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Chapter 1

Introduction

1.1 Why is this course important?

CM211A is primarily a mathematical methods course and depends heavily on the the
results obtained in CM112A (Calculus II). It aims to provide students with a basic knowl-
edge of Partial Differential Equations (PDE) and Complex Variable theory.

The section on Complex Variable aims to introduce the student to the fundamentals of
the theory of functions of a complex variable without undue emphasis on rigour. In some
areas where rigour is lacking the defects will be made good in the Third Year course
CM322C (Complex Analysis). Complex Variable theory is of great importance in both
pure and applied mathematics. On the applied side the applications range from electrical
engineering and fluid mechanics to the theory of elementary particles. We shall see that
the real and imaginary parts of an analytic function satisfy the two-dimensional Laplace
equation and this result provides a link between the two strands of the course.

In the PDE section we will consider various PDEs, especially some of the partial differen-
tial equations of Mathematical Physics, the two-dimensional Laplace equation being an
example. As we study some of these equations the student will be introduced to several
techniques which are of fundamental importance in applied mathematics. For example,
the method of separation of variables applied to the one-dimensional wave equation soon
leads to the study of Fourier series and Fourier transforms, both of which are of great
importance in many areas of mathematics, both pure and applied.

1.2 How to succeed in this course

The material covered in CM211A is extremely important for all mathematics students.
Although it is not an exceptionally difficult course, in the sense of being abstract or
conceptually demanding, it contains a lot of important material, and in order to succeed
you should take serious note of the following comments.
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8 CHAPTER 1. INTRODUCTION

First of all, you should attend all the lectures and tutorial classes. Don’t be
deceived: You have a set of course notes, but this is not in itself a guarantee of
success! The notes have been produced so that you can attend lectures without the need
to write a lot during them. Attendance at lectures is very important, as is attendance at
tutorial classes where problems are discussed.

Second, you must try the weekly problems. Failure to make a serious attempt at
these problems is one of the main reasons for failure in this course. You may struggle with
some of the problems, but wrestling with a problem yourself (even if you don’t succeed)
is very beneficial in developing your understanding. Remember this: It is a delusion to
think that you can learn a subject solely by watching someone else write out solutions
to problems on a blackboard — one learns by personal involvement. It is also a delusion
to think that possessing a set of solutions to problems and a set of printed lecture notes
somehow absolves you from the need to use pen and paper yourself! It is a sad fact that
the simplest question can be difficult for a student whose first attempt at doing a problem
is when he/she is seated at a desk in the Royal Horticultural Halls in the month of June.
So please take note of what I’ve said now, and don’t learn the hard way!

If you are in difficulty, talking to other students, consulting books, or asking for guidance
from a lecturer or tutor will help. Lecturers aren’t spiteful or vengeful people, but for
those who ignore sound advice there is a ring of truth in the following quotation from the
book of Proverbs1:

Because I have called, and ye refused; I have stretched out my hand, and
no man regarded;

But ye have set at nought all my counsel, and would have none of my
reproof:

I also will laugh at your calamity: I will mock when your fear cometh
· · · · · ·

I’ve tried to be careful in typing up these notes but it’s inevitable that there will be typing
errors; if you find any, please let me know so that I can eliminate them from any subsequent
editions. Thank you.

1Proverbs chapter 1, King James translation of the Bible



Chapter 2

Revision of Complex Numbers

2.1 Notation

For a typical complex number z ∈ C we write z = x + iy, x, y ∈ R . In the polar
representation x = r cos θ, y = r sin θ so that z = r(cos θ+ i sin θ). Here θ is the argument
of z, written θ = arg(z). arg(z) is multi-valued in the sense that if θ0 is a permitted
value of arg(z) so is θ0 + 2kπ where k = 0,±1,±2, . . .. This is just a reflection of the fact
that the sine and cosine functions are periodic with period 2π. The value of arg(z) which
satisfies the inequality −π < arg(z) ≤ π is called the principal value of arg(z), sometimes
denoted by Arg(z). Thus, if z = i Arg(z) = π/2; if z = −i Arg(z) = −π/2;
if z = −1 Arg(z) = π. r is the modulus of z, written r = |z|.

We note that
tan(arg(z)) =

y

x
, (x 6= 0), r = |z| =

√
(x2 + y2).

The first of these formulae does not necessarily imply that arg(z) = arctan(y/x) since
arctan has values in (−π/2, π/2). For example, if z = −1− i then
tan arg(z) = (−1)/(−1) = 1 and Arg(z) = −3π/4 whereas arctan(1) = π/4.

Note that r =
√

(x2 + y2) — not r =
√

(x2 − y2) !

We note the following

• As a matter of definition we put eiθ = cos θ + i sin θ. The definition is justified by
the fact that eiθ1eiθ2 = ei(θ1+θ2) (a property which is readily verified using standard
identities for the sine and cosine functions). In particular eiθe−iθ = 1,

e−iθ = 1/eiθ, (eiθ)n = eniθ, for any integer n.

• For any z1, z2 ∈ C |z1z2| = |z1||z2|, from which it follows that |z1/z2| = |z1|/|z2| if
z2 6= 0.

• arg(z1z2) = arg(z1) + arg(z2) (mod 2π)

9



10 CHAPTER 2. REVISION OF COMPLEX NUMBERS

• The complex conjugate of z = x+ iy we denote by z so that z = x− iy. (some books
use z∗ instead of z). The following simple results hold:

zz = x2 + y2 = |z|2, |z| = |z|, z1 + z2 = z1 + z2, z1z2 = z1z2.

• In order to rotate a complex number z about 0 through an angle α we multiply it by
eiα. For, writing z in polar form, z = |z|eiθ, zeiα = |z|ei(θ+α); the complex number
on the righthand side of this equation has modulus equal to |z| and argument equal
to θ+α. (We use the fact that for any real γ |eiγ| = 1, a property which we use time
and time again). In particular we rotate z through an angle of π/2 by multiplying
it by eiπ/2 = cos π/2 + i sin π/2 = i. In order to rotate z through an angle of π/4 we
multiply it by eiπ/4 = cos π/4 + i sin π/4 = (1 + i)/

√
2, and so on.

Example 2.1 Express cos 5θ in powers of cos θ.

(cos 5θ + i sin 5θ) = e5iθ = (eiθ)5 = (cos θ + i sin θ)5

= cos5θ + 5cos4θ(i sin θ) + 10cos3θ(i sin θ)2 + 10cos2θ(i sin θ)3

+ 5cosθ(i sin θ)4 + (i sin θ)5

Taking the real part of this eqation and writing c = cos θ, s = sin θ we obtain

cos 5θ = c5 − 10c3s2 + 5cs4 = c5 − 10c3(1− c2) + 5c(1− c2)2

= 16c5 − 20c3 + 5c

Setting θ = π/10 in this formula gives

0 = 16C5 − 20C3 + 5C (C = cos π/10), 16C4 − 20C2 + 5 = 0

from which we derive

C2 =
20± 4

√
5

32
=

5±√5

8
.

It is easy to argue that the positive sign is appropriate and consequently

cos π/10 =
(

5 +
√

5

8

)1/2

.

2.2 Roots of unity

Let n be a positive integer. We want to find the n roots in C of the equation zn = 1.
To this end write z = reiθ, r = |z|, θ = arg(z). Substitution gives rn(eiθ)n = 1 and
therefore rneniθ = (1)ei(0+2kπ), where k is any integer. It follows that rn = 1, so that r = 1
(since r is real), and that nθ = 2kπ. We can choose k = 0, 1, 2, 3, . . . (n − 1) to generate
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the required n roots; other values of k merely give repetitions, as one easily checks. We
conclude that the n solutions of zn = 1 are given by

z = zk = ei(2kπ/n), k = 0, 1, 2, 3, . . . , (n− 1).

The n values zk, k = 0, 1, 2, 3, . . . , (n−1) are referred to as the n-th roots of unity. k = 0
gives the obvious real root z = z0 = 1.

Geometrically the n-th roots of unity lie on the unit circle centre 0; the angular separa-
tion between consecutive roots is clearly 2π/n. As an illustration consider the following
example.

Example 2.2 The roots of the equation z7 = 1 are given by

z = zk = ei(2kπ/7) = cos(2kπ/7) + i sin(2kπ/7), k = 0,±1,±2,±3.

(It’s convenient to choose these values of k rather than k = 0, 1, 2, 3, 4, 5, 6. to generate
the 7 roots) Now

(z7 − 1) = (z − 1)(z − z1)(z − z−1)(z − z2)(z − z−2)(z − z3)(z − z−3).

Since (z− zk)(z− z−k) = z2− z(zk + z−k)+ zkz−k = z2−2z cos(2kπ/7)+1 we deduce that

z7 − 1

z − 1
= (z2 − 2z cos(2π/7) + 1)(z2 − 2z cos(4π/7) + 1)(z2 − 2z cos(6π/7) + 1), z 6= 1.

The left-hand side is equal to 1 + z + z2 + · · ·+ z6 and if we now let z → 1 we obtain the
formula

7 = 23(1−cos(2π/7))(1−cos(4π/7))(1−cos(6π/7)) = 2323sin2(π/7)sin2(2π/7)sin2(3π/7).

Equivalently
sin2(π/7)sin2(2π/7)sin2(3π/7) = 7/64.

This result can obviously be generalized by applying the same considerations to the equation
z(2n+1) = 1.

As a final example consider the following.

Example 2.3 Express cos6θ as a linear combination of cosines of multiples of θ.

Since eiθ = cos θ + i sin θ, e−iθ = cos θ − i sin θ we have the formulae

cos θ =
1

2
(eiθ + e−iθ), sin θ =

1

2i
(eiθ − e−iθ) (2.1)

It follows that

cos6θ =
1

26
(eiθ + e−iθ)6

=
1

26

(
e6iθ + 6e5iθe−iθ + 15e4iθe−2iθ + 20e3iθe−3iθ + 15e2iθe−4iθ + 6eiθe−5iθ + e−6iθ

)
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Now eniθ + e−niθ = 2 cos nθ by equation 2.1. We therefore obtain

cos6θ =
1

25

(
cos 6θ + 6 cos 4θ + 15 cos 2θ + 10

)

which expresses cos6θ as a linear combination of 1, cos 2θ, cos 4θ, cos 6θ. This result gen-
eralizes in an obvious way.



Chapter 3

Functions of a Complex Variable

3.1 Introduction

In the following sections we shall begin our study of analytic functions of a complex vari-
able. Complex variable theory is one of the most beautiful branches of pure mathematics
but it also has important applications in applied mathematics, in the study of fluid me-
chanics in particular. The link with PDEs occurs through the two-dimensional Laplace
equation.

In what follows we shall attempt to convey some of the basic ideas of complex variable
theory without too much emphasis on rigour; a more rigorous account is presented in the
third year course on complex analysis.

3.2 Sets in the complex plane

We make the following definitions:

Definition 3.1 The open disc centre z0 ∈ C and radius r > 0 is the set Nr(z0) given by

Nr(z0) = {z ∈ C : |z − z0| < r}.

Definition 3.2 The closed disc centre z0 ∈ C and radius r > 0 is the set Nr(z0) given by

Nr(z0) = {z ∈ C : |z − z0| ≤ r}.

We may picture Nr(z0) geometrically as the union of the open disc Nr(z0) and the cir-
cumference of the circle centre z0 and radius r.

Definition 3.3 A set G ⊆ C is open ⇐⇒ for any ζ ∈ G ∃r > 0 such that Nr(ζ) ⊆ G.

• Nr(z0) is an open set.

13



14 CHAPTER 3. FUNCTIONS OF A COMPLEX VARIABLE

• C is open.

• {z : 0 < =z < 1} is an open set.

• {z : 0 ≤ =z < 1} is not an open set.

• Nr(z0) is not an open set.

We have not offered formal proofs of these claims but they should be intuitively clear,
bearing in mind our definition of the term open as applied to sets in the complex plane.

Definition 3.4 The line segment from z0 to z1 is the set
︷ ︸︸ ︷
z0 z1 given by

︷ ︸︸ ︷
z0 z1 = {z : z = z0 + t(z1 − z0), 0 ≤ t ≤ 1}

Definition 3.5 A polygon in C is a set of the form

︷ ︸︸ ︷
z0 z1 ∪ ︷ ︸︸ ︷

z1 z2 ∪ ︷ ︸︸ ︷
z2 z3 ∪ · · · ∪ ︷ ︸︸ ︷

zn−1 zn

for some points z0, z1, z2, . . . , zn−1, zn.

Definition 3.6 An open set G is said to be connected (polygonally) ⇐⇒ for any two
points z′, z′′ ∈ G there is a polygon lying entirely in G with end points z′, z′′.

An open connected set D is called a domain.

Definition 3.7 A domain D is convex if z, ζ ∈ D ⇒
︷︸︸︷
z ζ ⊆ D.

You should aim to have a clear intuitive understanding of all the terms defined above.

3.3 Functions of a complex variable

A complex function f is a mappping f from a subset of C into C. f is real valued if its
range is a subset of R .

We shall assume that f is defined on some domain D unless otherwise stated. Recall that
a domain is an open set. This means that for any point z0 ∈ D we can find an open
disc with centre z0 and positive radius which lies inside D. This is important because it
enables us to define concepts such as continuity and differentiability of f at z0.

Definition 3.8 A function f : D → C is continuous at z0 ⇐⇒ f(z) → f(z0) as
z → z0.

In terms of ε, δ language this means that given ε > 0 ∃δ > 0 such that |f(z)− f(z0)| < ε
for all z such that |z − z0| < δ.



3.3. FUNCTIONS OF A COMPLEX VARIABLE 15

Definition 3.9 Let D be a domain and let f : D → C . We say that f is differentiable
at z0 ∈ D ⇐⇒

lim
z→z0

f(z)− f(z0)

z − z0

exists as a complex number α + iβ. More explicitly this means that f is differentiable at
z0 ⇐⇒ given ε > 0 ∃δ > 0 such that

∣∣∣∣
f(z)− f(z0)

z − z0

− (α + iβ)
∣∣∣∣ < ε

for all z such that 0 < |z−z0| < δ. If f is differentiable at z0 we use the notations familiar
from calculus and write f ′(z0) or df

dz
(z0) for the complex number α + iβ.

Differentiability is a very strong condition. Roughly speaking it means that
(f(z)− f(z0))/(z − z0) tends to the same value, however we allow z to approach z0. The
following example is very instructive and may help to illustrate how our intuition could
go wrong.

Example 3.1 For z = x + iy ∈ C, define f(z) by

f(z) =
xy2(x + iy)

x2 + y4
, z 6= 0, f(0) = 0.

Show that
f(z)− f(0)

z
→ 0

as z → 0 along any straight line through the origin, but prove that f is not differentiable
at the origin by examining what happens as z → 0 along the curve x = y2.

We have:
f(z)− f(0)

z
=

xy2(x + iy)

(x2 + y4)(x + iy)
=

xy2

x2 + y4
.

If we approach 0 along the lines x = 0 it’s obvious that

f(z)− f(0)

z
→ 0.

If we approach 0 along other radial directions we may write y = λx, λ ∈ R . In these
cases

f(z)− f(0)

z
=

x3λ2

x2 + λ4x4
=

xλ2

1 + λ4x2
→ 0 as z → 0 ∀λ ∈ R .

However, if we approach along the curve Γ whose equation is x = y2 (every open disc
centre 0 contains points of Γ) then

f(z)− f(0)

z
=

y4

y4 + y4
=

1

2
→ 1

2
as z → 0 along Γ.
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It follows that f is not differentiable at z = 0.

One can prove the differentiability of many functions by the standard methods of real
variable calculus. For example, if f(z) = z2 we have

lim
z→z0

z2 − z0
2

z − z0

= lim
z→z0

(z + z0) = 2z0.

f is differentiable at any point z0 and f ′(z0) = 2z0.

The standard rules of differentiation apply. For example, if f, g are differentiable at z,
and λ is an arbitary complex constant, then (f + g), λf, fg, f/g are all differentiable at
z (except that in the case of f/g we have to postulate that g(z) 6= 0). Moreover,

(f + g)′ = f ′ + g′, (λf)′ = λf ′, (fg)′ = fg′ + f ′g, (f/g)′ = (gf ′ − fg′)/(g2).

(In these formulae we have omitted reference to the argument z)

It is not hard to prove that d
dz

zn = nzn−1, where n is any integer — except that if n is
negative we must exclude the point z = 0.

As for functions of a real variable, differentiability implies continuity. For, let f be
differentiable at z0. Then

f(z)− f(z0) =
f(z)− f(z0)

(z − z0)
(z − z0) → f ′(z0)× 0 = 0

as z → z0. This shows that f(z) → f(z0) as z → z0; in other words, f is continuous at z0.

Before proceeding we illustrate the definition of differentiability by two more examples.

Example 3.2 Let f(z) = z, z ∈ C . For z0 ∈ C we have, writing z = z0 + ω,

(f(z0 + ω)− f(z0))

(z0 + ω)− z0

=
z0 + ω − z0

ω
=

ω

ω
.

Writing ω = λ + iµ we need to consider the limit of ω/ω as ω → 0.
Choosing µ = 0, λ 6= 0, ω/ω = λ/λ = 1 → 1 as λ → 0.
On the other hand, with λ = 0, µ 6= 0, ω/ω = −iµ

iµ
= −1 → −1 as µ → 0.

It follows that

lim
z→z0

(f(z)− f(z0))

z − z0

does not exist and consequently f is not differentiable at any point z0.
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Example 3.3 Let f(z) = |z|2, z ∈ C . Bearing in mind the basic formula γγ = |γ|2 we
have

f(z + ω)− f(z)

ω
=

(z + ω)(z + ω)− zz

ω
=

ωz + zω + ωω

ω
= z + z

ω

ω
+ ω.

Whether f is differentiable at the point z or not depends on whether the righthand side
of this equation has a limit as ω → 0. It is clear that ω → 0 as ω → 0 but this is not
true of ω/ω as we saw in the previous example (see the argument used in example 3.2).
However, in the special case z = 0 the term ω/ω disappears and the righthand side tends
to z = 0 (in the case z = 0). Our final conclusion is therefore that f is differentiable at
z = 0, where f ′(0) = 0, but at no other point.

3.4 Analytic functions

Definition 3.10 Let D be a domain and f : D → C. We say that f is analytic at
z0 ∈ D ⇐⇒ ∃ρ > 0 such that f is differentiable at each point of Nρ(z0). If f is analytic
at each point of D we say that f is analytic in D. A function which is analytic in C is
said to be entire.

(The terms regular or holomorphic are often used instead of analytic)

Theorem 3.1 Suppose that f is analytic in a domain D and that
f(z) = u(x, y) + iv(x, y), z = x + iy. Then the partial derivatives ∂ u

∂ x
, ∂ u

∂ y
, ∂ v

∂ x
, ∂ v

∂ y
exist

and satisfy the Cauchy1-Riemann2 equations for u, v with respect to the variables (x,y)

∂ u

∂ x
=

∂ v

∂ y
,

∂ u

∂ y
= −∂ v

∂ x
(3.1)

In order to prove this result it’s convenient to use traditional notation and write
δz = δx + iδy. Since f is analytic

f(z + δz)− f(z)

δz
→ f ′(z) as δz → 0, z ∈ D.

Now

f(z + δz)− f(z)

δz
=

u(x + δx, y + δy)− u(x, y)

δz
+ i

v(x + δx, y + δy)− v(x, y)

δz
.

Choosing δy = 0, so that δz = δx, and letting δz tend to zero we deduce that ∂ u
∂ x

1Baron Augustin Louis Cauchy (1789-1857) French mathematician noted for his work on the theory
of functions and the wave theory of light

2Georg Friedrich Bernhard Riemann (1826-1866) German mathematician famous for his work on
analysis and non-Euclidean geometry
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exists, that ∂ v
∂ x

exists, and that

f ′(z) =
∂ u

∂ x
+ i

∂ v

∂ x
(3.2)

In a similar way, this time choosing δx = 0, so that δz = iδy, we see that

f(z + δz)− f(z)

δz
= −i

u(x, y + δy)− u(x, y)

δy
+

v(x, y + δy)− v(x, y)

δy
.

Proceeding to the limit as δz tends to zero we deduce that ∂ u
∂ y

exists, that ∂ v
∂ y

exists and
that

f ′(z) = −i
∂ u

∂ y
+

∂ v

∂ y
(3.3)

Comparing equations 3.2 and 3.3 we conclude that

∂ u

∂ x
=

∂ v

∂ y
,

∂ u

∂ y
= −∂ v

∂ x
,

as required.

We state without proof a partial converse of this result.

Theorem 3.2 Suppose that f : D → C, where D is a domain, and that
f(z) = u(x, y) + iv(x, y), z = x + iy ∈ D. Suppose that each of the partial derivatives
ux, uy, vx, vy (we use subscript notation to make the text more readable at this point)
exists and is continuous on D and that u, v satisfy the Cauchy-Riemann equations in D.
Then f is analytic in D.

It should be clear from our work on differentiability that if f, g are analytic in a domain
D, and λ ∈ C is constant, then so are (f + g), λf, fg; f/g is also analytic, always
supposing that g has no zeros in D.

We also note that an analytic function of an analytic function is analytic and the usual
chain rule of differentiation applies. Thus, if u is an analytic function of ζ, u = f1(ζ),
and ζ is an analytic function of z, ζ = f2(z), then u = f1(f2(z)) is an analytic function of
z and

du

dz
=

du

dζ

dζ

dz
.

Theorem 3.3 Suppose that f is analytic in a domain D and that f ′(z) = 0 at all points
of D. Then f is constant on D.

Let P0, with affix z0, be any point of D. Given a point P with affix ζ in D, we can connect
P0 to P by a polygon (since a domain is polygonally connected) which we may denote by

︷ ︸︸ ︷
P0 P1 ∪

︷ ︸︸ ︷
P1 P2 ∪

︷ ︸︸ ︷
P2 P3 . . . ∪

︷ ︸︸ ︷
Pn−1 P
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Our theorem will be established if we can show that f is constant on the individual line

segments. For this purpose it will suffice to consider the line segment
︷ ︸︸ ︷
P0 P1 . Let z1 be the

affix of P1. A typical point on this line segment has affix z(t) = z0 + t(z1− z0), t ∈ [0, 1].
(P0 corresponds to t = 0, P1 corresponds to t = 1). The chain rule then shows that

d

dt
f(z(t)) = f ′(z(t))

dz(t)

dt
= (z1 − z0)f

′(z(t)) = 0

since f ′ is zero in D. It follows that both the real and imaginary parts of f(z(t)) have

zero t derivative and are therefore constant on
︷ ︸︸ ︷
P0 P1 . The same argument applied to the

other line segments of the polygon allows us to conclude that f(ζ) = f(z0) and that f is
constant on D.

Theorem 3.4 Suppose that f : D → C is analytic and that |f(z)| is constant on D.
Then f is a constant function on D.

Put f(z) = u + iv so that u2 + v2 = C, where C is a constant. Differentiation gives

u
∂ u

∂ x
+ v

∂ v

∂ x
= 0, u

∂ u

∂ y
+ v

∂ v

∂ y
= 0 ∀z ∈ D.

It follows from the Cauchy-Riemann equations that

u
∂ u

∂ x
− v

∂ u

∂ y
= 0, v

∂ u

∂ x
+ u

∂ u

∂ y
= 0 ∀z ∈ D.

If u and v are both zero at some point then C = 0 and f is everywhere zero. Otherwise,
we conclude that the partial derivatives ∂ u

∂ x
and ∂ u

∂ y
are both zero in D; also ∂ v

∂ x
and ∂ v

∂ y

are both zero in D. It follows that f ′(z) = 0 and that f is constant on D.
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3.5 Analytic functions and Laplace’s equation

Suppose that f : D → C is analytic and that f(z) = u(x, y) + iv(x, y), in the usual
notation.

It can be proved, by complex integration methods, that f is in fact differentiable to all
orders in D. It follows that u and v have continuous partial derivatives to all orders and
the commutative law of partial differentiation holds. On this basis we have, starting from
the Cauchy-Riemann equations,

∂ u

∂ x
=

∂ v

∂ y
,

∂ u

∂ y
= −∂ v

∂ x

∂2u

∂ x2
=

∂2v

∂ x ∂ y

∂2u

∂ y2
= − ∂2v

∂ y ∂ x

It follows immediately that u satisfies the two-dimensional Laplace equation

∂2u

∂ x2
+

∂2u

∂ y2
= 0.

Similarly
∂2v

∂ x2
+

∂2v

∂ y2
= 0

It is clear, therefore, that the real and imaginary parts of an analytic function satisfy
Laplace’s equation; they are harmonic functions.

Continuing in the same notation we note

Theorem 3.5 The curves u(x, y) = C1, v(x, y) = C2 (where C1, C2 are parameters)
define an orthogonal network of curves.

To see this, differentiate the equation u(x, y) = C1 with respect to x (bearing in mind
that in this case y is an implicit function of x) to obtain

∂ u

∂ x
+

∂ u

∂ y

dy

dx
= 0.

Similarly, the equation v(x, y) = C2 gives

∂ v

∂ x
+

∂ v

∂ y

dy

dx
= 0.

These equations show that the products of the gradients of the two curves at the point of
intersection is equal to

(−ux

uy

)(−vx

vy

)
=

(−vy

vx

)(
vx

vy

)
= −1,
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as required.

Note that for our calculation to make sense the first order partial derivatives of u and v
with respect to x, y shouldn’t be zero. This is the very condition laid down in the implicit
function theorem for u(x, y) = C1 to define y as an implicit function of x. (similarly for
v(x, y) = C2)

3.6 Analytic functions and vector fields

Finally, we note that associated with an analytic function f is a two-dimensional irro-
tational solenoidal vector field q. To make this clear we write f(z) = φ(x, y) + iψ(x, y),
z = x + iy. (we make the change of notation to link up with the discussion at the start
of this chapter). Put q(x, y) = −∇φ. Then curl q = 0 and divq = 0 since φ, being the
real part of an analytic function, satisfies Laplace’s equation. It is easy to check from the
Cauchy-Riemann equations that ψ is the associated stream function.
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Chapter 4

The elementary functions

4.1 The exponential function

The exponential function exp(z) is defined by

exp(z) = ex(cos y + i sin y), z = x + iy ∈ C .

Note that on the real axis exp reduces to the familiar real exponential function:
exp(x) = ex ∀x ∈ R .

It follows easily from this definition that

exp(z1) exp(z2) = exp(z1 + z2), ∀z1, z2 ∈ C .

To check this put z1 = x1 + iy1, z2 = x2 + iy2. Then

exp(z1) exp(z2) = ex1(cos y1 + i sin y1) ex2(cos y2 + i sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

Now
(cos y1 + i sin y1)(cos y2 + i sin y2) = cos(y1 + y2) + i sin(y1 + y2)

as follows by multiplying out the brackets and using standard formulae from trigonometry.
Consequently

exp(z1) exp(z2) = ex1+x2(cos(y1 + y2) + i sin(y1 + y2)) = exp(z1 + z2)

since z1 + z2 = (x1 + x2) + i(y1 + y2).

It is clear that exp(z) exp(−z) = exp(0) = 1 so that exp(−z) = 1/ exp(z).

On the basis of the properties of exp we are justified in writing exp(z) ≡ ez, treating z in
ez according to the rules of indices. In this notation we have

ez = ex(cos y + i sin y), z = x + iy ∈ C .

23
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Notice that when θ is real eiθ = cos θ + i sin θ so that our notation is consistent with the
notation introduced in Chapter 2.

Observe that when k is any integer ez+2kπi = ez e2kπi = ez so that the exponential is
periodic with (fundamental) period equal to 2πi.

The exponential function has no zeros. This is clear since

| eiy | =
√

cos2y + sin2y = 1, ∀y ∈ R and therefore | ez | = | ex eiy | = ex; of course, ex is
never zero for x ∈ R . Confirmation that our definition of the exponential is a good one
is obtained by verifying that the exponential is analytic in C; it is an entire function. To
check this put

ez = u + iv, u = ex cos y, v = ex sin y.

Then
∂ u

∂ x
= ex cos y =

∂ v

∂ y
,

∂ u

∂ y
= − ex sin y = −∂ v

∂ x
.

u, v therefore satisfy the Cauchy-Riemann equations. Moreover, the first order partial
derivatives of u, v with respect to the variables x, y are continuous. It follows that the
exponential is an analytic function by theorem 3.2. Its derivative is given by

d

dz
ez =

∂ u

∂ x
+ i

∂ v

∂ x
= ex cos y + i ex sin y = ex(cos y + i sin y) = ez .

We have therefore established the fundamental property that the exponential is analytic
in C and satisfies d

dz
ez = ez .

4.2 Trigonometric and hyperbolic functions

Our definitions are motivated by formulae 2.1 of Chapter 2. For z ∈ C we define sin z
and cos z by

sin z =
1

2i
(eiz − e−iz), cos z =

1

2
(eiz + e−iz) (4.1)

The definition of the hyperbolic functions is obvious:

sinh z =
1

2
(ez − e−z), cosh z =

1

2
(ez + e−z) (4.2)

It follows at once that sin, cos, sinh, cosh are analytic in C and that they obey the usual
differentiation rules familiar from elementary calculus. For example,
d
dz

sin z = 1
2i

(i eiz −(−i) e−iz) = cos z, and so on.

As in trigonometry, we can define tan z by tan z = sin z/ cos z (we omit those points
z where cos z = 0); it follows in the usual way that tan is analytic, except for z such
that cos z = 0, and that d

dz
tan z = sec2z, sec z being defined in terms of cos z as in

trigonometry. It should be clear how to define functions such as sech z, coth z etc.
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The familiar identities for the trigonometric and hyperbolic functions also hold in the
complex case, for example cos2z + sin2z = 1. Note however, that although
| cos x| ≤ 1, ∀x ∈ R it is not true that | cos z| ≤ 1, for all z ∈ C . In fact, | cos z| can be
very large indeed!

4.3 The logarithmic function

We are familiar with the real logarithm ln : R+ → R . It is the inverse of the real
exponential function; if x = et, t ∈ R then ln x = t. Can we adopt a similar approach
to define the complex logarithm? Given the equation ew = z we should like to write
w = log z, where log denotes a complex logarithm – but this poses problems as we now
show.

We can regard the equation z = ew as defining a map of the complex w-plane into the
complex z-plane. Put w = α + iβ and z = x + iy so that eα(cos β + i sin β) = x + iy.
The image of the infinite strip A1 = {α ∈ R, 0 ≤ β < 2π} is the whole complex z-plane,
the point z = 0 being omitted. We can see this by noting that the image of the section
{α fixed, 0 ≤ β < 2π} is in fact a circle of radius eα, since |z| = eα. As α takes on all real
values we obtain a family of circles which cover the whole z-plane, with the exception of
z = 0. (this reflects the fact that eα is never zero). The same argument shows that ew

maps the infinite strips A2, A3 . . . where

A2 = {α ∈ R, 2π ≤ β < 4π}, A3 = {α ∈ R, 4π ≤ β < 6π}, . . .

onto the whole complex z-plane, the point z = 0 being omitted. The question then arises:
Given z, what value of w do we assign? Do we choose the relevant value of w ∈ A1,
the relevant value of w ∈ A2,. . .? It is clear that if we attempt to parallel the procedure
adopted with real variables we shall end up with a muti-valued complex logarithm.

With these thoughts in mind we make the following definition.

Definition 4.1 For z ∈ C−{0} a logarithm of z is any particular solution of the equation
ew = z.

We can compute the relevant solutions as follows.

Continuing in the same notation, with w = α+iβ and z = x+iy = r(cos θ+i sin θ) = r eiθ

we have
eα+iβ = r eiθ, (r = |z|)

This gives

eα = r, ei(β−θ) = 1, ⇒ α = ln r = ln |z|, β − θ = 2kπ, where k is an integer.
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Note that these formulae only make sense provided we exclude the point z = 0. We
therefore have

w = ln |z|+ i(θ + 2kπ) (4.3)

Equivalently
w = log z = ln |z|+ i arg z (4.4)

The multi-valued character of log z is due to the multi-valued nature of arg z. According
to our definition, a logarithm of z is any one of the infinite number of values permitted by
equation 4.3. Each of the permitted values constitutes a branch of the logarithm. However,
in analysis functions are required to be single valued. For this reason one usually chooses
a particular branch of the logarithm by restricting oneself to a particular choice of arg z
so that multi-valuedness does not occur. If one moves round the origin, allowing the
argument of z to increase by 2π, one moves from one branch of the logarithm to another
- single-valuedness has been lost. For this reason z = 0 is often referred to as a branch
point of the logarithm. In order to ensure that we keep to one branch when dealing with
log z it is therefore common practice to introduce a suitable cut in the complex plane,
in the form of a straight line extending from z = 0 to infinity, across which we are not
permitted to pass.

These considerations may be important in the area of complex integration where we often
integrate round a closed curve; if such a curve encloses the point z = 0 then the argument
of z will increase by 2π if we move round the curve and return to the starting point.

One branch of the logarithm which is frequently used is the so-called principal value,
often denoted by Log z, which is defined by the requirement that the argument of z has
its principal value Arg z. Thus

Log z = ln |z|+ i Arg z, −π < Arg z ≤ π.

Note that Log z reduces to the familiar real logarithm ln x on the real-axis. It should be
clear that great care is required when working with the complex logarithm. We note, for
example, the following properties:

• elog z = z

• log ez = z + 2kπi, k an integer

• log z1z2 = log z1 + log z2 + 2kπi, k an integer.

• log(1/z) = − log z + 2kπi, k an integer.

The first property is true by construction.

To check the second property write ez = ex(cos y + i sin y) so that
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log ez = ln | ez |+ i arg ez = ln ex +i(y + 2kπ), k an integer. This gives
log ez = (x + iy) + 2kπi = z + 2kπi.

The third property follows in a similar way:

log z1z2 = ln |z1z2|+ i arg z1z2 = ln |z1|+ ln |z2|+ i arg z1z2

Hence

log z1z2 = ln |z1|+ ln |z2|+ i arg z1 + i arg z2 + 2kπi = log z1 + log z2 + 2kπi,

where k = 0,±1,±2, · · ·

Checking the fourth property is left as an exercise for the reader.

As an illustration of the definition, consider the following.

Log i(−1 + i) = Log (−1− i) = ln
√

2− i(3π)/4.

However, Log i = i(π/2) and Log (−1 + i) = ln
√

2 + i(3π/4). We see that
Log i(−1 + i) 6= Log i + Log (−1 + i).

Note that the discrepancy, the difference between Log i+Log (−1+ i) and Log i(−1+ i),
is equal to 2πi, a multiple of 2πi, as it should be. We see that the the familiar rules of
logarithms do not apply in this case, a fact which merely emphasises the need for great
care in dealing with complex logarithms. If in doubt, go back to the definition!

Now suppose that D is a domain in the cut plane (see above), so that no point of the cut
belongs to D; in particular 0 6∈ D. We now show that a logarithm is analytic in D and
that d

dz
log z = 1

z
. (If we were considering the principal value of the logarithm we could

introduce a cut along the negative real axis from −∞ to 0) The following argument isn’t
a model of rigour, however!

Write

log z =
1

2
ln(x2 + y2) + i arg z = u + iv, u =

1

2
ln(x2 + y2), tan v =

y

x
.

Differentiation gives

sec2v
∂ v

∂ x
= − y

x2
,

∂ v

∂ x
= − y

x2

1

1 + y2/x2
= − y

x2 + y2
,

sec2v
∂ v

∂ y
=

1

x
,

∂ v

∂ y
=

1

x

x2

x2 + y2
=

x

x2 + y2
.
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Similarly
∂ u

∂ x
=

x

x2 + y2
,

∂ u

∂ y
=

y

x2 + y2
.

The first order partial derivatives of u, v with respect to x and y are continuous in D
(z = 0 is not in D) and the Cauchy-Riemann equations are satisfied. It follows from
theorem 3.2 that log z is analytic in D and that

d

dz
log z =

∂ u

∂ x
+ i

∂ v

∂ x
=

x− iy

x2 + y2
=

1

z
, z ∈ D.

4.4 Complex powers

For z, ζ ∈ C (z 6= 0) we define zζ by zζ = eζ log z .

This is a natural definition which parallels the definition of xα for x > 0 and α ∈ R .

The value of zζ will depend on the choice of log z; there are an infinite number of possi-
bilities, of course. The principal value of zζ is obtained by assigning the principal value of
log z i.e. Log z. zζ will be analytic in any domain which doesn’t include the point z = 0.
We shall not discuss complex powers further, beyond mentioning that great care is needed
when dealing with them. One cannot assume that the ordinary rules of indices apply
(they don’t!) and if in doubt the guiding principle should be — go back to the definition
and work from there. Careless assumptions can quickly lead to false conclusions. For
example

e2πi = e4πi = e6πi = e8πi = · · ·
since each term is equal to 1. If we carelessly assumed that we could raise each to the
power i we might conclude that

e−2π = e−4π = e−6π = · · ·

It would follow that 2 = 4 = 6 = · · · — that all integers are equal!

As an illustration, the principle value of ii is ei Log i = ei(0+iπ/2) = e−π/2 .

As a final illustration of the potential hazards we note that

(z1z2)
ζ = eζ log(z1z2) = eζ(log z1+log z2+2kπi), k an integer

so that
(z1z2)

ζ = zζ
1z

ζ
2 eζ(2kπi) .

Generally, the right-hand side isn’t equal to zζ
1z

ζ
2 .



Chapter 5

Complex integration

We start with some definitions.

Definition 5.1 A curve γ is a continuous function γ : [a, b] → C for some a ≤ b.

Definition 5.2 The set of points {z ∈ C : z = γ(t), a ≤ t ≤ b} is called the trace of γ,
written tr γ.

These are the definitions favoured by pure mathematicians and there are in fact good
reasons for making a distinction between a curve and its trace, as the following simple
examples show. Nevertheless, especially when we come to consider complex integration,
we shall frequently refer to ‘a curve’ when, strictly speaking, we mean its trace.

Example 5.1 Let γ1(t) = e2πit, 0 ≤ t ≤ 1.

In this case tr γ1 = {z : |z| = 1} — which is just the unit circle.

Example 5.2 Consider now γ2(t) = e−4πit, 0 ≤ t ≤ 1.

Then tr γ2 = {z : |z| = 1} — also the unit circle. However, γ1 and γ2 are different curves;
γ1 goes tround the unit circle once in the anti-clockwise sense whereas γ2 goes twice round
the unit circle in the clockwise sense!

Definition 5.3 Let γ : [a, b] → C be a curve. We say that γ is closed if γ(a) = γ(b).
γ is said to be simple if it does not cross itself i.e 6 ∃t′, t′′ ∈ (a, b) (t′ 6= t′′) such that
γ(t′) = γ(t′′).

Definition 5.4 A simple closed curve is one which is simple and closed.

We note, for example, that if γ(t) = e−5πit, 0 ≤ t ≤ 1 then tr γ is the unit circle but γ
is neither closed nor simple. (γ goes twice round the unit circle and then half way round
again, in a clockwise sense)

Definition 5.5 Let γ : [a, b] → C be a curve. The reverse curve γ̃ is defined by γ̃ :
[a, b] → C, where γ̃(t) = γ(a + b− t).

29
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Definition 5.6 A curve γ is smooth if γ′(t) exists and is continuous (at a and b we mean
right and left derivatives respectively).

If γ(t) = x(t) + iy(t) then γ is smooth if and only if x′ and y′ exist and are continous.

Definition 5.7 A contour is a piecewise smooth curve.

Thus, if γ : [a, b] → C is a contour we can partition [a, b] by points a0, a1, . . . , am−1, am

(for some m) such that a = a0 < a1 < a2 < . . . < am−1 < am = b and for which
γ : [ai, ai+1] → C is smooth for 0 ≤ i ≤ m− 1. We denote the restriction of γ to [ai, ai+1]
by γi and write in an obvious notation γ = γ0 + γ1 + · · ·+ γm−1.

5.1 Length of a curve

Suppose that γ : [a, b] → C is smooth. We partition [a, b] by points t0, t1, . . . tn−1, tn such
that a = t0 < t1 < t2 < . . . < tn−1 < tn = b. The points zj = γ(tj) define a polygon with
vertices at z0, z1, . . . , zn. This polygon has length

n∑

j=1

|zj − zj−1| =
n∑

j=1

|γ(tj)− γ(tj−1)| =
n∑

j=1

∣∣∣∣
γ(tj)− γ(tj−1)

tj − tj−1

∣∣∣∣(tj − tj−1).

The right hand-side is like a Riemann sum and

∣∣∣∣
γ(tj)− γ(tj−1)

tj − tj−1

∣∣∣∣ ∼ |γ′(tj)|, where |γ′(t)| =
√

(x′(t))2 + (y′(t))2.

We might expect that as we refine the partition of [a, b], introducing further points of
dissection that, as max(tj − tj−1) → 0, our expression for the polygonal length will tend
to

∫ b
a |γ′(t)| dt, and this can indeed be proved rigorously. On this basis we make the

following definition:

Definition 5.8 The length of a smooth curve γ : [a, b] → C is L(γ) =
∫ b
a |γ′(t)| dt.

If γ is a contour, γ = γ1 + γ2 + · · ·+ γs, with the γj smooth, then we define
L(γ) = L(γ1) + L(γ2) + · · ·+ L(γs).

Example 5.3 Let γ(t) = e2πit, 0 ≤ t ≤ 1.

Then

L(γ) =
∫ 1

0
|γ′(t)| dt =

∫ 1

0
|2πi e2πit | dt = 2π

∫ 1

0
dt = 2π,

a result which should cause no surprise — it is just the length of the unit circle.

Example 5.4 Suppose that

γ(t) =





e2πit, 0 ≤ t ≤ 1
1, 1 ≤ t ≤ 2
e−4πit, 2 ≤ t ≤ 3
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Then γ is a contour (check this) and

γ′(t) =





2πi e2πit, 0 ≤ t < 1
0, 1 < t < 2
−4πi e−4πit, 2 < t ≤ 3

At t = 1 the left derivative of γ is 2πi and the right derivative 0. At t = 2 the left
derivative is 0 and the right derivative −4πi.

L(γ) =
∫ 1

0
|γ′(t)| dt +

∫ 2

1
|γ′(t)| dt +

∫ 3

2
|γ′(t)| dt =

∫ 1

0
2π dt +

∫ 2

1
0 dt +

∫ 3

2
4π dt = 6π.

This is a reflection of the fact that γ starts at z = 1, goes round the unit circle once in
the anti-clockwise sense, (0 ≤ t ≤ 1), stops at the point z = 1, (1 ≤ t ≤ 2), and then goes
twice round the unit circle in the clockwise sense, (2 ≤ t ≤ 3), returning to the starting
point z = 1.

Before considering integration along a contour we note that if f : [a, b] → C is a continuous
complex valued function such that f(t) = f1(t) + if2(t), where f1, f2 are real valued on
[a, b], then ∫ b

a
f(t) dt =

∫ b

a
f1(t) dt + i

∫ b

a
f2(t) dt.

This can be proved in a straightforward manner starting from the definition of the integral
in terms of Riemann sums and is a reflection of the fact that integration is a linear
operation.

5.2 Integration along a contour

Let γ : [a, b] → C be a smooth curve and suppose that f is a function which is continuous
in a region containing tr γ. We wish to define the integral of f along the curve γ,

∫
γ f(z) dz.

A natural way to proceed is to partition [a, b] as above by points t0, t1, . . . tn−1, tn such
that a = t0 < t1 < t2 < . . . < tn−1 < tn = b. The points zj = γ(tj) define a polygon with
vertices at z0, z1, . . . , zn. We may pick in each subinterval [aj−1, aj] an arbitrary point ξj

and form the sum
n∑

j=1

f(ζj = γ(ξj))(zj − zj−1) =
n∑

j=1

f(ζj = γ(ξj))
γ(tj)− γ(tj−1)

tj − tj−1

(tj − tj−1).

It seems highly plausible, and can be proved, that as we take dissection limits of these
sums, as the length of the longest interval tends to zero, they tend to

∫ b
a f(γ(t))γ′(t) dt.

We therefore take this integral as our definition of
∫
γ f(z) dz. To be precise:

Definition 5.9 Let γ : [a, b] → C be a smooth curve and suppose that f is a function
which is continuous in a region containing tr γ. Then

∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt.
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Since z = γ(t) it may perhaps appeal to our intuition if we write the integral in the
equivalent notation ∫ b

a
f(z(t))

dz

dt
dt, z(t) = γ(t).

If, in the usual notation, we write f(z) = u(x, y) + iv(x, y), z(t) = γ(t) we have

∫

γ
f(z) dz =

∫ b

a

{
u(x(t), y(t)) + iv(x(t), y(t))

}
(x′(t) + iy′(t)) dt

=
∫ b

a

{
u(x(t), y(t))x′(t)− v(x(t), y(t))y′(t)

}
dt

+ i
∫ b

a

{
v(x(t), y(t))x′(t) + u(x(t), y(t))y′(t)

}
dt.

If γ is a contour we make the definition

Definition 5.10 ∫

γ
f(z) dz =

n∑

j=1

∫

γj

f(z) dz,

where the γj are the smooth parts of γ.

The following is a very important example whose significance will become clear later on.

Example 5.5 Let γ(t) = r eit, 0 ≤ t ≤ 2π, r > 0, f(z) = 1/z. Then
∫
γ dz/z = 2πi.

We have

∫

γ
f(z) dz =

∫

γ

dz

z
=

∫ 2π

0

1

r eit

d

dt
(r eit) dt =

∫ 2π

0

1

r eit
(ri eit) dt = i

∫ 2π

0
dt = 2πi.

In this example we’ve integrated 1/z round the circle centre 0 and radius r in the positive
(i.e. anti-clockwise) sense; the integral is equal to 2πi, irrespective of the value of r > 0.

We note the following.

Theorem 5.1 Let γ be a contour and suppose that f, g are continuous in a region which
contains tr γ and that α, β ∈ C are constants. Then

• ∫

γ
(αf(z) + βg(z)) dz = α

∫

γ
f(z) dz + β

∫

γ
g(z) dz,

• ∫

γ̃
f(z) dz = −

∫

γ
f(z) dz,

where γ̃ is the reverse curve to γ
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The proof of the first result follows from the definition and reflects the linearity of the
operation of integration. As regards the second result, it is enough to suppose that γ is
smooth, with γ : [a, b] → C in the now familiar notation. We have

∫

γ̃
f(z) dz =

∫ b

a
f(γ̃(t))

dγ̃(t)

dt
dt =

∫ b

a
f(γ(a + b− t))

dγ(a + b− t)

dt
dt.

Putting s = a + b− t, dt = −ds gives

∫

γ̃
f(z) dz =

∫ a

b
f(γ(s))

dγ(s)

ds
ds = −

∫ b

a
f(γ(s))

dγ(s)

ds
ds = −

∫

γ
f(z) dz.

This means that if we integrate along a curve in the opposite sense we change the sign of
the integral.

Note: It is not hard to verify that
∫
γ f is independent of the choice of parametrisation of

γ. In essence it depends on applying the chain rule.

Example 5.6 Evaluate
∫
γ z dz, where γ = γ1 + γ2, γ1 being the line segment from 1 to 0

and γ2 being the line segment from 0 to 2 + 2i.

On γ1, γ1(t) = 1− t, 0 ≤ t ≤ 1 and

∫

γ1

z dz =
∫ 1

0
(1− t)(−1) dt = −1

2
.

[More formally,
∫
γ1

z dz =
∫
γ1

(x− iy)(dx + idy) =
∫ 0
1 x dx = −1

2
, since y = 0 on γ1.]

On γ2, γ2(t) = 0 + t(2 + 2i) = 2(1 + i)t, 0 ≤ t ≤ 1 and
∫
γ2

z dz =
∫ 1
0 2(1− i)t(2 + 2i) dt

= 4× 2
∫ 1
0 t dt = 4 so that

∫
γ z dz =

∫
γ1

z dz +
∫
γ2

z dz = 4− 1
2

= 7
2
.

[More formally, note that we can use x to parametrise γ2 since y = x on this straight-line
segment, 0 ≤ x ≤ 2. We then have

∫

γ2

z dz =
∫

γ2

(x− iy)(dx + idy) =
∫ 2

0
x(1− i)(dx + idx) = (1− i)(1 + i)

∫ 2

0
x dx = 4,

as found above.]

We know that for continuous real valued functions f : [a, b] → R that

∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

We now extend this to complex integrals.
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Theorem 5.2 Let γ be a contour and suppose that f is a complex function which is
continuous in a region which contains tr γ. Then

∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ ≤
∫ b

a
|f(z(t))|

∣∣∣∣
dz

dt

∣∣∣∣ dt,

where γ : [a, b] → C and z(t) = γ(t).

Moreover, if |f(ζ)| ≤ M, ∀ζ ∈ tr γ, then | ∫γ f(z) dz| ≤ ML(γ).

To prove this result we first note that if
∫
γ f = 0 then there is nothing to prove. We

therefore suppose that
∫
γ f 6= 0 and let θ = arg

∫
γ f. We then have

∫
γ f = eiθ|∫γ f |, so that

∣∣∣∣
∫

γ
f

∣∣∣∣ = e−iθ
∫

γ
f =

∫ b

a
e−iθ f(γ(t))γ′(t) dt

=
∫ b

a
<(e−iθ f(γ(t))γ′(t)) dt + i

∫ b

a
=(e−iθ f(γ(t))γ′(t)) dt

The integral on the left is a real number, as is the first integral on the right (being the
integral of a real function), so it follows that the second integral on the right must be
zero. We then have

∣∣∣∣
∫

γ
f

∣∣∣∣ =
∫ b

a
<(e−iθ f(γ(t))γ′(t)) dt ≤

∫ b

a
|(e−iθ f(γ(t))γ′(t))| dt

since |<ζ| ≤ |ζ| for any complex number ζ. We therefore obtain

∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ ≤
∫ b

a
|f(z(t))|

∣∣∣∣
dz

dt

∣∣∣∣ dt,

as required. The last part follows at once since if |f | ≤ M | on tr γ then

∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ ≤
∫ b

a
M |γ′(t)| dt = M

∫ b

a
|γ′(t)| dt = ML(γ).

The following is an important theorem.

Theorem 5.3 Suppose that f ′ exists and is continuous on tr γ, where (in the usual no-
tation) γ : [a, b] → C is a contour. Then

∫

γ
f ′(z) dz = f(z = γ(b))− f(z = γ(a)).

To prove this we asume that γ is smooth (in the case of a contour we just add up the
contributions from each of the smooth bits) and write f(z) = u(x, y) + iv(x, y),
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z = γ(t) = x(t) + iy(t). Then, by definition,

∫

γ
f ′(z) dz =

∫ b

a
f ′(γ(t))γ′(t) dt =

∫ b

a

d

dt
f(γ(t)) dt

=
∫ b

a

(
d

dt
u(x(t), y(t)) + i

d

dt
v(x(t), y(t))

)
dt

=
[
u(x(t), y(t)) + iv(x(t), y(t))

]t=b

t=a

by the fundamental theorem of the integral calculus. The stated result has been estab-
lished.

This result motivates the following definition

Definition 5.11 Suppose that D is a domain and that f : D → C is continuous. A map
F : D → C such that F ′ = f on D is called a primitive for f on D.

We now have as a corollary of our theorem:

If F is a primitive for f on a domain D and γ is any contour whose trace lies in D then

∫

γ
f(z) dz = F (γ(b))− F (γ(a)).

In particular, if γ is closed and f has a primitive then
∫
γ f(z) dz = 0.

This theorem is clearly important since it enables us to compute many integrals in a
manner which is familiar from elementary calculus. As an example, let f(z) = zn, where
n is a positive integer. If γ is any smooth curve connecting the points z1 and z2 then

∫

γ
f(z) dz =

1

n + 1
[zn+1

2 − zn+1
1 ]

since F (z) = 1
n+1

zn+1 is a primitive for zn.

Example 5.7 Evaluate
∫
γ

dz
z
, where γ is the straight line from z = 2 to z = 1 + i

√
3.

Log z is a primitive for 1
z

in D (see diagram).
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We then have ∫

γ

dz

z
=

[
Log z

]1+i
√

3

2
= Log (1 + i

√
3)− Log 2

= ln
√

(4) + i Arg (1 + i
√

3)− (ln 2 + i Arg 2) = ln 2 + i
π

3
− ln 2 = i

π

3
.

We also have the following result (change of variable)

Theorem 5.4 Suppose that γ1 : [a, b] → C is a smooth curve and that γ2(t) = ζ(γ1(t)), t ∈
[a, b], where ζ is a smooth complex valued function in a region which contains the trace of
γ1. Let f be a continuous complex valued function in a region which contains the trace of
γ2. Then ∫

γ2

f(ζ) dζ =
∫

γ1

f(ζ(z))
dζ

dz
dz

For, we can write

∫

γ2

f(ζ) dζ =
∫ b

a
f(ζ(γ1(t)))

dζ

dt
dt =

∫ b

a
f(ζ(γ1(t)))

dζ

dz

dz

dt
dt (z = γ1(t))

=
∫

γ1

f(ζ(z))
dζ

dz
dz

where we’ve used the chain rule of differentiation and also our definition of
∫
γk

(k = 1, 2).



Chapter 6

Cauchy’s theorem

6.1 Cauchy’s theorem

Theorem 6.1 (Cauchy’s theorem) Suppose that D is a domain, that f : D → C is
analytic, and that γ is a simple smooth closed curve such that tr γ and its interior lie in
the domain D. Then

∫
γ f(z) dz = 0.

There are many versions of this theorem which make different assumptions about the
curve γ; for example the theorem can be proved on the assumption that the curve γ is
rectifiable (roughly speaking this means that it has a finite length); this does not require
the fairly strong assumption that the curve be smooth. Rigorous proofs, of even the
simplest version of the theorem, are not easy.

Cauchy’s theorem is the fundamental theorem of complex variable theory on which the
whole structure depends. A proof of the theorem which requires a stronger set of assump-
tions than is actually necessary depends on Stokes’1 theorem for the plane.

Following on in the above notation we state

Theorem 6.2 (Stokes’ theorem for the plane) Suppose that P, Q : D → R are functions
with continuous first order partial derivatives (C1 functions). Then

∫

A

(
∂ P

∂ x
− ∂ Q

∂ y

)
dx dy =

∫

γ
(Qdx + P dy)

where A is the area enclosed by tr γ and the line integrals are takem in the positive (anti-
clockwise) sense.

Before proceeding, we mention that the line integrals are to be interpreted along the lines
previously introduced for complex integrals. Thus, we assume that γ is parametrised in

1Sir George Stokes (1819-1903) Professor of Mathematics at Cambridge from 1849

37
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terms of a real variable t.
∫
γ Q(x, y)dx is then to be understood as

∫
Q((x(t), y(t))dx

dt
dt

integrated over t between the appopriate limits. For example, to compute
∫
γ x2ydx, where

γ is the circle given by x(t) + iy(t) = e2πit, 0 ≤ t ≤ 1, we may write
∫

x2y dx =
∫ 1

0
cos2(2πt)sin(2πt)

d

dt
(cos 2πt) dt

= −2π
∫ 1

0
cos2(2πt)sin2(2πt) dt = −(2π)(1/8) = −π/4.

Note: Stokes’ theorem for the plane, which we have quoted above, follows at once from
the version with which students are familiar from vector calculus. To see this, put A =
Q(x, y)e1 + P (x, y)e2 + 0e3 and apply Stokes’ theorem in the form∫
A curlA.n dA =

∫
γ A.dr with n = e3.

Returning to the proof of Cauchy’s theorem we write f(z) = u(x, y)+ iv(x, y), z = x+ iy.
In order to prove Cauchy’s therem using Stokes’ theorem we have to assume that the
derivative f ′(z) is continuous. It follows that the first order partial derivatives of u and v
with respect to x, y are continuous. We have

∫

γ
f(z) dz =

∫
(u(x(t), y(t)) + iv(x(t), y(t)))(x′(t) + iy′(t)) dt,

the integral being taken between the relevant values of t. Multiplying out the brackets
and bearing in mind the above comments we obtain

∫

γ
f(z) dz =

∫

γ
(u dx− v dy) + i

∫

γ
(v dx + u dy).

Now apply Stokes’ theorem to transform the line integrals. (put Q = u, P = −v in the
first of the line integrals; put Q = v, P = u in the second) We obtain

∫

γ
f(z) dz =

∫

A

(
−∂ v

∂ x
− ∂ u

∂ y

)
dx dy + i

∫

A

(
∂ u

∂ x
− ∂ v

∂ y

)
dx dy.

(this depends on the assumed continuity of the first order partial derivatives of u, v)

Both double integrals are zero by virtue of the Cauchy-Riemann equations and Cauchy’s
theorem is proved.

Pure mathematicians are unimpressed by this proof! Its main weakness is the fact that it
assumes that f ′(z) is continuous — which is not required in better proofs of the theorem.
Moreover, Stokes’ theorem is not easy to prove rigorously and it is perhaps no harder to
give a rigorous proof of Cauchy’s theorem (without the assumption that f ′ is continuous)
than it is to prove Stokes’ theorem rigorously. Anyway, the aim of this course is to
familiarise students with the basic ideas of complex variable theory and we shall not be
deterred from proceeding to derive further results using Cauchy’s theorem. Nor shall we
hesitate to employ diagramatic proofs where this is appropriate.

As a corollary we prove the following result.
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Theorem 6.3 If a domain D is bounded externally by a simple smooth closed curve γ1

(strictly by tr γ1) and internally by a simple smooth closed curve γ2, and f(z) is analytic
in a domain containing D and its boundary, then

∫

γ1

f(z) dz =
∫

γ2

f(z) dz,

where both intgrals are taken in the same sense, conventionally the positive (anti-clockwise)
sense.

Referring to the diagram we connect tr γ1 and tr γ2 by a straight line ‘slit’, as indicated.
Applying Cauchy’s theorem to the contour

A → B → C → D → E → F → G → H → A

and noting (in an obvious notation) that
∫

B→C
f(z) dz = −

∫

F→G
f(z) dz

(because the line segment B → C is the reverse of the line segment F → G) we obtain
∫

γ1

f(z) dz +
∫

γ̃2

f(z) dz = 0
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so that ∫

γ1

f(z) dz −
∫

γ2

f(z) dz = 0

and the stated result follows.

A similar argument establishes the following generalisation of this result.

Theorem 6.4 If a domain D is bounded externally by a simple smooth closed curve γ
and internally by simple smooth closd curves γ1, γ2, . . . , γn, as indicated in the diagram,
and if f is analytic in a domain which contains D and its boundary then

∫

γ
f(z) dz =

∫

γ1

f(z) dz +
∫

γ2

f(z) dz +
∫

γ3

f(z) dz + · · ·+
∫

γn

f(z) dz.

6.2 Cauchy’s integral formula

The following important result is due to Cauchy.
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Theorem 6.5 (Cauchy’s integral formula) Let γ be a simple smooth closed curve and
suppose that f is analytic in a domain containing tr γ and its interior D. Then if z ∈ D

f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ,

the integral being taken in the positive (anti-clockwise)sense.

Since z ∈ D ∃ρ > 0 such that Nρ(z) ⊂ D) Let Γ denote the circle centre z and radius ρ.

Referring to the diagram we note that f(ζ)/(ζ − z) is an analytic function of ζ in the
hatched region and applying theorem 6.3 we conclude that

∫

γ

f(ζ)

ζ − z
dζ =

∫

Γ

f(ζ)

ζ − z
dζ,

both integrals being taken in the positive sense. Now

∫

Γ

f(ζ)

ζ − z
dζ =

∫

Γ

f(ζ)− f(z)

ζ − z
dζ + f(z)

∫

Γ

dζ

ζ − z
= 2πif(z) +

∫

Γ

f(ζ)− f(z)

ζ − z
dζ
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by virtue of an argument which is virtually identical to that of Example 5.5 of
Chapter 5 — one puts ζ = z + ρ eiθ, 0 ≤ θ ≤ 2π to parametrise Γ. (If you prefer you can
use ζ = z + ρ e2πit, 0 ≤ t ≤ 1 — it amounts to the same thing)

Now ∣∣∣∣
∫

Γ

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤
∫ 2π

0

|f(ζ)− f(z)|
ρ

|ζ ′(θ)| dθ

(we’ve used theorem 5.2)

Since f is continuous at z, given ε > 0 ∃δ > 0 such that |f(ζ) − f(z)| < ε whenever
|ζ − z| < δ. Choosing ρ < δ we see that

∣∣∣∣
∫

Γ

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ <
∫ 2π

0

ε|iρ eiθ |
ρ

dθ = 2πε.

This argument applies for every ε > 0. It follows that

2πif(z) =
∫

γ

f(ζ)

ζ − z
dζ, f(z) =

1

2πi

∫

γ

f(ζ)

ζ − z
dζ,

as required.

It is possible to deduce from Cauchy’s integral formula that f is infinitely differentiable
at z and that the derivative of f to all orders can be computed by formally differentiating
with respect to z under the integral sign. Thus

f (n)(z) =
n!

2πi

∫

γ

f(ζ)

(ζ − z)n+1
dζ (6.1)

Now for some examples.

Example 6.1 Evaluate
∫
γ

ez

z
dz,where γ(θ) = eiθ, 0 ≤ θ ≤ 2π, by using Cauchy’s integral

formula. Deduce the values of two real integrals.

Let f(z) = ez. Then f is analytic in C and we may apply Cauchy’s integral formula in
the form

f(0) =
1

2πi

∫

γ

f(z)

z − 0
dz

(where we’ve used z as the integration variable rather that ζ)

It follows that

1 =
1

2πi

∫

γ

f(z)

z − 0
dz,

∫

γ

ez

z
dz = 2πi.

Using the given parametrisation of γ we have dz = i eiθ dθ and

∫ 2π

0
eeiθ i eiθ dθ

eiθ
= 2πi.
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This gives

∫ 2π

0
ecos θ+i sin θ dθ = 2π,

∫ 2π

0
ecos θ(cos(sin θ) + i sin(sin θ)) dθ = 2π.

Equating real and imaginary parts we obtain the results

∫ 2π

0
ecos θ cos(sin θ) dθ = 2π,

∫ 2π

0
ecos θ sin(sin θ) dθ = 0.

Example 6.2 Evaluate ∫

γ

ez

(z − 1)(z − 3)
dz,

taken round the circle γ given by |z| = 2 in the positive (anti-clockwise) sense. What is
the value of the integral taken arround the circle |z| = 1/2 in the positve sense?

Put f(z) = ez /(z−3). Then f is analytic in a domain which contains the circle |z| = 2 and
its interior (but not, of course, the point z = 3). Cauchy’s integral formula is applicable
and we have

f(1) =
1

2πi

∫

γ

f(ζ)

(ζ − 1)
dζ =

1

2πi

∫

γ

eζ

(ζ − 1)(ζ − 3)
dζ.

We conclude that ∫

γ

eζ

(ζ − 1)(ζ − 3)
dζ = 2πif(1) = −π e i.

By Cauchy’s theorem the integral taken round the circle |z| = 1/2 in the positive sense
is zero because the integrand is analytic in a domain which contains the circle and its
interior.

6.3 Laurent’s theorem

We are now in a position to prove Laurent’s theorem which has great theoretical impor-
tance.

Theorem 6.6 (Laurent’s2 theorem) Suppose that f(z) is analytic in the annulus
D = {z : R1 < |z − a| < R2}. Then for all z ∈ D

f(z) =
∞∑

n=−∞
An(z − a)n,

where

An =
1

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ,

and γ is any circle with centre a and radius R such that R1 < R < R2.

2Pierre Alphonse Laurent. This theorem appeared in 1843
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We give an outline of the proof.

For z ∈ D choose ρ1 and ρ2 such that R1 < ρ1 < |z − a| < ρ2 < R2.

Let γ1, γ2 be the circles centre a given by {ζ : |ζ − a| = ρj, j = 1, 2} and parametrised
by
ζ = γj(θ) = a + ρj eiθ, 0 ≤ θ ≤ 2π, j = 1, 2.

Referring to the diagram we connect tr γ1 and tr γ2 by a straight line slit (after the fashion
of theorem 6.3) and apply Cauchy’s integral formula to the contour shown. This gives
(since the contributions form the slit, being taken in opposite senses, cancel)

f(z) =
1

2πi

∫

γ2

f(ζ)

ζ − z
dζ +

1

2πi

∫

γ̃1

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ − 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ (6.2)

We aim to expand the two integrals on the right-hand side of equation 6.2 in powers of
(z − a). To this end consider first

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ2

f(ζ) dζ

(ζ − a)[1− (z−a)
(ζ−a

]
(6.3)
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Now, for any α ∈ C, α 6= 1,

1 + α + α2 + · · ·+ αn−1 =
1− αn

1− α
(6.4)

so that
1

1− α
= 1 + α + α2 + · · ·+ αn−1 +

αn

1− α
.

We apply this formula to the integral in equation 6.3 with α = (z − a)/(ζ − a) to obtain

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ2

f(ζ)

(ζ − a)

( n1∑

n=0

(z − a)n

(ζ − a)n

)
dζ + Rn1 ,

where

Rn1 =
1

2πi

∫

γ2

f(ζ)(z − a)n1+1

(ζ − a)(ζ − a)n1+1

1

(ζ − z)/(ζ − a)
dζ,

since, with our choice of α, 1− α = (ζ − z)/(ζ − a). Thus,

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ =

n1∑

n=0

An(z − a)n + Rn1 ,

where

An =
1

2πi

∫

γ2

f(ζ)

(ζ − a)n+1
dζ, Rn1 =

1

2πi

∫

γ2

f(ζ)(z − a)n1+1

(ζ − a)n1+1

1

(ζ − z)
dζ,

Note that the integrand in the equation defining An is analytic in the annulus D and by
theorem 6.3 An may be calculated by integrating round any circle γ centre a and radius
R, where R1 < R < R2, as stated in the ennunciation of Laurent’s theorem.

We now examine the behaviour of Rn1 as n1 → ∞. We parametrise γ2 by ζ = γ2(θ) =
a + ρ2 eiθ, 0 ≤ θ ≤ 2π. We then obtain, using Theorem 5.2 of Chapter 5 that

|Rn1| ≤
1

2π

∫ 2π

0

|f(ζ)|ρ2|z − a|n1+1 dθ

ρ2
n1+1|ζ − z| .

Since f is continuous |f | is bounded on the circle γ2 and ∃M ∈ R such that
|f(ζ)| ≤ M, ζ ∈ tr γ2. Also, |ζ− z| = |(ζ−a)− (z−a)| ≥ ||ζ−a|− |z−a|| = ρ2−|z−a|.
It follows that

|Rn1| ≤
ρ2

2π

∫ 2π

0

M

(ρ2 − |z − a|)
|z − a|n1+1

ρ2
n1+1

dθ =
Mρ2

(ρ2 − |z − a|)
( |z − a|

ρ2

)n1+1

→ 0

as n1 →∞ since |z − a|/ρ2 < 1. Consequently, Rn1 → 0 as n1 →∞.

Returning to equation 6.2 we consider the second integral on the right hand side of this
equation, namely

− 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ1

f(ζ)

z − ζ
dζ =

1

2πi

∫

γ1

f(ζ) dζ

(z − a)[1− (ζ−a)
(z−a

]
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By an application of formula 6.4, this time with α = (ζ − a)/(z − a), we obtain

− 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ ==

1

2πi

∫

γ1

f(ζ)

(z − a)

( n2∑

n=0

(ζ − a)n

(z − a)n

)
dζ + Sn2 (6.5)

where

Sn2 =
1

2πi

∫

γ1

f(ζ)(ζ − a)n2+1

(z − a)n2+1

1

(z − ζ)
dζ.

We repeat the argument developed above.

Since f is continuous |f | is bounded on the circle γ1 and ∃N ∈ R such that
|f(ζ)| ≤ N, ζ ∈ tr γ1. Also, |ζ− z| = |(ζ− a)− (z− a)| ≥ ||ζ− a|− |z− a|| = |z− a|− ρ1.
It follows that

|Sn2| ≤
ρ1

2π

∫ 2π

0

N

(|z − a| − ρ1)

ρ1
n2+1

|z − a|n2+1 dθ =
Nρ1

(|z − a| − ρ1)

(
ρ1

|z − a|
)n2+1

→ 0 as n2 →∞

since ρ1/|z − a| < 1. Consequently, Sn2 → 0 as n2 → ∞. Referring to equation 6.5 we
may write, making the change of variable m = −(n + 1) in the sum

− 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ =

−1∑

m=−(n2+1)

1

2πi

∫

γ1

f(ζ)

(ζ − a)m+1
(z − a)m + Sn2

=
−1∑

m=−(n2+1)

Am(z − a)m + Sn2

where Sn2 → 0 as n2 →∞. and Am is defined in the ennunciation of Laurent’s theorem.

We now deduce from equation 6.2 that

f(z) =
∞∑

n=−∞
An(z − a)n,

where

An =
1

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ,

and γ is any circle with centre a and radius R such that R1 < R < R2.

∑∞
−∞ is to be understood as the limit of

∑q
−p as q and p tend to infinity, independently;

this should be clear from the proof.

Laurent’s theorem has great theoretical significance and we shall use it in our development
of the residue calculus in the next chapter. Meanwhile the following is an interesting
example.
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Example 6.3 Apply Laurent’s theorem to expand the function e
x
2
(z−1/z) in the form

e
x
2
(z−1/z)

∞∑

n=−∞
Jn(x)zn

and discuss some of the properties of the functions Jn(x), showing in particular that they
satisfy Bessel’s differential equation. (See equation 13.1 of Chapter 13 where Bessel’s
equation arises in the context of finding solutions of the 3-dimensional Laplace equation
in cylindrical polar coordinates)

The functions Jn(x) are known as the Bessel functions of order n and are important in
mathematical physics.
Note that e

x
2
(z−1/z) is analytic in C−{0} and Laurent’s theorem (about the origin, a = 0)

gives

e
x
2
(z−1/z) =

∞∑

n=−∞
Jn(x)zn ∀z ∈ C− {0} (6.6)

where

Jn(x) =
1

2πi

∫

γ1

e
x
2
(ζ−1/ζ) dζ

ζn+1

and γ1 is the circle centre the origin and radius 1 parametrised by ζ(θ) = eiθ, −π ≤ θ ≤ π.

We obtain

Jn(x) =
1

2πi

∫

γ1

e
x
2
(ζ−1/ζ) dζ

ζn+1
=

1

2πi

∫ π

−π
eix sin θ(ieiθ)e−i(n+1)θ dθ

=
1

2π

∫ π

−π
ei(x sin θ−nθ) dθ =

1

2π

∫ 0

−π
ei(x sin θ−nθ) dθ +

1

2π

∫ π

0
ei(x sin θ−nθ) dθ

Putting u = −θ in the first integral gives

Jn(x) =
−1

2π

∫ 0

π
ei(−x sin u+nu) du +

1

2π

∫ π

0
ei(x sin θ−nθ) dθ.

Re-writing with u replaced by θ and combining the integrals using cos α = (eiα + e−iα)/2
gives

Jn(x) =
1

π

∫ π

0
cos(x sin θ − nθ) dθ, Bessel′s integral for the Bessel function Jn(x).

It is clear that the left hand side of equation 6.6 is invariant under z 7→ −1/z and

e
x
2
(z−1/z) =

∞∑

n=−∞
Jn(x)zn =

∞∑

n=−∞
Jn(x)(−1)nz−n ∀z ∈ C− {0} (6.7)

For any positive integer m we equate coefficients of zm to obtain J−m(x) = (−1)mJm(x).
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Next, expressing the exponential in equation 6.6 as a product of exponentials we obtain

e
x
2
(z−1/z) =

( ∞∑

s=0

(xz
2

)s

s!

)( ∞∑

r=0

(−x
2z

)r

r!

)
=

∞∑

n=−∞
Jn(x)zn ∀z ∈ C− {0} (6.8)

Since the two series are absolutely convergent we can multiply them in the obvious way.
We note that the term in zn in the product arises from the values of r and s such that
s− r = n. Picking out the terms in the product for which s = r + n and letting r go from
0 to ∞ we see that the coefficient of zn in the product is

∞∑

r=0

(
x

2

)r+n

(−1)r
(

x

2

)r 1

(n + r)!

1

r!

We therefore obtain

Jn(x) =
∞∑

r=0

(−1)r

r!(n + r)!

(
x

2

)n+2r

(6.9)

It is a simple calculation to verify what is already implicit from equation 6.6, that the
series for Jn converges for all real or complex x.

If we differentiate equation 6.6 with repect to x and z in turn we obtain

1

2
(z − 1/z)

∞∑

n=−∞
Jn(x)zn =

∞∑

n=−∞
Jn

′(x)zn (6.10)

x

2
(1 + 1/z2)

∞∑

n=−∞
Jn(x)zn =

∞∑

n=−∞
nJn(x)zn−1 (6.11)

Equating the coefficients of zn in the first of these equations and of zn−1 in equation 6.11
we obtain

Jn
′(x) =

1

2
(Jn−1(x)− Jn+1(x)),

x

2
(Jn−1(x) + Jn+1(x)) = nJn(x) (6.12)

2Jn
′(x) = Jn−1(x)− Jn+1(x),

2nJn(x)

x
= Jn−1(x) + Jn+1(x) (6.13)

Adding and subtracting the two equations 6.13 immediately gives

xJn
′(x) + nJn(x) = xJn−1(x) (6.14)

xJn
′(x)− nJn(x) = −xJn+1(x) (6.15)

Differentiating equation 6.14 with respect to x gives

xJn
′′(x) + (n + 1)Jn

′(x) = xJ ′n−1(x) + Jn−1 = (n− 1)Jn−1(x)− xJn(x) + Jn−1(x)

= nJn−1(x)− xJn(x)

using equation 6.15 with n replaced by n − 1. Expressing Jn−1 in terms of the Jn using
equation 6.14 gives

xJn
′′(x)+(n+1)Jn

′(x) = n((nJn(x))/x+Jn
′(x))−xJn(x), x2Jn

′′+xJn
′+(x2−n2)Jn = 0,



6.4. TAYLOR’S THEOREM 49

so that Jn satisfies Bessel’s differential equation, as required.

The defining relation for the Bessel functions gives

e
x+y

2
(z−1/z) =

∞∑

n=−∞
Jn(x + y)zn ∀z ∈ C− {0}.

Writing the left hand side as the product of two exponentials and then replacing them in
terms of Bessel functions immediately gives

( ∞∑

r=−∞
Jr(x)zr

)( ∞∑

s=−∞
Js(y)zn

)
=

∞∑

n=−∞
Jn(x + y)zn.

Equating powers of zn on both sides yields

Jn(x + y) =
∞∑

r=−∞
Jr(x)Jn−r(y).

Note: We state without proof that if an analytic function f has a Laurent expansion
f(z) =

∑∞
n=−∞ An(z − a)n, valid in some domain D, then the coefficients An are unique.

Thus, if it is also true that f(z) =
∑∞

n=−∞ Bn(z − a)n in D then An = Bn for all n.

6.4 Taylor’s theorem

We can regard Taylor’s3 theorem as a particular case of Laurent’s theorem.

Theorem 6.7 (Taylor’s theorem) If f is analytic in the domain D consisting of all points
z such that |z − a| < R then

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n, ∀z ∈ D.

Laurent’s theorem is applicable and we may write

f(z) =
∞∑

n=−∞
An(z − a)n,

where

An =
1

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ,

γ being any circle with centre a and radius R1 such that R1 < R. Since f is analytic it
follows from Cauchy’s theorem that the An are zero for n = −1,−2,−3, · · ·

3This is named after Brook Taylor (1685-1731) who in 1715 published the real variable version of this
theorem
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For n = 0 An = f(a) by Cauchy’s integral formula, whilst for n > 0 we have

An =
1

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ =

1

n!

dn

dan

(
1

2πi

∫

γ

f(ζ)

(ζ − a)
dζ

)
=

f (n)(a)

n!
.

(the formal differentiation under the integral can be rigorously justified)

It now follows that the standard series for the elementary functions which hold in real
variable theory also hold for complex variables. For example

ez =
∞∑

n=0

zn

n!
,

the series converging for all complex z. This must be true since the exponential is analytic
in C and therefore R, in our statement of Taylor’s theorem, can be taken arbitrarily large.

The standard series for sin, cos hold for all complex z; there seems to be no point writing
down all the details which are identical to the real variable case.

We can say immediately that the Taylor series for tan z will converge for all z such that
|z| < π/2, including of course real numbers for which this condition is satisfied. It would
be very hard to prove this directly in the real variable case by developing the Taylor
series since we would require to obtain an estimate of the n-th derivative of tan x — not
a pleasant prospect!



Chapter 7

Calculus of residues

7.1 Singularities

Definition 7.1 If f is analytic in the domain D = {z : 0 < |z − a| < R}, but not at
z = a, we say that a is an isolated singularity of f .

For example, the function 1/(z − 1) is analytic everywhere, except at z = 1 where it has
an isolated singularity.

Following on in the notation of our definition we note that Laurent’s theorem applies and
we can write

f(z) =
∞∑

n=0

An(z − a)n +
∞∑

n=1

Bn(z − a)−n, Bn = A−n, 0 < |z − a| < R,

in the notation used previously.

If all the Bn are zero then f(z) → A0 as z → a. If we re-define f(a) by f(a) = A0 then
f is analytic in the domain consisting of the points z such that |z − a| < R. In such a
situation we say (for obvious reasons) that a is a removable singularity.

If all but a finite number of the Bn are zero so that

f(z) =
∞∑

n=0

An(z − a)n +
m∑

n=1

Bn(z − a)−n, Bm 6= 0, 0 < |z − a| < R,

we say that f has a pole of order m at the point z = a. If m = 1 we say that the pole is
simple.

Thus f(z) = 1/(z − 1) has a simple pole at z = 1.

More generally, we have the following result.

51
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Theorem 7.1 If g is a function which is analytic in a neighbourhood of z = a, with
g(a) 6= 0, then f(z) = g(z)/(z − a) has a simple pole at z = a.

This is not hard to see. Since g is analytic in a neighbourhood of z = a we can write
g(z) =

∑∞
n=0 cn(z − a)n, where c0 6= 0 since g(a) 6= 0, the series converging inside some

circle centre a and radius δ > 0. We then have

f(z) =
c0

(z − a)
+ c1 + c2(z − a) + c3(z − a)2 + · · ·

as the Laurent expansion of f about z = a. Since c0 6= 0 it is clear that f has a simple
pole at z = a.

We see, for example, that ez /(z − 4) has a simple pole at z = 4.

A third possibility arises when the Laurent expansion is such that an infinite number of
the coefficients Bn are non-zero. In this case we say that the fuction has an essential
singularity at z = a. An example is given by the function

e
1
z =

∞∑

n=0

1

n!

1

zn

which is analytic everywhere, except at z = 0 where it has an essential singularity.

7.2 Calculus of residues

Continuing in the above notation, suppose that f has an isolated singularity at z = a so
that

f(z) =
∞∑

n=0

An(z − a)n +
∞∑

n=1

Bn(z − a)−n, Bn = A−n, 0 < |z − a| < R,

for some R > 0. For all integers n the coefficients An are given by

An =
1

2πi

∫

γ

f(ζ) dζ

(ζ − a)n+1
,

where γ is any circle centre a which excludes all other singularities of f .

We define the residue of f at a to be the coefficient of 1/(z−a) in the Laurent expansion;
in other words, the residue of f at a is equal to B1 = A−1 or, in terms of the integral
representation of B1,

1
2πi

∫
γ f(ζ) dζ.

Theorem 7.2 (Cauchy’s residue theorem) If f is analytic, except for a finite number of
poles in a domain which includes the trace of a closed contour γ and its interior D then

∫

γ
f(z) dz = 2πi

∑

R

where the sum denotes the sum of all the residues of f at poles which lie in D, it being
understood that γ does not pass through any singularity of f .
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Referring to the diagram we see, from theorem 6.4 of Chapter 6, that
∫

γ
f(z) dz =

n∑

r=1

∫

γr

f(z) dz,

where a1, a2, . . . , an are the poles of f inside D and γr denotes a circle, centre ar and
suitably small radius δr to guarantee that Nδr(ar) ⊂ D. We then have

1

2πi

∫

γ
f(z) dz =

n∑

r=1

1

2πi

∫

γr

f(z) dz =
∑

R

and the stated result immediately follows.

This theorem provide a powerful technique for the computation of many integrals which
would otherwise be extremely difficult to deal with. In order to use it we have to be able
to calculate residues. We now describe some of the standard techniques for the calculation
of residues.

Theorem 7.3 If f(z) has a simple pole at z = a then the residue of f at a is equal to
limz→a(z − a)f(z)
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To see this we may argue that near z = a f(z) has the form

f(z) =
B1

z − a
+ φ(z),

where φ is analytic at z = a. We therefore have B1 = (z − a)f(z) − (z − a)φ(z) and,
proceeding to the limit, we immediately obtain B1 = limz→a(z − a)f(z), as required.

As a corollary we note that if ψ(z) is analytic at a, and ψ(a) 6= 0, then the residue of
(ψ(z))/(z − a) is equal to ψ(a). The proof is easy:

We noted previously (see Theorem 7.1) that (ψ(z))/(z − a) has a simple pole at z = a
and its residue is therefore equal to lim( z − a)(ψ(z))/(z − a) = ψ(a).

The following result is often very useful.

Theorem 7.4 If f(z) is analytic and non-zero at z = a and if ψ(z) is analytic at z = a,
with a simple zero there, then the residue of f(z)/ψ(z) is f(a)/ψ′(a).

First we note that near z = a ψ(z) = (z − a)ψ1(z), where ψ1 is analytic and non-zero
at z = a. (This reflects the fact that ψ is analytic at a and has a simple zero there). It
follows at once from Theorem 7.1 that f(z)/ψ(z) has a simple pole at z = a.

The residue is

lim
z→a

(z − a)
f(z)

ψ(z)
= lim

z→a

f(z)
ψ(z)−ψ(a)

(z−a)

=
f(a)

ψ′(a)
,

as required.

Another useful result is the following.

Theorem 7.5 Suppose that g(z) is analytic at z = a. The function f given by f(z) =
g(z)/(z − a)n, where n ≥ 1 is an integer, has residue g(n−1)(a)/(n− 1)! at z = a.

The proof is easy. Since g is analytic

g(z) =
∞∑

r=0

gr(a)

r!
(z − a)r,

near z = a. We then have

g(z)

(z − a)n
=

∞∑

r=0

gr(a)

r!
(z − a)r−n.

The required residue is the coefficient of 1/(z − a) in this sum and is given by r = n− 1;
the stated result follows at once.

Consider the following examples.
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Example 7.1 The residue of cot z at z = kπ, where k is an integer, is equal to 1.

Since cot z = (cos z)/(sin z) we see that since sin z has a simple zero at z = kπ (it’s simple
because the derivative of sin z, namely cos z is non-zero at z = kπ) cot z has a simple pole
at z = kπ, as follows from theorem 7.4. The same theorem shows that the residue of cot z
at kπ is equal to (cos(kπ))/(sin)′(kπ) = 1.

Example 7.2 The residue of eiz /(z2 + a2) at z = ai is equal to e−a /(2ai).

The denominator of this function obviously has a simple zero at z = ai. By theorem 7.4
the residue of the function at z = ai is

eiz

d
dz

(z2 + a2)

∣∣∣∣
z=ai

=
e−a

2ai

as required.

Example 7.3 Find the residue of 1/(z4 + 1) at z = eiπ/4 .

The denominator of this function equals zero at z = eiπ/4 and the zero is simple because
the derivative of the denominator is non-zero at this point. Theorem 7.4 tells us that the
required residue is equal to

1
d
dz

(z4 + 1)

∣∣∣∣
z=eiπ/4

=
1

4
e−3πi/4 = −1

4
eiπ/4 = −

√
2

8
(1 + i).

Example 7.4 Find the residue of 1/(z2 + 1)2 at z = i.

The denominator of this function has a double zero at z = i so this time theorem 7.4 isn’t
applicable. However, we can appeal to theorem 7.5. We note that

1

(z2 + 1)2
=

1

(z + i)2

1

(z − i)2

and by theorem 7.5 the residue at z = i is equal to

d

dz

(
1

(z + i)2

)∣∣∣∣
z=i

=
−2

(z + i)3

∣∣∣∣
z=i

= − i

4
.

Another way of dealing with this problem is as follows. In principle, we need to compute
the Laurent expansion of 1/(z2+1)2 about z = i and the required residue is the coefficient
of 1/(z − i) in this expansion. To simplify the writing we put z = i + ζ and pick out the
coefficient of 1/ζ. We have

1

(z2 + 1)2
=

1

[(ζ + i)2 + 1]2
=

1

(ζ2 + 2iζ)2
=

1

(2iζ)2
[1+ζ/(2i)]−2 = − 1

4ζ2

[
1+

(
ζ

2i

)
(−2)+· · ·

]

The coefficient of 1/ζ is −i/4, as we found above by another apparently different — but
equivalent method.
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Example 7.5 Let

Letf(z) =
A1

(z − a)
+

A2

(z − a)2
+ · · ·+ An

(z − a)n
.

Suppose that ζ 6= a. Show that the residue of f(z)/(z − ζ) at z = a is −f(ζ).

We need to pick out the coefficient of 1/(z − a) in the Laurent expansion of f(z)/(z − ζ)
about z = a. The easiest way to do this is to expand 1/(z − ζ) about z = a using

1

z − ζ
=

−1

(ζ − a)(1− z−a
ζ−a

)
=

−1

ζ − a

∞∑

s=0

(
z − a

ζ − a

)s

,

the geometric series being convergent when z is sufficiently close to a. It follows that

f(z)

z − ζ
=

(−1)

ζ − a

(
A1

(z − a)
+

A2

(z − a)2
+ · · · An

(z − a)n

) ∞∑

s=0

(
z − a

ζ − a

)s

.

Picking out the coefficient of 1/(z − a) we obtain the residue of f(z)/(z − ζ) at z = a as

−
(

A1

(ζ − a)
+

A2

(ζ − a)2
+ · · · An

(ζ − a)n

)
= −f(ζ).

We conclude by showing how the residue theorem provides a powerful method for the
computation of certain integrals using a technique often referred to as contour integration.

7.3 Contour integration

In what follows let CR denote the contour consisting of the portion of the
real axis between z = −R and z = +R, together with the semi-circle γR, where
γR(θ) = Reiθ, 0 ≤ θ ≤ π.

Example 7.6 By considering

∫

CR

eiz

z − ai
dz, a > 0,

show that ∫ ∞

−∞
a cos x + x sin x

x2 + a2
dx = 2π e−a .
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Let f(z) = eiz /(z − ai). f has a simple pole at z = ai with residue

lim
z→ai

(z − ai)
eiz

z − ai
= e−a .

Application of Cauchy’s residue theorem to the contour CR then gives

∫ 0

−R

eix

x− ai
dx +

∫ R

0

eix

x− ai
dx +

∫

γR

eiz

z − ai
dz = 2πi e−a .

Changing the variable to −x in the first integral leads to

∫ R

0

x(eix− e−ix) + ai(eix + e−ix)

x2 + a2
+

∫

γR

f(z) dz = 2πi e−a .

Assuming that
∫
γR

f(z) dz → 0 as R →∞ we obtain

∫ ∞

0

x sin x + a cos x

x2 + a2
dx = π e−a,

which is equivalent to the stated result. In order to see that
∫
γR

f(z) dz → 0 as R → ∞
we can argue as follows:

∣∣∣∣
∫

γR

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫ π

0

ei[R cos θ+iR sin θ] Ri eiθ dθ

R eiθ−ai

∣∣∣∣ ≤
∫ π

0

R e−R sin θ dθ

|R eiθ−ai| .

Using the inequality ||α| − |β|| ≤ |α− β| we obtain

|R eiθ−ai| ≥ ||R eiθ | − |ai|| = |R− a| = R− a,

(the last step assuming R > a). We therefore obtain

∣∣∣∣
∫

γR

f(z) dz

∣∣∣∣ ≤
∫ π

0

R

R− a
e−R sin θ dθ =

2R

R− a

∫ π/2

0
e−R sin θ dθ.

Since sin θ ≥ 2θ/π ∀θ ∈ [0, π/2] we obtain

∣∣∣∣
∫

γR

f(z) dz

∣∣∣∣ ≤
2R

R− a

∫ π/2

0
e−2Rθ/π dθ =

π

R− a
(1− e−R) → 0 as R →∞.

Example 7.7 Let m > 0, a > 0. Prove, by considering
∫

CR

z eimz /(z4 + a4) dz,

that ∫ ∞

0

x sin mx

x4 + a4
dx =

π

2a2
e−

ma√
2 sin

(
ma√

2

)
.
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Let f(z) = z eimz /(z4 + a4), a > 0, m > 0 and consider
∫
CR

f(z) dz. f has simple poles

where z4 + a4 = 0 i.e. when z = zk, where zk = a ei(2k+1)π/4, k = 0, 1, 2, 3. Only the
poles at z = z0 and z = z1 lie inside the contour CR. Note that z1 = iz0. The sum of the
residues of the poles at z = z0, z = z1 is

z0 eimz0

d
dz

(z4 + a4)|z=z0

+
z1 eimz1

d
dz

(z4 + a4)|z=z1

=
z0 eimz0

4z0
3

+
z1 eimz1

4z1
3

=
eimz0

4z0
2

+
eimz1

4z1
2

Using z1 = iz0, z0 = aeiπ/4 this simplifies to

e−(ma/
√

2) sin(ma/
√

2)

2a2
.

Cauchy’s residue theorem applied to CR gives

∫ 0

−R

x eix

x4 + a4
dx +

∫ R

0

x eix

x4 + a4
dx +

∫

γR

f(z) dz =
πi e−(ma/

√
2) sin(ma/

√
2)

a2
.

Following the procedure adopted in example 7.6 we change the variable from x to −x and
let R →∞ (the integral round γR tends to zero – same sort of proof as in example 7.6).
This gives

∫ ∞

0

x sin mx

x4 + a4
dx =

π e−(ma/
√

2) sin(ma/
√

2)

2a2
(7.1)

If one requires to compute ∫ ∞

0

x2 cos mx

x4 + a4
dx

this can be accomplished by differentiating equation 7.1 with respect to m. (the differen-
tiation under the integral is valid in this case)

Example 7.8 By considering

∫

CR

Log (1− iz)

z2 − 2z sin α + 1
dz, 0 ≤ α < π/2,

where Log is the principal value of the logarithm, show that for 0 ≤ α < π/2

∫ ∞

−∞
arctan x dx

(x2 − 2x sin α + 1)
=

πα

2 cos α
,

∫ ∞

−∞
ln(1 + x2) dx

(x2 − 2x sin α + 1)
=

2π ln(2 cos(α/2))

cos α
.

Let

f(z) =
Log (1− iz)

z2 − 2z sin α + 1
.

f has a branch point due to the logarithm where 1− iz = 0 i.e. where z = −i. However,
z = −i does not lie inside the contour CR and we therefore have no difficulty with “multi-
valued” logarithms. On the other hand, f has poles where z2−2z sin α+1 = 0 i.e. where
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z = sin α ± i cos α or, equivalently, z = i e−iα, z = −i eiα . Of these, only z = i e−iα lies
inside the contour CR. The residue of f(z) at this pole is

lim
z→i e−iα

(z − i e−iα)
Log (1− iz)

(z − i e−iα)(z + i eiα)
=

Log (1 + e−iα)

2i cos α
.

Now

Log (1+e−iα) = Log e−iα/2(eiα/2+e−iα/2) = Log e−iα/2(2 cos(α/2)) = ln((2 cos(α/2))+i(−α/2)

(using the principal value of the logarithm). The above residue is therefore equal to

−i
ln(2 cos(α/2)) + i(−α/2)

2 cos α
.

Applying Cauchy’s residue theorem to the contour CR we immediately obtain
∫ R

−R

Log (1− ix) dx

x2 − 2x sin α + 1
+

∫

γR

f(z) dz = π
ln(2 cos(α/2)) + i(−α/2)

cos α
.

One can again prove, along the lines of the argument presented in example 7.6, although
it is slightly more complicated because of the nature of the integrand, that the integral
round γR → 0 as R →∞. Letting R →∞ and noting that
Log (1− ix) = ln(1 + x2)1/2− i arctan x (remember, we’re using the principal value of the
logarithm) we obtain

∫ ∞

−∞
ln(1 + x2) dx

x2 − 2x sin α + 1
=

2π

cos α
ln(2 cos(α/2)), 0 ≤ α < π/2,

∫ ∞

−∞
arctan x dx

x2 − 2x sin α + 1
=

πα

2 cos α
, 0 ≤ α < π/2

Example 7.9 By integrating eαz / cosh πz round the rectangle whose sides are
x = ±R, y = 0, y = 1 show that

∫ ∞

0

cosh αx

cosh πx
dx =

1

2
sec(α/2), |α| < π.

Let f(z) = eαz / cosh πz. f has simple poles where cosh πz = 0 i.e. where cos iπz = 0 i.e.
where z = −i(k + 1

2
), k = 0,±1,±2, · · · Of these poles, only the one at z = i/2 actually
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lies inside the given rectangular contour. We note that

Res
eαz

cosh πz

∣∣∣∣
z=i/2

=
eiα/2

π sinh(iπ/2)
= −i eiα/2

π

because sinh(iπ/2) = i sin(π/2) = i.

Application of the residue theorem now gives

∫ R

−R

eαx dx

cosh πx
+ I1 +

∫ −R

R

eα(x+i) dx

cosh π(x + i)
+ I2 = 2πi

(
−i eiα/2

π

)
= 2 eiα/2,

where

I1 =
∫ 1

0

eα(R+iy) i dy

cosh π(R + iy)
, I2 =

∫ 0

1

eα(−R+iy) i dy

cosh π(−R + iy)
.

Assuming for a moment that I1 and I2 both tend to zero as R → ∞ (when |α| < π) we
obtain (since cosh(π(x + i)) = − cosh πx — check this)

(1 + eiα)
∫ ∞

−∞

eαx

cosh πx
dx = 2 eiα/2, so that

cos(α/2)
∫ ∞

−∞

eαx

cosh πx
dx = 1,

∫ ∞

0

cosh αx

cosh πx
dx =

1

2
sec(α/2), |α| < π.

(the last step involves splitting the range of integration from 0 to ∞ and −∞ to 0 and
using the change of variable x 7→ −x in one of the resulting integrals.)

A simple change of variable immediately gives the well known result
∫ ∞

0

cosh λx

cosh x
dx =

1

2
π sec(λπ/2), |λ| < 1.

To make the argument water-tight we need to show that I1 and I2 both tend to zero as
R →∞. We deal with I1; I2 can be treated in an identical fashion. We have

|I1| =
∣∣∣∣
∫ 1

0

eα(R+iy) i dy

cosh π(R + iy)

∣∣∣∣ ≤
∫ 1

0

eαR dy

| cosh(πiy + πR)|
Now

| cosh(πiy + πR)| = | cos πy cosh πR + i sin πy sinh πR|
= (cos2πycosh2πR + sin2πysinh2πR)1/2

= (cosh2πR− sin2πy)1/2

= ((cosh2πR)/4 + 3(cosh2πR)/4− sin2πy)1/2

> ((cosh2πR)/4)1/2 =
1

2
cosh πR (for all large R)

>
1

4
eπR (for all large R)
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It follows that

|I1| <
∫ 1

0

eαR dy

(eπR)/4
= 4 e(α−π)R → 0 as R →∞ (since |α| < π)

Likewise I2 → 0 as R →∞, and the above result is established.
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Chapter 8

Origin of some PDE s of
Mathematical Physics

In this section we attempt to show how the partial differential equations which we study
later arise in a natural way in mathematical physics.

8.1 Notation

We assume that space is Euclidean. Let Oxyz be a rectangular coordinate system so that
the position vector r of a typical point P may be expressed as

r = xe1 + ye2 + ze3

where e1, e2, e3 denote a right handed system of unit vectors; the coordinates of P in this
sytem are (x, y, z). Sometimes we shall use the notation (x1, x2, x3) instead of (x, y, z).

8.2 Laplace’s equation

First, let us see how Laplace’s1 equation arises in the study of fluid mechanics.

Consider a fluid moving in a region of 3-dimensional space. Let q(x, y, z, t), ρ(x, y, z, t)
denote the velocity and density, respectively, of the fluid element at the point (x, y, z) at
time t. The continuity equation which expresses the law of conservation of mass may be
derived as follows:

The mass of fluid in a fixed volume v is
∫
v ρ dv and the rate at which this mass is changing

is given by ∂
∂ t

∫
ρ dv =

∫
∂ ρ

∂ t
dv. Any change in the total mass of fluid inside v must be

accounted for by fluid crossing S, the smooth closed surface which bounds v. We note
that the mass of fluid crossing the surface element dS per unit time is ρq.ndS = ρq.dS,

1Pierre Simon, Marquis de Laplace, (1749-1827). French mathematician, physicist, and astronomer.
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where n denotes the unit normal to S, drawn out from v. This is clear, since the tangential
component of q does not contribute; the normal component is q.n and in unit time the
mass of fluid crossing dS is the mass inside a cylinder of length q.n (in the sense of the
motion) and cross sectional area dS. The total mass crossing S per unit time is therefore∫
S ρq.dS Conservation of mass demands that

∫
∂ ρ

∂ t
dv = −

∫

S
ρq.dS = −

∫

S
j.dS,

where the mass flux vector j is given by j = ρq.

By Gauss’s divergence theorem it follows that
∫

v
(
∂ ρ

∂ t
+ div j) dv = 0.

This formula holds for an arbitrary fixed volume v and assuming that the integrand is
continuous it follows that, at each point of the fluid,

∂ ρ

∂ t
+ div j = 0 (8.1)

This equation is called the continuity equation and in this context expresses the law of
conservation of mass. If the fluid is incompressible we may treat ρ as a constant and the
continuity equation reduces to

div j = 0. (8.2)

If we assume additionally that the motion is irrotational, then curlq = 0, and we may
write q = −∇∇∇φ, where φ is usually referred to as the velocity potential. Here ∇∇∇ is
Hamilton’s operator nabla (ναβλα is the word used in classical Greek for a harp) given
by

∇∇∇ = e1
∂

∂ x
+ e2

∂

∂ y
+ e3

∂

∂ z
(8.3)

It follows that for an incompressible fluid executing an irrotational motion that
div (∇∇∇φ) = 0. In other words φ satisfies the famous Laplace equation

∇2φ ≡ ∂2 φ

∂ x2
+

∂2 φ

∂ y2
+

∂2 φ

∂ z2
= 0 (8.4)

∇2 is often referred to as Laplace’s operator (in the coordinates (x, y, z)) or just the
Laplacian. Explicitly

∇2 ≡ ∂2

∂ x2
+

∂2

∂ y2
+

∂2

∂ z2
(8.5)

In two space dimensions Laplace’s equation becomes

∇2φ ≡ ∂2 φ

∂ x2
+

∂2 φ

∂ y2
= 0 (8.6)
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and in one space dimension just

∇2φ ≡ d2φ

dx2
= 0 (8.7)

We can relate the theory of the two-dimensional motion of an incompressible fluid to
the theory of analytic functions of a complex variable ζ = x + iy as follows. For such
a motion we have q(x, y, z) = (u(x, y), v(x, y), 0). This means that the motion is always
perpendicular to the z-axis and is independent of the z coordinate. The condition that
the motion be irrotational may be expressed as

u = −∂ φ

∂ x
, v = −∂ φ

∂ y

and the solenoidal condition div q = 0 may be written

∂ u

∂ x
+

∂ v

∂ y
= 0.

It is proved in books on calculus that the second of these equations is precisely the
condition for −u dy + v dx to be the differential of a function ψ. so that

dψ = −u dy + v dx, u = −∂ ψ

∂ y
, v =

∂ ψ

∂ x

ψ is referred to as the stream function of the motion. Combining our equations for u, v
in terms of φ, ψ we obtain

∂ φ

∂ x
=

∂ ψ

∂ y
,

∂ φ

∂ y
= −∂ ψ

∂ x
(8.8)

which are precisely the Cauchy-Riemann equations relating the functions φ, ψ of the
variables (x, y). Assuming that the first order derivatives of φ, ψ are continuous the
Cauchy-Riemann equations guarantee that φ + iψ is an analytic function of the com-
plex variable ζ = x + iy. φ and ψ both satisfy the two-dimensional Laplace equation.

The physical significance of the function ψ may be seen as follows: The path of a fluid
element, known as a streamline, is given by the family of curves Γ with the property that
the tangent at each point (x, y) of Γ is parallel to the velocity vector q(x, y). It is clear
that the differential equation of this family of curves is

dy

dx
=

v(x, y)

u(x, y)
.

Writing u and v interms of ψ this becomes

∂ ψ

∂ x
+

∂ ψ

∂ y

dy

dx
= 0,

d

dx
ψ(x, y(x)) = 0
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using the chain rule of partial differentiation. It follows that ψ(x, y) = C, where C is
a parameter; the streamlines are determined by the equation ψ(x, y) = C, where C is a
parameter. Each streamline will be labelled by a different value of C.

Conversely, any analytic function ω(ζ), ζ = x+ iy describes two-dimensional irrotational
flow of an incompressible fluid. We can see this as follows. Write ω(ζ) = φ(x, y)+ iψ(x, y)
and define the velocity q at (x, y) by q = −∇∇∇φ. Then div q = 0, since φ satisfies Laplace’s
equation (being the real part of an analytic function). Moreover, curlq = 0. It follows
that q describes the irrotational flow of an incompressible fluid. The streamlines of the
flow determined by q are given by the equation ψ(x, y) = C, where C is a real parameter,
as described above.

Laplace’s equation also arises in the theory of electricity. This time, suppose that v is
an arbitrary volume in a conducting material in which electric charge is free to flow.
Following the above notation we use q(x, y, z, t) and ρ(x, y, z, t) to denote the velocity of
the charge and the electric charge density, respectively, at the point (x, y, z) at time t.
If we require electric charge to be conserved we obtain, exactly as above, the continuity
equation expressing conservation of electric charge:

∂ ρ

∂ t
+ div j = 0, j = ρq.

In the case of steady currents q and ρ don’t depend on t so the continuity equation reduces
to

div j = 0.

It is found that for many conductors the vector j is proportional to the electric field E. (If
you’re not familiar with this concept you can think of the value of E at a point (x, y, z)
as being the force exerted on a unit charge placed at that point). Assuming Ohm’s Law,
we may write j = σE, where σ is a constant called the electrical conductivity of the
material. For steady currents the electric field satisfies curlE = 0 so that we may write
E = −∇∇∇φ, where φ is the electric potential . We conclude that for steady currents flowing
in a material in which Ohm’s Law holds, div (σ∇∇∇φ) = 0. Assuming that σ is constant it
follows that the electric potential satisfies Laplace’s equation

∇2φ ≡ ∂2 φ

∂ x2
+

∂2 φ

∂ y2
+

∂2 φ

∂ z2
= 0.

The solution of problems in the theory of steady currents therefore reduces to finding
appropriate solutions of Laplace’s equation. In practice we require our solutions to satisfy
so called boundary conditions. For example, we would require φ to assume a constant
value on an electrode, and on a surface across which no charge flows we would demand
that ∂ φ

∂ n
= 0; the latter condition expresses the fact that on a surface across which no

charge flows we must have q.n = 0 and since q = −∇∇∇φ this becomes ∂ φ

∂ n
= 0. Recall

(CM112A) that ∂ φ

∂ n
is the directional derivative of φ with respect to n i.e. the rate of
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change of φ with respect to distance measured parallel to n. Boundary conditions are of
fundamental importance in solving PDE s.

Another very important partial differential equation is the diffusion or heat equation; this
equation arises in many braches of pure and applied mathematics; for example, in the
theory of heat conduction and in probability theory.

8.3 The diffusion equation

Consider a fixed volume v (bounded by a smooth closed surface S) in some material
which permits the flow of heat energy. Suppose that ρ represents the (mass) density of
the material. The heat energy required to raise the temperature of a mass ρ dv from
temperature θ0 to a temperature θ is ρ dv(θ − θ0)s, where s is called the specific heat of
the material. The heat energy in the volume v may therefore be regarded as

∫
ρ(θ−θ0)s dv

and the rate at which this is changing with respect to time t is given by

∂

∂ t

∫
ρ(θ − θ0)s dv =

∫
ρs

∂ θ

∂ t
dv (8.9)

(We’ve assumed that ρ doesn’t depend on t which will usually be entirely reasonable.)

Bearing in mind the arguments applied above in the derivation of Laplace’s equation we
postulate a heat energy flow vector j so that

∫
Σ j.dΣ represents the amount of heat energy

crossing a surface Σ per unit time. The principle of conservation of energy now requires
that ∫

v
ρs

∂ θ

∂ t
dv = −

∫

S
j.dS,

∫

v
(ρs

∂ θ

∂ t
+ div j) dv = 0 (8.10)

by an application of Gauss’s theorem to transform the surface integral to a volume integral.
This argument applies to an arbitrary volume v in the material and, assuming that the
integrand is continuous, we conclude that at each point of the (heat) conducting material

ρs
∂ θ

∂ t
+ div j = 0 (8.11)

In order to make further progress we need to relate j to the temperature θ. What would
be a reasonable assumption? First, j is a vector. Given a scalar function θ the first vector
function which springs to mind is ∇∇∇θ. We know that heat flows form regions of higher
temperature to regions of lower temperature. It is therefore reasonable to write, on the
basis of our physical and mathematical intuition,

j = −k∇∇∇θ (8.12)

where k is a (positive) constant depending on the material. Whether our guess is sound
will depend on whether the resulting model leads to predictions in agreement with exper-
iment. Anyway, with this assumption we obtain

ρs
∂ θ

∂ t
= div (k∇∇∇θ) = k∇2θ.
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Equivalently

∇2θ ≡ ∂2 θ

∂ x2
+

∂2 θ

∂ y2
+

∂2 θ

∂ z2
=

1

κ

∂ θ

∂ t
(8.13)

where κ is usually referred to as the thermal conductivity of the material. This impor-
tant equation is called the heat or diffusion equation. In two and one space dimensions
respectively it reads

∂2 θ

∂ x2
+

∂2 θ

∂ y2
=

1

κ

∂ θ

∂ t
(8.14)

∂2 θ

∂ x2
=

1

κ

∂ θ

∂ t
(8.15)

One could write down various generalizations in higher dimensions which are of interest
to pure mathematicians.

The heat or diffusion equation arises in many branches of mathematics, for example in
probability theory.

The observation that, when suspended in water small pollen grains are found to be in
a very animated and irregular state of motion was first investigated by Robert Brown,
an English botanist, in 1827; as a result the phenomenon took on the name Brownian
motion. The first convincing explanation of Brownian motion was given by Einstein2 in
1905, the year in which he published the Special Theory of Relativity; 1905 was also the
year in which he explained the photoelectric effect in terms of Planck’s quantum theory!

Einstein assumed that the Brownian motion is caused by frequent impacts on the pollen
grains by molecules of the liquid in which it is supended and that the motion of these
molecules is so complicated that its effect on the pollen grain can only be decribed prob-
abilistically in terms of frequent statistically independent impacts.

In Einstein’s model he assumes that the impacts happen at times 0, τ, 2τ, 3τ, . . . , τ being
very small. For simplicity, consider the case of Brownian motion in one dimension – along
the x–axis. It is assumed that when an impact occurs the probability that the pollen par-
ticle receives a displacement between ∆ and ∆ +d ∆is φ(∆)d ∆, so that

∫∞
−∞ φ(∆) d ∆ = 1.

It is natural to assume that the probability density φ is even i.e. φ(−∆) = φ(∆), from
which it follows that

∫∞
−∞ ∆ φ(∆) d ∆ = 0.

Now suppose that f(x, t)dx is the probability that the particle (pollen grain) lies between
x and x + dx at time t, so that

∫∞
−∞ f(x, t) dx = 1.

2Albert Einstein (1879-1955) Professor of Theoretical Physics Berne (1909), Prague (1911), Berlin
(1913), Professor of Mathematics Princeton (1933)
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The probability that the particle lies between x and x + dx at time t + τ is

f(x, t + τ) dx =
∑

∆

Prob(particle at x + ∆, at time t and receives a kick −∆

in the time gap τ)

=
∫ ∞

−∞
f(x + ∆, t) dxφ(−∆) d ∆ =

∫ ∞

−∞
f(x + ∆, t) dxφ(∆) d ∆

Since τ is assumed very small we can write this equation as

f(x, t) +
∂ f

∂ t
(x, t)τ + · · · =

∫ ∞

−∞

(
f(x, t) +

∂ f

∂ x
(x, t) ∆ +

∂2f

∂ x2
(x, t)∆

2/2 + · · ·
)
φ(∆) d ∆

= f(x, t) +
1

2

∂2f

∂ x2
(x, t)

∫ ∞

−∞
∆

2φ(∆) d ∆

since
∫∞
−∞ φ(∆) d ∆ = 1 and

∫∞
−∞ ∆ φ(∆) d ∆ = 0.

We note that
∫∞
−∞ ∆2φ(∆) d ∆ is just the variance of the random variable ∆, so we denote

it by σ2. We conclude that

∂ f

∂ t
τ =

σ2

2

∂2f

∂ x2
,

∂2f

∂ x2
=

1

κ

∂ f

∂ t
, where κ =

σ2

2τ
.

We see that the probability density f(x, t) satisfies the diffusion equation. We note in
passing that a fundamental solution of this equation is

f(x, t) =
1√

4πκt
e−x2/(4κt).

This result is most readily derived by Fourier transform methods (see Chapter 15 — where
we demonstrate this explicitly) but the fact that it is a solution can also be verified by
substitution. The multiplicative factor 1√

4πκ
in this expression is chosen so that f(x, t) is

indeed a probability density. In fact
∫ ∞

−∞
f(x, t) dx =

1√
4πκt

∫ ∞

−∞
e−x2/(4κt) dx = 1.

8.4 The wave equation

Imagine a taut string, stretched to a tension T , which executes small transverse vibrations
in a direction perpendicular to the x-axis. Suppose that u(x, t) denotes the displacement
of the string at the point x at time t. Consider the motion of the portion PQ of the string,
where P is the point (x, u(x, t)) and Q is the point (x + dx, u(x + dx, t)). Let ρ denote
the linear density of the string i.e. the mass of the string per unit length. We note that

PQ has length ds, where ds =
√

1 + (∂ u
∂ x

)2 dx. Applying Newton’s Second Law in the
transverse direction we obtain

ρds
∂2u

∂ t2
= T sin(ψ(x + dx, t))− T sin ψ(x, t),
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where ψ is the angle which the tangent to the string makes with the positive x-axis; of
course, ψ will depend on x as well as t. Approximating the right hand of this equation by
Taylor’s theorem, and neglecting higher powers of dx, we obtain

ρds
∂2u

∂ t2
= T

∂

∂ x
sin ψ(x, t) dx.

For small ψ, sin ψ ' tan ψ = ∂ u
∂ x

and it follows that

ρ

√
1 +

(
∂ u

∂ x

)2 ∂2u

∂ t2
= T

∂2u

∂ x2
.

Since ψ is assumed small (∂ u
∂ x

)2 is negligible and we conclude that u satisfies the PDE

1

c2

∂2u

∂ t2
=

∂2u

∂ x2
, c2 =

T

ρ
.

This PDE is the wave equation in one space dimension. The analogous equation in three
space dimensions is

1

c2

∂2u

∂ t2
=

∂2u

∂ x2
+

∂2u

∂ y2
+

∂2u

∂ z2
, ∇2u =

1

c2

∂2u

∂ t2
.

In subsequent chapters we shall study some of these equations in greater detail.



Chapter 9

Basic ideas

A differential equation involving partial derivatives is called a Partial Differential Equation
(PDE); we have already noted several examples in the preceding chapter.

Definition 9.1 The order of a PDE is the order of the highest partial derivative occurring
in it.

A famous PDE, which has attracted a lot of attention in recent years, is the Korteweg-de
Vries equation:

∂ u

∂ t
− 6u

∂ u

∂ x
+

∂3u

∂ x3
= 0, u = u(x, t) (9.1)

is a third order PDE whereas

∂ u

∂ x
+

(
∂ u

∂ t

)2

= 1, u = u(x, t) (9.2)

is a first order PDE.

Definition 9.2 A PDE is linear if the unknown function u and any partial derivatives of
u occur to the first degree only, and no products of u and its partial derivatives or products
of partial derivatives of u appear in the equation.

The Korteweg de-Vries equation is non-linear due to the presence of the term 6u∂ u
∂ x

and

equation 9.2 is also non-linear due to the presence of (∂ u
∂ t

)2. Laplace’s equation, the wave
equation, and the diffusion equation which we derived in Chapter 2 are all linear
PDE s.

Definition 9.3 A PDE is said to be homogeneous if each term contains either the de-
pendent variable or one of its derivatives.

Laplace’s equation

∇2φ ≡ ∂2 φ

∂ x2
+

∂2 φ

∂ y2
+

∂2 φ

∂ z2
= 0

71
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is a linear, second order, homogeneous PDE but Poisson’s equation

∇2φ ≡ ∂2 φ

∂ x2
+

∂2 φ

∂ y2
+

∂2 φ

∂ z2
= ρ(x, y, z) (9.3)

is a linear second order PDE which is not homogeneous.

Linear homogeneous PDE s can be written in the form Lu = 0, where L is a linear
differential operator i.e. its action is such that

L(λf + µg) = λLf + µLg

where λ, µ are constants and f,g are admissible functions. This condition is clearly
satisfied by the Laplacian operator L given by

L = ∇2 ≡ ∂2

∂ x2
+

∂2

∂ y2
+

∂2

∂ z2
.

We note the following important property of linear homogeneous equations:

Suppose that u1, u2, u2, . . . , un are n functions which satisfy the linear homogeneous PDE
Lu = 0. Then the linear combination

∑n
i=1 λiui, where the λi are arbitrary constants, is

also a solution of the PDE Lu = 0. The proof is easy:

L(
∑

λiui) =
∑

λi(Lui) = 0.

The first step follows from the linearity of L, the second from the fact that Lui = 0, for
i = 1, 2, . . . , n.

This result is often referred to as the superposition principle for linear homogeneous PDE s.
Note that we have established the principle for finite linear combinations although we shall
often apply the superposition principle in a cavalier way to infinite sums.

We note in passing that if u1, u2 are solutions of the linear inhomogeneous equation Lu = f
then the difference, u1−u2, satifies the homogeneous equation Lu = 0. This is clear since
L(u1 − u2) = Lu1 − Lu2 = f − f = 0, by the linearity of the operator L. In particular,
the difference of any two solutions of Poisson’s equation satisfies Laplace’s equation.

It is interesting to make a comparison between ordinary differential equations (ODE s)
and PDE s. Recall that ODE s can arise by elimination of arbitrary constants in the
manner of the following example.

Example 9.1 Consider the equation

y =
x− A

x + A
,
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where A is a parameter. As A varies we generate a family of curves in the x-y plane and
each of these curves satisfies an ordinary differential equation which can be determined as
follows. We have

dy

dx
=

2A

(x + A)2
, A =

x(1− y)

1 + y
, x + A =

2x

1 + y

and straight forward elimination of the parameter A gives the ODE

2x
dy

dx
= 1− y2.

If we demand that a solution of this differential equation satisfy admissible initial condi-
tions of the form y = y0 when x = x0 the value of A is determined. We have picked out
from the family of curves y = x−A

x+A
the particular curve which passes through the point

(x0, y0).

We now show by a simple example how PDE s can arise by elimination of arbitrary
functions. (When we use the term arbitrary functions we do not intend the term arbitrary
to be taken literally; the functions in question have to be sufficiently smooth for the
relevant differentiations to be valid.)

Example 9.2 Let u(x, y) = f(x−y)+g(x+y), where f, g are arbitrary C2 functions. (We
use the term Cn to mean that the function in question has continuous partial derivatives
up to and including the n th order.)

First, note that for a given choice of functions f, g the points (x, y, u(x, y)), as (x, y) vary,
determine a surface (as opposed to a curve) in three dimensional space; as the functions
f, g are varied we obtain a family of surfaces in three dimensional space. We now show
that each of these surfaces satisfies the same PDE, whatever the choice of f, g. This is
easy since

∂ u

∂ x
= f ′(x− y) + g′(x + y),

∂2u

∂ x2
= f ′′(x− y) + g′′(x + y),

( ′ denotes differentiation with respect to the argument of the function)

∂ u

∂ y
= −f ′(x− y) + g′(x + y),

∂2u

∂ y2
= f ′′(x− y) + g′′(x + y).

We see at once that, for every choice of f, g, u satisfies the PDE

∂2u

∂ x2
=

∂2u

∂ y2
,

which is none other than the wave equation (see Chapter 12). We note in particular that

ln cos(x− y) + e(x+y)4 , cosh(x− y) + sin2(x− y),

and so on, are solutions of the wave equation ∂2u
∂ x2 = ∂2u

∂ y2
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When considering ODE s it is usually desirable to obtain the general solution, if this is
possible; in the case of PDE s a so-called general solution may be of little value since we
are usually seeking a solution which satisfies boundary conditions and it is seldom easy
to adapt the arbitrary functions which occur in a ‘general’ solution so as to satisfy the
boundary conditions. With ODE s the situation would usually be more straight forward
since we would be trying to fit a finite number of constants so as to satisfy the relevant
initial or boundary conditions.

In what follows we shall consider only linear PDE s, especially the PDE s of Mathematical
Physics which we derived in Chapter 8. Non-linear PDE s are often extremely difficult
to deal with, and even the relatively simple Korteweg de-Vries equation 9.1 is far from
straightforward; an enormous amount of effort has been invested in its study by some of
the world’s best mathematicians.



Chapter 10

Euler’s equation

We note that the two dimensional Laplace equation

∂2 u

∂ x2
+

∂2 u

∂ y2
= 0

and the wave equation in one space dimension

∂2 u

∂ x2
=

1

σ2

∂2 φ

∂ t2

are both particular cases of the equation

a
∂2 u

∂ x2
+ 2b

∂2 u

∂ x ∂ y
+ c

∂2 u

∂ y2
= 0 (10.1)

where a, b, c are real constants; this equation is called Euler’s1 equation after the famous
Swiss mathematician.

Before showing how to find the general solution of Euler’s equation we first note that two
particular cases of Euler’s equation are easy to solve.

1. Consider the equation
∂2u

∂ x2
= 0 (10.2)

Integration with respect to x gives ∂ u
∂ x

= f1(y), where f1 is an arbitrary function of y. A
further integration with respect to x then gives

u(x, y) = xf1(y) + f2(y),

where f2 is also an arbitrary function of y, as the general solution. Note that the general
solution involves two arbitrary functions rather than two arbitrary constants.

1Leonhard Euler (1707-1783) Swiss mathematician noted for his work in analysis, particularly the
Calculus of Variations. He was the first to write down the formula eiπ = −1.
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2. Consider the equation
∂2u

∂ x ∂ y
= 0 (10.3)

Integration with respect to x gives ∂ u
∂ y

= g(y), where g is an arbitrary function. Integration
with respect to y now gives

u(x, y) =
∫

g(y) dy + g2(x),

where g2 is an arbitrary function of x. We can tidy up the result by writing

u(x, y) = g1(y) + g2(x),

where g1(y) =
∫

g(y) dy. Again, the general solution involves two arbitrary functions
rather than two arbitrary constants.

10.1 Euler’s equation

We now show by a suitable change of variable that we can reduce Euler’s equation 10.1
to an equation of type 1 or 2. Euler’s equation is a linear PDE with constant coefficients
so it is entirely natural to consider a linear change of variable (x, y) 7→ (ξ, η) where

(
ξ
η

)
=

(
α β
γ ζ

) (
x
y

)
, ξ = αx + βy, η = γx + ζy.

It is important that the transformation has an inverse, so that given (ξ, η) we can solve
uniquely for (x, y); this demands that the matrix of the transformation be non-singular
— so that αζ − βγ 6= 0.

Application of the chain rule of partial differentiation gives

∂ u

∂ x
=

∂ u

∂ ξ

∂ ξ

∂ x
+

∂ u

∂ η

∂ η

∂ x
,

∂ u

∂ y
=

∂ u

∂ ξ

∂ ξ

∂ y
+

∂ u

∂ η

∂ η

∂ y

which immediately gives

∂ u

∂ x
= α

∂ u

∂ ξ
+ γ

∂ u

∂ η
, so that

∂

∂ x
≡ α

∂

∂ ξ
+ γ

∂

∂ η

and
∂ u

∂ y
= β

∂ u

∂ ξ
+ ζ

∂ u

∂ η
, so that

∂

∂ y
≡ β

∂

∂ ξ
+ ζ

∂

∂ η

We then have

∂2u

∂ x2
=

(
α

∂

∂ ξ
+ γ

∂

∂ η

)(
α

∂ u

∂ ξ
+ γ

∂ u

∂ η

)
= α2 ∂2u

∂ ξ2
+ 2αγ

∂2u

∂ ξ ∂ η
+ γ2 ∂2u

∂ η2
,
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∂2u

∂ y2
=

(
β

∂

∂ ξ
+ ζ

∂

∂ η

)(
β

∂ u

∂ ξ
+ ζ

∂ u

∂ η

)
= β2 ∂2u

∂ ξ2
+ 2βζ

∂2u

∂ ξ ∂ η
+ ζ2 ∂2u

∂ η2
,

and

∂2u

∂ x ∂ y
=

(
α

∂

∂ ξ
+ γ

∂

∂ η

)(
β

∂ u

∂ ξ
+ ζ

∂ u

∂ η

)
= αβ

∂2u

∂ ξ2
+ (αζ + γβ)

∂2u

∂ ξ ∂ η
+ γζ

∂2u

∂ η2
.

Substituting these expressions into Euler’s equation and gathering terms gives

∂2u

∂ ξ2
(aα2 + 2bαβ + cβ2) +

∂2u

∂ η2
(aγ2 + 2bγζ + cζ2) + 2

∂2u

∂ ξ ∂ η
(aαγ + b(αζ + γβ) + cβζ) = 0.

This suggests that we choose α = 1, γ = 1 and β = λ1, ζ = λ2, where λ1, λ2 are roots
of the quadratic equation

a + 2bλ + cλ2 = 0.

With this choice the determinant of our transformation (x, y) 7→ (ξ, η) is equal to λ2−λ1

and the requirement that the transformation be non-singular demands that the quadratic
equation has distinct roots. Asssuming that this is the case for the moment, we see that
Euler’s equation reduces to

∂2u

∂ ξ ∂ η
(a + b(λ1 + λ2) + cλ1λ2) = 0.

Now,

λ1 + λ2 = −2b

c
, λ1λ2 =

a

c

and we find that
∂2u

∂ ξ ∂ η

(
2
(ac− b2)

c

)
= 0.

The term in brackets is non-zero since the roots λ1, λ2 have been assumed to be distinct
and it follows that Euler’s equation becomes

∂2u

∂ ξ ∂ η
= 0.

This equation has general solution (see the argument above)

u = f(ξ) + g(η) = f(x + λ1y) + g(x + λ2y),

where f, g are arbitrary C2 functions.

What happens if the quadratic equation

a + 2bλ + cλ2 = 0
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has equal roots? If the roots are equal we can’t apply the above reasoning since the
transformation (x, y) 7→ (ξ, η) is singular i.e. it doesn’t have an inverse; the existence of
the inverse was crucial for the application of the Chain Rule. However, we can modify
our argument slightly, as follows.

We write λ1 = λ2 = λ = − b
c

= −a
b

(since b2 − ac = 0 in this case.) An examination of
our earlier argument suggests that we make the transformation (x, y) 7→ (ξ, η) where

ξ = x + λy, η = γx + ζy,

and γ and ζ are such that ζ 6= λγ (we impose this constraint in order to ensure that
our transformation is non-singular) but are otherwise arbitrary. This means that we’ve
chosen α = 1, β = λ in the notation used above.

With this choice the coefficient of ∂2u
∂ ξ2 is obviously zero whilst the coeffiecient of ∂2u

∂ ξ ∂ η
is

aαγ + b(αζ + γβ) + cβζ = aγ + b(ζ + γ λ) + cλζ = γ(a + bλ) + ζ(b + cλ) = 0.

The coefficient of ∂2u
∂ η2 is

aγ2 + 2bγζ + cζ2.

This cannot be zero since if it were we would have

a + 2b(ζ/γ) + c(ζ/γ)2 = 0

and this would imply that ζ/γ = λ, which we ruled out above. It follows that in this case
Euler’s equation reduces to

∂2u

∂ η2
= 0

which, as we noted above, has general solution

u = ηf(ξ) + g(ξ) = (γx + ζy)f(x + λy) + g(x + λy),

where f, g are arbitrary C2 functions and γ and ζ are any numbers such that γ 6= λζ.

We can classify Euler’s equation

a
∂2 u

∂ x2
+ 2b

∂2 u

∂ x ∂ y
+ c

∂2 u

∂ y2
= 0

according to the solutions of the quadratic equation

a + 2bλ + cλ2 = 0.

This quadratic is sometimes referred to as the auxiliary equation and, as noted above,
enables us to write down the general solution of Euler’s equation. If the roots of the
auxiliary equation are real and distinct we say that Euler’s equation is hyperbolic, if the
roots are coincident we say that it is parabolic, whilst if the roots are conjugate complex
numbers we say that it is elliptic.
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10.2 Examples

Example 10.1 The wave equation in one space dimension is

∂2u

∂ x2
− 1

c2

∂2u

∂ t2
= 0

The auxiliary equation is

1− λ2

c2
= 0, λ = ±c.

Since the roots are real the wave equation is hyperbolic and has general solution

u(x, t) = f1(x− ct) + f2(x + ct),

where f1, f2 are arbitrary functions. This solution is due to D’Alembert2.

We shall study the wave equation in more detail in a later chapter.

Example 10.2 The two-dimensional Laplace equation is

∂2 u

∂ x2
+

∂2 u

∂ y2
= 0.

The auxiliary equation is
1 + λ2 = 0, λ = ±i.

Since the roots are complex Laplace’s equation is elliptic and has general solution

u(x, t) = g1(x + iy) + g2(x− iy),

where g1, g2 are arbitrary functions.

We recall that the real and imaginary parts of any analytic function g(z), z = x + iy
satisfies the two-dimensional Laplace equation (see Chapter 3).

2Jean Le Rond d’Alembert (1717-1783), French mathematician and encylopedist
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Chapter 11

Symmetry and PDE s

Given a PDE it is interesting to consider its symmetry groups; these are groups of transfor-
mations which leave the PDE invariant. By way of illustration we look at two examples:
Laplace’s equation in three dimensions and the wave equation in one space dimension.

11.1 Laplace’s equation

Consider Laplace’s equation in three space dimensions:

∂2 u

∂ x1
2

+
∂2 u

∂ x2
2

+
∂2 u

∂ x3
2

= 0.

For reasons which will soon become apparent we have adopted a subscript notation,
(x1, x2, x3) rather than (x, y, z).

Suppose that a point with coordinates (x1, x2, x3) has coordinates (x′1x
′
2, x

′
3) with respect

to axes related to the original axes by a rotation. Rotations preserve lengths so, writing

x =




x1

x2

x3


 , x′ =




x′1
x′2
x′3


 ,

we require xT x = x′T x′, with x′ = Λx, where Λ is the 3×3 matrix describing the rotation.
This condition implies that Λ must satisfy xT x = xT ΛT Λx, ∀x ∈ R3. It is not very hard
to deduce that ΛT Λ = ΛΛT = I, where I is the 3 × 3 unit matrix. In other words, the
rotation matrix Λ has to be orthogonal. It follows that

x′ = Λx ⇒ x = Λ−1x′ = ΛT x′

so that

x′j =
3∑

k=1

Λjkxk, xj =
3∑

k=1

ΛT
jkx

′
k =

3∑

k=1

Λkjx
′
k.
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It now follows from the chain rule that

∂ u

∂ xi

=
∑

j

∂ u

∂ x′j

∂ x′j
∂ xi

=
∑

j

Λji
∂ u

∂ x′j
.

Hence

∂2u

∂ x1
2

+
∂2u

∂ x2
2

+
∂2u

∂ x3
2

=
∑

i

∂2u

∂ xi
2

=
∑

i

∂

∂ xi

(
∂ u

∂ xi

)

=
∑

i

∑

j

∑

k

Λji
∂2u

∂ x′j ∂ x′k

∂ x′k
∂ xi

=
∑

i,j,k

ΛjiΛki
∂2u

∂ x′j ∂ x′k

=
∑

j,k

(ΛΛT )kj
∂2u

∂ x′j ∂ x′k
=

∑

j,k

δk,j
∂2u

∂ x′j ∂ x′k
=

∑

j

∂2u

∂ x′j
2

In other words
∂2u

∂ x1
2

+
∂2u

∂ x2
2

+
∂2u

∂ x3
2

=
∂2u

∂ x′1
2 +

∂2u

∂ x′2
2 +

∂2u

∂ x′3
2 .

If
∂2u

∂ x1
2

+
∂2u

∂ x2
2

+
∂2u

∂ x3
2

= 0

then
∂2u

∂ x′1
2 +

∂2u

∂ x′2
2 +

∂2u

∂ x′3
2 = 0.

This means that Laplace’s equation is invariant with respect to rotations; it takes the
same mathematical form in two coordinate systems which are related by a rotation.

This invariance with respect to the group of rotations is perhaps one of the reasons why
the Laplacian occurs so frequently in the equations of mathematical physics; if we believe
that there is no preferred direction in space then the laws of nature should be invariant
with respect to rotations.

It’s more or less obvious that Laplace’s equation is invariant with repect to the group of
translations in 3-dimensional space give by

(x1, x2, x3) 7→ (x′1, x
′
2, x

′
3), x′i = xi + ai (i = 1, 2, 3).

11.2 The wave equation

Now consider the wave equation

∂2 u

∂ x2
=

1

c2

∂2 u

∂ t2



11.2. THE WAVE EQUATION 83

This equation is linear and we therefore consider the possibility that it is invariant with
respect to linear transformations of the type (x, t) 7→ (x′, t′), where

x′ = αx + βt, t′ = γx + ζt.

We note that
∂ u

∂ t
=

∂ u

∂ x′
∂ x′

∂ t
+

∂ u

∂ t′
∂ t′

∂ t
= β

∂ u

∂ x′
+ ζ

∂ u

∂ t′

so that
∂

∂ t
= β

∂

∂ x′
+ ζ

∂

∂ t′

Similarly
∂ u

∂ x
=

∂ u

∂ x′
∂ x′

∂ x
+

∂ u

∂ t′
∂ t′

∂ x
, = α

∂ u

∂ x′
+ γ

∂ u

∂ t′

so that
∂

∂ x
= α

∂

∂ x′
+ γ

∂

∂ t′

Using these operators to tansform the wave equation to the new coordinates we obtain

(
α2 ∂2u

∂ x′2
+ 2αγ

∂2u

∂ x′ ∂ t′
+ γ2 ∂2u

∂ t′2

)
=

1

c2

(
β2 ∂2u

∂ x′2
+ 2βζ

∂2u

∂ x′ ∂ t′
+ ζ2 ∂2u

∂ t′2

)
.

It follows that the wave equation is invariant with respect to the transformation considered
if

αγ =
βζ

c2
, and

(
α2 − β2

c2

)
=

(
ζ2

c2
− γ2

)
c2 (11.1)

We note in passing that the wave equation is not invariant with respect to the Galilean
transformation of Newtonian Mechanics:

(x, t) 7→ (x′, t′), x′ = x− V t, t′ = t

for in this case α = 1, γ = 0, β = −V, ζ = 1 and the first of equations 11.1 cannot be
satisfied. We can satisfy equations 11.1 by writing

α = cosh σ,
β

c
= − sinh σ, σ ∈ R (11.2)

Substitution into the second of equations 11.1 gives

ζ2 − γ2c2 = 1 since cosh2σ − sinh2σ = 1 (11.3)

and into the first of equations 11.1 gives

γ cosh σ = −ζ sinh σ

c
, γ = −ζ tanh σ

c
(11.4)

It follows from equations 11.4 and 11.3 that

ζ2(1− tanh2σ) = 1.
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This equation can be satisfied by the choice ζ = cosh σ and we deduce from equation 11.4
that

γ = −sinh σ

c
(11.5)

It follows that the wave equation is invariant with respect to the transformation

(x, t) 7→ (x′, t′), where
(

x′

t′

)
= M(σ)

(
x
t

)
,

where

M(σ) =
(

cosh σ −c sinh σ
− sinh σ

c
cosh σ

)
, σ ∈ R (11.6)

Note that for all σ det M(σ) = 1.

It is easy to check that the set of matrices L = {M(σ), σ ∈ R} forms a group under
matrix multiplication:

First,

M(σ1)M(σ2) =
(

cosh σ1 −c sinh σ1

− sinh σ1

c
cosh σ1

) (
cosh σ2 −c sinh σ2

− sinh σ2

c
cosh σ2

)

=
(

cosh σ1 cosh σ2 + sinh σ1 sinh σ2 −c cosh σ1 sinh σ2 − c sinh σ1 cosh σ2

− sinh σ1 cosh σ2+cosh σ1 sinh σ2

c
cosh σ1 cosh σ2 + sinh σ1 sinh σ2

)

=

(
cosh(σ1 + σ2) −c sinh(σ1 + σ2)

− sinh(σ1+σ2)
c

cosh(σ1 + σ2)

)

= M(σ1 + σ2)

This formula establishes that L is closed under matrix multiplication. The group identity
is the matrix M(σ = 0) = I, and the group inverse of M(σ) is M(−σ).

If we parametrise σ in terms of a new real parameter V by

cosh σ =
1√

1− V 2

c2

, sinh σ =
V
c√

1− V 2

c2

, |V | < c,

(so that cosh2σ−sinh2σ = 1) we see from equation 11.6 that the wave equation is invariant
under the group of transformations (x, t) 7→ (x′, t′), where

x′ =
x− V t√
1− V 2

c2

, t′ =
t− V x/c2

√
1− V 2

c2

.

These are the Lorentz transformations, well known to students of the Special Theory of
Relativity.



Chapter 12

The wave equation

12.1 Introduction

In this chapter we consider the wave equation in one space dimension:

∂2 u

∂ x2
=

1

c2

∂2 u

∂ t2

In Chapter 10 we obtained the general solution

u(x, t) = f(x− ct) + g(x + ct) (12.1)

A physical interpretation of this solution can be obtained as follows. Imagine a wave
which moves along the positive x-axis with constant speed c and without change of shape.
Suppose that at time t = 0 the shape of the wave is given by u = f(x). An observer
O, who moves along the positive x-axis with speed c, will note that the shape of the
wave has not changed (relative to O), and will therefore use the equation u = f(X),

85
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where X = x− ct (see diagram) to describe it. It follows that u = f(x− ct) describes a
wave moving along the positive x-axis, with speed c, without change of shape. Similarly,
u = g(x + ct) describes a wave travelling along the negative x-axis with speed c and
without change of shape. D’Alembert’s solution, equation 12.1, is a superposition of two
waves, one moving along the positive x-axis with speed c, the other moving along the
negative x-axis with speed c.

We can picture the solutions of the wave equation geometrically as follows. Each choice
of the functions f, g defines a solution. For each point (x, t) we can plot the point
(x, t, u(x, t)), with u(x, t) = f(x − ct) + g(c + ct), in three dimensional space. As (x, t)
vary we generate a surface in three dimesional space, a solution surface of the wave equa-
tion. As we alter f, g we generate a family of such surfaces. In practical applications
we often require to find a solution satisfying certain initial conditions or boundary condi-
tions; geometrically this amounts to selecting the surface (or surfaces) which satisfy these
conditions.

12.2 The infinite string

As noted previously, general solutions of PDE s are not always useful, especially when we
are trying to find a solution satisfying specified boundary conditions. However,
D’Alembert’s solution can be used to solve the following problem.

Example 12.1 Consider an infinite string and suppose that we impose Cauchy condi-
tions:

u(x, 0) = φ(x),
∂ u

∂ t
(x, 0) = ψ(x), x ∈ R (12.2)

The first of these conditions specifies the initial shape of the string and the second gives
the initial velocity of each point x on the string. We require to find the solution u(x, t)
of the wave equation, for all x ∈ R, ∀t ≥ 0, which satisfies the initial conditions 12.2.
Another, less physical way of looking at the initial conditions is as follows: we require to
find the solution of the wave equation in the upper-half plane t ≥ 0, given the value of u
and its normal derivative on the line t = 0.

We impose the initial conditions on equation 12.1. This requires

φ(x) = f(x) + g(x) (12.3)

ψ(x) = −cf ′(x) + cg′(x) (12.4)

Integrating equation 12.4 we obtain

f(x)− g(x) = −1

c

∫ x

x0

ψ(z) dz + k (12.5)
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where k = f(x0) − g(x0) is constant. Adding and subtracting equations 12.3 and 12.5
immediately gives

f(x) =
1

2
φ(x)− 1

2c

∫ x

x0

ψ(z) dz +
k

2
(12.6)

g(x) =
1

2
φ(x)+

1

2c

∫ x

x0

ψ(z) dz − k

2
(12.7)

Substituting for f, g in D’Alembert’s solution we obtain the solution to our problem:

u(x, t) =
1

2
(φ(x− ct) + φ(x + ct))− 1

2c

∫ x−ct

x0

ψ(z) dz +
1

2c

∫ x+ct

x0

ψ(z) dz

=
1

2
(φ(x− ct) + φ(x + ct)) +

1

2c

∫ x0

x−ct
ψ(z) dz +

1

2c

∫ x+ct

x0

ψ(z) dz

=
1

2
(φ(x− ct) + φ(x + ct)) +

1

2c

∫ x+ct

x−ct
ψ(z) dz (12.8)

In particular, if the string is released from rest at time t = 0 (so that ψ(x) = 0) the
solution is

u(x, t) =
1

2
(φ(x− ct) + φ(x + ct))

If the initial shape is given by the Gaussian φ(x) = e−x2
then

u(x, t) =
1

2
(e−(x−ct)2 + e(x+ct)2)

We can picture this as follows. We split the initial profile into two equal parts, each given
by 1

2
e−x2

. One component then moves off with speed c along the positive x-axis without
change of shape, the other with speed c along the negative x-axis and without change of
shape; the resulting profile is a superposition of the two.

If φ(x) = 0, ψ(x) = 1
1+x2 ∀x ∈ R (so that initially the string is along the x-axis and is set

in motion with speed at the point x equal to ψ(x)) we see from equation 12.8 that

u(x, t) =
1

2c
(arctan(x + ct)− arctan(x− ct))

In the above example we considered an infinite string but we are frequently interested in
the vibrations of a finite string fixed at both ends (e.g. the vibrations of a piano string).
As a prelude to a discussion of such problems we first give a brief discussion of Fourier1

series.

1Jean Baptiste Joseph Fourier (1768-1830) Noted for his work on the theory of heat in which he
developed the method named after him.
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12.3 Fourier Series

The classical theory of Fourier series deals with functions f : [−π, π] → R which are
periodic with period 2π, f(x) = f(x + 2π), and investigates the circumstances in which
it is possible to expand f(x) in terms of functions in the set A given by

A = {1, cos x, cos 2x, cos 3x, . . . , cos nx, . . . , sin x, sin 2x, sin 3x, . . . , sin nx, . . .}

(all of which are periodic with period 2π) in the sense that

f(x) =
1

2
a0 +

∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx) (12.9)

for some choice of the coefficients an, bn.

Granted the possibility of such an expansion we may ask: What are the values of the
coefficients an, bn in relation to f? To this end we first note that the functions in A are
orthogonal in the sense that if φ, ψ ∈ A, φ 6= ψ, then

(φ, ψ) =
∫ π

−π
φ(x)ψ(x) dx = 0.

(We can think of (φ, ψ) as a scalar product of the functions φ, ψ) Explicitly,

∫ π

−π
cos(nx) cos(mx) dx = πδn,m,

∫ π

−π
sin(nx) sin(mx) dx = πδn,m (12.10)

∫ π

−π
sin(nx) cos(mx) dx = 0,

∫ π

−π
(1) sin(nx) dx =

∫ π

−π
(1) cos(nx) = 0,(12.11)

for every choice of the integers m,n; here δn,m is the Kronecker δ which takes the value 1
when m,n are equal and the value zero otherwise.

Referring to formula 12.9 we may now formally compute the coefficients an, bn as follows:
Integrate both sides with respect to x from −π to π. to obtain

1

2
a0

∫ π

−π
dx =

∫ π

−π
f(x) dx, a0 =

1

π

∫ π

−π
f(x) dx (12.12)

In this computation we have assumed that term by term integration of the series is valid.

Next, multiply both sides of equation 12.9 by cos(mx) and integrate from −π to π.
Formally, we obtain

∫ π

−π
f(x) cos mxdx =

1

2
a0

∫ π

−π
cos(mx) dx +

∞∑

n=1

an

∫ π

−π
cos(nx) cos(mx) dx

+
∞∑

n=1

bn

∫ π

−π
sin(nx) cos(mx) dx =

∞∑

n=1

anδn,mπ = πam,
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using the orthogonality relations 12.10, 12.11. This procedure therefore yields

am =
1

π

∫ π

−π
f(x) cos(mx) dx, m = 1, 2, 3, . . . (12.13)

In a similar way, multiplying 12.9 by sin(mx) and integrating from −π to π, we find that

bm =
1

π

∫ π

−π
f(x) sin(mx) dx, m = 1, 2, 3, . . . (12.14)

Given f , equations 12.12, 12.13, 12.14 determine the Fourier coefficients of f with
respect to the orthogonal functions in the set A. For suitably well behaved functions f
the Fourier coefficients exist and the resulting series

1

2
a0 +

∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx), (12.15)

(where a0, an, bn are computed from equations 12.12, 12.13, 12.14) is called the Fourier
Series associated with f.

All the above arguments were formal; they only suggest the possibilty that certain results
may be true. For example, we implicitly assumed that the Fourier series converged to
f(x), and that we could integrate it term by term. The question of the convergence (or
divergence) of the series 12.15 (the coefficients an, bn being determined by 12.12, 12.13,
12.14) is fundamental; also, if the series is convergent, does it converge to f(x)? The
answer to such questions will obviously depend on what we assume about the function f
and much of the classical theory is devoted to examining the convergence of the Fourier
series under different sets of assumptions about f . A readable introduction, which might
be intelligible to a student with an interest in analysis who had attended CM221A, is
contained in the book A First Course in Partial Differential Equations by H Weinberger.
(There are several copies of this book in the library, the most up to date version being
the Dover edition published in 1995). Weinberger proves, for example, that the Fourier
series 12.15 converges to 1

2
(f(x + 0) + f(x− 0)) subject to the assumptions

• f is absolutely integrable i.e.
∫ π
−π |f(x)| dx < ∞

• f has a uniformly bounded derivative in some set I(x, ε) = (x − ε, x) ∪ (x, x + ε),
for some ε > 0.

The second condition demands that f is differentiable in the set I(x, ε) (although it need
not be differentiable at the point x itself) and that there is a positive constant K such
that |f ′(z)| ≤ K ∀z ∈ I. The function sin(1/x), for example, would not satisfy this
condition near the origin where its derivative oscillates wildly.

(Recall also that f(x + 0) is the limit of f(z) as z → x from the right, and f(x− 0) is the
limit of f(z) as z → x from the left; if f is continuous at x then f(x−0) = f(x+0) = f(x)
and 1

2
(f(x + 0) + f(x− 0)) = f(x).)
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Perhaps it is worth mentioning that all proofs relating to the convergence of the Fourier
series 12.15 start by showing that the sum SN(x) of the first N terms of the series 12.15
is given by (try to prove this)

SN(x) =
1

2π

∫ π

−π
f(u)

sin(N + 1/2)(x− u)

sin(x− u)/2
du.

This is the easy part; the hard part of the subsequent arguments involves discussion of
the behaviour of SN(x) as N →∞. The arguments which are required and the degree of
difficulty depends, of course, on what one chooses to assume about f.

If instead of assuming that our functions are defined on [−π, π] and are periodic with
period 2π we assume that they are defined on [−l, l] and that they have period 2l all the
above arguments hold with very minor modifications. In particular we have to deal with
the orthogonal functions in the set

Al = {1, cos(πx/l), . . . , cos(nπx/l), . . . sin(πx/l), . . . , sin(nπx/l), . . .}
all of which are periodic with period 2l. They satisfy the orthogonality relations

∫ l

−l
cos(nx/l) cos(mx/l) dx = lδn,m,

∫ l

−l
sin(nx/l) sin(mx/l) dx = lδn,m (12.16)

∫ l

−l
sin(nx/l) cos(mx/l) dx = 0,

∫ l

−l
(1) sin(nx/l) dx =

∫ l

−l
(1) cos(nx/l) dx = 0

(12.17)

The corresponding Fourier series is

1

2
a0 +

∞∑

n=1

an cos(nπx/l) +
∞∑

n=0

bn sin(nπx/l), (12.18)

where the coeficients an, bn are given by

am =
1

l

∫ l

−l
f(x) cos(mπx/l) dx, m = 0, 1, 2, 3, . . . , (12.19)

bm =
1

l

∫ l

−l
f(x) sin(mπx/l) dx, m = 1, 2, 3, . . . (12.20)

We note in passing that if f is an odd function on [−l, l], so that f(−x) = −f(x), then

an = 0 ∀n, bn =
2

l

∫ l

0
f(x) sin(nπx/l) dx,

whilst if f is an even function

bn = 0 ∀n, an =
2

l

∫ l

0
f(x) cos(nπx/l) dx.
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This is because the functions cos(nπx/l), sin(nπx/l) are even and odd functions respec-
tively, and the fact that the product of two odd functions or two even functions is even,
whilst the product of an even and an odd function is odd.

Consider the following example.

Example 12.2 Find the Fourier series for cosh ax, a 6= 0, −π ≤ x ≤ π. By putting
x = 0 and then x = π in turn obtain the formulae

π

sinh aπ
=

1

a
+

∞∑

n=1

(−1)n 2a

a2 + n2
,

π coth aπ =
1

a
+

∞∑

n=1

2a

a2 + n2
.

Consider the function f : [−π, π] → R, f(x) = cosh ax We can extend the definition of
f to all real x by setting f(x + 2π) = f(x). It is clear that the convergence criteria which
we discussed above are satisfied and the Fourier series will converge to f(x) = cosh ax at
all points x ∈ (−π, π). A little refelction, in the light of earlier considerations, also shows
that at the points ±π the Fourier series converges to 1

2
(f(−π + 0) + f(π − 0)) = cosh πa,

since cosh is an even continuous function.

The Fourier series for f is

1

2
a0 +

∞∑

n=1

an cos nx +
∞∑

n=1

bn sin nx

where the Fourier coefficients an, bn are given by

an =
1

π

∫ π

−π
cosh ax cos nx dx, bn =

1

π

∫ π

−π
cosh ax sin nx dx.

All the bn are zero because cosh ax sin nx is an odd function. We note that

a0 =
1

π

∫ π

−π
cosh ax dx =

2

πa
sinh πa,

an =
1

π

∫ π

−π
cosh ax cos nx dx =

2

π
(−1)n sinh πa

a
− n2

a2
an,

after integrating by parts twice. It follows that

an =
(2a sinh πa)(−1)n

π(a2 + n2)
.
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Bearing in mind the above remarks concerning the convergence of the series we conclude
that, for all x ∈ [−π, π]

cosh ax =
1

πa
sinh πa +

∞∑

n=1

(2a sinh πa)(−1)n

π(a2 + n2)
cos nx.

Putting x = 0 in this formula immediately gives

π

sinh πa
=

1

a
+

∞∑

n=1

2a

(a2 + n2)
(−1)n

whilst setting x = π gives

π coth πa =
1

a
+

∞∑

n=1

2a

(a2 + n2)
.

Next we consider the vibrations of a string fixed at both ends.

12.4 Finite string

Consider the following problem.

Example 12.3 Consider a finite string whose vibrations satisfy the wave equation

∂2 u

∂ x2
=

1

c2

∂2 u

∂ t2

subject to the conditions:

u(x, 0) = φ(x),
∂ u

∂ t
(x, 0) = 0, x ∈ [0, l], u(0, t) = 0, u(l, t) = 0 ∀t ≥ 0 (12.21)

The first condition specifies the shape of the string at t = 0, the second says that the string
starts from rest; the third and fourth conditions imply that the string is fixed at x = 0 and
x = l respectively.

First, we use D’Alembert’s solution in conjunction with Fourier series. D’Alembert’s
solution gives

u(x, t) = f(x− ct) + g(x + ct)

and we have to determine the functions f, g so that the initial and boundary conditions
are satisfied. Since u(0, t) = 0, u(l, t) = 0 ∀t ≥ 0 we require

f(−ct) + g(ct) = 0, f(l − ct) + g(l + ct) = 0, ∀t ≥ 0

We rewrite these equations as

f(−z) + g(z) = 0, f(l − z) + g(l + z) = 0
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and assume that they hold for all z ∈ R . Replacing z by z + l in the second of these
equations we see that f(−z)+g(z+2l) = 0 and taken in conjunction with the first equation
we conclude that g(z) = g(z + 2l) ∀z ∈ R . In other words g is periodic with period 2l.
We also note that g(z) = g(z + 2l) = −f(−z) so that g(z) = −f(−z). Similarly, we can
show that f is periodic with period 2l, f(z) = f(z + 2l) ∀z ∈ R .

The fact that f is a periodic function of period 2l suggests that we expand it as a Fourier
series:

f(x) =
1

2
a0 +

∞∑

n=1

an cos(nπx/l) +
∞∑

n=0

bn sin(nπx/l).

The corresponding Fourier series for g is easily obtained from the relation g(z) = −f(−z):

g(x) = −1

2
a0 −

∞∑

n=1

an cos(nπx/l) +
∞∑

n=0

bn sin(nπx/l).

We must also satisfy the initial condition ∂ u
∂ t

(x, 0) = 0 from which we immediately derive
the requirement −cf ′(x)+cg′(x) = 0, f ′(x) = g′(x). Formal differentiation of our Fourier
series for f, g gives

f ′(x) =
∞∑

n=1

an(−nπ/l) sin(nπx/l) +
∞∑

n=1

bn(nπ/l) cos(nπx/l),

g′(x) =
∞∑

n=1

an(nπ/l) sin(nπx/l) +
∞∑

n=1

bn(nπ/l) cos(nπx/l)

Since f ′(x) = g′(x) we see that

∞∑

n=1

an(nπ/l) sin(nπx/l) = 0

from which we conclude that the an are all zero. Our expressions for f, g can now be
written

f(x) =
1

2
a0 +

∞∑

n=1

bn sin(nπx/l), g(x) = −1

2
a0 +

∞∑

n=1

bn sin(nπx/l).

Hence

u(x, t) = f(x− ct) + g(x + ct) =
∞∑

n=1

bn(sin(nπ(x− ct)/l) + sin(nπ(x + ct)/l).

Writing Bn = 2bn we have

u(x, t) =
∞∑

n=1

Bn sin(nπx/l) cos(nπct/l).
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Finally, we impose the condition u(x, 0) = φ(x), x ∈ [0, l]. This requires

φ(x) =
∞∑

n=1

Bn sin(nπx/l).

This is a Fourier sine series for φ(x) and the Bn are just the Fourier coefficients with
respect to the orthogonal functions {sin(nπx/l)}, n = 1, 2, 3, . . . . There is no need to
remember the formulae for Fourier coefficients; formally we just multiply both sides by
sin(mπx/l) and integrate with respect to x from 0 to l, using the orthogonality relation

∫ l

0
sin(nπx/l) sin(mπx/l) dx = δn,m(l/2).

This immediately gives ∫ l

0
φ(x) sin(mπx/l) dx = Bm(l/2)

whence

Bm =
2

l

∫ l

0
φ(x) sin(mπx/l) dx.

The final solution is given by

u(x, t) =
∞∑

n=1

Bn sin(nπx/l) cos(nπct/l),

where the Bn have just been determined.

The solution which we have found has a physical interpretation. The total vibration
is a superposition of terms un(x, t) = Bn sin(nπx/l) cos(nπct/l) each of which defines a
vibration whose angular frequency ωn is given by ωn = nπc/l; the corresponding frequency
is νn = ωn/(2π) = nc/(2l). n = 1 defines the fundamental mode of vibration and each
n > 1 defines a harmonic. We see that the n-th harmonic has frequency n times that of the
fundamental. From our earlier work we know that c2 = T/ρ, where T denotes the tension
in the string and ρ its linear density, assumed constant. It follows that the permitted
frequencies are each proportional to the square root of the tension. The fundamental,
corresponding to n = 1, has frequency c/2l = 1

2l

√
T
ρ
.

We now describe the method of separation of variables which is frequently of great value
in constructing solutions of partial differential equations.

12.5 Separation of variables

Let’s consider this method in relation to the one dimensional wave equation

∂2 u

∂ x2
=

1

c2

∂2 u

∂ t2
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subject to the conditions:

u(x, 0) = φ(x),
∂ u

∂ t
(x, 0) = 0, x ∈ [0, l], u(0, t) = 0, u(l, t) = 0 ∀t ≥ 0 (12.22)

The method which we describe will work for other equations such as the Laplace equation,
the diffusion equation etc. which we consider later on.

We seek solutions of the form u = ũ(x, t) where ũ(x, t) = X(x)T (t). In other words, we
are looking for solutions which can be written as the product of a function of x only
multiplied by a function of t only. Substitution of the trial solution into the PDE gives

∂2(XT )

∂ x2
=

1

c2

∂2(XT )

∂ t2
, T

d2X

dx2
=

X

c2

d2T

dt2
,

1

X

d2X

dx2
=

1

c2T

d2T

dt2
.

Observe that the left handside of the third of these equations depends on x only whilst
the right handside of this equation depends on t only. Since x, t are independent variables
consistency demands that

1

X

d2X

dx2
=

1

c2T

d2T

dt2
= constant (12.23)

Let’s look at the various possibilities. First take constant = 0 in equations 12.23. We
immediately recover

X = ax + b, T = et + f (12.24)

ũ = (ax + b)(et + f) (12.25)

where a, b, e, f are constants.

Next suppose that constant = −ω2, ω2 > 0. Solving 12.23 for X,T gives

X = A cos ωx + B sin ωx, T = D cos ωct + E sin ωct (12.26)

ũ = (A cos ωx + B sin ωx)(D cos ωct + E sin ωct) (12.27)

where A,B, D, E are constants.

The third possibility is that constant = Ω2, Ω2 > 0. Solving 12.23 for X, T gives

X = F cosh Ωx + G sinh Ωx, T = H cosh Ωct + K sinh Ωct (12.28)

ũ = (F cosh Ωx + G sinh Ωx)(H cosh Ωct + K sinh Ωct) (12.29)

where F,G, H,K are constants.

We see that the technique of separation of variables has generated a massive number
of solutions of our PDE (we get a solution for every choice of the above parameters).
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Moreover, since the wave equation is linear and homogeneous any linear combination of
solutions will also be a solution. We guess that the harmonic solutions (the ones involving
trigonometric functions are the ones most likely to be useful in solving the problem in
hand (see 12.27). We have to remember that so far none of our solutions actually satisfies
the initial and boundary conditions of the problem. To see how we can achieve this let’s
start with the solution 12.27

ũ = (A cos ωx + B sin ωx)(D cos ωct + E sin ωct).

We want our solution to satisfy the condition ∂ u
∂ t

(x, 0) = 0 ∀x ∈ [0, l]. ũ will satisfy this if
we choose E = 0. (We ignore the trivial prescription of setting A,B to zero). This gives

ũ = (A cos ωx + B sin ωx)(D cos ωct) ≡ (A′ cos ωx + B′ sin ωx) cos ωct,

where A′ = AD, B′ = BD. We would also like our solution to satisfy u(0, t) = 0 ∀t ≥ 0
and this will be achieved if we choose A′ = 0. This leaves us with a ũ given by

ũ = (B′ sin ωx) cos ωct,

Our solution must also satisfy the condition u(l, t) = 0 ∀t ≥ 0. Apart from the trivial
choice B′ = 0 (which we ignore) we are compelled to choose ω such that ωl = nπ, where
n is an integer. We can restrict ourselves to n = 1, 2, 3, . . . since n = 0 gives a trivial
solution and the solution corresponding to n = −N (N > 0) is just the negative of the
solution corresponding to n = N. (sin is an odd function) Since we have a solution for
each n = 1, 2, 3, . . . let’s denote our solutions by ũn where

ũn(x, t) = Bn sin(nπx/l) cos(nπct/l).

The solutions ũn(x, t) which we have found satisfy three of the four conditions of the
problem but it is clear that none of them can individually satisfy the fourth condition,
namely u(x, 0) = φ(x), x ∈ [0, l]. Still, all is not lost! Our equation is linear homogeneous
so any linear combination of the ũn(x, t) will provide a solution. This suggests that we
try, as the solution to our problem,

u(x, t) =
∞∑

n=1

Bn sin(nπx/l) cos(nπct/l).

In order to satisfy the condition u(x, 0) = φ(x), x ∈ [0, l]. we must choose the Bn so that

φ(x) =
∞∑

n=1

Bn sin(nπx/l).

We recognize that this is just a Fourier sine series for φ(x) and the Fourier method as
described above gives

Bn =
2

l

∫ l

0
φ(x) sin(nπx/l) dx.
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The solution to the problem is therefore

u(x, t) =
∞∑

n=1

Bn sin(nπx/l) cos(nπct/l), Bn =
2

l

∫ l

0
φ(x) sin(nπx/l) dx.

The reader will recognize that the solution obtained is identical to what we obtained
previously by a different argument based on D’Alembert’s solution. In fact the two meth-
ods which we have considered led to the development of Fourier series. The suggestion
that a fairly arbitrary function could be expanded as a series of sines and cosines caused
tremendous uproar among mathematicians when it was first proposed and many thought
that it was impossible!

We don’t pretend that we have dealt with every mathematical aspect of this problem –
far from it. (For example, how do we know that the solution we’ve constructed satisfies
the wave equation? It’s not clear that formal differentiation of our solution will be valid;
these are hard problems which we cannot investigate in this course.) As an application
of our result consider the following particular case.

Example 12.4 Consider a string stretched to a tension T whose ends are fixed at x = 0
and x = 2l. Suppose that the string is pulled aside through a distance h (small compared
with l) and then released from rest. Find the displacement of the string at any subsequent
time t.

The answer is given above:

u(x, t) =
∞∑

n=1

Bn sin(nπx/2l) cos(nπct/2l), Bn =
1

l

∫ 2l

0
φ(x) sin(nπx/2l) dx.

(We’ve replaced l by 2l, of course)

Here φ just gives the initial shape of the string and reference to a diagram will soon
convince you that

φ(x) =
{

hx/l 0 ≤ x ≤ l
h(2l − x)/l l ≤ x ≤ 2l

We have

l2

h
Bn =

∫ l

0
x sin(nπx/2l) dx +

∫ 2l

l
(2l − x) sin(nπx/2l) dx

We can evaluate these two integrals by parts. We find

∫ l

0
x sin(nπx/2l) dx = −2l2

nπ
cos(nπ/2) +

4l2

n2π2
sin(nπ/2),

∫ 2l

l
(2l − x) sin(nπx/2l) dx =

2l2

nπ
cos(nπ/2) +

4l2

n2π2
sin(nπ/2),
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which gives the result

Bn =
8h

n2π2
sin(nπ/2).

We see that Bn is zero when n is even; only odd values of n, n = (2r+1), r = 0, 1, 2, 3, . . .
make a non–zero contribution. Substitution gives the displacement u(x, t) as

u(x, t) =
∞∑

r=0

8h

(2r + 1)2π2
sin((2r + 1)π/2) sin((2r + 1)πx/2l) cos((2r + 1)πct/2l)

We note that the fundamental freqency, corresponding to r = 0 is ν0 = c/4l. Notice also
that the amplitude of the higher harmonics is dampened by the factor 1/(2r + 1)2.

We recall that u(l, 0) = h (initially the string was pulled back through a distance h at its
mid–point). Plugging this into our solution we obtain the celebrated formula

∞∑

r=0

1

(2r + 1)2
=

π2

8
,

from which another famous formula is easily derived:

∞∑

n=1

1

n2
=

π2

6
.

12.6 Plane wave solutions

In this section we quickly review some basic jargon concerning plane harmonic waves with
which all students of applied mathematics should be familiar.

First, note that the wave equation in one space dimension has solutions of the form

u = A cos(k(x− ct) + ε),

where A is regarded as positive. (recall D’Alembert’s solution)

Sometimes it is convenient to consider the sine wave solution A sin(k(x−ct)+ε) or perhaps
the complex form

A cos(k(x− ct) + ε) + iA sin(k(x− ct) + ε) = A exp(ik(x− ct) + iε) ≡ Ã exp(ik(x− ct))

where Ã = Aeiε.

In each case the wave moves with speed c parallel to the x–axis.

Whichever of these three forms we choose to work with we note that the wave repeats itself
at regular space intervals λ where, for example, cos(k(x+λ− ct)+ ε) = cos(k(x− ct)+ ε)
so that

kλ = 2π, λ =
2π

k
.
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λ is called the wavelength of the wave.

The time τ taken for one complete wave to pass any point is the period of the wave and
is given by cos(k(x− c(t + τ)) + ε) = cos(k(x− ct) + ε) so that

kcτ = 2π, τ =
2π

kc
=

λ

c
, so that λ = cτ.

The frequency ν of the wave is the number of waves passing a fixed point per unit time
so that

ν =
1

τ
=

kc

2π
, and λ =

c

ν
.

The quantity ε is called the phase or the epoch of the wave. Only phase differences have
physical significance; two waves which are out of phase may interfere destructively.

A is called the amplitude of the wave. If we work with the complex exponential form
Ã exp(ik(x − ct)) we have to bear in mind that the amplitude is given by |Ã| and the
phase by arg Ã.

12.7 Waves with spherical symmetry

The three–dimensional wave equation has the form

∇2u =
1

c2

∂2u

∂ t2
.

Suppose that we are interested in solutions with spherical symmetry so that u depends

only on the variables r, t, where r =
√

(x2 + y2 + z2). In this case

∇2u =
∂2u

∂ r2
+

2

r

∂ u

∂ r
=

1

r

∂2

∂ r2
(ru).

This follows either from the expression for Laplace’s operator contained in the Appendix
or, by direct calculation, as follows.

Since r2 = x2 + y2 + z2

∂ u

∂ x
=

∂ u

∂ r

∂ r

∂ x
=

x

r

∂ u

∂ r
,

∂2u

∂ x2
=

(
x

r

)2 ∂2u

∂ r2
+

∂ u

∂ r

(
1

r
− x

r2

x

r

)
,

with two similar expressions for the second order derivatives of u with respect to y, z
obtained by replacing x by y and z in turn. Adding the three expressions we obtain

∇2u =
∂2u

∂ r2
+

3

r

∂ u

∂ r
− r2

r3

∂ u

∂ r
=

∂2u

∂ r2
+

2

r

∂ u

∂ r
=

1

r

∂2

∂ r2
(ru),
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where we have used the fact that r2 = x2 + y2 + z2.

Substituting this expression for ∇2u in the wave equation we obtain

1

r

∂2

∂ r2
(ru) =

1

c2

∂2u

∂ t2
,

∂2

∂ r2
(ru) =

1

c2

∂2

∂ t2
(ru).

We recognize that this is just the one–dimensional wave equation for (ru) in terms of the
variables r, t so we can write down D’Alembert’s solution in the form

ru(r, t) = f(r − ct) + g(r + ct), u(r, t) =
f(r − ct)

r
+

g(r + ct)

r
,

where f, g are arbitrary C2 functions. The first term in this expression for u(r, t) represents
a spherical wave moving away from the origin with speed c, whilst the second term
represents a sperical wave converging on the origin (the centre of the spherical symmetry)
with speed c.

We end this chapter with an example of the use of the technique of separation of variables
in a problem involving the wave equation in three space dimensions.

Example 12.5 Consider the wave equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1

σ2

∂2u

∂t2

inside the box {(x, y, z) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c}. Use the method of
separation of variables and the Fourier method to find the solution which satisfies the
following conditions:

u(0, y, z, t) = 0, u(a, y, z, t) = 0, u(x, 0, z, t) = 0, u(x, b, z, t) = 0,

u(x, y, 0, t) = 0, u(x, y, c, t) = 0,

u(x, y, z, 0) = f(x, y, z),
∂u

∂t
(x, y, z, 0) = 0.

Given the PDE
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1

σ2

∂2u

∂t2

seek solutions of the form ũ, where ũ(x, y, z, t) = X(x)Y (y)Z(z)T (t). Separation of
variables gives

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
=

1

σ2T

d2T

dt2

and

1

σ2T

d2T

dt2
= −α2,

1

Z

d2Z

dz2
= −β2,

1

Y

d2Y

dy2
= −γ2,

1

X

d2X

dx2
= −δ2, α2 = β2 + γ2 + δ2.
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We see that

ũ = (A cos δx + B sin δx)(C cos γy + D sin γy)(E cos βz + F sin βz)(G cos ασt + H sin ασt)

satisfies the PDE. In order to satisfy the boundary conditions ũ = 0 when x = 0,
x = a, y = 0, y = b, z = 0, z = c we must choose

A = 0, C = 0, E = 0,

δa = m1π, m1 = 1, 2, 3, . . .

γb = m2π, m2 = 1, 2, 3, . . .

βc = m3π, m3 = 1, 2, 3, . . .

We therefore obtain a class of solutions of the form

ũm1m2m3(x, y, z, t) = sin
m1πx

a
sin

m2πy

b
sin

m3πz

c
Φ(t),

where
Φ(t) = (G̃m1m2m3 cos(αm1m2m3σt) + H̃m1m2m3 sin(αm1m2m3σt))

and

αm1m2m3 =
(

m1
2π2

a2
+

m2
2π2

b2
+

m3
2π2

c2

)1/2

(12.30)

These solutions will satisfy the condition ∂u
∂t

(x, y, z, 0) = 0 if we take H̃m1m2m3 = 0.
Applying the superposition principle we try to satisfy the remaining condition
u(x, y, z, 0) = f(x, y, z) with

u =
∞∑

m1,m2,m3=1

G̃m1m2m3 sin
m1πx

a
sin

m2πy

b
sin

m3πz

c
cos(αm1m2m3σt) (12.31)

This demands that

f(x, y, z) =
∞∑

m1,m2,m3=1

G̃m1m2m3 sin
m1πx

a
sin

m2πy

b
sin

m3πz

c
.

We use the Fourier method and multiply both sides by

sin
pπx

a
sin

qπy

b
sin

rπz

c

and carry out integrations
∫ a
0 dx,

∫ b
0 dy,

∫ c
0 dz using the orthognality relations

∫ a

0
sin

rπx

a
sin

sπx

a
dx =

a

2
δr,s,

for any non-negative integers r, s. etc. We conclude that

G̃pqr =
8

abc

∫
f(x, y, z) sin

pπx

a
sin

qπy

b
sin

rπz

c
dxdydz (12.32)

where the (volume) integral is taken through the space 0 ≤ x ≤ a, 0 ≤ y ≤ b,
0 ≤ z ≤ c. The final solution, satisfying all the boundary conditions, is defined by
equations 12.30, 12.31, 12.32.
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Chapter 13

Examples on Separation of Variables

The method of separation of variables which we introduced in the previous chapter is an
important technique. We illustrate the method further by a set of examples.

Example 13.1 Use the method of separation of variables to find solutions of the PDE

∂2u

∂x2
− ∂u

∂y
= u.

Notice that this is a linear homogeneous equation and therefore the superposition principle
can be applied. Use the Fourier method to show that the solution of the equation in the
semi-infinite strip 0 ≤ x ≤ π, y ≥ 1, (x, y) 6= (π, 1) which satisfies the conditions
u(0, y) = 0, u(π, y) = 0, u(x, 1) = x, is

u(x, y) =
∞∑

n=1

2(−1)n+1

n
exp[(1 + n2)(1− y)] sin nx.

Given the PDE
∂2u

∂x2
− ∂u

∂y
= u

we seek solutions of the form ũ(x, y) = X(x)Y (y). We have

1

X

d2X

dx2
− 1

Y

dY

dy
= 1.

Separation of variables gives

1

X

d2X

dx2
= −λ2, X = A′ cos λx + B′ sin λx

and
1

Y

dY

dy
= −(λ2 + 1), Y = C ′ exp−(λ2 + 1)y.

103
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We have obtained a class of solutions of the given PDE of the form

ũ = C ′(A′ cos λx + B′ sin λx)[exp−(λ2 + 1)y] ≡ (A cos λx + B sin λx) exp−(λ2 + 1)y.

In order to satisfy the boundary conditions ũ(0, y) = 0, ũ(π, y) = 0 we need A = 0,
λ = n, (n = 1, 2, 3, . . .). We therefore have a class of solutions

{ũn(x, y) = Bn[exp−(n2 + 1)y] sin nx, n = 1, 2, 3, . . .}

which satisfy the PDE and the boundary conditions ũn(0, y) = 0, ũn(π, y) = 0.

Since the PDE is linear and homogeneous the superposition principle holds and we there-
fore try to fit the remaining boundary condition using the trial solution

u(x, y) =
∞∑

n=1

Bn[exp−(n2 + 1)y] sin nx.

Since u(x, 1) = x we require

x =
∞∑

n=1

Bn[exp−(n2 + 1)] sin nx.

Application of the Fourier method using the formula

∫ π

0
sin nx sin mxdx =

π

2
δn,m

(m,n positive integers) gives

Bn =
2

π
[exp(n2 + 1)]

∫ π

0
x sin nx dx =

2(−1)n+1

n
exp(n2 + 1),

following an integration by parts. The final result is

u(x, y) =
∞∑

n=1

2(−1)n+1

n
[exp(n2 + 1)(1− y)] sin nx.

Example 13.2 Show that the solution of the diffusion equation

∂2u

∂x2
=

1

κ

∂u

∂t

subject to the conditions

u(0, t) = 0, u(1, t) = 1, ∀t > 0; u(x, 0) = 0, 0 ≤ x ≤ 1
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is

u(x, t) = x +
2

π

∞∑

n=1

(−1)n

n
[exp(−n2π2κt)] sin nπx.

What happens as t → ∞? Offer a physical interpretation of this problem. (Look at the
derivation of the diffusion equation in Chapter 8 and think in terms of the given boundary
conditions.)

We have to solve

∂2 u

∂ x2
=

1

κ

∂ u

∂ t
, subject to u(0, t) = 0, u(1, t) = 1 ∀t > 0; u(x, 0) = 0, 0 ≤ x ≤ 1.

Using the method of separation of variables, writing u = ũ = X(x)T (t), we obtain, in the
usual way,

d2X

dx2
+ λ2X = 0,

dT

dt
= −κλ2T.

The choice λ = 0 gives X(x) = a′ + b′x whilst for λ 6= 0 we have
X(x) = A′ cos λx + B′ sin λx, T (t) = C ′e−λ2κt. The superposition principle (for linear
homogeneous equations any linear conbination of solutions is a solution) now shows that

ũ(x, t) = ax + b +
∑

λ∈Λ

(Aλ cos λx + Bλ sin λx)e−λ2κt, Λ some index set,

is also a solution. In order to make ũ(0, t) = 0 ∀t > 0 we take all the Aλ and b to be zero.
In order to satisfy ũ(1, t) = 1 ∀t > 0 we can choose a = 1 and λ = nπ, n = 1, 2, 3, . . . .
On this basis we are led to consider as the solution to our problem

ũ(x, t) = x +
∞∑

n=1

Bn sin(nπx)e−n2π2κt.

In order to satisfy the remaining condition u(x, 0) = 0 ∀x ∈ [0, 1] we require the Bn to
satisfy

−x =
∞∑

n=1

Bn sin(nπx).

The Fourier method gives (the functions {sin(nπx)} are orthogonal over [0, 1])

Bm = −2
∫ 1

0
x sin(mπx) dx =

2(−1)m

mπ
,

following an integration by parts. We therefore obtain, as the solution of the PDE satis-
fying the boundary conditions,

u(x, t) = x +
2

π

∞∑

n=1

(−1)n

n
sin(nπx)e−n2π2κt.
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As t → ∞ RHS → x; this is intuitively clear since e−n2π2κt → 0 as t → ∞. A more
rigorous justification is achieved by the following argument: Write

∞∑

n=1

(−1)n

n
sin(nπx)e−n2π2κt =

m∑

n=1

(−1)n

n
sin(nπx)e−n2π2κt + Rm

where Rm, the remainder after m terms, is given by

Rm =
∞∑

n=m+1

(−1)n

n
sin(nπx)e−n2π2κt.

It’s clear that
∑m

n=1 → 0 as t → ∞ since e−n2π2κt → 0 as t → ∞ and in this case we’re
dealing with only a finite sum. As regards Rm note that

|Rm| ≤
∞∑

n=m+1

1

n
e−n2π2κt ≤ 1

m + 1

∞∑

n=m+1

e−n2π2κt (using | sin nπx| ≤ 1).

Now, en2π2κt > enπ2κt and therefore e−n2π2κt < e−nπ2κt We conclude that

|Rm| ≤ 1

m + 1

∞∑

n=m+1

e−nπ2κt =
1

m + 1

e−(m+1)π2κt

1− e−π2κt
→ 0 as t →∞.

We conclude that u(x, t) → x as t →∞.

The physical interpretation is as follows. Imagine a heat conducting bar which lies on the
x−axis between x = 0 and x = 1. At t = 0 the bar is at zero temperature. The end x = 1
is then clamped and held at temperature 1 and the end x = 0 is held at zero temperature.
The heat diffuses along the bar, raising the temperature according to the above formula,
and after a long time tends to the uniform temperature distribution u = x; for large time
the temperature increases linearly from zero at x = 0 to 1 at x = 1. This agrees with our
intuition.

Example 13.3 In plane polar coordinates (r, θ) Laplace’s operator is given by (see Ap-
pendix)

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
.

Find solutions of Laplace’s equation by writing φ(r, θ) = R(r)Θ(θ) and employing the
method of separation of variables. Use your results to solve the following problem.

Show that the solution φ(r, θ) of Laplace’s equation in the semi-circular region r < a,
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0 < θ < π, which vanishes on the line θ = 0 and takes the constant value A on the line
θ = π and on the curved boundary r = a, is

φ(r, θ) =
A

π

[
θ + 2

∞∑

n=1

(
r

a

)n sin nθ

n

]
.

(Strictly speaking, the origin and the point r = a, θ = 0 should be excluded)

In plane polar coordinates (r, θ) Laplace’s equation is

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
= 0.

Writing φ(r, θ) = R(r)Θ(θ) and separating the variables we find that

r2

R

d2R

dr2
+

r

R

dR

dr
+

1

Θ

d2Θ

dθ2
= 0,

d2Θ

dθ2
+ λ2Θ = 0, r2d2R

dr2
+ r

dR

dr
− λ2R = 0.

The Θ equation has solution

Θ = A′ cos λθ + B′ sin λθ, (λ2 6= 0), Θ = c′θ + d′ (λ2 = 0),

whilst the R equation is satisfied by R = Krl provided l(l− 1) + l− λ2 = 0 i.e. l = ±λ if
λ2 6= 0 and by R = e′ + f ′ ln r if λ2 = 0.

This means that

φ̃(r, θ) = (e′ + f ′ ln r)(c′θ + d′) +
∑

λ

(C ′
λr

λ + D′
λr
−λ)(A′

λ cos λθ + B′
λ sin λθ)

is a solution of Laplace’s equation. In the given problem we choose f ′ = 0, D′
λ = 0 since

ln r, r−λ are singular at r = 0. We therefore consider a solution of the form

φ̃(r, θ) = (cθ + d) +
∑

λ

rλ(Aλ cos λθ + Bλ sin λθ).

We want φ̃(r, θ = 0) = 0, 0 < r < a. This demands that d = 0, Aλ = 0. We therefore
look at the solution

φ̃(r, θ) = cθ +
∑

λ

Bλr
λ sin λθ).

The condition φ̃(r, θ = π) = A is satisfied if we choose λ to be an integer, λ = n,
n = 1, 2, 3, . . . and aπ = A so that c = A/π. We therefore try to satisfy the final condition
with a solution of the form

φ̃(r, θ) =
Aθ

π
+

∞∑

n=1

Bnrn sin(nθ).
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We want φ̃(r = a, θ) = A, 0 < θ < π i.e.

A(1− θ/π) =
∞∑

n=1

Bna
n sin(nθ).

The Fourier method gives

Bna
n π

2
= A

∫ π

0
(1− θ/π) sin(nθ) dθ =

A

n
,

after an integration by parts. This gives

Bn =
2

π

A

ann
,

and a solution φ(r, θ) given by

φ(r, θ) =
Aθ

π
+

2A

π

∞∑

n=1

(
r

a

)n sin(nθ)

n
.

Example 13.4 Laplace’s equation in three–dimensional cylindrical coordinates (r, θ, z)
takes the form (see Appendix)

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
= 0.

Find solutions of this equation by separation of variables.

Substitute φ = R(r)Θ(θ)Z(z) and divide through by RΘZ to obtain

1

R

d2R

dr2
+

1

rR

dR

dr
+

1

r2Θ

d2Θ

dθ2
+

1

Z

d2Z

dz2
= 0.

Consistency requires (remember: (r, θ, z) are independent variables)

1

Z

d2Z

dz2
= p2, p2 > 0,

d2Z

dz2
− p2Z = 0,

so that

Z(z) = A cosh pz + B sinh pz.

(We could equally well have written −q2, q2 > 0 instead of p2. Moreover, we could have
set p2 = 0, in which case Z(z) = a + bz) Our equation now has the form

r2

R

d2R

dr2
+

r

R

dR

dr
+

1

Θ

d2Θ

dθ2
+ p2r2 = 0.
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Since r, θ are independent consistency demands that

1

Θ

d2Θ

dθ2
= −n2, n2 > 0

with solution
Θ(θ) = C cos nθ + D sin θ.

Again, we could equally well have chosen to write m2, m2 > 0 rather than −n2. Further-
more, n2 = 0, is allowable, in which case Θ(θ) = cθ + d; there are problems in which this
solution is useful. However, in most applications, where we are looking for solutions such
that Θ(0) = Θ(2π), our first choice is appropriate. Imposing the condition Θ(0) = Θ(2π)
we choose n to be an integer and we are left with the following equation for R:

r2d2R

dr2
+ r

dR

dr
+ (p2r2 − n2)R = 0.

If we change the variable from r to s = nr the equation for R becomes

s2d2R

ds2
+ s

dR

ds
+ (s2 − n2)R = 0 (13.1)

This differential equation arises in many branches of mathematical physics and is called
Bessel’s equation. It leads to the study of the Bessel functions Jn(s) which satisfy Bessel’s
equation. (See Example 6.3, page 47)
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Chapter 14

Laplace’s Equation

In this chapter we give a very brief introduction to Laplace’s equation in three dimensions.

A basic problem in the theory of differential equations (both ordinary and partial) is (a)
to prove the existence of a solution and (b) to prove (where possible) that if a solution
exists it is unique. Generally speaking this is a difficult problem and so far we have paid
no attention to matters of existence and uniqueness beyond obtaining explicit solutions to
specific problems. In certain cases physical intuition indicates that the solution obtained
is unique, but we have not given a mathematical proof. In the case of Laplace’s equation
we can prove the following uniqueness theorem.

Theorem 14.1 Suppose that φ is a C2 function in a region of three-space which contains
a volume V (assumed finite) bounded by a smooth closed surface S. Suppose that φ
satisfies Laplace’s equation throughout V and takes a prescribed set of boundary values on
S (defined by some continuous function on S). Then φ is unique.

Proof 1 We write grad for ∇ i.e. grad ≡ ∇.

Note that for any function u which satisfies Laplace’s equation

div(u grad u) = u∇2u + grad u. grad u = | grad u|2.
By Gauss’s theorem ∫

S
u grad u.n dS =

∫

V
| grad u|2 dV,

where n denotes the outward drawn unit normal to S.

Suppose now that there are two C2 functions φ1 and φ2 which satisfy the conditions of the
theorem i.e. they satisfy Laplace’s equation in V and take the same prescribed boundary
values on S (defined by some continuous function on S). Put u = φ1 − φ2. Then u also
satisfies Laplace’s equation in V and takes the value zero on S. It follows from the above
result that ∫

V
| grad u|2 dV = 0

111
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Since the integrand is continuous and non–negative we deduce that | grad u| is identically
zero throughout the region of integration, and therefore u is constant throughout V . It
follows that

φ1 − φ2 = constant in V.

But φ1 and φ2 coincide on S and therefore the constant is zero. In other words φ1 ≡ φ2.

The boundary conditions referred to in the theorem are called Cauchy boundary condi-
tions. In the case of Neumann boundary conditions we prescribe the normal derivative
∂ φ

∂ n
≡ grad φ.n as a continuous function on S. In the case of Neumann conditions (as

opposed to Cauchy conditions) we can repeat the above argument, word for word, up to
the point where we draw the conclusion that φ1 − φ2 = constant in V . However, in the
Neumann case we cannot deduce that the constant is zero; we can only show that the
solution is unique up to a constant.

The above arguments show that one can prescribe Cauchy or Neumann boundary con-
ditions — not both together.

Our uniqueness theorem readily extends to infinite regions and the same conclusions can
be drawn — provided we make suitable assumptions about the behaviour of φ at infinity.

Example 14.1 We shall see in a moment that the function φ1 = 1/r, r = (x2+y2+z2)1/2

satisfies Laplace’s equation; clearly the same is true of φ2 ≡ 1. Obviously both φ1 and φ2

take the same value, 1, on the unit sphere, centre the origin and radius 1. On the face of
it this flies in the face of our theorem. There is no contradiction, however; φ1 is not C2

at the origin.

14.1 Spherical solutions

We can easily find all the spherically symmetric solutions of Laplace’s equation. These are
the solutions of the form u = u(r), where r = (x2 +y2 +z2)1/2. Reference to the Appendix
for the relevant expression for Laplace’s operator in spherical polar coordinates (r, θ, ψ),
or to Chapter 6, shows that the spherically symmetric solutions of Laplace’s equation are
given by

∇2u = 0,
1

r

∂2

∂ r2
(ru) = 0.

Integration with respect to r gives (ru)′ = C1 and a further integration yields

ru = C1r + C2, u(r) = C1 +
C2

r
(14.1)

(of course, C1, C2 are arbitrary constants). The solution 14.1 has a simple physical
interpretation; it represents, for example, the elctrostatic potential due to a charge C2 at
the origin (or a constant times C2, depending on the choice of units).
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14.2 Further simple solutions

We note that
∂m+n+p

∂ xm ∂ yn ∂ zp

(
1

r

)
, r 6= 0 (14.2)

is also a solution of Laplace’s equation for any choice of the non–negative integers m,n, p.
For,

∇2
(

∂m+n+p

∂ xm ∂ yn ∂ zp

(
1

r

))
=

∂m+n+p

∂ xm ∂ yn ∂ zp

(
∇2 1

r

)
= 0

by virtue of the commutative law of partial differentiation.

It’s interesting to compute some particular cases of 14.2. For example ∂
∂ z

(1/r), ∂2

∂ z2 (1/r)
are solutions of Laplace’s equation. Since

r2 = x2 + y2 + z2, 2r
∂ r

∂ z
= 2z,

∂ r

∂ z
=

z

r

we find that
∂

∂ z
(1/r) = − z

r3
,

∂2

∂ z2
(1/r) =

3z2

r5
− 1

r3
.

Expressing z in terms of the usual spherical polar coordinates (r, θ, ψ), z = r cos θ, we see
that

− cos θ

r2
,

3cos2θ − 1

r3

are solutions of Laplace’s equation. Students of electrostatics will recognize that they
correspond to the elctrostatic potential due to a certain elctrostatic dipole and quadrupole,
respectively, at the origin r = 0.

By looking at the n–th derivative of 1/r we come to the conclusion that Laplace’s equa-
tion has solutions of the form r−(n+1)Pn(cos θ), where (r, θ, ψ) are spherical polar co-
ordinates and the Pn are polynomials of degree n in cos θ which can be identified as
the Legendre polynomials. The Legendre polynomials are orthogonal in the sense that∫ 1
−1 Pn(x)Pm(x) dx = 0 (m 6= n) and have many other interesting properties; however, we

do not consider them further in this course.
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Chapter 15

Fourier Transforms and some
applications

In Chapter 12 we indicated that for a suitably smooth function f defined on on [−l, l] the
Fourier series

1

2
a0 +

∞∑

n=1

an cos(
nπx

l
) +

∞∑

n=1

bn sin(
nπx

l
),

where the Fourier coefficients an, bn are defined by

an =
1

l

∫ l

−l
f(x) cos(nπx/l) dx, bn =

1

l

∫ l

−l
f(x) sin(nπx/l) dx n = 0, 1, 2, 3 . . .

converges to 1
2
(f(x + 0) + f(x− 0)) i.e. to f(x) if x is a point of continuity of f .

Suppose now that f is a function which is absolutely integrable i.e.
∫∞
−∞ |f(x)| dx < ∞ and

that it satisfies the conditions stated in Chapter 12 for arbitrarily large l. The following
is a heuristic argument which suggests a result which may be true, subject to suitable
assumptions about the function f. Suppose that x is a point of continuity of f and write
l = πλ. We then have, inserting the relevant expressions for the Fourier coefficients an, bn

in terms of f ,

f(x) =
1

2πλ

∫ πλ

−πλ
f(y) dy +

1

πλ

∞∑

n=1

∫ πλ

−πλ
f(y)

[
cos

(
ny

λ

)
cos

(
nx

λ

)
+ sin

(
ny

λ

)
sin

(
nx

λ

)]
dy

=
1

2πλ

∫ πλ

−πλ
f(y) dy +

1

πλ

∞∑

n=1

∫ πλ

−πλ
f(y) cos

n

λ
(y − x) dy.

Now suppose λ is large and positive. Write α = n
λ
, δα = 1

λ
and think of a definition

of the integral in terms of Riemann sums. Since we are assuming that f is absolutely
integrable it follows that 1

2πλ

∫ πλ
−πλ f(y) dy → 0 as λ →∞ and it becomes plausible that

f(x) =
1

π

∫ ∞

0
dα

∫ ∞

−∞
f(y) cos α(y − x) dy =

1

2π

∫ ∞

−∞
dα

∫ ∞

−∞
f(y) cos α(y − x) dy.
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This formula is known as Fourier’s integral formula.

Since
∫∞
−∞ f(y) sin α(y − x) dy is an odd function of α we take it for granted that

0 =
1

2π

∫ ∞

−∞
dα

∫ ∞

−∞
f(y) sin α(y − x) dy.

Combining this expression with Fourier’s integral formula we are led to write

f(x) =
1

2π

∫ ∞

−∞
dα

∫ ∞

−∞
f(y)eiα(y−x) dy =

1

2π

∫ ∞

−∞
e−iαxdα

∫ ∞

−∞
eiαyf(y) dy. (15.1)

For suitable f we define the Fourier transform of f , to be the function f̃ defined by

f̃(x) =
∫ ∞

−∞
eixyf(y) dy (15.2)

Note that the integral defining f̃ certainly exists if f is absolutely integrable. If we imagine
that f̃ is given, and that f is unknown, we can recover f from equation (15.1) to obtain

f(x) =
1

2π

∫ ∞

−∞
e−iαxf̃(α) dα (15.3)

which is the so called inverse Fourier transform, and enables us to calculate f given f̃ .
Since α is a dummy variable in this formula we can write any other symbol in lieu of α
e.g. y.

Books on the theory of Fourier integrals, for example E.C. Titchmarsh, Theory of Fourier
Integrals, investigate conditions on f which ensure the existence of the Fourier transform,
and the validity of the corresponding inverse transform formula. This a hard branch of
analysis and in this course we cannot proceed with such an investigation. However, it
is not very difficult to outline an argument which justifies the above conclusions in the
case of Schwartz1class functions on R . The Schwartz class S(R) is the class of infinitely
differentiable functions f on R which are of fast decrease at infinity; the second condition
requires that for every choice of the integers m,N we have |xNf (m)(x)| → 0 as |x| → ∞..
In essence this means that a Schwartz class function f and all it derivatives tend to zero
at infinity so fast as to dominate any power of x. A typical Schwartz class function is e−x2

.
For any Schwartz class function f we observe that the Fourier transform f̃ of f always
exists i.e. the integral

∫∞
−∞ eixyf(y) dy exists. Moreover, it is not hard to show rigorously

that f̃ is infinitely differentiable and is also Schwartz class.

As a prelude to verifying the Fourier inverse transform formula for Schwartz class functions
we show how to compute integrals of the form

∫∞
−∞ e−α(x+iβ)2 dx, α > 0, β ∈ R by

integrating e−αz2
round the rectangle whose vertices are at the points z = −R,

1Laurent Schwartz. Professor of Mathematics at Strasbourg. Gave a rigorous account of the Dirac
δ-function in his book ‘Theorie des Distributions’ (Hermann, Paris (1957))
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z = R, z = R + iβ, z = −R + iβ. Cauchy’s theorem gives

∫ R

−R
e−αx2

dx +
∫ β

0
e−α(R+iy)2(i dy) +

∫ −R

R
e−α(x+iβ)2 dx +

∫ 0

β
e−α(−R+iy)2(i dy) = 0.

Now ∣∣∣∣
∫ β

0
e−α(R+iy)2i dy

∣∣∣∣ ≤
∫ β

0

∣∣∣∣e−α(R2+2iRy−y2)

∣∣∣∣ dy = e−αR2
∫ β

0
eαy2

dy → 0

as R → ∞ Similarly we can show that
∫ 0
β e−α(−R+iy)2(i dy) tends to zero in the limit

R →∞. It follows that

∫ ∞

−∞
e−α(x+iβ)2 dx =

∫ ∞

−∞
e−αx2

dx =

√
π

α
, α > 0, β ∈ R . (15.4)

We may note in passing that by taking the real part of both sides of this formula we
obtain ∫ ∞

−∞
e−αx2

cos 2αβx dx = e−αβ2
√

π

α
, α > 0, β ∈ R .

15.1 Fourier Inverse Transform for Schwartz Class

Functions

For f ∈ S(R) consider the inverse Fourier transform of e−εx2
f̃(x), ε > 0; ultimately we

let ε → 0. We have
∫ ∞

−∞
e−εx2

f̃(x)e−ixz dx =
∫ ∞

−∞
e−εx2

e−ixz dx
(∫ ∞

−∞
f(y)eixy dy

)
(15.5)

=
∫ ∞

−∞
f(y)

(∫ ∞

−∞
e−ε[x2+

ix(z−y)
ε

] dx
)

(15.6)

=
∫ ∞

−∞
f(y) dy

∫ ∞

−∞
e−ε[(x+

i(z−y)
2ε

)
2
+

(y−z)2

4ε2
] dx =

√
π

ε

∫ ∞

−∞
f(y)e−

(y−z)2

4ε (15.7)

=

√
π

ε

[∫ ∞

−∞
[f(y)− f(z)]e−

(y−z)2

4ε dy + f(z)
∫ ∞

−∞
e−

(y−z)2

4ε dy
]

(15.8)

(using formula (15.4))

= 2πf(z) +

√
π

ε

∫ ∞

−∞
[f(y)− f(z)]e−

(y−z)2

4ε dy (15.9)

We now show that √
π

ε

∫ ∞

−∞
[f(y)− f(z)]e−

(y−z)2

4ε dy → 0

as ε → 0 + . To see this, we suppose that f is real valued (if not, we can apply the
following argument to the real and imaginary parts of f separately) and note (by the
Mean Value Theorem) that f(y)−f(z) = f ′(ξ(y))(y−z) for some number ξ(y) (depending
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on y) between y and z. Since f is Schwartz class f ′ is certainly bounded and we write
K = supx∈R |f ′(x)| to obtain

∣∣∣∣
√

π

ε

∫ ∞

−∞
[f(y)− f(z)]e−

(y−z)2

4ε dy

∣∣∣∣ ≤
√

π

ε
K

∫ ∞

−∞
|y − z|e− (y−z)2

4ε dy

=

√
π

ε
(2K)

∫ ∞

0
ue−

u2

4ε du = 4K
√

πε

which does indeed tend to zero as ε tends to zero through positive values.

It’s not very hard to prove rigorously that for Schwartz class f

lim
ε→0+

∫ ∞

−∞
e−εx2

f̃(x)e−ixz dx =
∫ ∞

−∞
f̃(x)e−ixz dx,

We deduce that for any Schwartz class function f that
∫ ∞

−∞
f̃(x)e−ixz dx = 2πf(z)

so that the inverse transform formula

f(z) =
1

2π

∫ ∞

−∞
f̃(x)e−ixz dx, ∀f ∈ S(R)

is established.

15.2 Examples

Example 15.1 Find the Fourier transform of e−x2/2.

Write f(x) = e−x2/2. Then

f̃(k) =
∫ ∞

−∞
e−x2/2eikx dx =

∫ ∞

−∞
e−(x2−2ikx)/2 dx = e−k2/2

∫ ∞

−∞
e−(x−ik)2/2 dx =

√
2πe−k2/2.

using equation (15.4). We see that, apart from a multiplicative constant, the Fourier
transform of f is f itself.

Example 15.2 Suppose that

f(x) =

{
e−x x ≥ 0
0 x < 0

Calculate the Fourier transform f̃ of f and evaluate the inverse transform of f̃ when this
is defined.
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Straightforward integration gives

f̃(k) =
∫ ∞

−∞
eikxf(x) dx =

∫ ∞

0
ex(ik−1) dx =

1

1− ik
.

In order to compute the inverse transform of 1
1−ik

we need to evaluate

1

2π

∫ ∞

−∞
e−ikxf̃(k) dk = − 1

2πi

∫ ∞

−∞
e−ikx

k + i
dk

We consider the two cases x < 0, x > 0 separately — note that the integral does not exist
when x = 0. First note that with k = α+ iβ we have −ikx = βx− iαx. This suggests that
for x > 0 we can evaluate the integral by integrating e−ikx

k+i
round the semi-circle centre

k = 0 and radius R in the lower-half complex k-plane, whilst for x < 0 we should integrate
this function round the corresponding semi-circle in the upper-half complex k-plane —
these choices of contour will ensure that the exponential will be suitably damped for large
R and guarantee that in the limit R → ∞ the integral round the curved part of the
contour tends to zero. (see the diagrams)

Standard arguments using Cauchy’s residue theorem then show that

− 1

2πi

∫ ∞

−∞
e−ikx

k + i
dk =

(2πi)

(2πi)
e−i(−i)x = e−x, x > 0.

and

− 1

2πi

∫ ∞

−∞
e−ikx

k + i
dk = 0, x < 0

We see that the inverse transform of f̃ is in fact equal to f(x), except when x = 0. This
is not entirely surprising, since x = 0 is a point of discontinuity of the function f.

In what follows we assume that the functions f which we consider are such that equations
(15.2) and (15.3) defining the Fourier transform and inverse Fourier transform are valid.
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Example 15.3 Solve the diffusion equation

∂2 θ

∂ x2
=

1

κ

∂ θ

∂ t
, x ∈ R, t ≥ 0

subject to the conditions θ → 0, ∂ θ
∂ x
→ 0 as |x| → ∞, and θ(x, 0) = f(x), x ∈ R .

Multiply the given equation by eixy and integrate over x from −∞ to ∞. This gives

∫ ∞

−∞
eixy ∂2 θ

∂ x2
dx =

1

κ

∂

∂ t

∫ ∞

−∞
θ(x, t)eixy dx =

1

κ

∂ θ̃

∂ t

assuming that differentiation under the integral with respect to t is valid. Here θ̃ is the
Fourier transform of θ, taken with respect to the variable x — so θ̃ depends on y and
t i.e. θ̃ = θ̃(y, t). The trick now is to integrate the left hand side by parts and use the
boundary conditions at infinity. This gives

[
eixy ∂ θ

∂ x

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
(iy)eixy ∂ θ

∂ x
dx

]
=

1

κ

∂ θ̃

∂ t

Using the condition ∂ θ
∂ x
→ 0 as |x| → ∞ we obtain, after a further partial integration,

(−iy)
[
eixyθ

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
(iy)θeixy dx

]
.

Since θ → 0 as |x| → ∞ we obtain

−y2θ̃ =
1

κ

∂ θ̃

∂ t
θ̃ = A(y)e−κy2t,

where A is independent of t but depends on y. Setting t = 0 and using the initial condition
θ(x, 0) = f(x) we derive

A = θ̃(y, 0) =
∫ ∞

−∞
θ(x, 0)eixy =

∫ ∞

−∞
f(x)eixy = f̃(y).

We therefore have θ̃ = e−κy2tf̃(y). Applying the inverse Fourier transform we now derive

θ =
1

2π

∫ ∞

−∞
e−ixyθ̃(y, t) dy =

1

2π

∫ ∞

−∞
e−ixye−κy2tf̃(y) dy.

Inserting the expression for the Fourier transform of f i.e.

f̃(y) =
∫ ∞

−∞
f(z)eizy dz

we find that

θ =
1

2π

∫
e−ixye−κy2t dy

(∫ ∞

−∞
f(z)eizy dz

)
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=
1

2π

∫ ∞

−∞
f(z) dz

(∫ ∞

−∞
eiy(z−x)−κy2t dy

)

(upon changing the order of integration).

Now,

iy(z − x)− κy2t = −κt
[
y2 +

iy(x− z)

κt

]
= −κt

[(
y +

i(x− z)

κt

)2

+
(x− z)2

4κ2t2

]
.

We can now perform the y integral using equation (15.4) and finally obtain

θ =
1

2π

∫ ∞

−∞
f(z)e−

(x−z)2

4κt

√
π

κt
=

1√
4πκt

∫ ∞

−∞
f(z)e−

(x−z)2

4κt dz.

If we assume that f(x) = δ(x), where δ is the Dirac2 δ function, — physicists think of this
as a spike function with the property that δ(x) is zero everywhere on the x-axis except
at zero, where it is supposed to be so large that

∫∞
−∞ δ(x) dx = 1 — we obtain

θ =
1√

4πκt
e−

x2

4κt (15.10)

a famous solution of the diffusion equation. Note that the θ given by equation (15.10) can
be regarded as a probability density (since it has the property

∫∞
−∞ θ(x, t) dx = 1) which

is initially concentrated at x = 0 but subsequently diffuses along the x-axis.

As a second example on the use of Fourier transforms in solving partial differential equa-
tions consider the following:

Example 15.4 Show that the solution of the two-dimensional Laplace equation

∂2 V

∂ x2
+

∂2 V

∂ y2
= 0, x > 0, 0 < y < b

subject to the conditions V (0, y) = 0, 0 < y ≤ b, V (x, 0) = f(x), x > 0,
V (x, b) = 0, x ≥ 0, V, ∂ V

∂ x
→ 0 as x →∞ is

V (x, y) =
2

π

∫ ∞

0
f(u) du

∫ ∞

0

sinh k(b− y)

sinh(kb)
sin(kx) sin(ku) dk

At first sight this does not seem to be a problem where the use of Fourier transforms
would be appropriate since x ∈ [0,∞) rather than x ∈ (−∞,∞). However, we can extend
the definition of V and f to x ∈ (−∞,∞) by requiring V and f to be odd functions
of x so that V (−x, y) = −V (x, y) and f(−x) = −f(x). This condition on V enables us
to satisfy the requirement V (0, y) = 0, 0 < y ≤ b and since V now has meaning for

2Paul Dirac (1902-1984) Lucasian Professor of Mathematics at Cambridge. One of the founding fathers
of Quantum Mechanics. Nobel Laureate (1933)
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x ∈ R we are in a position to take Fourier transforms of V with respect to the variable
x. Multiplying the Laplace equation by eikx and integrating with respect to x as in the
preceding example gives

−k2Ṽ +
∂2 Ṽ

∂ y2
= 0,

where
Ṽ (y, k) =

∫ ∞

−∞
eikxV (x, y) dx.

Solving the equation for Ṽ gives

Ṽ = Aeky + Be−ky

Since V (x, 0) = f(x), x ∈ R we have Ṽ (0, k) = f̃(k) and since V (x, b) = 0 we obtain
Ṽ (b, k) = 0. Forcing these conditions on Ṽ we derive the following equaions for A,B:

f̃ = A + B, 0 = Aekb + Be−kb.

These linear algebraic equations are easily solved to give

A = − f̃(k)e−kb

2 sinh(kb)
, B =

f̃(k)ekb

2 sinh(kb)
.

This leads to the following equation for Ṽ :

Ṽ =
f̃(k) sinh k(b− y)

sinh(kb)
. (15.11)

Taking the inverse transform we obtain

V (x, y) =
1

2π

∫ ∞

−∞
e−ikxṼ (y, k) dk.

At this stage we recall that we extended the definition of V, f as odd functions of x. It is
easy to check that this implies that both Ṽ and f̃ are odd functions of k. We can therefore
write

V (x, y) =
1

2π

∫ ∞

0
e−ikxṼ (y, k) +

1

2π

∫ 0

−∞
e−ikxṼ (y, k)

=
1

2π

∫ ∞

0
e−ikxṼ (y, k)− 1

2π

∫ ∞

0
eikxṼ (y, k) = − i

π

∫ ∞

0
sin(kx)Ṽ (y, k) dk (15.12)

Similarly, using the fact that we defined f on R as an odd function of x, we derive

f̃(k) = 2i
∫ ∞

0
sin(ku)f(u) du.

Substituting this expression for f̃ into equation (15.11) and incorporating the resulting
formula for Ṽ into equation (15.12) gives the stated result.
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Before leaving the topic of Fourier transforms we note that the ideas developed above can
be extended to functions f of n real variables (x1, x2, . . . , xn) ∈ Rn. For suitable f we
define the Fourier transform f̃ of f by

f̃(k1, k2, . . . , kn) =
∫

Rn
ei

∑n

j=1
kjxjf(x1, x2, . . . , xn)dx1dx2 . . . dxn

the corresponding inversion formula being given by

f(x1, x2, . . . , xn) =
1

(2π)n

∫

Rn
e−i

∑n

j=1
kjxj f̃(k1, k2, . . . , kn)dk1dk2 . . . dkn.

Multivariable Fourier transforms arise in many areas of applied mathematics, for example
in quantum mechanics.
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Chapter 16

Problems

In the following questions the term arbitrary function occurs several times; the functions
referred to are not totally arbitrary, of course, and must be differentiable to whatever
order is necessary for the question to make sense.

Problem 1 Eliminate the arbitrary function f in u = f(x−y) to find a first order partial
differential equation satisfied by u. Show, conversely, that this PDE has general solution
u = f(x− y).

[Hint: Change to new variables α, β where α = x− y, β = x.]

Problem 2 Eliminate the arbitrary functions f, g in

u(x, y) = f
(

x

y

)
+ g(x− y)

by finding a partial differential equation satisfied by u.

Conversely, show that the partial differential equation

x
∂2u

∂x2
+ (x + y)

∂2u

∂x∂y
+ y

∂2u

∂y2
+

∂u

∂x
+

∂u

∂y
= 0

has general solution given by

u(x, y) = f
(

x

y

)
+ g(x− y).

[Hint: Change to new variables α, β where α = x− y, β = x/y.]

125
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Problem 3 In this question we write x1, x2, x3 rather than x, y, z.

Let (x1, x2, x3) 7→ (x1
′, x2

′, x3
′), where xi

′ =
∑

j Λijxj, denote a rotation. This has the
consequence that the matrix Λ is orthogonal (i.e. ΛT Λ = I) so that xj =

∑
k Λkjxk

′.

Show explicitly, by direct calculation, that Laplace’s operator is invariant under rotations
i.e. that

∂2φ

∂x1
2

+
∂2φ

∂x2
2

+
∂2φ

∂x3
2

=
∂2φ

∂x1
′2 +

∂2φ

∂x2
′2 +

∂2φ

∂x3
′2 ,

where φ is any function posessing continuous second order partial derivatives.

Show also, by direct calculation, that

(
∂φ

∂x1

)2

+
(

∂φ

∂x2

)2

+
(

∂φ

∂x3

)2

is rotationally invariant.

Problem 4 Find the general solution of the PDE

∂4u

∂x2∂y2
= 0.

Problem 5 Show that the PDE
∂2u

∂x2
=

1

c2

∂2u

∂t2

isn’t invariant under the Galilean transformation (x, t) 7→ (x′, t′), where x′ = x− V t,
t′ = t, and V is constant.

Problem 6 Classify each of the following PDEs as hyperbolic, parabolic or elliptic and
find the general solution in each case.

3
∂2u

∂x2
+ 4

∂2u

∂x∂y
− ∂2u

∂y2
= 0,

∂2u

∂x2
− 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0,

4
∂2u

∂x2
+

∂2u

∂y2
= 0

In the case of the third equation give an example of a fourth degree real multinomial in
x, y which satisfies the equation.



127

Problem 7 (i) Suppose that a, b, c are real constants such that the quadratic equation

a + 2bλ + cλ2 = 0

has distinct real roots λ1, λ2. Show that under the transformation
(x, y) 7→ (ξ, η), where ξ = x + λ1y, η = x + λ2y, Euler’s equation

a
∂2u

∂ x2
+ 2b

∂2u

∂ x ∂ y
+ c

∂2u

∂ y2
= 0

becomes
∂2u

∂ ξ ∂ η
= 0.

Obtain the general solution of Euler’s equation when a, b, c satisfy the above conditions.

(ii) Classify the following partial differential equations as elliptic, parabolic or hyperbolic,
and find the general solution in each case:

3
∂2u

∂ x2
+ 4

∂2u

∂ x ∂ y
− ∂2u

∂ y2
= 0

4
∂2u

∂ x2
− 4

∂2u

∂ x ∂ y
+

∂2u

∂ y2
= 0

2
∂2u

∂ x2
− 2

∂2u

∂ x ∂ y
+

∂2u

∂ y2
= 0

Find a tri-nomial u(x, y) which satisfies the third of these equations.

Problem 8 Write down d’Alembert’s solution of the wave equation

∂2 u

∂ x2
=

∂2 u

∂ t2
, x ∈ R, t ≥ 0.

Find the solution which satisfies the initial conditions

u(x, 0) = 0,
∂ u

∂ t
(x, 0) =

1

1 + x2
.

Problem 9 For each of the following PDEs apply the method of separation of variables
and find the ordinary differential equations into which the PDE separates in each case:

x2∂2 u

∂ x2
= y

∂ u

∂ y
+ y2∂2 u

∂ y2
(16.1)

∂2 u

∂ x2
+

∂2 u

∂ y2
=

1

c2

∂2 u

∂ t2
(16.2)
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∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2

∂2 u

∂ θ2
+

∂2 u

∂ z2
=

1

c2

∂2 u

∂ t2
(16.3)

This is the three-dimensional wave equation expressed in cylindrical polar coordinates
(r, θ, z).

∂2 u

∂ x2
+

∂2 u

∂ y2
=

∂ u

∂ t
(16.4)

This is the two-dimensional version of the diffusion equation.

Problem 10 Use the method of separation of variables to find solutions of the PDE

∂2u

∂x2
− ∂u

∂y
= u.

Notice that this is a linear homogeneous equation and therefore the superposition principle
can be applied. Use the Fourier method to show that the solution of the equation in the
semi-infinite strip 0 ≤ x ≤ π, y ≥ 1, (x, y) 6= (π, 1) which satisfies the conditions
u(0, y) = 0, u(π, y) = 0, u(x, 1) = x, is

u(x, y) =
∞∑

n=1

2(−1)n+1

n
e(1+n2)(1−y) sin nx.

Problem 11 Use the method of separation of variables to find solutions of the diffusion
equation

∂2 u

∂ x2
=

∂ u

∂ t

Show, in particular, that u(x, t) = ax + b where a, b are constants is a solution.

Use your results to show (formally) that the solution of the diffusion equation subject to
the conditions

u(0, t) = 0, u(1, t) = 1 ∀t > 0, u(x, 0) = x(x + 1), 0 ≤ x ≤ 1

is

u(x, t) = x +
∞∑

n=1

Bn sin(nπx) e−n2π2t (16.5)

where

Bn =
2

nπ
(−1)(n+1) +

4

n3π3
((−1)n − 1).

Prove, using equation 16.5, that limt→∞ u(x, t) = x.
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Problem 12 Consider the wave equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1

σ2

∂2u

∂t2

inside the box {(x, y, z) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c}. Use the method of
separation of variables and the Fourier method to find the solution which satisfies the
following conditions:

u(0, y, z, t) = 0, u(a, y, z, t) = 0, u(x, 0, z, t) = 0, u(x, b, z, t) = 0,

u(x, y, 0, t) = 0, u(x, y, c, t) = 0,

u(x, y, z, 0) = f(x, y, z),
∂u

∂t
(x, y, z, 0) = 0.

Problem 13 Find the Fourier series for cosh ax, a 6= 0, −π ≤ x ≤ π. By putting x = 0
and then x = π in turn obtain the formulae

π

sinh aπ
=

1

a
+

∞∑

n=1

(−1)n 2a

a2 + n2
,

π coth aπ =
1

a
+

∞∑

n=1

2a

a2 + n2
.

Problem 14 Obtain the Fourier series for cosh ax, a ∈ R, a 6= 0, x ∈ [−π, π].

Hence show that
π

sinh aπ
=

1

a
+

∞∑

n=1

(−1)n 2a

a2 + n2

and that
1

sinh z
− 1

z
=

∞∑

n=1

(−1)n 2z

z2 + n2π2
, z ∈ R, z 6= 0.

Deduce, by integrating from 0 to x, that

ln
(

tanh x/2

x/2

)
=

m∑

n=1

(−1)n ln
(
1 +

x2

n2π2

)
+

∫ x

0
Rm(z) dz, x 6= 0, where

Rm(z) =
∞∑

n=m+1

(−1)n 2z

z2 + n2π2
.

Hence show that

ln
(

tanh x/2

x/2

)
=

∞∑

n=1

(−1)n ln
(
1 +

x2

n2π2

)
, x 6= 0.

(You may assume that
∫ dz

sinh z
= ln tanh(z/2), and that |Rm(z)| ≤ 2|z|/(mπ2).)
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Problem 15 Show that u = f(x cos θ+y sin θ− ct) represents a wave in two dimensions,
moving without change of shape, the direction of propagation making an angle θ with the
x-axis.

Problem 16 Use the method of separation of variables to find a class of solutions
{un(x, t), n = 1, 2, 3, . . . } of the PDE

x2∂2u

∂x2
=

1

c2

∂2u

∂t2

subject to the boundary conditions u(a, t) = 0, u(2a, t) = 0, ∀t.

Hint: To solve the ODE

x2d2X

dx2
+ λ2X = 0

change the variable to θ, where x = eθ .

Problem 17 Show that the solution of the diffusion equation

∂2u

∂x2
=

1

κ

∂u

∂t

subject to the conditions

u(0, t) = 0, u(1, t) = 1, ∀t > 0; u(x, 0) = 0, 0 ≤ x ≤ 1

is

u(x, t) = x +
2

π

∞∑

n=1

(−1)n

n
e(−n2π2κt) sin nπx.

What happens as t → ∞? Offer a physical interpretation of this problem, if you can.
(Look back to our original derivation of the diffusion equation and think in terms of the
given boundary conditions.)

Problem 18 A function f : [0, π] → R is defined by

f(x) =
{

x, 0 ≤ x ≤ π/2
π − x, π/2 ≤ x ≤ π

Show that

f(x) =
4

π

(
sin x

12
− sin 3x

32
+

sin 5x

52
− sin 7x

72
+ · · ·

)
.

Hint: Extend the definition of f to [−π, 0] by setting f(−x) = −f(x); this makes f
an odd function on [−π, π] and all the Fourier coefficients with respect to the functions
{cos nx} are zero.

Deduce that ∞∑

n=0

1

(2n + 1)2
=

π2

8
.
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Problem 19 Sometimes we have occasion to use Leibnitz’s formula for the nth derivative
of a product. Verify by induction that, for any suitably differentiable functions f, g,

Dn(fg) =
n∑

r=0

n!

r!(n− r)!
DrfDn−rg.

Problem 20 In plane polar coordinates (r, θ) Laplaces’s operator is given by

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
.

(You should be able to derive this starting from x = r cos θ, y = r sin θ using the chain
rule)

Find solutions of Laplace’s equation by writing φ(r, θ) = R(r)Θ(θ) and employing the
method of separation of variables. You can solve the resulting equation for R(r) by trying
R(r) = Krl. Use your results to solve the following problem.

Show that the solution φ(r, θ) of Laplaces’s equation in the semi-circular region r < a,
0 < θ < π, which vanishes on the line θ = 0 and takes the constant value A on the line
θ = π and on the curved boundary r = a, is

φ(r, θ) =
A

π

[
θ + 2

∞∑

n=1

(
r

a

)n sin nθ

n

]
.

(Strictly speaking, the origin and the point r = a, θ = 0 should be excluded)

Problem 21 A function u(r, t) (r = (x2 + y2 + z2)1/2) satisfies the 3-dimensional heat
equation

∇2v =
∂ v

∂ t
.

Assuming the expression for ∇2 given in Appendix 1 show that

∂2

∂ r2
(ru) =

∂

∂ t
(ru)

Use the method of separation of variables to show that this equation has solutions of the
form u = ũ given by

ũ(r, t) =
(A cos λr + B sin λr) e−λ2t +Cr + D

r
,

where A,B, C, D are constants.

Find the solution u(r, t) in the space 0 ≤ r ≤ a which satisfies the boundary conditions
u(r, 0) = 1, 0 < r < a, u(a, t) = 0, t > 0.
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Problem 22 Starting from our definitions of the elementary functions prove some of the
standard identities e.g.

cos2z + sin2z = 1, cosh2z − sinh2z = 1, z ∈ C,

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2, z1, z2 ∈ C, sin iz = i sinh z, cos iz = cosh z.

Is it true that | sin z| ≤ 1, | cos z| ≤ 1, ∀z ∈ C?

Problem 23 Verify that u(x, y) = sin x cosh y, satisfies the two dimensional Laplace
equation and find the analytic function of which it is the real part. (Use the Cauchy
Riemann equations to calculate the imaginary part)

Problem 24 For z = x + iy ∈ C, define f(z) by

f(z) =
xy2(x + iy)

x2 + y4
, z 6= 0, f(0) = 0.

Show that
f(z)− f(0)

z
→ 0

as z → 0 along any straight line through the origin, but prove that f is not differentiable
at the origin by examining what happens as z → 0 along the curve x = y2.

Problem 25 Find the largest domain D on which the function f : D → C is analytic,
where

f(z) =
z(1 + z)

z4 + 1
, z ∈ C .

Problem 26 Suppose that f is analytic on a domain D and that

f(z) = u(x, y) + iv(x, y), z = x + iy.

State the Cauchy-Riemann equations. Find the most general analytic function of which
x3 − 3xy2 is the imaginary part; express your answer in terms of z.

Problem 27 Evaluate
∫

z dz, where the integral is taken in the positive sense round the
triangle whose vertices are at z = 0, z = 2 + i, z = 1 + 2i.

Problem 28 Evaluate
∫
(<z + z) dz, where < denotes real part and the integral is taken

in the positive sense round the triangle whose vertices are at z = −1,
z = 1, z = i.
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Problem 29 Determine the most general analytic function of which u is the real part,
where

u(x, y) = 3x2y + 2x2 − y3 − 2y2.

(Express your answer in terms of z = x + iy)

Problem 30 Give a complex variable argument to show that

a ln r + bθ + c +
∑
n

(Anrn + Bnr−n)(Cn cos nθ + Dn sin nθ),

where (r, θ) are polar coordinates, satisfies Laplace’s equation.

Problem 31 Find all the solutions of the equation cos z = 2.

Problem 32 Suppose that f : C → C is an analytic function and <f(z) is constant,
∀z ∈ C. Prove that f is constant. (Here < denotes real part)

Problem 33 Solve Laplace’s equation

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0

subject to the boundary conditions

u(r, θ = 0) = 0, u(r, θ = π/4) = 0, 0 ≤ r < a,

u(a, θ) = C, 0 < θ < π/4

Problem 34 Evaluate
∫
γ z dz, where γ = γ1 + γ2, γ1 being the line segment from 1 to 0

and γ2 being the line segment from 0 to 2 + 2i.

Problem 35 Evaluate
∫
γ ez dz, where γ is any smooth curve connecting 2i to 1 + i ex-

pressing your answer in the form X + iY.

Problem 36 Use Cauchy’s integral formula to evaluate

∫

γ

ez2

z − 1
dz,

where γ is the rectangle bounded by x = 0, x = 3, y = −1, y = 1 and deduce that

−
∫ 1

−1

y e−y2
dy

y2 + 1
+

∫ 1

−1

y e9−y2

y2 + 4
(y cos 6y − 2 sin 6y) dy = 0

together with another equation which you are asked to find.

(Write out the integral explicitly and extract the real and imaginary parts)
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Problem 37 Use Laurent’s theorem to show that

exp
(

x

2
(z + 1/z)

)
=

∞∑

n=−∞
Kn(x)zn ∀z ∈ C− {0}

Find an integral representation for the functions Kn(x) and try to reproduce the analysis
of example 6.3 of Chapter 6 (in relation to the Bessel functions) for the Kn(x).

Problem 38 Show by an application of Laurent’s theorem to the function e
x
2
(z+1/z) that

e
x
2
(z+1/z) =

∞∑

n=−∞
Kn(x)zn, ∀z ∈ C− {0} (16.6)

where

Kn(x) =
1

π

∫ π

0
ex cos θ cos nθ dθ.

(Parametrise the unit circle, centre z = 0, by γ(θ) = eiθ, −π ≤ θ ≤ π.)

Show, by differentiating equation 16.6 with respect to x and z, in turn, that

xK ′
n(x) + nKn(x) = xKn−1(x)

xK ′
n(x)− nKn(x) = xKn+1(x)

Deduce that Kn(x) satisfies the differential equation

x2K ′′
n(x) + xK ′

n(x)− (x2 + n2)Kn(x) = 0.

Problem 39 Evaluate ∫

C

ez

z(z − 3)
dz

where C is

(a) the circle |z − 3| = 1, (b) the circle |z − i| = 1/4.

Problem 40 Use Cauchy’s residue theorem to evaluate
∫

γ

z eiz dz

z2 + 1
,

where γ is the contour which consists of the portion of the x-axis which lies between −R
and R together with the semi-circle γR, where
γR(θ) = Reiθ, 0 ≤ θ ≤ π, R > 1.

Deduce that ∫ ∞

0

x sin x dx

x2 + 1
=

π

2 e
.

(You should prove that ∫

γR

z eiz dz

z2 + 1
→ 0, as R →∞.)



135

Problem 41 State the value of
∫
γ eiz2

dz, where γ is the contour shown in the diagram.

Prove that ∫

γR

eiz2

dz → 0, as R →∞,

where γR(θ) = R eiθ, 0 ≤ θ ≤ π/4.

(You may assume that sin θ ≥ 2θ/π, 0 ≤ θ ≤ π/2.)

Deduce that ∫ ∞

0
cos(x2) dx =

∫ ∞

0
sin(x2) dx =

1

2

√
π

2
.

(You may assume that
∫∞
0 e−r2

dr =
√

π/2.)

Problem 42 Use Cauchy’s residue theorem to evaluate
∫

γ

eiaz

1 + z2
dz (a > 0),

where γ is the contour which consists of the portion of the x−axis which lies between −R
and R together with the semi-circle γR, where
γR(θ) = Reiθ, 0 ≤ θ ≤ π, R > 1. Deduce that

∫ ∞

0

cos ax

1 + x2
dx =

π

2
e−a.

(You may assume that
∫
γR

eiaz

1+z2 dz → 0 as R →∞.)
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Problem 43 Let S denote the rectangle whose sides are x = ±R, y = 0, y = 1. Find the
poles of the function f given by

f(z) =
eiaz

cosh πz
(a > 0)

and show that the only pole of f which lies inside S is at z = i/2. Show that the residue
of f at the pole z = i/2 is −i(e−a/2)/π.

Prove, by integrating f round the rectangle S, that

∫ ∞

0

cos ax

cosh πx
dx =

1

2
sech (a/2).

(The integral of f along either of the sides of S which are parallel to the imaginary axis
tends to 0 as R →∞ and your proof should include a demonstration that this is the case,
for one of these sides.)

Problem 44 By integrating

f(z) =
Log (1− iz)

(z2 + 1)2

round contour which consists of the portion of the real axis between −R and R, together
with the semi-circle γR given by γR(θ) = R eiθ, 0 ≤ θ ≤ π show that

∫ ∞

0

ln(1 + x2) dx

(x2 + 1)2
=

π

4
(2 ln 2− 1).

(Log denotes the principal value of the logarithm)



Chapter 17

Examination Questions 1998 — 2002

17.1 CM211A Examination Questions — June 1998

1. (i) Classify the following PDEs as elliptic, parabolic or hyperbolic, and write down the
general solution in each case:

∂2 u

∂ x2
+ 4

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= 0

5
∂2 u

∂ x2
− 4

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= 0

Find a real-valued fourth order multinomial solution of the second of these equations.

(ii) Obtain the condition for the PDE

∂2 u

∂ x2
+

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= 0

to be invariant under the non-singular linear transformation (x, y) 7→ (ξ, η) given by

(
ξ
η

)
=

(
α β
γ ζ

) (
x
y

)
(α, β, γ, ζ ∈ R).

and deduce that if ζ = 0 the transformation matrices which leave the PDE invariant are
scalar multiples of the matrices

(
0 1
1 0

)
,

(−1 1
−1 0

)
.

2. Throughout this question r denotes the distance from an origin in three-dimensional
space.
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Heat conducting material occupies the space 0 ≤ r ≤ a and at time t the temperature
u(r, t) satisfies the PDE

∂2

∂ r2
(ru) =

1

κ

∂

∂ t
(ru),

where κ is a positive constant. Use the method of separation of variables to show that
the equation has solutions of the form

u(r, t) =
a + br +

∑
λ(Cλ cos λr + Dλ sin λr)e−λ2κt

r
.

Use this class of solutions to find the solution of the given PDE which satisfies the following
conditions:

(a) u is finite in the space 0 ≤ r ≤ a

(b) u(r, 0) = 1 + r, 0 ≤ r ≤ a

(c) u(a, t) = 1, ∀t > 0.

Use your solution to show carefully that

lim
t→∞u(r, t) = 1, 0 ≤ r ≤ a

3. Throughout this question (r, θ) denote plane polar coordinates.

Show by a complex variable argument, or otherwise, that the two-dimensional Laplace
equation

∂2 u

∂ x2
+

∂2 u

∂ y2
= 0

has solutions of the form

u(r, θ) = c0 + d0 ln r +
∑
n

(anr
n + bnr

−n) cos nθ +
∑
n

(fnr
n + gnr−n) sin nθ,

where n is an integer.

Use this result to find the solution of Laplace’s equation in the space a ≤ r ≤ b which
satisfies the boundary conditions

u(a, θ) = 1, u(b, θ) = cos4θ, 0 ≤ θ ≤ 2π.

4. This question was on Legendre polynomials which are no longer part of the course.

5. (i) Let f : D → C, where D is a domain. Explain what is meant by the statements:
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(a) f is differentiable at z0 ∈ D,

(b) f is analytic at z0 ∈ D.

Use your definition to investigate the differentiability of f : C → C,
where f(z) = z|z|2.

(ii) Find the most general analytic function whose imaginary part is given by
v(x, y) = cos x sinh y.

(iii) Evaluate ∫

γ1

|z|2 dz,

where γ1 is the straight line connecting z = i to z = 1− 2i.

(iv) Evaluate ∫

γ2

dz

z
,

where γ2 is the straight line connecting z = i to z = 1−√3i.

6. (i) Write down the Taylor expansion of ez, z ∈ C and hence evaluate the residue of
the function ez/zn, where n is a positive integer, at z = 0.

Use Cauchy’s residue theorem to evaluate
∫

γ

ez

zn
dz,

where γ is the unit circle parametrised by γ(θ) = eiθ, 0 ≤ θ ≤ 2π.

Deduce that ∫ 2π

0
ecos θ cos(sin θ − (n− 1)θ) dθ =

2π

(n− 1)!
.

(ii) Prove, by integrating ∫ Log(1− iz)

z2 + 1
dz,

round the contour indicated in the diagram, that
∫ ∞

−∞
ln(1 + x2)

1 + x2
dx = 2π ln 2.

(Log denotes the principal value of the (complex) logarithm and ln denotes the usual,
real-valued logarithm)
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17.2 Solutions

Some of the solutions are given in greater detail than others; in order to benefit you should
make a serious attempt to do the questions yourself before looking at the solutions.

1. (i) The PDE
∂2 u

∂ x2
+ 4

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= 0

has auxiliary equation 1+4λ+λ2 = 0 with solutions λ = λ1 = −2+
√

3, λ = λ2 = −2−√3.
The PDE is therefore hyperbolic with GS u = f1(x + λ1y) + f2(x + λ2y), where f1, f2 are
arbitrary C2 functions.

Similarly, the PDE

5
∂2 u

∂ x2
− 4

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= 0

has auxiliary equation 5−4λ+λ2 = 0 so that λ = λ1 = 2+ i, λ = λ2 = 2− i. The PDE is
elliptic with general solution u = g1(x + λ1y) + g2(x + λ2y), where g1, g2 are arbitrary C2

functions. Taking g2 = 0 and g1(z) = z4 we see that the complex function [x+(2+ i)y]4 is
a solution. Expanding this out using (2+i)2 = 3+4i, (2+i)3 = 2+11i, (2+i)4 = −7+24i
and extracting the real part we find that u(x, y) = x4 + 8x3y + 18x2y2 + 8xy3 − 7y4 is a
solution of the required type. [Equally well, the imaginary part of [x + (2 + i)y]4 provides
a fourth order multinomial solution of the PDE]

(ii) Under the change of variable ξ = αx + βy, η = γx + ζy we find, using the chain rule

∂ u

∂ x
= α

∂ u

∂ ξ
+ γ

∂ u

∂ η

∂ u

∂ y
= β

∂ u

∂ ξ
+ ζ

∂ u

∂ η

∂2 u

∂ x2
= α2∂2 u

∂ ξ2
+ γ2∂2 u

∂ η2
+ 2αγ

∂2 u

∂ ξ ∂ η

∂2 u

∂ y2
= β2∂2 u

∂ ξ2
+ ζ2∂2 u

∂ η2
+ 2βζ

∂2 u

∂ ξ ∂ η

∂2 u

∂ x ∂ y
= αβ

∂2 u

∂ ξ2
+ γζ

∂2 u

∂ η2
+ (αζ + γβ)

∂2 u

∂ ξ ∂ η

Substituting in the given PDE we find that

∂2 u

∂ ξ2
[α2 + αβ + β2] +

∂2 u

∂ ξ ∂ η
[2αγ + 2βζ + αζ + γβ] +

∂2 u

∂ η2
[γ2 + ζ2 + γζ] = 0

and the given PDE is invariant under the transformation in question provided

2αγ + 2βζ + αζ + γβ = α2 + αβ + β2
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γ2 + ζ2 + γζ = α2 + αβ + β2

If ζ = 0 we immediately obtain γ = 2α + β (γ cannot be zero since we’re given that
αζ − βγ 6= 0) and substitution in the second of the two constraints yields α = 0 or
α = −β. If α = 0 we immediately obtain γ = β and we get

T = β

(
0 1
1 0

)

whereas α = −β yields γ = −2β + β = −β and

T = β

(
−1 1
−1 0

)

as stated in the question.

2. We’re given the PDE
∂2

∂ r2
(ru) =

1

κ

∂

∂ t
(ru)

Putting ru = R(r)T (t) gives (by separation of variables) the equations

1

R

d2R

dr2
=

1

κ

dT

dt
= −λ2,

d2R

dr2
+ λ2R + 0,

dT

dt
+ λ2κT = 0,

where λ is a parameter. If λ = 0 we get R = (A′ + B′r), T = constant and if λ 6= 0

R = Aλ cos λr + Bλ sin λr, T = Eλe
−λ2κt

in an obvious notation. Since the PDE we’re dealing with is linear and homogeneous any
linear combination of such solutions is a solution. We therefore obtain a class of solutions
of the form

ru = A + Br +
∑

λ∈Λ

(Cλ cos λr + Dλ sin λr)e−λ2κt

as required.

As regards the given boundary value problem, the fact that u is to be finite in the space
0 < r ≤ a demands that A = 0, Cλ = 0 leading to the class of solutions

u(r, t) = B +
∑

λ∈Λ

Dλ
sin λr

r
e−λ2κt

Next, the condition u(a, t) = 1, ∀t > 0 demands that

1 = B +
∑

λ∈Λ

Dλ
sin λa

a
e−λ2κt, ∀t > 0.
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To satisfy this we must have B = 1 and λa = nπ, (n = 1, 2, . . .) — ignoring the trivial
possibility Dλ = 0. We’re therefore led to consider the class of solutions given by

u(r, t) = 1 +
∞∑

n=1

Dn

sin (nπr
a

)

r
e−n2π2κt/a2

, 0 < r ≤ a.

The requirement u(r, 0) = 1 + r gives

1 + r = 1 +
∞∑

n=1

Dn

r
sin

(
nπr

a

)
, 0 ≤ r ≤ a.

The method of Fourier Series now gives

Dn
a

2
=

∫ a

0
r2 sin

(
nπr

a

)
dr

and a straightforward integration by parts gives

Dn =
2a2(−1)n+1

nπ
+

4a2

n3π3

[
(−1)n − 1

]
.

We observe that

∣∣∣∣
sin(nπr

a
)

r

∣∣∣∣ =
∣∣∣∣
(

nπ

a

)
sin(nπr/a)

nπr/a

∣∣∣∣ ≤
nπ

a
[Why?]

It follows that ∣∣∣∣Dn
sin(nπr/a)

r

∣∣∣∣ ≤ K, 0 < r ≤ a

for some constant K, and for all n. [Fill in the details]

We can write our solution as u(r, t) = 1 + I1 + I2 where

I1 =
m∑

n=1

Dn
sin(nπr/a)

r
e−n2π2κt/a2

, I2 =
∞∑

n=m+1

Dn
sin(nπr/a)

r
e−n2π2κt/a2

Obviously I1 → 0 as t →∞ since I1 is a finite sum of terms, each of which tends to zero
as t tends to infinity (property of the negative exponential). As regards I2 we can note
that

|I2| ≤
∞∑

n=m+1

Ke−nπ2κt/a2

= Ke−(m+1)π2κt/a2

/(1− e−π2κt/a2

) → 0

as t →∞.

Here we’ve use the fact that e−n2π2κt/a2
< e−nπ2κt/a2

for all n > 1 — if you draw the
graph of the negative exponential this will be clear; also note that

∑∞
n=m+1 e−nπ2κt/a2

is a

geometric series with common ratio equal to e−π2κt/a2
. Fill in the details.
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We conclude that both I1 and I2 tend to zero as t tends to infinity. It follows that

lim
t→∞u(r, t) = 1, 0 < r ≤ a.

3. We can argue that logz, zn are analytic, the first in an appropriate cut plane, the second
everywhere — except at z = 0 in the case when n is a negative integer. The real and
imaginary parts of these functions therefore satisfy the two-dimensional Laplace equation.
Thus, ln r, rn cos nθ, r−n cos nθ, rn sin nθ, r−n sin nθ, (n = 0, 1, 2, . . .) satisfy Laplace’s
equation. Laplace’s equation is linear and homogeneous, so any linear combination of
solutions is also a solution. We see that

u(r, θ) = c0 + d0 ln r +
∑
n

(anrn + bnr−n) cos nθ +
∑
n

(fnrn + gnr−n) sin nθ

(in an obvious notation) will provide a solution of the two-dimensional Laplace equation.

A standard calculation shows that (do it!)

cos4θ =
3

8
+

1

2
cos 2θ +

1

8
cos 4θ.

The conditions u(a, θ) = 1, u(b, θ) = cos4θ, 0 ≤ θ ≤ 2π demand that

1 = c0 + d0 ln a +
∑
n

(ana
n + bna

−n) cos nθ +
∑
n

(fnan + gna−n) sin nθ, ∀θ ∈ [0, 2π]

and

3

8
+

1

2
cos 2θ+

1

8
cos 4θ = c0+d0 ln b+

∑
n

(anbn+bnb
−n) cos nθ+

∑
n

(fnbn+gnb−n) sin nθ, ∀θ ∈ [0, 2π]

A moment’s consideration shows that in order to satisfy these equations for all θ ∈ [0, 2π]
we need fn, gn to be zero for all n, c0 + d0 ln a = 1, bn = −ana2n (for all n) together with

3

8
+

1

2
cos 2θ +

1

8
cos 4θ = c0 + d0 ln b +

∑
n

an(bn − a2nb−n) cos nθ, ∀θ ∈ [0, 2π]

We conclude that

3

8
= c0 + d0 ln b, a2(b

2 − a4/b2) =
1

2
, a4(b

4 − a8/b4) =
1

8

with all the other an equal to zero. Solving for c0, d0 we see that the unique solution (recall
the uniqueness theorem for Laplace’s equation) of the given boundary value problem is

u(r, θ) = 1− 5 ln a

8 ln(a/b)
+

5 ln r

8 ln(a/b)
+

(
r2−a4

r2

)
b2

2(b4 − a4)
cos 2θ+

(
r4−a8

r4

)
b4

8(b8 − a8)
cos 4θ,
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a ≤ r ≤ b, 0 ≤ θ < 2π.

4. We have omitted this question on Legendre polynomials which are no longer part of
this course.

5. (i) (a) f differentiable at z0 ∈ D implies that limz→z0

f(z)−f(z0)
z−z0

exists; in ε, δ language
this means that given any ε > 0 ∃δ > 0 such that

∣∣∣∣
f(z)− f(z0)

z − z0

− L

∣∣∣∣ < ε,

for some L ∈ C and all z such that 0 < |z − z0| < δ.

(b) The statement that f is analytic at z0 ∈ D means that ∃r > 0 such that f is
differentiable at each point of Nr(z0), the open disc centre z0 and radius r.

Note that for any complex number z, |z|2 = zz, where z denotes the complex conjugate
of z. For f(z) = z|z|2 we have

f(z + w)− f(z)

w
=

(z + w)2(z + w)− z2z

w
= 2|z|2 + wz + z2w

w
+ 2wz + |w|2 (17.1)

If z = 0 this expression tends to zero as w → 0 so that f ′(0) exists and equals zero but
if z 6= 0 all the terms in (17.1) have well defined limits as w → 0 except the term z2w/w
which does not have a limit as w → 0. We can see this as follows. For w ∈ R w/w = 1,
whilst for w = iλ, λ ∈ R w/w = −1. It follows that limw→0 w/w does not exist. In
conclusion, f is differentiable at z = 0, but at no other point.

(ii) The Cauchy-Riemann equations give

∂ u

∂ x
=

∂ u

∂ y
,

∂ v

∂ x
= −∂ u

∂ y

With v(x, y) = cos x sinh y the first CR equation gives

∂ u

∂ x
= cos x cosh y, u(x, y) = sin x cosh y + f(y).

Plugging this expression in the second CR equation gives

− sin x sinh y = − sin x sinh y − f ′(y), f(y) = C, C ∈ R .

The required analytic function is therefore

f(z) = sin x cosh y+i cos x sinh y+C = sin x cos iy+cos x sin iy+C = sin(x+iy)+C ≡ sin z+C.

(iii) We can parametrise γ1 by

γ1(t) = t(1− 2i− i) + i = i + t(1− 3i), 0 ≤ t ≤ 1.
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We then obtain

∫

γ1

|z|2 dz = (1− 3i)
∫ 1

0
(t2 + (1− 3t)2) dt =

4

3
(1− 3i).

[Check through the details]

(iv) Logz is a primitive for 1/z in the region in question so

∫

γ2

dz

z
=

[
Logz

]1−√3i

i

= ln |1−
√

3i|+ iArg(1−
√

3i)− ln |i| − iArgi = ln 2 + i(−π/3)− i(π/2) = ln 2− (5πi/6)

6. (i) The Taylor exapnsion of ez is given by

ez = 1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn−1

(n− 1)!
+

zn

n!
+ · · · ∀z ∈ C .

We then have

ez

zn
=

1

zn
+

1

zn−1
+ · · ·+ 1

(n− 1)!

1

z
+

1

n!
+

z

(n + 1)!
+ · · ·

(This is the Laurent expansion of ez/zn about z = 0 where ez/zn has an n-th order pole;
the residue is the coefficient of 1/z i.e. the residue is 1/(n − 1)! By Cauchy’s residue
theorem ∫

γ

ez

zn
dz =

2πi

(n− 1)!

where γ is the unit circle parametrised by z(θ) = γ(θ) = eiθ, 0 ≤ θ < 2π. We conclude
that ∫ 2π

0

eeiθ

eniθ
ieiθ dθ =

2πi

(n− 1)!

Dividing out the i on both sides and extracting the real part gives

∫ 2π

0
ecos θ cos(sin θ − (n− 1)θ) dθ =

2π

(n− 1)!
, n = 1, 2, 3, . . .

(ii) The function Log(1− iz) has a branch point at z = −i. It follows that

Log(1− iz)

z2 + 1

is analytic in the domain Imz > −1 except for a simple pole at z = i. The residue at
z = i is ln 2/(2i) [check this, remembering that we are dealing with the principal value of
the logarithm] From Cauchy’s residue theorem, applied to the contour which consists of
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the portion of the real-axis given by −R ≤ x ≤ R and the semi-circle CR parametrised
by z(θ) = Reiθ, 0 ≤ θ ≤ π, we obtain

∫ R

−R

Log(1− ix)

x2 + 1
dx +

∫

CR

Log(1− iz)

z2 + 1
dz = (2πi)

ln 2

2i
= π ln 2.

Now, ∣∣∣∣
∫

CR

∣∣∣∣ =
∣∣∣∣
∫ π

0

Log(1− iReiθ)iReiθ dθ

R2e2iθ + 1

∣∣∣∣ ≤
∫ π

0

|Log(1− iReiθ)|R dθ

|R2e2iθ + 1| .

But
|R2e2iθ + 1| ≥ ||R2e2iθ| − 1| = R2 − 1

and therefore ∣∣∣∣
∫

CR

∣∣∣∣ ≤
R

R2 − 1

∫ π

0
|Log(1− iReiθ)| dθ.

Since |1− iReiθ| ≤ 1 + R (by the triangle inequality) and |Argz| ≤ π it follows that

|Log(1−iReiθ)| =
√

(ln |1− iReiθ|)2 + (Arg(1− iReiθ))2 ≤
√

(ln(1 + R))2 + π2 ≤
√

2 ln(1+R)

for all large R. Letting R →∞ we see that
∫
CR
→ 0 because (ln R)/R → 0 as R →∞.

We conclude that

∫ ∞

−∞
ln
√

1 + x2

1 + x2
dx = π ln 2,

∫ ∞

−∞
ln(1 + x2)

1 + x2
dx = 2π ln 2

because Log(1− ix) = ln
√

1 + x2 − i arctan x = 1
2
ln(1 + x2)− i arctan x.

It’s perhaps worth noting that this integral can be computed by elementary methods.
If you’d like to take up the challenge, start by making the substitution x = tan θ. The
resulting integral can be evaluated by an elementary but rather cunning method described
in an old book — Integration, by R.P. Gillespie, originally published by Oliver and Boyd
in their series of Mathematical Texts, page 24.

17.3 CM211A Examination Questions — June 1999

1. Consider the partial differential equation (PDE)

a
∂2 u

∂ x2
+ 2b

∂2 u

∂ x ∂ y
+ c

∂2 u

∂ y2
= 0 (17.2)

where a, b, c, are non-zero real constants such that the quadratic equation

a + 2bλ + cλ2 = 0
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has distinct roots λ = λ1, λ = λ2. Find the general solution of the PDE (17.2) by making

the change of variable (x, y) 7→ (ξ, η), where ξ = x + λ1y, η = x + λ2y. Use your result to

write down the general solution of the PDE

∂2 u

∂ x2
+ 4

∂2 u

∂ x ∂ y
+ 3

∂2 u

∂ y2
= 0, x ∈ R, y ≥ 0 (17.3)

Hence show that the solution of the PDE (17.3) which satisfies the conditions

u(x, 0) = x,
∂ u

∂ y
(x, 0) = x, (x ∈ R)

is

u(x, y) = x + xy − 2y2/3.

2. (i) Show, by the method of separation of variables, that the partial differential equation
(PDE)

∂2 u

∂ x2
=

∂2 u

∂ t2
(17.4)

possesses solutions of the form

ũ(ω, x, t) = (Aω cos ωx + Bω sin ωx)(Cω cos ωt + Dω sin ωt),

where ω is a real parameter.

(ii) Use the result of part (i) to solve equation (17.4) subject to the conditions

u(0, t) = u(2, t) = 0 ∀t ≥ 0,

∂ u

∂ t
(x, 0) = 0, u(x, 0) = sin πx, 0 ≤ x ≤ 2.

(iii) A string of natural length equal to 4 has its ends fixed at x = 0 and x = 4. At time
t = 0 it is drawn aside through a small distance h at the point x = 1 and immediately
released from rest. In the subsequent motion the transverse displacement of the string
satisfies the wave equation (17.4). Show that

u(x, t) =
32h

3π2

∞∑

n=1

sin(nπ/4)

n2
sin(nπx/4) cos(nπt/4).

3. We have omitted this question on Legendre polynomials which are no longer part of
this course.
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4. (i) By noting that zn (z = x + iy, n = 0, 1, 2, 3, . . .) are analytic functions, or
otherwise, show that the solution of the 2-dimensional Laplace equation (expressed in
plane polar coordinates (r, θ))

∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2

∂2 u

∂ θ2
= 0,

which satisfies the boundary conditions

u(r, θ = 0) = 0, u(r, θ = π/6) = 0, 0 ≤ r < a, u(a, θ) = C, 0 < θ < π/6

is

u(r, θ) =
4π

C

∞∑

k=0

(
r

a

)6(2k+1) sin 6(2k + 1)θ

(2k + 1)
.

(ii) Verify that the functions

un(x, y) = sinh(nπx) sin(nπy), (n = 1, 2, 3, . . .)

satisfy the 2-dimensional Laplace equation

∂2 u

∂ x2
+

∂2 u

∂ y2
= 0.

Hence show that the solution of Laplace’s equation in the space 0 < x < 1, 0 < y < 1
which satisfies the boundary conditions

u(x, 0) = 0, 0 ≤ x < 1, u(0, y) = 0, 0 ≤ y ≤ 1,

u(x, 1) = 0, 0 ≤ x < 1, u(1, y) = 1, 0 < y < 1,

is

u(x, y) = 4
∞∑

r=0

sinh[(2r + 1)πx]

sinh[(2r + 1)π]

sin[(2r + 1)πy]

(2r + 1)
.

5. (i) Let f : D → C, where D is a domain. Explain what is meant by the statements:

(a) f is differentiable at z0 ∈ D

(b) f is analytic at z0 ∈ D.

(ii) Find the most general analytic function whose real part is given by
u(x, y) = cosh x cos y.

(iii) Evaluate
∫

z Rez dz along the following paths connecting z = 0 to z = 1 + i:

(a) The straight line from z = 0 to z = 1 + i,

(b) The straight line from z = 0 to z = 1, followed by the straight line from z = 1 to
z = 1 + i.

Does z Rez possess a primitive in C ? Explain your reasoning.

(iv) Evaluate
∫
γ Log z dz, where γ is the semi-circular path, in the positive i.e. the anti-

clockwise sense, from A(z = 1) to B(z = i) with AB as diameter. Express your answer
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in the form X + iY .

(Log denotes the principal value of the logarithm)

6. (i) Let Ω = {r : r > 0, r 6= √
2, r 6= √

5}. For r ∈ Ω let γr denote the circle centre i
and radius r and set

Ir =
∫

γr

e−z2
dz

(z − 1)(z − 2)
.

Evaluate Ir for all r ∈ Ω.

(ii) By considering ∫

CR

eiz dz

(1 + z2)2
,

where CR is the contour which consists of the portion of the real axis from z = −R to
z = R, together with the semi-circle γR given by γR(θ) = Reiθ,
0 ≤ θ ≤ π, prove that ∫ ∞

0

cos x dx

(1 + x2)2
=

π

2e
.

17.4 Solutions

1. Application of the chain rule to the given transformation yields

ux = uξξx + uηηx = uξ + uη =
(

∂

∂ ξ
+

∂

∂ η

)
u

uy = uξξy + uηηy = λ1uξ + λ2uη =
(
λ1

∂

∂ ξ
+ λ2

∂

∂ η

)
u

Calculating the second derivatives in the usual way we find that Euler’s equation becomes

a[uξξ + 2uξη + uηη] + 2b[λ1uξξ + (λ1 + λ2)uξη + λ2uηη] + c[λ1
2uξξ + 2λ1λ2uξη + λ2

2uηη] = 0

so that

uξξ[a + 2bλ1 + cλ1
2] + uηη[a + 2bλ2 + cλ2

2] + uξη[2b(λ1 + λ2) + 2cλ1λ2 + 2a] = 0

Choosing λ1, λ2 as the roots of the quadratic a + 2bλ + cλ2 = 0 we derive, using
λ1 + λ2 = −(2b)/c, λ1λ2 = a/c,

uξη

[
−2b2

c
+ a + a

]
= 0

and therefore uξη = 0, since b2 6= ac because λ1 and λ2 are distinct. We then obtain (in
the usual way)

u = f1(ξ) + f2(η) = f1(x + λ1y) + f2(x + λ2y)
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where f1, f2 are arbitrary C2 functions.

The PDE
∂2 u

∂ x2
+ 4

∂2 u

∂ x ∂ y
+ 3

∂2 u

∂ y2
= 0

has the auxiliary equation

1 + 4λ + 3λ2 = 0, λ = −1, λ =
1

3

and therefore general solution

u(x, y) = f1(x− y) + f2(x− 1

3
y).

The conditions u(x, o) = x, ∂ u
∂ y

(x, 0) = x demand that f1, f2 satisfy

f1(x) + f2(x) = x, − f1
′(x)− 1

3
f2
′(x) = x,

from which we obtain

2f1(x) = −3x2

2
− x + C, f1(x) = −3x2

4
− x

2
+

C

2
, f2(x) =

3x

2
+

3x2

4
− C

2

where C is an arbitrary constant. A straightforward calculation then gives

u(x, y) = −3

4
(x− y)2 − 1

2
(x− y) +

C

2
+

3

2
(x− y

3
) +

3

4
(x− 1

3
y)2 − C

2
= x + xy − 2y2

3
.

2. Given the wave equation
∂2 u

∂ x2
=

∂2 u

∂ t2
,

consider the trial solution ũ = X(x)T (t). Separation of variables immediately gives

1

X

d2X

dx2
=

1

T

d2T

dt2
= −ω2

so that
ũ = (Aω cos ωx + Bω sin ωx)(Cω cos ωt + Dω sin ωt) (17.5)

A standard argument then shows that the conditions u(0, t) = u(2, t) = 0 ∀t ≥ 0 demand
that Aω = 0, 2ω = nπ, where n is an integer. We have generated a class of solutions
given by ũn = sin nπx

2
[En cos nπt

2
+ Fn sin nπt

2
]. The condition ∂ u

∂ t
(x, 0) = 0 will be satisfied

by taking Fn = 0, so three of the four conditions are satisfied by functions in the class
given by

ũn = En sin
nπx

2
cos

nπt

2
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The final condition u(x, 0) = sin(πx), 0 ≤ x ≤ 2 demands that n = 2, E2 = 1 so the
required solution is u(x, t) = sin(πx) cos(πt).

In the final part of the question we have to solve the wave equation subject to the con-
ditions u(x, 0) = hx, 0 ≤ x ≤ 1, u(x, 0) = h

3
(4 − x), 1 ≤ x ≤ 4, u(0, t) = u(4, t) =

0 ∀t ≥ 0, ∂ u
∂ t

(x, 0) = 0, 0 ≤ x ≤ 4.

Starting with solutions of the type (17.5) the condition ∂ u
∂ t

= 0 demands Dω = 0, the
condition u(0, t) = 0 requires Aω = 0. This leaves us with a class of solutions of the type
ũ = Eω sin ωx cos ωt. The condition u(4, t) = 0 ∀t ≥ 0 requires us to choose ω so that
4ω = nπ, where n is an integer. We see therefore, that 3 of the 4 conditions are satisfied
by solutions of the type ũn(x, t) = En sin(nπx

4
) cos(nπt

4
), n = 1, 2, 3, . . . Bearing in mind

the superposition principle we try to satisfy the final condition by

u(x, t) =
∞∑

n=1

En sin(
nπx

4
) cos(

nπt

4
)

so that

u(x, 0) =
∞∑

n=1

En sin(
nπx

4
), 0 ≤ x ≤ 4.

The standard Fourier method now gives

En

∫ 4

0
sin2(

nπx

4
) dx =

∫ 4

0
u(x, 0) sin(

nπx

4
) dx

from which we obtain

6En

h
= 3

∫ 1

0
x sin(

nπx

4
) dx +

∫ 4

1
(4− x) sin(

nπx

4
) dx.

Using the formula

∫
x sin(

nπx

4
) dx = − 4x

nπ
cos(

nπx

4
) +

(
4

nπ

)2

sin(
nπx

4
)

(derived by integration by parts) we find that

En =
32h

3π2

sin(nπ/4)

n2
, u(x, t) =

32h

3π2

∞∑

n=1

sin(nπ/4)

n2
sin(

nπx

4
) cos(

nπt

4
).

3. This question was on Legendre polynomials which are no longer part of the course.

4. Since zn is analytic (except at z = 0 in the case where n is negative) we see that
<zn = rn cos nθ, =zn = rn sin nθ satisfy the 2-dimensional Laplace equation. We can
therefore try to fit the given boundary conditions u(r, θ = 0) = 0, u(r, θ = π/6) = 0,
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0 ≤ r < a, u(a, θ) = C, 0 < θ < π/6 with

u(r, θ) =
∑
n

(Anrn cos nθ + Bnrn sin nθ).

The first condition is satisfied if we choose An = 0, so that u(r, θ) =
∑

n Bnrn sin nθ.
The second condition will then be satisfied if we choose nπ/6 = mπ, m = 1, 2, 3, . . .
i.e. n = 6m which leaves us with u(r, θ) =

∑∞
m=1 Bmr6m sin(6mθ). The third condition,

u(a, θ) = C, 0 < θ < π/6 requires that

C =
∞∑

m=1

Bma6m sin(6mθ), 0 < θ <
π

6

The standard Fourier method now gives

C
∫ π

6

0
sin(6mθ) dθ = Bma6m

∫ π
6

0
sin2(6mθ) dθ = Bma6m π

12

We therefore have

Bm =
2C

mπa6m
(1− cos mπ)

so that Bm is zero for all even values of m. We can express the final result as

u(r, θ) =
4C

π

∞∑

k=0

(
r

a

)6(2k+1) sin 6(2k + 1)θ

2k + 1
.

Now to the second part of the question. Clearly un(x, y) = sinh(nπx) sin(nπy) satisfy
the Laplace equation ∂2 u

∂ x2 + ∂2 u
∂ y2 = 0 for each n. Three of the boundary conditions are

obviously satisfied by the functions un and, bearing in mind that Laplace’s equation is
linear homogeneous, we try to satisfy the fourth condition u(1, y) = 1, 0 < y < 1 with a
solution of the form

u(x, y) =
∞∑

n=1

En sinh(nπx) sin(nπy)

To this end we require

1 =
∞∑

n=1

En sinh(nπ) sin(nπy), 0 < y < 1

and ∫ 1

0
sin(nπy) dy = En

1

2
sinh(nπ), En =

2

sinh(nπ)

(1− cos nπ)

nπ

from which the stated result follows.

[We observe that the En are zero when n is even]
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Note: In the first part of the question one can apply separation of variables to the given
PDE (Laplace’s equation in plane polar coordinates). A solution is given by u = R(r)Θ(θ)
where

1

R
R′′ +

1

rR
R′ +

1

r2

1

Θ

d2Θ

dθ2
= 0

which (by separation of variables) yields

d2Θ

dθ2
+ ω2Θ = 0, Θ = Cω cos ωθ + Dω sin ωθ

r2R′′ + rR′ − ω2R = 0.

This equation for R can be solved by trying R = rλ where λ(λ− 1) + λ− ω2 = 0, so that
λ = ±ω. On this basis we obtain a class of solutions of our PDE of the form

u =
∑
ω

(Aωrω + Bωr−ω)(Cω cos ωθ + Dω sin ωθ)

Rejecting negative powers of r (they’d lead to singularities at r = 0) we’re led to consider
solutions of the type

u =
∑
ω

rω(Cω cos ωθ + Dω sin ωθ)

and the analysis now proceeds along the lines indicated above.

5. f is differentiable at z0 ∈ D ⇐⇒ limz→0
f(z)−f(z0)

z−z0
exists i.e. there is L ∈ C such that

given ε > 0 ∃δ > 0, such that

∣∣∣∣
f(z)− f(z0)

z − z0

− L

∣∣∣∣ < ε

for all z such that 0 < |z − z0| < δ.

f is analytic at z0 ∈ D ⇐⇒ ∃r > 0 such that f is differentiable at each point z ∈ Nr(z0),
the open sphere, centre z0 and radius r.

Next, using standard notation with u = cosh x cos y, f(z) = u + iv the first of the
Cauchy-Riemann equations

∂ u

∂ x
=

∂ v

∂ y
,

∂ u

∂ y
= −∂ v

∂ x

gives
∂ v

∂ y
= sinh x cos y, v = sin y sinh x + g(x)

whilst the second requires that g satisfies

sin y cosh x = sin y cosh x + g′(x), g(x) = C, C ∈ R .
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The analytic function f is therefore given by

f(z) = cosh x cos y + i sin y sinh x + iC = cosh x cosh iy + sinh x sinh iy + iC

= cosh(x + iy) + iC = cosh z + iC, C ∈ R .

Next, let γ1 denote the straight line from z = 0 to z = 1, γ2 the straight line from z = 1
to z = 1 + i, and γ3 denote the straight line from z = 0 to z = 1 + i. Then

∫

γ3

z<z dz =
∫ 1

0
t(1− i)t(1 + i) dt =

2

3
,

∫

γ1

z<z dz =
∫ 1

0
xx dx =

1

3
,

∫

γ2

z<z dz =
∫ 1

0
(1− iy)(1)idy = i

[
y − iy2

2

]1

0
=

1

2
+ i.

We observe that
∫

γ1+γ2

z<z dz =
1

3
+

1

2
+ i =

5

6
+ i 6=

∫

γ3

z<z dz.

This implies that z<z does not have a primitive in C (otherwise the two integrals would
have to be equal)
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Referring to the final part of the question we observe that in the domain D (see diagram)
that z Log z − z is a primitive for Log z because Log z is continuous on D and
d
dz

[z Log z − z] = Log z. It follows that

∫

γ
Log z dz =

[
z Log z − z

]i

1
= (i Log i)− i− Log 1 + 1 = i(i

π

2
)− i− 0 + 1 = (1− π

2
)− i.

6. Note that the integral is always well-defined since the points z = 1, z = 2 are excluded
from the path of integration by the conditions r 6= √

2, r 6= √
5.

For 0 < r <
√

2 ∫

γr

e−z2
dz

(z − 1)(z − 2)
= 0

by Cauchy’s theorem. For
√

2 < r <
√

5 z = 1 is inside γr and

∫

γr

e−z2
dz

(z − 1)(z − 2)
= 2πi

e−1

(−1)
= −2πi

e
.

For r >
√

5 z = 1 and z = 2 are both inside γr so an application of Cauchy’s residue
gives

∫

γr

e−z2
dz

(z − 1)(z − 2)
= −2πi

e
+ 2πi

e−4

1
= 2πi

(
1

e4
− 1

e

)
.

Next, let f(z) = eiz

(1+z2)2
. Then f has poles at z = ±i but only z = i is inside the contour

CR. We can write

f(z) =
g(z)

(z − i)2
, g(z) =

eiz

(z + i)2
.

Then g is analytic at z = i and near z = i

g(z) = g(i) + (z − i)g(1)(i) + · · ·

so the Laurent expansion of f near z = i is given by

f(z) =
g(i)

(z − i)2
+

g(1)(i)

(z − i)
+ · · ·

The residue of f at z = i is therefore g(1)(i). Now

g(1)(i) =
d

dz

eiz

(z + i)2

∣∣∣∣
z=i

= − i

2e

(after a short computation)
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On the assumption that
∫
γR

eiz dz
(z2+1)2

→ 0 as R → ∞ it follows, from Cauchy’s residue
theorem, that ∫ ∞

−∞
eix dx

(1 + x2)2
= 2πi

(−i

2e

)
=

π

e
.

We conclude, by a standard argument, that

∫ ∞

0

cos x dx

(1 + x2)2
=

π

2e
.

We can justify the assumption that
∫
γR

eiz dz
(z2+1)2

→ 0 as R → ∞ as follows: We observe
that

∣∣∣∣
∫

γR

∣∣∣∣ =
∣∣∣∣
∫ π

0

eiR[cos θ+i sin θ]

(R2e2iθ + 1)2
iReiθ dθ

∣∣∣∣ ≤ R
∫ π

0

e−R sin θ dθ

|(R2e2iθ + 1)2| ≤ R
∫ π

0

dθ

|R2e2iθ + 1|2 .

Using ||z1| − |z2|| ≤ |z1 − z2| we see that

∣∣∣∣
∫

γR

∣∣∣∣ ≤ R
∫ π

0

dθ

||R2e2iθ| − 1|2 =
πR

(R2 − 1)2
→ 0

as R →∞.

The stated result has been established.

17.5 CM211A Examination Questions — June 2000

1. Show that the map (x, y) 7→ (ξ, η), where ξ = x+y, η = x+2y transforms the partial
differential equation (PDE)

2
∂2 u

∂ x2
− 3

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= 2(x + y)e−(x+y)2 (17.6)

to
∂2 u

∂ ξ ∂ η
= −2ξe−ξ2

.

Deduce that the general solution of the PDE (17.6) is

u(x, y) = (x + 2y)e−(x+y)2 + f(x + y) + g(x + 2y),

where f, g are arbitrary C2 functions.

Hence show that the solution of the PDE (17.6) subject to the conditions

u(x, 0) = 0,
∂ u

∂ y
(x, 0) = 0, x ∈ R,
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is

u(x, y) = −xe−(x+y)2 + (x + 2y)e−(x+2y)2 + 2
∫ x+2y

x+y
t2e−t2 dt− 2

∫ x+2y

x+y
e−t2 dt.

2. This question involved Legendre polynomials which are no longer part of the course.

3. (a) Show that θ, rn cos nθ, rn sin nθ (n = 1, 2, 3, . . .) satisfy the two-dimensional
Laplace equation (expressed in polar coordinates (r, θ))

∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2

∂2 u

∂ θ2
= 0 (17.7)

Hence solve equation (17.7) for u(r, θ) in the space 0 ≤ r < a, 0 < θ < π subject to the
conditions

u(r, 0) = 0, u(r, π) = 0, 0 ≤ r < a, u(a, θ) = θ, 0 < θ < π.

(b) Show that the solution u(x, t) of the diffusion equation

∂2 u

∂ x2
=

∂ u

∂ t

subject to the conditions

∂ u

∂ x
(0, t) = 0,

∂ u

∂ x
(a, t) = 0, t > 0, u(x, 0) = x, 0 ≤ x ≤ a

is

u(x, t) =
a

2
− 4a

π2

∞∑

r=0

1

(2r + 1)2
cos

(
(2r + 1)πx

a

)
e
−
(2r + 1)2π2t

a2 (17.8)

Prove rigorously, starting from equation (17.8), that

lim
t→∞u(x, t) =

a

2
, 0 ≤ x ≤ a.

4. (i) Show that the solution u(x, t) of the wave equation

∂2 u

∂ x2
=

∂2 u

∂ t2
, 0 ≤ x ≤ 1, t ≥ 0

subject to the conditions

u(0, t) = 0, u(1, t) = 0, t ≥ 0,

∂ u

∂ t
(x, 0) = 0, u(x, 0) = x(1− x), 0 ≤ x ≤ 1
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is

u(x, t) =
8

π3

∞∑

r=0

1

(2r + 1)3
sin[(2r + 1)πx] cos[(2r + 1)πt].

Verify, by making an appropriate choice of x and t, that

1− 1

33
+

1

53
− 1

73
+ · · · = π3

32
.

(ii) Solve the wave equation

∂2 u

∂ x2
=

∂2 u

∂ t2
, x ∈ R, t ≥ 0

subject to the conditions

∂ u

∂ t
(x, 0) = 0, u(x, 0) = φ(x), x ∈ R .

5. (i) Let f : D → C, where D is a domain. Explain what is meant by the statements:

(a) f is differentiable at z0 ∈ D

(b) f is analytic at z0 ∈ D.

(ii) Starting from the definition of differentiability of a function of a complex variable
show that

f : C → C, f(z) = |z|2
is differentiable at z = 0 and that f ′(0) = 0. Does f ′′(0) exist? State your reasons.

(iii) Use any suitable property of analytic functions to show that u(x, y) = x2y2 cannot
be the real part of an analytic function of a complex variable z = x + iy.

(iv) Find, in terms of z = x + iy, the most general analytic function whose real part is
ex sin y.

(v) Evaluate the integrals ∫
z2 dz, and

∫
|z|2 dz

taken in the positive (i.e. anti-clockwise) sense round the triangle whose vertices are the
points z = 0, z = 1, z = i.

6. (i) Use Cauchy’s residue theorem to evaluate

∫

γ1

(
z +

1

z

)2n dz

z
,
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where n is a positive integer and γ1 is the unit circle, centre z = 0 and radius 1,
parametrised by γ1(θ) = eiθ, 0 ≤ θ ≤ 2π. Deduce that

∫ 2π

0
cos2n θ dθ =

π(2n)!

22n−1(n!)2
.

Hint: Note that

(a + b)2n =
2n∑

r=0

(2n)!

(2n− r)!r!
arb2n−r

for any a, b ∈ C .

(ii) Find the poles of the function f(z) = zeiz/ cosh πz and show that the residue of f at
z = i/2 is 1/(2πe1/2).

By evaluating ∫ zeiz dz

cosh πz
taken round the contour shown in the diagram, prove that

∫ ∞

−∞
x sin x dx

cosh πx
+

1

e + 1

∫ ∞

−∞
cos x dx

cosh πx
=

1

2
sech

(
1

2

)
.

(You may assume without proof that
∫ zeiz dz

cosh πz
, taken along either of the sides parallel to

the imaginary axis, tends to zero as R →∞.)

17.6 Solutions

1. We have ξ = x + y, η = x + 2y. The chain rule gives

∂ u

∂ x
=

∂ u

∂ ξ

∂ ξ

∂ x
+

∂ u

∂ η

∂ η

∂ x
, =

∂ u

∂ ξ
+

∂ u

∂ η
,
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∂ u

∂ y
=

∂ u

∂ ξ

∂ ξ

∂ y
+

∂ u

∂ η

∂ η

∂ y
=

∂ u

∂ ξ
+ 2

∂ u

∂ η
.

The given PDE now becomes

2
(

∂

∂ ξ
+

∂

∂ η

)(
∂ u

∂ ξ
+

∂ u

∂ η

)
−3

(
∂

∂ ξ
+

∂

∂ η

)(
∂ u

∂ ξ
+2

∂ u

∂ η

)
+

(
∂

∂ ξ
+2

∂

∂ η

)(
∂ u

∂ ξ
+2

∂ u

∂ η

)
= 2ξe−ξ2

which reduces to
∂2 u

∂ ξ ∂ η
= −2ξe−ξ2

.

Integration of this equation with respect to ξ followed by an integration with respect to
η gives

∂ u

∂ η
= e−ξ2

+ g1(η), u = ηe−ξ2

+ g2(η) + g3(ξ), g2(η) =
∫

g1(η) dη

where g1, g2 are arbitrary C2 functions. In terms of the variables (x, y) this reads

u(x, y) = (x + 2y)e−(x+y)2 + g2(x + 2y) + g3(x + y). (17.9)

It follows that

∂ u

∂ y
= −2(x + 2y)(x + y)e−(x+y)2 + 2e−(x+y)2 + 2g′2(x + 2y) + g′3(x + y)

Imposing the conditions u(x, 0) = 0, ∂ u
∂ y

(x, 0) = 0 now gives

0 = xe−x2

+ g2(x) + g3(x), 0 = −2x2e−x2

+ 2e−x2

+ 2g′2(x) + g′3(x).

The second of these equations yields

C = −2
∫ x

x0

t2e−t2 dt + 2
∫ x

x0

e−t2 dt + 2g2(x) + g3(x)

where C = 2g2(x0)+g3(x0), x0 being an arbitrary real number. We now have two equations
for g2, g3 which we can easily solve to obtain

g2(x) = C + xe−x2

+ 2
∫ x

x0

t2e−t2 dt− 2
∫ x

x0

e−t2 dt,

g3(x) = −C − 2xe−x2 −−2
∫ x

x0

t2e−t2 dt + 2
∫ x

x0

e−t2 dt.

Substituting these expressions into equation (17.9) gives (after a little simplification)

u(x, y) = −xe−(x+y)2 + (x + 2y)e−(x+2y)2 + 2
∫ x+2y

x+y
t2e−t2 dt− 2

∫ x+2y

x+y
e−t2 dt.

2. This question related to Legendre polynomials, a topic which is no longer covered in
this course.
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3. Obviously rn cos nθ, rn sin nθ satisfy the Laplace equation (expressed in polar coor-
dinates (r, θ) i.e.

∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2

∂2 u

∂ θ2
= 0.

Alternatively, note that these functions are the real and imaginary parts of zn (z = reiθ)
and therefore satisfy Laplaces’s equation (except at z = 0 in the case where n is a negative
integer.)

For the given problem let’s try to satisfy the boundary conditions with

u(r, θ) = Aθ +
∑
n

Anr
n cos nθ +

∑
n

Bnr
n sin nθ

Imposing the condition u(r, θ = 0) = 0, 0 ≤ r < a demands that An = 0. Similarly , the
condition u(r, θ = π) = 0, 0 ≤ r < a requires that A = 0. This leaves us with the trial
solution u(r, θ) =

∑∞
n=1 Bnr

n sin nθ. The condition u(a, θ) = θ, 0 < θ < π now gives
θ =

∑∞
n=1 Bna

n sin nθ, 0 < θ < π and the standard Fourier method now gives

∫ π

0
θ sin nθ dθ = Bna

n
∫ π

0
sin2 nθ dθ =

1

2
πBnan.

Carrying out the integration by parts gives Bn = (−1)n+1 2
nan and the final result

u(r, θ) = 2
∞∑

n=1

(−1)n+1

n

(
r

a

)n

sin nθ.

Next, consider the diffusion equation ∂2 u
∂ x2 = ∂ u

∂ t
. We seek solutions of the form ũ(x, t) =

X(x)T (t) and use the method of separation of variables. This gives the following ordinary
differential equations for X, T :

d2X

dx2
+ ω2X = 0,

dT

dt
+ ω2T = 0

so that
ũ(x, t) = (Aω cos ωx + Bω sin ωx)e−ω2t

is a solution of the diffusion equation. The requirement that ∂ ũ
∂ x

(0, t) = 0, ∀t > 0 implies

that Bω = 0. In order to satisfy ∂ ũ
∂ x

(a, t) = 0 ∀t > 0 we choose ωa = nπ, where n is an
integer. On this basis we are led to consider the trial solution

u(x, t) =
∞∑

n=0

An cos
(

nπx

a

)
e−

n2π2t
a2 .

The condition u(x, 0) = x, 0 ≤ x ≤ a requires that

x =
∞∑

n=0

An cos
(

nπx

a

)
, 0 ≤ x ≤ a
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gives, ∫ a

0
x dx = A0a, An

a

2
=

∫ a

0
x cos

(
nπx

a

)
dx

so that after a little calculation

A0 =
a

2
, An =

2a

n2π2
[cos nπ − 1], n ≥ 1.

We see that the An are zero when n is even and when n is odd A2r+1 = − 4a
(2r+1)2π2 ,

r = 0, 1, 2, . . . . We therefore obtain as the solution of this boundary value problem

u(x, t) =
a

2
− 4a

π2

∞∑

r=0

1

(2r + 1)2
cos

(
(2r + 1)πx

a

)
e
−
(2r + 1)2π2t

a2 .

Now observe that

∣∣∣∣
∞∑

r=0

| ≤
∞∑

r=0

e
−
(2r + 1)2π2t

a2 ≤
∞∑

r=0

e
−
(2r + 1)π2t

a2 =
e−π2t/a2

(1− e−2π2t/a2)

after summing a geometric series. On this basis we see that our solution is such that
limt→∞ u(x, t) = a/2, 0 ≤ x ≤ a.

4 Given the PDE
∂2 u

∂ x2
=

∂2 u

∂ t2
(17.10)

we seek solutions of the form ũ(x, t) = X(x)T (t). Substituting and applying the method
of separation of variables we obtain

d2X

dx2
+ ω2X = 0,

d2T

dt2
+ ω2T = 0

from which we derive the solution

ũ(x, t) = (Aω cos ωx + Bω sin ωx)(Cω cos ωt + Dω sin ωt).

We can satisfy the condition ∂ ũ
∂ t

(x, 0) = 0 by choosing Dω = 0 which leaves us with a ũ
of the form

ũ(x, t) = (Eω cos ωx + Fω sin ωx) cos ωt.

The condition ũ(0, t) = 0 ∀t ≥ 0 demands that Eω = 0 whilst the condition ũ(1, t) = 0 is
satisfied by choosing ω = nπ, where n = 0,±1, . . . By this means we generate a class of
solutions ũn(x, t) = Fn sin nπx cos nπt which satisfy three of the four conditions. In order
to satisfy the fourth condition, u(x, 0) = x(1− x), 0 ≤ x ≤ 1 we therefore try

u(x, t) =
∞∑

n=1

Fn sin nπx cos nπt.
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The Fn must be such that x(1− x) =
∑∞

n=1 Fn sin nπx, 0 ≤ x ≤ 1. The standard Fourier
method gives

1

2
Fn =

∫ 1

0
x(1− x) sin nπx dx

which gives (after a short calculation)

Fn =
4

n3π3
(1− cos nπ)

and the final solution

u(x, t) =
8

π3

∞∑

r=0

1

(2r + 1)3
sin[(2r + 1)πx] cos[(2r + 1)πt].

Setting x = 1
2
, t = 0 gives

1

4
=

8

π3

∞∑

r=0

1

(2r + 1)3
sin[(2r + 1)π/2]

which may be written as
π3

32
= 1− 1

33
+

1

53
− 1

73
+ · · ·

Next, equation (17.10) has auxiliary equation 1− λ2 = 0 and general solution

u(x, t) = f(x− t) + g(x + t)

Now, ∂ u
∂ t

= −f ′(x− t) + g′(x + t). The conditions u(x, 0) = φ(x), ∂ u
∂ t

(x, 0) = 0 demands
that

φ(x) = f(x) + g(x), 0 = −f ′(x) + g′(x)

which gives −f(x) + g(x) = C, where C is a parameter. We now have two equations for
the functions f, g which solve to give

f(x) =
1

2
(φ(x)− C), g(x) =

1

2
(φ(x) + C)

which finally gives

u(x, t) =
1

2
[φ(x− t) + φ(x + t)].

5 (i) (a) f : D → C is differentiable at z0 ∈ D if

lim
h→0

f(z0 + h)− f(z0)

h

exists.
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(b) f is analytic at z0 ∈ D if there exists r > 0 such that f is differentiable at every point
z ∈ Nr(z0), the open disc centre z0 and radius r > 0.

(ii) When f ′(z) exists we have

f ′(z) = lim
h→0

|z + h|2 − |z|2
h

= lim
h→0

(z + h)(z + h)− zz

h
= lim

h→0

(
z
h

h
+ z + h

)
.

If z = 0 this limit exists and is equal to zero, so f ′(0) = 0. However, if z 6= 0 the limit

does not exist because limh→0 z and limh→0 h both exist but limh→0
h
h

doesn’t exist e.g.

for h ∈ R, h
h

= 1; for h = iγ, γ ∈ R, h
h

= −1. Now, every open disc centre zero contains

such points h and it follows that limh→0
h
h

doesn’t exist. We conclude that f ′′(0) does not
exist — its existence would require ∃f ′(z), z 6= 0.

(iii) We note that (
∂2

∂ x2
+

∂2

∂ y2

)
(x2y2) = 2(x2 + y2) 6= 0.

It follows that x2y2 cannot be the real part of an analytic function.

(iv) Set f(z) = u + iv with u = ex sin y. The Cauchy-Riemann equations state that

∂ u

∂ x
=

∂ v

∂ y
,

∂ u

∂ y
= −∂ v

∂ x

which gives

ex sin y =
∂ v

∂ y
,

∂ v

∂ x
= −ex cos y.

The first of these equations gives v = −ex cos y+f1(x) and substituting this in the second
gives

−ex cos y + f ′1(x) = −ex cos y, f1(x) = C, C ∈ R .

Hence
f(z) = ex sin y + i(−ex cos y + C) = −iez + iC, C ∈ R .

(v)
∫

z2 dz = 0 by Cauchy’s theorem (since z2 is analytic).

Also, ∫

γ1

|z|2 dz =
∫ 1

0
x2 dx =

1

3

where γ1 is the straight line from z = 0 to z = 1. γ2, the straight line from z = 1 to z = i
can be parametrised by γ2(t) = (1− t) + it, 0 ≤ t ≤ 1. so that

∫

γ2

|z|2 dz =
∫ 1

0
[(1− t)2 + t2](i− 1) dt =

2

3
(i− 1).
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Next, writing γ3 for the straight line from z = i to z = 0 we have

∫

γ3

|z|2 dz =
∫ 0

1
y2(i) dy = − i

3
.

Hence ∫
|z|2 dz =

1

3
+

2

3
(i− 1)− i

3
=

1

3
(i− 1).

6 (i) The residue of
1

z

(
z +

1

z

)2n

at z = 0 is the constant term in the binomial expansion of (z + z−1)2n. Now,

(
z +

1

z

)2n

=
2n∑

r=0

(2n)!

r!(2n− r)!
zr

(
1

z

)2n−r

and the constant term (corresponding to r = n) is (2n)!
(n!)2

. By the residue theorem,

∫

γ1

(
z +

1

z

)2n dz

z
= 2πi

(2n)!

(n!)2

from which we obtain

∫ 2π

0

ieiθ dθ

eiθ
(eiθ + e−iθ)2n dθ = 2πi

(2n)!

(n!)2

and ∫ 2π

0
cos2n θ dθ =

π(2n)!

22n−1(n!)2
.

(ii) The function f given by

f(z) =
zeiz

cosh πz

has simple poles where cosh πz = 0 i.e. where cos(iπz) = 0 so that iπz = ±π
2

+ 2kπ,
z = ± i

2
− 2ki (k = 0,±1,±2, . . .) The only one of these poles which is actually inside the

integration contour is z = i
2
. The residue of f at this pole is equal to

(i/2)e−1/2

π sinh iπ/2
=

(i/2)e−1/2

iπ sin π/2
=

1

2πe1/2

Applying Cauchy’s residue theorem to the given rectangular contour we obtain

∫ R

−R

xeix dx

cosh πx
+

∫ 1

0

(R + iy)ei(R+iy)(i) dy

cosh π(R + iy)
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+
∫ −R

R

(x + i)ei(x+i)(1) dx

cosh π(x + i)
+

∫ 0

1

(−R + iy)ei(−R+iy)(i) dy

cosh π(−R + iy)
= 2πi

(
1

2πe1/2

)
=

i

e1/2
.

Write

I1 =
∫ 1

0

(R + iy)ei(R+iy)(i) dy

cosh π(R + iy)
, I2 =

∫ 0

1

(−R + iy)ei(−R+iy)(i) dy

cosh π(−R + iy)
.

We’re given that limR→∞ Ik = 0 (k = 1, 2) — a proof is given below. It follows that

∫ ∞

−∞
xeix dx

cosh πx
−

∫ ∞

−∞
(x + i)e−1eix dx

cosh π(x + i)
=

i

e1/2
.

Now, cosh π(x+i) = cosh πx cosh πi+sinh πx sinh πi = − cosh πx (using cosh πi = cos π =
−1, sinh iπ = i sin π = 0) On this basis we obtain

(1 + e−1)
∫ ∞

−∞
xeix dx

cosh πx
+ ie−1

∫ ∞

−∞
eix dx

cosh πx
=

i

e1/2
.

Using the fact that eix = cos x + i sin x we conclude that

∫ ∞

−∞
x sin x dx

cosh πx
+

1

e + 1

∫ ∞

−∞
cos x dx

cosh πx
=

1

2
sech

(
1

2

)
.

In case this isn’t clear note, for example, that (x cos x)/(cosh πx) is an odd, integrable
function and it follows that

∫∞
−∞(x cos x)/(cosh πx) dx = 0. The question does not require

proof that I1 and I2 tend to zero as R tends to infinity. Nevertheless, let’s prove this for
I1 — the case of I2 is similar. We note that

|I1| ≤
∫ 1

0

|R + iy||ei(R+iy)| dy

| cosh π(R + iy)| ≤
√

R2 + 1
∫ 1

0

dy

| cosh π(R + iy)|

But | cosh π(R + iy)|2 = cosh2 πR cos2 πy + sinh2 πR sin2 πy = cosh2 πR − sin2 πy ≥
1
2
cosh2 πR for all large R (i.e. for all R larger than some R0.) This is clear since

cosh πR → ∞ as R → ∞ and therefore 1
2
cosh2 πR ≥ sin2 πy for all suitable large R,

for all y ∈ [0, 1] (of course, sin2 πy ≤ 1, ∀y ∈ [0, 1]). We therefore see that

|I1| ≤
√

2(R2 + 1)
∫ 1

0

dy

cosh πR
=

√
2(R2 + 1)

cosh πR
.

The right hand side of this inequality tends to zero as R →∞ and therefore I1 tends to
zero as R →∞. I2 can be treated in a very similar way.

Note that one could compute ∫ ∞

−∞
cos x dx

cosh πx

by integrating eiz/(cosh πz) round the same contour. Try this as an example now.
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17.7 CM211A Examination Questions — June 2001

SECTION A

1. (i) Let f : D → C, where D is a domain. Explain what is meant by the statements:

(a) f is differentiable at z0 ∈ D

(b) f is analytic at z0 ∈ D.

(ii) Starting from the definition of differentiability of a function of a complex variable
show that f : C → C, f(z) = z2|z|2 is differentiable at z = 0 but at no other point.

[25 MARKS]

2. (i) Show that u(x, y) = x4 − x2y2 + y4, (x, y) ∈ R2, cannot be the real part of any
analytic function of a complex variable z = x + iy.

(ii) Determine the most general analytic function of which e−y sin x is the real part.
[25 MARKS]

3. (i) Evaluate ∫

γ

eiz

z
dz,

where γ is the circle centre z = 0 and radius equal to unity. Deduce that

∫ 2π

0
e− sin θ cos(cos θ) dθ = 2π.

(ii) Let Ω = {r : r > 0, r 6= 1, r 6= √
2}.

Evaluate ∫

γr

dz

z(z − 1)2
,

where γr is the circle centre i and radius r, for all r ∈ Ω.
[25 MARKS]

4.
Use the method of separation of variables to show that the two-dimensional Laplace

equation
∂2 u

∂ x2
+

∂2 u

∂ y2
= 0

has solutions of the form

ũ(x, y) = (Aω cosh ωx + Bω sinh ωx))(Cω cos ωy + Dω sin ωy).
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By considering the family of solutions consisting of the functions

ũn(x, y) = Fn sinh
(

nπx

a

)
sin

(
nπy

a

)
, n = 1, 2, 3, . . .

or otherwise, show that the solution of Laplace’s equation in the space
0 < x < a, 0 < y < a subject to the boundary conditions

u(x, 0) = 0 0 ≤ x < a, u(x, a) = 0, 0 ≤ x < a,

u(0, y) = 0, 0 ≤ y ≤ a, u(a, y) = y, 0 < y < a

is

u(x, y) = 2a
∞∑

n=1

(−1)n+1 sinh(nπx
a

)

sinh nπ

sin(nπy
a

)

nπ
.

[25 MARKS]

SECTION B

5. (i) Show that the Fourier transform of the function f given by

f(x) =
1

1 + x2
, x ∈ R,

is f̃ , where
f̃(k) = πe−k for k ≥ 0.

Assuming that
f̃(k) = πe−|k| for k ∈ R,

verify the Fourier inversion formula for f.

Hint: Suppose k > 0 and consider the integral
∫
γ

eikz

1+z2 dz, where γ is the contour which
consists of the portion of the real-axis from x = −R to x = R together with the semi-
circular arc γR given by γR(θ) = Reiθ, 0 ≤ θ ≤ π. You may assume that

∫
γR

eikz

1+z2 dz tends
to zero as R tends to infinity.

(ii) Consider the partial differential equation

∂3 u

∂ x3
=

∂ u

∂ t
, x ∈ R, t > 0

subject to the conditions

u(x, 0) = f(x), x ∈ R, u,
∂ u

∂ x
,

∂2 u

∂ x2
→ 0, as |x| → ∞, ∀t > 0.
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Use the method of Fourier transforms to show that the solution is

u(x, t) =
1

(3t)1/3

∫ ∞

−∞
Ai

(
z − x

(3t)1/3

)
f(z) dz

where the Airy function Ai is defined by

Ai(z) =
1

2π

∫ ∞

−∞
ei(zζ+ 1

3
ζ3) dζ.

[50 MARKS]

6.

Answer part (a) or part (b) of this question, not both.

(a) Let γ = γ1 + γ2 + γ3, where γ1(x) = x, 0 ≤ x ≤ R, γ2(t) = R + tR(i− 1),
0 ≤ t ≤ 1, and γ3(y) = iy, R ≥ y ≥ 0. Sketch the trace of γ.

Evaluate ∫

γ

eiz

z + a
dz, where a > 0.

Prove that

lim
R→∞

∫

γ2

eiz

z + a
dz = 0.

[Hint: You may assume that for all t, 0 ≤ t ≤ 1,

(R + a− tR)2 + t2R2 ≥ 1

2
(R + a)2.]

Hence show that

∫ ∞

0

cos x dx

x + a
=

∫ ∞

0

ye−y

a2 + y2
dy,

∫ ∞

0

sin x dx

x + a
=

∫ ∞

0

ae−y

a2 + y2
dy

and deduce that

0 <
∫ ∞

0

cos x dx

x + a
≤ 1

a2
, 0 <

∫ ∞

0

sin x dx

x + a
≤ 1

a
.

[50 MARKS]

(b) By considering ∫

CR

Log(1− iz)

z2 − 2z sin α + 1
dz, 0 ≤ α < π/2,
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where Log is the principal value of the logarithm, and CR is the contour which consists
of the portion of the real-axis from x = −R to x = R together with the semi-circular arc
γR given by γR(θ) = Reiθ, 0 ≤ θ ≤ π, show that for 0 ≤ α < π/2

∫ ∞

−∞
arctan x dx

(x2 − 2x sin α + 1)
=

πα

2 cos α
,

∫ ∞

−∞
ln(1 + x2) dx

(x2 − 2x sin α + 1)
=

2π ln(2 cos(α/2))

cos α
.

[50 MARKS]

7.

(i) Given that the Legendre polynomial Pn(x) of degree n satisfies the differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0,

prove that the Legendre polynomials are orthogonal over the interval [−1, 1] in the sense
that ∫ 1

−1
Pn(x)Pm(x) dx = 0, m 6= n.

(ii) Suppose that u is a C2 function which satisfies the 3-dimensional Laplace equation in
the space D defined by a < r < b, where (r, θ, ψ) are spherical polar coordinates. Suppose
that the boundary conditions are

u(a, θ, ψ) = 0, u(b, θ, ψ) = cos3 θ + cos4 θ, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π.

Find u(r, θ, ψ) in D. You may assume the following information:

• Laplace’s equation in 3-dimensions has solutions of the form rnPn(cos θ),

r−(n+1)Pn(cos θ), n = 0, 1, 2, 3, . . .

• The Legendre polynomials P0, P1, P2, P3, P4 are given by the formulae

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3).

[50 Marks]
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17.8 Solutions

Question 1 (i) f is differentiable at z0 ∈ D ⇐⇒

lim
z→z0

f(z)− f(z0)

z − z0

exists.

f is analytic at z0 ∈ D ⇐⇒ ∃r > 0 such that f is differentiable at every point z in the
open disc Nr(z0), centre z0 and radius r > 0.

(ii) For f(z) = z2|z|2 we have

f(z + h)− f(z)

h
=

(z + h)3(z + h)− z2|z|2
h

=
(z3 + 3z2h + 3zh2 + h3)(z + h)− z2|z|2

h

=
3z2zh + 3zzh2 + h3z + z3h + 3z2hh + 3zh2h + h3h

h

= 3z2z + 3zzh + h2z + z3h

h
+ 3z2h + 3z|h|2 + h|h|2.

All the terms in this expression have a limit as h → 0 except possibly z3 h
h
. We see that

if z = 0

lim
h→0

f(z + h)− f(z)

h
= 0, f ′(0) = 0,

If z 6= 0

lim
h→0

f(z + h)− f(z)

h

does not exist since z3 h
h

does not have a limit as h → 0 (e.g. for h = γ, γ ∈ R, h
h

= 1,

whereas for h = iγ, γ ∈ R, h
h

= −1)

Question 2 (i) Note that

∂

∂ x
u(x, y) = 4x3 − 2xy2,

∂2

∂ x2
u(x, y) = 12x2 − 2y2,

∂2

∂ y2
u(x, y) = 12y2 − 2x2,

(
∂2

∂ x2
+

∂2

∂ y2

)
u(x, y) = 10(x2 + y2) 6= 0.

Since u does not satisfy Laplace’s equation it cannot be the real part of any analytic
function of z = x + iy.

(ii) Suppose the analytic function is f(z) = u(x, y) + iv(x, y). The Cauchy-Riemann
equations give

∂ u

∂ x
=

∂ v

∂ y
,

∂ u

∂ y
= −∂ v

∂ x
.
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With u = e−y sin x these give

∂ v

∂ y
= e−y cos x,

∂ v

∂ x
= e−y sin x.

The first of these equations gives v = −e−y cos x + g(x) and substituting this expression
for v in the second gives

e−y sin x + g′(x) = e−y sin x, g(x) = C, C ∈ R .

We therefore obtain

f(z) = −ie−y(cos x + i sin x) + iC = −ie−yeix + iC

= −iei(x+iy) + iC = −ieiz + iC, C ∈ R

as the most general analytic function of which u is the real part.

Question 3 (i) eiz

z
has a simple pole at z = 0 with residue equal to 1. It follows that

∫

γ

eiz

z
= 2πi.

With γ(θ) = eiθ, 0 ≤ θ ≤ 2π we derive

∫ 2π

0

ei(cos θ+i sin θ)

eiθ
(ieiθ) dθ = 2πi,

∫ 2π

0
ei(cos θ+i sin θ) dθ = 2π.

Extracting the real part of both sides gives

∫ 2π

0
e− sin θ cos(cos θ) dθ = 2π.

(ii) For r < 1 we have

∫

γr

dz

z(z − 1)2
= 0, by Cauchy’s theorem.

For 1 < r <
√

2 we have

∫

γr

dz

z(z − 1)2
= (2πi) Res

1

z(z − 1)2

∣∣∣∣
z=0

= 2πi

whilst for r >
√

2

∫

γr

dz

z(z − 1)2
= 2πi + (2πi) Res

1

z(z − 1)2

∣∣∣∣
z=1

.
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Writing 1
z(z−1)2

= g(z)
(z−1)2

= g(1)+g(1)(1)(z−1)+···
(z−1)2

with g(z) = 1
z

we see that

∫

γr

dz

z(z − 1)2
= 2πi + 2πig(1)(1) = 2πi− 2πi = 0.

Question 4 Substituting the trial solution ũ(x, y) = X(x)Y (y) into the PDE and dividing
through by XY gives

1

X
X ′′ +

1

Y
Y ′′ = 0

and it follows that there are solutions such that

X ′′ − ω2X = 0, Y ′′ + ω2Y = 0, ω ∈ R

We see that there exists a class of solutions of the form

ũ(x, y) = (Aω cosh ωx + Bω sinh ωx)(Cω cos ωy + Dω sin ωy).

The solutions

ũn(x, y) = Fn sinh
(

nπx

a

)
sin

(
nπy

a

)

evidently satisfy three of the four boundary conditions, namely u(x, 0) = 0, 0 ≤ x <
a, u(0, y) = 0, 0 ≤ y ≤ a, u(x, a) = 0, 0 ≤ x < a. In order to satisfy the condition
u(a, y) = y, 0 < y < a, we use the superposition principle and try

u(x, y) =
∞∑

n=1

Fn sinh
(

nπx

a

)
sin

(
nπy

a

)
.

We require

y =
∞∑

n=1

Fn sinh(nπ) sin
(

nπy

a

)
, 0 < y < a

and the Fourier method gives
∫ a

0
y sin

(
nπy

a

)
dy = Fn sinh(nπ)

∫ a

0
sin2

(
nπy

a

)
dy =

a

2
Fn sinh(nπ)

so that

Fn =
2

a sinh(nπ)

∫ a

0
y sin

(
nπy

a

)
dy =

2a(−1)n+1

(nπ) sinh(nπ)

and

u(x, y) = 2a
∞∑

n=1

(−1)n+1
sinh

(
nπx
a

)

sinh(nπ)

sin
(

nπy
a

)

(nπ)
.

Question 5 (i) With f(x) = 1
1+x2 we consider

∫
γ eikz dz/(1 + z2), k ≥ 0, taken along the

contour γ which consists of the portion of the real axis from x = −R to x = R together
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with the semi-circular arc parametrised by γR(θ) = Reiθ, 0 ≤ θ ≤ π. The integrand has
simple poles at z = ±i and Cauchy’s residue theorem gives

∫ R

−R

eikx dx

1 + x2
+

∫ π

0

eik(R cos θ+iR sin θ)

1 + R2e2iθ
(iReiθ) dθ = 2πi

e−k

2i
= πe−k.

It is given that the second integral tends to zero as R →∞. [This is easily proved since
for k ≥ 0 we have

∣∣∣∣
∫ π

0

∣∣∣∣ ≤
∫ π

0

e−kR sin θR dθ

|1 + R2e2iθ| ≤
∫ π

0

R dθ

|R2e2iθ + 1| ≤
∫ π

0

R dθ

||R2e2iθ| − 1| =
πR

R2 − 1

from which the given result clearly follows in the limit R →∞.]

We therefore obtain

∫ ∞

−∞
eikx dx

1 + x2
= f̃(k) = πe−k, k ≥ 0.

It is given (and a little reflection makes this clear) that for all real k we can write

f̃(k) =
∫ ∞

−∞
eikx dx

1 + x2
= πe−|k|.

To check the inversion theorem we compute

1

2π

∫ ∞

−∞
e−ikxf̃(k) dk =

1

2π

∫ 0

−∞
e−ikxπek dk +

1

2π

∫ ∞

0
e−ikxπe−k dk

=
1

2

[∫ 0

−∞
ek(1−ix) dk +

∫ ∞

0
e−k(1+ix) dk

]

=
1

2

[
1

1− ix
+

1

1 + ix

]
=

1

1 + x2
= f(x)

so the Fourier inversion formula is valid for f.

(ii) Next, given the PDE ∂3 u
∂ x3 = ∂ u

∂ t
multiply by eikx and integrate over x:

∫ ∞

−∞
∂3 u

∂ x3
eikx dx =

∂

∂ t

∫ ∞

−∞
eikxu(x, t) dx =

∂

∂ t
ũ, ũ(k, t) =

∫ ∞

−∞
eikxu(x, t) dx

Integration by parts and imposing the boundary conditions at infinity gives

eikx ∂2 u

∂ x2

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
(ik)eikx ∂2 u

∂ x2
dx = . . . = (−ik)3ũ =

∂

∂ t
ũ

whence
ũ = Aeik3t, A = A(k)
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Since u(x, 0) = f(x), x ∈ R, it follows that ũ(k, 0) =
∫∞
−∞ eikxf(x) dx = f̃(k). We therefore

obtain A(k) = f̃(k) and ũ = f̃(k)eik3t. Applying the Fourier inversion formula we derive

u(x, t) =
1

2π

∫ ∞

−∞
e−ikxf̃(k)eik3t dk

=
1

2π

∫ ∞

−∞
eik3t−ikx dk

(∫ ∞

−∞
eikzf(z) dz

)
=

1

2π

∫ ∞

−∞
f(z)

(∫ ∞

−∞
eik(z−x)+ik3t dk

)
dz

Changing the variable in the inner integral from k to ζ, where k3t = 1
3
ζ3, so that k =

ζ/(3t)1/3, we obtain

∫ ∞

−∞
eik(z−x)+ik3t dk =

1

(3t)1/3

∫ ∞

−∞
e

i
ζ(z−x)

(3t)1/3
+i 1

3
ζ3

dζ =
2π

(3t)1/3
Ai

(
z − x

(3t)1/3

)
,

where Ai denotes the Airy function defined by

Ai(z) =
1

2π

∫ ∞

−∞
ei(zζ+ 1

3
ζ3) dζ.

The final result is then

u(x, t) =
1

(3t)1/3

∫ ∞

−∞
f(z)Ai

(
z − x

(3t)1/3

)
dz.

Question 6 (a) eiz/(z + a) has a simple pole at z = −a but this point is not inside the
contour of integration so by Cauchy’s theorem

∫

γ

eiz dz

z + a
= 0.

It follows that

∫ R

0

eix dx

x + a
+

∫ 1

0

ei(R+tR(i−1))R(i− 1) dt

R + a + tR(i− 1)
+

∫ 0

R

e−y(i dy)

iy + a
= 0,

via the parametrisation γ2(t) = R + tR(i− 1), 0 ≤ t ≤ 1. Now,

∣∣∣∣
∫ 1

0

ei(R+tR(i−1))R(i− 1) dt

R + a + tR(i− 1)

∣∣∣∣ ≤
∫ 1

0

e−tRR
√

2 dt√
(R + a− tR)2 + t2R2

.

It’s given that (R + a− tR)2 + t2R2 ≥ 1
2
(R + a)2, as can easily be verified:

[(R + a− tR)2 + t2R2 = (R + a)2 + 2[(tR)− 1
2
(R + a)]2 − 1

2
(R + a)2

= 1
2
(R + a)2 + 2[. . .]2 ≥ 1

2
(R + a)2]
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Consequently,

∣∣∣∣
∫ 1

0

∣∣∣∣ ≤ 2
∫ 1

0

Re−tR dt

R + a
=

2

R + a
(1− e−R) → 0 as R →∞.

We conclude that

∫ ∞

0

eix dx

x + a
=

∫ ∞

0

ie−y dy

iy + a
=

∫ ∞

0

e−y(y + ia) dy

a2 + y2

and that ∫ ∞

0

cos x dx

x + a
=

∫ ∞

0

ye−y dy

a2 + y2

and ∫ ∞

0

sin x dx

x + a
=

∫ ∞

0

ae−y dy

a2 + y2
.

Since

0 <
∫ ∞

0

ye−y dy

a2 + y2
≤ 1

a2

∫ ∞

0
ye−y dy =

1

a2
, and 0 <

∫ ∞

0

ae−y dy

a2 + y2
≤ 1

a

∫ ∞

0
e−y dy =

1

a

the stated result follows.

(b) Log(1− iz) has a branch point at z = −i but this poses no problems as we integrate
round the contour CR. We note that z2−2z sin α+1 = 0 when (z−sin α)2+(1−sin2 α) = 0
i.e z = i cos α+sin α or z = −i cos α+sin α. For 0 ≤ α < π

2
only z = i cos α+sin α = ie−iα

is inside the contour. We have

Res
Log(1− iz)

z2 − 2z sin α + 1

∣∣∣∣
z=ie−iα

=
Log(1 + e−iα)

2ie−iα − 2 sin α
=

Log(1 + e−iα)

2i cos α

=
Log e−

1
2
iα(eiα/2 + e−iα/2)

2i cos α
=

ln(2 cos α/2)− iα/2

2i cos α
.

Cauchy’s residue theorem, applied to the contour CR now gives

∫ R

−R

Log(1− ix) dx

x2 − 2x sin α + 1
+

∫ π

0

Log(1−Reiθ)(iR)eiθ dθ

R2e2iθ − 2Reiθ sin α + 1
=

π

cos α
(ln(2 cos α/2)− iα/2)

We note that ∣∣∣∣
∫ π

0

∣∣∣∣ ≤
∫ π

0

|Log(1−Reiθ)|R dθ

|R2e2iθ − 2Reiθ sin α + 1|
Since |R2e2iθ − 2Reiθ sin α + 1| ≥ |R2 − |1 − 2Reiθ sin α|| and since |1 − 2Reiθ sin α| ≤
1 + 2R sin α < 1 + 2R we have |R2e2iθ − 2Reiθ sin α + 1| ≥ R2− 1− 2R (we are interested
in large R). Also |Log(1−Reiθ)| ≤ | ln(|1− iReiθ|)|+ π ≤ ln(1 + R) + π and therefore

∣∣∣∣
∫ π

0

∣∣∣∣ ≤
πR(π + ln(1 + R))

R2 − 1− 2R
→ 0 as R →∞.
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We conclude that

∫ ∞

−∞
(ln
√

1 + x2 − i arctan x) dx

x2 − 2x sin α + 1
=

π

cos α
(ln(2 cos α/2)− iα/2)

and that ∫ ∞

−∞
ln(1 + x2) dx

x2 − 2x sin α + 1
=

2π

cos α
ln(2 cos α/2), 0 ≤ α <

π

2
,

∫ ∞

−∞
arctan x dx

x2 − 2x sin α + 1
=

πα

2 cos α
, 0 ≤ α <

π

2
.

Question 7 (i) We observe that

d

dx
[(1− x2)P ′

n] + n(n + 1)Pn = 0,

d

dx
[(1− x2)P ′

m] + m(m + 1)Pm = 0.

Multiplying the first of these equations by Pm, the second by Pn and subtracting gives:

PmD[(1− x2)P ′
n]− PnD[(1− x2)P ′

m] + [n(n + 1)−m(m + 1)PnPm = 0, D =
d

dx
,

so that

D[Pm(1− x2)P ′
n − Pn(1− x2)P ′

m] + (n−m)(n + m + 1)PnPm = 0.

Integration over [−1, 1] now gives

(n−m)(n + m + 1)
∫ 1

−1
PnPm dx = 0

so that ∫ 1

−1
Pn(x)Pm(x) dx = 0, n 6= m.

[Of course, n + m + 1 cannot be zero since m,n are non-negative integers.]

(ii) From the expressions for the Legendre polynomials which are given in the question
we easily obtain:

x3 =
2

5
P3 +

3

5
P1, x4 =

8

35
P4 +

4

7
P2 +

1

5

so that, in terms of Legendre polynomials the boundary conditions read:

u(a, θ) = 0, 0 ≤ θ ≤ π,

u(b, θ) =
8

35
P4(cos θ) +

2

5
P3(cos θ) +

4

7
P2(cos θ) +

3

5
P1(cos θ) +

1

5
P0(cos θ)
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The required solution of Laplaces’s equation is clearly independent of the azimuthal angle
ψ so we try as the solution to our problem

u(r, θ) =
∑

(Anrn + Bnr−(n+1))Pn(cos θ)

The condition u(a, θ) = 0, 0 ≤ θ ≤ π immediately gives Bn = −a2n+1An so that

u(r, θ) =
∑

An(rn − a2n+1r−(n+1))Pn(cos θ)

whilst the second condition now demands that

8

35
P4(cos θ) +

2

5
P3(cos θ) +

4

7
P2(cos θ) +

3

5
P1(cos θ) +

1

5
P0(cos θ)

=
∑

An(bn − a2n+1b−(n+1))Pn(cos θ), 0 ≤ θ ≤ π

Hence, the solution to the problem is

u(r, θ) = A0

(
1− a

r

)
+ A1

(
r − a3

r2

)
P1(cos θ) + A2

(
r2 − a5

r3

)
P2(cos θ)

+A3

(
r3 − a7

r4

)
P3(cos θ) + A4

(
r4 − a9

r5

)
P4(cos θ),

where

A0

(
1− a

b

)
=

1

5
, A0 =

b

5(b− a)
,

A1

(
b− a3

b2

)
=

3

5
, A1 =

3b2

5(b3 − a3)
,

A2

(
b2 − a5

b3

)
=

4

7
, A2 =

4b3

7(b5 − a5)
,

A3

(
b3 − a7

b4

)
=

2

5
, A3 =

2b4

5(b7 − a7)
,

A4

(
b4 − a9

b5

)
=

8

35
, A4 =

8b5

35(b9 − a9)
.

17.9 CM211A Examination Questions — May 2002

SECTION A

1. (i) Show that the function f : C → C, where f(z) = z, is not differentiable at any
point.



17.9. CM211A EXAMINATION QUESTIONS — MAY 2002 179

(ii) Show that the function g : C → C, where g(z) = z2 + |z|2, is differentiable at z = 0
but at no other point. [30 MARKS]

2. (i) Determine the most general analytic function of which cos x cosh y is the real part.
Express your result in terms of z = x + iy.

(ii) Evaluate
∫ |z|2 dz and

∫
z2 dz where the integrals are taken in the positive sense round

the triangle whose vertices are z = 0, z = 1, z = i.

(iii) A simple closed curve γ : [0, 1] → C is such that γ(0) = 0, γ(1
4
) = 1,

γ(1
2
) = i, γ(1) = 0. The trace of γ is the union of the sides of the triangle whose vertices

are at z = 0, z = 1, z = i. Write down an explicit formula for γ(t), t ∈ [0, 1].

[30 MARKS]

3. Give a brief complex variable argument to justify the assertion that an expression of
the form

u(r, θ) =
∑
n

anrn cos nθ +
∑
n

bnr
n sin nθ,

where (r, θ) denote plane polar coordinates, and
∑

n denotes a sum over non-negative
integers, is a solution of the two-dimensional Laplace equation.

Hence find the solution of the two-dimensional Laplace equation in the space 0 < r <
a, 0 < θ < π/4 which satisfies the boundary conditions

u(r, θ = 0) = 0, u(r, θ = π/4) = 0, 0 ≤ r < a, u(r = a, θ) = 1, 0 ≤ θ ≤ π/4.

You may assume the orthogonality relations

∫ π/4

0
sin(4rθ) sin(4sθ) dθ =

π

8
δrs,

for any choice of the positive integers r, s. [30 MARKS]

4. Use the transformation (x, y) 7→ (ξ, η) where ξ = x + y, η = x + 4y to show that the
general solution of the partial differential equation

4
∂2 u

∂ x2
− 5

∂2 u

∂ x ∂ y
+

∂2 u

∂ y2
= y, −∞ < x < ∞, y ≥ 0

is

u(x, y) = f(x, y) + g1(x + 4y) + g2(x + y)

where g1, g2 are arbitrary C2 functions; your expression for f(x, y) should be clearly
stated.
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Use this result to find the particular solution of the given partial differential equation
which satisfies the boundary conditions

u(x, 0) = 0,
∂ u

∂ y
(x, 0) = 0, −∞ < x < ∞.

Note: You are not required to reduce your particular solution to its simplest form.
[30 MARKS]

SECTION B

5. (i) Evaluate the integral ∫

CR

z3 dz

(z − 1)(z − 4)2

where CR is the circle centre 3i and radius R, for all values of R other than R =
√

10 and
R = 5.

(ii) By considering the integral
∫
γ e−z2

dz, where γ denotes the rectangular contour which
is bounded by y = 0, y = b (b > 0), x = 0, x = R (R > 0) prove that

∫ ∞

0
e−x2

cos 2bx dx =

√
π

4
e−b2

and that ∫ ∞

0
e−x2

sin 2bx dx = e−b2
∫ b

0
ey2

dy.

You may assume that ∫ ∞

0
e−x2

dx =

√
π

4
.

Your argument should include a proof that the integral along an appropriate side of the
rectangle tends to zero as R tends to infinity.

[50 MARKS]

6. (i) Let f(x) = 1
(1+x2)2

, x ∈ R . Compute the Fourier transform f̃(k), for k ≥ 0, by

integrating eikz/(1+z2)2 round the contour CR in the z-plane which consists of the portion
of the real axis from −R to R, together with the semi-circular arc γR parametrised by
γR(θ) = Reiθ, 0 ≤ θ ≤ π.

You may assume that

lim
R→∞

∫

γR

eikz dz

(1 + z2)2
= 0 (k ≥ 0).

(ii) Use the method of Fourier transforms to show (formally) that the solution of the
partial differential equation

∂ u

∂ t
+ λu =

∂2 u

∂ x2
(λ > 0)
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in the space −∞ < x < ∞, t > 0 subject to the conditions that

u → 0 as |x| → ∞,
∂ u

∂ x
→ 0 as |x| → ∞, u(x, t = 0) = f(x), −∞ < x < ∞

is

u(x, t) =
e−λt

√
4πt

∫ ∞

−∞
f(z)e−

(z−x)2

4t dz.

You may assume that

∫ ∞

−∞
e−α(x+iβ)2 dx =

√
π

α
, α > 0, β ∈ R .

[50 MARKS]
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Chapter 18

Appendix 1

18.1 Laplacian in polar coordinates

We consider the Laplacian in cylindrical and speherical polar coordinates.

First, cylindrical polar coordinates. Suppose φ is a C(2) function of the Cartesian variables
(x, y, z). These are related to the cylindrical polar coordinates (r, θ, z) by

x = r cos θ, y = r sin θ, z = z

and the problem is to express

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

in terms of derivatives with respect to the variables (r, θ, z). The chain rule gives

∂φ

∂x
=

∂φ

∂r

∂r

∂x
+

∂φ

∂θ

∂θ

∂x
.

The equations r2 = x2 + y2, tan θ = y/x give

∂r

∂x
=

x

r
= cos θ, sec2θ

∂θ

∂x
= − y

x2
,

∂θ

∂x
= −sin θ

r
,

∂r

∂y
=

y

r
= sin θ, sec2θ

∂θ

∂y
=

1

x
,

∂θ

∂y
=

cos θ

r
.

The chain rule now gives

∂φ

∂x
=

∂φ

∂r

∂r

∂x
+

∂φ

∂θ

∂θ

∂x
= cos θ

∂φ

∂r
− sin θ

r

∂φ

∂θ
(18.1)

∂φ

∂y
=

∂φ

∂r

∂r

∂y
+

∂φ

∂θ

∂θ

∂y
= sin θ

∂φ

∂r
+

cos θ

r

∂φ

∂θ
(18.2)
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It follows that

∂2φ

∂x2
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂φ

∂r
− sin θ

r

∂φ

∂θ

)

= cos2θ
∂2φ

∂r2
− sin θ cos θ

(
1

r

∂2φ

∂r∂θ
− 1

r2

∂φ

∂θ

)
− sin θ

r

(
cos θ

∂2φ

∂r∂θ
− sin θ

∂φ

∂r

)

+
sin θ

r2

(
sin θ

∂2φ

∂θ2
+ cos θ

∂φ

∂θ

)

= cos2θ
∂2φ

∂r2
− 2 sin θ cos θ

r

∂2φ

∂r∂θ
+

2 sin θ cos θ

r2

∂φ

∂θ
+

sin2θ

r

∂φ

∂r
+

sin2θ

r2

∂2φ

∂θ2

(18.3)

∂2φ

∂y2
=

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)(
sin θ

∂φ

∂r
+

cos θ

r

∂φ

∂θ

)

= sin2θ
∂2φ

∂r2
+ sin θ cos θ

(
1

r

∂2φ

∂r∂θ
− 1

r2

∂φ

∂θ

)
+

cos θ

r

(
sin θ

∂2φ

∂r∂θ
+ cos θ

∂φ

∂r

)

+
cos θ

r2

(
cos θ

∂2φ

∂θ2
− sin θ

∂φ

∂θ

)

= sin2θ
∂2φ

∂r2
+

2 sin θ cos θ

r

∂2φ

∂r∂θ
− 2 sin θ cos θ

r2

∂φ

∂θ
+

cos2θ

r

∂φ

∂r
+

cos2θ

r2

∂2φ

∂θ2

(18.4)

From equations 18.3 and 18.4 and the identity cos2θ + sin2θ = 1 we obtain

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
(18.5)

Note that this bears no resemblance to

∂2φ

∂r2
+

∂2φ

∂θ2
+

∂2φ

∂z2

which students sometimes use in exercises!

We can deduce the corresponding result for spherical polar coordinates (r, θ, ψ) using
equation 18.5 In this case

x = r sin θ cos ψ, y = r sin θ sin ψ, z = r cos θ.

Put R = r sin θ so that
x = R cos ψ, y = R sin ψ, z = z

with z = r cos θ, R = r sin θ. From equation 18.5

∇2φ =
∂2φ

∂R2
+

1

R

∂φ

∂R
+

1

R2

∂2φ

∂ψ2
+

∂2φ

∂z2
.



18.1. LAPLACIAN IN POLAR COORDINATES 185

Bearing in mind that z = r cos θ, R = r sin θ it follows from a further application of
equation 18.5 (without the ∂2φ

∂z2 term) that

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

1

r sin θ

∂φ

∂R
+

1

r2sin2θ

∂2φ

∂ψ2
.

Finally, from equation 18.2 above, with R = r sin θ playing the role of y in that formula,
we obtain

∂φ

∂R
= sin θ

∂φ

∂r
+

cos θ

r

∂φ

∂θ

so that

∇2φ =
∂2φ

∂r2
+

2

r

∂φ

∂r
+

cot θ

r2

∂φ

∂θ
+

1

r2

∂2φ

∂θ2
+

1

r2sin2θ

∂2φ

∂ψ2
.

Since
1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
=

∂2φ

∂θ2
+ cot θ

∂φ

∂θ

we can write

∇2φ =
∂2φ

∂r2
+

2

r

∂φ

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2sin2θ

∂2φ

∂ψ2

which is the expression we’ve used in lectures. Note again that this bears no resemblance
to

∂2φ

∂r2
+

∂2φ

∂θ2
+

∂2φ

∂ψ2
.

Finally, note a formula we’ve sometimes used:

1

r

∂2

∂r2

(
rφ

)
=

∂2φ

∂r2
+

2

r

∂φ

∂r

(See the first two terms in our formula for the Laplacian)


