052 410 049 389

LAVAV 4 AN TR PRI A0 L

050 410 046 392
.048 410 043 394

U‘Iphﬁ'abl\?b—*cga

Table 5.2 summarizes results obtained in the boundary-layer computa-
tions of Section 5.5 for the unmodified k-w model (€* = 0) and for the k-w
model with the Sarkar compressibility term (£* = 1). The value of K, for
the unmodified model deviates from the Karman constant, k = 0.41, by less
than 0.12% for freestream Mach numbers between 0 and 5. By contrast,
when £* = 1, the deviation is as much as 5.10%. This large a deviation in
the effective Karman constant is consistent with the observed differences
between computed and measured skin friction. Similarly, with M, = .05,
K, differs from & by 0.5% and 3.5% for £€* = 0 and 1, respectively. Thus
the Sarkar compressibility term has a somewhat smaller effect on « for the
k-¢ model relative to the effect on & for the k-w model.

To see why a small perturbation in k corresponds to a larger perturba-
tion in ¢y, differentiate the law of the wall with respect to k. Noting that
¢y = 2u2/UZ, alittle algebra shows that

et PO (5.106)

Thus, we should expect Acy/cy to be double the value of Ax/k. The
numerical results indicate somewhat larger differences in ¢z, but the trend
is clear.

The second way Equations (5.93) and (5.102) differ from the Van Driest
compressible law of the wall is in the effective variation of the “constant”
terms B, and B, with (p/p. ). Because the exponent is only 1/4, the effect
is minor for the k-w model. By contrast, the exponent is 5/4 for the k-¢
model. This large an exponent has a much stronger effect on predicted
boundary layer properties. Figure 5.3 compares computed and measured
[Fernholz and Finlay (1981)] velocity profiles for adiabatic-wall boundary
layers at Mach numbers 4.5 and 10.3. The computed results are for the
Wilcox (1988a) k-w model and for Chien’s (1982) low-Reynolds-number
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k-¢ model. Equations (5.93) and (5.102) are also shown (with B = 5.0)
to underscore the importance of the models’ variable “constant” in the
compressible law of the wall.

These results are consistent with the analysis of Huang, Bradshaw and
Coakley (1992) that shows how poorly the k-¢ model performs for com-
pressible boundary layers. Since p/p,, > 1 for all but strongly cooled walls,
its effect is to increase the “constant” in the law of the wall with a corre-

sponding decrease in ¢;. The Sarkar and Zeman terms will thus amplify

ELVLILL

this inherent deficiency of the k-¢ model.

To put these results in proper perspective, we must not lose sight of
the fact that the k-¢ model requires the use of either wall functions or
viscous damping functions in order to calculate wall-bounded flows. If
these functions have an effect that persists well into the log layer, it may
be possible to suppress the k-¢ model’s inherent flaws at low Reynolds
numbers. However, the perturbation analysis shows that such a model will
not be asymptotically consistent with the compressible law of the wall in
the limit of infinite Reynolds number. In effect, such a model would have
compensating errors that may fortuitously yield reasonably close agreement

with the law of the wall at low Reynolds numbers.

As a final comment, if we had used p¢ as the dependent variable in
Equation (5.95) in place of ¢, the exponent 5/4 in Equation (5.103) would
be reduced to 1/4. Presumably, this change would improve k-¢ model pre-
dictions for compressible boundary layers. The effect of this rescaling on
the mixing layer is unclear.

5.7 Compressible Boundary Layers

Most turbulence models are capable of providing reasonably accurate pre-
dictions for constant-pressure, adiabatic-wall boundary layers provided the
Mach number does not exceed about 5. Similar to the incompressible situa-
tion, adverse pressure gradients continue to be anathema to the k-e¢ model,
while presenting no major problem for the k-w model. When surface heat
transfer is present, model predictions often show nontrivial discrepancies
from measured values for most turbulence models.

Algebraic models such as the Cebeci-Smith and Baldwin-Lomax models
(see Subsections 3.4.1 and 3.4.2) require no special compressibility correc-
tions. For the sake of clarity, recall that the Cebeci-Smith model uses the
velocity thickness, 8}, defined in Equation (3.115) for both compressible and
incompressible flow. The velocity thickness differs from the displacement
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Figure 5.3: Comparison of computed and measured velocity profiles for
compressible flat-plate boundary layers; Wilcox k-w; - - - Chien k-¢;
o Coles; o Watson.
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thickness, 8*, which is defined for compressible flows by

5 =[ ( __ﬁ-f-‘-) dy (5.107)
0 Pe Ue

The primary reason algebraic models should fare well for compressible
boundary layers without special compressibility modifications is illustrated
by Maise and McDonald (1967). Using the best experimental data of the
time for compressible boundary layers, they inferred the mixing length vari-
ation. Their analysis shows that for Mach numbers up to 5:

e Velocity profiles for adiabatic walls correlate with the incompressible
profile when the Van Driest (1951) scaling is used, 1.e.,

w1, 0=y
Mo = a2 (f /1) (5.1

o The Van Driest scaling fails to correlate compressible velocity profiles
when surface heat transfer is present.

e The classical mixing length is independent of Mach number.

Using singular perturbation methods, Barnwell (1992) shows that alge-
braic models are consistent with the Maise-McDonald observations. Many
researchers have applied the Cebeci-Smith model to compressible boundary
layers, showing excellent agreement with measurements for adiabatic walls
and somewhat larger differences when surface heat transfer is present. The
Baldwin-Lomax model yields similar predictions.

Because the length scale employed in most one-equation models is pat-
terned after the mixing length, they should also be expected to apply to
compressible flows without ad hoc compressibility modifications. This 1s
indeed the case, especially for newer models, which have been designed
for compressible-flow applications. Figure 4.2, for example, shows how the
Baldwin-Barth (1990) model performs for a Mach 2 flat-plate boundary
layer.

As we have seen in the last subsection, the issue is more complicated for
two-equation models. The log-layer solution indicates that the length scale
for the k-w and k-¢ models varies linearly with distance from the surface,
independent of Mach number. The models even predict the Van Driest
velocity scaling. Thus, two-equation models are consistent with two of the
most important observations made by Maise and McDonald, at least in
the log layer. However, we have also seen that the € equation includes a
nonphysical density effect that distorts the model’s log-layer structure, and
precludes a satisfactory solution. By contrast, the w equation is entirely
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consistent with the Maise-McDonald observations. As shown in Figures 5.2
and 5.3, the k-w model provides excellent quantitative agreement with mea-
surements for Mach numbers up to about 5.

Turning to effects of pressure gradient, Figures 5.4 and 5.5 compare
computed and measured skin friction and velocity profiles for two com-
pressible boundary layers with adverse pressure gradient. Figure 5.4 cor-
responds to a Mach 4, adiabatic-wall experiment conducted by Zwarts [see
Kline et al. (1981) — Flow 8411]. Computed results are shown for the
Wilcox k-w model without viscous corrections and for the Chien (1982)
k-¢ model. Although the effect is small for this flow, neither computation
includes a dilatation-dissipation correction. As shown, k-w model predic-
tions fall within the scatter of the experimental data. By contrast, the k-¢
model skin friction is about 8% lower than measured at the beginning of the
computation where the Mach number is 4. This is consistent with results
shown in Figure 5.3(a). Because the flow is decelerating, the Mach number
decreases with distance, and falls to 3 by the end of the run. As a result,

/5. 18 onlv half ite unstream value. and the corresnonding distaortion nf-'

Pe/Pw 18 only half its upstream value, and the corresponding distortion of
the k-¢ model’s log-layer velocity profile is greatly reduced. Consequently,
the k-¢ model’s velocity profile is fortuitously in close agreement with the
measured profile.

Figure 5.5 presents a similar comparison for a Mach 2.65 boundary layer
with adverse pressure gradient and mild surface heating. The ratio of wall
temperature to the adiabatic-wall temperature, T, /Ty, varies between
1.07 and 1.13 for the flow. Again, because the Mach number is in the low
supersonic range, the density term in the k-e¢ model’s law of the wall 1s
small. The value of K1 x‘?ﬁ(p,’p )*/% ranges between 0.50 at y* = 100 to
1.45 at y* = 5000. By comparison, the distortion in the k-w model’s law
of the wall 1s just a fifth of these values.

While the k-¢ model solutions for both of these adverse pressure gradi-
ent cases are nearly as close to measurements as the k-w model solutions,
similar results should not be expected for higher Mach numbers. Many
compressible-flow experiments have been conducted for Mach numbers of 3
and less. Far fewer experiments have been done at higher Mach numbers.
Hence these results show how a model calibrated for the best data available
may not apply at higher Mach numbers.

The k-¢ model’s near-wall behavior has a significant impact on model
predictions, and Chien’s model happens to be optimum for these two flows.
The Jones-Launder (1972) and Launder-Sharma (1974) models, for exam-
ple, predict skin friction values more than twice measured values for these
two flows. Zhang et al. (1992) have developed a low-Reynolds-number k-¢
model that yields close agreement with constant-pressure boundary layer
data for Mach numbers up to 10. Interestingly, they note from the work
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x = 1.18 m.) for a Mach 4, adiabatic-wall boundary layer with an adverse
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of Coleman and Mansour (1991) that the exact Favre-averaged equation
for solenoidal dissipation, e,, includes a term proportional to the rate of
change of the kinematic viscosity, 7, as follows:

_des _ pes dv

dt T v odt (5-109)

which can be rewritten as

il (€
t \

\]

e

Y ... (5.110)
) =

=

This corresponds to an effective change of dependent variable in the ¢,
equation. Assuming a power-law viscosity law, le., p o T7 . the effec-
tive rescaled dependent variable would be p(l*”)e, Correspondmgly, the
exponent 5/4 in Equation (5.103) would become (n + 1/4). For a typical
value n = 7/10, the new coefficient would be 0.95. Hence this term should
yield only a slight improvement for the model’s distorted law of the wall.
Actually, through a series of closure approximations, Zhang et al. combine
this term with other terms and arrive at a rescaling that effectively leads
to using p~%%l¢,. This would correspond to replacing the exponent 5/4
by 1.86 which would yield even more distortion. It is unclear how Zhang
et al. have circumvented the inherent flaw in the k-¢ model for compress-
ible flows. Since virtually all of their applications to date have been for
low-Reynolds-number flows, it is possible that their low-Reynolds-number
damping functions penetrate far enough above the sublayer to offset the
behavior indicated in Equation (5.103).
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Turning to effects of surface heat transfer, Figure 5.6 compares com-
puted skin friction with a correlation of measured values [see Kline, et al.
(1981) — Flow 8201). As shown, the k-w model virtually duplicates the
Van Driest correlation, although noticeable differences appear when wall
temperature is reduced to one fifth of the adiabatic-wall temperature. 'The
k-¢ model predictions of Zhang et al. (1992) show a similar trend.

As the final application, consider compressible flow over roughened flat
plates. Note that this provides a test of the k-w model rough-surface bound-
ary condition on flows for which it has not been calibrated. Figure 5.7 com-
pares computed skin friction with the data summarized by Reda, Ketter
and Fan (1974). Computations have been done for Mach numbers of 0, 1
and 5 and dimensionless roughness height, k%, ranging from 0 to 100. For
each Mach number, the reference smooth-wall skin friction coefficient, ¢y,
corresponds to a momentum-thickness Reynolds number, Req, of 10,000.
As shown, computed skin friction falls well within experimental data scat-
ter.
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Figure 5.6: Computed and measured effects of surface cooling on skin fric-
tion for a Mach 5 flat-plate boundary layer; k-w model; - - - Zhang et
al. k-¢ model; o Van Driest correlation.
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Figure 5.7: Computed and measured effects of surface roughness on skin
friction for compressible flat-plate boundary layers; k-w model; o Reda,
Ketter and Fan.
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The computations also demonstrate consistency with the observation
originally made by Goddard (1959) that “the effect of surface roughness on
skin-friction drag is localized deep within the boundary layer at the surface
itself and is independent of the external flow, i.e., Mach number, per se,
is eliminated as a variable.” Consistent with Goddard’s observation, Mach
number has little effect on predicted ¢; /¢y, . Additionally, consistent with
Reda’s findings, computed skin friction departs noticeably from the smooth-
wall value for k}; values near 4 to 5 as opposed to Goddard’s correlation
which indicates no effect for k}} less than 10.

5.8 Shock-Induced Boundary-Layer Separa-
tion

One of the most interesting and challenging CFD problems is the interaction
-of a turbulent boundary layer with a shock wave. Many researchers have
analyzed this problem since the 1960’s, with varying degrees of success.
The earliest efforts were confined to algebraic models, largely because of
the long computing times required to solve the full Favre-averaged Navier-
Stokes equation. The fastest computer of the late 1960’s and early 1970’s
was the CDC 7600, a machine comparable in speed to a 50 MHz 80486
based microcomputer. Additionally, the best compressible-flow numerical
algorithms of that era were explicit time-marching methods that required
tens of thousands of timesteps to achieve a solution.

Wileay 11074) did the first soluitione to the F‘nvre_averageﬂ Navier-Stokes
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equation, using an advanced turbulence model, for shock-induced separa-
tion of a turbulent boundary layer. This early CFD study included six
computations, three for reflection of an oblique shock from a flat plate and
three for flow into a compression corner. Results of the study indicate that,
using a two-equation turbulence model, a reasonably accurate description
of the flowfield can be obtained for reflection of an oblique shock from a flat
plate. However, the numerical flowfields for the compression corner cases
differ significantly from the experimentally observed flowfields, even though
Mach and Reynolds numbers and shock strength are identical to those of
the flat-plate cases. Thus, a seemingly simple change in flow geometry
causes a major difference in predictive accuracy. To put these computa-
tions in proper perspective, note that the turbulence model used was the
Saffman-Wilcox (1974) k-w? model with surface boundary conditions given
by matching to the law of the wall. The numerical algorithm used was a
first-order accurate explicit time-marching procedure.

Since that time, computational methods have improved dramatically
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thanks to the innovative work of many researchers such as Beam and Warm-
ing (1976), Steger and Warming (1979), Roe (1981), Van Leer (1982), Mac-
Cormack {1985), and Roache and Salari (1990), to name just a few. As a
result of their innovations, converged solutions for separated flows can often
be obtained in less than 200 timesteps. A two-equation turbulence model
computation now takes about two hours of 80486-based microcomputer
CPU time for a shock-separated flow.

While great advances have been made in developing accurate and effi-
cient finite difference algorithms, far less improvement has been made with
turbulence models for such flows. The work of Viegas and Horstman {1979),
Viegas, Rubesin and Horstman (1985), Champney (1989) and Horstman
(1992) provides clear substantiation of this claim. They have applied many
turbulence models to shock-separated flows with almost universal results,

V1Z.:

1. too little upstream influence as shown by pressure starting to rise well
downstream of the measured beginning of adverse pressure gradient;

2. surface pressure in excess of measured values in the region directly
above the separation bubble;

3. skin friction and heat transfer higher than measured downstream of
reattachment;

4. velocity profiles downstream of reattachment that indicate flow de-
celeration in excess of corresponding measurements.

—n h A = 3 x m 1
e hand, by using wall functions and the k-¢ model, Viegas,

Horstman and Rubesin (1985) are able to remove Item 3 from this list.
On the other hand, they achieve only modest improvements in the other
items. This lack of success on the compression-corner problem, which has
persisted for more than a decade, is excellent testimony to the oft quoted
statement that turbulence modeling is the pacing item in CFD.
Most modern shock-separated computations are done without introduc-
ing wall functions. There is no evidence that the law of the wall holds on
separated regions, and its use via wall functions is a questionable approx-
imation. The primary motivation for using wall functions in large scale
computations that require substantial computer resources is in reducing
CPU time. Viegas, Horstman and Rubesin (1985), in effect, create a two-
layer turbulence model where their wall functions apply in the sublayer,
and the Standard k-¢ model applies above the sublayer. While their proce-
dure yields significant reduction in computing time, numerical results are
sensitive to the location of the grid point closest to the surface, y;'" . In fact,
there is no obvious convergence to a well defined limiting value as y5 — 0.
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Consequently, the value of yf is effectively an adjustable parameter in their
model equations, to be selected by the user. In practice, it is typical for
the user to fix y, at each location, rather than modify it locally as the
solution develops, which would be required to achieve a constant value of
uj . Thus, in practice, yg actually varies throughout the flow in a manner
that cannot be determined a priori, so that the sensitivity to its value is a
computational liability.

The sensitivity can be removed by using perturbation methods to de-
vise suitable wall functions. Wilcox (1989), for example, has deduced the
following compressible-flow wall functions for the k-w model:

u* = u, [ifn (uTy) + B — 0.48ury¢ + O((Iﬁ?)}
- 2
_ Puw Ur ury 2 -
k = T [1 +1.16 o ¢+ 0O(¢ )] > (5.111)
'EUT 1
"'_— 1—

where ¢ is the dimensionless pressure gradient parameter defined by

vy dP
pud d

¢ = (5.112)

As with the incompressible wall functions deduced for the incompressible
k—m model (gee Subsection A 7 1) the avnancione in Fanatinn {6 111 hava
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been denved assuming ¢ is a small parameter. Using these wall functions,
numerical solutions show very little sensitivity to placement of the grid
point closest to the surface.

Figure 5.8 compares computed and measured surface pressure for Mach
3 flow into a 24° compression corner using algebraic models, a one-equation
model, several two-equation models, and a second-order closure model. As
shown, none of the algebraic, one-equation or two-equation models provides
a satisfactory solution. Figure 5.9 illustrates a critical problem regarding
prediction of surface heating rates. Results are shown for three k-¢ models,
viz., the Jones-Launder (1972) model, the same model with compressibility
corrections devised by Rubesin (1990), and a two-layer k-¢ model developed
by Rodi (1991) that uses a one-equation model rather than wall functions.
As shown, the Jones-Launder model surface heat transfer, g, , is off scale
and 1s roughly triple the measured value. While the modified models predict
peak heating rates closer to measured values, differences between computed
and measured heat transfer are in excess of 25% throughout the flow.
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Figure 5.8: Comparison of computed and measured surface pressure for
Mach 3 flow into a 24° compression corner for several turbulence models.
[From Marshall and Dolling (1992) — Copyright © AIAA 1992 — Used
with permission.]
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Figure 5.9: Comparison of computed and measured surface pressure and
heat transfer for Mach 9.2 flow past a 40° cylinder flare. [From Horstman
(1992) — Copyright © AIAA 1992 — Used with permission.]

There has been substantial progress in the capability for prediction of
three-dimensional shock wave, turbulent boundary layer interactions. A
recent review by Knight (1993) describes the status of research for five ba-
sic geometries. Figure 5.10(a) illustrates the three-dimensional single fin,
arguably the most extensively studied such interaction. The deflection of
the fin surface by an angle & generates an oblique shock that interacts with
the boundary layer on the flat plate. This interaction is of some practical
interest, as it represents a geometric abstraction of a fin-body juncture for
a high-speed aircraft. Figure 5.10(b) compares computed and measured
surface pressure for My, = 2.9, @ = 20°, and Res = 9 - 10°, where 8., is
boundary-layer thickness upstream of the interaction. The comparison has
been made at a spanwise distance, z = 6.8, from the plane of symmetry.
Computations using the Baldwin-Lomax (1978) model (labeled “Knight”)
and Rodi’s (1991) k-¢ model (labeled “Horstman”) are in close agreement
with measurements. Similar close agreement has been obtained with exper-
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imental data for pitot pressure and yaw angle [Knight, et al. (1987)]. These
results imply that the flowfield is predominantly rotational and inviscid,
except within a thin region adjacent to the solid boundaries. This result is
similar to the triple-deck theory developed for interacting boundary layers
[e.g., Stewartson (1981)] and extended to non-separated three-dimensional
shock wave, turbulent boundary layer interactions by Inger (1986). Con-
sequently, the choice of turbulence model is unimportant for comparison
with all but the inner (lower deck) provided the upstream boundary layer
is correct. However, predicted skin friction and surface heat transfer are
very sensitive to the turbulence model chosen, and can exhibit significant
disagreement with experiment [Knight (1993)].
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(a) Flow Geometry (b) Surface pressure, z = 6.86,

Figure 5.10: Single-fin shock wave, boundary layer interaction; Mach 2.9.
[Figure provided by D. D. Knight.]

Figure 5.11(a) shows the double-fin geometry. This geometry is of prac-
tical interest as it represents a geometric simplification of a hypersonic inlet
using sidewall compression, or a sidewall interaction for a supersonic mixed
compression inlet. The two fins generate opposing shocks that intersect
on the centerline, and interact with the boundary layers on the flat plate
and fin. Figure 5.11(b) compares computed [Narayanswami, Horstman and
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Knight (1993)] and measured peak surface pressure (on the centerline) for
My, =83, a =15° and Res_ = 1.7-10°. The turbulence models are the
Baldwin-Lomax (1978) model and the Rodi (1991) version of the k-e¢ model.
The predictions are reasonably close except at the peak near z/6,, = 10.
Baldwin-Lomax predictions are within about 20% of measurements, while
k-¢ predictions differ by as much as 45%. It is interesting to note that the
peak pressure is approximately half the theoretical inviscid level because of
the viscous-inviscid interaction. Reasonable agreement is obtained between
computed and measured pitot pressure and yaw-angle profiles. Compari-
son of computed eddy viscosity shows significant differences, however. As a
result, Knight concludes that, similar to the single-fin case, the flow is dom-
inantly rotational and inviscid, except within a thin region near the surface.
The turbulence model has a very significant effect on computed heat trans-
fer, and neither model yields acceptable results (Figure 5.12). Although
the k-w model has not been applied to these flows, we can reasonably con-
clude that further research is needed in the development and application of
turbulence models for three-dimensional shock wave, turbulent boundary

layer interactions.
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Figure 5.11: Double-fin shock wave, boundary layer interaction; Mach 8.3.
¢ Experiment; —— Baldwin-Lomax; - - - Rodi; [Figure provided by D. D.
Knight.]
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Figure 5.12: Transverse profiles of flat plate surface heat transfer at stream-
wise locations of (a) /6 = 5.08, (b) 6.40 and (c) 7.78 for a double-fin
shock wave, boundary layer interaction; Mach 8.3. [Figure provided by D.
D. Knight.]
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Problems

5.1 Derive the Reynolds-averaged momentum-conservation equation for
compressible flow.

5.2 Derive the Favre-averaged Reynolds-stress equation [Equation (5.39)].

5.3 Verify that Equations (5.54) and (5.55) are equivalent.

where A is a constant. Use this approximation to evaluate the following

integral. )
ut = /‘“ ‘/Z du

JO V Puw
Compare your result with Equation (5.108).

5.5 To use the WKB method in solving an equation such as

d?*w 9
d—vz-——Af(v)w:O, A— o0

we assume a solution of the form
o0
w(v) ~ exp [A Z Sn(v))\‘”] ~ exp [ASo(v) + Si(v) + O(A™1)]
n=0
(a) Verify that Sp(v) and S;(v) are given by
So(v) =% / vV f(v)dv + constant

Si(v) = £n If('v')|_l/4 + constant

(b) Use the result of Part (a) to show that the leading-order solution to
Equation (5.87) is given by Equations (5.89) and (5.90).

{(c) Now, complete the derivation of Equation (5.92).
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5.6 Derive the compressible law of the wall implied by the Cebeci-Smith
model.

5.7 Using the compressible log-layer solution, show that the turbulence
length scale for the k-w model defined by £ = k'/2/w varies linearly with
distance from the surface in the compressible log layer.

5.8 Using the compressible log-layer solution, show that the turbulence
length scale for the k-¢ model defined by £ = k32 /¢ varies linearly with

distance from the surface in the compressible log layer.



Chapter 6

Beyond the Boussinesq
Approximation

The Boussinesq eddy-viscosity approximation assumes the principal axes
of the Reynolds-stress tensor, 7;;, are coincident with those of the mean
strain-rate tensor, Sj;, at all points in a turbulent flow. This is the analog of
- Stokes’ approximation for laminar flows. The coefficient of proportionality
between 7;; and S;; is the eddy viscosity, yr. Unlike the molecular viscos-
ity which is a property of the fiuid, the eddy viscosity depends upon many
details of the flow under consideration. It is affected by the shape and na-
ture (e.g., roughness height) of any solid boundaries, freestream turbulence
intensity, and, perhaps most significantly, flow history effects. Experimen-
tal evidence indicates that flow history effects on 7;; often persist for long
distances in a turbulent flow, thus casting doubt on the validity of a simple
linear relationship between 7;; and S;;. In this chapter, we examine several
flows for which the Boussinesq approximation yields a completely unsatis-
factory description. We then examine some of the remedies that have been
proposed to provide more accurate predictions for such flows. Although
our excursion into the realm beyond the Boussinesq approximation is brief,
we will see how useful the analytical tools developed in preceding chapters
are for even the most complicated turbulence models.

6.1 Boussinesq-Approximation Deficiencies

While models based on the Boussinesq eddy-viscosity approximation pro-
vide excellent predictions for many flows of engineering interest, there are
some applications for which predicted flow properties differ greatly from

213
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corresponding measurements. Generally speaking, such models are inaccu-
rate for flows with sudden changes in mean strain rate and for flows with
what Bradshaw (1973a) refers to as extra rates of strain. It is unsur-
prising that flows with sudden changes in mean strain rate pose a problem.
The Reynolds stresses adjust to such changes at a rate unrelated to mean
flow processes and time scales, so that the Boussinesq approximation must
fail. Similarly, when a flow experiences extra rates of strain caused by rapid
dilatation, out of plane straining, or significant streamline curvature, all of
which give rise to unequal normal Reynolds stresses, the approximation
again becomes suspect. Some of the most noteworthy types of applications
for which models based on the Boussinesq approximation fail are:

1. flows with sudden changes in mean strain rate;
2. flow over curved surfaces;

flow in ducts with secondary motions;

flow in rotating and stratified fluids;

three-dimensional flows;

> o oa we

. flows with boundary-layer separation.

As an example of a flow with a sudden change in strain rate, consider the
experiment of Tucker and Reynolds (1968). In this experiment, a nearly
1sotropic turbulent flow is subjected to uniform mean normal strain rate
attending the following mean velocity field:

U = constant, V =—-ay, W =az (6.1)
The coefficient g is the constant strain rate. The strain rate is maintained
for a finite distance in the z direction in the experiment and then removed.
The turbulence becomes anisotropic as a result of the uniform straining, and
gradually approaches isotropy downstream of the point where the straining
ceases. Wilcox and Rubesin (1980) have applied their k-w? model to this
flow to demonstrate the deficiency of the Boussinesq approximation for
flows in which mean strain rate abruptly changes F igure 6.1 compares the

CGmpuucd and measured distortion parameter, n defined Uy
k=L (6.2)
2 + wf?

As shown, when the strain rate is suddenly removed at £ ~ 2.3 m, the
model predicts an instantaneous return to isotropy, i.e., all normal Reynolds
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Figure 6.1: Computed and measured distortion parameter for the Tucker-
Reynolds plane-strain flow; k-w? model; o ® A Tucker-Reynolds. {From
Wilcox and Rubesin (1980).]

stresses become equal. By contrast, the turbulence approaches isotropy at
a finite rate. Note also that the model predicts a discontinuous jump in K
when the straining begins at = 0 m. Interestingly, if the computation
is extended downstream of ¢ = 2.3 m without removing the strain rate,
the model predicted asymptotic value of K matches the measured value at
z = 2.3 m, but approaches this value at a slower than measured rate.

As an example of a flow with significant streamline curvature, consider
flow over a curved surface. Meroney and Bradshaw (1975) find that for
both convex and concave walls, when the radius of curvature, R, is 100
times the local boundary-layer thickness, 8, skin friction differs from its
corresponding plane-wall value by as much as 10%. By contrast, laminar
skin friction changes by about 1% for §/R = .01. Similar results have been
obtained by Thomann (1968) for supersonic boundary layers; for constant-
pressure flow over surfaces with § /R ~ .02, heat transfer changes by nearly
20%. Clearly, many practical aerodynamic surfaces are sufficiently curved
to produce significant curvature effects. For such flows, a reliable turbulence
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Figure 6.2: Computed and measured skin friction for flow over a convex
surface with constant pressure; - - - k-w model without curvature correction;
k-w model with curvature correction; o So and Mellor.
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Figure 6.2 compares computed and measured skin friction for flow over
a convex wall. The flow, experimentally investigated by So and Mellor
(1972), has nearly constant pressure. The wall is planar up to ¢ = 4.375
ft and has 6/R ~ .075 beyond that location. As shown, computed skin
friction is generally 30% to 40% higher than measured.

Wilcox and Chambers (1977) propose a curvature correction to the tur-
bulence energy equation that provides an accurate prediction for flow over
curved surfaces. Appealing to the classical stability arguments for flow
over a curved wall advanced by von Karman (1934), they postulate that
the equation for k should more appropriately be thought of as the equation
for v'2. Consequently, Wilcox and Chambers add a term originating from
the centrifugal acceleration in the exact v2 equation. For the Standard
k-w model, the boundary layer form of the equations for flow over a curved
surface with radius of curvature, R, are as follows.

UQ-(-J- + V(?‘—Uz—lif- + TB—I-(V-FI/'P) Qg—g' -|, vy =Zc— (6.3)
Ox ady pdr Jdy | R /] w

8k 0k 9 USU au U\’ ., 8 . Ok
Ua +V—é— —VT,I—e'a (B_y_ﬁ) —f k+5§[(u+0' VT)a—y']
(6.4)
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The last term on the left-hand side of Equation (6.4) is the Wilcox-
Chambers curvature-correction term. As shown in Figure 6.2, including
the curvature term brings model predictions into much closer agreement
with measurements. A perturbation analysis of Equations (6.3) to (6.5) for

the log layer (see Problems) shows that the model predicts a modified law
of the wall given by
[1 - ﬁgi} v_ —1—€n (M) + constant (6.6)
R ur K v
with Bp = 8.8. This is very similar to the modified law of the wall de-
duced by Meroney and Bradshaw (1975), who conclude from correlation of
measurements that Sp =~ 12.0.

Other curvature corrections have been proposed for two-equation mod-
els, and Lakshminarayana (1986) presents a comprehensive overview. Of-
ten, in the context of the k-e model, a correction term is added to the e
equation. Launder, Priddin and Sharma (1977), for example, replace the
coefficient C [see Equation (4.42)] by

Cez = Cea (1 — 0.2Ri7) (6.7)

where Rir is the turbulence Richardson number defined by

Rip = (6.8)
This type of correction yields improved accuracy comparable to that ob-
tained with the Wilcox-Chambers curvature correction.

While two-equation model curvature-correction terms greatly improve
predictive accuracy for flow over curved walls, they are ad hoc modifica-
tions that cannot be generalized for arbitrary flows. The Wilcox-Chambers
curvature term is introduced by making analogy to the full Reynolds-stress
equation and by assuming that k behaves more like v'2 than the turbulence
kinetic energy for such flows. This implicitly assumes that a full second-
order closure model will naturally predict effects of streamline curvature.
We will see in Section 6.3 that this is indeed the case.

These two applications alone are sufficient to serve as a warning that
models based on the Boussinesq approximation will fail under some fre-
quently encountered flow conditions. We have also seen in preceding chap-
ters that such models are unreliable for separated flows, especially when the
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flow 1s compressible. Such models also fail to predict secondary motions
that commonly occur in ducts, and in the absence of ad hoc corrections,
fail to predict salient features of rotating and stratified flows. While these
are more subtle and specialized applications, each failure underscores the
fact that models based on the Boussinesq approxtmation are not universal.
The following sections explore some of the proposals made to remove many
of these deficiencies in a less ad hoc fashion.

6.2 Nonlinear Constitutive Relations

One approach to achieving a more appropriate description of the Reynolds-
stress tensor without introducing any additional differential equations is to
assume the Boussinesq approximation is simply the leading term in a series
expansion of functionals. Proceeding with this premise, Lumley (1970)
and Saffman (1976) show that for incompressible flow the expansion must
proceed through second order according to

2 oo Pk, o Pk,
Tij = = 3PROI T+ LPTOi — B 5 OmnonmCij — ;_z‘bikbkj
k k k
—D% (SikQu; + Sje Qi) — F ‘%Qm,,nmaﬁ - G%Q,—knk,- (6.9)
where B, C, D, F and G are closure coefficients, and k/w? may be equiv-
alently written as k3/e?. Also, S;; and §;; are the mean strain-rate and

rotation tensors, viz.,

=9\ 3z; * e )

In order to guarantee that the trace of 7;; is —2pk, we must have
B = —C/3 and F = —G/3. Equation (6.9) can be simplified by requir-
ing it to conform with certain fundamental experimental observations. In
the experiment of Tucker and Reynolds (1968), for example, the normal
Reynolds stresses are related approximately by

[

Tex R =(Tyy + Toz) (6.11)

(3]

N

Substituting Equations (6.1) and (6.11) into Equation (6.9) shows that
necessarily C' = 0. In addition, lbbetson and Tritton (1975) show that
homogeneous turbulence in rigid body rotation decays without developing
anisotropy. This observation requires G = 0. Finally, if Equation (6.9) with
C = (G = 0 is applied to a classical shear layer where the only significant
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velocity gradient is dU/dy, Equation (6.11) again applies with 7., and
T,. interchanged, independent of the value of D. Thus, Saffman’s general
expansion simplifies to:

2 k
Tij = -—gpk&j - QﬂTsij — Dg—g (Sgkﬂkj -+ Sjkﬂm') (6.12)

lowing simp .lm ar con tltutwe relation for their k-w? model
) 4 1 ar7 \ Q . LIQ
2 LOUg 0 pE(O kMkJ + oﬂ,uk,)
Tij = —=pkb;i; + 2ur Sij — =06 | + = (6.13)
3 3 0z 9 (B*w? + 25 Snm)

The primary usefulness of this prescription for the Reynolds-stress tensor
is in predicting the normal stresses. The coefficient 8/9 is selected to guar-
antee

W?ivZ i w?=4:2:3 (6.14)
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throughout the log layer and much of the defect lay he model faithfully

predicts the ratio of the normal Reynolds stresses for boundary layers with
adverse pressure gradient where the ratios are quite different from those
given in Equation (6.14). Bardina, Ferziger and Reynolds (1983) have used
an analog of this stress/strain-rate relationship in their Large Eddy Simu-
lation studies. However, the model provides no improvement for flows over
curved surfaces.

Speziale (1987b) proposes a nonlinear constitutive relation for the k-¢

rradal ao FAll e (Fan o S ] Y
HIUUCL ad 1010WS \LUL lul.,uulplcubluu-' uUW

N

2 k3
Tij = —gpkéij + Q}LTS,']‘ + 4C])Cﬁp—2 (Sz-kSk, 3Smn5nm 1J)

+4CE056—2 (,;'z] Smm J) (6-15)

where §ij is the frame-indifferent Oldroyd derivative of S;; defined by

89Sy . 85y oU; au,
T Pl el v

~

g’,-j: Sk,' (6.16)

The closure coefficients Cp and Cg are given by
Cp=Cg =168 (6.17)

In addition to its elegance and simplicity, this model satisfies three key
criteria that assure consistency with properties of the exact Navier-Stokes
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equation. First, like the Saffman and Wilcox-Rubesin models, it satisfies
general coordinate and dimensional invariance. Second, it satisfies a lim-
ited form of the Lumley (1978) realizability constraints (i.e., positiveness
of k = —%'r,-z-). Third, it satisfies material frame indifference in the limit of
two-dimensional turbulence. The latter consideration leads to introduction
of the Oldroyd derivative of S;;.

The appearance of the rate of change of S;; in the constitutive relation
is appropriate for a viscoelastic-like medium. While, to some degree, the
Speziale constitutive relation includes rate effects, it still fails to describe
the gradual adjustment of the Reynolds stresses following a sudden change
in strain rate. For example, consider the Tucker-Reynolds flow discussed
above. The Oldroyd derivative of Sj; is given by

o] 4] 0
Syy=S:.= —2a*; all other S;;=0 (6.18)

Clearly, when the strain rate is abruptly removed, the Speziale model pre-
dicts that the normal Reynolds stresses instantaneously return to isotropy.
Hence, the model is no more accurate than the Wilcox-Rubesin model for
such flows.

For flow over a curved surface, the contribution of the nonlinear terms
in the Speziale model to the shear stress is negligible. Consequently, this
model, like the Wilcox-Rubesin model, offers no improvement over the
Boussinesq approximation for curved-wall flows.

While the model fails to improve model predictions for flows with sudden

changes in strain rate and flows with curved streamlines, it does make a
dramatic difference for flow through a rectangular duct [see Figure 6.3(a)]

22020 ARl Laalh 2L WY vl sas w AL VAR WAGL UMY IBSVE LAl U\

For such a flow, the difference between 7,, and 7,y accordlng to Speziale’s
relation is, to leading order,

dU\*  (oU\?

0z Jy

while, to the same order, the shear stresses are

o ou ou _ , pk® 8U 8U
Tey = KT dy’ Tor =M e = CoCy €2 Oy 0z (6.20)

(6.19)

Having a difference between 1., and 7, is critical in accurately simu-
lating secondary motions. Using his model, Speziale {(1987b) has computed
flow through a rectangular duct. Figure 6.3(b) shows computed secondary
flow streamlines, which clearly illustrates that there is an eight-vortex sec-
ondary flow structure as seen in experiments. Using the Boussinesq approx-
imation, no secondary flow develops, so that the Speziale model obviously
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(a) Flow geometry (b) Secondary flow streamlines

Figure 6.3: Fully developed turbulent flow in a rectangular duct. [From
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Speziale (1991) — Published with permission of author ]

does a better job of capturing this missing feature. Although Speziale
presents no comparison of computed and measured results, the net effect
of the nonlinear terms is very dramatic.

Speziale’s nonlinear constitutive relation also improves k-¢ model pre-
dictions for the backward-facing step. Focusing on the experiment of Kim,
Kline and Johnston (1980), Thangam and Speziale (1992) have shown that

using the nonlinear model with a low-Revnolde-number k-¢ model increases
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predlcted reattachment length for this flow from 6.3 step heights to 6.9 step
heights. The measured length is 7.0 step heights.

Rodi (1976) deduces a nonlinear constitutive equation by working with
a model for the full Reynolds-stress equation [Equation (2.34)]. Rodi begins
by approximating the difference between convective and turbulent transport
terms for incompressible flow as:

Orij d1i; a [ On;
ot + U Oz Oz [ oz +C”k}
n T8 [ok + Uy Ok 9 [y + ,JJ’“,]I (6.21)
k Iat 61‘1; Bmk l_ 8mk 2p ' /

This approximation yields a nonlinear algebraic equation that can be used
to determine the Reynolds-stress tensor, viz.,

gl OWUwm A\ _ 00 Ui
ok {Tmn oz, pe} = —Tk 9%, T]kaxk + ¢i; — 1;; (6.22)
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With suitable closure approximations for the dissipation tensor, ¢;;, and
the pressure-strain correlation tensor, II;;, Equation (6.22) defines a non-
linear constitutive relation. More precisely, Gatski and Speziale (1992)
regard such models as strain-dependent generalizations of nonlinear consti-
tutive relations. That is, these models can be written in a form similar to
Saffman’s expansion [Equation (6.9)]. The various closure coefficients then
become functions of certain Reynolds-stress tensor invariants. The com-
plexity of the constitutive relation depends on the closure approximations,
and alternative approximations have been tried by many researchers [see
Lakshminarayana (1986)]. A model derived in this manner is known as an
Algebraic Stress Model or, in abbreviated form, as an ASM.

When an ASM is used for a flow with zero mean strain rate, Equa-
tion (6.22) simplifies to

k
TU = -6- (Hij —_ Eij) (623)
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we will discuss in Subsection 6.3.1, in the limit of vanishing mean strain
ate

th

('D

e [ 2 ° 9
i = Ciy (Ta‘j + gﬂkéij) and € — 2pedy; (6.24)

where C1 1s a closure coefficient. Hence, when the mean strain rate vanishes,
the algebraic stress model simplifies to

Tij = —%pk&,'j (6.25)

This shows that the ASM predicts an instantaneous return to isotropy in
the Tucker-Reynolds flow discussed above. Hence, like the Wilcox-Rubesin
and Speziale nonlinear constitutive relations, the ASM fails to properly
account for sudden changes in the mean strain rate. The ASM does provide
significant improvement for flows with streamline curvature however. So
and Mellor (1978), for example, show that excellent agreement between
computed and measured flow properties is possible using an ASM with the
k-¢ model for boundary layers on curved surfaces. The model predicts most
qualitative features and provides fair quantitative agreement for flows with
secondary motions as shown, for example, by Demuren (1991).

In summary, the primary advantage of nonlinear constitutive relations
appears to be in predicting the anisotropy of the normal Reynolds stresses.
The most important application for which this is of interest is for flow in
ducts with secondary motions. In the case of algebraic stress models, greatly
improved predictions can be obtained for flows with nontrivial streamline
curvature. It is doubtful that the nonlinear stress models discussed in this
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section yield any significant improvement for separating and reattaching
flows. While the k-¢ model’s predicted reattachment length is closer to
the measured length when the nonlinear model is used, it is not clear that
a better description of the physics of this flow has been provided. The
excellent solutions obtained with the Standard k-w model [see Section 4.10]
strongly suggest that the k-c¢ model’s inaccuracy for such flows has nothing
to do with the basic eddy-viscosity assumption. While the improvements
attending use of a nonlinear constitutive relation with two-equation models
are nontrivial, the models still retain many of their deficiencies.

6.3 Second-Order Closure Models

Although it poses a more formidable task with regard to establishing suit-
able closure approximations, there are potential gains in universality that
can be realized by devising a second-order closure model. As we will
see, such models naturally include effects of streamline curvature, sudden
changes in strain rate, secondary motions, etc. We will also see that there
is a significant price to be paid in complexity and computational difficulty
for these gains.

Virtually all researchers use the same starting point for developing such
a model, viz., the exact differential equation describing the behavior of
the Reynolds-stress tensor, 7;; = —pu;ug. As shown in Chapter 2, the
incompressible form of the exact equation is

aTij 7 6Tij BU] 6Ut_l_ N ) [ 37',:]- L ]
+Ug = —Tik —Tji tepi - b— ly—= + Ciit 1 (6.26)
ot k(?a:k kamk Jmaxk J J 33’3;;[ T JJ \ ]
where
ou. Ouk
Iy =p | =%+ =+ 6.2
1= (ij 6:17,-) (6.27)
dul 5u
ij = 2 6.28
G =2ga (628)
and
Cijr = pujujuy + p'uibjr + p'ujbir (6.29)

Inspection of Equation (6.26) shows why we can expect a second-order
closure model to correct some of the Boussinesq approximation’s shortcom-
ings. First, since the equation automatically accounts for the convection
and diffusion of 7;;, a second-order closure model will include effects of flow
history. The presence of dissipation and turbulent-transport terms indicates
the presence of time scales unrelated to mean-flow time scales, so history
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effects should be more realistically represented than with a two-equation
model. Second, Equation (6.26) contains convection, production and (op-
tionally) body-force terms that respond automatically to effects such as
streamline curvature, system rotation and stratification, at least qualita-
tively. Thus, there is potential for naturally representing such effects with
a well-formulated second-order closure model. Third, Equation (6.26) gives
no a priori reason for the normal stresses to be equal even when the mean
strain rate vanishes. Rather, their values will depend upon initial condi-
tions and other flow processes, so that the model should behave properly
for flows with sudden changes in strain rate.

Rotta (1951) was the first to accomplish closure of the Reynolds-stress
equation, although he did not carry out numerical computations. Many
researchers have made important contributions since the pioneering efforts
of Rotta. Two of the most important conceptual contributions have been
made by Donaldson and Lumley. Donaldson [c.f. Donaldson and Rosen-
baum (1968)] was the first to advocate the concept of invariant modeling,

: Lligh: 1 m
i.e., establishing closure approximations that rigorously satisfy coordinate

invarlance. Lumley (1978) has developed a systematic procedure for repre-
senting closure approximations that guarantees realizability, 1.e., that all
physically positive-definite turbulence properties be computationally posi-
tive definite and that all computed correlation coefficients lie between 1.
The next subsection discusses these, and other, concepts and their impact
on closure approximations.

6.3.1 Closure Approximations

To close Equation (6.26), we must model the dissipation tensor, €;j, the
turbulent-transport tensor, Cj;x, and the pressure-strain correlation tensor,
II;;. Because each of these terms is a tensor, the approximations required
for closure can assume much more elaborate forms compared to approxi-
mations used for the simpler scalar and vector terms in the &£ equation. In
this subsection, we will discuss some of the most commonly used closure
approximations.

Dissipation: Because dissipation occurs at the smallest scales, most
modelers use the Kolmogorov (1941) hypothesis of local isotropy, which
implies

2
€j = gpcé,fj (6.30)
where
Ou) Ou;

E=V
6l'k 8:ck

(6.31)
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The scalar quantity ¢ is exactly the dissipation rate appearing in the turbu-
lence kinetic energy equation. Contracting Equation (6.26) shows that this
must be the case. As with simpler models, we must establish a procedure
for determining ¢. In most of his work, for example, Donaldson has specified
¢ algebraically, similar to what is done with a one-equation model. Most
researchers use the € equation as formulated for the k-¢ model. Wilcox and
Rubesin (1980) and Wilcox (1988b) compute ¢ by using an equation for the
specific dissipation rate.

Since the dissipation is in reality anisotropic, particularly close to solid
boundaries, some efforts have been made to model this effect. Generalizing
a low-Reynolds-number proposal of Rotta (1951), Hanjali¢ and Launder
(1976), for example, postulate that

2
€ij = -3-p€6,;_,‘ + 2fspebi; (6.32)
where b;; is the dimensionless Reynolds-stress anisotropy tensor, viz.,

b — _ (Tt 5PkG:
N \ 2pk

and f, is a low-Reynolds-number damping function, which they choose
empirically to vary with turbulence Reynolds number, Rer = k%/(ev),
according to

—1
fs = (1 + T'O'RGT) (6.34)

bulent Tr
Turbulent Transport: As with the turbulence energy e

sure fluctuations, as well as triple products of velocity fluctuations, appear
in the tensor C”k. Definitive experimental data are unavailable to provide
any guidance for modeling the pressure-correlation terms, and they are ef-
fectively ignored. The most common approach used in modeling Cjjj 18
to assume a gradient transport process. Donaldson (1972), for example,
argues that the simplest tensor of rank three that can be obtained from
the second-order correlation 7;; is 07z /Ox;. Since Cjj is symmetric in all
three of its indices, he concludes that

6Tjk + 6T,§k + 07'5]'

Cijk ~ 6$5 81'_7‘ 6:8k

(6.35)
This tensor has the proper symmetry, but is not dimensionally correct. We

require a factor whose dimensions are length? /time — a gradient diffusivity
— and the ratio of k?/e¢ has been employed by Mellor and Herring (1973)
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and Launder, Reece and Rodi (1975). Using the notation of Launder et al.,
the final form of the closure approximation is

20 K- [aTjk + 6% + 87-,-j]

Cijk o 3 31‘,‘ 3xj 0:61‘,

(6.36)

where C, ~ 0.11 is a scalar closure coefficient.
Launder, Reece and Rodi also postulate a more general form based on
ana'lysis of the transport equation for C;;z. Through a series of heuristic

arguments, they infer the following alternative closure approximation
k aT'k 67‘,;k (97’"
Ciizx = —C'— |rim == + Tip=——=+ 7 2 6.37
ik spE im aﬂ,‘m + Jma:tm + Tem 8a:m ( )

where C} = 0.25 is also a scalar closure coefficient.

Pressure-Strain Correlation: The tensor II;;, which is often referred
to as the nroqanp-qh-mn redistribution term. has received the greatest,
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amount of attention from turbulence modelers. The reason for this interest
1s twofold. First, being of the same order as production, the term plays
a critical role in most flows of engineering interest. Second, because it
involves essentially unmeasurable correlations, a great degree of cleverness
and ingenuity is required to establish a rational closure approximation.

To determine pressure fluctuations in an incompressible flow we must,
in principle, solve the following Poisson equation for p’.

l_.,, AU, 0u; 52 .
Vi = 2L —~ .
P P = Ox; Ox; Oz;0z; (u u i uJ) (6.38)

This equation follows from taking the divergence of the Navier-Stokes equa-
tion and subtracting the time-averaged equation from the instantaneous
equation. The classical approach to solving this equation is to write p’ as
the sum of two contributions, viz.,

p, = p:’slow + p:'apid (639)

By construction, the slow and rapid pressure fluctuations satisfy the fol-
ln\mnn‘ eauations

M rauatiianid.

T, _ d? y

pV Phtow = ~ G207, (u )y — uj) (6.40)
1 9 oU; au;
Pv prapzd 2'3?} oz, (641)
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The general notion implied by the nomenclature is changes in the mean
strain rate contribute most rapidly to p:,apid because the mean velocity
gradient appears explicitly in Equation (6.41). By contrast, such effects
are implicitly represented in Equation (6.40). The terminology slow and
rapid should not be taken too literally, however, since the mean strain rate
does not necessarily change more rapidly than u}«]

For homogeneous turbulence, these equa,tlons can be solved in terms of

appropriate Green’s functions, and the resulting form of "

[A% &4

OUg

Hz] = Az] + Mz]kl Oz 0

(6.42)

where A;; is the slow pressure strain and the tensor M;;pi0Uy [0z is
the rapid pressure strain. The tensors A;; and M;j;; are given by the
following.

1 7/ /(8 w)\ 02 (uhu)) dy s
1“"_z_lh_j./ k ) dyedyr |x —y| 4%

Miju = / ] / (aae, ) g;‘i de_s_ ny (6.44)

The integration range for Equations (6.43) and (6.44) is the entire flow-
field. Additionally, for inhomogeneous turbulence, the second term in Equa-
tion (6. 42) becomes an integral with the mean velocity gradient inside the
ml.egr and. This empuaslzes a buObeOI‘ﬂmg of smgxe—polm closure schemes
that has not been as obvious in any of the closure approximations we have
discussed thus far. That is, we are postulating that we can accomplish
closure based on correlations of fluctuating quantities at the same physi-
cal location. The pressure-strain correlation very clearly is not a localized
process, but rather, involves contributions from every point in the flow.
This would suggest that two-point correlations, i.e., products of fluctuating
properties at two separate physical locations, are more appropriate. Nev-
ertheless, we expect contributions from more than one or two large eddy
sizes away to be negligible, and this would effectively define what is usually
referred to as the locally homogeneous approximation. Virtually all
modelers assume that turbulent flows behave as though they are locally
homogeneous, and use Equation (6.42).

The forms of the tensors A;; and M;;; must adhere to a variety of
constraints resulting from the symmetry of indices, mass conservation and
other kinematic constraints. We know, for example, that the trace of Il;;
must vanish and this is true for the slow and rapid parts individually. Rotta
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(1951) postulates that the slow pressure-strain term, often referred to
as the return-to-isotropy term, is given by

2
Aij = 01% (T'ij + ngéij) (6.45)

where (' 1s a closure coefficient whose value can be inferred from measure-
ments [Uberoi (1956)] to lie in the range

14<C; <18 (6.46)

Turning now to the rapid pressure strain, early research efforts of
Donaldson [Donaldson and Rosenbaum (1968)], Daly and Harlow (1970),
and Lumley (1972) assumed that the rapid pressure strain is negligible
compared to the slow pressure strain. However, Crow (1968) and Reynolds
(1970) provide simple examples of turbulent flows for which the effect of
the rapid pressure strain far outweighs the slow pressure strain.

Launder. Reece and Rodi (1975) have devised a particularlv eleeant
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closure approximation based almost entirely on kinematical considerations.
Building upon preliminary analysis of Rotta (1951), they write M,z in
terms of a tensor a;;z; as follows.

Mijxt = aijrr + a5k (6.47)

This relation is strictly valid only for homogeneous turbulence. Rotta
demonstrates that the tensor a;;;; must satisfy the following constraints:

Aijkl = Qrjki = Qgji (6.48)
and
aiiet =0,  aij1 = —27y (6.49)

Launder et al. propose that the fourth-rank tensor a;;z; can be expressed
as a linear function of the Reynolds-stress tensor. The most general tensor,
linear in 7;;, satisfying the symmetry constraints of Equation (6.48) is

aijei = —abpjm; — B(beTij + b1 Tk + Sk mrj + 8ijmk)
—CQ(SHTH + [7]61,;6],]' + U((S;k&,'j -+ 51.,'6,715)][3]6 (650)
where «, 3, C2, n and v are closure coefficients. Invoking the conditions

of Equation (6.49), all of the coefficients can be expressed in terms of Cs,
vizZ.,

_402-'—10 . 3C; +2 . 50C, + 4 _2002-}-6
=T PE T T v T (69D
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Finally, combining Equations (6.47) through (6.51), we arrive at the well-
known LRR model for the rapid pressure strain.

LRR Rapid Pressure-Strain Model:

ou . 1 - 1 .
Mz‘jkl—k = —&{ P — =Pebij | — B | Dij — =Dirbij | — 7pkSij (6.52)
6:81 3 3

[a) 0y
rr UDTB_ 8 L Tm @er

Pi= i o S and Dy = T 4 Tjm
* 0Cm I % m J Jz; I By

(6.53)

84Cy 5 802 600, — 4
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Note that for compressible flows, the mean strain-rate tensor, S;;, is usually
replaced by S;; — %Skk 6;; in Equation (6.52).

One of the most remarkable features of this closure approximation is
the presence of just one undetermined closure coefficient, namely, C5. The

a=

0.4 < Cy < 0.6 (6.54)

valig of €Y hoo hann agtahli i ict 1
value of €, has been established by comparison of model predictions with

measured properties of homogeneous turbulent flows. Launder, Reece and
Rodi (1975) suggested using Cy = 0.40. Morris (1984) revised its value up-
ward to Cy = 0.50, while Launder (1992) currently recommends Cy = 0.60.
Section 6.4 discusses the kind of flows used to calibrate this model.
Bradshaw (1973b) has shown that there is an additional contribution
to Equations (6.43) and (6.44) that has a nontrivial effect close to a solid
boundary. It is attributed to a surface integral that appears in the Green '8
function for Equation (6.38). This has come to be known as the pressure-
echo effect or wall-reflection effect. Launder, Reece and Rodi (1975)
propose a near-wall correction to their model for Il;; that explicitly in-
volves distance from the surface. Gibson and Launder (1978) and Craft and
Launder (1992) propose alternative models to account for the pressure-echo

effect. For example, the LRR wall-reflection term, Hg}v), 18
€

2 1312
7 (7ij + pkbij) — 0.015(Pyj — Dij) | ——= (6.55)

(w) _
n$ = 10.125 3

where n is distance normal to the surface.

More recent efforts at devising a suitable closure approximation for Il;;
have focused on developing a nonlinear expansion in terms of the anisotropy
tensor, b;;, defined in Equation (6.33). Lumley (1978) has systemati-
cally developed a general representation for II;; based on Equations (6.38)
through (6.44). In addition to insisting upon coordinate invariance and
other required symmetries, Lumley insists upon realizability. As noted
earlier, this means that all quantities known to be strictly positive must be
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guaranteed to be positive by the closure model. Additionally, all computed
correlation coefficients must lie between £1. This limits the possible form
of the functional expansion for II;;. Lumley argues that the most general
form of the complete tensor 1I,; for incompressible flow is as follows.

Lumley Pressure-Strain Model:

1 \
ILi; = aopebij + aype (bikbjk- 3110 | + azpkS;;
%pk (G3bki5iic + 4bmblm5mlc) 'z}ﬁJ

1
+pk (asbriSik + asbribim Smi) ( ikbrj — 5115@')
2
+azpk (biksjk + b Sik — §bk151k5ij)

2
+agpk (bikbklsjl + b br Sy — '?:bklblmsmkéij)
+agpk (bix Qjx + b; k) + aropk (bikbeir + bjebriQir) (6.56)

The eleven closure coefficients are assumed to be functions of the tensor
invariants /7 and 1], ie.,

a; = a,’(II,III), 1l = b,'jb,;j, I1I = b,‘kb“bu (657)

The tensor €2;; is the mean rotation tensor. The LRR model can be shown
to follow from Lumley’s general expression when nonlinear terms in b;; are
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A similar, but simpler, nonlinear model has been postulated by Speziale,
Sarkar and Gatski (1991). For incompressible flows, this model, known as
the SSG model, is as follows.

SSG Pressure-Strain Model:

U 1
M = - (Clpf + Cl Tinn S ) bij + Cape (bmbkj - gbmnbnméu)

2
+ (Cg — C3V II) pkSi; + Capk (biijk + b2 Sik — gbmnsmnégj)

+Cspk(bik9jk + bjkﬂgk) (6.58)
Ci=34, C{=18, (=42, C3=038
Ci=13, Ci=125, Cs=04 } (6.59)

Interestingly, the SSG model does not appear to require a correction for
the pressure-echo effect in order to obtain a satisfactory log-layer solution.
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Finally, combining Equations (6.47) through (6.51), we arrive at the well-
known LRR model for the rapid pressure strain.

LRR Rapid Pressure-Strain Model:

oU, . 1 - 1 .
Mijkl—-i = —& (Pij - —Pkk&'j) - g (Dij - ngkéz-j) — 4pkSi; (6.52)

Oz, 3
oU: oU; U, au..,
I)t] = Tim B + Tim Billm and Dij = Tim Y _ a + T}m"a—x': (653)
. 8+ (s - 8Cy —2 R 60C; — 4
= = = —— 4 i 54
o T g T 7 T 0.4 < Cy<0.6 (6.54)

Note that for compressible flows, the mean strain-rate tensor, S;;, is usually
replaced by S;; — Skké ;; in Equation (6.52).

One of the most remarkable features of this closure approximation is
the presence of just one undetermined closure coefficient, namely, C». The

ALY hne bhann acta
value of O, has been established by comparison of model predictions with

measured properties of homogeneous turbulent flows. Launder, Reece and
Rodi (1975) suggested using Cy = 0.40. Morris (1984) revised its value up-
ward to C2 = 0.50, while Launder (1992) currently recommends Cqy = 0.60.
Section 6.4 discusses the kind of flows used to calibrate this model.
Bradshaw (1973b) has shown that there is an additional contribution
to Equations (6.43) and (6.44) that has a nontrivial effect close to a solid
boundary. It is attributed to a surface integral that appears in the Green’s
function for Equation (6.38). This has come to be known as the pressure-
echo effect or wall-refiection effect. Launder, Reece and Rodi (1975)
propose a near-wall correction to their model for Il;; that explicitly in-
volves distance from the surface. Gibson and Launder (1978) and Craft and
Launder (1992) propose alternative models to account for the pressure-echo

effect. For example, the LRR wall-reflection term, IIEJ ),

k3/2

2
n) = |0.125-(n; + SPkBij) = 0.015(P;; — Dij) | (6.55)

2
where n is distance normal to the surface.

More recent efforts at devising a suitable closure approximation for IL;;
have focused on developmg a nonlinear expansion in terms of the anisotropy
tensor, b;;, defined in Equation (6.33). Lumley (1978) has systemati-
cally developed a general representation for II;; based on Equations (6.38)
through (6.44). In addition to insisting upon coordinate invariance and
other required symmetries, Lumley insists upon realizability. As noted
earlier, this means that all quantities known to be strictly positive must be



230 CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION

guaranteed to be positive by the closure model. Additionally, all computed
correlation coefficients must lie between 1. This limits the possible form
of the functional expansion for II;;. Lumley argues that the most general
form of the complete tensor II;; for incompressible flow is as follows.

Lumley Pressure-Strain Model:

I;; = agpfbg_;; + aype (bg;;bj,;u- — %II(S;_;;) + agka,;j

1] \
Li~ b C . & ok h C YL .
R\UZUEIIE T WAVRIVIm “ImE ) V)

1
+pk (asbriSir + asbribim Smk) (bikbkj - 5115@')
2
+arpk | bixSjk + bk Six — gbklsfkaij

2
+agpk (bikbklsjl + bikbriSi — é’bklblmsmkaij)

\ /

+agpk (bix Sk + bjxSix) + aropk (birbriS1 + bjxbri2) (6.56)

The eleven closure coefficients are assumed to be functions of the tensor
invariants I7 and 111, i.e.,

a; = ai(II,III), 1l = b,‘jbgj, 111 = b,’kbmbzg (657)

The tensor 2;; is the mean rotation tensor. The LRR model can be shown
to follow from Lumley’s general expression when nonlinear terms in b;; are
neglected, i.e., when all coe

A similar, but simpler, nonlinear model has been postulated by Speziale,
Sarkar and Gatski (1991). For incompressible flows, this model, known as

the SSG model, is as follows.

PRI ¢ <20 S W, . . _ e
ificients except ap, a, ay and ag are zero.

SSG Pressure-Strain Model:
au 1
I = — (CIPE + CmenFmﬂ) bij + Cape (bikbkj - gbmnbnméij)

2
+ (Cs - C3V H) pkSi; + Cspk (biksjk + 0% Sik — '3'bmn8mn6ij)
+Cspk(BixS + bjxSx) (6.58)
Ci=34, C; =18, ;=42 (C3=038
C3=13, C4=125 C5=04
Interestingly, the SSG model does not appear to require a correction for
the pressure-echo effect in order to obtain a satisfactory log-layer solution.

(6.59)
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Many other proposals have been made for closing the Reynolds-stress
equation, with most of the attention on Il;;. Weinstock (1981), Shih and
Lumley (1985), Haworth and Pope (1986), Reynolds (1987), Shih, Man-
sour and Chen (1987), Fu, Launder and Tselepidakis (1987) and Craft et
al. (1989) have formulated nonlinear pressure-strain correlation models. As
with the k-e model, low-Reynolds-number damping functions are needed
to integrate through the sublayer when the e equation is used. Damping
functions appear in the pressure-strain correlation tensor as well as in the
dissipation. So et al. (1991) give an excellent review of second-order clo-
sure models including low-Reynolds-number corrections. Compressibility,
of course, introduces an extra complication, and a variety of new proposals
are being developed.

While the discussion in this subsection is by design brief, it illustrates
the nature of the closure problem for second-order closure models. Al-
though dimensional analysis combined with physical insight still plays a
role, there is a greater dependence upon the formalism of tensor calculus.
To some extent, this approach focuses more on the differential eguations
than on the physics of turbulence. This appears to be necessary because
the increased complexity mandated by having to model second and higher
rank tensors makes it difficult to intuit the proper forms solely on the
strength of physical reasoning. Fortunately, the arguments developed dur-
ing the past decade have a stronger degree of rigor than the drastic surgery
approach to modeling terms in the dissipation-rate equation discussed in
Subsection 4.3.2.

6.3.2 Launder-Reece-Rodi MV

The model devised by Launder, Reece and Rodi (1975) is the most well
known and most thoroughly tested second-order closure model based on
the € equation. Most newer second-order closure models are based on the
LRR model and differ primarily in the closure approximation chosen for
I1;;. Combining the closure approximations discussed in the preceding sub-
section, we have the following high-Reynolds-number form of the model.

Reynolds-Stress Tensor

O0Tis d 2
atj + 5‘; (Ukn-j) = —P;; + -:3’-,065,,;3' — H,’,j :

k j i ij
—C 0 [— (ﬂm——gﬁk + 7; Orik +7km__§TJ )} (6.60)

S m
Oxk | € Tm T A m Tom
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Dissipation Rate

de Je ¢ OU; €2 J |k Oe
pogtPUig— 5e; — =Caz 7':']"5"— —Capp —Ceg— [—Tkmm] (6.61)

€

Pressure-Strain Correlation

€ R 2
Hz'j = Clz (Tz] + pkéq) (4] ( -?; )
—B(D ~2ps, \ ok 5 _Lss)
3 )
2 k3/2
+ [0125}5(7’” + :0;pk6”) — 0015(10” - D,;j)] —GE- (662)
Auxiliary Relations
o, oU; Wp U 1
ij = Tim g ima——, Dij = Tim—— im =5
PJ 7 31‘m + i 61?m H Tim a.’l?j + 7 5.’.‘5’,’ F 2Pkk
(6.63)

Cl = 18, Cg = 060, Cs =0.11

&= (8+Ca)/11, B =(8Cy—2)/11, 4= (60Cy—4)/55
(6.64)
CE - 018, Cel = 144, Ceg =1.92

Note that Equation (6.61) differs from the € equation used with the
Standard k-e model [Equation (4.42)] in the form of the diffusion term.
Rather than introduce the eddy viscosity, Launder, Reece and Rodi opt
to use the analog of the turbulent transport term, Cj;z. The values of
the closure coeflicients in Equation (6.64) are specific to the LRR model
of course, and their values are influenced by the specific form assumed for
II;;. In their original paper, Launder, Reece and Rodi recommend C; = 1.5,
Cy =04, Cy, =0.11, C. = 0.15, C¢; = 1.44 and Cy = 1.90. The values
quoted in Equation (6.64) are those currently recommended by Launder
(1992).

6.3.3 Wilcox Multiscale Model

Not all second-order closure models use the € equation to compute . Wilcox
and Rubesin (1980) postulate a second-order closure model based on their
w? equation and the LRR model for II;;. Although the model showed some
promise for flows over curved surfaces and for swirling flows, its applications
were very limited. By contrast, Wilcox (1988b) proposes a second-order
closure model that has had a wide range of applications.
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The model, known as the multiscale model, has some novel features that
are worthy of mention. The model was intended to serve as an improved
algebraic stress model. The intended improvement was to include real time
dependent convective terms rather than using Rodi’s Equation (6.22).

To accomplish this end, the model idealizes turbulent flows as consisting
of two distinct types of eddies. The first type are large, or upper partitio