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� Introduction

This chapter is meant as an introduction to Large
Eddy Simulation �LES� for readers
not familiar with it� It therefore presents some classical material in a concise way and
supplements it with pointers to recent trends and literature� For the same reason we shall
focus on issues of methodology rather than applications� The latter are covered elsewhere
in this volume� Furthermore� LES is closely related to direct numerical simulation �DNS�
which is also discussed in several chapters of this volume� Hence� we concentrate as much
as possible on those features which are particular to LES and which distinguish it from
other computational methods�

For the present text we have assembled material from research papers� earlier introductions
and reviews �Ferziger����� H�artel ����� Piomelli ��	� �� and our own results� The
selection and presentation is of course biased by the authors� own point of view� Supple�
mentary material is available in the cited references�

��� Resolution requirements of DNS

The principal di�culty of computing and modelling turbulent �ows resides in the dom�
inance of non
linear e�ects and the continuous and wide spectrum of observed scales�
Without going into details �the reader might consult classical text books such as Tennekes
� Lumley ������ we just recall here that the ratio of the size of the largest turbulent
eddies in a �ow� L� to that of the smallest ones determined by viscosity� �� behaves like
L�� � Re

���
u� � Here� Reu� � u� L�� with u� being a characteristic velocity �uctuation and �

the kinematic viscosity� Let us consider as an example a plane channel� a prototype of an
internal �ow� Reynolds ��	� estimated Reu� � Re��� from u� � u c

���
f � cf � Re����� where

Re is based on the center line velocity and the channel height� In a DNS no turbulence
model is applied so that motions of all size have to be resolved numerically by a grid which
is su�ciently �ne� Hence� the computational requirements increase rapidly with Re� Ac�
cording to this estimate a DNS of channel �ow at Re � ��� for example would take around
hundred years on a computer running at several GFLOPS� This is obviously not feasible�
Moreover� in an expensive DNS a huge amount of information would be generated which is
mostly not required by the practical user� He or she would mostly be content with knowing
the average �ow and some lower moments to a precision of a few percent� Hence� for many
applications a DNS which is of great value for theoretical investigations and model testing
is not only una�ordable but would also result in computational overkill�

��� The basic idea of LES

Suppose somebody wants to perform a DNS but the grid that would be required exceeds
the capacity of the available computer� so a coarser grid is used� This coarser grid is
able to resolve the larger eddies in the �ow but not the ones which are smaller than one
or two cells� From a physical point of view� however� there is an interaction between
the motions on all scales so that the result for the large scales would generally be wrong
without taking into account the in�uence of the �ne scales on the large ones� This requires
a so
called subgrid
scale model as discussed below� Hence� LES can be viewed as a �poor
man�s DNS�� The poor man� however� has to compensate by cleverness in that a model for
the unresolved motion has to be devised and an intricate coupling between physical and



numerical modelling is generated� On the other hand� the resolution of the large scales of
the �ow while modelling only the small ones 
 not the entire spectrum 
 is an advantage
of the LES approach compared to methods based on the Reynolds averaged Navier
Stokes
equations �RANS�� The latter methods often have di�culties when applied to complex �ows
with pronounced vortex shedding or special in�uences of buoyancy� curvature� rotation or
compression� Finally� LES gives access to the dominant unsteady motion so that it can�
for example� be used to study aero
acoustics� �uid
structure coupling or the control of
turbulence by an appropriate unsteady forcing�

� Governing equations and Filtering

The Navier
Stokes equations �NSE� constitute the starting point for any turbulence simu�
lation� Here� we consider incompressible� constant
density �uids for which these equations
read

�ui
�xi

� � ���

�ui
�t

�
� �uiuj�

�xj
�

��

�xi
�

��� �Sij�

�xj
���

where Sij � ��uj��xi � �ui��xj��� is the strain
rate tensor and � � p��� For later
reference we introduce Reynolds averaging which is used in statistical turbulence mod�
elling �RANS� as time averaging� hui � limT��

�
T

R T
� u dt� Reynolds averaging has the

properties
hhuii � hui� huhvii � huihvi� ���

According to the idea of LES a means is required to distinguish between small� unresolved�
and larger� resolved structures� This is accomplished by the operation u �� u de�ned
below� Unlike the above Reynolds time averaging it is an operation in space� The fact
that RANS and LES methods employ averaging in di�erent dimensions inhibits an easy
link between them� Several attempts have been made to put both in a common framework
�Speziale �	� Germano �� but will not be discussed here� We now turn to the ways
of de�ning u and illustrate them in the one
dimensional case�

��� Schumann�s approach

The �volume
balance approach� of Schumann ����� starts from a given �nite volume
mesh� The integral of a continuous unknown u�x� in ������� over one cell is denoted V u �
�
�x

R
V u�x�dx as illustrated in Fig� � �indices referring to cells are dropped�� Integrating

the NSE over a cell and using Gauss� theorem relates these values to surface
averaged
quantities denoted j� � �� such as juv� These need to be expressed in terms of the cell

averages� which is done in two steps� If the discretization is su�ciently �ne replacing juv
by jujv as is usual in �nite volume methods is possible with only a minor approximation
error� This is done in DNS� If the grid is not �ne enough� however�the di�erence can be
signi�cant and the unresolved momentum �ux juv � jujv has to be accounted for by a
model� the so
called subgrid
scale �SGS� model� Subsequently� ju are related to the V u
either by setting them equal to cell averaged quantities if a staggered arrangement is used



or by interpolating from neighbouring values� The �nal SGS contribution to be modelled
therefore also depends on the expressions used for ju � i�e� on the discretization scheme� To
sum up� the equations are discretized and with discretizing them the splitting into large and
small scales is performed since the latter cannot be resolved by the discrete system� Observe
that the operations u �� V u and u �� ju map an integrable function onto discrete values�
a continuous function u�x� is not constructed� Thus� with Schumann�s approach� scale
separation� discretization� and SGS model are not separated conceptually but intimately
tied together� This has advantages in that anisotropies and inhomogeneities of the grid
can easily be incorporated� However� it renders the analysis of the various contributions
to the solution relatively di�cult and hence is considered too restrictive by many workers
in the �eld�

��� Filtering

Leonard ����� proposed to de�ne u by

u�x� �
Z ��

��

G �x� x�� u �x�� dx� � ���

An integral of this kind is called a convolution� Here�G is a compactly supported or at least
rapidly decaying �lter function with

R
G�x� dx � � and width �� The latter can be de�ned

by the second moment of G as � �
q
��
R
x�G�x� dx� Fig� � displays the Gaussian Filter

GG �
q
��� ��� exp���x���

�
� and the box �lter de�ned by GB � ��� if jxj � ��� and

GB � � elsewhere� In fact� already Deardor� ����� used ��� in the special case G � GB�
Figs� �a and �b illustrate the �ltering with smaller or larger �lter width� the larger �� the
smoother is u� According to ��� u is a continuous smooth function as displayed in Fig� �
which can subsequently be discretized by any numerical method� This has the advantage
that one can separate conceptually the �ltering from the discretization issue�

It is helpful to transfer eq� ��� to Fourier space by means of the de�nition �u��� �R
u�x� e�i�x dx� since in Fourier space� where the spatial frequency � is the independent

variable� a convolution integral turns into a simple product� Eq� ��� then reads

bu��� � bG��� bu��� � ���

Figure � illustrates the �ltering in Fourier space� Equation ��� allows the de�nition of
another �lter� the Fourier cuto� �lter with bGF ��� � � if j�j � ��� and � elsewhere� From
��� it is obvious that only this �lter yields u � u since � bGF �� � bGF � In all other cases the
identity is not ful�lled� This can be appreciated by comparing u and u for the box �lter in
Figs� � and �� The second relation in ��� is never ful�lled except in trivial cases� so that
for general �ltering we have

u �� u� uv �� u v ���

which distinguishes clearly the �ltering in LES from Reynolds averaging �see Germano
���� for a detailed discussion�� The vertical line in Fig� � represents the nominal cuto�
at ��� related to the grid� The Fourier cuto� �lter dGF would yield a spectrum of u which
is equal to the one of u left of this line and zero right of it� Eq� ��� and Fig� � therefore
demonstrate that when a general �lter is applied� such as the box �lter� this does not yield
a neat cut through the energy spectrum but rather some smoother decay to zero� This is



important since SGS modelling often assumes that the spectrum of the resolved scales near
the cuto� follows an inertial spectrum with a particular slope and a particular amount of
energy transported from the coarse to the �ne scales on the average� We see that even if
u ful�lls this property this can be altered by the �ltering �for further remarks see Section
����� Nevertheless� it is convenient and common to use the notion of a simple cuto� as a
model in qualitative discussions� Eq� ��� is also helpful to illustrate that derivative and
�lter commute� i�e� �u��x � ��u��x�� Any convolution �lter ��� can be written as in ���
regardless of the choice of G� Di�erentiation appears as multiplication by i� in Fourier
space� eq� ��	� below� which is commutative�

Applying the three
dimensional equivalent of the �lter ��� to the NSE ��� and ���� the
following equations for the �ltered velocity components ui result

�ui
�xi

� � ���

�ui
�t

�
� �ui uj�

�xj
�

��

�xi
�

��� �Sij�

�xj
� �	ij

�xj
�	�

where Sij and � are de�ned analogous to the un�ltered case� The term

	ij � uiuj � uiuj ��

represents the impact of the unresolved velocity components on the resolved ones and has
to be modelled� In mathematical terms it arises from the nonlinearity of the convection
term which does not commute with the linear �ltering operation�

An important property of ui is that it depends on time� Hence� an LES necessarily is an
unsteady computation� Furthermore� ui always depends on all three space
dimensions �ex�
cept for very special cases�� Symmetries of the boundary conditions generally produce the
same symmetries for the RANS variable huii� e�g� vanishing dependence on a homogeneous
direction� However� due to the very nature of turbulence this does not hold for ui since
the instantaneous turbulent motion is always three
dimensional� The fact that a three

dimensional unsteady �ow is to be computed makes LES a computationally demanding
approach� We �nally note that for any �lter the term in �� vanishes in the limit � � ��
since then u� u according to ���� and all scales are resolved so that the LES turns into a
DNS�

��� Variable �lter size

It should be mentioned here that �ltering as de�ned by ��� is not easily compatible with
boundary conditions� Applying a box �lter of constant size � for instance yields u �� �
within a distance ��� outside of the computational domain and raises the question of
how to impose boundary conditions for u� This issue is removed by supposing G to be
x
dependent and locally asymmetric� However� if G�x�x�� is generalized to some G�x� x��
or if the prolongation of u from a �nite domain to the real axis induces discontinuities� the
commutation property is lost and additional commutator terms arise in ���� �	� �Ghosal �
Moin ���� In contrast to the usual SGS term 	ij � which is generated by the nonlinearity of
the convection term� the commutator also appears for linear expressions �see the discussion
by Geurts ��� and Section ����� This issue is relevant for pronounced grid stretching
in the interiour of the domain and close to walls but has been disregarded until recently�
Studies for a channel �ow are reported in �Fr�ohlich et al� �	� ������



��� Implicit versus explicit �ltering

The �ltering approach relaxes the link between the size of the computed scales and the
size of the grid since the �lter can be coarser than the employed grid� Consequently� the
modelled motion should be called sub�lter
 rather than subgrid
scale motion� The latter
labelling results from the Schumann
type approach and is frequently used for historical
reasons to designate the former� In practice� however� the �lterG does not appear explicitly
at all in many LES codes � so that in fact the Schumann approach is followed� Due to the
conceptual advantages of the �ltering approach reconciliation of both is generally attempted
in two ways� The �rst observation is that a �nite di�erence method for ���� �	� with a box
�lter employs the same discrete unknowns as Schumann�s approach� such as u�xk� � Vku
with k referring to a grid point� Choosing appropriate �nite di�erence formulae the same
or very similar discretization matrices are obtained in both cases� Another argument is
that the de�nition of discrete unknowns amounts to an �implicit �ltering� 
 i�e� �ltering
with some unknown �lter � but one that in principle exists � 
 since any scale smaller than
the grid is automatically discarded� In this way the �lter is more or less used symbolically
only to make the e�ect of a later discretization appear in the continuous equations� This
is easier in terms of notation and stimulates physical reasoning for the subsequent SGS
modelling�

In contrast to implicit �ltering one can use a computational grid �ner than the width of G
and only retain the largest scales by some �explicit� �ltering operation� This explicit �lter�
ing is recently being advocated by several authors such as Moin ���� since it considerably
reduces numerical discretization errors as the retained motion is always well resolved� On
the other hand it increases the modelling demands since for the same number of grid points
more scales of turbulent motion have to be modelled and it is up to now not fully clear
which approach is more advantageous �Lund � Kaltenbach ���� The �ltering approach
of Leonard is almost exclusively introduced today in papers on LES and has triggered
substantial development� e�g� in subgrid
scale modelling� In practice� however� it is most
often used rather as a concept than as a precise algorithmic construction�

� Subgrid�scale modelling

��� Introduction

Subgrid�scale modelling is a particular feature of LES and distinguishes it from all other
approaches� It is well
known that in three
dimensional turbulent �ows energy cascades
in the mean from large to small scales� The primary task of the SGS model therefore
is to ensure that the energy drain in the LES is the same as obtained with the cascade
fully resolved as in a DNS� The cascading� however� is an average process� Locally and
instantaneously the transfer of energy can be much larger or much smaller than the average
and can also occur in the opposite direction � backscatter � �Piomelli et al� ���� Hence�
ideally� the SGS model should also account for this local� instantaneous transfer� If the grid
scale is much �ner than the dominant scales of the �ow� even a crude model will su�ce
to yield the right behaviour of the dominant scales� This is due to two reasons� First�
the larger the distance in wavenumber space between di�erent contributions the looser is

�Apart from some �ltering operations for the dynamic model� discussed below� which is of a somewhat
di�erent nature



their coupling� Second� as a consequence of this as well as of the energy cascading� the
�ner scales exhibit a more universal character which is more amenable to modelling� On
the other hand� if the grid scale is coarse and close to the most energetic� anisotropic�
and inhomogeneous scales the SGS model should be of better quality� Obviously� there
exist two possible approaches� one is to improve the SGS model and the other is to re�ne
the grid� In the limit� the SGS contribution vanishes and the LES turns into a DNS�
Re�ning the grid� however is restricted due to the rapid increase of the computational cost�
The alternative strategy� for example solving an additional transport equation in a more
elaborate SGS model� can be comparatively inexpensive�

Another aspect results from the numerical discretization scheme which introduces a dif�
ference between the continuous di�erential operators and their discrete equivalents� This
di�erence is particularly large close to the cuto� scale� For DNS this is not so disturb�
ing� but with LES precisely these scales have a substantial in�uence on the modelled SGS
contribution as will be illustrated below� Hence� in LES the discretization scheme and the
SGS model have to be viewed together� Indeed� some schemes such as low order upwind
discretizations generate a considerable amount of numerical dissipation as discussed in Sec�
tion ��� below� Therefore certain authors perform LES without any explicit SGS model
�Tamura� Ohta � Kuwahara ��� Meinke et al� �	�� The grid is re�ned as much as
possible to decrease the importance of the SGS terms� and the energy drain is in one way
or another accomplished by the numerical scheme� Although yielding valuable results in
some cases� this kind of modelling can hardly be evaluated or controlled� Hence� in most
LES central or spectral schemes are used and the SGS term is represented by an explicit
model�

We shall now turn to the description of some basic SGS models before giving a summarizing
view at the end of this section�

��� Smagorinsky model

The Smagorinsky model �SM� �Smagorinsky ���� was the �rst SGS model and is still
widely used� As with most of the current SGS models� it employs the concept of an eddy
viscosity� relating the traceless part of the SGS stresses� 	 aij � to the strain rate Sij of the
resolved velocity �eld�

	 aij � 	ij � �

�

ij	rk � ���tSij ����

The advantage of ���� is that the resulting equation for ui to be solved looks like ��� with
ui instead of ui� �� �

�

ij	kk instead of �� and � � �t instead of �� Hence� it is very easy to

incorporate this into an existing solver for the unsteady NSE�

The second part of this model is the determination of the eddy viscosity �t� Dimensional
analysis yields

�t � l qSGS ����

where l is the length scale of the unresolved motion and qSGS its velocity scale� From the
above discussion it is natural to use the �lter size � as the length scale� hence setting
l � Cs�� Similar to Prandtl�s mixing length model� the velocity scale is related to the
gradients of ui expressed by

qSGS � l jSj jSj �
q
�SijSij ����



which yields
�t � �Cs���jSj ����

This amounts to assuming local equilibrium between the production of the SGS kinetic
energy� P � �	 aij Sij and dissipation � expressed by q�SGS�l� Introducing ���� and ����
in P � � gives ����� The constant Cs can be determined assuming an inertial
range
Kolmogorov spectrum for isotropic turbulence which yields Cs � ���	� This value has
turned out to be too large for most �ows so that often Cs � ��� or even lower values are
used� Close to walls �t has to be reduced to account for the anisotropy of the turbulence�
This is generally accomplished by replacing Cs in ���� with CsD�y��� Most often the van
Driest damping

D�y�� � �� e�y
��A� � A� � �� ����

is used which is known from statistical models� However� this yields �t � �y��� for small
y� while �t should behave like y��� The correct behaviour is achieved by the alternative
damping function �Piomelli� Moin � Ferziger ���

D�y�� �
�
�� e�	y

��A�
�
����

����

The main reason for the frequent use of the SM is its simplicity� Its drawbacks are that the
parameter Cs has to be calibrated and its optimal value may vary with the type of �ow�
the Reynolds number� or the discretization scheme� The kind of damping to be applied
near a wall is a further point of uncertainty� Also� the SM� like any other model based on
���� with �t � �� is strictly dissipative and does not allow for backscatter� It is furthermore
not appropriate for simulating transition since it yields �t � � even in laminar �ows�

��� Dynamic procedure

From the previous section it is apparent that for physical reasons one would prefer to replace
the constant value Cs by a value changing in space and time� The dynamic procedure has
been developed by Germano et al� ���� in order to determine such a value from the
information provided by the resolved scales� in particular the ones close to the cuto� scale�
In fact this procedure can be applied with any model 	mod

ij �C��� u� for 	ij or 	 aij containing
a parameter C� � The basic idea is to employ the model chosen not only on the grid scale�
or �lter scale� � but also on a coarser scale b� as illustrated in Fig� �� This is the so
called
test scale with� e�g�� b� � ���

sub
grid scale stresses ��
level� � 	ij � uiuj � ui uj 	 	mod
ij �C��� u� ����

sub
test scale stresses � b�
level� � Tij � duiuj �cuicuj 	 	mod
ij �C� b�� bu� ����

From the known resolved velocities ui the velocities cui can be computed by applying the
�lter c� � � to ui using an appropriate function bG� Similarly� the term Lij � dui uj �cuicuj can
be evaluated� It is this part of the sub
test stresses Tij which is resolved on the grid � as
sketched in Fig� � � The total stresses uiuj in the expression for Tij can be decomposed

�In this subsection we distinguish between exact and modelled SGS stresses for clarity�



into the contribution ui uj resolved on the grid � and the remainder 	ij � Inserting this in
���� gives

Tij � Lij � c	ij ��	�

known as Germano�s identity� Hence� on one hand Lij can be computed� on the other hand
the SGS model yields a model expression when inserting ��������� in ��	� �

Lmod
ij � 	mod

ij �C� b�� bu�� 	mod
ij �C��� u� ���

Ideally� C would be chosen to yield

Lij � Lmod
ij � � ����

but this is a tensor equation and can only be ful�lled in some average sense� minimizing
e�g� the root mean square of the left hand side as proposed by Lilly ����� Principally� the

consecutive application of bG and G to obtain bu yields an e�ective �lter� of width b� �� b��
which generally is even of di�erent type as bG and G �e�g� when the box �lter is used�� This

issue is generally neglected in the literature� For that reason and since b
� � b� with the

Fourier cuto� �lter presently used for illustration we write b� instead of b� in this section�

E�ectively� it is the ratio b��� which is required by the dynamic models�

We now apply the dynamic procedure to the SM ��������� and get

Lmod
ij � ��C b��jbSjbSij � �C�

�jSjSij ����

with C � C�
s for convenience� Classically� the model is developed by extracting C from

the �ltered expression in the second term although in fact C will vary in space� The right
hand side of ���� can then be written as ��CMij so that inserting into ���� with the
least
squares minimization mentioned above yields

C � ��

�

Lij Mij

Mij Mij
����

The advantage of ���� or a similar equation is that now the parameter of the SM is no longer
required from the user but is determined by the model itself� In fact� it is automatically
reduced close to walls and vanishes for well
resolved laminar �ows� Negative values of C
are possible and can be viewed as a way to model backscatter� The resulting !backward
di�usion can however generate numerical instability so that often � � �t � � is imposed�
Furthermore� C determined by ���� as it is� exhibits very large oscillations which generally
need to be regularized in some way� Most often Lij and Mij are averaged in spatially
homogeneous directions space before being used in ����� However� this requires the �ow
to have at least one homogeneous direction� Another way is to relax the value in time
according to Cn�� � �C ���� ��Cn using Cn from the previous time step �Breuer � Rodi
���� Yet another way is to use the known value Cn in the rightmost term of ���� so that
it need not be extracted from the test �lter �Piomelli � Liu ���� This yields smoothing
in space without any homogeneous direction required�



��� Scale similarity models

Scale similarity models �SSM� have been created to overcome the drawbacks of eddy
viscosity
type models� Filtering the decomposition ui � ui � u�i yields the �exact� relation

u�i � ui � ui� ����

This can be interpreted as equality between the largest contributions of u�i and the smallest
contributions of ui �see Fig� ��� Furthermore� it is computable from ui� Introducing the
decomposition of ui into �� and modelling u�iu

�

j 	 u�i u
�

j and u�iuj 	 u�i uj� respectively�
yields the model 	 aij � Lm�a

ij with

Lm
ij � ui uj � ui uj ����

and ���a indicating the traceless part of a tensor� A model constant is not introduced as
this would destroy the Galilean invariance of the expression� For a spectral cuto� �lter u
is replaced by bu with b� �

p
� � since for this �lter u � u as discussed above�

The SSM allows backscatter� i�e� transfer of energy from �ne to coarse scales� and does not
impose alignment between the SGS stress tensor 	ij and the strain rate Sij � On the other
hand� ���� turns out to be not dissipative enough so that it is generally combined with a
Smagorinsky model� Horiuti ���� subsumes some current SSMs in the model

	 aij � CLL
m�a
ij � CBL

R�a
ij � �C��

� j S j Sij ����

with LR
ij � u�i u

�

j � u�i u
�

j� evaluated using ����� A further step is to combine ���� with the
dynamic procedure for the determination of the constants� �a� C� with CL � �� CB � �
�Zang� Street � Kose� ��� �b� CL and C� with CB � � �Salvetti � Banerjee ��� �c�
CB and C� with CL � � �Horiuti ���� Di�erent tests in the cited references as well as by
Piomelli� Yu � Adrian ���� show that SSMs in conjunction with the dynamic procedure
perform quite well for low order �nite di�erence or �nite volume methods� Apart from the
ability to represent backscatter this may also be due to the fact that no spatial derivatives
are involved in the SSM which reduces the impact of numerical discretization errors�

��� Further models and comparative discussion

Let us sum up a few strategies or concepts which are currently followed in SGS modelling�
One� already mentioned in the beginning of this section� is to employ a crude model and
to compensate by grid re�nement which decreases the impact of the model�

Another strategy is to employ the same approaches as in RANS modelling� The Smagorin�
sky model based on an eddy
viscosity and an algebraic mixing
length expression is the most
prominent example� But as with RANS� more elaborate methods can be used to compute
the turbulent viscosity such as a model employing a transport equation for the SGS kinetic
energy kSGS � ���	kk which furnishes a velocity scale qSGS � kSGS

��� �Schumann ����
Davidson ���� Obviously� the �lter width � constitutes an adequate reference length

so that according to ���� �t � C�k
���
SGS is a reasonable model and no second length
scale

determining transport equation is required� Spalart et al� ���� have developed an ap�
proach called Detached Eddy Simulation �DES�� They start from a one
equation RANS
turbulence model �Spalart � Allmaras ��� based on a transport equation for �t� In



this equation the distance from the wall is introduced as a length scale in the destruction
term� Replacing this physical length scale by a resolution
based scale CD� �where CD

is a parameter� turns the model into a SGS model� This method furthermore o�ers a
particular way of wall modelling which is discussed below� Still more complex approaches
have been carried over from RANS� Fureby et al� ���� employ the SGS equivalent of a
Reynolds
stress model and obtain satisfactory results in some tests� The cost increase is
claimed to be moderate as solving the pressure equation requires most of the work�

A third strategy� applied with SSM and the dynamic procedure� is based on the mul�
tiscale nature of turbulence� It could only be developed with scale separation de�ned
independently from the discretization according to ��� since �ltering is used as an individ�
ual operation� By analyzing experimental �ow �elds along these lines Liu� Meneveau �
Katz ���� propose

	ij � CLLij ����

with Lij de�ned in ��	�� This di�ers from ���� since two �lters of di�erent size are used�

A fourth strategy is to relate SGS models to classical theories of turbulence� An elemen�
tary example is the determination of the Smagorinsky constant assuming a Kolmogorov
spectrum� This strategy is also pursued when de�ning a wave
number dependent eddy
viscosity to be employed with a spectral Fourier discretization and using EDQNM theory
to determine �t�k� �Chollet � Lesieur �	��� The spectral eddy viscosity model has also
been reformulated in physical space for application in complex �ows yielding the structure
function model �M"etais � Lesieur ���

�t � ������
q
F���� � F��r� � �ui�x� r� � ui�x��

� ����

with F� spatially averaged in an appropriate way� Di�erent variants have been developed
�Lesieur � M"etais ���� It can be shown that when implemented in a Finite Di�erence
context� this yields a Smagorinsky
type model with jSj in ���� replaced by j�ui��xjj�
The last strategy we mention concerns the testing of SGS models� Of course� as with other
turbulence models� prototype �ows can be computed and the results then compared with
experimental data or DNS results� This is still the ultimate test to pass� However� another
kind of testing particular to LES has been developed� namely the so
called a priori test�
a fully resolved velocity �eld from a DNS is used to explicitly compute the terms which
have to be modelled in an LES on a coarser grid� The large
scale velocity on that grid
is extracted to determine the SGS stresses by means of a SGS model� The di�erence
between exact and modelled stresses re�ects the quality of the model� This information
should however be taken with some caution as the test involves discretization e�ects in a
substantially di�erent way than in the actual LES�

Finally� one has to bear in mind that a perfect SGS model is impossible� Assume the
exact grid
scale velocity u being known at all points� The perfect SGS model would then
amount to inferring from u on the exact instantaneous SGS velocity u� to deduce the exact
instantaneous SGS stresses at all points� Since� however� in�nitely many velocity �elds u�

are compatible with the same u� even the best SGS model cannot decide which of them
is realized in the actual DNS� In fact� the error introduced by missing SGS information
propagates in an inverse cascade to larger scales �Lesieur ����



� Numerical methods

��� Discretization schemes in space and time

With the �ltering approach discussed in Section �� physical modelling and numerical dis�
cretization are conceptually independent� Hence any available numerical method can in
principle be used to discretize the �ltered equations� A minimal requirement for preci�
sion and cost
e�ectiveness is that the discretization scheme is at least of second order in
space and time� Classically� spectral methods were frequently used for LES and are still
employed for problems with simple geometry� Derivatives are discretized most accurately
and �ltering and de�ltering as discussed below is naturally applied in this framework� For
more complex boundary conditions� �nite
di�erence or �nite
volume methods are pref�
ered� Here� one current trend goes to unstructured meshes� another to grids with special
local treatment at the boundary if this has an irregular shape�

Some numerical methods favour particular modelling ideas such as spectral methods which
allow to use a spectral eddy viscosity �Chollet � Lesieur ��� and explicit �ltering by
means of ���� Others need particular care in certain points� For example if implicit �lter�
ing is used together with a type of �nite element that has a di�erent number of degrees
of freedom for velocity compared to pressure �which is classically the case for stability
reasons�� this results in a di�erent amount of �ltering for these quantities and can deteri�
orate the result �Rollet
Miet� Laurence � Ferziger ��� Discretizations in space can be
selected according to relevant properties such as ability to treat complex geometries� cost
per grid point� etc� If possible� however� equispaced grids are used since the in�uence of
grid
inhomogeneity and grid
anisotropy on SGS modelling is not yet fully mastered� A
comparative study of a structured and an unstructured method for the same problem was
undertaken by Fr�ohlich et al� ��	� where� for the particular case considered� adaptivity
of the former method was roughly compensated by higher cost per node� For more complex
geometries unstructured methods are certainly favourable�

Concerning the time schemewe already noted that temporal resolution has to be compatible
with resolution in space so that C � u �t��x � O���� Since this type of limit is equivalent
to the stability limit of explicit methods� in many cases the latter are typically used for
LES� Adams
Bashforth� Runge
Kutta or leap
frog schemes are the most popular ones� If
the di�usion limit is stricter in a computation� semi
implicit time stepping can be more
e�cient�

��� Analysis of numerical schemes for LES

The essential feature that distinguishes LES from DNS is that the smallest resolved grid

scale components� which are just a little larger than the cuto� scale� typically carry more
energy� Hence� without explicit �ltering which employs a �lter coarser than the mesh size�
the smallest resolved scales are by de�nition substantially a�ected by the employed numer�
ical scheme� These scales however in�uence most strongly the contribution determined by
the SGS model� In fact a complex discrete model for the SGS e�ect on the resolved �ow
is created which results from physical as well as numerical modelling� Consequently� the
order of a method is not necessarily an appropriate notion in the context of LES� It rather
has to be supplemented with a re�ned analysis like the modi�ed wavenumber concept as
e�g� discussed by Ferziger ����� Let us illustrate these statements by means of Fig� ��



Refering to eq� ���� the exact spatial derivative of u formulated in Fourier space isd��u
�x

�
��� � i� bG��� bu���� ��	�

The numerical evaluation of �u��x by a �nite
di�erence formula corresponds to replacing
the factor � in ��	� by a modi�ed wavenumber �eff ��� which depends on the particular
scheme employed� Derivation and formulas are given� e�g�� by Ferziger � Peric �����
For symmetric schemes this is a real quantity� otherwise it is complex� Starting from
�eff ��� � �� j�eff j increases and then drops down to zero again� The point �� where
this takes place is determined by the numerical grid employed� it is the highest frequency
resolved by the grid� In a DNS this point would be pushed as far as possible to the
right �Fig� �a�� The order of a discretization scheme can be reformulated in terms of the
exponent p in lim��� j� � �eff ���j � �p� Obviously� the information about the order of a
scheme is su�cient only if �� �
 so that the solution to be computed is located entirely
at ���� 	 �� If however �� approaches the relevant scales of the solution to be discretized�
the behaviour of the whole curve �eff is decisive� not only the limit � � �� It is rather
visible that computing a derivative with �eff �� � amounts to replacing bG��� in ��	� bybGeff � �eff�� bG���� Hence the �nite di�erence formula results in additional �ltering
applied to the derivative of u �Salvetti � Beux �	�� Fig� �b furthermore shows that the
decay of the error obtained with grid re�nement in an LES depends on the behaviour of
the solution itself� e�g� on the decay rate of its spectrum� This information is indispensable
when aiming to assess the numerical error in an LES and to compare it with the size of
the SGS term �Ghosal ����

So far we have discussed the discrete derivative operator which is a building block when
discretizing the whole system of equations� Qualitatively� the real part of �eff�� in the
convection term introduces spurious or numerical dispersion while its imaginary part re�
sults in additional numerical dissipation� Analyzing the fully discrete system is much
more complicated but can be achieved when disregarding boundary conditions etc� by the
modi�ed equation approach �Hirt ��	�� This has been applied by Werner ���� to a
staggered �nite volume discretization with Adams
Bashforth time scheme� central di�er�
ences for the viscous term� and the QUICK convection scheme� Recall that the QUICK
scheme �Leonard ��� is a third order upwind interpolation scheme for the �ux over the
surface of a control volume� Werner observed that this combination results in a spurious
�th order dissipative term proportional to the cell Reynolds number Recell � u�x���
The same analysis for a leap
frog time scheme with second order central di�erencing
yields a �th order error term which is independent of Recell� Such an analysis nicely
shows that the upwind scheme produces excessive damping for large Recell� This� how�
ever� is precisely the working range of LES with typically Recell � O�������� even if �
is replaced by � � �t� To demonstrate the e�ect in a real LES� Werner also computed
a plane channel with Re� � ��� employing the Smagorinsky model� With a modi�
�ed leap
frog scheme �t�� � ���� C � ����� Recell � ���� on the centerline� Analysis
yields j�num��j 	 ���� With the QUICK upwind scheme the corresponding numbers are
�t�� � �� and j�num��j 	 �	�� Hence the numerical dissipation introduced by the up�
winding exceeds the one by the SGS model by two orders of magnitude� Similar though
mostly less detailed experiences have been reported in several papers by comparing the
solution obtained with di�erent schemes� The QUICK scheme and lower order upwind
schemes gave worse results than a second order central scheme in LES of a circular cylin�
der �Breuer �	�� This was� though with decreasing impact� also observed for �th and �th



order upwinding �Beaudan � Moin ���� Further studies of the numerical error in LES
were performed by Vreman� Geurts � Kuerten ����� Kravchenko � Moin ���� and
others� Hence� on the one hand upwind schemes can spoil the result by excessive damping�
On the other hand� some researchers omit explicit SGS modelling and let the numerical
dissipation of the employed scheme remove the energy� The MILES approach �Boris et al�
���� e�g�� falls into this class� Comte and Lesieur ��	� however found such schemes
to be inferiour to explicit SGS modelling� In contrast to the numerical dissipation� the
dispersion of a scheme is of lower importance as it has no e�ect on the energy drain which
has been claimed to be the principal task of the SGS modelling� Dispersion� however�
is related to the generation of spurious wiggles which in some LES of blu� bodies pose
problems �Rodi et al� ����

��� Further developments

In order to improve the current status� attempts are made to separate more clearly the
di�erent ingredients in an LES� The aim is to study and improve each of them in a separate
and controlled way� One of the directions pursued is explicit �ltering as mentioned above�
A similar approach is used by Vreman� Geurts � Kuerten ������� who use a value of �
larger than the mesh size of the grid� e�g� by a factor of two in the SGS model� which leads
to increased SGS dissipation e�ectively damping the solution in a similar way as explicit
�ltering� A second direction is the use and improvement of higher order energy
conserving
discretization schemes �Morinishi et al� �	�� They ensure that the total dissipation
is entirely controlled by the SGS model and not by the discretization� Bearing in mind
the uncertainty in SGS modelling� when for example determining the parameter C in the
DSM� the practical importance of an energy
conserving scheme is presently not clear� A
third direction is to use higher order methods as they narrow the range of scales which are
in�uenced by the discretization of the �ltered equations� Furthermore� �lters recently have
been devised so as to commute with discrete derivatives �Vasilyev� Lund � Moin �	��
This ideally ensures that apart from the SGS term 	ij in eq� �	� no commutator term
arises which would require modelling� Finally� !de�ltering has been applied to invert the
attenuation of resolved scales by the implicit �ltering related to the discretization �Stolz�
Adams � Kleiser ��� It uses an operation like multiplication of bu��� with bG����� to
devise an estimate u� for the true velocity u based on the resolved velocity u� as may
be illustrated with eq� ��� and Fig��� This procedure requires higher order methods
and principal adjustments such as restriction to certain scales since inverse �ltering is ill

conditioned �imagine obtaining u from u in Fig��a or �b by backward di�usion�� First
results look promising�

� Boundary conditions

We have mentioned already the mathematical problems when boundary conditions for
�ltered quantities have to be de�ned� From a physical point of view� the �ow near a solid
wall exhibits substantially di�erent structures than away from it� In this region the !large
scales 
 in the sense that they signi�cantly determine the overall properties 
 are of the
order of the boundary layer thickness and hence typically much smaller than in the core of
the �ow� in particular if the Reynolds number is large� In addition� the small scales in this
area exhibit substantial anisotropy and energy transfer mechanisms are di�erent compared



to the core �ow �H�artel ��� Piomelli et al� ���� This makes subgrid
scale modelling
in the vicinity of walls a di�cult task�

��� Resolution of the near�wall region

The most natural boundary condition at a wall is the no
slip condition� It requires however
that the energy
carrying motion is resolved down to the wall� In an attached boundary
layer this motion is mainly constituted by the well
known streaks of spanwise distance
z 	 ��� resolution of which requires y� � �� �x� � �� � ���� �z� � �� � ��� �Piomelli
� Chasnov ���� The resulting simulation is in fact a hybrid one between an almost
DNS
near the wall and an LES in the main part of the �ow� If locally a �ne grid is required
an e�cient discretization calls for a block
structured or an unstructured method� Care
has to be taken however� since for example a low order FV method that locally splits each
cell into a number of smaller ones introduces a sudden decrease in the size of the implicit
�lter by a factor of two at least in one direction� This may lead to problems with the
SGS modelling� Kravchenko� Moin � Moser ���� have developed a discretization that
employs overlapping B
splines and hence results in a smoother transition of the e�ective
resolution� It was successfully applied to channel �ow up to Re � ������ Another
possibility is an unstructured �nite element method as used by Rollet�Miet et al� ����
Due to particular discretization issues discussed in this reference only very few codes of this
kind are capable of LES up to now� With an unstructured code� one is still left with the
task of generating a grid that ful�lls the needs� in particular with respect to its in�uence on
SGS modelling� Regardless which method is used to discretize and compute the near
wall
region� the wall
resolving approach can result in substantial complexity and computational
e�ort� Spalart et al� ���� stressed that re�nement needs to be performed not only in
the wall
normal but also in the streamwise and spanwise directions and estimated that
O������ grid points would be necessary for a wing at Re � ��� ���� while  ��� is impressive
today � Also� resolving the �ow in space is worthless if it is not also resolved properly in
time� hence the CFL number has to be of order unity� a fact that even further increases
the computational burden� To conclude� although a wall
resolving LES is appropriate for
lower Re and transitional �ows� a di�erent approach is needed for higher Re� particularly
when the interest of a simulation focuses on features away from the wall�

��� Wall functions

When for higher Re a wall
resolving LES is not possible� the way out is to use a near
wall
model approximating the overall dynamic e�ects of the streaks on the larger outer scales
which are resolvable by the LES� The most commonly used models are wall functions for
bridging a region very close to the wall� often the viscous sublayer� Such wall functions are
classically used in RANS methods� where they take the form�

h	�i � W �hu�i� y�� ���

Here� y� is the distance of the �rst grid point from the wall� h	�i the average wall shear
stress� hu�i the average tangential velocity at y�� and W a functional dependence� Note
that any relation hui� � f�y�� can be converted to the form ���� This can be the log

law� the �#�
power law� a linear viscous law or even a numerical �t to DNS data� An
appropriate blending is generally used so that W is de�ned from y�� 	 � to y� of several
hundreds�



Even if many physical properties such as the low
order moments and hence W are well

know for a certain �ow 
 this is the case for the developed �ow in a plane channel� for
example 
 it is a delicate task to introduce this knowledge in the context of LES� The avail�
able information is of a statistical nature whereas the �ltered velocity is an instantaneous�
�uctuating quantity� On the other hand it has been demonstrated that the inner and
outer regions of a turbulent boundary layer are only loosely coupled �Brooke � Hanratty
����� so that an arti�cal boundary condition bridging the inner layer has a chance to be
successful �Piomelli �	�� One of these wall
function methods �Schumann ���� employs
the mean velocity hu�y��i� which is successively computed during the LES� to determine
the average wall shear stress h	�i from ��� with W being the logarithmic law of the wall�
The same proportionality as between hu�y��i and h	�i is then assumed to hold also between
the instantaneous quantities u�y�� and 	�� in particular they are supposed to be in phase�
This yields the instantaneous wall stress as

	� �
h	�i
hu�y��i u�y�� ����

which is used as a boundary condition in the LES� Werner � Wengle ���� employed the
���
power law instead of the log law to avoid an iterative evaluation of W � Furthermore�
they replaced ��� by 	� � W �u�� y�� so that the average velocity is no longer needed�
Other combinations and variants are possible as well� A generalization of the approach for
the subcritical �ow around a cylinder is described by Fr�ohlich ������� In the technically
relevant case of a rough surface� using the wall
function approach is unavoidable since
resolving the �ow around each roughness element is impossible� The roughness e�ect is
brought in by the roughness parameter in the log
law �Gr�otzbach �����

Wall function boundary conditions work reasonably well in simple �ows and save substan�
tial CPU time due to the reduced resolution requirements� They have also been applied to
some complex �ows around obstacles �Rodi et al� ��� which� however� were found not
to be very sensitive to variations in the boundary conditions�

��� Other approaches

Wall functions establish a relation between the local wall shear stress and the velocity at
the wall
adjacent grid point� This can be generalized to the case where information on a
line or a whole plane at some distance parallel to the wall is used to generate the wall
shear
stress at a certain point� Such information can be introduced as a boundary condition in
unsteady turbulent boundary layer equations which are solved along the wall within the
wall cell using an embedded grid �Balaras� Benocci � Piomelli ��� �cf� Fig� �d�� In these
equations turbulence is modelled with an eddy viscosity depending on the wall distance�
Similar work has been done by Cabot ������� where di�erent models of this type were
devised and applied to �ow in a plane channel and over a backward facing step� Although
yielding better results in some computations compared to wall functions� these methods
have not found wide application yet due to their implementational complexity�

Another approach that can be introduced more easily in an LES is based on using the
no
slip condition which in turn requires re�nement in the wall
normal direction� Parallel
to the wall� however� the step size of the outer region is maintained leading to substantial
savings� The idea then is to replace the unresolved near
wall structures by elements from
RANS simulations� Schumann ����� decomposed 	ij into an isotropic part for which the



Smagorinsky model is used and an anisotropic part resulting from the mean �ow gradient�
The latter part is modelled with an eddy viscosity �t�an � min�c�x�z� �d�dhui�dy This is
a RANS
like model in which close to the wall the size of the grid �x�z is replaced by the
distance from the wall d as a length scale� A similar switch is used in the DES approach
of Spalart et al� ���� mentioned above so that close to a wall the original RANS model
is employed �see Fig� �b�� DES� although conceived for di�erent applications� has been
tested for channel �ow by Nikitin et al� ������� The authors observe a spurious bu�er layer
re�ecting di�culties in connecting the quasi
steady RANS layer close to the wall to the
outer unsteady computation� Further adjustments need to be introduced to apply DES
in such cases� Bagett ��	� discussed the issue of blending RANS with LES turbulence
models and points out the requirements for adequate spanwise resolution in the near
wall
region in order to capture the energetically dominant features� If these are not captured�
unphysical structures are generated which degrade the result�

��� In	ow and out	ow conditions

After discussing the boundary conditions at solid walls we brie�y mention the conditions at
arti�cial boundaries� an issue shared with DNS� Turbulent out�ow boundaries are relatively
uncritical� Here� damping zones or convective conditions are generally applied which allow
vortices to leave the computational domain with only small perturbations of the �ow in its
interior� A convective condition for a quantity � reads

��

�t
� Uconv

��

�n
� � ����

applied on the outlet boundary with n the outward normal coordinate and Uconv an appro�
priate convection velocity such as the bulk velocity�

The di�culty posed by turbulent in�ow conditions stems from the fact that LES computes a
substantial part of the spectrum and hence requires speci�cation of the in�ow conditions in
all this spectral range� not just the mean �ow� The need for this information can be avoided
by imposing streamwise periodicity with a su�cient periodic length� but this is inapplicable
in many practical �ows� Imposing the mean �ow plus random perturbations is generally
not successful since these perturbations are unphysical so that a large upstream distance
must be computed to produce the correct turbulence statistics� With more sophisticated
perturbations the distance can be shortened� This is a subject of current research� If
feasible the best solution is to impose some fully developed �ow at the inlet� A separate
companion LES� e�g� with streamwise periodicity� can then be performed to generate
velocity signals at the grid points in the in�ow plane of the main LES� An example is the
�ow around a single cube investigated in Rodi et al� �����

��� Sample computations

In order to illustrate the above discussion� we present results from a standard test case for
LES calculations� namely fully developed plane channel �ow� For this �ow between two
in�nitely extended plates� periodic conditions can be imposed in the streamwise direction x
and the spanwise direction z� with typical domain sizes of Lx � �� and Lz � �� respectively�
Reference quantities are the channel half
width 
 and the bulk velocity Ub� DNS of this
�ow has been performed for low and medium Reynolds number of which the currently



highest is Reb � Ub
�� � ���� �Moser� Kim � Mansour �� employing a high
precision
spectral method with �	�� ���� �	� points� This Reynolds number has been used in the
computations below� The results have been obtained with the structured collocated �nite
volume code LESOCC developed by Breuer � Rodi ����� The dynamic Smagorinsky
model was used with test
�ltering and averaging in planes parallel to the walls� The bulk
Reynolds number was �xed and an external pressure gradient adjusted so as to yield the
desired �ow rate�

Fig�	 shows a computation where resolving the near
wall �ow has been attempted� i�e� no
wall
function was used� The number of points in the y direction is �� and a stretching
of ��$ has been applied to cluster them close to the walls� The �gure shows the average
streamwise velocity and the rms
�uctuations� The computed shear stress 	w yields Re� �

��� which is much below the Re� � �� in the DNS� The value of u� �
q
	w�� determines

the scaling of the axes� and in particular the hui� � f�y��
curve is quite sensitive to it�
If the v
 and w
 �uctuations are plotted in outer scaling� i�e� not by u� � they are even
further below the DNS curves� The observed failure occurs because resolving the �ow near
the wall requires adequate discretization in all three directions� not just normal to the
wall� Here in particular the spanwise resolution is too coarse� In Fig� the wall
normal
resolution has been improved using �� points in y with clustering in the bu�er layer
accompanied by a substantially better resolution in spanwise direction� The computed
shear stress yields Re� � �	�� and the Reynolds stresses compare quite satisfactorily with
the DNS data� It is obvious that with a structured discretization the grid in the interiour
of the channel is �ner than it really needs to be� due to the requirements near the wall� To
avoid this� a method with local re�nement is bene�cial as discussed above� Fig� �� presents
a computation using the wall function of Schumann ������ In the wall
normal direction
� equidistant volumes are used� In this case the �rst cell center is still located in the
bu�er layer� but the viscous sublayer is well bridged� The computed wall shear stress gives
Re� � �	�� which compares very well with Re� � �� in the DNS� The Reynolds stresses
are well predicted� the v
�uctuations being somewhat too small� With this approach it is
of course not possible to reproduce the peak in the u
�uctuations close to the wall� For an
LES using a wall function the present Reynolds number is relatively low� With higher Re
the �rst point usually lies beyond the bu�er layer at y� 	 ����

In Fig� �� we �nally show cuts of the instantaneous u
 and w
velocity of the third case�
Straight lines have been inserted connecting the data points� The angles they form show
that� as discussed in Section �� on the grid level the discrete solution is not smooth� i�e� the
velocity scales close to the cuto� are hardly resolved� Hence� any gradient computed from
these values by� e�g�� a second order scheme can only be a crude approximation to the  true 
gradient� Recall that gradients enter in the contribution of the SGS model� This �gure
illustrates the close interplay between the numerical discretization and the subgrid
scale
modelling� The amount of SGS dissipation in eddy
viscosity models can be monitored by
the ratio �t��� It varies locally and in the above computations attains values up to � in the
last case which shows the dominance of the SGS dissipation with respect to the resolved
dissipation� Further applications of LES� in particular to blu� body �ows� are discussed in
other chapters of this volume�



� Concluding remarks

We have described the kconcept of the Large
Eddy Simulation technique which in fact is
extremely simple and makes it appealing� It turns out� however� that several issues are not
simple for numerical or physical reasons� We have aimed at making the reader aware of
these points and at clarifying related concepts� In practice� LES is characterized by a large
number of decisions concerning the numerical and physical modelling which have to be
taken and which all in�uence the �nal result� Thorough testing is still a major occupation
of the community� and this will presumably not change in the near future�

On the other hand� LES has a potential on several levels� The �rst is the determination of
statistical quantities such as the average �ow �eld with a higher accuracy than obtained
by statistical models� This is based on interchanging the order !�rst averaging 
 then
computing �RANS� to !�rst computing 
 then averaging �LES�� To pay o�� the drastic
increase in cost has to be justi�ed by an improved quality of the results� The next level is
the determination of statistical quantities which are inaccessible to RANS such as two
point
correlations� The third level is to use the instantaneous information on the structure of
the �ow in order to improve the understanding of vortex dynamics� transition phenomena�
etc� or to determine dynamic loading� Finally� this information can be coupled to other
physical processes either within the �ow �eld such as the generation of sound� the transport
of scalars �temperature� sediment� ����� chemical reactions� etc�� or to external processes
such as the dynamical response of a solid structure� This type of feature is required for
important �elds of research such as �uid
structure aerodynamic coupling and turbulence
control� In the future� the applications of LES will turn from the present academic cases
to more applied con�gurations�
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Figure �� Illustration of Schumann�s approach to LES as discussed in the text�
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Figure �� Gaussian �lter GG and box �lter GB as de�ned in the text� both
plotted for the same �lter width ��
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Figure �� Filtered functions u and u obtained from u�x� by applying a box
�lter� a� narrow �lter� b� wide �lter�
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Figure �� E�ect of �ltering on the spectrum� Here the box �lter is used
corresponding to Figure �� but the curves are similar for other �lters such as
the Gauss Filter� u� and u� are illustrated by the area between the curves for
u and u� and u and u� respectively� The vertical line is related to the Fourier
cuto� �lter on the same grid�
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Figure �� Illustration of the dynamic modelling idea as discussed in the text�



a

 

 ��

b

 

 log ���

Figure �� Discetization of derivatives �Sketch� in case of a DNS �a� and an LES
�b�� %
 spectrum of u or u� � � � �eff � � � � �eff��� the additional �lter when
numerically computing a derivative as discussed in the text� here for a second

order central formula� The vertical axis has an arbitrary scale� In the LES
case we consider u to be obtained by an ideal low pass �lter for illustration�
Observe that due to the logarithmic frequency scale 		 $ of the discretization
points correspond to the range between the maximum of �eff and �� for a
second order scheme in a three dimensional computation�



a

d < ∆

b

1u

τw

y1

c

1u

τw

d

Figure �� Schematical pictures for the di�erent approaches close to solid walls� a� resolving
the near
wall structure� b� blending with a RANS model� c� application of a wall function�
d� determination of wall stress by boundary layer equation solved along the wall on an
imbedded grid�
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