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Chapter 1

Mathematical Modeling

In orderto simulatefluid flow, heattransfer and otherrelatedphysical phenanena,
it is necessaryo describethe associateghysicsin mathenatical terms. Nearly all

the physical phenanenaof interestto usin this bodk are governedby principles of

corsenation and are expressedin termsof partial differential equatios expressing
theseprinciples. For examge, the momentumequatims expressthe conseration of

linearmomenum; the enegy equaion expresseghe conseration of total enegy. In

this chapterwe derive a typical corsenation equationand examire its mathenatical
properties.

1.1 Consewation Equations

Typicd governing equatios descriling the conseration of mass momentun, eneny,
orchemicakpeciesarewrittenin termsof specificquariities - i.e., quantitiesexpressed
onaperunit masshasis.For exanple, the momentumequationexpresseshe principle
of conseration of linear momentumin termsof the momenum per unit mass,i.e.,
velocity. Theequatia for conseration of chemicalspeciesxpressesheconsevation
of themassof the speciesn termsof its massfraction

Let us considera specificquantity ¢, which may be momertum per unit mass,or
theenepy perunit masspr ary othersuchquantity Consideracontrd volume of size
Ax x Ay x Az shavn in Figurel.1. We wantto expressthevaration of ¢ in thecontol
volume over time. Let usassumehat ¢ is governedby a consevation principle that
states

Accurnulationof ¢ in thecortrol volumeovertime At =
Netinflux of @ into cortrol volume +
Netgeneationof ¢
insidecontrd volume
1.1
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Ix - — I+ Ax
7 el
7 AZ
- & —
Figurel.1: ControlVolume
Theaccunulationof @ in thecortrol volume overtime At is givenby
(POLY ) — (PPAY ), (1.2)

Here,p is thedensityof thefluid, A¥ is thevolumeof the contiol volume(Ax x Ay x
AZ) andt is time.
Thenetgeneratio of ¢ insidethe contrd volumeovertime At is given by

NN (1.3)

whereSis thegeneréion of ¢ perunit volume. Sis alsosometimesalledthe source
term.

Let usconsidetheremainirg term,thenetinflux of ¢ into thecontrd volume Let
Jx repesentheflux of ¢ coming into thecontrd volumethroud facex, andJ, , ,, the
flux leaving thefacex+ Ax. Similar fluxesexist onthey andz facesrespectiely. The
netinflux of ¢ into thecontrd volume overtime At is

(Jc— I a) DYAZAL + (Jy -3, Ay) DXOZD + (3 — 3, ) DXOYAL  (1.4)

We have not yet saidwhat physical mechaisms causethe influx of @. For physical
pheromenaof interestto us, ¢ is transpoted by two primary mechaisms: diffusion
dueto molealar collision, andconvectiondueto the motion of fluid. In mary cases,
thediffusionflux maybewritten as

29
‘]diffusion,x = _ra (1.5)
Thecorvective flux maybewrittenas
‘]con/ectionx = pug (1.6)
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Here thevelocityfield is givenby thevecta V = ui +vj +wk. Thusthenetconvective
anddiffusive flux maybewritten as
e
—_r==
(uo=r3%),

29
J = (puq) —r —) 2.7
X+AX X O

K

where(pu)y is themassflux through the contol volumefaceatx. Similarexpressions
maybewritten for they andz directionsrespectiely.
Accumdatingterms,anddividing by A¥ At Equation1.1 maybewrittenas

P~ O G- 3en) | (3= Yeny)

At Ax Ay

(‘]Z B ‘]z+Az)
A +S (1.8

Takingthelimit Ax,Ay,Az, At — 0, we get

o00) _ 0% 9y 03,
o ax oy a2 t° (2.9

It is corvenientto write Equationl.9as

9 9 9 9
3 (po) + ax (pug) + ay (pve) + e (pwo) =

or, in vectornotation

d(py)
ot

+0-pVe=0-(TJp)+S (1.10

1.1.1 Discussion
It is worth noting thefollowing abaut the above derivation:

e The differertial form is derived by consideing balancesover a finite contol
volume.

e Thowghwe havechoserhexahedracontrd volumeonwhichto doconseration,
we can,in principle chooseary shape.We shoud get the samefinal govern-

ing differential equatia regaidlessof the shapeof the volume choserto do the
derivation.
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e Theconseretion equationis writtenin termsof aspecificquantity ¢, whichmay
beenegy perunitmasqJ/kg) or momenum perunitmasgm/s)or somesimilar
guantity

e The conseration equatim is written on a per unit volumeper unit time basis.
Thegeneationtermin Equation 1.10for examge, is thegererationof ¢ perunit
volumeperunittime. If ¢ wereenegy perunit mass Swould bethegeneation
of enegy perunit volumeperunit time.

1.1.2 Consemwation Form

Equatian 1.10represetstheconservativer divergenceform of theconserationequa-
tion. Thisform is charactaeed by thefactthatin steadystate,in the absene of gen-
eration thedivergenceof theflux is zera

0.J=0 (111)

whereJ = Ji + Jyj + JK. By usingthe contiruity equdion, we may write the non-
conservativéorm of Equation1.10

@ﬂ)v-m(p:rm-mw Or-Oe+S (112)
The divergenceof J representsthe netefflux perunit volumeof J. Thus,the conser
vative form is a direct statemengtiboutthe conseration of ¢ in termsof the physical
fluxes (corvectionanddiffusion). The non-mnsenative form doesnot have a direct
interpietationof this sort. Numericalmethod thatare developedwith the divergerce
form asastartingpoint canbe madeto reflectthe conserationproperty exactlyif care
is taken. Thosethatstartfrom Equation1.12canbemadeto appioximateconseration
in somelimiting sensebut not exactly.

1.2 Governing Equations

Thegoverningequatimsfor fluid flow, heatandmasgransfe, aswell asothertranspot
equatiams, may be representedy the conserative form, Equation 1.10. Let us how
considersomespecificcaseof the conseration equatiorfor ¢.

1.2.1 The Energy Equation

The gereralform of the enegy equatia is quite elaboate,thoud it canalsobe cast
into the generalform of Equationl1.10. For simplicity, let us assumdow-speediow
andnegligible viscousdissipation.

For this case the enegy equatian may be written in termsof the specificenthaly

has
(aaLth)wLD-(pVh) =0-(kAT) +5S, (1.13)
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wherek is the thermalcondictivity and T is the tempeature. For ideal gasesand
inconmpressiblesubstances,

dh=CpdT (1.19
sothatEquationl.13maybewritten as
@+D-(pVh):D- LDh +S, (1.19
ot Co

Compaing Equation 1.15with Equation 1.10shaws thatthe enegy equationcanbe
castinto the form of the geneal consevation equation, with ¢ = h, I' = k/C, and

S=§.

1.2.2 The Momentum Equation

Themomenum equatiorfor a Newtonianfluid in thedirection x maybewrittenas

Japu

_ op
Wﬁ-D-(qu)_D-(uDU)—&-I-SU (1.19

Here,S, contans thosepartsof the stressensomotappeaing directly in thediffusion

term,anddp/dx is pressue gradien. We seethatEquation1.16hasthe sameform as
thegeneal conserationequatim 1.10,with ¢ = u, ' = p andS= —dp/dx+ S,

1.2.3 The SpedesEquation

Considerthe transpor of a mixture of chemicalspecies.The equatim for the conser
vation of massfor a chemicalspeciei may be written in termsof its massfraction
Y., wherey; is definal asthe massof specied per massof mixture. If Fick's law is

assumedalid, thegoverningconserationequatia is
apY,
— 0 (pVY) = 0- (MO +R (117

I'; is thediffusioncoeficiert for Y; in the mixture andR; is therateof formatian of Y;
throughchenical reactions Again we seethatEquationl.17hasthe sameform asthe
gereralconsevationequation1.10,with ¢ =Y;, I =T;, andS=R,.

1.3 The General Scalar Transport Equation

We have seerthattheequaionsgoverningfluid flow, heatandmassransfercanbecast
into a singlegeneraform which we shallcall the geneal scalartransrt equation

d(py)
ot

If numerical methals canbedevisedto solve this equationwe will have a framework
within whichto solve the equationsfor flow, heat,andmassransfer

+0-(pVe)=0-(Tdep)+S (1.18
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1.4 Mathematical Classification of Partial Differ ential
Equations

The gereral scalartranspat equationis a seconderder partial differential equation
(PDE) governirg the spatialandtempoal variationof ¢. If the propertiesp andrl", or
thegeneationterm Sy arefunctiors of ¢, it is non-linear Ignoring noniinearitiesfor
themomern, we examire the behaior of this equation.

It is instructive to considera geneal secondsrderPDE given by

agx+ b@y+cpy+do+eq+fo+9g=0 (1.19)

The coeficients a,be,d,e,f andg arefunctionsof the coordnates(x,y), but not of ¢
itself.
The behavior of Equation 1.19may be classifiedaccordng to the signon the dis-
criminan
2 =b?—4ac (120)

If 2 < 0thePDEis calledelliptic. If 2 = 0,thePDEis calledparabolic. If 2 > 0the
PDEis calledhypebolic. Let usconsidettypical examgesof eachtypeof equation

1.4.1 Elliptic Partial Differential EQuations

Let us considersteadyheatcorductionin a onedimensioml slab, as shavn in Fig-
urel.2 Thegovernirg equdion andbourdaryconditiors aregivenby

d [ 0T

2 (ka) —0 (121)
with

TO) = T

TL = T (122)

For constahk, the solutionis given by

T(X) =Ty+ @x (123)

This simpleproblemillustratesimportantpropertiesof elliptic PDEs.Theseare

1. Thetempeatureat ary point x in thedomainis influencedby the temperattes
onbothboundaries.

2. In the absenceof sourceterms, T (x) is bourded by the temperattes on the
bourdaries.It canrot be eitherhigher or lowerthanthe bourdarytemperattes.

It is desirablevhendevisingnumeical schemeshatthesebasicpropertiesbereflected
in thecharacteristicef thescheme.

14



Figurel.2: Condictionin a One-DimesionalSlab
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1.4.2 Parabolic Partial Differ ential Equations

Considerunsteadycondtction in the slabin Figurel.2. If k, p andC, areconstat,
Equatia 1.13maybewritten in termsof thetempersureT as

oT 0%T
=95 (124)
wherea = k/(pCp) is thethermaldiffusivity. Theinitial andbourdaryconditimsare

givenby

T(x,0) = T(x
T(O,t) = Ty
TILY) = T, (125)

Usingaseparatiorof variadestechnque,we maywrite the solutionto this prodemas

* —_anr?
T =To+ 3 anin(”ix) e (126)
n=1 L

where
By = L/ T sm( T)dx n=1,23,. (127)

We notethefollowing abou the solution:

1. ThebourdarytempeatureT, influenesthe tempeatureT(x,t) atevery pointin
thedomain, justaswith elliptic PDE’s.

2. Onlyinitial condtionsarerequied(i.e.,condtionsatt = 0). No fina conditions
arerequiral, for examge condtionsatt — «. We donotneedo know thefuture
to solve this prodem!

3. Theinitial condtions only affect future tempeaturesnot pasttempeatures.

4. Theinitial condtions influercethetemperatte at every pointin thedomainfor
all futuretimes. Theamoun of influencedecreasewith time, andmay affect
differert spatialpointsto differentdegrees.

5. A steadystateis reachedor t — . Here,the solutionbecanesindepe&dentof
T(x,0). It alsorecoversits elliptic spatialbehaior.

6. Thetemperatteis bourdedby its initial andbourdarycondtionsin theabsence
of sourceterms.

It is clearfrom this problemthatthe varialle t behaesvery differertly from the vari-
ablex. Thevariationint admitsonly onewayinfluenceswhereathevarialle x admits
two-wayinfluences. t is sometimeseferedto asthe marching or parabolic direction
Spatialvariades mayalsobehaein thisway, for exampe, theaxial directian in apipe
flow.

16



1.4.3 Hyperbolic Partial Differential Equations

Letusconsidrtheone-dmensioral flow of afluid in achanng asshavnin Figurel.3.
Thevelocity of thefluid, U, is aconstaty alsoU > 0. Fort > 0, thefluid upstrean of
the chamel entrances held at temperatte T,. The propertiesp andC, areconstant
andk = 0. Thegovernirg equdionsandbourdary corditionsaregivenby:

7] 0
51 (PCPT) + 5 (PCpUT) =0 (1.28
with
T(x0 = T
T(x<Ot) = T, (1.29

You cancornvince yourself that Equation 1.28 is hyperbdic by differentiatingit once

with respecto eithert or x andfinding the discrimirant. The solutionto this prodem
is

T(x,t) = T((x—Ut),0) (1.30
orto putit angherway
X
T(xt) = T fort< 0
= T, fort 23 (1.31)

Thesolutionis essentiallyastepin T traveling in thepositive x direction with avelocity
U, asshavnin Figurel.4.

We shouldnotethefollowing abou the solution

1. The upsteamboundary condition (x = 0) affeds the solutionin the doman.
Conditiors downstrean of thedoman do notaffectthe solutionin thedomain

2. Theinlet bourdarycondtion propagateswith afinite speedlJ.

3. Theinlet bourdarycondtion is notfelt at pointx until t = x/U.

1.4.4 Behavior of the Scalar Transport Equation

The geneal scalartranspat equationwe derived earlier (Equdion 1.10 hasmuchin

comnonwith thepartialdifferential equdionswe have seerhere. Theelliptic diffusion
eqguationis recoveredif we assumesteadystateandthereis noflow. Thesameprodem
solvedfor unsteadystateexhibits parabdic behaior. Thecorvectionsideof thescalar
transrt equatie exhibits hyperbolic behaior. In mostengineeing situations,the
eqguation exhibits mixed behaior, with the diffusiontermstendirg to bring in elliptic

influerces,andthe unsteadyandcorvectiontermsbringing in parabdic or hyperbolic
influerces. It is sometimesusefulto considemarticularcoordnatesto be elliptic or
pardolic. For exampe, it is usefulin parallic problemsto think abait time asthe
pardolic coordnateandto think of spaceastheelliptic coordnate.

17
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Figure 1.4: TemperatureVariationwith Time
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Thouwghit is possibleto devise nunrerical methodswhich exploit the particdar na-
ture of the gereral scalartranspaet equatia in certainlimiting caseswe will notdo
thathere. We will conceltrate on developing numericd methals which are gereral
enaighto hande the mixedbehaior of thegeneratranspor equation

Whenwe studyfluid flow in greaterdetail, we will have to dealwith coupledsets
of equatims, asoppcedto a single scalartranspor equation Thesesetscanalsobe
analyedin termssimilarto thediscussiorabove.

1.5 Closure

In this chager, we have seenthatmary physical phenanenaof interestto usaregov-
ernal by conserationequatims. Theseconsevationequatims arederivedby writing
balarcesoverfinite contrd volumes.We have seerthatthecorsenationequaionsgov-
ernirg the transpor of momernum, heatandotherspecificquartities have a commam
form embadlied in the gereral scalartransprt equatim. This equdion hasunsteady
convection diffusionandsourceterms.By studying thebehaior of cananical elliptic,
pardolic andhypebolic equations,we begin to undestandthe behaior of thesedif-
ferert termsin deternining thebehaior of thecompuedsolution Theidealnumerical
schemeshouldbe ableto repralucetheseinfluences correctly
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Chapter 2

Numerical Methods

In the previous chapter, we sav that physical phenanenaof interestto us could be
descritedby agereralscalartranspet equation. In this chapterwe examinenumerical
methals for solving this type of equation and identify the main compmentsof the
solutionmethal. We alsoexamire waysof characterizig our numercal methodsin
termsof accurngy, corsisteng, stability andcorvergence.

2.1 Overview

Our objective hereis to develop a numeri@l methodfor solving the genera scalar
transrt equation. Fundanentalto the develgpmentof anumercal methodis theidea
of discretization.An analyticd solutionto a partial differentialequation givesusthe
value of ¢ asafunction of theindepeentvariablegx,y, z,t). Thenumeical solution
ontheotherhand,aimsto provide uswith values of ¢ atadiscretenunmberof pointsin
thedomain.Thesepoints arecalledgrid points thoughwe mayalsoseethemreferied
to asnodesor cell centoids, depading on the methal. The processof converting
our governirg transpaet equationinto a setof equatioss for the discretevaluesof ¢ is
calledthediscretizationprocessandthe specificmethod employedto bring abaut this
conversionarecalleddiscretizationmethod.

Thediscretevaluesof ¢ aretypicdly describedy algebric equatimsrelatingthe
values at grid pointsto eachother The developmentof numerical methals focuses
on boththe derivation of the discretesetof algebaic equdions, aswell asa methal
for their solution In arriving at thesediscreteequatios for ¢ we will be requied
to assumehow ¢ variesbetweengrid pointsi.e., to make profile assumptioa Most
widely usedmethod for discretizatiorrequire local prdfile assumptios. Thatis, we
prescibe how ¢ vaiiesin thelocal neightorhaod surroundinga grid point, but not over
theentiredomain.

The corversionof a differentialequationinto a setof discretealgelaic eqlations
requresthediscretizatiorof spaceThisis accomtishedby meanof meshgeneation.
A typicalmeshis shavnin Figure2.1. Meshgeneationdividesthedomainof interest
into elemetts or cells, andassociatesvith eachelementor cell oneor morediscrete
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Figure2.1: An Exampe of aMesh

valuesof ¢. It is thesevalues of ¢ we wishto compue.

We shouldalsodistinguishbetweerthe discretizecequatims andthe method em-
ployedto solve them. For our puposes|et us saythatthe accurag of the numeical
solution i.e., its closenesgo the exact solution depeis only on the discretization
proess,andnot on the method empoyed to solve the discreteset(i.e., the pathto
solutior). The pathto solutiondeternineswhetherwe are successfuln obtaininga
solution andhow muchtime andeffort it will costus. But it doesnot determinethe
final answer (For somenonlinearproblens, the pathto solutioncandeternine which
of severalpossiblesolutionsis obtained For simplicity, we shallnot pursuethisline of
investigationhere)

Sincewe wish to getananswetto the original differential equationit is apprari-
ateto askwhetherour algebaic equatia setreally gives usthis. Whenthe number of
grid pointsis small,thedepature of thediscretesolutionfrom theexactsolutionis ex-
pectedo belarge. A well-behaednumerichschemewill tendto theexad solutionas
the nunber of grid points is increasedThe rateat which it tendsto the exactsolution
deperls on the type of prdfile assumptionsnadein obtairing the discretizatio. No
matterwhatdiscretizatiormethal is emplagyed, all well-behared discretizatiormeth-
odsshouldtendto the exact solutionwhena large enoudp nunber of grid poirts is
emplg/ed.
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2.2 MeshTerminology and Types

The physical dommain is discretizedby meshingor gridding it.(We shall usetheterms
meshandgrid interchamgeablyin this book). We shallusethe termindogy shavn in
Figure 2.2 in describirg our meshes. The fundamentalunit of the meshis the cell
(somdimescalledthe element).Associatedwvith eachcell is the cell centoid. A cell
is surrondedby faces which meetat nodes or vertices In threedimersions,theface
is asurfacesurroindedby edges In two dimensims, facesandedgesarethesame.

A variety of meshtypesareencounteredin practice.Thesearedescribedelow.

2.2.1 Regular and Body-fitted Meshes

In mary casespurinterestlies in analyzirg domainswhich arereguar in shape:rect-
andes, cubes,cylinders, spheres.Theseshapesxanbe meshedby regular grids, as
shavnin Figure2.3(3. Thegrid linesareorthognalto eachother andconfom to the
bowndariesof thedomain Thesaneshearealsosometimegalledorthagonalmeshes.

For mary practicalproblems however, thedomansof interestareirreguarly shaped
andregular meshesnaynot sufiice. An exanpleis shovn in Figure2.3(b). Here,grid
linesarenotnecessarilprthagonalto eachothe, andcurve to conformto theirreguar
geametry If regular grids areusedin thesegeonetries,stair steppingoccursatdomain
bowndariesasshovn in Figure2.4. Whenthephysicsatthebourdaryareimportantin
deternining thesolution,e.g, in flows domnatedby wall sheaysuchanapgoximatian
of theboundarymaynotbeacceptale.

2.2.2 Structured, Block Structured, and Unstructured Meshes

Themesheshovn in Figure2.3areexampes of structuled meshesHere,every inte-
rior vertex in the domainis conne&tedto the samenumter of neigtbor vettices. Fig-
ure 2.5shaws a blockstructuredmesh.Here,the meshis dividedinto blocks, andthe
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Figure2.3: RggularandBody-+itted Meshes

@

Figure2.4: StairSteppedMesh
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Block

Figure2.5. Block-StrucuredMesh

meshwithin eachblock is structured However, the arrargementof the blocksthem-

selesis notnecessarilgtructured Figure2.6 shavs anunstructuedmesh.Here,each
veltex is connetedto anarbitrarynumbe of neigtbor vertices.Unstructued meshes
imposefewertopologcal restrictiors ontheuser andasaresult,makeit easieito mesh
very compex geoméries.

2.2.3 Conformal and Non-Conformal Meshes

An exanple of a nonconfamal meshis shavn in Figure2.7. Here,the verticesof a
cell or elementmayfall onthefacesof neigtboring cells or elementsin contrastthe
meshesn Figures2.32.5and2.6areconfamal meshes.

2.2.4 Cell Shapes

Meshesmay be constrietedusinga variety of cell shapes.The mostwidely usedare
quarilateralsandhexahedra. Methodsfor gene&ating goodquality structuredneshes
for quadilateralsandhexahedrahave existedfor sometime now. Thoughmeshstruc-
ture imposesrestrictiors, structuredquadilateralsand hexahedraare well-suitedfor
flowswith adomirantdirection,suchasbourdarylayerflows. Morerecettly, ascom-
putatinal fluid dynamicsis becaning morewidely usedfor analyZng industrial flows,
unstricturedmeshesrebeconing necessaryo handlecompex geometies. Here, tri-
andesandtetraheda areincreasinglybeingused,andmeshgeneréon techniqeesfor
their gererationarerapidly reachig matuity. As of this writing, thereareno gereral
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Figure2.8: Cell Shapesia) Triangle,(b) Tetraheron, (c) Quadrilateal, (d) Hexahe-
dron (e) Prism,and(f) Pyramid
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purposetechnigesfor geneatingunstricturedhexahedra. Anothe recenttrendis the
useof hybrid meshesFor exampe, prismsareusedn bourdarylayers transitioring to
tetrahedain thefree-streamin thisbook we will develogp numerial methalscapale
of usingall thesecell shapes.

2.2.5 Node-Basedand Cell-BasedSchemes

Numeical methals which storetheir primary unknowns at the nock or vertex loca-
tions are callednodebasedor vertex-basedschemes.Thosewhich storethemat the
cell centrad, or associatehemwith the cell, are called cell-basedschemes.Finite
elementmethod aretypically node-basedschemesandmary finite volume methals
arecell-basedFor structuedandblock-structuredmeshesompsedof quadilaterals
or hexahedrathe numker of cellsis apgoximatelyequalto the numter of nodes,and
the spatialresolutionof both storageschemess similar for the samemesh.For other
cell shapestheremaybe quitea big differercein thenunberof nodesandcellsin the
mesh.For triangles, for exanmple, therearetwice asmary cellsasnodes,on average
This fact mustbe takeninto accoun in decidirg whethe a given meshprovidesade-
quateresolution for a givenproblem Fromthe point of view of developingnumeical

methals,bothschemefave advartagesanddisadwartagesandthechoicewill depend

28



Elow Triangles

Boundary Layer

Figure2.9: Hybrid Meshin Bounday Layer

onwhatwe wish to achieve.

2.3 Discretization Methods

So far, we have alludedto the discretizationmethod but have not said specifically
whatmethodwe will useto corvert our gereraltranspor equatia to a setof discrete
algelraic equations.A numter of popuar methalsareavailablefor doingthis.

2.3.1 Finite Differ ence Methods

Finite difference methals appoximate the derivatives in the governing differential
eqguationusingtruncded Taylor seriesexpansions.Considera one-dmensionascalar
transrt equatio with a corstantdiffusioncoeficient andno unsteadyor convective
terms: )
d<g
Nr—+S=0 2.

We wishto discretizehediffusionterm. Referringto theonedimensioal meshshavn
in Figure2.10,we write

d AX)? (o

%:%_Ax(dii’);( l (%);o((mﬁ) 22
and )
d AX)? (d

men() 2 (57) ooy e

The term O((Ax)3) indicatesthat the termsthat follow have a depenlenceon (Ax)"
wheren > 3. Subtractiig Equations2.2from Equatio 2.3 gives

do\ _@&-9¢ 2
(52), = 25 +ol@0?) 24
By addingthetwo equdionstogetter, we canwrite

o\ _a+e-2¢ 2
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Figure2.1Q One-DimesionalMesh

By including the diffusion coeficient anddrogping termsof O((Ax) 2) or smaller we

canwrite 0 ot o 20,
r (W)z =M (2.6)
ThesourcetermSis evaluatedat the point 2 using
S,=S() (2.7)
Substitutingequations 2.6 and2.7 into Equation 2.1 gives the equation
(Az)zz(pzz (Al;)z(pﬁ' (Al;)z%+52 (2.8)

This is the discreteform of Equation2.1. By obtainirg anequaion lik e this for every
pointin the mesh,we obtainan setof algebraicequatimsin the discretevaluesof ¢.
This equdion setmaybe solvedby a varietyof method whichwe will discusdaterin
thebook

Finite differencemethals do not explicitly exploit the conseration prindple in
deriving discreteequatias. Thowgh they yield discreteequatioms thatlook similar to
othermethoddfor simplecasesthey arenotguaanteedo do soin morecomplicated
casesfor examge onunstricturedmeshes.

2.3.2 Finite Element Methods

We consicer againthe onedimensioml diffusion equation Equation 2.1. Thereare
differentkinds of finite elemenimethod. Let uslook atapopuar variart, the Galerkin
finite elementmethod Let @ beanappoximationto ¢. Since is only anappraima-
tion, it does not satisfyEqudion 2.1 exactly, sothatthereis aresidualR:

d%p
g2 TS=R 2.9)
We wish to find a @ suchthat
/ WRdx = 0 (2.10)
d

omain

W is aweightfunction, andEquation2.10requilesthattheresidualR becone zeroin
aweighted sense.In orderto geneate a setof discreteequatios we usea family of
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weiglt fundionsW,, i = 1,2,...N, whereN is the nurrber of grid points,ratherthana
singleweightfunction Thus, we requre

/ WRdk=0 i=1,2,..N 2.19
domain

TheweightfunctionsW, aretypically local in thatthey arenon-zro over elemen i,
but are zeroeverywhereelsein thedomain Further we assumea shapefunctionfor
@, i.e.,assumenow ¢ varies betweemodes.Typically this variatian is alsolocal. For
exanple we may assumehat ¢ assumes piece-wisdinear profile betweerpoints1
and?2 andbetweerpoints 2 and3 in Figure2.10. The Galerkinfinite elementmethal
requres thatthe weightandshapefunctionsbe the same. Perforning the integration
in Equation 2.11resultsin a setof algelyaic equaionsin the nodal valuesof ¢ which
maybesolvedby a variety of method.

We shouldnoteherethatbecausehe Galerkinfinite elementmethal only requires
theresidualto be zeroin someweightedsensejt doesnot enface the consevation
principlein its original form. We now turnto a metha which employs conserationas
atool for developingdiscreteequatims.

2.3.3 Finite Volume Method

Thefinite volume method(sometimescalledthe contrd volume methal) dividesthe

domain in to afinite numbe of non-overdappingcells or contrd volumesover which

corsenationof ¢ is enforcedin a discretesense.lt is possibleto startthe discretiza-
tion processwith a directstatemenbf conserationonthecontrolvolume, asin Equa-

tion 1.9in the previous chapier. Alternatively we may startwith the differentialequa-
tion andintegrateit over the cortrol volume Let usexamnethediscretizatiorproaess
by looking at onedimensimal diffusionwith a sourceterm:

d do B
ix (r&> +S=0 (2.12

Considera one-dmensionalmesh,with cells asshavn in Figure2.11. Let us store
discretevalues of ¢ at cell centrads, dended by W, P andE. The cell facesare
derotedby w ande. Let usassumehefaceareago beunity.

We focus onthe cell associateavith P. We startby integrating Equatiaon 2.12over

thecell P. Thisyields
e d dqo e B
/W - (r&) dx+/w Six=0 2.13

(rz—‘)’(’)e— (r‘;—‘)’(’)w+/vvede=o 2.1

We notethatthis equationcanalsobe obtainedoy writing a heatbalanceover thecell
P from first principles. Thus far, we have madeno approimation.

sothat
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Figure2.11: Arrangemeniof ControlVolumes

We now make aprofileassumptioni.e.,we make anassumptio abouthow ¢ varies
betweercell centroid. If we assumehat ¢ varieslinearly betweercell centroids, we
maywrite

Me(e =) Tw(®-@) , <
- +SAx=0 215
(OXe) (O%w) (215)
HereSis theaverage valueof Sin the contiol volume We notethattheabove equation
is no longerexactbecausaf the appoximatian in assuminghat ¢ variesin a piece-
wiselinearfashionbetweergrid poirts.
Collectingterms,we obtain

3p¢h = A ¢k +ay @y +b (2.16)
where
a = Te/(0%)
ay = lw/(dxw)
% = atay
b = SAx (217)

Equatiossimilarto Equation2.16maybederived for all cellsin thedomain, yielding
asetof algebraic equatims, asbefore thesemaybe solvedusinga variety of director
iteratve method.

We notethefollowing aboutthe discretizatio process.

1. Theprocessstartswith the statemenbf conseration over the cell. We thenfind
cell valuesof ¢ which satisfythis consevation statementThusconsevationis
guararteedfor eachcell, regardlessof meshsize.
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2. Conseration doesnotguaanteeaccurayg, however. The solutionfor ¢ maybe
inaccuate,but conserative.

3. The quantity —(I"'d@/dx)e is diffusion flux on the e face. The cell balarce is
written in termsof facefluxes. Thegradent of ¢ musttherebre be evaluatedat
thefacesof thecell.

4. Theprofileassumptiasfor ¢ andSneednotbethesame.

We will exanine additional propetiesof this discretizatiorin the next chapter

2.4 Solution of Discretization Equations

All thediscretizatiormethod describe hereresultin a setof discretealgebraicequa-
tions which mustbe solved to obtainthe discretevaluesof ¢. Theseequatios may
be linear (i.e. the coeficients areindependen of ¢) or they may be norntlinear (i.e.
the coeficients are functionsof ¢). The solutiontechniqees areindepadentof the
discretizatim method andrepresenthe pathto solution For thelinearalgebaic sets
wewill encainterin thisbodk, we areguaanteedhatthereis only onesolution andif
our solutionmethodgivesusa solution it is the solutionwe want. All solutionmeth-
ods(i.e. all pathsto solution)which arrive at a solutionwill give usthe samesolution
for the samesetof discreteequatios. For non-linearproblens, we do not have this
guaanteeandtheanswemwe getmaydeped on factorslik e theinitial guessandthe
actualpathto solution Thowhthis is animportantissuein conputingfluid flows, we
will notaddresst here.

Solutionmethasmaybebroady classifiedasdirector iterative. We considereach
briefly below.

2.4.1 DirectMethods

Usingoneof thediscretizatio method describedreviously, we maywrite theresult-
ing systemof algebric equatimsas

Ap=B (2.19

whereA is thecoeficientmatrix, ¢ = [¢;, @, ...]T is avectorconsistingof the discrete
valuesof ¢, andB is thevectorresultingfrom thesourceterms.

Directmethod solve theequatiorset2.18 usingthemethod of linearalgeba. The
simplestdirectmethdl is inversion,wherely ¢ is computedfrom

p=A"'B (2.19

A solutionfor ¢ is guarateedif A~! canbe found. However, the operationcount
for the inversion of an N x N matrix is O(N?). Consequetly, inversion is almost
never employedin practicalprablems. More efficient method for linear systemsare
available.Forthediscretizatiormethalsof interesthere A is sparseandfor structued
meshedt is banded For certaintypesof equatioss, for examge, for purediffusion,the
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matrixis symmetric.Matrix manipulationcantake into account the specialstructureof
A in devising efficient solutiontechnquesfor Equation2.18. We will studyonesuch
methal, thetri-diagonalmatrix algorithm(TDMA), in alaterchapter

Direct method are not widely usedin compuational fluid dynanics becase of
large compuationaland storagerequiements. Most industrial CFD problemstoday
involve hurdredsof thousandsof cells, with 5-10 unkrowns per cell evenfor simple
prodems. Thusthe matrix A is usuallyvery large, andmostdirect methals becone
impradical for theselarge problems. Furthemore,the matrix A is usuallynontlinear,
so that the direct methodmustbe embeded within an iterative loop to updde non-
linearitiesin A. Thus,the directmethodis appliedover andover again,makingit all
themoretime-consming.

2.4.2 |terati ve Methods

Iterative methals are the mostwidely usedsolutionmethals in compuational fluid
dynamics.Thesemethalsemplg aguess-ad-coriectphilosophywhich progessvely
improvestheguessedolutionby repeatedpplication of thediscreteequatims. Let us
consideran extremely simpleiterative method the Gauss-Seidahethod The overall
solutionloop for the Gauss-Seidehethodmaybe written asfollows:

1. Guesshediscretevaluesof ¢ atall grid pointsin the domain.

2. Visit eachgrid pointin turn. Updateg using

(e + Z:/@N+b) (220)

The neighbor values, - and @,, arerequred for the updateof ¢,. Theseare
assumedknown at prevailing values.Thus,pointswhich have alreadybeenvis-
ited will have recenly updatedsaluesof ¢ andthosethathave notwill have old
values.

%:

3. Sweepthedomainuntil all grid points arecovered. Thiscomplets oneiteration

4. Checkif an appopriatecorvergerce criterion is met. We may, for examge,
requirethatthe maxinum chang in the grid-point valuesof ¢ belessthan0.1
%. If thecriterionis met,stop.Else,goto step2.

Theiterationprocedire describechereis not guarateedto converge to a solution
for arbitrarycombnationsof a, ag anda,,. Corvergerceof the processs guaanteed
for linearprablemsif the Scarboough criterion is satisfied. The Scarboouch criterion
requresthat

el +lawl g

for all grid points
|

< 1 foratleastonegrid point (2.21)

Matriceswhich satisfythe Scarbooughcriterion have diagonal dominarce We note
thatdirectmethod do not requite the Scarbeoouch criterionto be satisfiedto obtaina
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solution we canalwaysobtaina solutionto our linear setof equatios aslong asour
coeficient matrixis notsingular

The Gauss-Seidegdchemecanbeimplemenied with very little storage.All thatis
requred is storagefor the discretevaluesof ¢ atthegrid points. The coeficients ap,
ag, a, andb canbecompuedonthefly if desiredsincethe entirecoeficient matrix
for thedomainis notrequred whenupdatingthevalueof ¢ atary grid point. Also, the
iterative natureof the schememalesit particdarly suitablefor nonlinearprodems. If
the coeficients deped on ¢, they maybe updatedusingprevailing valuesof ¢ asthe
iteratiors proceed

Nevertreless,the Gauss-Seidetchemes rarely usedin practicefor solving the
systemencainteredn CFD. Therate of corvergence of the schemedecrease un-
accepthly low levelsif the systemof equatiosis large. In alaterchapte, we will use
a multigrid method to acceleratehe rate of convergenceof this schemeandmalke it
usableasa practicaltool.

2.5 Accuracy, Consistency Stability and Convergence

In this sectionwe turn to certainimportant propertiesof numeical method.

2.5.1 Accuracy

Accuragy refers to the correctressof a numerical solutionwhencomparedto anexact
solution In mostcaseswe do notknow the exactsolution. It is therefoe more useful
to talk of thetruncation error of a discretizatio methal. Thetruncationerrorassoci-
atedwith the diffusionterm usingthe finite differencemethodis O((Ax) ?), asshavn
by Equation2.5.This simply saysthatif d?¢@/dx? is representedby the first termin

Equation2.5,thetermsthatareneglectedareof O((Ax) 2). Thus,if we refinethemesh,
we expectthetruncatia errorto decraseas (Ax) 2. If we doule the x-directionmesh,
we expectthetruncdion erra to decreasdy a factorof four. Thetruncaion error of

a discretizationschemas the largesttrunaation error of eachof the individual terms
in the equdion beingdiscretized.The order of a discretizatiom methodis n if its trun-

cationerra is O((Ax)"). It is importantto undestandthatthetruncatio errortells us
how fastthe errorwill decreasevith meshrefinemen but is not anindicatorof how

hightheerroris onthecurren mesh.Thus,evenmethalsof very highordermayyield

inaccuateresultson a givenmesh.However, we areguarateedthattheerrorwill de-
creasamorerapidly with meshrefinenentthanwith a discretizatiormethal of lower

order.

2.5.2 Consistency

A consistenhumericé methodis onefor which thetruncationerrortendsto vanishas
the meshbecanmesfiner andfiner. (For unsteadyprablems,both spatialandtempaal
truncationerra's mustbe consideed). We areguaanteedhisiif thetruncationerrar is
somepower of themeshspacingAx (or At). Sometineswe maycomeacrossschemes
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wherethe truncatia error of the methal is O(Ax/At). Here,corsisteng is not guar
anteedunlessAx is decreasefasterthanAt. Consisteng is averyimportart property.
Withoutit, we have no guarateethatmeshrefinenentwill improve our solution.

2.5.3 Stability

Theprevioustwo propeatiesreferto thebehaior of thediscretizatiormethod Stability
is apropertyof thepathto solution For steadystateprodems,for examge, we obtain
a discretizedset of algebaic equatims which mustbe solved We may chomse to
solwe this setusinganiterative metha. Dependiig on the propaties of the method
solutionerrorsmay be amplifiedor damped. An iterative solutionmethodis unstable
or divergert if it failsto yield a solutionto thediscreteset.

It is alsopossibleto speakof the stability of time-marcling scheme. Whensolv-
ing unsteadyproblems, we will usenumeri@l methalswhich compute the solutionat
discretanstantsof time, usingthesolutionat oneor moreprevioustime stepsasinitial
condtions. Stability analysisallow usto determire whethererross in the solutionre-
mainbourdedastime marchng proeeds.An unstablgime-maching schemewould
not be ableto reachsteadystatein anunsteadyheatcondiction problem,for exampe
(assuminghata steadystateexists).

It is possibleto analyz iterative andtime marchng methals usingstability and-
ysis However, thisis mostconveniert for linearprodems,andis usuallytoo difficult
for mostrealisticproblems.Here,non{inearitiesin the governirg equatims,boundary
condtions, andprogerties,aswell ascouging betweermultiple governing equatiors,
malke a formal analysigdifficult. In reality the practitionerof CFD mustrely on expe-
rienceandintuition in devising stablesolutionmethods.

2.5.4 Convergence

We distinguishbetweertwo popuar usage®f thetermcorvergence.We maysaythat
aniterative methal hascornvergedto a solution or thatwe have obtaired corvergence
usinga particularmethod By this we meanthatour iterative methodhassuccessfully
obtaired a solutionto our discretealgebraicequationset. We may alsospeakof con-
vergenceto meshindgpendenre. By this, we meanthe procesof meshrefinerment,and
its usein obtaining solutiors thatareessentiallyinvariart with further refinemeat. We
shallusethetermin bothsensesn this bod.

2.6 Closure

In this chagier, we have presentd a broadovewiew of discretizationandintroduced
termindogy associategdvith numeical method. We have learnedhatthereareanum-
ber of different philosophiesfor discretizingthe scalartranspet equdion. Of these,
only the finite volume methal enfacesconseration on eachcell, andthusensures
thatbothlocal andglobalconsevationareguaanteecho matterhow coarse¢hemesh.
In the next chaper, we considetthefinite volumemethal in more detail,andstudythe
propertiesof thediscretizatios it produceswhenappliedto diffusionprodems.
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Chapter 3

The Diffusion Equation: A First
Look

In this chapterwe turn our attentionto animportant physical process,namelydiffu-

sion. Diffusion opgatorsarecomma in heat,massandmonmentumtransfe andcan
alsobeusedto modelelectrostaticsradiatian, andotherphysics. We considetthe dis-
cretization andsolutionof the scalartransportequationfor both steadyand unsteag

diffusionprodems. We will attemptto relatethe propertiesof our discreteequations
with the behaiior of the canorical partialdifferential equaionswe studiedpreviously.

The methalology we develop in this chager will allow usto exanine more compgi-

catedmeshtypes andphysicsin laterchapters.

3.1 Two-DimensionalDiffusion in Rectangular Domain

Let us considerthe steadytwo-dimensionaldiffusion of a scalarg in a rectanglar
domain. From Equationl.10, the governingscalartransmrt equationmay be written
as

0-J=S (3.0

whereJ = Jyi + Jyj is thediffusionflux vectorandis givenby
J=-Tde (3.2
In Cartesiargeonetries,thegradent opeatoris givenby

J. 0.
O=—i+— 3.
i ayl (3.3
We notethat Equation 3.1 is written in conserative or divergenceform. WhenT is
corstantandSis zerq theequationdefaultsto thefamiliar Laplaceequation Whenl”
is constahandSis nonzero,the Poissorequatio is obtaired.
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3.1.1 Discretization

Thearrargemenof cellsundercorsiderations shavnin Figure3.1. Asin theprevious
chaper, wefocusoncell Pandits neigtbors,thecellsE, W, N andS. Discretevaluesof
@ arestoredat cell centrads. We alsostorethediffusioncoeficient I' atcell centrads.
Thefacese,w, n ands areassociateavith areavectos A e, Aw, Ay andAs. Thevectors
are positive poirting outwards from the cell P. The volume of the cell P is AY =

AX x Ay.
We begin the pracessof discretizatiorby integraing Equation3.1 overthecell P:
/ D-Jd“i/:/ Sy 3.4
AV Ay
Next, we applythedivergencetheorento yield
/J-dA:/ sy 3.5
A AV

Thefirst integral representstheintegral over the contrd surfaceA of thecell. We have
madeno appioximatiors thusfar.

We now malke aprofile assumptia abou theflux vecta J. We assumehatJ varies
linearly over eachfaceof the cell P, sothatit may be repesentedy its valueat the
facecentroid We alsoassumehatthemeanvalueof thesourceermSoverthecontiol
volumeis S Thus,

J-A)e+-A)y+-A)y+(J-A)g =AY (3.9
or, morecompadtly
S A=Y 3.7
f=ew,n,s
ThefaceareasA¢ andA, aregiven by
Ay = —Lyi (3.9
Theotherareavectas maybewritten analogusly. Further
9o
7}
Ju-Aw = Tuwby (a—‘)’(’>w 3.9

Thetransporin theotherdirectiors maybewritten analogaisly.

In orderto completethediscretization process,we make onemorerourd of profile
assumptios. We assumehat ¢ varieslinearly betweencell centroids. Thus, Equa-
tion 3.9maybewrittenas

) _ ®—-%
Jerhe = —Teby=oss”
B — Ry
Jw-Aw = WA 3.1
Y (0X)w (310
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Similar expressionsnay bewritten for the otherfluxes.
Let usassumehatthe sourcetermShastheform
S=&+S9 (3.11)

with §, < 0. We saythatShasbeenlinearized We will seelaterhow geneal formsof
Scanbewrittenin thisway. We write thevolumeaveraged sourceermSin thecell P

as
S=%+S® (312)
Substitutingequdions 3.1Q 3.8and 3.12into Equation3.6yieldsadiscreteequa-
tion for @p:
apfh = A +ay Ry +and +ash+b (3.13)
where

o
(0Y)s

= ag t+ay+ay+ag— SOy

= SAxQy (314)

Equation3.13maybewrittenin amorecompat form as

P = % Bnphp + P (3.15)

=® £ £ £ P
Il
g

Here,thesubscriphb denoteghecell neighlorsE, W, N, andS.

3.1.2 Discussion

We malke thefollowing importantpointsaboutthe discretizatio we have dore sofar:

1. Thediscreteequatim expressesabalanceof discreteflux (theJ's)andthesource
term. Thuscorsenation over individual control volumesis guaanteed. How-
ever, overall conseration in the calculationdomainis notguarateedunlessthe
diffusiontransferfrom onecell entersthe next cell. For exanple, in writing the
balanceor cell E, we mustensurahattheflux usedonthefaceeis Je, andthat
it is discretizedexactlyasin Equation3.10Q

2. The coeficientsa, anda,, areall of the samesign. In our casethey areall
positive. This hasphysical mearing. If the temperéure at E is increasedwe
would expectthetempeatureat P to increase hotdecrease(Thesolutionto our
elliptic partial differential equatim alsohasthis property). Many higher order
schemeslo nothave this propety. This doesnotmeantheseschemearewrong
—it mears they do nothave a propertywe would like to haveif atall possible.
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3. WerequirethatS; in Equation 3.11benegative. This alsohasphysicalmeaning
If for exampe Sis atempeaturesource,we do not want a situationwhereas
T increasesS increasesndefinitely. We contmol this behaior in the nunerical
schemeéby insistingthatS; bekeptnegéive.

4. When$; =0, we have

8 = %anb (3.19
n
Equatio 3.13 maythenbewrittenas
=y (e ) (3.17
% % (ap Do

wherey . (a,,/ap) = 1. Sinceg, is theweightedsumof its neightor valuesit is
alwaysbowndedby them. By extension @ is alwaysbourdedby the bourdary
valuesof ¢. We noticethatthis property is alsosharedoy our canotical elliptic
equation

WhenS# 0, ¢ neednotbeboundedin thismannerandcanovershootor under-
shootits bourdaryvalues put thisis perfectly physical. Theamour of overshoot
is determired by the maghitudeof S andS; with respecto thea,'s.

5. If § =0anda, = y,,a,, we noticethat  and @+ C aresolutionsto Equa-
tion 3.13 This is alsotrue of the original differentialequation Equation 3.1.
Thesolutioncanbe madeunique by specifying boundarycondtions on ¢ which
fix thevalueof ¢ at somepointonthebouwndary

3.2 Boundary Conditions

A typicalbourdarycontrd volumeis shavnin Figure3.2. A bourdarycontrolvolume
is onewhich hasoneor more faceson the bourdary. Discretevaluesof ¢ arestoredat
cell centroids, asbefore In addtion, we storediscretevaluesof ¢ atthe centroid of
bowndaryfaces.

Let usconsidetthe discretizatio procesdor a nearboundary contol volumecen-
teredabou thecell centrad P with afaceonthebowndary Thebourdaryfacecentrad
is denotedby b. Thefaceareavecta of the boundaryfaceis A, andpointsoutward
from thecell P asshown.

Integratingthe governingtranspet equatio over the cell P asbefae yields

(J-A)p+@-A)e+(I-A)+(J-A)g =AY (3.18
Thefluxesontheinteriorfacesarediscretizedasbefae. ThebowndaryareavectorA
is given by

Ay =—Ayi (3.19

Let usassumehatthe bourdaryflux J, is given by the boundaryfacecentroidvalue.
Thus

J,=-T,0q¢, (3.20
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sothat

Jy-A, = My Og, (321)

Assumingthat ¢ varieslinearly betweerb andP, we write

3, A, = Ayrb% (322)

Thespecificatiorof bourdaryconditiorsinvolveseitherspecifyirg theunknown bowund-

ary value @,, or alternatvely, the boundary flux J,. Let us conside somecomnon
bowndaryconditions next.

3.2.1 Dirichlet Boundary Condition
Theboundarycondtion is given by
@ = B given (323)

Using @, gven in Equation3.22 andincludng Jy, - Ay in Equation3.18 yields the fol-
lowing dfscreteequatiorfor bourdarycell P:

AP =k +ayy +ashs+b (324)
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where

ey

(OX)e

["nAX

(OY)n

["sAX

(3y)s

IWA\Y

(6X)p,

= &g +aytagta,— Ay
= a,Q, + SAxAy (3.29

We notethefollowing importar pointsabou theabove discretization

c® & F £ P
I

1. At Dirichlet bourdaries,ap > (ag + ay +ag). This property ensureghat the
Scarbooughcriterionis satisfiedfor problemswith Dirichlet bourdary cond-
tions.

2. @ is guarateedto be bourdedby thevalues of ¢, @, @ andg, if §. andS;
arezero. Thisis in keepingwith the behaior of the canaical elliptic partial
differentialequaion we encounteredearlier

3.2.2 NeumannBoundary Condition

Here,we aregiventhenormal gradien of ¢ atthebourdary:

—(FO@), -1 =0y given (3.2
We arein effectgiventheflux J, atNeumam boundaries:
Jp - Ap = =G giverDY (3.2

We may thusinclude (—q,, givenAy) directly in Equaion 3.18to yield the following
discreteequationfor thebourdarycell P:

pPh =ac @ +ay@ +asps+b (3.28
where
ey
s %)e
["nAX
W (3Y)n
_ T$AX
% = (dy)s
ap
b

= g tay+ag— Sy
= qb,givenAy+ SV (3.29

We notethefollowing aboutthediscretizatiorat the boundarycell P:
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1. ap = (ag + ay +ag) atNeumam boundariesif S= 0.

2. If bothqy, ., andSarezero, @, is bouncedby its neigtbors. Otherwise g, can
exceed(or fall below) theneightor valuesof ¢. Thisis admissiblelf heatwere
beingaddedat the bourdary, for exanple, we would expectthe tempeaturein
theregion closeto thebourdaryto be highe thanthatin theinterior.

3. Once > is compued, the bourdary value, g, may be compted using Equa-

tion 3.22:
_ qb,given+ (rb/(SXb)qu (3.30)
(Mp/3%,)
3.2.3 Mixed Boundary Condition
Themixedbouwundaryconditian is given by
—(F0@)y-i=hy(@— ) (331)
SinceA, = Ayi, we aregiventhat
Jp-Ap = —hy(@ — @)y (332)
Using Equatia 3.22 we maywrite
L (339
b
We maythuswrite ¢, as
_ hy@a+ (Ty/0%) % (334)
hy + (Tp/ %)
Using Equatian 3.34 to eliminateg, from Equation3.33we maywrite
Jp - Ap = —Req(@ — @)y (3395)
where
h (/o

hy + (My/6%,)

We arenow readyto write the discretizatiorequatia for thebourdarycontrd volume
P. Substitutingthe boundary flux from Equatian 3.35into Equation3.18 given the
following discreteequatiorfor ¢@p:

AP = 8 +ayG +ashs+b (337)
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where

A

(0X)e

[MnAX

(8Y)n

["sAX

(3y)s

= Redty

g + ay +ag+a, — SAxAy

RedQAy@. + S AXAY (3.38

We notethefollowing aboutthe abore discretization:

cd¥ L HF L P
I

1. a, > (ag +ay + ag) for theboundarycell P if S= 0. Thus,mixedbowndaries
arelike Dirichlet boundhriesin thatthebourdaryconditionhelpsensurehatthe
Scarbooughcriterionis met.

2. The cell value ¢ is boundedby its neigtbor values ¢, @, and ¢, andthe
exterral value, ..

3. Thebourdaryvalue, ¢, may be compitedfrom Equation 3.34oncea solution
hasbeenobtainel. It is bourdedby ¢, and@., asshavn by Equation3.34.

3.3 UnsteadyConduction
Let usnow consideithe unsteadycountepartof Equation 3.1

7}

E(p(p)+D-J:S (3.39
We aregiven initial conditians ¢(x,y,0). As we saw in a previous chager, time is
a “marching” coordnate. By knowing theinitial condition, andtaking discretetime
stepsAt, we wish to obtainthesolutionfor ¢ ata eachdiscretetime instant.

In orderto discretizeEquation3.39 we integrateit over the control volume as
usual.We alsointegrae it over thetime stepAt, i.e.,fromt tot + At.

// i(p(p)d%dt-}-/ D-Jdv/dt:// srdt (3.49
at oy Ot NING NING

Applying the divergencetheoremasbefore, we obtain

/M, ((P(P)l—(pw)")d%+/m/AJ-dAdt= /At [ syt (3.49)

Thesupersdpts 1 andO in thefirst integral denotethe valuesat thetimest + At andt
respectiely. Let usconsidereachtermin turn If we assumehat

| pod” = (pp)pn¥ (3.42
AYZ
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we maywrite theunsteag termas
NV ((p@)p — (PP)R) (343)

We now turn to the flux term. If we assumeas befae thatthe flux on afaceis
representedoy its centroidvalue,we maywrite thetermas

/ T3 -Agdt (344)
A f=ew,n,s

We arenow requred to make a prdfile assumptia abou how the flux J varieswith
time. Let usassumehatit canbeinterpolatedbetweertime instants + At andt using
afactorf betweerzeroandone:

J-Adt= (fJ'-A+(1-)J%-A)At (345)
At

Proceeihg asbefore, makinglinearprdfile assumptioafor ¢ betweergrid points,we
maywrite

JG-Ae = —reAy"’(éa;)‘:Fl’

Ay = rWqu’El’é;)qv“v%’ (346)
and

RAe = —reAy(”(ga;)‘fg

XAy = rWqu’fé;)‘quR’ (347)

Let usnow examire thesourceterm. Linealizing SasS; + S, andfurtherassum-
ing that

| (&+50) 07 = (S+Sm) 07 (348)
we have

/At Ay Sd¥dt= /At (S +S@) Avdt (3.49)

Again, interpdating S betweent + At andt usinga weightingfactor f betweerzero
andone

[ (G4 S@) BVt =1 (S+50) BV B+ (1 1) (S + S,0) BV AL (350)

For simplicity, let usdropthesuperscripl andlet theun-siperscriptedraluerepresent
thevalueattimet + At. Thevaluesattimet arerepresentedsbeforewith the super
script0. Collectingtermsanddividing throudh by At, we obtan thefollowing discrete
equatia for @:

apt = %anb(fcvm(l— f) @) +b+ (a%—(l— f)%%) @ (351)
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wherenbdendesE W, N andS. Further

% T (39

(0Y)s
pAY
JA\S

= f%anb—f§3A7/+ag
b = (f&+(1-H)R2+1-1)SP)ay (3.52

It is usefulto examire the behaior of Equation3.51for afew limiting cases.

L 2 2
Il
g

& o
[

3.3.1 The Explicit Scheme

If we setf = 0, we obtdn the explicit scheme.This meansthatthe flux andsource
termsareevaluatedusingvaluesexclusively from the previoustime step.In this limit,
we obtainthefollowing discreteequatiois:

ap@p = %anbcq?w b+ <a‘€>— %%) @ (353

and

p 2 2 P
Il
Ej
ES

o & b
|
5

= (X+Sw)a7 (359
We noticethefollowing aboutthediscretization

1. Theright handside of Equation3.53 contairs valuesexclusively from the pre-
vioustimet. Thus,giventheconditin attimet, it is possiblefor usto evaluate
theright handsidecomgetely, andfind thevalueof ¢, attimet 4 At.
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2. We donotneedto solve a setof linearalgebraicequatios to find ¢p.

3. WhenAt — o, we seethatthe discreteequationfor steadystateis recovered
Thisis alsotrue whensteadystateis reachedhrowgh time marchirg, i.e., when
@ = ¢O. Thus,we areassuredhatour solutionuponreacling steadystateis the
sameasthatwe would have obtaired if we hadsolved a steadyproblemin the
first place.

4. Theexplicit schemecorrespondgo the assumptia that qog prevails over theen-
tire time step.

5. Wewill seelaterin the chapterthatthe explicit scheméhasatruncationerra of
O(At). Thus,theerra redwcesonly linearly with time-steprefinenent.

This type of schemeis very simple and corvenient,andis frequently usedin CFD
practice.However, it suffersfrom aseriousdravback. We seethatthetermmultiplying
@S canbecone negative when

ap < 2 8o (355)

Whenal < ¥ ,,a,,. We seethatanincreaein ¢ attheprevioustime instantcancause
a decrasein @ at the curren instant. This type of behaior is not possiblewith a

parallic partial differertial equation. We canavoid this by requring a3 > Y b @b

For a uniform mesh,and constantproperties,this restrictioncanbe shavn , for one;

two- andthreedimensiol casego be,respectiey

2
<P (2ArX) (356)
p(Dx)?
ar< B (357)
and
2
<P (BAFX) (358)

This condtion is sometimegalledthevonNeumanrstability criterion in theliterature
It requresthatthe forward time stepbe limited by the squae of the meshsize. This
depenlenceon (Ax)? is very restrictive in practice. It requres usto take smallerand
smallertime stepsasour meshis refined leadingto very long computationaltimes.

3.3.2 The Fully-Implicit Scheme

The fully-implicit schemas obtaired by settingf = 1 in Equation3.51 In this limit,
we obtainthefollowing discreteequatiorfor @p.

P = %anb(pnb"i_b_{' aBE (359)
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with

I R S
I
B
2

(0Y)s

PAY

At

2 %~ A +ap
n

= SOV (3.60

o ¥ ¥
Il

We notethefollowing importart pointsabou theimplicit scheme:

. In theabsencef soureterms,a, =y, ,a,,+ al. Becausef this property, we

areguaranteedthat ¢ is bourdedby thevaluesof its spatialneightorsatt 4 At
and by the value at point P at the previous time. This is in keepingwith the
behaior of canorcal parabdic partial differential equation We may corsider
@8 to bethetimeneigtbor of g,. Also, the Scarbooughcriterionis satisfied.

. Thesolutionattimet + At reguresthesolutionof a setof algebaic equatims.

. As with the explicit schemeasAt — o, we recover the discreteequaions gov-

erningsteadystatediffusion Also, if we reachsteadystateby time marding,
i.e., @0 = @, werecover thediscretealgebraicsetgoverning steadydiffusion.

. Thefully-implicit schemecorrespadsto assuminghat ¢ prevails over theen-

tire time step.

. Thereis no time steprestrictionon the fully-implicit scheme.We cantake as

big atime stepaswe wish without gettingan unrealistic ¢,. However, physical
plausibilitydoesnotimply accuacy —it is possibleto getplausiblebutinaccuate
answersf ourtime stepsaretoo big.

. We will seelaterin this chapterthat the truncation error of the fully-implicit

schemas O(At), i.e.,it is afirst-order accuratescheme Thoughthe coeficierts
it produceshave usefu properties,the rate of erra rediction with time stepis
ratherslow.
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3.3.3 The Crank-Nicholson Schane

The Crank-NiclolsonSchemes obtaired by settingf = 0.5. With this valueof f, our
discreteequatia becanes

ap@h = %anb (0.5@,,+0.5¢%,) +b+ (ag — 0.5% anb) @ (361)

with

- S
I
E;
=

(0Y)s

PAY

A

O.SZanb— 0.5S-A7 + a3
n

= 05((S+DQ)+B¢)av (362)

We notethefollowing abou the Crank-Nictolsonscheme:

o ¥
I

1. For a‘,% <053 ,a,, the term multiplying q)g becones negaive, leadingto the
possibility of unphysicalsolutiors. Indeed ary valueof f differentfrom one
will have this property.

2. The CrankNicholsonschemeessentiallymakes a linear assumptiorabou the
variationof ¢, with time betweert andt 4+ At. We will seelaterin this chap-
ter thatthoudh this leadsto a possibility of negative coeficients for large time
stepstheschemehasa truncatia errorof O((At)?). Consequetly, if usedwith
care,the errorin the our solutionscanbe rediced more rapidly with time-step
refinementhanthe otherschemesve have encounteredthusfar.

3.4 Diffusion in Polar Geometries

SinceEqudion 3.1is writtenin vectorform, it maybeusedto descrile diffusive trans-
portin othercoordnatesystemsaswell. Indeedmuchof ourderivation thusfar canbe
appliedwith little change to othersystemsl et us considetwo-dimensionalpolarge-
ometriesnext. A typicd controlvolumeis shavn in Figure 3.3. Thecontrd volumeis
locatedn ther — 6 planeandis boundedby surfacesof constant andf. Thegrid point
P is locatedat the cell centroid The volumeof the contrd volumeis AY = r ,ABAr.
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Figure3.3: ControlVolume in PolarGeometry

We assumed ¢/dx = 0, so thatall transportis confinedto ther — 8 plane We also
assumesteadydiffusion,though theunsteadycountepartis easilyderived.

Integrating Equdion 3.1 over thecontwol volume asbefae,andapplying the diver-
gercetheoren yieldsEqudion 3.6:

(J-A)g+(J-A)y+(J-A)+(J-A)g =AY (3.63

Thefaceareavectas aregivenby

Ae = Aregy,

Aw = —Arey,

An = rmnAbe

As = —-rsAO¢e (3.69

We recallthatthediffusive flux J is givenby
J=-lOg (3.65
For polargeonetriesthe gradient opertoris givenby

0 10
H=%" 158

F €y (3.69
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Thusthefluxesonthefacesaregivenby

_ 1/0¢
\]e‘Ae — —reArr—e (%)e
B 1 /0
0
Jn‘An = —rnrnAe (a—qro) .
Jo-As = Toreh8 (‘?—q’) (367)
or /g

Assumingthat ¢ varieslinearly betweergrid pointsyields

] _ -
Jeohe = TarE
] _ ®— B
oA = Tuar
\]n‘An = —rnrnAe qq(\l6:)(:b
Jo-As = rapo®P—% (368)

(or)s

Thesourceermmaybewrittenas

(& +S®)AY (369)

Collectingterms,we maywrite thediscreteequatiorfor thecell P as

ap@h =P +ay@y tay@ tas+b (3.70)
where

[eAr
re(00)e
MwAr
rw(00)w
MrnAB
(Or)n
IsrsAO
(or)s
= agtayt+ayt+ag—SAY
= SAYV (371)

& & £ £ P
I

We notethefollowing abou theabove discretizatio:
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1. Regardessof theshapeof thecontrd volume, thebasicprocessis thesame.The
integration of the conseration equation over the contrd volumeandthe appli-
cationof the divergen@ theoem resultsin a contiol volume balanceequation
regadlessof the shapeof the contiol volume.

2. The only differencesarein the form of the faceareavectas andthe gradent
operato for the coodinatesystem.Thelatter manifestdtself in the expressions
for thedistancedetweergrid points.

3. The polar coordnate systemis orthogonal, i.e., e ande, are always perpen
dicular to eachother Becausehe contwol volume facesare alignedwith the
coordnatedirectians, the line joining the cell centrads (P andE, for exampe)
is perpewicular the face(e, for examge). As a result,the flux normal to the
facecanbewritten purdy in termsof thecell centroidg valuesfor thetwo cells
sharingthe face. We will seein the next chapterthat addtional termsappear
whenthemeshis non-athogonal,i.e., whentheline joining thecell centoidsis
notperpadicularto theface.

3.5 Diffusion in Axisymmetric Geometries

A similar procedire canbe usedto derive the discreteequdion for axisymnetric ge-
ometies. We assumeteadyconduction. Sincetheproblem is axisymmetric,d /96 =
0. A typical contrd volumeis shovn in Figure3.4,andis locatedin ther — x plane.
Thegrid point P is locatedat the cell centroid Thevolumeof the cortrol volumeis

NV =rpArAX.
Thefaceareavectos aregiven by
Ae = TAri
An = rnAX e(
As = -—rsAXe (3.72
For axisymmetic geomériesthe gradieri operato is given by
7} J .
O0=— — 3.7
Pl 3.73

Thus thefluxes onthefacesaregivenby

7]
Je-Ae = —Terlr (a—g‘:)e
d
0
\]n‘An == _rnrnAX<0_(r0)n
Jo-As = rsrsAx<‘9—q’> (3.74
or )
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Assumingthat ¢ varieslinearly betweergrid pointsyields

Jo-Ae = —FereArm(Eé;)?
Jn-Aw = FMJWAF¢R;53N
In-An = —rnrnAx%
Js-As =F%M?%?

Thesourceermmaybewrittenas

(S +Sw)d”

Collectingterms,we maywrite thediscreteequatiorfor thecell P as

apf = +ay @y +an A +ashs+b
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where

[erelAr

(0X)e

M wrwiAr

(OX)w

I arnAX

(0r)n

[ srsAX

(or)s

= az+ay+atag—SAY

= SAY (3.78
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3.6 Finishing Touches

A few issuegemainbefore we have truly finisheddiscretizingour diffusion equation
We dealwith thesebelow.

3.6.1 Interpolation of I

We noticein our discretizationthat the diffusion flux is evaluatedat the face of the
cortrol volume. As aresult,we mustspecifythefacevalueof the diffusion coeficient
I". Sincewe storel atcell centroids, we mustfind away to interpdaterl” to theface.

Referringto thenotation in Figure3.5 it is possibleo simpleinterpdatel” linearly
as:

Me=felp+ (1—fe)lc (3.79
where
0.5Ax
fo= E 3.8
e (6X)e ( Q

As long asT ¢ is smoothlyvarying, this is a perfectly adequaténterpdation. When
@ is usedto representenegy or tempeature,stepjumpsin I' may be encainteredat
corjugateboundaries.lt is usefu to devise aninterpdation procedire which accouts
for thesgumps.

Our desireis to representtheinterface flux correctly. Let Jo be the magnitule of
theflux vectorJe. Let usassumdocally onedimensioml diffusion. In this limit, we
maywrite

_ (% — @)
Je (0.50%p) /T + (0.50%c) /T ¢ (3.8

Thus, anequiaentinterface diffusion coeficientmaybe definedas

OXe  0.5A%, ~ 0.5A%c

Te Tp M (3.8
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Figure3.5: DiffusionTranspat at Conjugae Boundhries

Theterm dxe/I e may be seenasa resistanceo the diffusion transferbetweerP and
E. We maywrite ' as

C(1-fe fe\7"
re_( m +E) (383)

Equatio 3.83representsa harmoric meaninterpdation for I'. The propertiesof this
interpdation maybebetterundestoodif we considetthecasefe = 0.5, i.e.,thefacee
lies midway betweerP andE. In this case,

r.r
Fe=_—1—F 384
T Tp+re (384)
Inthelimit ', > ', wegetle = 2. Thisis asexpectedsincethehigh-diffusion co-
efficientregion doesnotoffer ary resistanceandtheeffective resistancés thatoffered
by thecell E, correspondig to a distanceof 0.5Ax .

It is importart to realizethatthe useof harnonic meaninterpdation for discontin-
uots diffusioncoeficients is exactonly for one-dmensioral diffusion Nevettheless,
its usefor multi-dimensionésituationshasanimportantadwartage. With this type of
interpdation, nothing specialneedbe doneto treatconjwateinterfaces. We simply
treatsolid andfluid cellsasa partof the samedomain with differentdiffusion coefi-
cientsstoredat cell centroic. With harmonic-meaninterpolatian, the discontinity in
tempeaturegradien atthe conjugateinterfaceis correctlycaptured
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3.6.2 Source Linearization and Treatmentof Non-Linearity

Our goalis to redice our differential equatio to a setof algebréc equatioss in the
discretevaluesof ¢. Whenthescalartransporis non-linear theresultingalgelbraic set
is alsononiinear Nondinearity canarisefrom a nurmber of differentsourcesFor ex-

ample in diffusion problens, the diffusion coeficient maybeafundion of ¢, suchas
in thecaseof temperatte-de@ndenthernal condctivity. ThesourceermSmayalso
be a fundion of ¢. In radiatve heattransferin participating media,for exanple, the
sour@ termin the enegy equationcontairs fourth pawversof the temperéure. There
aremary waysto treatnontlinearities. Here,we will treatnondinearitiesthrowgh Pi-

card iteration. In this methal, the coeficientsa;, a,, S, andS; areevaluatedusing
prevailing valuesof ¢. They areupdatedas ¢ is updatedby iteration.

We saidpreviously thatthe sour@ term S couldbewrittenin theform

S=S%+5¢ (389

We now examine how this canbedore whenSis anondinearfunction of ¢.
Let the prevailing value of ¢ be called ¢*. This is the value that exists at the
currentiteration. We write a Taylor seriesexpansionfor S aboutits prevailing value

S =3¢"):

s:s«+(§—;°p‘) (0- ) (3.89
sothat
aS\* .,
% = S“(%) v
.-

Here,(dS/d¢)* is thegradentevaluatedattheprevailing valueg*. For mostprodems
of interestto us, dS/d @ is negdive, resultingin a negative Sp. This ensureghatthe
sour@ tendsto decreaseas @ increasesproviding a stabilizingeffect. However, this
typeof depeidences notalwaysguaanteedIin anexplosionor afire, for examge, the
appicationof ahightempergure(thelighting of amatch)cause®negy to bereleased,
andincreaseshetempeaturefurther. (Thecountermeasurés providedby thefactthat
thefuel is evertually consuned andthe fire burnsout). Froma numerical viewpaint,
anegdive S; makesap > 5, @, in our discretization and allows us to satisfy the
Scarboough criterion. It aidsin the corvergenceof iterative solutiontechniaques.

3.6.3 Under-Relaxation

Whenusingiterative methalsfor obtairing solutiors or wheniteratingto resolhe non

linearities,it is frequently necessaryo contrd therateat which variadesarechangimg

during iterations. Whenwe have a strongnon-linearity in atemperatte soure term,
for exanple,andourinitial guesss far from thesolution,we maygetlarge oscillations
in the tempeaturecomputedduring the first few iterations,makingit difficult for the
iterationto proceed In suchcaseswe oftenemploy unde-relaxation
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Let thecurrert iterateof ¢ be 5. We know that ¢, satisfies
apPp = %anb(pnb_}' b (388)
n

sothatafterthesystemhasbeensolvedfor the currert iteration,we expectto compue
avalue of ¢ of

b
— anangp(pnb+ (3.89)

We do not, however, want ¢, to changeasmuchasEquation3.89implies. Thechang
in @ from oneiterationto thenext is givenby

®

b
zrlbanb%b+ _ qg (390)
ap
We wish to make ¢, chargeonly by afractiona of this chang. Thus
®B=@+a (ananb%b+ b_ (,q’S) (391)
ap
Collectingterms,we maywrite
ap l-a_
g ®= %anb(pnb"' b+ ——a% (392)

We notethefollowing aboutEquation3.92

1. Whentheiterationscorverge to a solution,i.e., wheng, = @3, the original dis-
creteequationis recorered Sowe are assuredhat uncer-relaxatian is only a
changein the pathto solution,and not in the discretizationitself. Thus, both
underrelaxedandun-underelaxed equationsyield the samefinal solution.

2. Thoudh overrelaxation(a > 1)is apossibility, wewill for themostpartbeusing
a <1.With a <1,weareassuredhata,/a >y, a.,. Thisallowsusto satisfy
the Scarbooudh criterion.

3. Theoptimum valueof a depedsstronglyon the natue of the systemof equa-
tions we aresolving,on how strongthe non-linearitiesare, on grid sizeandso
on. A valuecloseto unity allows the solutionto move quicky towardsconver-
gence,but may be more prore to divergence. A low value keepsthe solution
closeto theinitial guessput keepgshesolutionfrom diverging. We useintuition
andexpetiencein chasinganappr@riatevalue.

4. We notethe similarity of undetrelaxationto time-stepping The initial guess

actsastheinitial condition. Thetermsap/a and((1—a)/a)ap@ repesenthe
effectof theunsteadyterms.
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3.7 Discussion

At this point, our discretizedequatim setis readyfor solution We have seenthat
our diffusion equationcanbe discretizedo yield coeficients that guararee physical
plausiblity for the orthagonalmeshesve have consideredhere. This property is vety
usefd in a numericalscheme However, we will seein the next chager thatit canrot
usuallybe obtainedvhenmeshesrenonorthagonalor unstructued.

We have thusfar not addressedhe issueof solving the discretizationequatims.
For the momert, we shall usethe simple Gauss-Seidedchemeo solve our equatio
set. This is admittedlyslow for large meshesandfar betteriteration schemesxist.
Thesewill becoveredin alaterchapter

3.8 Truncation Error

We now examire the variousprofile assumptias we have madein the courseof dis-
cretizingour diffusionequdion to quarify the truncaion error of our finite volume
scheme.

3.8.1 Spatial Truncation Err or

In comingup with our spatialappraimationswe madethefollowing assumptias:

1. Thefaceflux (Je, for examplg wasrepiesentedy thefacecentroidvalue. That
is, themeanflux throughthefacee wasrepiesentedy thefacecentroidvalue.

2. ThesourceermSAY waswrittenas(S; + S-@)AY ,i.e.,thecell centroidvalue
@ wasusedto representhe meang valuein thecell.

3. The gradent at the facewas computed by assuminghat ¢ varieslinearly be-
tweencell centrads. Thus (d¢/dx)e waswrittenas(@: — @)/ (5X)e.

Iltems 1 and 2 essentiallyinvolve the sameappraimation: that of represeting the
meanvalueof avariableby its centroidvalue.ltem 3 involvesanapproxmationto the
facegradent. Let usexamineeachof theseappioximatiorsin turn. We will considera
onedimensiorl contiol volume anda uniform grid.

Mean Value Approximation

Considetthecontrd volume in Figure3.6andthefundion ¢(x) in thecontrd volume.
We expand @(X) as

d —x)2 /g2 — )3 /g3
(3.93
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Integrating Equation 3.93overthe contrd volume,we have

Xe B Xe do %e
px)dx = @ [ dx+ (a)P/Xw (x—xp)dx

Xw X

d?g Xe (x—=xp)? 4
+< )P/X dx+O(()%)  (394)

a2 ) ), 2

sothat

1 d?g
#5 (e - e300 (52).
+0((&x)%) (395)
For auniform mesh Equation3.95maybewritten as
/XW @(X)dx = (Ax)%+271((Ax) ) (W P+O((Ax) ) (3.96)
Dividing through by Ax we get
_ 1 % )
o= B(/x @(X)dx= @+ O ((Bx)?) (397)

Thus, we seethat the centrad value @, represets the meanvalue with a truncation
error of O((Ax)?). For a constantg, all derivatives are zero. If ¢(x) is linear, all

derivativesof order higherthandg/dx are zero. For thesetwo casesg = @, is true
exactly. Thesameanalysiscanbeappliedto thefaceflux Je, or indeal to any variabe
beingrepresetedby its centoid value.

Gradient Approximation

Letusnow examirethetruncationerrar in representingthegradent (dg/dx) e as(¢: —
@)/ (0X)e. Referringto Figure3.6,we write:

B Ax (do (AX)? (d? (Ax)3 (d3¢
® = ®+3 (dx>e+ 8 \dx? e+ 48 \ dxd ),

+O (0%

_ Ax (do (&x)? (d?e (Ax)2 (d3
® = @ ?(&)j 8 \a).” 48 \dae )/,

+0((ax)%) (3.98)

Subtractiig the secondequatia from thefirst anddividing by Ax yields

(f'j_‘i’> = &% o) (399)
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«— A X —

}‘—Ax —=— A X 4—{

Figure3.6. Uniform Arrangementof Contrd Volumes

Thus the assumptiorthat ¢ vaies linearly betweengrid pointsleadsto a truncatio
erra of O((Ax)?) in dg/dx. We seethatall the appraiimatiors in a steadydiffusion
equationareO((Ax)?). Sothediscretizatiorscheméhasatruncatio errorof O((Ax) 2).

The meanvalueappraimationis O((Ax) 2 evenfor anon-uniform mesh.Thegra-
dientappoximatiansis O((Ax))? only for uniform meshesFor nonuniform meshes,
theO((Ax)?) termsin the Taylor seriesexparsiondo notcanceluponsubtractio, leav-
ing aformal truncatia erra of O(Ax) ondg/dx.

3.8.2 Temporal Truncation Err or

Letusconsidethefully-implicit schemeTheprofileassumptioamadein discretizing
theunsteas diffusionequatiorusingthis schemeare

1. Thecell centroidvalues (o)t and(p@)2 in the unsteag termareassumedo
represehthe averagevaluefor thecell.

2. Thespatialassumptiasareasdescribé above.

3. Theflux andsourcetermsfrom timet + At areassumedo prevail over thetime
StepAt.

The first assumptioris equivalentto the meanvalueassumptioranalyzedabore and
engendersa spatialerra of O((Ax)2. We have alreadyseenthat the otherspatialas-

sumpgionsresultin atruncationerrar of O((Ax)?). Let usexaminethetruncation errar
implicit in item 3. In effect, we wish to evaluatea termof thetype

syt (3.100)
t
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Exparding S(t) abou S, its valueatt,, we have

1 2en1(r 42
S(t):Sl+(?j—tS) (t—tl)+((;TZS) %+o((m)3) (3.101)

Integratingoverthetime step/t, i.e. fromt, tot,, we get

t
/IS(t)dt =slat+ (d—s)
t dt

Integratinganddividing by At we get

l/ttl (t—t,) dt+O((at)°%) (3.102)

0

1[4 - ds\ ' at
i Jy S{t)dt =S=S"- (E) 7+O((At)2) (3.103)

Thusthetempaal trunationerrorof thefully implicit schemes O(At).
We statewithout prod thatthetruncationerrorof theexplicit schemas alsoO(At)
andthatof the CrankNicholsonschemés O((At) ?).

3.9 Stability Analysis

In this section,we perfam a von Neumanrstability analysis. Stability canbe under
stoodin two ways. For steadystateprodems,we wish to deternine whetherthe path
to solutionis stable,i.e., we wish to analyzea particdar iterative methodfor stability.
For unsteadyprobdems, we askwhethera particularmarching schemads stable. For
exanple, for anunsteadyheatcondictionprodem, we maywantto determire whether
takingsuccessietime stepscauseheerrasin thesolutionto grow. This similarity be-
tweeniterationandtime-stepng is notsurprising.We mayconsidemry time-stepng
schemedo beaniterative schemei.e.,away of obtairing a steadystatesolution if one
exists.

Let us considerthe stability of the explicit scheme For simplicity, let us consider
a one-dmensioné casewith constantpropertiesandno sourceterm. The discretized
diffusionequationmaybewritten as:

aph = ag @2 +ay @y + (8 —ag —ay) @ (3.104)

and

ag
W= o
ap
ap

(3.105)



Let & representhe exactsolutionto Equation3.104 By exactwe meanthatit is
thesolutionto the discreteequatia, obtaired usinga compuer with infinite precision
However, all real compuers availableto us have finite precision,andtherebre, we
mustconter with roundoff error Let thisfinite-precisionsolutionbegiven by ¢. The
erra € is givenby

E=@—o (3.106)
We askthefollowing question:Will the explicit schemecauseour erra € to grow, or

will the processof time-steppig keepthe erra within bounds?
Substitutingequation3.106 into Equation3.104 yields

ap (Pp + &) = ag (P +&2) +ay (O} +65) + (a2 —az —ay) (PB+£0) (3.107)

As before the® ande termssupescripted0 representthevaluesatthetime stept, and
the un-sugrscriptedvaluesrepesentthe values attime t + At. Since®; is the exact
solution it satisfiesEquation3.134. Therebre,the ® termsin Equation3.107 cancel,
leaving
&p = ageg +ayay + (8B —ag —ay) & (3.108)
apép = ap € Tawéw T (@ —a —ay) &p :
Let usexpard theerra ¢ in aninfinite series

g(x,t) = Zef’mté*mx m=0,1,2,..M (3.109)
m

wheregy, maybeeitherrealor comple, andA , is givenby

mrt

L )
L is the width of the domain Equation 3.1 essentiallypresets the spatialdepen
derce of theerrorby the sumof periodc fundions e, andthetime depenlenceby
e’mt If oy, is realandgreaterthanzero, the errorgrows with time, andif oy, is real

andlessthanzerq theerra is damged. If g, is comple, the solutionis oscillatoryin
time. We wish to find theamplificgion factor

Am = m=0,1,2,..M (3.110)

£(x,t+ At)

o) (3.111)

If theamplificationfactoris greaterthanone,our erra grows with time step,andour
schemds unstatlte. If it is lessthanone,our erroris damped in the processof time
marching, andour schemas stable.

Sincethediffusion equationfor corstantl” andzeroSis linear, we mayexploit the
principle of superpsition. Thus,we canexamire the stability conseqanceof asingle
erra term

g = et gAmx (3.112)

ratherthanthe summationin Equation 3.109 Substitutingequatia 3.112into Equa-
tion 3.108, we get

apeom(t+At)ei/\mx — ot (aEei/\m(x+Ax) + aWeiAm(X_AX))
+(ap —ag —ay) e e (3.113)
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Dividing throwgh by a,e°meé?m™ we get

QOmbt geiAmAx+@e—iAmAx
ap
0 _ g —
+m (3.114)
ap
For auniform meshag = a,, = I'/Ax anda$ = pAx/At. Thus
At i - 2r At
OmAt i AmAX —iAmAX
mt = —— (m m 1-——— 3.115
¢ p(Ax)2 (e e )+ < p(AX)2> (.19
Using 8 = AnAx andtheidentities
gAmX g~ AmiX — Dcogfl = 2 — 4sin2§ (3.116)
we get
arat ., pB
OmAt —1_ Ll
e 1 p(Ax)Zsmz > (3.117)
We recogiize thatthe amplificationfactoris
EXU+AY)  on ar At
e eomt =1 PE (3.118)
Werequike that
g(x,t+At)
< .
R TORLES (3.119)
o ara
t
-———|<1 (3.120)
oo
If (1— %) > 0, we require
ar At
———>0 3.121
P -

This is always guaanteedsinceall termsare positive. If, on the otherhand, (1 —
ardt ) < 0, werequre

p(Bx)?

p‘tgﬁ;z <2 (3.122)
or

<P (ZAFX)Z (3.123)

We recogizethis criterionto bethe sameasEquation 3.56 Usinganerrorexpansion
of thetype o
£(x,y,t) = emtgAmxglAny (3.124)
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we may derive anequivalentcriterionfor two-dimersionaluniform meshegAx = Ay)

as

p(8X)?
ar
A similar analysismay alsobe doneto obtainthe criterion for three-dmensionakitu-
ations. It is alsopossibleto shaw, usinga similar analysis thatthe fully-implicit and
CrankNicholsonschemesreuncoritionally stable.

Thouwgh the von Neumam stability analysisandour heuristicrequrementof posi-
tive coeficientshave yieldedthe samecriterionin the caseof the explicit schemewe
shoud notconcludethatthetwo will alwaysyield identicalresults.Thevon Neumam
analysis yields a time-steplimitation requred to keepround-off erras bourded. It
is possibleto get boundedbut unphysicalsolutions. This happes in the caseof the
CrankNicholsonschemewhich the von Neumam stability analysisclassifiesasun-
corditionally stable.However, we know thatfor pAx/At < 0.5y, &, it is possibleto
getunphysicalresults.In this casethe von Neurmannstability analysigells usthatthe
oscillationsin our solutionwill remainbowunded but it cannotguaanteethatthey will
be physically plausible.

VVon Neumanrstability analysids a classictool for analyZng thestability of linear
problems.However, we seeright away thatit would be substantiallynore complicaed
to dotheabore analysisif I wereafunction of @, orif we hadnonlinearsourceterms.
It beconesverydifficult to usewhenwe solve couplednonlinearequatios suchasthe
Navier-Stokesequatios. In practice we usevon Neumanrstability analysisto give us
guidanceonthebaselinebehaior of idealizedsystemsrealizingthatthe couplednon
linearequaionswe reallywantto solvewill prabablyhave muchstringentrestrictions.
For these we mustrely on intuition andexperiencefor guidarce.

At < (3.125)

3.10 Closure

In this chapter, we have completedhe discretizatiorof the diffusion equdion on reg-

ular orthogonal meshedor Cartesianpolar andaxisymmetic geoméries. We have

seenthat our discretizationguaraneesphysically plausiblesolutiors for both steady
and unsteadyprablems. We have also seenhow to hande nonlinearities. For uni-

form mesheswe have shavn that our spatialdiscretizationis formally second-cder
accuate, andthatif we usethe fully-implicit schemepur tempaal discretizationis

first-order accurate.We have alsoseehow to conduct a stability analysisfor the ex-

plicit schemeasappliedto thediffusion equaion. In thenext chaper, we will addess
theissueof meshnonorthogorality andunderstad theresultingcomplicdions.
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Chapter 4

The Diffusion Equation: A
Closer Look

In thelastchapter, we sav how to discretizethediffusionequatiorfor reguar (orthog-

ond) meshexompaedof quadilaterals. In this chapterwe addression-orthagonal

meshespoth structued and unstructued. We will seethat norrorthagonality leads
to extra termsin our discreteequatios which destry someof the propertieswe had

particdarly prizedin ourdiscretizatiorschemeWe will alsoaddresshespecialissues
associateavith the compuationof gradentson unstricturedmeshes.

4.1 Diffusion on Orthogonal Meshes

Let us considera meshconsistingof corvex polyhedra,and particulaty, equilateral
triandes,asshavnin Figure4.1 Regardessof theshapeof thecells,ary facef in the
meshis sharedby only two neigtborcells. We shallconsidethemeshto beorthagonal
if theline joining the centrads of adjacenhcellsis orthogonalto thesharedacef. This
is guaranteedfor the equilateal trianguar meshin thefigure. A detail of the cellsCO
andCl is shovnin Figure4.2.

Considetthe steadydiffusionequation

0.J=S 4.0

where
J=-TOg 4.2

We focus onthecell CO. To discretizeEquation 4.1, we integrateit overthecontiol
volume CO ashefae:

/ 0.3dy = [ sdv 43
VA VA
Applying the divergencetheoremwe get
/ J.da= [ sy 4.4
A aY,
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Figure4.1: Orthogmal Mesh

Figure 4.2: Arrangemenif Cellsin OrthognalMesh
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We now malke aprofile assumptionWe assumehatJ canbeappoximatedoy its value
atthecentroidof thefacef. Also, let usassumehatS= S + S, @, asbhefae. Thus

ZJf‘Af:(Sc"'SP%)AVo (4.9

Thesummatia in thefirst termis overall thefacesof the contiol volumeCO, andA
is theareavecta onthefacef pointingoutwards from cell CO. Further

Ji = —T¢(Uo)
(%9, %
= rf<dxl+ﬁy)f (4.9

In orderto evaluate d¢/dx and d¢/dy at the face f, we needcell centroidvalues
of @ which aresuitably placedalongthe x andy axes. This is easyto arrang for a
rectamularmesh,aswe saw in the previouschapter We seefrom Figure4.2thatsuch
valuesarenot availablefor the meshunder consideation. We musttake analternatve
appoach.

Considerthe coordnate directions £ andn in Figure4.2. The unit vectore, is
aligned with theline joining the centrads. The unit vecta e, is tangetial to theface
f. Becaus¢hemeshis orthagonal theunit vectos areperpericularto eachother We
maywrite thefaceflux vectorJ; in thecoordnatesystemé — ) as

a0 17J0)]

TheareavectorA ; maybewrittenas
Ar=Ace (4.8

Therefore )
@
J.-A;=-T A (—) 4.9
f f o af ‘

We seethatif theline joining the centrads is perpemlicular to the face,the nomal
diffusiontranspat J; - A; only depemisonthegradentof ¢ in thecoorinatedirection
& andnotonn. We realizethatsincecell centroidvaluesof ¢ areavailablealongthe
e direction,it is easyfor usto write d¢/d¢.

As before letusmake alinearprofile assumptiorior thevariaion of ¢(&) between
thecentrads of cellsCO andC1. Thus

(24— @)
whereA¢ is the distancebetweenthe cell centroid, asshavn in Figure 4.2, and @,
and ¢, arethe discretevaluesof ¢ at the cell centrads. We seethatif the meshis
orthogoral, the diffusiontranspet normal to thefacef canbewritten purdy in terms
of valuesof ¢ atthe centroid of the cellssharirg theface.
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Sofarwe have looked at the transpat througha singleface f. Substitutingequa-
tion 4.10into Equatia 4.5 and summingover all the facesof the cell CO yields an
equatia of theform

P = %anb(/’nbﬂL b (4.11)

where

A
a.nb = (?) b, nb= 1,2,M

& = %anb—saA"f/o

b = SA% (4.12)

In the above equatias, nb dendesthe faceneightors of the cell underconsideation,
P. Thatis, the “neighbor” cells arethosewhich sharefaceswith the cell undercon-
sideration The cell P sharesvertices with othercells, but thesedo not appearin the
discretization M is the nunber of faceneighbors. If the cell is a triangle,thereare
threefaceneigtbors,andM = 3 in theabove equation. We notethefollowing:

1. Inthedevelgpmentabore, we have notusedthefactthatcell underconsideation
is atriangle. All we have requirel is thatthe cell be a polyhedronandthatline
joining thecell centroid be orthogoral to theface.

2. It is necessaryor the meshto consistof corvex polyhedra. If the cells arenot
convex, thecell centrad maynotfall insidethecell.

3. We neednot make the assumptiorof two-dimersionality The above develop-
mentholdsfor threedimensioml situations.

4. We have not madeary assumptios aboutmeshstructue, thowgh it is usually
difficult to generat@rthogonalmeshesvithout sometype of structure.

5. Theschemas conseretive becausave usethe corsenationprinciple to derive
the discreteequatios. Thefaceflux J; leavesonecell andentersthe adjacen
cell. Thusoverall consergtion is guarareed. It is worth noting herethat J ;
shouldbethowght of asbelorgingto thefacef ratherthatto eithercell COor C1.
Thus,whatever profile assumptioaareusedto evaluateJ ; areusedconsistently
for bothcellsCO andC1.

6. As with our orthogoral rectanglar meshin the previous chapterwe geta well-
behaedsetof discreteequatios. In theabsencef souceterms,ap =y, a,,.
We arethusguaranteedthat ¢, is bourdedby its faceneighborswhenS= 0.

7. All thedevelopmentfrom the previouschapterregaiding unsteasg flow, interpo-
lationof I' ; andlinearizationof sourcetermsmay be carriedover unchaiged.

8. It is possibleto solve the discreteequatia setusingthe Gauss-Seiddterative
schemewhich does not placeary restrictiors onthe numbe of neigtbors.
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Figure4.3: Non-Orthogamal Mesh

4.2 Non-Orthogonal Meshes

In practice,it is rarely possibleto useorthagond meshesn industrialgeometies be-
causeof their compleity. Ourinteresttherefae liesin developing method which can
dealwith non-athogonal meshesandprefeably, with unstricturedmeshesWe will
startby looking atgenerahonorthogond meshesndderive expressiondor structued
meshe®sa specialcase.

ConsidetthecellsC0 andC1 shovnin Figure4.3. We considethis meshto benon
orthogonal becausghe line joining the cell centroic CO andC1 is not perpemlicular
to thefacef.

As before, we consideithe steadydiffusionequatio

0.J=S (4.13

andfocuson the cell CO. We integratethe equation over the contrd volume CO and
appy thedivergercetheoren asbefole. AssumingthatJ ¢, theflux atthefacecentrad,
prevails over thefacef, we obtain

YA = (S S0) % (4.19

Thus far, the procelureis the sameasthatfor anorthagonalmesh.Theareavecta A
is given by

A =Ai+A ] (4.1
As befae, writing J; in termsof d¢/dx andd ¢/dy is notusefulsincewe do nothave

cell centrad valuesof @ alongthesedirectiors. Let usconsidelinsteacthe coordnate
systemé — n onthefacef. Theunit vecta e; is parallelto theline joining the cen-

troids. The unit vecta e, is tangemial to the face. However, sincethe meshis not
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orthagonal,eg ande, arenot orthagonalto eachother Writing J; in termsof the

& — n coordnate systemseemspromising sincewe have cell centroidvaluesaligned
alongthe ¢ direction.
As usualwe maywrite J; - A; as

o9 0
3 A, =T, (0—‘)fo+ a—‘;’Ay>f (4.16)

In order to expressd @/ dx andd@/dy in termsof & andn, we startbewriting
QOE = qug + %’yg

M = &Xn+ay, (4.17)
Whereqoé dendesd@/d¢, X dende dx/d¢& andsoon. Solvingfor ¢, andg,, we get
_ P~ Y
7
— QX + X
g = —1 % g ¢ (4.18)
where
F =Xe¥n —XnYe (419)
Therebre
AxYn — Ay
N )
i (TP (o), (420)
Furthernore,we maywrite
_ X%
Xe = AZ
_ 1Y%
X, — Xa
= Than
Yp—VYa
Yn = —bAn
Ay = (yb_ya)
Ay = —(%—X) (421)

Theunit vectas e; ande, maybewrittenas

(% = X0)i + (Y1 = Yo)i

e = AZ
6 — (Xb—Xa)|A'|;7(yb—Ya)J 422)
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where/A¢ is the distancebetweenthe centroic andAn is the distancebetweenthe
vetticesa andb. We recanizethat

An = A 4.23
Now, let usexarrine theJacobian # . Usingtheequatims4.21, we maywrite

S = XeYn—XpYe
=% ¥%Ya Vi~ Y%oX%—%

AE An AE An
Af‘e
_ {4
= A (4.29
The 0 termin Equatiord.20maybewrittenas
[0) (Axyn—AyX”> = @ [Ax(Yp = Ya) = A%, —Xa)| /AN
4 7 ¢ As-e /0N
= g A (4.29
B A-g '
The @, termin Equation4.20maybewritten as
o TAYEEAXY gy LAY 0 =Ye) + (4 =) 0% — Xa)] /A8
I As-e/An
e -
§on
= —m(an)?
—qoqu'Afe - (4.2
Collectingterms,we maywrite
A A A A
Jf'AfZ‘rfreE(‘Pe)f”fr.egee'en (@) (4.27

We now needprofile assumptiongor ¢. For the monment, we shall consideronly the
@, term. Assumingthat ¢ varies linearly betweercell centrads, we maywrite

((pf)f - (plA_E% (4.28
Furthermore we define
o = DA 4.2
£ = fr_egef'en(%)f (4.29
Therefore
3, A =LA A (0 — @)+, (4.30
f f AE Af'eg f
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4.2.1 Discussion

We have thusfar derived anexpressionfor the quartity J ; - A; for thefacef. We see
that, unlike for orthogoral meshestheflux canna bewrittenin termsof d¢/d¢ alone
— anadditiona gradent, d@/dn is involved. We call the terminvolving d¢/d¢& the
primary gradent or the primary diffusionterm. Theterm.#; is calledthe secondry
gradentor the secondry diffusionterm. For orth(gonalmesheseé - €, is zerosince
the line joining the centrads is perpewlicular to the face. Therefoe . is zerofor
orthagonalmeshes Furthemore, from Equation4.8, theterm (A ¢ - A¢)/(A; - &) re-
ducedo A; for anorthogoral mesh.Thus,we areassuredhatour formulationdefaults
to theright expressionwhenthe meshis orthogoral.

Thesecondar gradenttermis alittle prablematicto compue sincewe donothave
ary cell centrad valuesof ¢ availablein the n direction We mustdevisea methodby
which d@/dn canbecompuedonthefacef. Preciselyhow thisis dore will depend
onwhethe our meshis structuredr unstrutured.

4.2.2 SecondaryGradient Calculation

For structurel meshesthe compuation of the gradent d¢/dn posesno particular
prodem. In two dimensioms, the prodem maybeboileddown to eitherfinding the @,
and @, by interpdation andthusfinding d¢/dn , or alternaively, finding d¢/dn at
thecellsC0andC1 andinterpolatingthesevaluesto thefacef.

For three-dmension&situationson structuredneshesagain thereis no particular
difficulty. Thestructuredneshshavnin thex-y planein Figure4.4@) consistof mesh
linesof £ = c andn = ¢ which form the facesof thecell. In threedimensios, a cell
is boundedby facesof constant, n and{. Thegradien (¢ maybe deconposedin
thesethreenon-orthognal directions, resultingin seconday gradent termsinvolving
dp/dn andd@/d{. Thesetangential gradentsmay be written in termsof values of
@ at the points a, b, ¢ andd showvn in Figure 4.4(). Thesevaluesin turn may be
interpdatedfrom neighloring cell-centrad values.

For unstricturedmeshesit is possibleto write d¢@/dn in termsof @, and @, in
two dimensims sincethe coadinatedirectionn can be uniquely defined In three
dimersions,however, it notpossibleto definethen direction uniglely. Thefacef isin
geneal ann-sidal polyhedron,with no uniquemeshdirectians,andthetwo tangeial
directiors n and would have to be choserarbitraily. We shoud notehowever that
the & directionis unigely definedasthe centrad-to-cerroid directian.

For unstructued mesheswe write

J A T A A 0 LD AR e Af (431

AT TaE A e (AR T B0 A R («p) £ (431)
sothatthe secondey gradiern termis givenby

S, = 0 ot AA g e 432

i ==T¢(0p);- Y A e ( ?)¢ €08 (432)
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n = constant

& = constant

face f

@) (b)

Figure 4.4: Definition of FaceTangetial Directionsin (a) Two Dimensionsand (b)
ThreeDimensiors

Equation4.32writesthesecondry gradenttermasthedifferenceof thetotal transpot
throughthe face f andthe transmrt in the directin €. Both termsrequre the face

gradent (dg); its computationis addressedn alatersection.

Thusthe problem of computing the secondar gradent is reducedo the prodem
of computing the facegradent of ¢. It is possibleto compue () ; directly at the
faceusingthe method we will presentn a latersection. It is often more corvenient
to storee at the cellsCO andC1. Assumingthatthe gradien of ¢ in eachcell is a
corstant,we mayfind anaverag as

(Og), = 01 (433

The unstrut¢ured meshformuation can of couise be apgied to structuredmeshes.
However, it is usually simpler and lessexpersive to exploit meshstructurewhenit
exists.

4.2.3 Discrete Equation for Non-Orthogonal Meshes

Thediscretizatiorproeedureat thefacef canberepeatedor eachof the facesof the
cell CO. Theresultingdiscreteequatiormaybewrittenin theform

AP = %anb(onb_" b (4.34
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where

8p = (EAf'Af> nb=1,2,..M
b DEA;-e )
& = %anb—sp-“//o
b = %A%—%(yf)nb (4.35)

As before, nb denotedhe cell neightors of the cell undercorsiderationP. Thequan-
tities 'y, e, AS, A¢ and.#; correspad to the face f sharecby the cell P andthe
neighbor cell nb.

We seethat the primary termsresultin a coeficient matrix which hasthe same
structureasfor orthogonalmeshesTheabove discretizatiorensurs thatap = 5, a,,
if S= 0. However, we no longer have the guaraiteethat ¢, is bourded by its cell
neigtbors. This is becasethe secondry gradien term, 7, involvesgradentsof ¢
which mustbe evaluatedfrom the cell centrad valuesby interpdation. As we will see
later, thistermcanresultin thepossibilityof spatialoscillationsin thecompuedvalues
of .

Thoudh the formulation hasbeendonefor steadydiffusion the methals for un-
steadydiffusionoutlinedin the previouschapterarereadilyapplicalle here.Similarly
themethalsfor sourcetermlinearizaion andunde-relaxationarealsoreadilyapplica-
ble. Thetreatmenbf interfaceswith stepjumpsin I' requiresa modestchang, which
we leave asanexerciseto thereader

4.3 Boundary Conditions

Considetthe cell CO with thefaceb onthebourdary, asshavn in Figure4.5. Thecell
value g, is storedat the centroidof the cell CO. As with reguar meshesyve storea
discretevalue @, atthe centroidof the bourdaryfaceb. The boundaryareavectorA
pointsoutwards from the cell CO asshavn. The cell balancefor cell CO is givenas
befae by

ZJf-Af + A, = (S + S @) A%, (4.36)

Herethesummatiorover f in thefirsttermontheleft handsideis overall theinterior
facesf cell CO, andthesecondermrepresentshetransporof ¢ throughtheboundary
face. We have seenhow the interior fluxesarediscretized Let us now considerthe
bowndarytermJ,-A,.

Thebourdarytranspet termis written as

JpA, =~ (09), A, (437)

We definethe directian & to be the directionconnectig the cell centrad to the face
centrad, asshavn in Figure4.5 andthedirectionn to betangetial to the boundary
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C

Figure4.5: Bourdary Contrd Volumefor Non-Otithogoral Mesh

face.Decompaingtheflux J, in theé andn directiors asbefore, we obtain

Ap-Ap Ap-Ay
Jb'Ab:_rbAb.eE ((pf)b+rfAb.eE € €n ((p’?)b (4.39

As befae, we definethe secondry diffusionterm

Ay-Ay
Ap- €

=T e € (¢h)y (439

We notethatif e ande, areperpedicularto eachother .7, is zero.
Thus,thetotaltranspor acrosgshe boundaryfaceb is givenby

Ap-Ay
S v (@), +% (4.40

As befoe we make alinearprofile assumptiorfior thevariation of ¢ betweerpointsCO
andb. Thisyields

M AvAvy
Jp-Ap = (BE), Ay-e (%— @)+ (4.4)

As with interior faceswe arefacedwith the questim of how to compue ¢, atthe
faceb. For structuredmeshesandtwo-dimersionalunstructued meshesywe mayuse
interpolationto obtainthevertex values ¢ andg, in Figure4.5. For three-dmensional
unstricturedmesheshowever, thebourdaryfacetangetial directionsarenotuniquely
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defined Consequetly, we write the boundarysecondry gradien term asthe differ-
enceof thetotal andprimary terms:

— T Ap Ay
yb_ rb(D(p)b Ab+ (Af)b Ab'e{ (D(p)b eg(AE)b (4-42)
Furtherassuminghat
(O9), = (D)o (443)
we maywrite thesecondry gradien termatthebowndaryas
— My Ap-Ap
Fy=—Tp(0@)y-Ay+ @e), Ao e (Ho), e'f(AE)b (444)

We will seein alatersectionhow thecell gradent (Og) , is compued.
Having seerhow to discretizethe bourdaryflux, we now turnto the applicaion of
bowndaryconditians.

Dirichlet Boundary Condition

At Dirichlet boundarieswe aregiventhevalueof ¢,

@ = B given (445)

Using @, given in Equatiord.41andincludingJ,,-Ay, in thebowndarycell balanceyields
adiscreteequationof thefollowing form:

ap@p = %anb(pnb_}'b (446)
where
Fe Ag-Ag
a, = AE A, e nb=12,..M
nb
_ My ApAy
o T @, Ap €
& = %aanrab_SD'd//o
b = %A%—%(yf)nﬁab(po,gwen—yb (4.47)

Here, nb denoteghe interior cell neighlors of the cell undercorsideration,P. The
quartitiesI"¢, e;, A, A; and.#; correspadto thefacef sharecby thecell P andthe
neigtborcellnb. In thea, term, e, correspondgo thedirectionshown in Figure4.5.
As with interior cells, we seethatthe primary termsresultin a coeficient matrix
which hasthe samestructureasfor orthagond meshes.The above discretizatioren-
suresthata, > 3 a,, if S= 0. However, we no longer have the guarateethat ¢p
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is bourdedby its cell neightwrs. This is becausdhe seconday gradien terms, .
and.#,,, involve gradiets of ¢ which mustbe evaluatedfrom the cell centroidvalues
by interpolation. As we will seelater, this term cancausespatialoscillationsin the
comptedvaluesof ¢.

Equivalentdiscreteequationsfor Neumannand mixed boundary condtions may
be derived startingwith Equation4.41 andfollowing the procediresin the previous
chaper. We leave this asanexercisefor thereader

4.4 Gradient Calculation

As we saw in theprevioussection for nonorthagonalgridswe needto determire gra-
dientsof @ atthecell facecentradsto computethesecondargiffusionterm. Gradiens
arealsorequred in mary othercases.For exanple, velocity derivativesarerequired
to compue the productiontermin turbulerce modés or to compue the strainratefor
non-Newtonian viscositymodes. In this section,we will learnabou technquesfor
evaluatinggradiens for differenttypesof meshtopolagies.

4.4.1 Structured Meshes

For a onedimensioml prodem, a linear prdfile assumptiorfor the variatian of ¢ be-
tweencell centergesultsin thefollowing expressiorfor the derivative at the cell face

de

_%E%
ax|. = (4.48

AX

In the samemannewe canwrite the derivative at a cell centerusingthe valuesat the
two adjacentells.
do

_ %%
i (4.49

21X

This expressionis usuallyreferedto asthe “centraldifference”appraimationfor the
first derivative.

For Cartesiargridsin multiple dimersions,we cancompute the derivativesby ap-
plying the sameprinciple alorg therespectre coordnatedirectins. Considesfor ex-
amplethegrid shavn in Fig. 4.6. For simplicity, we restrictthefollowing develgpment
to equispaedgrids. Usingthe centraldiffererce appoximatian introducedearlierwe
canwrite

219/ _ ®E-Q
o, = anx (4.50
0@ A~ b
Zr 4.5
9y |p 20y (#59

Theproadureis similarin caseof generdnon-orthogonalstructuedgrids,where
we usecentraldifferenceapproaimationsto write the derivativesin the transfamed
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Figure4.6: Arrangementof Cellsin CartesiarMesh

coodinates.Figure4.7 shavs a non-orthagonalmeshin thex — y planeandthe corre-
spondhg transfomedmeshin the ¢ — n plane.We write

4% % — Qv

99| _ E-@ 452
99 _ A% 453
n|p 2An (453)

Knowing the cell gradiens, we cancompue the facevaluerequred in the secondry
diffusionterm(Equatian 4.29)by averadng. For exanple, for auniform mesh

99 29
— 0’7‘P+ on |g
f 2

99

3 (454)

An alternatie apprachwould beto write thefacederiative in termsof thevalues
atthenodesa andb

29 G— ¢

—| = (455)

an | An
For Cartesiargrids, it is easyto showv thatthetwo appraximatiors areequivalentif the
nodal valuesareobtainedoy linearinterpdation. For anequispaceartesiargrid this
meanghatthenodalvalue g, is

Thesecondnterpietation(Equation4.56) is usefulbecausét suggest®neway of
obtairing derivatives at facesfor generalunstru¢uredgrid wherewe no longerhave
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n = constant
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Figure4.7: StructuedMeshin (a) PhysicalSpaceand(b) Mapped Space

orthogoral diredionsto apply the finite-differenceappraximation. Thus,we canuse
Equation 4.55for the face f shavn in Figure4.3 The nodal valuesin this caseare
obtairedby someaveradng procedire over thesurrowndingcells.

4.4.2 Unstructur ed Meshes

The methodoutlined above is applicablefor arbitray unstructued grids in two di-
mensims. However, aswe commerted earlier extensio to threedimensios is not
straightbrward. This is becausén 3D we no longer have uniqle directionsin the
planeof thefaceto usea finite-differenceappgoximatian. Also, in mary instancesve
needto know all threecompamentsof the derivative at cell centes, not just deriva-
tivesin the planeof thecell face. Theieforewe needto seekotherwaysof calculatirg
derivativesthatareapgicablefor arbitray grids.

Gradient Theorem Approach

Oneapprachis suggestedby the gradent theoremwhich statesthat for ary closed
volume A% surraindedby surfaceA

/A Do = /A odA (4.57

wheredA is theoutward poirting incrememal areavector To obtaina discreteversion
of Equdion 4.57, we make our usualrourd of profile assumptios. First, we assume
thatthegradien in thecell is constantThis yields

Do = Aiﬁf/ozquodAf (4.58
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Next, we apprximatetheintegral over a cell faceby thefacecentrad valuetimesthe
facearea.Thuswe canwrite

1
Op= A—% Z O A (459)

We still needto definethe facevalue, @; before we canusethis formua. The simple
appoximationis to usetheaverag of thetwo cellsvaluessharingtheface:

+
g =218 (460)

Theadwartageof thisapprachis thatit is applicablefor arbitrarycell shapesincludng
nonconfamal grids. All theoperatimsinvolvedin this procedureareface-tasedust
like the opeationsinvolvedin the discretizatiorof the transpet equatios anddo not
requre ary additioral grid comectvity. Also, this procalureis easily extenced to
three-dmensioral cases.

Oncewe have obtaired the derivative by using Equaions 4.59and 4.60, we can
improve on our initial apprximation of the faceaverageby reconsrucing from the
cell. Thus,from Figure4.8we canwrite

= @+ D00+ (0 + Doy 461)
This suggestaniterative appr@achfor compuing successiely betterappoximatians
to the gradents. During eachiteration,we cancompute the faceaveragevalue using
the gradiens conputedfrom the previousiterationandusethesefacevaluesto com-
pute new valuesof the gradierts. However, this increaseghe effective stencil with
increasingterationsandcanleadto oscillatoryresults.In practice therdore only one
or two iterationsaretypicdly used. In addtion, aswe will seein the next chapter
thegradiens usedto reconstrat facevalues arealsolimited to the bound dictatedby
suitableneighor values,soasto avoid undeshootsandovershootsin the solution.

Notethatin applyirg the gradien theoemwe usedthe cell arourd the point CO as
theintegrationvolume. While this pradice involvesthe smallestpossiblestencil,it is
notmandatoy thatwe usethe samecontrd volumefor compuing thegradien thatwe
usefor applying the discreteconseration laws. Otherintegration volumesare often
used speciallyin node-basedliscretization algoithms.

The gradien resultingfrom the useof the cell asthe integration volumeinvolves
valuesof @ only at the faceneighorsandis not alwaysthe mostoptimal solution
In the next sectionwe learnabaut the useof anothe apprachthat canusea bigger
stencil.

Least SquaresApproach

Theideahereis to compuethegradien ata cell suchthatit reconstratsthesolutionin
theneightorhaod of thecell. For examge, considercell CO. We would like the value
of ¢ comptedatthecentrad of cell C1in Figure4.9to beequé to ¢,. By assuming
alocally linearvariationof ¢, we write

@+ O@yehr, =@ (462)
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Figure 4.8: Arrangementf Cellsin UnstructuedMesh

HereAr; sthevectorfrom the centoid of cell 0 to thecentrad of cell 1

Ary = Ax;i + Dy, (4.63
We rewrite Equation4.62as
4% Jdo| _
Ale‘O+Ayld—y‘o—qol @ (4.64

We requirethatthesamebetrueatall othercellssurroundingcell CO. Foracell Cj the
eguationreads

5
Yo

It is convenier to assemblall the equdionsin a matrix form asfollows

AX; 0_(p‘ + 4y;
0

j Ix = (pj - % (465

Md =mg (4.69
HereM istheJ x 2 matrix
Ax; Ay,
M = A?(Z A?lz (4.67)
A, By,
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Figure4.9: LeastSquaesCalculationof Cell Gradien

andd is thevecta of thecompmnentsof gradentsof ¢ atcell CO

99
ox 0
d= (4.68)
|
o
andmg is thevecta of difference®f ¢
A%
Q= i ) % (4.69)
)

Equationd.66 represets J equatimsin two unkmowns. Sincein geneal J is larger
than2 thisis anover-deterninedsystem Physically this meanghatwe canrot assume
a linear profile for ¢ arownd the cell CO suchthatit exadly reconstrats the known
solutionat all of its neighbors. We canonly hopeto find a solutionthatfits the data
in the bestpossibleway, i.e., a solutionfor which the RMS value of the difference
betweerthe neighloring cell valuesandthe recorstructedvaluesis minimized From
Equatia 4.65we know thatthedifferencein therecorstructedvalueandthecell value
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for cell Cj is givenby
R = Ax ?9—‘ +4y; == —(qoj -®) 4.70
Xlo
Thesumof the square of erroroverall theneighloring cellsis
R=Y R? (4.71)
]

Let ‘;—‘f =aand g—"" = b. Equation 4.71 canthenbewritten as
0 Ylo

R= ; (anj +bay; — (¢, — %))2 (4.79

Ourobjectiveis to find a andb suchthatR is minimized Recallthatthe standardvay
of solvingthe prodemiis to differentiateR with respecto a andb andsettheresultto
zerq ie.,

R

— =0

Jda

R

B - 0 (4.73

This givesustwo equaionsin thetwo unknowns, viz. the compnentsof the gradent
at cell CO. It is easyto shav that this equatim setis the sameasthat obtaired by
multiplying Equdion 4.66by thetransposef the matrix M

MTMd =M mgp (4.74

MTM is a 2 x 2 matrix that can be easily inverted analyticallyto yield the required
gradent O@. We shouldnoteherethatsinceM is purely a function of geomety, the
inversiononly needgo bedoneonce. In practicalimplementationswe would compute
a matrix of weightsfor eachcell. The gradent for arny scalarcanthenbe compued
easilyby multiplying thematrix with thedifferercevecta mp.

Mathematicallyfor the solutionto exist thematrix M mustbe nonsingulari.e., it
shoud have linearly independentcolunms andits rank mustbe greaterthanor equal
to 2. Physically this implies that we mustinvolve at least3 non-<collinear poirts to
comptethe gradent. Another way of undestandingthis requrementis to notethat
assuming linearvariationmeanghat ¢ is expresseds

@ =A+Bx+Cy (4.79

Sincethisinvolvesthreeunknowns,we needatleastthreepointsatwhich ¢ is specified
in orde to determire thegradie.

The leastsquaresappoachis easily extended to threedimersions. We notethat
it placesno restrictionson cell shapeanddoesnot requirea structued mesh. It also
does not requile us to choase only faceneigtborsfor the recorstruction. At correr
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bouwndariesfor examge, it may not be possibleto obtaina sufficient numter of face
neighbor cells,andwe may be forcedto reconstrat at cells sharingverticeswith cell
CO0in additionto theusualcomgementof faceneightors. In othercasesye maywish
to involve morecellsnearcell CO to geta betterestimateof thegradien. Thisrequres
storingadditioral meshconnetivity information.

4.5 Influence of SecondaryGradients on Coefficiernts

We notedearlierthatthe presencef secondry gradenttermsintroduceshe possibil-
ity that ¢ may not be boundedby its neighlors evenwhenS= 0. Herewe examire
this assertiorin somavhat greaterdetail.

For simplicity, let usconsidetthe calculationof secondar gradentthetermonthe
structurel meshshowvn in Figure 4.7. To compued the seconday gradent term, we
mustfind thegradent (d¢@/dn) ;. As we notedbefore, oneway to find this s to write

%> _ % 476
(0’7 f An (4.76)

For auniform non-orthayona meshwith A = An, we maywrite

+ @+ @t
%:%%%Eq’s

4
+ @+ Qe+
sothat
0<p> 0.5 (¢ + Ae) —05(&+ @)
¥y 478
(0’7 f 2An (4.78)

We notethatg, @e, ¢ and@se donotall havethesamesignin theabove expression.
When(d@/dn); isincludedin thecell balanceasa partof thesecondry gradentterm

for theface,it effectively introduwcesaddtional neigtbors— ¢z andgge. Thesearenot
faceneigtbors; the correspading cells shareverticeswith point P. Thesetermsare
hidden in ;. Noticethatthey do notall have positive coeficierts. Conseqantlyit is

possiblefor anincreasén oneof theneighlor ¢'s to resultin adecrasein ¢@p. We are
nolonger guaanteedhat ¢, is boundedby its neightorswhenS= 0.

Eventhoudh we have adoptedh particdar gradien calculatiormethodhere similar
termsresultfrom othercalculationmethals aswell. The magritude of the secondry
gradent termsis proportional to ;€. For mostgoad quality meshesthis termis
nearlyzero,andtheinfluerceof neighlorswith negative coeficientsis relatively small.
Thus,for goad qualitymeshespurdiscussion thepreviouschapteabaut coeficient
positivity andbourdedneasof ¢ holdin largemeasue. However, we nolonge havethe
absoluteguaranteeof boundedressandpositivity thatwe hadwith orthagonalmeshes.
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4.6 Implementation Issues

4.6.1 Data Structures

For both structuredand unstru¢ured meshesthe faceflux J ; is mostcorvenierily
corstruedasbelongng to theface f rathe thanto eitherof the cells sharingthe face.
Suchaninterpetationis in keepirg with the consevationidea,wherely the diffusive
flux of ¢ out of cell CO enterscell C1 without modification. We canensue this by
thinking of J; asbelorging to the face,andusingit for the cell balancein cells CO
andCl in turn. This associatiorof the flux with the face and not the cell malesa
face-laseddatastructurea corvenientonefor implementingfinite volumeschemes.
In atypical implemenation, we would carry a linked list or arrayof faces.Each
facewould carry a poirter or index to eachof the two cells that shareit, i.e., cells
CO0 andC1. Theinfluenceof cell C1 on the equationfor cell CO is given by a,; the
influerce of cell CO onthe equatiorfor cell C1is givenby a,,. Thus,we computethe

coeficient
R R (4.79
b AE A &

for thefaceandmale theassignment:

891 < 8y

Qo < Gy

(4.80

A visit to all thefacesin thelist competesthe calculationof the neightor coeficients
a,, for all thecellsin thedomain.

If the cell gradent is available, the facevalue of the gradienn may be found by
averging, asin Equation4.33. The secondry gradenttermsmaythenbe compued
during the visit to the facesincethey are also associatedvith the face. Eachface
cortributesa seconday gradenttermto theb termfor cellsCO andC1:

by « by—
b, + b+

Notice thatthe secondey gradiert termis addedto one cell andsubtractedrom the
other Thisis becasethefaceflux leavesonecell andentersheother

It is alsousefulto carryalinkedlist or arrayof cells. Oncethe coeficient calcu-
lation is compete, a, for all cells may be computedby visiting eachcell, computing
S A7 andsumminga,,. Similarly the S cortributionto b mayalsobe compted.

Not all gradien calculationproceduresareamendle to a purelyface-basednple-
mentdion. Calculationsbasedon the gradent theoren areamerableto a face-lased
calculation procedure Here thefacevalueis computedusingEquation4.60duting the
visit to theface,aswell asthecontibutionto the sumin Equation4.59for eachof the
cellssharingthe face. The reconstration proceeduredescribecdby Equation4.61 may
alsobeimplemertedin aface-basethanrer. Theleast-squaapprachfor gradent
calculation may be implementedby a mixture of faceand cell-basedmanipulations,
dependingonthecalculationstencilchosen
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4.6.2 Overall Solution Loop

It is corveniert to compute and storecell gradents prior to coeficient calculation
Usingthegradenttheorento computecell gradierts, for exanple, theoverall solution
loop takesthefollowing nomnal form.

1. Guessp atall cell centoidsandat bourdaryfacecentroidsasnecessary

2. Forf=1,n;  oc

{

Find ¢; by averagng neigrbor cell valuesg, and @, .
Add gradien contritutionto cellsC0 andC1.

}

A visit to all facesconpletesthe cell gradent calculation.

3. Forf=1,n e

{
Finday, anda,
Find ., find by andb, by addng/subtrating secondry gradien contibutions
to CO andC1.
}
4. Forc=1,n.s
{

Findap = 5 @, — A7
Findb= b+ S.AY
}

At this pointthe coeficient calculation is comgete.
5. Solwefor ¢ atcell centroid usingalinearsolver suchasGauss-Seideteration

6. Checkfor convergence.If iterationsarecorverged,stop.Elsegoto 2.

We referto one passthrowgh the above loop asan outer iteration. During an outer
iteration, we malke one call to a linear solver, suchas a Gauss-Seidesolver. The
Gauss-Seidedolver may perfam a numker of inner iterationsto obtainthe solution
to the nominally linear system. For linear problemson orthogonal meshespnly one
outeriteration(with sufficientinneriterationsof thelinearsolver) would berequiredo
obtainthe corverged solution For noniinear prodems, mary oute iteratiors would
berequred. For nonorthagonalmeshestheabove procedireemplo/s adeferedcom-
putationof secondar gradentterms.Consequetty, mary outeriterationsarerequred
for corvergerce,evenfor linearprodems.

A commem on the Scarboouch criterionis apprgriate here. Sincethe Scarbor
ouch criterion is satisfiedby the primary diffusiontermswhenDirichlet bourdarycon-
ditions are presentwe areguaganteedcornvergenceof the Gauss-Seidedolver during
ary outeriteration.In ourdeferedcalculationprocedurethesecondar gradier terms
remainfixedduring anouteriteration. Therefae, eventhoudh the negaive coeficients
they introducetendto violatethe Scarbooudh criterion they arenotrelevantsincethe
secondry gradiert termsareheld constantluring the Gauss-Seidéteration.
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4.7 Closure

In thischapterwe have seerhow to discretizethediffusionequationonnonorthagonal
meshesboth structued andunstrictured. The overdl ideais the sameasfor reguar
meshesand involves a balanceof diffusive fluxes on the facesof the cell with the
soure insidethe cell. However, we have seenthat the facefluxesmay no longer be
written purely in termsof the neightor cell valuesif the meshis nonorthagonal; an
extrasecondry gradien termappeas. To compue thisterm,we requirefacegradiens
of @, which may be averagd from cell gradients. We have seenhow cell gradiens
may be compued for structuredandunstricturedmeshesFinally, we have seenhow
muchof the calculationis amenale to aface-laseddatastructure.ln the next chapter
we addessthe discretizationof the convective term, andtherefae, the solutionof a
competescalartranspot equatia.

89



90



Chapter 5

Convection

In this chapter, we turnto theremainirg termin the geneal transpet equationfor the
scalarg, nanely the convectionterm. We will seehow to differencethis termin the
framework of the finite volume methal, andthe specialproblemsassociatedvith it.
Wewill addessbothreguar andnon-athogonalmeshesOncewe have addressethis
term,we will have developedatool for solvingthe compete scalartranspat equation
or theconvection-dffusioneqguation, asit is sometimesalledin theliterature.

In the developmentthat follows, we will assumehatthe fluid flow is known,i.e.,
the velocity vecta V is known at all the requisitepoirts in the domain. We seekto
deternine how the scalarg is transpeted in the presene of a givenfluid flow field.
In reality, of course the fluid flow would have to be compued. We will addessthe
calculatian of thefluid flow in laterchagers.

5.1 Two-DimensionalConvectionand Diffusion in A Rect-
angular Domain

Letusconsidematwo-dimersionalrectanglar domainsuchasthatshavnin Figure5.1.
Thedomainhasbeendiscretizedusingaregular Cartesiarmesh.For thesale of clarity,
let us assumehat Ax and Ay are corstant,i.e., the meshis uniform in eachof the
directimsx andy. As befae, we storediscretevaluesof ¢ at cell centroics.
Theequatim governirng steadyscalartranspat in thedomainis givenby

0J=S (5.9
whereJ is given by

J=pVo—-TOgp (5.2

Here,p is thedensityof thefluid andV is its velocity, andis given by
V=ui+V (5.3

As before, we integrateEquatian 5.1 overthecell of interest,P, sothat
/ 0-3d¥ = / sy 5.4
AY V4
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Figure5.1: Corvection ona CartesiarMesh

Applying the divergercetheoem, we write
/ J-dA = A%, (5.5)
A
As usual,we assumehatJ is constanbver eachof thefacese, w, n ands of thecell P,

andthatthefacecentrad valueis represetative of thefaceaverage Also, we assume
S= & + S @ asbefae. Thus

with
An = AXJ
As = _AXJ
(5.7)

Thusfar the discretizationprocessis identicalto our procedurein previous chaptes.
Letusnow corsideroneof thetransporterms,say Je-Ae. Thisis givenby

17}
JeAe= (pU(p)eAy_reAY<0_¢> (5.8)
X e
We seefrom Equation5.8thatthe convectioncompnenthastheform
Feqe (5.9)
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where
Fe= (pu)Ly (5.10

is the massflow ratethrowgh thefacee. We notethatthe facevalue, @, is requiral to
deternine the transpot dueto corvectionat theface.For the puposesof this chapter
we shallassumehatF is given

We have seerthatthe diffusive termonthefacee maybewrittenas

—De (¢ — %) (5.19
where Ay
De = re(é—x)e (5.12

Similar diffusiontermscanbewritten for otherfacesaswell. The quantity

F  pudx

Pe= D T
is calledthe Pecletnumkber, and measureshe relative importarce of corvectionand
diffusionin thetranspat of @. If it is basedon a cell lengthscale,dx, it is referedto
asthecell Peclethumter.

We seethat writing the faceflux Je requres two typesof information: the face
value @, andthe facegradien (d@/dx)e. We alreadyknow how to write the face
gradent. We turn now to differentmethals for writing the facevalue @e in termsof
thecell centroidvalues.Onceg is determired, it is thensimply a matterof doingthe
sameoperatiam on all the facescollectingterms,andwriting the discreteequatia for
thecell P

(5.13

5.1.1 Central Differencing

Theprodem of discretizingthe convectiontermredicesto finding aninterpdation for
@ from the cell centroidvaluesof ¢. Oneappioximationwe canuseis the cential-
differerce appoximation Here,we assumehat ¢ varies linearly betweergrid points.
For a uniform meshwe maywrite

‘pE;‘pP (5.14

sothatthe convective transpot throwgh thefaceis

%:

Fe(q’e';%) (5.19

Similar expressios maybewrittenfor the corvective contritutionson otherfaces We
notewith trepidcationthat - and¢, appeawith the samesignin Equation5.15

Collectingthe convectionanddiffusion termson all faces,we may write the fol-
lowing discreteequatian for the cell P:

Bt = D Bnpfhy D
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where

F
8 = De—~
F
ay = Dut—
F
ay = Dh—
F
ag = Dst+3
a.p == %%b—SDA7p+(Fe—Fw+Fn—FS)
n
b = SA% (5.17)
In theabove equations,
Ay
De = Tlerr
e e(5x)e
Ay
Dy = Ty
w W(6X)W
AX
Dh = T
" " (8Y)n
AX
Ds = T
° *(0y)s
Fe = (pu)eAy
Fw = (pU)WAy
Fn = (pv),2X
Fo = (pv)ox
(5.18)
Theterm
(Fe—Fw+Fh—Fy) (519)

representsthe net massoutflov from the cell P. If the undetying flow field satisfies
thecontindty equation,we would exped thistermto bezero.

Let us considerthe casewhenthe velccity vecta V = (ui +Vj) is suchthatu > 0
andv > 0. For Fe > 2De, we seethataz becanesnegative. Similarly for F, > 2Dy,
ay becomesegdive. (Similar behaior would occurwith a,,, andag if the velodty
vecta reversessign). Thesenegdive coeficients meanthatthoudh ap = 5, a,, for
S= 0, we arenot guaanteedhat ¢, is bourdedby its neighbors. Furthernore, since
theequatiorviolatesthe Scarboraghcriterion,we arenotguarateedthe corvergence
of the Gauss-Seiddterative scheme.

Foru > 0 andv > 0, we seethataslongasFe < 2D andF, < 2Dy, we areguar
anteedpositive coeficients,andphysically plausiblebehaior. Thatis, thefacePeclet
numtersPe; = Fe/De < 2 andPe, = F,/Dy, < 2 arerequred for uniform meshesFor
agiven velodty field andphysical propertieswe canmeetthis Peclethumter criterion
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by reducirg the grid size sufliciently. For mary practicalsituationshowever, the re-
sulting meshmay be vely fine, andthe storageand computationalrequiementsmay
betoolarge to afford.

5.1.2 Upwind Differendng

Whenwe examire the discretizationprocedire describedabove, we realizethat the
reasorwe encainternegdive coeficients is the arithmeticaveragirg in Equation 5.14
We now consicer an alternative differencing procedire call the upwind differencing
scheme.In this schemethe facevalueof ¢ is setequalto the upwindcell centrad
value. Thus,for faceein Figure5.1, we write

® = @ fFR>0
= @ ifR<O (5.20
Theseexpressios essentiallysaythatthevalueof ¢ onthefaceis determiredentirely
by the meshdirectian from which theflow is comingto theface. Similar expressions
may be written on the otherfaces. Using Equatian 5.20in the cell balancefor cell

P, andthe diffusiontermdiscretizationin Equaion 5.11, we may write the following
discreteequationfor cell P:

8% = ) Bnpfhy

where

= De+Max—Fe,0]

= Dw+ MaxFw,0]

= Dp+Max{—F,,0]

= Ds+ MaxFs,0]

= %anb_SDAy/P""(Fe_FW‘*‘Fn_FS)
n

= SA% (5.2

c PHpEER
|

Here

Maxa,b] = a ifa>b
= b othemwise (5.23

We seethattheupwindschemeyieldspositive coeficients,anda, = 5 a,, if theflow
field satisfieghe contindty equationandS= 0. Consequetty, we areguaanteedhat
@ is bourdedby its neighlors.

We will seein latersectionghatthoud theupwind schemeprodicesa coeficient
matrix that guaanteesphysically plausibleresultsandis ideally suitedfor iterative
linear solvers, it cansmeardisconinuousprdiles of ¢ evenin the absencef diffu-
sion.We will examineotherhigherorder differencingschemesvhich do nothave this
chaacteristic.
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Figure5.2: CornvectiononaNon-Otthogoral Mesh

5.2 Convection-Diffusion on Non-Orthogonal Meshes

For non-athogonalmeshesbothstructuredandunstrictured,countepartsof the cen-
tral differenceandupwind schemesre easilyderived. We startwith the integration
of the convectiondiffusion equdion asusual,integrateit over the cell CO shavn in
Figure5.2,andapplythe divergercetheoren to get

/A JdA = (S +So@) AY, (524)
As befae, we assumehat the flux on the face may be written in termsof the face
centrad value sothat

ZJf-Af = (& +Sa) A% (525)

wherethe summatia is overthefacesf of thecell.The flux is givenby
Ji = (Vo) =T (Do), (5.26)
Thetranspor of ¢ atthefacef maythusbewrittenas
JiA;=(pV)-Arg =T (00) A, (527)
We definethefacemassflow rateas
Fe=(pV);-A, (528)

Thisis themassflow rateout of thecell CO.
We have alreadyseenin the previouschaptetthatthe diffusiontranspet attheface
maybewritten as:
ekl K7 529
—Ereé(‘l’l—%)+ f (529)
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Defining
Me ApAq

F A A

(5.30
we write the nettranspet acrosghefacef as

Je-Ar =Fi ¢ =Dy (@ — @) + 7 (5.39

We notethat,aswith regularmeshesthe convective transpet of ¢ atthefacerequires
the evaluationof thefacevalue ;.

5.2.1 Central DifferenceApproximation

As with reguar mesheswe mayfind ¢; throudh eithera centra differenceor anup-
wind apprximation. The simplestcental differenceappraimationis to write

+
o =220 (5.32

With this appioximation thefollowing discreteequations obtainel:

app = %aan’nb+b

where
F
&y = Df_7
& = anb_SDA%+ZFf
n
b = %A%—%(yf)nb (5.39

We seethat, just aswith structued meshesit is possibleto get negdive coeficiernts
usingcentraldifferercing. If F; > 0, we expecta,,, < 0if F;/D; > 2, ie, if thePeclet
numberPe; > 2. As befor, thequantity y ; F; is the sumof the outgping massfluxes
for thecell, andis expectedo bezeroif theundelying flow field satisfiesnasalarce.

5.2.2 Upwind Differendng Approximation

Unde theupwinddifferencingapprximation,

o = @ fF>0
= @ otherwise (5.39

Usingthis apprximationin thediscretecell balarce we get

apP = %aan)nb"'b
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where

anb = Df+MaX[_Ff70]
& = %anb—SPAVo"'ZFf

b = S8%-3 (yf)nb (537)

As with structurednesheswe seethatthea,, is alwaysguarateedpositive.

Thus, we seethat the discretizatio for unstructued meshesyields a coeficient
structurethatis vely similarto thatfor regular mesheslin bothcasesthecental differ-
enceschemeantrodwcesthe possibility of negaive coeficientsfor cell Peclemumters
greatetthan2 for uniform meshesTheupwind schemerodicespositive coeficients,
but, aswe will seein the next section this comesatthecostof accuagy.

5.3 Accuracy of Upwind and Central DifferenceSchemes

Let usconsiderthe truncatian errorassociatedvith the upwindandcentra difference
schemesl et usassume uniform mesh asshavn in Figure5.3. Usinga Taylor series
expansionabou pointe, we maywrite

oo (3) (), 2(2) (59 o) o

B AX\ (do 1 /Ax\? [ d2@ 3
FromEquation5.38 we seethat
@ = @+ O(AX) (5.40)

Recallthatwe useEquations.40whenFe > 0. We seethatupwind differencingis only
first orderaccurge.
Adding Equatiors 5.38and5.39 dividing by two, andrearangingterms,we get

p=2T%_ (A8X)2 (%ﬁ)g o((ax?) (541)

We seethatthe cental differenceappraximationis second-aderaccuate.

5.3.1 An lllustrati ve Example

Considercorvectionof a scalarg over the squae domainshowvn in Figure5.4. The
left andbottan boundariesareheldat ¢ = 0 and@ = 1 respectiely. Theflow field in
thedomainis givenby

V =1.0i+ 1.0 (542)
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Figure 5.3: One-DinensionalContrd Volume

sothevelocity vectoris alignedwith the diaganal asshovn. We wish to compue the
distribution of ¢ in the domain usingthe upwind and centraldifferenceschemedor.

The flow is governed by the doman Pecletnunber Pe= p|V|L/T. For =0, i.e.,
Pe — o, the solutionis ¢ = 1 below the diagoral and ¢ = 0 abore the diagoral. For
othervaluesof Pe, we expectadiffusionlayerin which0 < ¢ < 1. Thediffusionlayer
is wider for smallerPe. We compute the steadycornvectiondiffusion prodem in the
domainusing13x 16 qualrilateralcellsto discretizehedoman. We consicrthecase
Pe — . Figure5.5 shaws the predcted ¢ valuesalongthe vertical centeline of the
domain (x=0.5). We seethatthe upwind schemesmearghe phi profile so that there
is a diffusion layer even whenthereis no physical diffusion The centraldiffererce
schemepn the othe hand shavs unphysical oscillationsin the value of phi. In this
problem,it is not possibleto contiol theseoscillationsby refiningthe mesh sincethe
cell Peclethumberis infinite no matterhow fine the mesh.

5.3.2 FalseDiffusion and Dispersion

We cangain greaterinsight into the behaior of the upwind and centraldiffererce
schemeghroud the useof mocel equdions. The main drawback of the first order
upwind schemeis thatit is very diffusive. To understandthe reasondehindthis we
develop a modé¢ equation for the scheme.Considercaseof steadytwo-dmensional
corvectionwith no diffusion:

7] 7]
x (pug) + ay (pvp) =0 (543

Considetthe caseof a constanwelccity field, with u > 0,v > 0, andp corstant.Using
upwind differercing, we obtainthe following discreteform

%~ R -6 _
pu Ax +pv Ay =0 (5.49
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Considerthe compuationaldomainshawvn in Figure5.1.Expandirg ¢,, and ¢ about
@ usinga Taylor serieswe get

09 (8% 3% (8x)3d33%¢

‘RNz(pP_AX&—}' a2 3 ae T (5.49
N L L T
All derivativesin theabore equatios areevaluatedat P. Rearraning,
Bty _00_ (%, (79, (5.47
B0 _00_(Ly)o%p (Ly?0% (5.49

Ay 9y 2! 9y? 31 9y3
Usingtheabove expressios in Eq5.44 andrearraiging we obtain

2@ dp _ pubxd*p pvAxd?g

PG PV =T a2 T a—y2+0((Ax)2)+O((Ay)2) (5.49

For simplicity let usconsidethe casewhenu = v andAx = Ay. Equation5.50reduces

to
dp  dp pubx (3% 0% 2
PUG TPV = (ax2 + ayZ) +O((Ax) ) (5.50
Thedifferertial equation derivedin thismanneiis referedto astheequivdent or mod-
ified equation. It representshe contiruousequatim thatour finite-volume nurrerical
schemds effectively modelirg. The left handside of Equation5.50is our original
differentialequaion andtheright handsiderepresentsthetruncationerrorThe leading
termin Equation5.50is O(Ax), asexpectedfor afirst-orde schemellt is interesting
to compare Equatiorb.50with the onedimensioml form of the corvectiondiffusion
eqguation (Equation 5.1). We find that the leadirg order errortermin Equatio 5.50
looks similar to the diffusiontermin the corvectiondiffusion equdion. Thuswe see
thatalthowgh we aretrying to solve a pureconvectionprodem, applying the upwind
schemeaneanghateffedively we aregettingthe solutionto a prodem with somedif-
fusion This phenanenonis variouslycalledartificial, falseor numericéa diffusion(or
viscosity in the cortext of momenum equations). In caseof the upwind schemethe
artificial diffusion coeficient is proportional to the grid size so we would exped its
effedsto decreaeaswe refinethegrid, but it is alwayspresent.

The sameanalysisfor the two-dimensionalcentraldifferenceschemestartswith
Equation5.43andthediscreteequatian

% — Qv N % _
pu SAX +pv 20y =0 (5.5)

Expandingq, andg: abou ¢ usinga Taylor serieswe get

2 32 3 33
(RNz(HD_Ax(;—()f—}—(AZX!) M_ﬂﬁ_w_'_ (5.52




0 Ax)? 92 Ax)® 93
q;E=qq3+Ax0—()f+(2X|) —q)—ﬂ—(er... (553)

Subtractiig thetwo equatios, we get

Fe— _ 00 (897 0%

20 ax 31 a3 T (554)
A similar procealurein they-direction yields
- 2 33
D0 _ 99 ()% (555)

20y 9y ' 31 9y3 T

As before, we considetthe casewhenu = v andAx = Ay. Substitutingequations5.54
and5.5 into Equation5.51we get

99 09 __pub (9%¢  d%p 3
PUG Py =3 (5 * e +O<(Ax)) (556)

We seethat the leading truncatian term is O(Ax?), as expectedin a secondorder
scheme.Thouwgh we setout to solve a pure corvectionequatim, the effective equa-
tion we solwe usingthe centraldifferenceschemecontairs a third derivative termon
theright handside. This termis responsile for dispesion, i.e., for the oscillatorybe-
havior of . Thus,theupwindschemdeadsto falseor artificial diffusionwhich tends
to smearsharpgradents,wherasthe centraldiffererce schemedendsto bedispersie.

5.4 First-Order SchemedJsing Exact Solutions

A numter of first-orde schemedor the convection-dffusionequatia have beenpub-
lishedin the literaturewhich treatthe convectionanddiffusion termstogetter, rather
thandiscretizingthemseparatelyTheseschemesiselocal prdfile assumptioawhich
areapprximationsto the exactsolutionto a local corvection-dffusionequation We
presenttheseherefor historicd comgeteness. Their behavior in multi-dimensional
situationshasthe samecharacteéstics asthe upwind scheme

5.4.1 Exponential Scheme

Theonedimensioml convectiondiffusionequatiorwith nosourceermmaybewritten
as

7} 7} op\
M (pug) — M (FW> = (557)
Theboundarycondtions are
@ = @ atx=0
@ = @ atx=L (5.58)
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Theexactsolutionto theprodemis

P—@% _ ep((Pex/L)-1

a-%  epPe-1 59
wherePe is the Peclethumbergivenby
Pe— p?“L (5.60

We wiish to usethis exact solutionin makirg profile assumptios. Considerthe
onedimensio@l meshshavn in Figure 5.3 andthe corvection-dffusionequation

9 0 (_0p\
5 (Pu®) — = <F5> =S (5.69

We wish to obtaina discreteequatia for point P. Integrating Equation5.61over the
cell Pyields

JeAe+IwAw= (S +S®) A% (5.62

Assuming for this 1-D casethat

Ay = —i (5.63

we maywrite

_ do
Je-Ae = (pu(p)e— re (&)e

d
JwAw = -— (pu<p)w+ MMw (d_()I:) (5649
w

As before, we mustmale profile assumptiongo write @e, @y andthe gradients
(dp/dx)e and(d@/dx)y. We assumehat @(x) maybetakenfrom Equatia 5.59 We
will usethis prdfile to evaluateboth ¢ andd@/dx attheface.Thus

A _ %G
JeAe=Fe ((q:+ 7exp(Pee) — 1) (5.65
Here
_ (pu)edxe  Fe
Pe, = r. —D. (5.69

A similar expressiomrmaybewritten for thew face.Collectingtermsyieldsthefollow-
ing discreteequatiorfor @p:

ap® =@ +ay@y +b
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where

Fe
~ exp(Fe/De) - 1
Fwexp(Fw/Dw)

exp(Fy/Dw) — 1
= ag+ay—SA% + (Fe—Fu)
= SAY% (568)

-
I

This schemealwaysyields positive coeficientsandbourded solutions. For the case
of S= 0, for one-dmensioral situations,it will yield the exad solutionregardlessof

meshsize or Pecletnumber. Of course this is not true whena sourceterm exists or

whenthe situationis multi-dimensional. It is possibleto shav thatfor thesegeneal

situationghe schemas only first-orderaccurate.

Becausexponentialsareexpersive to compute, researchrshave createdschemes
which appioximate the behaior of the coeficients obtainedusing the exponential
scheme. Theseinclude the hylrid and power law schemeswvhich are describedoe-
low.

5.4.2 Hybrid Scheme

Thehybrid schemeseekgo appgoximatethe behaior of thediscretecoeficientsfrom
the exponentialschemeby repioducirg their limiting behavior correctly The coefi-
cientag in theexponentialschemenaybe written as

g Pe
== 569
De exp(Pee) —1 (569)
A plot of ag /De is shovn in Figure5.6. It shavs thefollowing limiting behaior:

% — 0 forPeg—

De

& —Pe; for Peg » —

De

& _ g _Pe _

D. = 1 > atPe, =0 (5.70)

The hybrid schememockls a¢ /De using the threebourding tangentsshovn in Fig-
ure5.6 Thus

2 = 0 forPe.>2

De

8 _ g Pe

D. = 1 > for —2>Pe. <2

ISE = —Pe, forPe.< -2 (5.711)
e

Theoverall discreteequationfor thecell P is given by
ap@h =ac @ +ay@y+b
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Figure5.6: Variation of ag /De (Adaptedfrom Patankar(198))

where

= Max[—Fe,De—E,O]
Max{Fy, Dy + F—ZW,O]

= ag+ay—SSA%+ (Fe—Fw)

= SAY% (5.73

& £ P
Il

5.4.3 Power Law Scheme

Here theobjectiveis to curvedit theag /De curve usingafifth-orderpolynamial, rather
thanto usethe bourding tangetts asthe hybrid schemedoes. The powverlaw expres-
sionsfor az /De maybewrittenas:

_ 0.1JF|

5
%:Max[o, <1 o, ) ]+ Max0, —F] (5.79

This expressionhasthe adwartagethatit is lessexpensve to compute thatthe expo-
nertial schemewhile repralucingits behaior closely

5.5 UnsteadyConvection

Let usnaw focusour attentionon unsteadycorvection. For simplicity we will setp to
be unity andl" = 0. The corvection-dffusion equation(Equation 5.1) thentakesthe
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Figure5.7: Exactsolutiors for linearconvectionof (a) sinewave (b) squarevave

form P P
(Y up
ot + ax =0 (5.75)

Equatia 5.75is alsoknown asthe linear advection or linear waveequation It is
termedinearbecasethecornvectionspeedi is notafunction of theconvectedquaniity
¢@. We saw in a previous chapterthat mathenatically this is classifiedasa hypebolic
equatia. To completehespecificatiorof theprodemwe needto definetheinitial and
bowndaryconditians. Let us consicer adomainof lengthL andlet theinitial solution
begivenby aspatialfundion ¢, i.e.,

@(%,0) = @(x) (5.76)
The exactsolutionto this prodem s givenby
P(x,t) = @y(x—ut) (5.77)

In otherwords, the exact solutionis simply theinitial prdfile translatedoy a distance
—ut.

Considerthe convectionof two initial profilesby a corvectionvelocity u=11in a
doman of lengthL, asshavn in Figure5.7. Oneis a singlesinewave andthe other
is asquarevave, Theboundiry condtions for bothprablemsare(0,t) = ¢(L,t) = 0.
Figure5.7 shavs the initial solutionaswell asthe solutionatt = 0.25. We seethat
the profiles have merely shiftedto the right by 0.25u. We will usetheseexanples
to deternine whetherour discretizationschemesare able to predictthis translation
accurgely, without distortirg or smearig the profile.

Eventhoudh Equation 5.75appearsto be quite simple, it is important becausat
provides a greatdeal of insightinto the treatmentof the more comgex, nortlinear,
couged equatios that govern high speedlows. For thesereasonshistoricallyit has
beenone of the mostwidely studiedequatios in CFD. Many different appoaches
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have beendevelopedfor its numeri@l solutionbut in this book we will conceltrate
mostly on moden techniaiesthat form the basisof solutionalgorithms for the Euler
andNavier-Stokesequatims.

5.5.1 1D Finite Volume Discretization

For simplicity let usexaminethediscretizatiorof Equation 5.75 We assumea uniform
meshwith a cell width Ax asshawn in Figure5.3. Integrating Equation5.75over the
cell Pyields

7}
(_(”> AX-+ (Uo — Uniy) = O (579
ot Jp
Sinceu is constantyve mayrearangethe equatia to write
a9 u _
(E)P+ E((%—(QN) =0 (5.79

Sincefor thelinearprodemthevelodty u is known everywhere the prablemof deter
mination of thefaceflux simply redicesto the determingion of thefacevalues ¢.

In geneal, we areinterestedn two kinds of problems.In someinstancesve might
beinterestedn thetransiengvolution of thesolution Sincetheequaion is hyperbolic
in thetime coordirate andthe solutiononly depenls on the pastandnot the future, it
would seemlogical to devise methals thatyield the solutionat successie instantsin
time, startingwith theinitial solution,usingtime marching. Often, however, only the

steadystatesolution(i.e., the solutionas %—(f — 0) is of interest.In the previous chap-
ter we saw thatwe could obtainthe steady-statsolutionby solving a sparsesystem
of nominally linearalgebraicequatioms, iteratingfor nondinearities. An alternatve to
iteratiors is to usetime-marching andto obtan the steadystatesolutionasthe culmi-
nationof anunsteadyprocess.With the geneal framevork in hard, let’'s look at some

specificschemes.

5.5.2 Central DifferenceSchane

Usingtheexplicit schemeave developedin a previous chapterwe maywrite
B-@ , (B-&) _
A +u A 0 (5.80

where asperour corvention theun-sugrscriptedvaluesderote the valuesatthe cur-
renttime, andthe termscarrying the superscript0” dende the valueat the previous
time level. As we notedearliet in the explicit scheme g, for every cell is only a
function of the (known) solutionat the previoustime level.

We have shavn from atruncation erroranalysisthatthe centra differerce scheme
is second-oderaccuraten spacegexplicit time discretizationis first order accuraten
time. Thusthe schemedescribedabove is second-oder accuraten spaceandfirst-
order accurde in time. Applying the von-Neumannstability analysisto this scheme,
however, shavs thatit is unconditiorally unstable.As suchit is not usablebut there
areseverd importarn lessonnecanlearnfrom this.
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Thefirst point to noteis that the instability is not causedby eitherthe spatialor
thetempaal discretizationalonebut by the conbinationof the two. Indeed,we get
very different behaior if we simply usingan implicit tempaal discretization while
retainingthe centraldifferenceschemeor the spatialterm:

G- (e—-aky)
A tuT e =0 (581)

It is easyto shaw thattheresultingimplicit schemes uncorditionally stable.However,
it is importantto realizethat stability doesnot guaratee physical plausibility in the
solution We mayrewrite the schemen thefollowing form:

@ = wt% + @ (582)
We seethat a,, is negdive for u > 0 andag is negative for u < 0. The solutionis
therefae not guarameedto be bounad by the spatialandtempoel neightor values.
Sincethe schemds implicit, it requiresthe solution of a linear equatio setat each
time step.However, the Scarbooughcriterionis not satisfied makingit difficult to use
iterative solvers.

5.5.3 First Order Upwind Scheme

Usingthe upwind differenceschemeor spatialdiscretizatiorandanexplicit time dis-
cretization we obtainthefollowing scheme
®-®_  (B-a)
=0 583
YT A (583)

We have shown thatthe upwind differencingschemes only first-order accurateand
thatthe explicit schemas alsoonly first-orcer accuate. Stability analysis reveals that
theschemas stableaslong as

At
0O<u—<1 584
Sup s (5:84)

Thequariity v = u% is known astheCourantor CFL numbe (afterCourantfriedrichs
andLewy [1, 2]) whofirst analyzel the convergencecharactastics of suchschemes.
Explicit schemesusually have a stability limit which dictatesthe maximumCourart
numter thatcanbeused.This limits thetime stepandmalesthe useof time marching
with explicit schemesindesirablefor steadystateprablems.

It is interestingto notethat our heuistic requilementof all spatialandtempoal
neighbor coeficientsbeingpositive is alsometwhenthe above cordition is satisfied.
Thisis easilyseernby writing Equation5.83in the form

®B=(1-V)@+vay (5.85)

We therefae the expectthe schemeo alsobemondonewhenit is stable.
To seehow well theupwindschemeperformsfor unsteag problemslet usapplyit
to the prodem of convection of singlesineandsquarenvaveswe describd above. To
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Figure 5.8 First order upwind solutionsfor linear corvection of (a) sine wave (b)
squae wave

comptethis numeical solutionwe useanequispacedolutionmeshof 50 cells. Using
v = 0.5, we apply the explicit schemefor 25 time steps. We compae the resulting
solutiors att = 0.25 with the exact solutionsin Figure5.8. The exact solution, as
expectedjs theinitial prdfile translatedo theright by adistanceof 0.25. Ournunerical
solutionis similarly shiftedbut we notethatthesharpdiscontinuties in eithertheslope
of thevarialle itself have beensmootlenedout consideably. In caseof thesinewave,
the peakamplitude hasdecreasedbut nowhere hasthe solution exceeard the initial

bownds.We alsoobsenre thatthe profilesin bothexamplesaremondonic.

5.5.4 Error Analysis

We candevelop a modelequatiorfor the transientform of the upwind schemgEqua-
tion 5.83) usingtechniqiessimilar thosewe usedfor steadystateto obtain

dp 09 ubx %@

We seethat, justlik e steadystate thetransienform of the upwindschemealsosuffers
from nurrericaldissipationwhichis now afunaion of the Courantnumber.

We know that physically the effect of diffusion (or viscosity)is to smootherout
thegradiens. The nunerical diffusion presenin the upwind schemeactsin a similar
manrer andthis is why we find the profilesin Figure5.8 are smootlened. Although
this resultsin alossof accuray, this sameartificial dissipationis alsorespmsiblefor
the stability of our scheme Thisis becasethe artificial viscosityalsodampsout ary
erras thatmight ariseduringthe courseof time marchng (or iterations)andprevents
theseerross from growing. Note alsothat for v > 1 the numeical viscosity of the
upwind schemeavould be nggative. We cannow appeciatethe physicalreasorbehird
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theCFL condtion; whenit is violatedthenumeical viscositywill benegaive andthus
causeary errorsto grow.
Let usnow analyzethe explicit centraldifferenceschemdgEquation5.80)we sav
earlier The correspondig modifiedequations
dp  dp  UAtd%p

This schemehasa negative artificial viscosityin all casesandtherebreit is notvery
surprisirg that it is uncorditionally unstable. It canalso be shavn that the implicit
version(Equation’5.81hasthefollowing modifiedequation

dp g WAt o%p
T 2 et
Thusthis schemas stablebut alsosuffersfrom artificial diffusion.

(5.88)

5.5.5 Lax-Wendroff Scheme

A largenumler of schemesave beendevelopedto overcomethe shortconings of the
explicit cental differenceschemehatwe discussedn the previous section.Of these,
themostimportantis the Lax-Wendrof schemesinceit formsthebasisof severd well-
known schemesisedfor solutionof EulerandcompressibleNavier-Stokesequatias.
Theprinciple ideais to remove thenegdive artificial diffusion of theexplicit central
differencescheméoy addinganequal amount of positive diffusion. Thatis, we seekto
solve
o0 uaqo WAt 9%
ot ox 2 0x?
ratherthanthe original corvectionequation Discretizingthe secondderivative using
linear profilesassumptios, asin previous chapterswe obtainthe following explicit
equatia for cell P
0 0_ P 2 0 0 0
%—%+u(%—%)_UAt(%—2%+@N):O (5.90)
At 2A% 2 (Ax)2

It is possibleto shav thatthis schemés secondorder accurae in both spaceand
time. Stability analysisshavsthatit is stablefor |v| < 1. Applying it to the sinewave
convectionproblem we seethatit resolesthe smoothlyvarying regions of the profile
muchbetterthanthe upwind schemedseeFigure 5.9a)). However, in regions of slope
discontiniity we seespurious‘wiggles”. Suchnon-nonotaic behaior is evenmore
prorounedin the presene of discontinuties, asshavn in Figure5.9(h. We alsonote
thatthe solutionin this caseexceed theinitial bound. At somelocatiors it is higher
thanonewhile in otherplacest is negative. If @ is a physicalvarialle suchasspecies
conceitration or the turbulencekinetic enegy thatis alwayssupposedo be positive,
suchbehaior couldcausealot of difficulties in ournumeical procedire.

Thereasos for this behaior canonceagainbeundestoodby exanining thetrun-
cationerra. Themodfied equaion for the Lax-Wendoff schemas

dp 99 (BX)? 2°p

7y — _, 20 3
ot +u0t u=5 (1-v )0x3 + O(Ax) (591)

(5.89)
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Figure 5.9 Lax-Wendoff solutiors for linear convectionof (a) sinewave (b) square
wave

Theleadingorder termis proportioral to the third derivative of ¢ andthereis no dif-
fusionlike term. Thisis charateristic of seconéorde schemesndis thereasorwhy
wigglesin thesolutiondo notgetdamped Theerrorsproducedby seconderderterms
are dispesive in natue whereasthoseproducedby first-orderschemesare dissipa-
tive. In wave-mechanicsterms, dispersia refersto the phenomermn that altersthe
frequeng contert of a signalanddissipatiornrefersto the reductian in amplituce. For
smodh prdfiles that containfew frequencies,seconderderschemesvork very well;
thelack of numeical diffusionpresevesthe amplitude. However, in caseof disconti-
nuities(whicharecompsedof mary frequencies)theeffectof numeical dispersioris
to causghaseerrasbetweenhedifferent frequencies.Thefirst orderupwind scheme,
ontheotherhand doesnotalterthe phasedifferencesut damgs all moces.

All the numeical schemesve sav in previous sectionswverederived by sepaate
prdfile assumptiosfor the spatialandtempoal variatiins. The Lax-Wendoff scheme
is differentin thatthe spatialprdfile assumptia is tied to the tempaal discretization
This beconesmoreclearif we re-arangeEquation5.90in the following form

M X

2 2AX

- P+ unt 0+ uat
B B - )| - [ e} =0

We recoqize thetermsin squarebracletsasthe faceflux definitionsfor the e andw
facesrespectidy. If we areusingthis schemefor compuing a steadystatesolution
theequatia thatis satisfiedat corvergerceis given by

[bf’—%wﬁ—%)} - [WT(RN—%((%—@N)] =0 (592

The conseqenceof this is thatthe final answerwe obtaindepeils on the time-step
size At | Although the solution still hasa spatial truncation error of O(Ax) ?), this
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depenlenceonthetime stepis clearlynotphysical. In this particdar casetheresulting
errorin the final solution maybesmall since stability requrementsrestrictthe time
stepsize. We will seein later chaptes thatsimilar pathdeperenceof the corverged
solutioncanoccurevenin iterative scheme# we arenotcareful.

5.6 Higher-Order Schemes

We have seenthusfar that both the upwind and centra difference schemedave se-
verelimitations, the former dueto artificial diffusion, andthe latterdueto dispersion
Therebre therehasbeena greatdeal of researcho improve the accuray of the up-
wind schemeby usinghigherorderinterpdation. Thesehigherorderschemesimto
obtainat leasta seconderdertruncatio error, while contrdling the severity of spatial
oscillations.

Thusfar, we have assumehat, for the purpasesof writing the facevalue @, the
profile of ¢ is essentiallyconstantThatis, for Fe > 0,

®=0 (593)

Insteadbf assume constanprdfile assumptia for ¢, we mayusehigher-orde profile
assumptiog, suchaslinear or quadatic, to derive a setof upwindweightedhigher
orde schemeslf Fe > 0, we write a Taylor seriesexpansia for ¢ in theneigtborhad
of theupwindpoint P;

Kl _ 2 02
R A NCEY)

5.6.1 Second-Orcer Upwind Schemes

We mayderive a seconderderupwind schemeby makirng a linear profile assumption
This is equivalentto retainingthe first two termsof the expansion. Evaluatirg Equa-
tion 5.94atxe = Xp + (AX) /2, we obtain

B AXO@

This assumptiorhasa truncation error of O(Ax)2. In orderto write @ in termsof

cell centroidvalues,we mustwrite g—f in termsof cell centroidvalues. On our one-
dimersionalgrid we canrepresentthe derivative at P usingeithera forward, backward
or centraldifferenceformulato give us threedifferent seconeorde schemes.If we

write 52 using

20 _ G-y
- A (5.96)
we obtain
®= @+ M (597)
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or, addirg andsubtractingp, /4, we get

%:%+(%;%)+(¢EZ%) (5.98

This schemas referedto asthe Frommschemaen theliterature.
If we write ‘;—‘f using

20 _ G—Qu
ox DX (5-99
we obtain
= qop+7(%_2q’v) (5.100)

This schemas referedto in theliteratureasthe Beam-Warming scheme.

5.6.2 Third -Order Upwind Schemes

We may derive third-orderaccuate schemedy retainingthe secondderiative in the
Taylor seriesexpansion:

29  (x=x)% %9

P(x) = %+(X_XP)W+ ST 2 (5.101)
andusingcell-centoid valuesto write the derivatives g—f and‘;—i‘g. Using
99 _ (% — @) 2
= onc HolX) (5.102)
and ,
-2
P _ (Bt h=20) | o0 (5.103)
ox2 (BX)?
we maywrite
- +@y—2
%:%+(<pe4%)+(<pe i %) (5.104)
Re-arraging,we maywrite
-2
%:(rpe;%)_(coewg %) (5.105)

This schemas calledthe QUICK schemgQuadatic Upwind Interpolation for Con-
vective Kinetics) [3]. This schemeanay be viewed asa parabdic correctionto linear
interpolationfor @.. We canemphasizehis by introducing a curvatuie factor C such
that

1
%= 5 (% +¢p) — Clek + @y — 2p) (5.106)
andC=1/8.
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The second-andthird-order schemesve have seenheremay be comhbnedinto a
singleexpressionfor ¢ using

a=0+ 3@ -a+ @ -a) (5.107)

Here,k = —1 yieldsthe Beam-Warmirg schemek = 0 the Fronm schemeandk =
1/2theQUICK schemeFor k = 1 we getthefamiliar centraldifferencescheme.

We seefrom the signsof thetermsin Equatian 5.107 thatit is possibleto produce
negdive coeficients in our discreteequationusingthesehigher-orde schemesHow-
ever, the extentof the resultingspatialoscillationsis substantiallysmallerthanthose
obtaired throwgh the centraldifference schemewhile retainingat leastseconeorder
accuray.

5.6.3 Implementation Issues

If iteratve solversareusedo solvetheresultingsetof discreteequations, it isimportan
to ensurethatthe Scarboouch criterion is satisfiedby the nomirally linearequatims
presentedb theiteratve solver. Consequetty, typicalimplementationof higherorder
schemesisedeferedcorredion stratgieswherebythe higherordertermsareincluded
ascorrectionsto anupwind flux. For the QUICK schemefor examge, the convective
transpot Fe@ for Fe > 0 is writtenas

o o o WY
Fo = Fe%+Fe((%;%) - (-2 —q;) (5.108)

Here,thefirst termontheright handsiderepresentshe upwind flux. Theseconderm
is a correction term, andrepresentshe differencebetweenthe QUICK and upwind
fluxes. The upwind termis includedin the calculationof the coeficientsa, anda,,
while the correction termis includedin theb term. It is evaluaed usingthe prevailing
valueof ¢. At corvergence,@, = ¢, andthe resultingsolutionsatisfiesthe QUICK
scheme.Sincethe upwind schemegives us coeficients that satisfy the Scarboough
criterion we are assuredhat the iterative solver will corverge every outeriteration
Justaswith nonlinear prodems, we have no guarateethat the outeriteratiors will
themseles corverge. It is sometima necessaryo usegoodinitial guessesndunder
relaxation strategjiesto obtaincorvemerce.

5.7 Higher-Order Schemedor Unstructured Meshes

All the higherorderschemesve have seenso far assumdine structure. In orderto
write @, we musttypically know thevaluesq,,, @ andg:; asimilar stencilis requred
for @y, andinvolves thevalues @,y @y, andgs in Figure5.3 Thus, we cannolonger
write the facevalue purely in termsof cell centroidvalues on eitherside of the face.
This presents big prodemfor unstructued meshesinceno suchline structue exists.
Higherorderschemedor unstricturedmeshesareanareaof active researctandnewv
ideascontirueto emege . We presentherea seconeorde accurateupwind scheme
suitablefor unstructued meshes.
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Figure5.10: Schematidor SeconeOrderScheme

Our startingpoirt is the multi-dimensiondequivaent of Equation5.95.1f F; > 0,
refering to Figure5.10, we may write @ usinga Taylor seriesexpansionabou the
upwindcell centroid:

P(%Y) = @+ (0@)o-Ar +O(|Aar[?) (5.109)

Here Ar is givenby
Ar = (X—%) i+ (Y—Yp)] (5.110)

To find the facevalue ¢;, we evaluate Equatio 5.109 at Ar = Ar 5, asshawn in Fig-
ure5.10

@ = @+ (09)o-Ary+O(|Ar %) (5.111)

As with structued meshesthe problemnow turnsto the evaluation of (Og) ,. We
have alreadyseenin the previouschapte several methalsfor the calculationof thecell
centeedgradent. Any of thesemethals maybeusedto provide (0@) ;.

5.8 Discussion

We have toucted upona numter of differentfirst and second-oder schemedor dis-
cretizingthe corvectionterm. We have seenthat all the schemesve have discussed
herehave dravbacks. Thefirst-order schemesre diffusive, whereaghe centraldif-
fererce and higherorder differencing schemesexhibit non-nonotmicity to varying
degrees. All the schemesve have seenemploy linear coeficients, i.e., the discrete
coeficientsareindependentof ¢. Thus, for linear prablems,we do not, in principle,
requre outeriterationsunlessa deferredcorrectionstrateyy is adgted.

A numter of researchrshave sough to contiol the spatialoscillationsinherert in
higher-order schemedy limiting cell gradentsso asto ensuremorotonicity. These
schemesypically employ nonlinearcoeficientswhichareadjustedo ensureadjacent
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cell valuesaresmootlty varying [4]. Thoughwe donotaddessthis classof discretiza-
tion schemeéhere they neverthelessrepresehanimportan arenaof research.

5.9 Boundary Conditions

Whendealingwith the diffusionequation we classifiedboundariesaccordirg to what
informationwas specified. At Dirichlet boundaries,the value of ¢ itself was speci-
fied whereasat Neumannbourdaries,the gradent of ¢ wasspecified.For cornvection
prodemswe mustfurthe distinguishbetweenflow boundarieswhereflow entersor
leavesthecomputationaldomain, andgeometrichoundries.Flow bourdariesoccurin
aproldem becauseve cannd include theentireuniversein our computationaldomain
andareforcedto consicr only a subset.We mustthensupplythe apprgriateinfor-
mationthat representshe part of the universe that we are not consideing but thatis
essentiato solve the prablem we are consideing. For exanple, while analying the
exhaustmanifold of anautomdile we might notincludethe comhustionchamter and
exterral airflow but thenwe mustspecifyinformation abou the tempeature,veloaty
etc. of theflow asit leavesthe comhustionchambemndentersour computationaldo-
main. Thegeometic boundariesin sucha prodem would bethe externd walls of the
manifdd aswell the surfacesof ary compmentsinsidethe manifold.

Flow boundariesmay further be classifiedas inflow and outflow boundaries. We
considereachin turn.

5.9.1 Inflow Boundaries

At inflow boundarieswe aregiventheinlet velocity distribution, aswell the valueof
@

V. = V., VA L0
® = Biven (5.112)

Considethebowndarycell shavnin Fig5.11 Thedashedine shavstheinflow bound-
ary. Thediscreteequatio for thecell is givenby

Jb-Ab+ZJf-Af = (% +S®) A% (5.113)

Thesummaion in thesecondermis overtheinterior facesof thecell. We have already
seerhow to dealwith theinterior fluxesJ ;. Thebourdaryflux mayJ, is givenby

Jp-Ap =PV AL —Tp (), -A, (5.114)
Using @, = @yeny @ndwriting thediffusionflux asin the previouschapter

My ApAp
JyA, = PVb-Abq)given_ E Ab'e{ (% - (pgiven) + (5.15)

This bourdaryflux maybeincorporatedinto the cell balancefor the cell CO.
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Figure5.11: Cell NearInflow Bounday

5.9.2 Outflow Boundaries
At outflow boundarieswe assume
—Tp(0),-A, =0 (5.116)

Thatis, the diffusive compamentof the flux nomal to the boundaryis zero. Thus,the
netboundaryflux atthe outflow bourdaryis

JoA, = PVp-As@: VA, >0 (5.117)

Thecell balanceor cell nearan outflow bourdary, suchasthatshowvn in Figure5.12
is given by Equdion 5.113 Usinga first-orderupwindschemewe maywrite ¢, = @,,
sothat

Jp-Ap=pPVyALG (5.118)

Thus, at outflow bourdaries,we do not require the value of ¢ to be specified- it is
deterninedby the physical processes the domain, andconvectedto thebourdary by
theexiting flow. ThisresultmalkesphysicalsenseFor examge, if we weresolvingfor
tempeaturein anexhawst manifdd wherethefluid wascooledbecageof condiction
throughthewalls, we would certainlyneedto know thetemperatee of thefluid where
it enteredhe domainbut thetemperatte at the outletwould be determired aspart of
thesolutionandthuscanna be specifieda priori.

Therearetwo key implicit assumptiosin writing Equation 5.118 Thefirst is that
convectiveflux is moreimportantthandiffusive flux. Indeed we have assumedhatthe
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Figure5.12 Cell NearOutflov Bounday

localgrid Pecletnunberattheoutflow faceis infinitely large. For theexhawst manifold
exanple, this meanghat the flow rateis high enaigh so that conditiors downstream
of our bourdary do not affed the solutioninside the domain. If the flow rate was
not sufficiently high comparedto the diffusion, then we would expect that a lower
tempeaturedownstreanof theourdomainwould causealowertempeatureinsidethe
doman aswell. Thesecondassumptions thatthe flow is directal out of the domain
atall pointsonthebourdary. Consideitheflow pasta backward-facingstep,asshavn
in Figure5.13 If we choselocationA asthetheoutflov boundary we cutacrosghe
recircdationbubbe. In thissituation we would haveto specifythe ¢ valuesassociated
with theincomingportions of theflow for the prodemto bewell-posed.Thesearenot
usuallyavailableto us. Location B, locatedwell pasttherecirailationzore,is amuch
betterchdce for an outflow bowndary It is very importat to placeflow bowundaries
atthe appopriatelocation Inflow boundariesshouldbe placedat locationswherewe
have sufficient data, eitherfrom anothe numerical simulationor from expeaimental
obsenations.Outletboundariesshodd be placedsuchthatthe condtions dovnstream
have noinfluenceonthesolution.

5.9.3 Geometric Boundaries

At geanetricbourdaries suchasthe exterral walls of anexhaist manifdd, thenormal
commnentof thevelacity is zero:

VA, =0 (5.119)
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Figure5.13: RecirculationAt DomainBoundary

Conseqgently thebourdaryflux J,, is purely diffusive andgiven by
Jy=-T,(0g), (5.120)

At geonetric bourdaries,we aretypically given either Dirichlet, Neumam or mixed
bowndarycondtions. We have alread shavn how thesemaybediscretizedn a previ-
ouschaper.

5.10 Closure

In this chapterwe have addressethediscretizatiorof the convectiondiffusionequa-
tion. We have seenthatthe corvectiontermrequrestheevaluaion of ¢ atthefacesof

the cell for both structuredandunstricturedmeshes If the facevalue is interpdated
usinga centraldifferenceschemewe have seernthatour solutionmay have spatialos-
cillationsfor high Pecletimumbes. The upwind schemeon the otherhand,smearslis-
cortinuities,thowghthesolutionis bounded.We have alsoexamireda classof upwind

weighted seconeorderandthird-orderschemesAll thesehigherorderschemeyield

solutiors which canhave spatialoscillations.In developing theseschemedgor corvec-
tion, we have assumedhattheflow field is known. In thenext chaptemwe shallturnto

thetaskof compuing theflow andpressurdields.
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Chapter 6

Fluid Flow: A First Look

We have thusfar consideed corvectionanddiffusion of a scalarin the presece of a
knownnflow field. In this chagier, we shallexamine the particularissuesassociatesvith
thecomputationof theflow field. Themomentm equatios have the sameform asthe
gereral scalarequatia, andas suchwe knowv how to discretizethem. The primary
obstacleis the fact that the pressurdfield is unkrown. The extra equdion available
for its determiration is the continuty equation The calculationof the flow field is
comgicatedby the couging betweerthesetwo equatims. We shall examire how to
dealwith this couging, especiallyfor incompressibleflows. We shallalsoseehow to
developformulationssuitablefor unstricturedmeshes.

6.1 Discretization of the Momentum Equation

Considetthetwo-dimersionalrectanglar domain shovn in Figure6.1. Let usassume
for the momaent that the velocity vectorV andthe pressurep are storedat the cell
centrads. Let us, for simplicity, assumea Newtornian fluid thoudh the issuesraised
hereapplyto otherrhedogiesaswell. Let usalsoassumeteadystate.Themonmentum
eguationsin the x andy directiors maybewritten as:

O-(pVu) = 0O-(uOu)-Opi+S, (6.9
O-(pVv) = O-(ubv)-Opj+S (6.2
In the above equatioms, the stresstensorterm hasbeensplit so that a portion of the

nomal stressappearsn the diffusionterm,andtherestis containe in S, andS,. The
reactr maywishto confirmthat

7} Ju 7} ov 20
Su—fu+a—x(lla—x>+a—y<ﬂa—x>—§a—x(llm'v) (6.3
and
7} ov 7} Jdu 20
Sv—fv+0—y<uﬂ)+a—x<ﬂa—y>—§w(ﬂm‘v) (6.9

121



Here, f, and f, containthe body force compaentsin the x andy directians respec-
tively. We seethat Equatias 6.1 and 6.2 have the sameform asthe gereral scalar
transpot equatio, andas suchwe know how to discretizemostof the termsin the
equatio. Eachmomentumequatia containsa pressurgyradent term,whichwe have
written separatelyaswell asa souce term (S or S,) which contairs the body force
term,aswell asremnairts of the stresgensorterm.

Let usconside the pressurayradien term. In deriving discreteequatias, we in-
tegratethe governingequatios over the cell volume. This resultsin the integration of
thepressurgradien overthe contrd volume. Applying thegradenttheoem,we get

/ Opdy’ = / pdA (6.5)
Ay A
Assumingthatthe pressuret thefacecentrad repesentgshe meanvalueon theface,
we write
dA = A 6.6
/A p Z PeA¢ (6.6)
Thefaceareavectasare
An == AXJ
As = -AX (6.7)

Thus,for thediscreteu- momenum equatio, the pressue gradiern termis
—i- Opd¥ = —i- A 6.8
/A‘V p pr f (6.8)

whichin turnis given by

—i- Z PeA = (Pw— Pe)dy (6.9)

Similarly, for thediscretev-momentumequatia, the pressue gradiant termis

—JZ PsA; = (Ps— Pn)AX (6.10)

Completirg thediscretizationthediscreteu- andv-momentumequatios maybewrit-
tenas

Bplp = %anbunb'*‘(pw—pe)AY'i‘bu
n

apVp = %anbvanr(ps—pn)Ax+bV (6.11)
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The next stepis to find the facepressure®e, pw, pn and ps. If we assumehatthe
pressue varieslinearly betweercell centroids, we maywrite, for a uniform grid

+
Pe = pEsz
+
p\N = w
+
b = pszP
+
s = Lszpp (6.12

Thereforethepressurgradier termsin the momentumequatims becone

(Pw—Pe)dy = (py—Pg)Lly
(Ps—pn) DX = (ps_pN)AX (6.13

Givenapressurdield, wethusknow how to discretizéhemomerium equatios. How-
ever, the pressurdield mustbe computed,andthe extra equationwe needfor its com-
putatia is the contiruity equation Let usexamneits discretizatio next.

6.2 Discretization of the Continuity Equation

For steadyflow, thecontindty equaion, which takestheform

0-(pV) =0 (6.14
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Integratingoverthecell P andapplyingthedivegencetheoremwe get
O-(pV)d¥ = / pV-dA (6.15)
V4 A
Assumingthatthe pV on the faceis represente by its facecentroidvalue, we may
write

V-dA = V), -A 6.16
J,PVaA=3 BV A, (616)
UsingV = ui +vj andEquati;s6.7,we maywrite thediscretecontiruity equatio as

(pu)ely — (pu),, Ay + (pV), AX— (pV)sAx =0 (6.17)

We do nothave thefacevelccitiesavailableto usdirectly, andmustinterpolade the cell
centrad values to theface.For a uniform grid, we mayassume

u)p+ (pu
(pu)e — (p )P 5 (p )E
pu)y + (pu
(pu)w — ( )WZ( )P
pVv)p+ (pv
(pv)n — ( )P 2( )N
pVv)s+ (pv
(pv)s = (Pt (PV)e )52( Je (6.18)
Gathering terms thediscretecontiruity equatiorfor thecell P is
(pu)g Ay — (pu)yy Ay + (pV) A — (pV)gAx =0 (6.19)

We realizethat cortinuity equationfor cell P doesnot containthe velocity for cell P.
Conseqantly, a checlerboardvelocity patternof the type shovn in Figure6.2 canbe
sustainedy the continuty equation If the momernium equatims cansustainthis pat-
tern,thechecleoardng would persisin thefinal solution. Sincethepressue gradiert
is not givena priori, andis compued asa partof the solution it is possibleto create
pressurdieldswhosegradentsexactly compasatethecheclerboaréhg of momentum
transpot implied by the checleboardel velocity field. Underthesecircunstancesthe
final pressurendvelocity fieldswould exhibit checlerboading.

We seealsothat the pressurggradient termin the u-momentumequatian (Equa-
tion 6.13) involvespressursthatare 2Ax aparton the mesh,anddoesnotinvolve the
pressuret the point P. The sameis true for the v-momentumequatim. This means
thatif acheclerboar@dpressurdield wereimposedon the meshduringiteration,the
momantum equationswould not be ableto distinguishit from a completelyuniform
pressurdield. If the continuty equatim were consistentwith this pressurdield as
well, it would persistat corvergence.

In practice perfect checlerboardirg is rarely encounteredbecase of irregulari-
tiesin the mesh,bowundary corditions and physicalproperties. Instead the tendery
towards checletboardng manifests itself in unphysical wigglesin the velocity and
pressurdields. We shouldemphaize that thesewiggles are a prgperty of the spa-
tial discretizationandwould be obtaired regadlessof the methodusedto solve the
discreteequatims.
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6.3 The Staggeed Grid

A popular remedyfor checlertoardirg is the useof a staggereanesh.A typical stag-
geral mesharrangmentis shavn in Figure6.3. We distinguish betweerthemaincell
or contrd volume andthe staggered cell or contrd volume. The pressurds storedat
centrads of the main cells. The velocity compnentsare storedon the facesof the
main cells as shavn, and are associatedvith the staggered cells. The u velocity is
storedon the e andw facesandthe v velocity is storedon the n ands faces.Scalars
suchasenthdpy or speciesnassfractionarestoredat the centoids of thecell P asin
previous chaptes. All properties,suchasdensityand[l", are storedat the main grid
poirts.
Thecell P is usedto discretizethe cortinuity equatia asbefae:

(Pu)ely — (pu)y, Ay + (V) AX— (pV)sAx =0 (6.20

However, no furtherinterpolation of velocity is necessargincediscretevelocitiesare
availabledirectly whererequred. Thusthe possibility of velocity checlerboading is
eliminated

For themomenum equatioss, the staggereaontrolvolumesareusedto write mo-
mentum balancesTheprocedireis thesameasabore, exceptthatthepressurgradent
termmay be written directly in termsof the pressurs on the facesof the momentum
cortrol volumesdirectly, without interpdating asin Equatian 6.12 Thusfor the dis-
cretemomentumequdion for thevelocity ue, thepressureyradien termis

(Pp— P) Ly (6.2

Similarly, for thevelaocity vy, the pressurgradien termis

(Pp— Py) By (622

Thus, we nolongerhave a dependenyg on pressurevalues thatare2Ax apart.

We notethat the meshfor the u-morentumequatian consistsof nonoverlappirg
cellswhichfill thedomaincompgetely. Thisis alsotruefor the v-momentumequatio
andthe continuty equation The contrd volumesfor u andv ovetdap eachotherand
thecell P, but thisis of no conseqgance.
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Figure6.3: Staggeredesh

We notefurtherthatthe massflow rates

Fe = (pu)eAy
Fw = (pu)wAy
oo = (pV)nx
Fs = (pv)Ax (6.23)

areavailableatthe maincell faceswherethey areneededor the discretizatiorof the
convective termsin scalartranspor equatiors.

6.4 Discussion

The staggeredneshprovidesan ingeniais remed for the checletboardng problem
by locatirg discretepressuresindvelocitiesexactly whererequired At this point, our
discretizatiorof the contintity andmonentumequationsis essentialljcomplee. The

Ue monmentumequationmay bewritten as

n

Similarly theequatia for v, maybewrittenas:

anVn = % a, Vo, + X (Pp — Py) +bn (6.25)
n

Here, nb refersto the momerium contiol volume neighbors. For the e momeitum
equatia, the neigtborsnb would involve the u velocities at pointseg nnew andsse
shavn in Figure6.4. A similar stencilinfluercesvy,. Thediscretecontintity equation
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is givenby Equation 6.2Q (Note thatbecausef grid staggeing, the coeficients a p
anda,, aredifferentfor theu andv equatioss). It is notyet clearhow this equatiorset
is to besolvedto obtainu, v andp. We turnto this matternext.

6.5 Solution Methods

Thus far, we have examnedissueselatedto discretizationof the cortinuity andmo-
mentum equatims. Thediscretizatiomaffectsthe accurag of thefinal answermwe ob-
tain. We now turn to issuesrelatedto the solutionof theseequatios. The solution
pathdeternineswhethermwe obtaina solutionandhow muchcomputertime andmem-
ory we requite to obtainthe solution. For the purposesof this bodk, the final solution
we obtainis consideedindependentof the pathusedto obtainit, andonly depexdent
on the discretization.(This is not true in geneal for noniinear prodems, wherethe
solutionpathmaydetermire which of severd possiblesolutionsis captued).
Thusfar, our solution philosophyhasbeento so solve our discreteequatios it-

eratvely. Though we have not emphasizedhis, when solving multiple differential
eguations,acornvenientway is to solve themsequentially Thatis, whencomputing the
transrt of Ns chemicalspeciesfor example,oneoptionis to emplg a solutionloop
of thetype:

1. for species =1, Ng

o Discretizegoverningequatia for species
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¢ Solve for massfractions of species at cell centroic, assumingprevailing
valuesto resohe non-linearitiesanddepenénceson the massfractions of
species

2. If all speciesnassfractionshave corverged stop;elsegoto stepl.

Otheralternatves are possible. If we are not worried abou storageor computa-
tional time, we maywish to solve the entireproblemdirectly usinga linear systemof
thetype

Mp=Db (6.26)

whereM is a coeficient matrix of size (N x Ng) x (N x Ns), whereN is the nurrber
of cellsandNs is the numter of speciesg is a colurm vectorof sizeN x Ng, andb
is a columnvecta alsoof sizeN x Ns. Thatis, our intentis to solve for the entire
setof N x Ns speciesmassfractionsin the calculationdormain simultaneosly. For
mostpracticalapplicatiors, this type of simultaneas solutionis still not affordable,
especiallyfor noniinear problemswherethe M matrix (or a relatedmatrix) would
have to bereconputedevely iteration.

For practicalCFD prodems,sequetial iterative solutionproceeduresarefrequently
adopied becausef low storagerequrementsandreasonale corvergerce rate. How-
ever thereis a difficulty associateavith the sequentiakolutionof the contindty and
momantumequationsfor incompressibleflows. In orderto solve asetof discreteequa-
tionsiteratively, it is necessaryo associatehe discretesetwith a particula variabe.
For exanple, we usethe discreteenegy equationto solve for the temperatte. Simi-
larly, we intendto usethediscreteu-momentum equdion to solve for theu-velocity. If
we intendto usethe cortinuity equatia to solve for pressurewe encountera problem
for incompessibleflows becauséhe pressureloesnot apgearin the contiruity equa-
tiondirectly. Thedensitydoesappeain thecontiruity equationbut forincompessible
flows, the densityis unrelatedto the pressue andcanna be usedinstead.Thus,if we
wantto usesequentialiterative method, it is necessaryo find away to introdwce the
pressurénto thecontiruity equatia. Methods which usepressue asthe solutionvari-
ablearecalledpressue-basednethod. They arevery popdar in theincompessible
flow community.

Therearea nunber of methalsin theliterature[5] which usethe densityasa pri-
maryvarialle ratherthanpressureThis practiceis especiallypopularin thecompess-
ible flow community. For compressibleflows, pressur@nddensityarerelatedthrough
anequatio of state.lt is possibleo find the densityusingthe continuityequatim, and
to dedwcethe pressue from it for usein the momentumequatios. Suchmethals are
calleddersity-basednethals. For inconpressibleflows, a classof method calledthe
artificial compessibilitymethals have beendevelopedwhich seekto ascribea small
(but finite) compressibility to inconmpressibleflows in order to facilitatenumercal so-
lution through densitybasedmethals [6]. Corversely pressurebasedmethals have
alsobeendevdlopedwhich maybeusedfor compessibleflows [7].

It is importantto realizethatthe necessitffor pressureanddensitybasedschemes
is directly tied to our decisionto solve our governingequatims sequetially anditera-
tively. It is this chdce thatforcesusto associateachgoverning differential equation
with a solutionvariable If we wereto usea directmethal, andsolwe for the discrete
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velacitiesandpressuraisinga doman-wide matrix of size3N x 3N, (threevariabes-
u,v,p - over N cells), no suchassociations necessaryHowever, evenwith the powver
of todays computers,directsolutiors of this typearestill out of reachfor mostprob
lemsof practicé interest.Othermethals, including local directsolutiors at eachcell,
cowledto aniterative sweephave beenproposed[8] but arenot pursue here.

In thischapteywe shallconcentateondeveloping pressurébasednethod suitable
for inconpressibleflows, but which can be exterdedto compessibleflows aswell.
Thesemethalsseekto createanequatian for pressue by usingthediscretemomentum
eqguations. They thensolve for the contiruity andmonmentumequatios sequentially
with eachdiscreteequationsetbeing solved usingiteratve method. We emphasize
herethatthesemethalsdefinethe pathto solutionandnotthediscretizatiortechniqe.

6.6 The SIMPLE Algorithm

The SIMPLE (Semi-mplicit Methad for Pressuré.inked Equatians)algoithm andits
variants are a setof pressure-asedmethals widely usedin the inconpressibleflow
comnunity [9]. The primary ideabehird SIMPLE is to createa discreteequationfor
pressue (or alternatiely, a relatedquariity calledthe pressurecorredion) from the
discretecontinuty equation (Equation 6.20. Sincethe continuity equdion contains
discretefacevelodties, we needsomeway to relatethesediscretevelocitiesto the
discretepressue field. The SIMPLE algorithm usesthediscretemomenum equations
to derive this comection.

Letu* andv* bethediscreteu andyv fieldsresultingfrom a solutionof thediscrete
uandv momeriumequations.Let p* represetithediscretepressue field whichis used
in the solutionof the momentumequations.Thus,u; andv;, satisfy

Bele = %anbu;b+Ay(pE_pE)+be
n

anvy = %anb\fﬁwa(p’é—pEan (6.27)
n

Similar expressionsmay be written for uy, andv;. If the pressurdield p* is only a
guessor aprevailing iterate thediscreteu* andv* obtainedby solvingthe momentum
eqguationswill not,in geneal, satisfythe discretecontiruity equation(Equation6.20).

We propose a corredion to the starredvelacity field suchthat the corrected values
satisfyEquatian 6.20:

u = u+u
vV = V4V (6.28
Correspndindy, we wish to correctthe existing pressurdield p* with
p=p'+p (6.29

If we subtractEquaions6.27 from Equdions6.24 and6.25we obtain
qelle = %anbU’nwAy(p’p—p’E)
n

%anb\/nw Ax(ps— pp) (6.30

anv
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Similar expressios maybewritten for u, andv,. Equatias 6.30representhedepen-
denceof thevelocity correctionsu’ andv' onthe pressue correctionsp’. In effect, they
tell us how the velocity field will respondwhenthe pressuregradien is increasecbr
decreaed.

We now make animportart simplification.We appraimate Equatiors 6.30as

el ~ Ay(pp—pe)

av, ~ OX(ps—ph) (6:31)
or, defining
A
de = %
AX
d, = a (6.32)

we write Equdions 6.3l as

U = de(p;D_ p’E)

Vi = dn(pb—pY) (633)
sothat
Ue = Ug+de(Pp—PE)
Vo = Vi+ch(ph— ps) (6.34)

Further usingEqudions 6.23 we maywrite the faceflow ratesobtairedafterthe solu-
tion of themomernum equatimsas

Fo = peUzly
FY = pavplX (6.35)

Thecorrectedfaceflow ratesaregivenby

Fe = FC+F.
Fo = Fi+F (6.36)

with

Fi = pededy (ph— PE)
Fa = PndnX(pp— Ps) (637)
Similar expressionsnaybewritten for Fy, F,, Fs andF,.
Thusfar, we have derivedexpressiongiescribirg how thefaceflow ratesvaryif the

pressurdaifferenceacrosshefaceis changd. We now turn to thetaskof creatingan
equatia for pressurdrom the discretecontiruity equation
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6.6.1 The Pressue Correction Equation

We now considerthe discretecontinuty equatiom. The starredvelocitiesu* andv*,
obtairedby solvingthe momentumequationsusingthe prevailing pressue field p* do
not satisfythediscretecontintity equation. Thus

(pu*)ely — (pu®), Ay + (V') AX — (V") AX # 0 (6.39
or, in termsof F, we have
Fo—Fy+F—F#0 (6.39

We requireour correctedvelccities, given by Equatiors 6.28 to satisfy continu
ity. Alternately the correctedfaceflow rates,given by Equdion 6.36 mustsatisfy
cortinuity. Thus,

Fo+F—FRy—Fy+F+F—FK —-F=0 (6.40
or usingEquations6.37

Fo + pedeldy (P — PE) — Fi — Pwdwdy (Ply — Pp) (6.41)
+Fn 4+ Pndh&X (pp — py) — Fs — psdsBX (Ps—pp) = O (6.42

Rearraging terms,we maywrite anequatiorfor the pressureorrectio p}, as:
!
appPp = % Pro+ b
n
where

= pededy
= pwdwdy
PndnlX
= pPsdsAX

= %anb

= Fy—Fe+F —-F (6.49

c ®pEER
I

We notethatthe sourcetermin the pressureorrectionequatia is the masssouicefor
thecell P. If the faceflow ratesF* satisfythe discretecontintity equation(i,e, b is
zerg, we seethat p’ = constansatisfiesEquation6.44. Thus,the pressureorrection
eguationyieldsnonconstantorredionsonly aslongasthevelocityfieldsprodiwcedby
the momentum equatims do not satisfy cortinuity. Oncethesevelocity fields satisfy
thediscretecontintity equatims,the pressureorrectionequatiorwill yield aconstant
correction. In this limit, differencesof p’ arezeroandno velocity correctionsareob-
tained If the constah correctia valueis chosento be zero (we will seewhy this is
possiblein alatersection)thepressue will notbecorrected.Thus,convergerceis ob-
tainedoncethe velacities predictedby the momentumequatims satisfythe contintity
eqguation.
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6.6.2 Overall Algorithm
Theoverall procedurefor the SIMPLE algoritim is thefollowing:
1. Guesshepressurdield p*.

2. Discretizeandsolve themomentumequationsusingtheguessedvaluep* for the
pressuresourceterms.Thisyieldstheu* andv* fields.

3. Find the massflow ratesF* usingthe starredvelocity fields. Hencefind the
pressureorrectionsourcetermb.

4. Discretizeandsolve the pressureorrectionequationandobtainthe p’ field.

5. Correctthe pressurdield using Equdion 6.2 and the velocitiesusing Equa-
tion 6.28. The correctedvelocity field satisfiesthe discretecontinity equation
exactly.

6. Solvethediscreteequatiosfor scalarg if desiredusingthecontintity-satisfying
velocityfield for the corvectionterms.

7. If thesolutionis convergad, stop.Elsegoto step2.

6.6.3 Discussion

Thepressureorrection equdion is a vehicleby which the velocity andpressurdields
arenudgedtowardsa solutionthatsatisfiedoththediscretecontiruity andmomentum
equatims. If we startwith an arbitraly guessof pressue and solve the momentum
equatims, thereis noguarameethattheresultingvelocity field will satisfythecontinu-
ity equation Indeel theb termin the continuity equatia is a measue of theresulting
massimbalance.The pressurecorrection equatia correctsthe pressureandvelodty
fields to ensue that the resultingfield annihilatesthis massimbalance. Thus, once
we solve the pressue correctionequatia andcorrecttheu* andv* fieldsusingEqua-
tions 6.28, the correctedvelocity fields will satisfythe discretecontindty equatias
exactly. It will nolonger satisfythe discretemomerntium equations,andthe iteration
betweerthe two equatims contintesuntil the pressue andvelocity fields satisfyboth
equatiams.

It is important to realizethat becase we are solving for the pressurecorrection
ratherthatthepressuréself, theomissionofthe y  a u., andy  a v termsin de-
riving the pressureorrectio equationis of no consegenceasfar asthefinal answers
arecorcerned. This is easilyseenif we conside whathappensin the final iteration
In the final iteration,u*, v* and p* satisfythe momentumequatiams, andthe b term
in the p’ equationis zero. As discusseatarlie the p’ equation doesnot generateary
corrections,andu = u*, v=v*, p = p* holds true. Thus, the p’ equatim playsnorole
in the final iteration. Only discretemomentumequatia, andthe discretecontintity
equatio (emhodiedin theb term)deternine thefinal answer

Thedroppng of the 3, a, u, andy , a  vi,, termsdoeshave conseqencesfor
therate of corvergence,however. The u-velocity correctia in Equdion 6.30,for ex-
ample,is a function of boththe velocity correction term 5 a ', andthe pressue
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correctionterm. If wedropthe § a  ur,, term,we placethe entireburdenof correct-
ing the u-velocity uponthe pressurecorredion. Theresultingcorrectedvelodty will
satisfythecontintity equatim all thesame put theresultingpressureés overcorrected
Indeed,becausef this over-correction of pressurethe SIMPLE algorithmis proneto
divergerce unlessunderelaxationis used. We uncerrelaxthe momerium equations
usinguncerrelaxation factorsa, anday in the manne outlinedin previous chapters.
In addition the pressurecorredion is not appliedin its entiretyasin Equation 6.29
Instead only a partof thepressureorrectia is applied

p=p"+app (6.49

Theunderelaxationfactor o is chesento be lessthanonein orderto correctfor the
over-correctionof pressurelt is importantto emphasize¢hatwe do notunderelaxthe
velacity correctimsin the manrer of Equation6.45 The entirepoint of the pressure
correctionprocedire is to createvelocity correctins suchthat the correctedvelocity
fields satisfy contiruity. Underelaxing the velocity corredions would destry this
featue.

Thus,theSIMPLE algaithm appioachegsonvergencethroughasetof intermedliate
continuity-satisfyirg fields. The computationof transpoted scalarssuchasenthaly
or speciegnassfractionis therebre dore soonafterthe velocity correctian step(Step
6). This ensureghatthe faceflow ratesusedin discretizingthe ¢ transpor equatio
areexactly contiruity satisfyingevery singleiteration.

6.6.4 Boundary Conditions

We have alreadydealtwith thebourdarycondtionsfor scalartranspat in the previous
chaper. Theseapplyto the momernum equatios aswell. We turn now to bourdary
corditionsfor pressureTwo comma bowundaryconditinsareconsideed here:given
nomal velocity andgivenstaticpressureA third condtion, givenstagnatiorpressure
andflow ande, is alsoencourered,but we will notaddresst here.

At a given-velocity bourdary, we aregiven the normal compnentof the velocity
vecta V, at the bourdary This type of boundary could involve inflow or outflov
bowndariesor boundariesnomal to which thereis no flow, suchawalls.

Considetthenearbounday cell shawvn in Figure6.5. Out objedive is to derive the
pressue correctionequatiorfor CO. Integratingthe contiruity equatian for thecell CO
in theusualfashionwe have

We know how to write the interior faceflow ratesFe, Fy, andFs in termsof the the
pressue correctims. For F,, no suchexpansionin termsof pressurecorrection is
necessarpecausd, is knowvn, andis givenby

Fo = Pou,AY

Thisknown flow rateis incorporateddirectlyinto themasshalancesquaion for cell CO.
Whenall bourdariesare givenvelocity boundarieswe mustensurethat the specified
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Figure6.5: NearBoundary Cell for Pressure

bowndaryvelocitiessatisfyoverall masshalarce over theentirecompuationaldoman;
otherwisethe prablemwould notbe well-posed.
At agiven-pressug bourdary, the pressureorrectio py, is setequalto zero.

6.6.5 Pressue Level and Incompressibility

For inconpressibleflows,whee densityis not a function of pressurgit is comman to
encounter situationswhich arebestmoceledwith givenvelocity bourdary conditins
onall bourdaries.In sucha casethelevel of pressurén thedoman is notset. Differ-
encesn pressurareunigue,but theindividual pressurezaluesthemseles arenot. The
reademayverify that p andp+ C aresolutionsto thegoverningdifferertial equatios.

From a compuational viewpoint we may interpeet this situationin the following
way. We are given velocity boundary condtions that are continuity-satisfyingin an
overall sense.Thus,if we divide the computationaldomaininto N cells, andimpose
amassbalarce onthem,only N — 1 uniqueequatiams canresult. Therdore we do not
have enoghequatimsfor N pressue (or pressureorrectian) unknowns. Thissituation
may be remalied by settingthe pressureat onecell centrad arbitrarily; alternatvely,
we maysetp’ = 0in onecell in thedonmin.

We shoud emphasiz¢his situationonly occursif all bourdariesaregivenvelodty
bowndaries.Whenthe static pressue p is givenon a boundary the pressurés made
unigwe, andthe problemdoesnot arise.For compessibleflows, where thedensityis a
fundtion of pressureit is necessaryo specifypressurdourdarycondtions on atleast
partof thedomain boundary

Letusgobackto thepressureorrectionequation Equation6.44andits behavior at
convergence.We have saidthatthe pressue corred¢ion becomes constantt cornver
gence.If all bourdariesaregiven-velccity bourdaries,the pressue correctionhasan
arbitray level, whichwe arefreeto setequalto zero. Thus,thepressurg* seesnocor
rectiors at corvergence.(Eenif we did notsetp’ to zero,theresultis still converged
the pressue level would rise by a constantvery iteration, but this is acceptale since
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only difference®f pressurarerelevart with all givenvelodty bourdaries).If oneor

more givenpressurdowndariesarepresentp’ = 0is setat atleastonebourdaryface.
Thus the constanwaluepredictedby the pressureorredion will comeoutto be zero.
In this casealso,the pressureorrectionpredids zerocorrectims at corvergence.

6.7 The SIMPLER Algorithm

The SIMPLE algorithm hasbeenwidely usedin the literature. Nevertheless,there
have beena number of attemptgo acceleratéts convergence andonesuchalgorithm
is SIMPLER(SIMPLE-Reised [10]. Oneof thedrawvbacksof the SIMPLE algorithm
is the appraimate natuee of the pressurecorrection equation Becausehe 3 a  ur,
andy,  a..v,, termsaredroppedin its derivation, the pressurecorrectiors resulting
from it aretoolarge andrequire under-relaxaion. Thisslows down corvergence since
optimal valuesare problem depenéntandrarely know a priori. Thevelccity correc-
tions, however, aregood,andguaanteethatthe correctedvelocitiessatisfythe conti-
nuity equatio. Consequetty, it would seemappopriateto usethe pressureorrection
eguationto correctvelodties, while finding angherway to computethe pressure

A godd way of uncerstandinghisis to conside whatthe SIMPLE algorithm does
whenwe know the velocity field, but do not know the pressurdield. If we solve the
monmentumequatios with a guessegbressurdield p*, we destrgy the original (good)
velacity field, andthenembak on along iterative processto recoverit. A goad guess
of thevelocity field is no usewhenusingthe SIMPLE algaithm, unlessaccompnied
by agoodpressurgyuess We would preferanalgoithm which canrecoverthecorrect
pressue field immediatelyif theexactvelccity field is known.

With SIMPLER, we derive the pressureequatiam by re-arranging the momentum
eguationsasfollows:
ananl;l:nb—i' be + de(

Ue Pp— pE)

v +b
Vi % +dn (Pp— Py) (6.49

By defining
+_ Znb@upUnptbe
B a
bn
% — an anl;\;nb"' (649
we maywrite

Ue = Ue+de(Pp—Pg)
Vh = \7n+dn(pp_ pN) (6.50
Furtrermore we maydefine
Fe = peledy
Fn = pn\?nAX (65])
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sothat

Fe = Fet pedely(pp— Pg)
Fn = Fn + pndnAX ( pP - pN) (652)

SubstitutingEquatias 6.52 into the discretecortinuity equatian (Equation 6.20 we
obtainthefollowing equatia for the pressure:

ApPp = %anbpnb"" b
n

where
3 = pPededy
ay = Pwdnly
aN = pndnAX
ag = pPsUsAX
% = Y a
% b

Theform of the pressue equatim is identicalto that of the pressue correctionequa-
tion, andthe a, anda,, coeficientsareidenticalto thosegoverningthe pressurecor-
rection Thebterm,however, is differert, andinvolves thevelodties G andv ratherthan
theprevailing velocitiesu* andv*. We shouldemplasizethatalthoudn theb termlooks
similarin formto thatin the p’ equatia, it doesnotrepresenthemassmbalarce. An-
otherimportant differenceis that no appgoximatians have beenmadein deriving the
pressureequation Thus,if thevelocityfield is exact,the correctpressue field will be
recovered.

6.7.1 Overall Algorithm
The SIMPLER solutionloop takesthe following form:
1. Guesghevelocityfield.

2. Computed andv.

3. Solwe the pressue equation(Equation 6.54) usingthe guessedield andobtain
thepressue.

4. Solve themomentumequatios usingthe pressurdield just computed,to obtain
u*, andv®.

5. Computethe masssoure termb in the pressureorrection equation.
6. Solvethepressureorrectionequatiom to obtainp’.

7. Correctu* andv* usingEquatiss6.28 Do notcorrectthepressue !
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8. At this point we have a contiruity satisfyingvelocity field. Solve for ary scalar
¢'s of interest.

9. Checkfor corvergence.If corverged,stop.Elsegoto 2.

6.7.2 Discussion

The SIMPLER algorithm hasbeenshavn to perfam betterthan SIMPLE. This is
primarily becauseghe SIMPLER algorithm doesnot requre a good pressureguess
(whichis difficult to provide in ary case).It generéesthe pressurdield from a goad
guess of the velocity field, which is easierto guess. Thus, the SIMPLER algorithm
does not have the tendemy to destry a goodvelocity field guesslike the SIMPLE
algoithm.

The SIMPLERalgorithm solvesfor two pressue varialles- theactualpressue and
the pressue corredion. Thus,it usesoneextra equation andtherefae involves more
comptationaleffort. The pressureorrection solverin the SIMPLE loop typicdly ac-
cowntsfor halfthecomputationaleffort during aniteration. Thisis becauséhepressure
correctionequationis frequently solvedwith given-velocity boundarycondtions. The
lack of Dirichlet bourdary corditionsfor p’ causedinear solvers to converge slawly.
Thesamads trueof pressureThus,addinganextra pressurequatia in the SIMPLER
algoithm increaseshe compuationaleffort by about50%. The momenum equatio
coeficientsareneededn two places- to find G andv for the pressureequatia, and
later, to solve the momenum equatios. To avoid compuing themtwice, storagefor
eachof thecoeficient setsis requiled. This is alsotruefor the pressureoeficierts.

Becausehe pressurecorrection p’ is not usedto corred the pressureno uncer
relaxdion of the pressurecorrectionin the manrer of Equaion 6.45 is requied. The
pressue equatiormayitself beuncerrelayed if desired butthisis notusuallyrequired
Themomenum equatims mustbeunderelaxedto account for nonlinearitiesandalso
to accoumfor the sequetial natureof the solutionprocedure.

6.8 The SIMPLEC Algorithm

The SIMPLE-Corected(SIMPLEC)algorithm [11] attemptgo curethe primary fail-
ing of theSIMPLE algorithm, i.e.,theneglectof the 5 a  ul, andy  a ., vi,, termsin
writing Equatiors 6.33. Insteadof ignoting thesecompletelythe SIMPLEC algorithm
attemptdo apprximatethe neigtbor correctionsby usingthecell correctionas:

Aplnp A Uey app
% 3
% aVe & Ve % ay, (6.59
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Thus,thevelacity correctionstake theform

<ae— %anb) W = Ay(pp—pE)

(an—%anb>vn — (e rh) (650
Redefiningde andd,, as
dn m (657)

Therestof the procedureis the sameasthat for the SIMPLE algoiithm exceptfor the
factthatthe pressurecorrection neednot be uncerrelaed asin Equation 6.45 How-

ever, we shouldnotethat the de andd, definitiors requre the momentumequatims
to beunderelaxedto prevert the denaninatorfrom going to zero. The SIMPLEC al-
gorithm hasbeenshavn to converge fasterthanthe SIMPLE and doesnot have the
comptationalovetheadof the SIMPLERalgorithm. However, it does sharewith SIM-

PLE the property that a good velodty field guesswould be destrged in the initial

iterationsunlessaccompaniedby a goodguessof the pressurdield.

6.9 Optimal Underrelaxation for SIMPLE

It is possibleto make SIMPLE dugicatethe speed-p exhibited by SIMPLECthrough
the judicious choice of underelaxationfactors. The SIMPLE procedire employs a
pressureorrectian of thetype

p=p*+app (658)
whereaghe SIMPLEC algorithm emplg/s a pressue corredion of thetype
p=p +p (659)

Ratherthansolve for p’, let us make the SIMPLE algoithm solve for a variae p’
definedas

p' = app (6.60)
Thenits correction equation takesthe form of Equation6.59 We may think of SIM-
PLECassolvingfor p’ ratherthanp'.

Now let us examire the p’ equdion (or p’ equdion) solved by SIMPLEC. The
equatiom hastheform

apPp = %anbf’:wﬁ‘ b (661)
n
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with the coeficierts a,, having theform

poy?

T A 2nb@nb

Letusassumédor simplicity thatthemomentumequatio coeficientshaveno Sy terms,
sothat

anp (6.62

Qe = ananb (663

ay
Thus, the pressureorrectioncoeficients in Equdion 6.62maybewrittenas

pAy?
a'nb = 1= ay

— (6.64
ay ananb

Now we turn to the SIMPLE algorithm If we castits p’ equdion in p’ form, we
get

80 Pb = 3 2Py +b (6.69
n
with the coeficierts a,, having theform
poy?
ap=g—— (6.69
‘2—5 2nb@nb

If we requre thea,,, coeficientin Equation6.64to be equalto thatin Equation 6.66
we concluethat

Thus, we seethatif we useEquation6.67in underelaxingthe momentumequations
andthepressue correction,we would essentiallyreproducetheiteratiors compuedby
SIMPLEC.

6.10 Discussion

We have seerthreedifferentpossibilitiesfor asequentiasolutionof the cortinuity and
momentumequatiois usinga pressurebasedscheme A numbe of othervariarts and
improvenentsof thebasicSIMPLE pracedurearealsoavailablein theliterature These
are,however, variatiors on the basicthemeof sequentiakolution,andthe samebasic
adwantagesanddisadwartagesobtain. All theseproedureshave the advantageof low
storag, andreasonaly goodperfamanceover a broadrange of prodems. However,
they areknown to require a large numker of iteratiors in prodemswith large body
forcesresultingfrom buoyarcy, swirl andotheragerts; in stronglynondinear cases,
divergerce may occu despiteuncerrelaxatio. Many of thesedifficulties area result
of thesequentiahatue of the momenum andcontiruity solutionswhich arestrondy
cowledthrowgh the pressuregradien termwhenstrongbody forcesarepresehn For
suchproblems,the userwould not find muchdifferencan the perfomanceof thedif-
ferert SIMPLE vaiiants.A varietyof couged solvershave beendevelgpedwhich seek
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(@)

Figure6.6. Velocity Systemdor Structued Bodyfitted Meshes:(a) Cartesianand(b)
Grid-Following

to replacethe sequetial solutionof the momentumandcontintity equatimsthrough
tighter couging of the two equatios (see[8] for exanple). Theseprocaluresusu-
ally incur a storagepenaltybut exhibit substantiatorvergerce accelerationat least
for laminar flow problems. This areacontiruesto be active areafor new research
especiallyin conrectionwith unstructuedmeshes.

6.11 Non-Orthogonal Structur ed Meshes

Whenstructurel nonorthagyond meshesareused the staggeredneshprocediresde-
scribedabore may be usedin principle. However, greatcaremustbe taken in the
choiceof velocity compaments.For exanple, it is not possibleto useCartesianveloc-
ity compmentswith astaggeredneshasillustratedin Figure6.6@). Herewe consider
a9 elbaw. If we storethe u andv velacities on the facesas showvn, similar to our
practiceonregularmeshesit is possibleto encaintercellswherethestoredfaceveloc-
ity compamentis tangentialto the face,makingit difficult to discretizethe contintity
equatia correctly. If staggeredneshesreused,it is necessaryo usegrid following
velodties, i.e., velodties whoseorientdion is definedwith respecto thelocalface.In
Figure6.6(), for examge, we usevelocity commneris normal to the facein ques-
tion. Thesevelodty compmentsareguarateedto never becone tangetial to theface
becausehey turn asthe meshturns. Any velocity setwith a fixed (honzero)angle
to thelocal facewould do aswell.(Otheroptions,suchasstoringboth compnerns of
the Cartesiarvelocities at all faces have beentried; though formuationsof this type
canbeworkedout, theresultis notvery elegart; for exampe, overlappingmomentum
contrd volumesresult).

Two primaly grid-following or curvilinearvelocity systemshave beenusedin the
literaturefor this purpase. Thesearethe covariant velocity andthe contravariant ve-
locity systems.Considerthe cells P andE is Figure6.7(a) The vectorse; ande,
are calledthe covariantbasisvectors. The e vectoris alignedalongtheline joining
the cell centrads. The e, vectoris alignedtangetial to the face. The velocity com-
porentsalongthesebasisdirectimns arecalledthe covariant velocity commneris. On
eachface the compnentalongtheline joining the centrads is stored.Thuson Karki
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@)

(b)

Figure6.7: CurvilinearVelocity Compaments(a) Covariart, and(b) Contravariant

andPatanka [7] have usea covariantvelocity formulationto develop astaggerednesh
SIMPLE algoithm for body-fitted structurel meshes.

Alternatively, contravariant basisvectas maybeused,asshaovn in Figure6.7b).
Here thebasisvectore? is perpemlicularto theface,andthebasisvecta e is perpen
dicular to theline joining the cell centroicd. The contravariantvelocitiesare aligned
alongthesebasisdirectiors. Eachfacestoresonecortravariantcompament,the com-
porentperpemnlicularto theface.

The SIMPLE family of algorithms may be developedfor a staggeredneshdis-
cretization using either of thesetwo coodinatesystems. Thoudh theseefforts have
gererally beensuccessfulcurvilinea velacities are not particdarly easyentitiesto
dealwith. SinceNewton’s laws of motionconseve linear momernum, the monmentum
eguationswritten in Cartesiancoodinatesmay always be castin conserative form.
Curvilinearcoodinatesdonothavethis property. Sincecovaiantandcontravariantba-
sisvectos changedirectionwith respecto aninvariant Cartesiarsystemthemomen
tum equatios written in thesecurvilineardirectiors cannad be written in consevative
form; momentumin the cundlinear directimsis not consered. As aresult,additional
cunaturetermsappearjust asthey do in cylindrical-pdar or sphericalcoordnates.
Thus we arenotguarateedcorsenation. (Researcherhave proposedclever cures for
this problem seeKarki and Patanlar [7], for examge). Furthemore, velocity gra-
dientsarerequiral in otherequations,for examge for productiontermsin turbulerce
mockls,or for strainratesin nonNewtonianrhedogies. Thesequantitiesareextrenely
cumkersometo derive in curvilinea coordnates. To overcomethis, researchrshave
comptedtheflow field in curvilinear coordnatesandstoredooth Cartesiarandcurv-
linearvelccities. They useCartesianvelocity compmpnentsfor all suchmanipulations.
Despitetheseworkaraunds curvilinearvelocitiesremaincumtersomeandaredifficult
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D Pressure Storage Location

O Velocity Storage Location

Figure 6.8: StorageArrangementfor Node-BasedUnequal Order Finite Volume
Scheme

to interpre andvisualizein complex domains.

6.12 Unstructur ed Meshes

For unstricturedmeshesthe staggeed meshdiscretizatiormethodwe have derivedso
faris almostentirelyuselessinceno obviousmeshstaggeing is possible.In thefinite
elementcomnunity, a classof unequal order methals have beendeveloped which
interpdate pressurdo lower order thanvelodty. This hasbeenshowvn to circumvent
checlerboardng. Nodebasedinite-volumescheme$12] have beendevelopedwhich
emplg thesameuneaial-oderidea. In thework by BaligaandPatankayfor examge,
trianguar macreelementsareemplo/ed,asshavn in Figure6.8. Pressurés storedat
the nodesof the macrodement. The macroelerantis subdiidedinto 4 sub-elemets,
andvelocityis storedon theverticesof the subelenents. Thoughthis arrargementas
beenshawvn to prevent checletboardng, pressue is resohed to only one-burth the
meshsizeasthevelocity in two dimersions,prompting corcernsabou accurag. For
cell basedschemeshereis no obviouscountepartof this uneqial orderarrangment.

6.13 Closure

In this chapterwe have develgpedstaggeredneshbasedliscretizatiortechniqeesfor
thecontinuty andmomentumequatioms. Staggeing wasshavn to benecessaryo pre-
ventcheclerboadingin thevelodty andpressurdields. We thendevelopedsequetial
anditerative pressurébasedechniqiescalledSIMPLE, SIMPLER andSIMPLECfor
solvingthis setof discreteequaions.

We seethatthe staggeredliscretizatiordevelgpedin this chapteris not easilyex-
tendedto body-fitted and unstricturedmeshes.The useof staggeredneshmethals
basedon cunilinear velodties is cumbersomeand unirviting for structued meshes.
For unstricturedmeshesit is not easyto identify a workable staggerd mesh,even
if we couldusecurvilinear velocity compments.Becausef thesedifficulties, efforts
have beenundervay to do away with staggerig altogethe andto develop techniques
known variously asnonstaggered, equd-order, or co-loated methals. Thesetech-
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niquesstorepressureandvelodty at the samephysical locationandattemptto solve
theproblemof checleboardng through cleverintermlationtechniges. They alsodo
away with the necessityfor cunilinear velocity formuations,anduseCartesianveloc-
ities in thedevelopment.We will addessthis classof techniqesin the next chapter

We shouldemphasizéhatthe materialto be presentedh the next chager changes
only the discretizationpradice. We may still usesequetial anditerative techniqies
suchasSIMPLE to solve theresultingsetof discreteequatims.
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Chapter 7

Fluid Flow: A Closer Look

In this chapterwe turn to the problem of discretizingthe contiruity and momentum
eguationsusinga non-staggerear co-locatedmesh. We saw in the last chapterthat
storingpressureandvelccity at the samelocation i.e., at the cell centroig, leadsto
checlerboadingin thepressurendvelocity fields. We circumwentedthisin Cartesian
meshedy using staggeredtorageof pressureandvelocity. We alsousedCartesian
velocity components asour primary vaiiables.

For unstructuedmeshesit is notobvioushow to definestaggeregressurandve-
locity contiol volumes. Furthermore staggerd meshesresomavhat cumbesometo
use.For Cartesiaimeshesstaggerig requresthe storageof geonetry informationfor
themainandstaggerd u andv contrd volumes, aswell increasedodingcompleity.
For body-fitted mesheswe saw in the previous chapterthat staggeredneshesould
only beusedif grid-following velocitieswereused;we saw thatthis optionis alsonot
entirely optimal. As aresult,recen researcthasfocusedon developingformulations
whichemplgy Cartesiarvelocity compaents storingbothpressurendvelocityatthe
cell centroid Specializednterpdation schemesreusedto preventchecletoardng.

The changeto a co-loated or non-stageredstorageschemeis a chang in the
discretization pradice. Theiterative method usedto solve theresultingdiscretesetare
the sameasthosein the previous chapteralbeitwith a few minor changsto account
for thechamgein storageschemeFor the purposesof this chapterwe will contine to
usethe SIMPLE family of algoithmsfor the solutionof the discreteequatians.

7.1 Velocity and Pressue Checkerboarding

Co-locded or nonstaggerednethod storepressureandvelocity at the cell centrad.
Furthermore we useCartesianselocity commnentsu andv, definedin a globalcoor
dinatesystem.Thus,in Figure7.1,u, v and p arestoredat the cell centroidP, asare
otherscalarsp. Theprincipleof conserationis enforedonthecell P.

In the discussiorthat follows, let us assumean orthayonal one-dmensiona uni-
form mesh. We will addesstwo-dimensionaland non-athogonal meshesn a later
sectionpncethebasicideais clear Themeshandassociatetiomertlatureareshavn
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Figure7.1: Co-Locded Stora@ of PressurandVelocity

in Figure7.2.

7.1.1 Discretization of Momentum Equation

The discretizationof the u-mamentumequaion for the cell P follows the principles
outlinedin previouschapersandyieldsthefollowing discreteequation:

aplp = %anbunb+bg+(p\,\,— Pe) (7.1)

Here, a unit areaof crosssectionAy = 1 hasbeenassumed.The neightors nb for
this co-locatedarrargemen includethe velocitiesat the points E andW. The pressue
at the facese andw are not known sincethe pressuras storedat the cell centroid.

u

© =
P E EE

O
W

Figure7.2: ControlVolumesfor Velocity Interpdation
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Conseqantly, interpolationis requred. Adoptingalinearinterpdation, anda uniform
meshwe maywrite

— P
apUlp = %anbunbjL bp + M (7.2
n
Similarly, for ug, we maywrite
agUg = %anbunbjt b + LP_ZDEE) (7.3
n

We seethat the u-momentumequationat point P doesnot involve the pressue at the
poirt P; it only involves pressurgatcellson eitherside. Thesameis truefor u. Thus,
the u-mamentumequaion cansuppet a checleboarad solutionfor pressure If we

retainthis type of discretizatiorfor the pressue termin the momentum equatio, we

mustmale surethatthe discretizationof the continuty equationsomelow disallovs

pressue checletoardng.

7.1.2 Discretization of Continuity Equation

In order to discretizethe continuty equationwe integrateit overthe cell P asbefae
andapplythe divergercetheoem. Thisyields

Fe—Fy=0 (7.9
where
Fe = peUedy
Fw = pwlnwly (7.9

As we discussedn the previous chapterwe mustinterpdate u from the cell centrad
valuesto thefacein orderto find ue anduy,. If we usealinearinterpolation

Uy = w (7.6
Substitutiy theserelationsinto Equation 7.4 andassumingunit Ay yields
Pelg — Pwlhy =0 (7.7

7.1.3 Pressue Checkerboarding

Letusnow considethequestiorof whethe Equatian 7.7 cansuppat achecleoardd
pressuefield. Dividing Equatiors 7.2 and7.3 by their respectie centercoeficients a
andag, we have

Up = Opt—
P PT 2

N 1 (Pp— Pee) (7.9



where

q. — 2nb@nptnpt bp
b =
ap
GE — ana’nbunb"' bLé (79)
ag
If we average up andug usingEquation7.8to find ue in Equation 7.7 we obtain
_Up+0 1 /Pw—Pe), 1 (Po—Pee
Ue = 5 +ap( 7 +aE 7 (7.10)
A similar equatiam canbewritten for uy:
_O0y+0 1 /Paw—Pe) 1 (Pw—P:e
Uy = 5 + A — + 2 ~ (7.11)

We seeright away thatary checlerboardedpressurdield which setsp,, = pg and
Pp = Pee = Pyw Will be seenasa uniform pressue field by ue anduy. Theseface
velodties are usedto write the one-dmensionaldiscretecontinuty equaion (Equa-
tion 7.7). Sincethe sametype of checlerboarihg is suppoted by the discretemo-
mentum equatios, a checlerboadedpressurdield canpersistin the final solutionif
bowndary condtions permit. Our discretecontinuity equatian doesnothing to filter
spuriausoscillatorymodesn the pressurdield suppated by the momenum equation

7.1.4 Velocity Checkerboarding

In additionto pressureheclerboading, thelinearinterpdation of cell velocitiesalso

introducescheclerboardirg. As we have seenin the previous chaptey the resulting

discretecontinuty equaion, Equation7.7,doesnotinvolvethecell-cerieredvelocities

Up. Thus,the continuty equationsupmrts a checlerboaded velccity field. Sucha

checleoaradvelocity field impliescheclerboardednomentan thecellmomentum

balance If we enfore@ momernum balanceon the cell, we will in effect createa pres-
surefield to offsetthesecheclerboardednomerta; this pressurdield mustof necessity
be checlerboarded In order to preventcheclerboading in thefinal solution,we must

ensurethat the discretizatiorof eitherthe momernum or the continuty equation pro-

videsafilter to remove theseoscillatorymodes.

7.2 Co-LocatedFormulation

Co-locatedormuationspreventcheclerboardirg by devisinginterpolationproceedures
which expressthe facevelocitiesue anduy in termsof adjacentpressurevalues rather
thanalternatepressurevalues. Furthemorethe facevelocity ue is not definedpurely
asa linearinterpdant of the two adjacentcell values; an addtional term, calledthe
addeddissipationpreventsvelocity checlerboardirg.
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As we saw in the previous section the discreteonedimensioal momenum equa-
tionsfor cellsP andE yield

Up = Gp+dp(pW; pE)
U = Og+dg P2 Pee) _ZpEE) (7.12
where
o - L
ap
o = L
ag
(7.13
Writing the continuty equatia for cell P we have
or equialertly
Pele — Pyl = 0 (7.19
As befae, unit cross-sectioriareais assumedlf weinterpolde ue linearly, we get
_UptUe _ Op+0e Pw—Pe Pe— Pee
U= ——5—=—"> +dp< 7 >+dE< 7 ) (7.19
Insteadof interpdating linearly, we use
u,+u Pw—P Pp— P
U = P2 E_dp( 4 E)_dE< P4EE)+de(pP_pE)
G,+0
= FE+de(Po—pp) (7.17
where d 1 d
do = P; E (7.19

A similar expressionmaybewritten for uy,.

It isimportantto undestandthemanipulaion thathasbeendorein obtairing Equa-
tion 7.17. We have removedthe pressue gradien termresultingfrom linearinterpc
lation of velcocities (which involvesthe pressues pyy, Pg, Pp andpgg) andaddedn a
new pressurgradenttermwrittenin termsof the pressuralifference(pp — pg). An-
otherway of looking atthis is to saythatin writing ue, we interplatethe 0 compnent
linearly betweerP andE, but write the pressuregradien termdirectly in termsof the
adjacentcell-centoid pressurep an pg.

This type of interpdation is sometims referred to asmomentuninterpdation in
theliterature. It is alsosometimeseferedto asanaddel dissipationscheme.lt was
proposedwith smallvariations, by differentresearcheyin theearly1980's[13, 14, 15]
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for usewith pressurébasedsolvers.ldeassimilarto it have alsobeenusedin thecom-
pressibleflow community with density-lasedsolvers. Momertum interpolatian pre-
ventscheclerboaréhg of the velccity field by notinterpolatingthe velocitieslinearly.
Thefacevelocitiesue andu,, areusedto write thediscretecontinuty equaion for cell
P. Sincethey arewritten in termsof adjacent pressuresatherthat alternateones, a
contiruity-satisfyingvelocity field would not be ableto ignore a checlerboadedpres-
surefield. Thus,even thoughthemomentumequatiorcontairs apressurgyradien term
thatcansuppat acheclerboar@dpatternthecortinuity equatia doesnotpernit such
apressuefield to persist.

Anotherusefu way to think abaut momenum interpolation is to considettheface
velodty ue to be a sortof staggeredrelocity. The momentuminterpolation formula,
Equatian 7.17, may beinterpretecasa momenum equatiorfor the staggerd velodty
Ue. Insteadof deriving the staggeed momenium equatiorfrom first principes,themo-
mentum interpdation procedurederivesit by interpolding U linearly, andaddirg the
pressurgradentappopriatefor thestaggeedcell. (Recallthatthe quantity G contains
thecorvection,diffusionandsourcecontritutionsof the momenum equation) By not
usingan actualstaggeregtell discretizationmomerum interpolation avoids the cre-
ationof staggeredaell geoméry andmalesit possibleto usetheideafor unstructued
meshes.

7.3 The Conceptof Added Dissipation

It is usefulto undestandwhy momertum interpolationis alsoreferredto astheadded
dissipationscheme.For simplicity, let usassumehatd, = dg = de. This would be
the casef themeshwereuniform, andtheflow field, diffusioncoeficients andsource
termswereconstanfor thecellsP andE. Let usconsidethefirst of theexpressionsn
Equation 7.17:

Up + U - -
ueZ%—dp(p\NAf Pe Be 4pEE>+dp(pP_pE)

Letuslook atthe pressurgerms

— B Pp— B
_dP(RN4 E+ L 4 EE)+dP(pP_pE)

Rearranig, we have

— P Pp— P
_dp<p\N4 E+ P 1 EE_(pP_pE))

d
= —ZP ((Pw + Pe —2pp) — (Pp + Pee — 2P¢)) (7.21)

Usinga Taylor seriesexpansionwe canshow that

02p\ _ (pw+ Pe —2pp) 2
(ﬁ) i O (8¥) (722)
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Similarly

9%p (Pp+ Peg — 2Pg) 2
(W) c = AxX2 +O(AX ) (723
Thepressurgermin themomernum interpdation schememaythusbewrittenas

_Uptlg Do (0% _ (0% 2

=" "2 \\ae), " \ae ) )™ (7.29
or, dividing andmultiplying the pressue termby Ax, we maywrite

_Uptue dp (0°p
Ue = —— 7\ 5 eAx3 (7.29

A similar expressionmaybewritten for uy:
_uy+up dp (9% 3
Uy = > 2\ e WAx (7.29

Now, let uslook atthe cortinuity equatia. If we write the contiruity equatiorfor
corstantp, anddividing through by Ax we get

Ue— Uy
e (7.27)
Substitutirg for ue anduy, from Equatics 7.25and7.26 we get
Ue—Uy o (0°P) \a
2Ax 4 (dx4 B (7.28
Usinga Taylor seriesexpansionwe may shaw that
Ug—Uy _ (du 2
A (dx)P+O(AX ) (7.29
sothatEquation7.28maybewritten as
du dp (9%p B
(5);? (W PAX3_O (7.30

We seethatmomenuminterpolationis equivadentto solvinga contiruity equatia with
an addedfourth derivative of pressure Evenderiativesare frequently referiedto in
theliteratureasdissipation hencethe nameadded dissipationscheme.

7.4 Accuracy of Added Dissipation Scheme

Let usnow exanmine theaccuacy of themomentuminterpoldion or theaddeddissipa-
tion schemeTheinterpdation schemamaybewritten usingEquatian 7.21

Up+uz d
Ue=%_ZP((p\N+pE—2pp)—(pP+pEE_2pE)) (7.3)
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Letusconsidethefirstterm (up + ug) /2. Usinga Taylor seriesexparsionaboute, we

maywrite
ou\ Ax  [0%u\ Ax?
b = “e‘(&>j+<ﬁ>e?+o(m

ou\ Ax [d%u\ Ox?
Uz = Uet (—) —+ (—) — +0(Ax)
E cT\ox).2 "\ox2), 8

Adding thetwo equatios anddividing by two yields

(7.32)

Ue = ”F’J“T“E +0(A%) (7.33)

Thus the truncation error in writing the first term in Equdion 7.31is O(Ax?). We
alreadysaw from Equation7.22thatthe pressuregermmaybewritten as

dp dp (3°p 3
_Z((D\N"‘ DE—pr)—(pp+ pEE—ZPE)) =2 \ae AX (7.34)
e

sothatthetotal expressionfor ue is

_ Ut dp (0P s 2
Ue = —— 7\ o2 eAx + O(AXS) (7.35)
We seethatthe pressue termwe have addeds O(Ax®), whichis of higherorderthan
the seconedorder truncatia error of the linearinterpdation. Consequetty, the added
dissipationterm does not changethe formal second-ader accurag of the undetlying
scheme.

7.5 Discussion

Thusfar we have beenlooking at how to interpdate the facevelocity in order to cir-

cumwentthe checlerboaréhg prodemfor co-locdaedarrargementsWe have seerthat
momentuminterpdation is equivalert to solvingthe contindty equatiom with anextra
dissipationtermfor pressureAdding this dissipationtermdoesnot chang the formal

accuray of our discretizatiorschemesincethe term addedhasa depenénceO(Ax 3)
whereaghe othertermshave a truncatio errorof O(Ax?). Ourintentis to write the
contiruity equatiam usingthis interpdation for thefacevelocity. Thediscretizatiorof

themomenum equatios retainstheform of Equation7.1.

An extremdy importart poirt to be madeis that the discretecontintity equation
(Equation 7.14)is written in termsof the facevelocitiesue anduy. It is not written
directlyin termsof thecell-centeedvelodtiesu, andug. Thus,atcorvergencejt is the
facevelocitiesthatdirectly satisfythediscretecontintity equatia, notthecell-centered
velodties. In a co-locatedormulation, the cell-certeredvelacities directly satisfythe
discretemomentum equatims. They satisfy the contiruity equatios only indiredly
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throughtheirrole in definingue anduy. Corversely, in a co-locatedormulation, the
facevelocitiesue andu,, directly satisfythe contiruity equatia, but do not satisfyary
discretemormrentumequatia sinceno directmomentumconserationover a staggeed
cellis ever written for them. They satisfymomertium corsenationonly indirectly, in
thesensdhatthey satisfythe momentuminterpdation formula.

To completethe development,let uslook at reguar two-dimersionalmeshesand
derive the equvalentforms for the facevelocity interpdation. Thoughthe properties
of the momenum interpolation schemearelessclearly evidert in 2D, everything we
have saidaboutthe one-dmensionalcaseis alsotruein two dimensios. We will use
this developmert asa steppingstoneto developinga SIMPLE algoithm for solving
thediscretesetof equaions.

7.6 Two-DimensionalCo-LocatedVariable Formulation

Let usgeneréize our develgpmentto two-dmensionalregular meshedefae consid-
eringhow to solve our discretesetof equatims. We considetthecell P in Figure7.1.

7.6.1 Discretization of Momentum Equations

Usingtheproceduresiescriledearlier we mayderivethediscreteu- andv-momentum
equationsfor thevelocitiesup andvp:

apup = % anpUy, + bp + Ayi(pw ; Pe)
n

Ps— P
apvp = %an"bvnb-i- b‘,é-l—AX% (7.39
n

Here,the coeficients ap anday,, arethe coeficierts of the u-manentumequaion for
cell P. Similarly, a}, anday, arethe coeficients of the v-momentumequation We
notethatthe pressue gradiern termsinvolve pressure2Ax and2Ay apat respectiely.
Similar discreteequatians maybe written for the neightoring cells.

7.6.2 Momentum Inter polation

Considethefaceein Figure7.1,andtheu momenum equatios for thecellsP andE.
Dividing thediscretemomentumequaions by the centercoeficients we obtain:

U = aE+dg% (7.3
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where

v o Y

o
By
3

(7.38)

ThefactorAy appeas becausehe pressurggradenttermis multiplied by it in a two-
dimersionalmesh.By analoy we maydefineequvalert quariities at otherfaces:

Ay
d\‘k=£
dmz%

v _ DX

Using momentuminterpolationfor thefacevelocity ue, we obtédn

Ue = Ue+ de (Pp — Pg)

where

Ue

de

By analogy, we maywrite facevelodties for the otherfacesas:

uW =
Vn =
Vs =
with
O
dn

ds

7.7 SIMPLE Algorithm for Co-LocatedVariables

Up + U
2
dp+dg
2

Gw+dw (Pw — Pp)
¥n+h (Pp— Py)
¥Us+ ds (P — Pp)

iy +
2
dp+dy
2
dg+dp
2

(7.39)

(7.40)

(741)

(7.42)

(7.43)

Having definedthe facevelocitiesas momentum-irterpolans of cell centeredralues,
we now turnto the questionof how to write the discretecontintty equation,andhow

154



to solve the discreteset. In keepng with our philosofhy of usingsequentialterative

solutiors, we wish to usethe SIMPLE algoilithm. We mustnow devise a way to for-

mulatea pressue correctionequatim that canbe usedwith the co-locaed variables.
Theprocedireis similarto thatadtedin the previouschapteralbeitwith afew small

charges.

7.7.1 Velocity and Pressue Corr ections

As befor, let u* andv* dende the solutionto the discretemomenum equatios using
aguessegressue field p*. Thefacevelodties ue, Uy, Vh andvs foundby interpolating
theu* andv* to the faceusingmonentuminterpolation are not guarateedto satisfy
thediscretecontiruity equation Thus,

Foe —Fy+FR —F #0 (7.49

The facemassflow ratesF aredefinedin termsof the momentum-irterpolatedface
velocitiesas

Fo = peUsly
Fa = pavalX (7.45
Similar expressionsmay be written for F; andFS. We wish to correct the faceve-

locities (andthe faceflow rates)suchthatthe correded flow ratessatisfythe discrete
cortinuity equatio. Thus,we proposefacevelocitycorrectios

Ue = Ui+U,

Vn = ViV, (7.49
andthecell pressureorrections

Pp = Pp+Pp (7.47
Correspndindy, we maywrite faceflow ratecorretions

Fe = R +F

Fr = Fi+F, (7.48
where

Fo = pelyd,

F. = pndxv, (7.49

We now seekto expressu’ andv' in termsof thecell pressureorrectios p’, andto
usetheseexpressiongo derive a pressureorredtion equatim. Fromour facevelocity
definitions, we write

U = LAjle:"‘de(p;?’_p/E)
Wy = UOy+dw(py—Pp)
Vi = Vh+da(pb—py)
Vs = Vi+ds(ps—pp) (7.50
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In keepirg with the SIMPLE algorithm, we apprximateEquadions 7.50 as
U = de(p%_plE)

Uy = w(Ry—Pp)
Vo = dn(pff’_ p‘\l)
Vs = ds(ps—pp) (751)

by droppingthe 0’ andV’ terms. Thisis analogaisto droppingthe ¥, a,, ur,, termsin
thestaggeredormulation.
Thecorrespadingfaceflow ratecorrectionsare

Fe = pebyde(ph—pE)

Fo = pwlydy(ply — Pp)

Fa = Podxch (Pb— py)

Fe = psAxds(ps—ph) (752)
We noticethat the velocity corredions in Equatiors 7.51 correct the face velocities,

but not the cell-centeed velocities. For later use,we write the cell-centeredrelodty
correctionsby analogy

:3 _ dg(p(/\/;p/E)

b = dgw (753)

7.7.2 Pressue Correction Equation

To derive thepressureorrectionequaion for the co-loatedformuation, we write the
contiruity equationin termsof the correctedfaceflow ratesF asbefae:

Fe+Fe—Fy—FutF +FR—F—F =0 (754)

Substitutingfrom Equatios 7.51and 7.49for the F’ values,we obtainthe pressue
correction equation

%%=§%wﬁw
n

with

= pedely

Pwdwly
Pndnlx

= psUsAX

8 +ay tay+as
Fo—F+F —F (756)

c®p LR
[

We seethat the pressurecorrection equation hasthe samestructureas that for the
staggeredrid formulation. The sour@ termin the pressureorretion equationis the
massimbalarce resultingfrom the solutionof the momentumequatias.
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7.7.3 Overall Solution Procedure

The overall SIMPLE solution procedurefor co-locatedmeshegakes the following
form:

1. Guesghepressurdield p*.

2. Solwethe u andv momenum equationsusingthe prevailing pressurdield p* to
obtainu* andv* atcell centroid.

3. Computethe facemassflow ratesF* usingmomentum interpdation to obtain
facevelocities.

. Solvethe p’ equation.
. Correctthefaceflow ratesusingEquation7.48.

. Correctthecell-centeedvelocitiesup andvp usingEqudion 7.50.

~N o o b~

. Correctthe cell pressue using Equation7.47. In keepingwith the SIMPLE
algorithm, uncerrelaxthe pressureorrection as:

p=p"+app
8. Solwefor otherscalarsp if desired.

9. Checkfor corvergence.If corverged,stop.Elsegoto 2.

7.7.4 Discussion

We seethatthe overall SIMPLE procedureis very similarto thatfor staggereaneshes.
However, we shouldnoteavely important difference. Thepressureorrection equatio
cortainsasourceermb whichis themassmbalancen thecell P. Theconputedpres-
surecorrectionsaredesignedo annihilatethis massimbalarce. Thus,we areassured
correctedfaceflow ratesin step5 will satisfythe discretecortinuity equaion identi-
cally ateachiterationof the SIMPLE procelure.However, the cell-centeredrelodties
eitherbefae or afterthecorrectian in step6 arenever guaranteedto satisfythediscrete
cortinuity equation This is becausehe flow ratesF arenotwritten directly usingu
andvp; themomentum-irterpolatedvaluesareusedinstead.Thus, in a co-locatedfor-
mulatian, thecell-cerieredvelodties satisfythe discretemomantumequatias, but not
the discretecontiruity equation. We shouldalsonotethatthe cell-velodty correctim
in step7 is designedo speedup corvergerce, but doesnothingto make up andvp
satisfythediscretecontinuty equdion. By the sametoken thefaceflow rates(andby
implication thefacevelocities) satisfythe discretecontinuty equatioratstep5 in each
iteration andalsoat convergence.However, they do not satisfya discretemormentum
eqguationdirectly. This curious disconrect betweerthe cell-centerandfacevelodties
is aninheentproperty of co-locatedschemes.

The solutionof passie scalarsp in step8 employs the cortinuity-satisfyirg face
flow ratesF in discretizingthe convective terms.Thecell-centeedvelocitiesarenever
usedfor this purposesincethey do not satisfythe discretecontinuty equatia for the
cell.
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7.8 Underrelaxation and Time-StepDependence

We have thusfar saidvery little aboutthe role of underrelaxatio in developing our
co-loatedformulation. Majumdar[16] hasshawn that unlesscareis takenin un-
derrdaxing the facevelocities,the resultingco-locatedormulationis underelaxation
depemlent. Thatis, the final solutiondepedson the underelaxationemplg/ed, and
different underelaxationfactorsmay leadto different solutiors. This is clearly ex-
tremelyundesirale.

Considetthefacevelocity ue, which maybewritten as

Ue = U+ de (Pp — Pg) (758)

Recallthat de involves the averagesof 1/ap and1/ag, the centercoeficients of the
momentum equatiors at points P andE. Similarly, G alsocontairs ag andag in the
denaninator Letussaythatle andde in Equation7.40 correspondgo un-uinderrelaxed
valuesof ag anda.

If themomentumequaionsareuncerrelaed, the cell-ceneredvelocitiessatisfy

a <0P+dgw> +(1-a)up

Up = 3
u = a (0E+d57(pE_2pEE)) +(1-a)ut (759)
Usingmomertum interpdation asbefore, we obtain
o = a1 ({le-+ b (pp — Pe) + (L r) T 1E (760)

In orderfor a variade ¢ to be underelaxationindepadentat corvergence,the
uncerrelaxation expressiormusthave theform

ap+(1—a)¢* (761)

At convergence,p = ¢*, andthe above expressionrecovers ¢ regardlessof whatun-
derrdaxationis used.
We seethattheuncerrelaxedvalueof ue doesnothave thisform. Theunderelaxed
facevelocity hastheform
OUe+ (1— O) Ufpear (762)

whereu; .., is the prevailing linearly interpolatedfacevalue. Sinceue is never equal
to U} o4 NOtevenat corvergence thevalueof ue is underelaxationdepement.
Theremedyis to useanundarelaxationof theform

Ue=a(ae‘i‘de(pp_pE))-i-(l—a)Uz (7.63)

Here(e andde arecomputedusingun-underelaxed momentun equatimsfor cells P
andE. Thefacevelocityis thenuncerrelaved separatelyo obtan thedesiredorm. We
notethattheinterpdation requiresthe storageof the facevelocity ue, sincewe canna
uncerrelaxue without storingit.
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Figure7.3: Cell Clusterfor Unstructued Mesh

Similarargumentsmaybemadeabou time-stepdepenlenceof co-locatedschemes.
Unlessremediedlthe steadystateobtaired by co-locatedormulationswill depem on
the time steptaken during the precedéhg unsteag process. Recallthat the unsteag
schemesve usedor scalatranspot (andindeedall reasonale time-steppig schemes)
yield steadystatesolutionsthat areindependentof the time-stepgakenin gettingto
steadystate.A remed similarto thatfor underelaxationmaybedevised

We shouldnotethatthedifferencebetweerthemomentum-inerpolatedandlinearly-
interplatedfacevaluedecreaseas/Ax®, asshavn by our erroranalysisof the added
dissipationscheme.Thus, evenif we did not take stepsto remaly the situation,we
expectthedepenlenceto disappeaprogessvely asthe meshis refined

7.9 Co-Located Formulation for Non-Orthogonal and
Unstructur ed Meshes

The co-locatedformuation presentedbove canbe appliedreadilyto non-orthayonal
andunstructued meshesConsiderthe cellsCO andC1 in Figure7.3 In keepng with
the co-locatedormulation,we storethe Cartesianvelocitiesu andv andthe pressure
p atthecell centroics. We notethatthedirectione.f is alignedwith theline joining the
centrads, andfor gereralnonorthogond meshesis notparallelto thefaceareavecta
A;. Thevectore, is ary direction tangemial to theface.

The proeeduresfor discretizingthe u andv momerium equatias on the cell are
similar to thoseadoped in previous chaptes for the corvection-dffusion equation
Theonly termthatneedsspecialconsideationis the pressurgradiern term. Sincethe
cell momentum equaions arederived by integrating the governing equationover the
cell, the pressurggradent termis alsointegratedover the cell. Applying the gradent
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theoren, we maywrite

[ opdy=- / pdA (7.64)
INA A

Assumingthat the pressureat the face centrad prevails over the face,the pressue
gradenttermin theu andv momentumequaions maybewrittenas

_prAf (7.65)

Thefaceareavecta is givenby

Thepressurgradien termsin theu andv momenium equatiors are

—i A%Dpd“l/ = —i-prAf:—prAX

—j. OpdY = —j- A, =— A 767
JA%P Jprf pry (767)

In keepirg with our co-locatedmeshtechrique, p; is interplatedlinearly to the
face.For auniform meshthisinterpdation would take the form

p; = —p"; Py (7.68)

For nonuniform mesheswe mayusetherecorstructedvalue
_ Po+0pPg Tt Pyt 0Py
wherer ; andr; arethedistancegrom thecell centrads of cellsC0 andC1 to theface

centrad. In eitherevert, p; maybewrittenin termsof the cell-centrad valuesof the
pressureSince

(7.69)

ZAf =0 (7.70)

it is clearthatthesummatiorin Equation7.65eliminateshecell pressue p,. Thus,as
with reguar meshesthe momernum equatiams cansuppat a checleoardd pressue
field. If Op, anddp, arecompued usingthe sametype of linear assumptios, the
recorstructedpressurevaluefrom Equation 7.69will alsobehae in the sameway.

For futureuse let uswrite the pressurgradent termin thecell as

—prAf = —0pAY, (7.71)

wherellp, dendesthe average pressue gradentin thecell.
Having discretizedthe pressue gradent term, the discretemomenium equatios
for thecell CO maynow bewritten:

agly = %anubunb'*‘bg—mpo‘m”f/o
n

alvg %an"bvnb+ b — Opy A% (7.72)
n
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Here,ag anday denotethe centercoeficientsof theu andv momenum equationsand
by andb the souceterms. The pressurgradier termssumthe facepressuresn all
thefacesof thecell.

7.9.1 FaceNormal Momentum Equation

Let us consicer theface f betweenthe cellsCO andC1. Sinceit is the facenomal
velocity thatappeas in thediscretecontiruity equatia for cellsCO andC1, it is nec-
essaryto understad the form takenby the momentumequatim for the velocity in the
facenomal direction. Thefacenormd vectorn is givenby

At i+ 7.73
N=—— =nNgi+nyj .
Al .

Let Vg denotethe compnentof thecell-centeredrelocity at cell CO in thedirectian of
thefacenormal n. Thisvelodty is givenby

Von = Vo'n = Uonx+ Vony (7749

In a co-loatedvarialle formulation, the coeficientsof the momentun equations
areequalto eachotherwhenthereareno body forcespresentandfor mostbourdary
corditions. This is becasethe flow ratesgoverning convectionarethe samefor all
¢'s. Thediffusion coeficient for the u andv momenum equatimsis the same andis
eqgual to viscosityu. Away from thebourdariestheonly differencebetweerthecenter
coeficientsag andaj occus becausef sourcetermswith S, commnentswhich act
preferentiallyin the x or y directians. At Dirichlet bourdaries,the coeficient modifi-
catiors for bothvelocity directins arethe same;the sameis true at inlet andoutflov
bouwndaries. The main differenceoccus at symmety bourdariesalignedwith either
thex ory directians. But for theseexceptims, theu momentumcoeficiert set( ag and
app,) areequalto the coeficientsof thev momentun equation( ag anday,).

Underthesecircumstancsg, the momentumequationin the cell CO for the velocity
in thefacenormaldirectionmaybewritten as:

agVo = %aﬂbvﬁb'*' b — Opgrn (7.79
n
where
a)=ay=a}
ab = 8np = anp (7.7
Thepressurgradenttermmaybewritten as
Ip
- Z PA; = — 3n AYy = —0py-nAY, (7.77
0
We notefurtherthat
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Dividing Equaion 7.75by ag, we maywrite

&%

n

Vi =V - =20p,n (7.79)

Usingsimilar procedires,we maywrite, for cell C1

- DAY
VP =V]— a—ngpl-n (7.80)
Here
\7(;1 = aonx + \70ny
Vi o= g+ 9ny (781)

7.9.2 Momentum Inter polation for FaceVelocity

The momentuminterpolation proedureis appliedto the normal velocity at the face.
Letthelinearly interpdatedfacenormalvelocity begivenby V ;. Onauniform mesh

_Vo+Vp

. (7.82)

Vi
For nortuniform meshesfacevaluesof u andv maybereconstratedto thefaceand
averagedin themanne of Equatian 7.89, andafacenomalvelocity found usingEqua-
tion7.74
The momenum-intepolatedfacenomal velccity is given by

V, =V +A—7/f Tpn— (2P (7.83)
T on/, '

Here thequantitiesA¥; andaf repesenthecell volumeandcentercoeficientassoci-
atedwith theface.Thesemaybe choserin a numker of differentways,aslong asthe

associatedruncationerra is keptO(Ax3). For the pumposesof this chapterwe chase
themas

My + 0,
B =

n+an
ap = 228 (7:84)

Thepressurgradien Op is themeanpressue gradent at the faceandis given by

— Opg+0
Dp:# (7.85)

The quantity (dp/dn); is the facevalue of the pressuregradent. In writing Equa-
tion 7.83we areremoving the meannomal pressue gradien, andaddingin a face
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pressue gradent termwritten. We intendto write this facepressue gradentin terms
of theadjacenpressurevaluesp, andp,, justlike we did for regular meshes.

We realizehowever, thatthe normalgradien of pressurecanrot be written purely
in termsof p, and p, for generalnon-orthognal meshesptherneighlwring values
would be involved. Only the gradien dp/dé may be written in termsof p, and p;
alone Thus,we decompsethe nomal gradiert into thedirectiors & andn to obtan,
asin previouschapters:

op\ _nn (9p\ _nn_  (0p
(%>f e, (5%) e, (an>f (789

We now write thegradiert (dp/dn); in termsof the meanpressurgyradier:

op) _nnp-p nn =
(0n)f The, AT ne e Hp-€y (7.87)
Using B B -
Op-e =0pn—Dpe (7.89
andcombiring Equations 7.83and7.87, we get
Vi=Vit a—?E (Dp'ef N ) (7.89

Thus, our manipuation resultsin addirg a dissipationassociatedvith the gradent
dp/o¢& ratherthandp/dn, sincethis theonly gradent thatcanbediredly associated
with the adjacenpressue differencep, — p,.

Rearrangg terms,we maywrite

Vi =V +d; (po— py) (7.90
where
AY: non

7.10 The SIMPLE Algorithm for Non-Orthogonal and
Unstructur ed Meshes

The procealure for deriving the pressue correction closely parallelsthat for reguar
meshesThefaceflow rateis definedas

andrepresentghe outflov from cell CO. As befae, let u* andv* be the solutions
to the cell momernum equatims usinga guessedr prevaling pressurdield p*. As
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befae, thediscretecontiruity equatiorfor thecell CO is not satisfiecby u* andv*. We
postulatefaceflow ratecorredionsF’ suchthat

Z Ff+F =0 (7.93)

whereF* arethefacemasdlow ratesconmputedfrom the momentumsatisfyingveloc-
ities u* andv*. As before, we postulatedacenormal velodty corrections

Vi =dq (Po— P1) (7.94)

Herethe correctionto \7f hasbeendroppedin keepingwith the SIMPLE algaithm.
The correspondig faceflow ratecorrectimsare

Fe = prdiA¢ (Po— P1) (7.95)
We alsopostulatea cell pressue correction
Po=Po+ Po (7.96)

As with regular mesheswe definecell velacity corrections

A
W = — = PiA
2 Z

Ay 2
vy = ago - Z P A, (797)
with facepressureorrections
J/ /
py = 7B (7.98)

Substitutingequations7.94and7.% into thediscretecontiruity equationEquation7.93)
yieldsa pressureorrectionequaion for the cell centempressureWe maywrite this in
theform

pPp = Pp+b
P=2 P

where
&y = PrdeAs
a'P =
%anb
b = —ZFF‘ (7.100)

7.10.1 Discussion

The broad structue of the pressue correction equationis the sameas for regular
meshesTheoverall SIMPLE algorithm takesthe sameform, andis notrepededhere
However afew importan pointsmustbe made.
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In writing ouraddedlissipatiorterm,we have choserto addadissipatiorinvolving
thetermdp/d¢&, andto write this gradent explicitly in termsof (p, — p;). Thetotal
gradent driving the facenormal velacity, however, alsocontainsa pressurggradent
tangatial to theface.But becausd is noteasyto write this explicitly , we have chosen
to leave it embedeédin the \A/f termin Equation7.91. Theaccurag of this omission

is nota concerrsincethe addeddissipationschemds O(Aé& ) accurae. However, we
shoud notethatthis choicedoeshave consequecesfor corvergence.

The primary conseqgenceof this choice is that the pressurecorrection equatian
ignares pressurecorretions dueto dp/dn. Thedp/dn termis proportional to the
nonorthagondity of the mesh. For orthagonal meshes(en-ef = 0), theterm drops
outaltogethe But whenthe meshis not orthagond, the pressurecorredion equatio
attributesto dp/d¢& the correctiors that shouldhave beenattributedto dp/dn. The
final answeiis the samewhethemwe include the corredionsdueto d p/dn or not; only
therateof corvergerce changesOur experienceshaws thatthis appraimationin the
pressue correction equationis toleralle for mostreasonale meshes.Sincewe are
droppingthecorredionsto \7f in keepng with the SIMPLE algorithmarnyway, we may
think of this asan additianal appoximationto the coeficients of pressue correctian
eqguation.

In theinterestof clarity, oneimportantaspechasbeenpushel to the backgourd:
thelinearinterpdation of facepressure For mary flows, the pressurdield is smooth
andalinearinterplationis adeaate.In othercasesthe presencef strongbody force
terms,suchasin swirling or buoyart flows, meansthat the cell pressuregradent is
steepethanthatimplied by linearinterpolation. Sincealinearinterpdation undepre-
dicts the cell pressuregradent, the flow field mustdistortitself to provide the extra
monmentumsourcegsequiledto balancehebody force. This canleadto distortiors in
the cell-centerd velocities. Improvenent of co-locatedschemedor large-bodyforce
problemscontinwesto beanactive areaof research.

7.11 Closure

In this chapterwe have developeda co-locatedformulationfor structuedandunstric-
turedmeshesWe have seenthatthe primary difficulty hasto dowith the computation
of thefacenomal velocity, which is usedto write the discretecontintity equatio. To
circumventcheclertoardirg resultingfrom linearinterpolation of thefacenormal ve-
locity, we developeda monmentuminterpdation or addeddissipationscheme We sav
thattheideais easilyextendel to unstructued meshesandthata SIMPLE algorithm
maybedevelopedusingit.

At this point, we have a comgete procedire capalte of conputingthe cornvection
anddiffusion of scalarsaswell the undelying flow field. The develgpmenthasbeen
dore for generalborthagonalandnon-orthogpnal meshesboth structuredandunstrie-
tured Theschemepreseres the basicconseration prindple regardlessof cell shape.
Indeedwe have madenoassumptioaabou cell shapesare thatthecell beanarbitray
convex polyhedron We turn now to the prablem of solvinggeneal unstricturedsets
of algebric equaionswhichresultfrom theunstricturedmeshdiscretizatios we have
seenin thisandpreedingchapers.
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Chapter 8

Linear Solvers

As we have seenin the earlierchagters,implicit schemesesultin a systemof linear
eqguationsof theform
Ax=Dhb 8.)

HereA is aN x N matrixandx is a vectorof the unkrowns. The efficient solutionof
suchsystemss animportart compmentof ary CFD analysis.

Linearsystemsalsoarisein numerousotherengireeringandscientificappications
andalarge nurmberof techniqueshave beendevelopedfor their solution. However, the
systemf equatioms thatwe dealwith in CFD have certaindistinguishing charateris-
tics thatwe needto bearin mind while selectinghe apprgriatealgorithms.

Oneimportantcharateristicof our linearsystemss thatthey arevery sparse i.e.,
therearealargenumter of zerceesin thematrix A. Recallthatthediscreteequationat
acell hasnonzerocoeficients for only the neighloring cells. Thusfor atwo dimen
sionalstructued quadrilateral grid, for exanple, out of the N2 entriesin the matrix,
only abou 5% N of themarenon-ze&o. It wouldseento beagoad ideato seeksolution
methalsthattake adwvartageof the sparsenatue of our matrix.

Depenihg on the structureof the grid, the matrix might also have specificfill
pattern i.e the patternof location of the nonzeroentries. The systemof equations
resultingfrom a one-dinensionalgrid, for exanmple, hasnonzeroentriesonly on the
diagmal andtwo adjacen“lines” on eitherside. For ameshof 5 cells,the matrix has
theform

(8.9

>

I
O OO X X
O O Xx X X
O X X X O
X X X OO
X X OO0 O

Herex denotethe nonzeroentries. As we shall seeshortly linear systemsnvolving
suchmatricesknown astri-diagonalmatrices canbe solvedeasilyandform the basis
of somesolutionmethals for more generalmatricesaswell. We alsonotethat two
andthree-dmensionalstructuredgrids similarly resultin bandd matrices,althoudh
theexactstructureof thesebandsdepenlson how the cellsarenumbered.Onceagan,
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it wouldseemadvartageoudo exploit thebandstructureof our matrix,bothfor storage
andsolutiontechniaies.

Anotherimportantcharactastic of ourlinearsystemss thatin mary instanceshey
areapproximate By this we meanthatthe coeficientsof the matrix and/a the source
vecta b arethemseles subjectto changeafter we have solved the equation This
mayle becaseof couging betweendifferentequatioms (e.g, the massflux appeang
in corvective coeficientsof theenegy equation), vaiable properties(tempeaturede-
pencdent thermalconductivity, for exampge) or othernon-lirearitiesin the governing
equatiams. Whatever the uncerlying reasontheimplication for thelinearsolver is that
it maynotbereally worthwhileto solve the systemto machineaccurag. Sincewe are
goingto reconputethe coeficient matrixandsolve thelinearprablemonceagain,it is
usuallysufiicientif we obtainonly anappoximatesolutionto ary givenlinearsystem.
Also, aswe areiterating, we usually have a goodinitial guessfor the unkrown and
linearsolvers thatcantake advartageof this areobviously desirable.

8.1 Directvslterati ve Methods

Linear solutionmethod canbroady be classifiedinto two cateyories, director itera-
tive. Direct methals, suchas Gausselimination LU decanpositionetc.,typicdly do
nottake advaratageof matrix sparsityandinvolve a fixednumbe of opeationsto ob-
tainthefinal solutionwhichis determiredto machire accuagy. They alsodonottake
adwartageof ary initial guessof the solution. Given the characteristicef the linear
systemsutlinedabove, it is easyto seewhy they arerarelyusedin CFD applicatins.
Iterative methals on the otherhand can easily be formulatedto take advantage
of the matrix sparsity Sincethesemethod successiely improve the solutionby the
application of afixednumter of opeations,we canstopthe processvhenthe solution
at ary givenouteriteration 1 hasbeenobtainedto a sufficient level of accuagy and
not have to incur the expenseof obtainirg themachineaccuratesolution As theouter
iterationsprogressand we have betterinitial guessedor the iterationsof the linear
solver, the effort requitled during the linear solutionalsodecreaseslterative methals
aretherefae preferedandwe shalldevotethe bulk of this chaptetto suchmethod.

8.2 StorageStrategies

As we have alreadynoted a large numker of the entriesof our coeficient matrix are
zero. Conseqantly, it is vely inefficient to usea two dimersional array structureto
storeour matrix. In this sectionwe considersomesmarterways of storingonly the
nonzeroentriesthat will still allow usto perform ary of the matrix opeationsthat
the solutionalgorithmmight require The exad way of doing this will depndon the
natureof thegrid.

170 distinguish the iterations being performedbecuseof equaton non-linearty andbr inter equaion
coupling from theiterationsbeing performedo obtan the solution for agivenlinear systemwe usetheterm
“outer iteration” for the formerand“inner iteration” or simply iteration for the latter.
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Figure8.1: StorageSchemdor Unstructued MeshCoeficient Matrix

Foraonedimensioml grid of N cells,for exampe, we couldstorethediagoral and
thetwo lines parallelto it usingthreeonedimensioml arraysof lengthN. Following
thenotatian we have usedin the previouschapers,we labelthesearrays AP, AE and
AW respectiely. Thenonzeroentriesof thematrix A canthenbeobtairedas

Al = AP(i) 8.3
Ali—1) = —AWi) (8.9
Alii+1) = —AE(i) (8.5

For a two dimersional structued grid of NI x NJ cells, it is usually convenient
to referto the cells usinga dowble index notationandtherefoe we could use5 two
dimersional arraysof dimension(NI,NJ) to storethe AP, AE, AW AN andAS
coeficients. Alternatively, onemight preferto numbe the cells usinga singleindex
notatian andstorecoeficientsusing5 onedimensioml arraysof sizeNI x NJ instead.
In eithercasepecaseof thegrid structue weimplicitly know theindicesof theneigh
boring cellsandthusthe positionof thesecoeficients in the matrix A. It is therefae
easyto intergret ary matrix operatiam involving the coeficient matrix A in termsof
thesecoeficiert arrays.

For unstructued grids however, the conrectivity of the matrix mustbe storedex-
plicitly. Another difficulty is causedby the fact that the numter of neigtborsis not
fixed Therebrewe cannotusethe apprachmentiocnedabove of storingcoeficients
asap, ag, ay etc.arrays. We will look atonestrat@y thatis oftenusedin thesecases.

Considera meshof N cellsandlet n; repesentthe numter of neighlwrs of cell i.
Thetotal nunberof neighlor coeficients thatwe needto storeis thengivenby

N
B= i;ni (8.9

We allocatetwo arrays of length B, one of integers (labelledNBI NDEX) and one of
floating point numters (labelled COEFF). We alsoallocateone otherinteger array of
lengthN + 1, labelledCl NDEX whichis definedas

CINDEX(1) = 1 8.7
CINDEX(i) = CINDEX(i-1)+n_, (8.9
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TDMA(AP, AE, AW B, X)

{
fori =2toN
{
ro= AWi)/AP(i-1);
AP(i) = AP(i) - r*AE(i-1);
B(i) =B(i) - r*B(i-1);
}
X(N) = B(N)/ AP(N);

fori =N-l1downto1l

{
X(i) = (B(i) - AWI)*X(i+1))/AP(i):
}

Figure8.2: Tri-Diagonal Matrix Algorithm

The idea s that the indices of the neightours of cell i will be storedin the array
NBI NDEX atlocationdocatiors j thataregivenby Cl NDEX(i) <= j < Cl NDEX(i +1).
The correspading coeficients for theseneightors arestoredin the correspadinglo-
cationsin the COEFF array Finally the centercoeficiert is storedin a separatearray
AP of lengthN. Thisis illustratedin Fig. 8.1which shavsthe conterts of the Cl NDEX
andNBI NDEX for atwo dimersionalunstructuedgrid.

8.3 Tri-Diagonal Matrix Algorithm

Although the bulk of this chapteris conernedwith iterative solutiontechniaqies,for

thetridiagmallinearsystemarisingout of aonedimensioml problemthereis a partic-
ularly simpledirectsolutionmethal thatwe corsiderfirst. Theideais essentialljthe
sameas Gaussiarelimination; however the sparsefri-diagmal patternof the matrix
allows usto obtainthesolutionin O(N) operdions. Thisis accomfishedin two steps.
First, the matrix is uppertriangularized i.e., the entriesbelov the diagoral are suc-
cessiely eliminatedstartingwith the secondow. The lastequationthushasony one
unknowvn andcanbesolved Thesolutionfor the otherequatios canthenbeobtained
by working our way back from the last to the first unkrown, in a processknown as
badk-swbstitution Usingthe storagestratgyy describe by Eq. 8.3, the algoithm can
bewrittenin theform shavnin Fig. 8.3
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Figure8.3 StructuredGrid for Line by Line TDMA

8.4 Line by line TDMA

Linearsystemarisingfrom two or threedimersionalstructuredyridsalsohave areg-
ularfill pattern. Unfortunately thereareno simple methals analgousto the TDMA
thatwe saw in the previous sectionfor the directsolutionof suchsystems.However,
usingthe TDMA we candeviseiterative methals. Considerfor exanple, thetwo di-
mensimal structuedgrid shavnin Fig. 8.3. We will assumehatthecoeficient matrix
is storedusingthe strateyy discussedn Sec.8.2 i.e,in 5 two dimensioml arrays AP,
AE, AW ANandAS. Theequatioratpoint(l,J) is thengiven by

AP(1,3) X(1,3) +AE(1,J3) X(1+1,3) +AWI,1) X(I-1,J)
+ANCT, J) X(1,3+1) +AS(1,J) X(1,3-1) =B(1,J) (8.9

We also assumehat we have a guessfor the solutioneverywhere. We rewrite this
eguationas

AP(1,J3) X(1,3) +AE(1,J) X(1+1,3) +AWI,1) X(1-1,J) =
=B(1,Jd) —AN(I,J) X*(I,Jd+1) —AS(1,J) X*(I,J-1) (8.10

wherethe supersdpt dendesguessedalues. Theright handsideof Eq. 8.10is thus
corsideredto beknown andonly X(1,J), X(I1+1,J) andX(1-1,J) areconsid-
eredto be unkrowns. Writing similar equatios for all thecells(i,J),i = 1,NI (showvn
by the dottedoval in Fig. 8.3 we obtaina systemwhich hasthe sameform asthe tri-
diagmal systemwhichwe canthensolve usingTDMA. Thisgivesusvaluesfor X( i )

for all cellsi alorg j = J line. However, unlike the onedimensioml problem this is
not the exact solutionbut only an apprximate one sincewe hadto guessfor values
of X(i,J+1) andX(i, J-1) in building up the tri-diagonal system. We cannow
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forj =1toNJ

{
fori =1toNI
{
AP1D(i) = AP(i,j);
AELID(i) = AE(i,j);
AMD(i) = AW, j);
B1D(i) = B(i,j);

if (j >1) BID(i) = BID(i) - AS(i,j)*X(i,j-1);
if (j < NJ) BID(i) = BID(i) - AN(i,j)*X(i,j+1);

TDMA(AP1D, AE1D, AWLD, B1D, X1D);

fori =1toNI
{
X(i,j) = XaD(i);
}
Figure8.4 Line By Line TDMA Algorithm alongj lines
applythe sameprocesslongthenext line, j = J+ 1. In doingsowe will usethere-

centlycompued valueswhenever X(i , J) 'sarerequired. The overall procedire can
bedescribedvith the pseudocdeshowvn in Fig. 8.4

Oncewe have apgied the processfor all the j lines,we will have updatedthevalue
of eachX(i, j). As notedabore theseareonly appraximatevaluesbut hopetilly they
arebetterappraimatiors thanour initial guess.As in all iteratve methals, we will
try to improve the solutionby repeatinghe process.To this end,we couldapply the
algoritim in Fig. 8.4 again.However, we noticethatvisiting j linesin sequene from
1to NJ mears thatall cellshave seentheinfluerce of theboundaryaty = 0 but only
thecellsat j = NJ have seeninfluerce of y = 1 boundary If we repeathe processin
Fig. 8.4 again thistimethecellsat j = NJ — 1 will seethis influerce (sincethey will
usethe values obtaired at j = NJ during the presentupdate)but it will takesseveral
repetitiors befole cellsnear] = 1 seeary influenceof thebourdaryaty = 1. Oneeasy
way of remaving this biasis to visit the j linesin the reverseorderduring the second
update. With this symmetricvisiting sequene we ensurethatall cellsin the domain
seetheinfluene of bothbourdariesassoonaspossible.

The sequencef opeationswherebyall the valuesof X(i, j) areupdatedonceis
refered to asa sweep An iteration is the sequene thatis repeatednultiple nunber
of times. Thusfor the line by line TDMA, an iteration may consistof two sweeps,
first visiting all j linesin increasingorde of theirindex andthenin decrasingorder
asdescribe above. Of courseit is not mandatoryto applythe TDMA for a constant
j line. We could apply the sameprocessalonga constanti, consigring only the j
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directin neighbous implicitly. Dependig on the coadinatedirectioan alongwhich

informationtransferis mostcritical, sweepingy visiting i or j linesmightbethemost
optimal. In generalcaseshowever, it is usefu to combne both. Thusoneiteration
of the line by line TDMA would consistof visiting, say eachof thei lines first in

increasing orderandthenin decrasingorderfollowed by similar symmetic sweeps
alongj lines(andk linesin threedimersionalproblems).

8.5 Jacobiand GaussSeidelMethods

For matricegesultingfrom unstricturedgrids, liketheoneshavnin Fig. 8.1,0f course,
noline-byine procedures possible.Insteadwe mustusemore geneal upddae meth-
ods.Thesimplestof thesearethe JacobiandGauss-Seidehethod. In bothcasesthe
cellsarevisitedin sequencandat eachcell i thevalueof x; is updatedby writing its

eguationas

A =Db=3 A npXab (8.1
wherethe summationis over all the neightorsof cell i. Thetwo methoddiffer in the
valuesof theneightoringx; thatareemployed. In caseof the Jacobimethal, the“old”
values of x; areusedfor all the neighborswhereasin the Gauss-Seideinethal, the
latestvaluesof x; areusedat all the neighbous thathave alreadybeenupcatedduring
the current sweepandold valuesareusedfor the neigtbouss thatareyet to bevisited.
As in the caseof theline by line TDMA, the orderof visiting the cell is reversedfor
thenext sweepsoasto avoid directioral bias.

In geneal the Gauss-Seidehethodhasbetterconergencechaacteristicshanthe
Jacobimethal andis therefae mostwidely usedalthoudn the latteris sometimesised
on vectorand parallelhardvare. Using the storageschemeoutlinedin Sec.8.2, one
iterationof the Gauss-Seidemethodcanbe expressedn the pseudoeodeshownn in
Fig.8.5.

8.6 Generallterati ve Methods

Thegenerabprincipe in all iterative method is thatgivenanappraimatesolutionx X,
we seekto obtan a betterappoximationx*1 andthenrepeathe whole process. We
definetheerroratary given iterationas

e =x—xK (8.12

wherex is the exactsolution. Of course,sincewe dorit know the exad solution we
alsodont know the errorat ary iteration However, it is possibleto checkhow well
ary givensolutionsatisfieghe equatiorby exanining theresidualr, definedas

r“=p—Ax¥ (8.13

As theresidualappoacheszero, the solutionappoacheshe exact solution We can
deternine therelationbetweerthemusingEqgs.8.12and 8.13as

Aek =rk (8.14
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GaussSeidel AP, COEFF, Cl NDEX, NBI NDEX, B, X)
{

for sweep=1to 2
{
if (sweep=1)
| BEG = 1, | END
else
IBEG = N, IEND = 1, |STEP = -1;
fori =1 BEGto| END steppingoy | STEP

N, | STEP

1
=

ro=B(i);
for n=Cl NDEX(i) toCl NDEX(i +1)-1
t
J
r

NBI NDEX( n) ;
r - COEFF(n)*X(j);

}
X(i) = r/AP(i):
}

Figure8.5: SymmetricGauss-Seidebweep
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Thus the error satisfiesthe sameset of equatios asthe solution,with the residué r
repladéng the sourcevectorb. Thisis animportan property thatwe will make useof
in devising multigrid schemes.

Using Eq. 8.14andthedefinitionof theerrorwe obtain

Xx—x<=A"1rk (8.19
Mostiterative methals arebasedn apprximatingthis expressionas
XL = x4 Brk (8.19

whereB is someappoximatian of theinverseof A thatcanbecompuedinexpensiely.
For exanple, it canbeshavn thatthe Jacobimethal is obtainel whenB = D ~1, where
D is thediagmal partof thematrix A.
Anotherway of expressingary iteratve schemethatwe will find usefulin later
analsisis
XKL = pxK 4 gf (8.17

whereP is known asthe iteration matrix. For the Jacobimethodthe iterationmatrix
is given by P = D~Y(L + U) while for the Gauss-Seidehethodit is P = (D — L) ~*U.
HereD, L andU arethe diagmal, strictly lower anduppertriangdar partsof A ob-
tainedby splitting it as

A=D+L+U (8.18

8.7 Convergenceof Jacobiand GaussSeidelMethods

Although the Jacobiand Gauss-Seideinethod are very easyto implemen and are
appicable for matriceswith arbitraryfill patterrs their usefulnesss limited by their
slow corvergencecharactastics. Theusualobsenation is thatresidualsdrop quicky
during the first few iterationsbut afterwards the iteratiors “stall’. This is specially
pronourcedfor large matrices.
To demorstratethis behaior, let us conside the following 1D Poissonequatian

overadoman of lengthL.

%9 _ 8.1

2 =5(x) (8.19
andspecifiedDirichlet bourdaryconditiors ¢(0) = ¢, and@(L) = ¢ . Recallthatthis
eguationresultsfrom our 1d scalartranspor equationin the purediffusionlimit if we
chasea diffusion coeficiert of unity. If we discretizethis equaion on a grid of N
eguspacedcontrol volumesusingthe metha outlinedin Chapter3 we will obtaina
linearsystemof theform

3 -1 0. 0 0 0 o hs, + 2%

-t 21 0 0 0l e hs,

o L= : (8.20
0 0 0 -1 2 -1 || . hSe_s
0 0 0 0 -1 3| a hs, + 2%



Figure8.6. FourierModesonN = 64 grid

whereh = ﬁ andhs represets the sourcetermintegreted over thecell.

Anothersimplificationwe makeis to chose @, = ¢ = 0aswell ass(x) =0. Thus
theexactsolutionto this problemis simply ¢(x) = 0. We cannow studythebehaior of
iterative schemedy startingwith arbitraryinitial guessesthe erra at ary iterationis
thensimply thecurrent valueof thevariabe ¢. In order to distinguishthe convergence
charateristicsfor differenterra prdfiles we will solvethe prodemwith initial guesses
givenby

q=sin(“T) (821)

Equatia 8.21representsFourier modes andk is known asthe wavenunber Figure
8.6 shaws thesemodes over the domainfor a few valuesof k. Note thatfor low val-
uesof k we get“smoah” prdfiles while for higherwavenumbersthe profilesarevery
oscillatory

Startingwith theseFouriermodes, we apply the GaussSeidelmethodfor 50 iter-
ationson a grid with N = 64. To judge how the solutionis corverging we plot the
maximun ¢ (whichis alsothe maximum error) Theresultsareshovn in Fig. 8.7(a)
We seethatwhenwe startwith aninitial guesscorresponéhg to k = 1, the maximum
errorhasreducedy lessthan20% but with a guessof k = 16 Fouriermode,the error
redwesby over 99%evenafter10iteratiors.

In gereral cases,our initial guesswill of couse containmore than one Fourier
mode To seewhattheschemedoesin suchcasesve startwith aninitial guesonsist-
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Figure 8.7: Convemgenceof Gauss-Seidehetha onN = 64 grid for (a) initial guesses
corsistingof singlewavenunbers(b) initial guesscorsistingof multiple modes

ing of k= 2,8 and16 modes.e.

Q= % [sin (ZTHX') +sin($) +sin(@)] (8.22

In this casewe seefrom Fig. 8.7(b) thatthe errordropsrapidy atfirst but thenstalls.

Anotherway of looking at the effect of the iterative schemds to plot the solution
after 10 iteratiors asshawvn in Fig. 8.8. We seethatthe amplituce is not significantly
redwcedwhentheinitial guesds of low wave nurmbermodesbut it is greatlyredued
for the high wave numbermodes.Interestingresultsare obtainedfor the mixedmode
initial guessgivenby Eq. 8.22. We seethat the oscillatory compnenthasvanisted
leaving a smoothmodeerrorprofile.

Thesenumeical experimentsbegin to tell us the reasonsbelind the typical be-
havior of the Gauss-Seidedcheme.lt is very effective at reducirg high wavenumber
erras. This accous for the rapid drop in residualsat the beginning whenone starts
with anarbitray initial guess. Oncetheseoscillatorycompmentshave beenremoved
we areleft with smootherror profiles on which the schemds not very effective and
thuscorvergencestalls.

Using our sampleprablem we canalsoverify anothercomnonly obsenred short-
comirg of the Gauss-Seideiterative schemeviz. that the corvergencedeterigates
asthegrid is refined Retainingthe sameform of initial guessandusingk = 2, we
solve the problemon a grid thatis twice asfine, ie., N = 128. Theresultingcorver
gerce plot shown in Fig. 8.9 indicatethat the corvergerce become evenworse. On
thefiner grid we canresole more modesandagainthe higheronesamoryg thosecon-
verge quicky but the lower modes appeamore“smooth” on the finer grid andhence
converge slower. We alsonotefrom Fig. 8.9 thatthe corverseis alsotrue, ie., on a
coasegrid with N = 32, theconvergenceis quicker for thesamemode.It appeas that
the sameerror prdfile behaesasa lesssmodh profile whensolved on a coarsegrid.
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Figure8.8: Initial andfinal solutinafter 10 Gauss-Seideterationson N = 64 grid for
(a) initial guessesonsistingof k = 2 (b) initial guessegonsistingof k = 8 () initial
guesgonsistingof multiple modes

Someof the methalsfor acceleratig convergenceof iterative solversarebasedupon
this property.

8.8 Analysis Of Iterati ve Methods

For simplelinear systemdik e the onewe usedin the exampges above andfor simple
iterative schemedik e Jacobi,it is possibleto undestandthe reasondor the corver
gencebehaiour analyically We will notgointo detailsherebut briefly describesome
of theimpoartantresults.Usingtheiterative schemexpressedn theform Eq.8.16 we
canshow thattheerra atary iterationn is relatedto theinitial erra by thefollowing
expression

e =P’ (823)

In orde for theerrorto redwcewith iteratiors, thespectal radiusof theiterationmatrix
(whichis thelargestabsoluteeigevalueof the matrix) mustbe lessthanoneandthe
rateof corvergencedepenlson how smallthis spectraradiwsis.

Theeigenvalues of theJacobiterationmatrixarecloselyrelatedo theeigenvalues
of matrix A andthe two matriceshave the sameeigenvectas. Now, if we choosethe
matrix linearsystemto be?

2 -1 0 - 0 0 0 @ hs, +

|-t 21 000 % hs,

= c | = : (824)
0 0 0 - -1 2 -1|]| @ hsy_1
O 0 0. 0 -1 2 "y hsy + &

2 This is the systemone obtains using a finite differene discrdization of Eq. 8.19with an equispaed
meshconsistng of N interior nodesandis only slightly differentfrom the systemwe usedin the previous
secton. Both the systemsave similar corvergencechaacteistics; thereasorfor choosinghis form insteal
of Eq.8.20is thatit is mucheaser to studyanalytically.
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Figure 8.9: Corvergerce of Gauss-Seidemethal on different sizedgrids for initial
guesscorrespondig to k = 2 mock

we canfind analytical expressionfor the eigervaluesof the corresponéhg Jacobiiter-
ationmatrix. They aregivenby

. krmt
A = 1—sir? (W) k=1,2,..N (8.25

Theeigervectorsof the Jacobiterationmatrix,w, turnoutto bethesameastheFourier
modeswe usedin the previous sectionasstartingguessesThe j " compmentof the
eigenvectorcorrespndingto theeigervalueA, is givenby

W, = sin (%) j=12..N (8.26

Now, if ourinitial erroris deconposednto Fouriermodes, we canwrite it in termsof
theseeigervectorsas

=3 aw, (8.27
Substituiry thisexpressiorin Eq.8.16andusingthedefinitionof eigervalue,we obtain

= z o ALW, (8.29

We seefrom this expressiorthatthe k™™ moce of theinitial errar is reducedoy afactor
AQ. FromEq. 8.25we notethatthe largest eigervalueoccursfor k = 1 andtherefae
it is easyto seewhy the lower modes arethe slowestto converge. Also notethatthe
magrtude of the largesteigervalueincreasessN increasesthis indicatesthereason
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behird our otherobsenration that corvergenceon coarsergrids is betterthanthaton
finer gridsfor the samemoce.

Althoughwe have analyzedhe convergencebehaiour of avery simpleschemeon
a simple matrix, theseconclwsionshold true in geneal. The eigervaluesof the ma-
trix A aswell asthatof theiterationmatrix play animportart role in deternining the
corvergencecharateristics. Our insistenceon maintainng diagaal dominare and
positive coeficients is motivatedby therequrementof keepingthe spectraradiusbe-
low unity. Practicesuchaslinearizing sourcetermsanduncerrelaxsion thatwe need
in order to hande nondinearitiesalsohelpin redicing the spectrakadius.Howeverin
mary casese.g.thepressureorredion equationwe musthandlestiff linearsystems,
i.e.,thosewith spectraradiuscloseto 1.

Marny iterative schemesave beendevisedto hardle stiff systemsThey usuallyin-
volve someform of precorditioning to improve the eigervaluesof theiterationmatrix
In geneal, thesemethals area lot more complicatedto implemen compaed to the
simple Jacobiand Gauss-Seidahethals we have studiedsofar. We will notdiscuss
ary of themherebut ratherlook at anotter stratey, which is basedon theimproved
convergencecharactestics of the simpleiterative scheme on coarsemeshes.

8.9 Multigrid Methods

We saw in the previous sectionthat the reasorfor slow convergenceof Gauss-Seidel
methal is thatit is only effective at remwing high frequerty errors. We also ob-
senedthatlow frequengy modesappeamore oscillatoryon coarsegridsandthenthe
Gauss-Seiddterationsare more effective. Theseobserationssuggesthatwe could
acceleratéhecorvergenceof thesdterativelinearsolversif we couldsomehw involve
coarseqgrids.

Thetwo mainquestios we needto answerare(1) whatproblen shoud besolved
onthecoarsayrid and(2) how shouldwe make useof thecoarsegrid informationin the
fine grid solution Certainconstraintcanbeeasilyidentified.We know thatin geneal
theaccurag of the solutiondepadson the discretizationtherebre we would requie
that our final solution be determired only by the finestgrid that we are emplgying.
This mears that the coarsegrids canonly provide us with correctionsor guesseso
the fine grid solutionand asthe fine grid residwals apgoachzero (i.e., the fine grid
solutionapprachesthe exact answer)the influenceof ary coarselevels shouldalso
appoachzero. Onecorsequencef this requrementis thatit is enaughto solve only
an apprximate problem at the coarselevels sinceits solutionwill never governthe
final accurag we achieve.

Onestratey for involving coarsdevels might beto solve the original differertial
equatio on a coarsegrid. Oncewe have a converged solutionon this coarsegrid,
we couldinterpolateit to a finer grid. Of course the interpolatedsolutionwill notin
geneal satisfythediscreteequatios at thefine level but it would probablybe abetter
appoximationthananarbitraryinitial guessWe canrepeathe processecursvely on
evenfinergridstill we reachthe desiredgrid.

The disadartagewith this stratgyy, knovn asnestedteration is thatit solvesthe
prodem fully onall coarsegrids eventhoudh we areonly interestedn the finestgrid
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solution It alsodoesnot make useof ary guessve might have for thefinestlevel grid
from previous outeriterations. More importantly however, the physical prodem may
not be well resohed on the coase grid andthusthe solutionon coarsegrid may not
alwaysbea goodguessfor thefine grid solution Smootherra modesmayariseonly
onthefinergridsandthenthe convergencewill still belimited by them.

8.9.1 CoarseGrid Correction

A more usefu stratayy, known ascoarsegrid correctionis basedntheerrorequatiao
(Eq 8.14) Recallthattheerra e satisfieshe samesetof of equaionsasour solution
if we replae the sourcevecta by theresidu&

Ae=r (8.29

Note alsothatsolving Eq. 8.1 with aninitial guessx® is identicalto solving Eq. 8.29
with the residualr® = b — Ax® andaninitial guessof zeroerror Now suppae that
after someiterationson the finestgrid we have a solutionx. Although we don't know
theerrorwe do know thatthe errorat this stageis likely to be smoothandthatfurther
iteratiors will not redwce it quickly. Insteadwe could try to estimateit by solving
Eq.8.290nacoarsegrid. We expectthatonthe coarsegrid the smootherrorwill be
more oscillatoryandtherefae corvergencewill be better Whenwe have obtaineda
satishctorysolutionfor e we canuseit to correct ourfine grid solution.

Of course, even on the coarselevel the erra (which of course now is the erra
in Eq. 8.29,i.e., the errorin the estimationof the fine grid erra) will have smooth
compnerns. We cannow view Eq.8.29asa linear prodemin its own right. We can
thusappy the samestrateyy for its solutionthatwe usedfor thefinestgrid, i.e., solve
for its erroronaneven coarsemesh.Thiscanbecortinuedrecursvely onsuccessiely
coasermeshedill we reachonewith a few nunber (2-4) of cells. At this stagewe
cansimply solve thelinearanalytically althowgh usingGauss-Seiddterationusually
sufficesaswell.

We still haveto specifyexadly whatwe meanby solving Eqg.8.29onacoarsegrid
andhow exadly weintendto usetheerrors estimatedrom thecoarsdevelsbut we can
alreaq seethatthe strategyy outlinedabove hasthedesiredproperties.Firstof all, note
thatif thefinegrid solutionis exact,theresidwal will bezeroandthusthesolutionof the
coaselevel equation will alsobezero. Thuswe areguaanteedhatthefinal solution
is only deteminedby the finestlevel discretization In addition,sincewe startwith
a zeroinitial guesdor the coarsdevel error, we will achieve convergenceright away
andnotwasteary time onfurther coarsdevel iterations.Anotherusefulcharactastic
of this appoachis thatwe usecoarsdevel to only estimatefine level erross. Thusary
appoximatinswe make in the coarsdevel problemonly effect the corvergencerate
andnotthefinal finestgrid solution

8.9.2 Geometric Multigrid

Having developeda geneal ideaof how coarsegrids might be usedto accelerateon-
vergence let us now look at somedetails. To distinguishbetweenthe matricesand
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(a) FineLevel (I=0)

I 1 2 3 4

(b) Coarselevel (I=1)

Figure8.10: Coarsenig for 1D grid

vectas at different grid levels, we shall emplg/ a parerthicatedsupescript, starting
with (0) for the finestgrid andincreasingt asthe grid is coasened a secondsuper
script,if presentwill derotetheiterationnunber. Thusthe prodemto besolvedatthe
level (1) is givenby

ADx() — ph (8.30)
andtheresidualatlevel | afterk iterationsis
rk — ) — a()y )k (8.31)

We have alreadyseenhow to discretizeanditerateon the finestlevel (I = 0) grid of

N cells and compue the residua r (9. We alsoknow thatfor coarselevels (I > 0),

the unkrown x(!) representsthe estimateof the errorat the (I — 1) level andthatthe
sourcevectorb(!) is somelow to be basedon the residualr =Y. After doing some
iterationson the coasegrid (andpertapsrecusively repeatinghe proessat further

coarsdevels)wewouldlik e to make useof theerrorscalculatechtlevel | to corred the

current guesdor solutionat thefiner level. The next stepis to definethe exactmeans
of doing thesecoarseagrid operatims andtheintergrid transfers.

The simplestway of obtaning the coarsegrid for our samplelD prablemis to
merge cellsin pairsto obtainagrid of N/2 cells,asshavn in Fig. 8.1Q Theresulting
grid is similarto the origind grid, with a cell width of 2h. We cannow applyourusual
discretizatiorprocedireonthedifferential equatia (remamberingthattheunknown is
a correctionto thefine level unknown) andobtan thelinear systemof the sameform
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as8.20.Thecoarsdevel matrixis givenby

3 -1 0. 0 0 O
. -1 2 -1 .. 0 0 O
A(l):% : (8.32
0 0 0 - -1 2 -1
o 0 0 .- 0 -1 3

We alsonotefrom Fig. 8.10thatthecell centrad of a coarsdevel cell lies midway
betweerthecentrads of its parentfine level cells. Thesourcetermfor the coarsdevel
cell canthusbeobtainedby averadng theresidualsat the parentcells:

1
I+1) _ [ [
o(+0 = 2 (1§), +15) (8.33
This operaion of transfeing theresidwal from afine level to the coarsdevel is known
asrestrictionandis dendedby theoperato | |'+1 definedas

b(H—l) — |||+lr(|) (8349

For our equispace grid we usedaveragirg asthe restrictionopeator; in the gereral
casewe will needto usesomeform of interpolaion operate.

We alreadyknow that the startingguessfor the coarsdevel unknowns x (10 js
zera Thuswe now have all theinformationto iteratethe coarsdevel systemandobtain
an esitmatefor the erra. The processof transfeing this correction backto the finer
level is known asprolongaion andis dended by the opeatorl ,'+1. The correctia of
thesolutionat thefine level usingthe coarsdevel solutionis written as

X0 =xO 4yl x(+D (8.39

The simplestprdongdion operato that we canuseon our 1D grid (Fig. 8.10) is to
appy thecorrectio from a coarsdevel cell to boththeparer fine level cells,i.e. usea
zerdh orderinterpolation. A moresophisticate@pprachis to uselinearinterpolation;
for exampe, for cell 2 atthefine level we use

X9 = x{0) 4 (Zx(ll) + %xgl)) (8.39

The stratgyy outlinedin this sectionis known asgeometricmultigrid becasewe
madeuseof thegrid geomety andthedifferentialequatia atthecoarsdevelsin order
to arrive at the linear systemto be solved In the one dimensioml case,of course,
the coarsdevel cellshadthe sametype of geomety asthoseat thefine level andthis
madethediscretizatiomprocesstraightfoward. For multidimensionakaseshowever,
the cell shapesbtaired by aggloneratingfine level cells canbe very different. As
shavn in Fig. 8.11the coarselevel cells may not even be convex. With suchnested
grid hierarchesit maynotbefeasibleto discretizethe original differentialequatioron
thecoarsdevel cells.
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(a)1=0 (b)I=1 ©1=2

Figure8.11:NestedCoarsenig For 2D grid

(a)1=0 (b)I=1 ©1=2

Figure8.12: IndependentCoarsenig For 2D grid
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Oneapprachto getarourd this prablemis to usea sequene of nonnestedjnde-
perdentgrids,asshovnin Fig. 8.12. In this casethereareno comnon facesbetween
ary two grids. The main prodem with this apprachis thatthe prdongaion andre-
striction opeatorsbecone very comgicated sincethey involve multidimersionalin-
terpdation. Also, in someinstancesfor example thepressureorrectin equatiorthat
we derived algebraically we may not have a formal differential equation that canbe
discretizedo obtainthe coarsdevel system.For thesereasonsit is usefulto devise
methals of obtainirg coarseyrid linearsystemghatdo notdependnthe geonetry or
thedifferentialequaion. We will look at suchalgelraic multigrid methalsin the next
section.

8.9.3 Algebraic Multigrid

The geneal principles behindalgebaic multigrid methals arethe sameasthosefor

thegeomdric multigrid methodwe saw in thelastsection.Themaindifferenceis that
the coarsdevel systemis derived purelyfrom thefine level systemwithout refererce
to theundelying grid geonetry or physical principlethatled to thefine level system.
Insteadof thinking in termsof aggloneratingtwo or morefine level cellsto obtainthe
geanetryof acoarsdevel cell, we speakof agglaneratingtheequdionsatthosecells
to directly obtainthelinearequationcorrespadingto thatcoarsecell.

We will seeshortly how to selectthe equatioss to be agglomeatedin the gereral
case For themomer let usjust considerthe 1D grid andthe coarsegrid levels,shovn
in Fig. 8.10,thatwe usedin the geometic multigrid sectionabove. Leti andi + 1 be
theindicesof thefine level equatioms thatwe will agglonerateto prodicethe coarse
level equaion with index | . Forinstancecells1 and?2 atlevel 0 arecombiredto obtain
theequadion for cell 1 atlevel 1. Writing outtheerra equatiao (Eq.8.14) for indicesi
andi + 1 we have

0 A0 0 0 _ (O
Au(') e(—)1""A‘() ()+A|(|2|—1 |(+)1 - ri( ) (8.3

0 A0 0 0 0 0 _ (O
Ai(+)1| |()+A|(+)1|+1 |(+)1+A|(+)L|+2 |(+)2 - ri(+)1 (8.39

Now, the multigrid principle is thatthe errors at level | areto be estimatedrom the
unknownsatlevell + 1. We assumehattheerrorfor boththeparentcellsi andi+ 1 is
thesameandis obtainedrom x(!). Likewise,el”) = x, ande(®, =x{1) . Substituting
theserelationsandaddingEqs.8.37and8.3 givesustherequred coarsdevel equatia
forindex I:

A0 X(1)+(A()+A() + A0 4 A0

_ (0
,i—171-1 i,i+1 i+1,i |+1|+1) ( )+A( ) ( Y r( ) +r|+1 (8 39

i+1,i+2 I+1

Thus we seethat the coeficients for the coarselevel matrix have beenobtaired by
summirg up coeficientsof the fine level matrix andwithout ary useof the geomety
ordifferentialequatio. Thesourcgermfor thecoarsdevel cellsturnoutbethe sumof
theresiduds attheconstituenfine levelscells. Thisis equialentto theuseof addition
astherestrictionoperato. Our derivation above implies zerothorder interpolationas
theprdongatian operate.

185



8.9.4 Agglomeration Strategies

In the 1D casethat we have seenso far, agglanerationwas a simple matterof com-
bining equdions at cells 2i and2i + 1 to obtainthe coarsdevel systemof equatioss.
For linear systemgesultingfrom two or threedimersionalstructurel grids, the same
ideacanbeappliedin oneor moredirections simultaneosly. Besidessimplifying the
bodk-keepiry this practicehasthe additioral advartage of maintairing the penta-or
equatimsatatimeto obtainsepta-diagnalform of thelinearsystem.This permitsthe
useof relaxation method suchasline-byline TDMA on the coaselevel systemsas
well asthefine level systems.

For unstructuwed grids, however, we needto devise more generalaggomeration
criteria. One useful practiceis to try to comhne cells that have the largest mutwal
coeficients. Thiscreatesoarsdevel grids® thatallow theoptimaltransfeof boundary
informationto interior regions andthusacceleratesorvergence.

To implementsucha coarseing proedure we associate coarsendex with each
fine level cell andinitialize it to zero. We alsoinitialize a coarselevel cell counter
C = 1 We thenvisit the cells (or equatims)in sequenceandif hasnot beengroyed
(i.e., its coarseindex is 0), groyp it andn of its neightoursfor which the coeficient
A is thelargest(i.e, assignthemthe coaselevel index C) andincremenC by 1.

We have alreadyseerthatthe coeficientsof thecoarsdevel matrix areobtainecdby
summirg up appopriatecoeficierts of the fine level matrix. Proceedig in the same
manrer thatwe usedto derive Eq.8.39we canshaw that

Al+D — A (840)
1,d ie% jezj !

whereG, dendesthesetof fine level cellsthatbelongto the coarsdevel cell . Also,
aswe have seenbefoie, the sourcevectorfor the coarsdevel equatia is obtainedby
summirg up theresiduds of theconstituenfine level cells

[ . i
i€G

pl+h) = § (841)

The coarsdevel matricescanbe storedusingthe samestoragestratgiesoutlined
in Sec.8.2 for the finestlevel. Bestmultigrid perfomanceis usually obsered for
n=2,i.e.,acoaselevel grid that corsistsof rougHy half the numker of cellsasthe
finestlevel. If suchadivisionis contintedtill we have just 2 or 3 cellsat the coarsest
level, thetotalmemoy requiredfor storingall the coarsdevelsis roughly equalto that
requred for thefinestlevel.

Thelinearsystemsencounteredin CFD applicatiors arefrequentlystiff. This stiff-
nessis a resultof a number of factors: large aspect-ratiqgeonetries, disparategrid
sizestypical of unstricturedmesheslarge condctivity ratiosin conjugateheattrans-
fer prodems,andothers. The agglomerationstrateyy outlinedabove is very effective
in acceleratinghe corvergencerateof thelinearsolver.

3Eventhouch we arenot conernedwith the actual geomety of the coaselevel gridsin algebraic multi-
grid, it is neverthekssquite usefulto visualize the effective grids resuling from the coarsaing in orderto
understad the behaiour of themethod
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Figure8.13 Condtctionin compsitedomain: multigrid coarsening

Considerthe situationdepictel in Fig. 8.13. A compsite domainconsistsof a
low-condudivity outerregion surrounding a highly condicting inner squaredoman.
Theratio of conductivitiesis 100Q aratio of this order would occurfor a copger block
in air. The tempeatureis specifiedon the four exterral walls of the domain Con-
vergenceof typical linear solversis inhibited by the large anisotrgy of coeficients
for cells borderingthe interfaceof the two regions. Coeficientsresultingfrom the
diffusionterm scaleaskA/Ax, whereA is a typical faceareaandAx is a typical cell
lengthscale. For interfacecells in the highly conducting region, coeficierts to inte-
rior cellsareappraximatelythreeordes of magnitwle bigger thancoeficients to cells
in the low-conduding region. However, Dirichlet bourdary conditins, which setthe
level of thetemperatte field, areonly availableat the outerbourdariesof thedoman,
adjacento the low-conductirg region. Informationtransferfrom the outerbourdary
to the interior region is inhibited becase the large-coeficient termsovemwhelm the
bowndaryinformationtransfered through the small-coeficiert terms. An aggloner
ation strateyy which clusterscell neighborswith thelargestcoeficientsresultsin the
coaselevelsshavn in Fig. 8.13. At the coarsestevel, the domain consistf asingle
cell in the high-condictingregion, andanotter in thelow-corductingregion. Theas-
sociateccoeficient matrix hascoeficients of thesameorder. Thetemperatte level of
theinnerregion is setprimaiily by themultigrid corredionsatthis level, andresultsin
vely fastcorvemgerce.
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Figure 8.14 Orthotrgic condiction: multigrid coarsemg

Anotherexanpleis shavn in Fig. 8.14. The prableminvolves orthotropiccondic-
tionin atriangdar domainwith tempeaturedistributionsgiven on all bourdaries[17].
Thematerialhasaconduetivity k,, > 0in then directian, aligned at 77/3 radiars from
the hoiizontal; the conductivity kgé in the directionperpenlicularto n is zero. Mesh
agglanerationbasedon coeficient sizeresultsin coarse-lgel mesheslignedwith n
asshavn. Sinceall faceswith normalsin the & directionhave zerocoeficients, the
primary directian of informationtransferis in the nn direction. Thus,the coarsdevel
meshcorrectly captuesthedirectionof informationtransfer

We shouldnote herethat the coeficient basedcoarseningstrategyy are dersirale
evenon structurel grids. Athough coarselevels createdby agglonmeratingcompete
grid linesin eachgrid directionhave theadvantag of presering thegrid structureand
permitting the useof the sameline-by-line relaxationschemesas usedon the finest
level, they do not alwaysresultin optimalmultigrid acceleratia in geneal situations
sincecoeficientanisotrojiesarenotalwaysalignedalonglines.

Algebraic multignd method usedwith sequetial solution procedireshave the
adwartagethatthe agglonerationstratgyy canbe equatim-specific;the discretecoef-
ficientsfor the specificgoverningequdion canbe usedto createcoase meshlevels.
Sincethe coarsenings basedon the coeficierts of the linearizedequatios it also
changsappopriatelyasthe solutionevolves. This is speciallyusefulfor nonlinear
and/a transientproblens. In someapplicatiors, however, the mutual couplirg be-
tweenthegoverning equatios is the maincauseof corvergencedegradation.Geomé-
ric multigrid method thatsolve the coupledprablemon asequencef coarsemeshes
may offer betterperfomancein suchcases.
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8.9.5 Cycling Strategiesand Implementation Issues

The attractveness of multigrid method lies in the fact that significantcorvergerce
accelertion canbe achiesedjust by usingsimplerelaxationsweepson a sequene of
coasemeshes.Various stratgjiescanbe devisedfor the mannerin which the coarse
levels arevisited. Thesecycling strat@ies canbe expressedrathercompatly using
recusion andthis makesit very easyto implement them, speciallyusinga compuer
languagesuchasC thatallows recusion (i.e.,afunctionis allowedcall itself).

Mutigrid cyclescanbroadly beclassifiednto two categaries— (1) fixedcyclesthat
repet a setpatternof coarsegrid visits and(2) flexible cyclesthatinvolve coarsegrid
relaxdions as andwhenthey are needed We will look at both of theseideasnext.
Thegeneal principlesof thesecycling stratgyiesareapplicalte for bothgeonetricand
algelraic multigrid methodsbut we shallconcetrateon thelatter.

Fixed Cycles

We have seenthatthe coaselevel sourcevectoris computedfrom theresidualsat the
previousfine level andthusit changseverytime we visit a coarsdevel. However, the
coaselevel matrix is only a function of coeficientsof the fine level matrix andthus
remairs constant.The startingpointin all fixed grid method therebreis to compute
all thecoarsdevel coeficients. With algebaic multigrid it is usuallydesirabldo keep
coaseningthegridtill thereareonly two or threecellsleft; for geometic multigrid the
coasestpossiblegrid sizemight be dictatedby the minimum numbe of cellsrequired
to reasonhly discretizethe governing equation

The simplestfixed cycle is known asthe V cycleandconsistsof two legs. In the
firstleg we startwith thefinestlevel andperfam afixednumber of relaxationsweeps,
thentransfe the residuds to the next coarsdevel andrelax on thatlevel, contiruing
till we reachthe coarsestevel. After finishing sweepson the coarsestevel we start
the upward leg, usingthe solutionfrom the current level to correct the the solution
at the next finer level, thenperfaning somerelaxationsweepsat thatfiner level and
cortinuing the procesgill we reachthe finestlevel. Thetwo paranetersdefiningthe
V-cycle are the numler of sweepsperfamed on the down andup legs, v, and v,
respectiely. The two neednot be equal; in mary applicatiors it is mostefficient to
havev, =0, i.e.,to notdoary sweepsnthedown leg but to simply keepinjectingthe
residwalstill the coarsestevel. Thecoarsestevel thenestablishesinaverag solution
over the entiredomain which is thenrefinedby relaxationsweepson the upwardleg.
We shouldnotethat sincethe coarsegrids only provide an estimateof the error; it is
gererally a godd ideato alwayshave nonzerov, in orderto ensurethat the solution
satisfieghe discreteequatia at the currentlevel. This cycle is graphically illustrated
in Fig. 8.15(a) whereeachcircle represets relaxation sweepsandthe up anddown
arravs represenprolongationandrestrictionopeators respectiely.

For very stiff systemsthe V-cycle may not be sufficient and more coarselevel
iteratiors arecalledfor. This canbeachieved by usinga u cycle. It is bestunderstood
througharecusive definition. Onecanthink of the V-cycle asafixedgrid cycle where
the cycle is recursvely appliedat eachcoarsegrid if we haven't reachthe coarsest
grid. The u-cycle canthenbe thoudht of asa cycle which is recusively apgied u
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Figure8.15: RelaxationandGrid Transfe Sequenesfor SomeFixed Cycles

timesateachsuccessie level. Thecomnonly usedversia is theonecorrespondig to

U = 2,whichis alsoknovn asthe W-cycle. It is illustratedin Fig. 8.15¢). Becausef

therecursvenessa W-cycle involvesallot of coaselevel relaxation sweepsspecially
whenthe numter of levelsis large. A slight variantof the W-cycle, knovn asthe F-

cycle,involvessomavhatlesscoarsdevel sweepdut still morethantheV-cycle. It can
be thowght of asa fixed cycle whereonerecursvely appliesonefixed cycle followed
by aV-cycle ateachsuccessie level. It is illustratedin Fig. 8.15¢).

All thefixedgrid cycleswe have seersofar canbeexpressedvery compactlyin the
recusive pseudcodeshavnin Fig. 8.16 Theentirelinearsolver canthenbeexpressed
usingthecodeshavnin Fig. 8.17.

Herea is theterminationcriterion which determireshow accuatelythe systemis
to be solvedandnmaxis the maximun numker of fixed multigrid cyclesallowed ||x||
representssomesuitablenorm of the vectorx. Usuallythe L-2 norm (i.e., the RMS
value)or thelL-o norm(i.e.,thelargestvalue)is employed.

Flexible Cycles

Forlinearsystemghatarenotverystiff, it is notalwayseconanicalto useall multigrid
levels all the time in a regular pattern. For suchcasesthe useof flexible cyclesis
prefered. Here,we monita theresidualsafterevery sweeponagivengrid level andif
theratiois above aspecifiedrate3, we transfertheprobdemto thenext coarsdevel and
contiruesweepstthatlevel. If theratiois belov 3 we continte sweepstthecurren
level till the termination criterionis met. Whenwe meetthe terminationcriterion at
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Fixed Cycle(l, cycle_type)

Performv, relaxatio sweepon Ax(") = p0);
if (I  Imax)

{ r() =pt) — A0
b(|+1) — |||+1r(|)
x(+1) — o
Fixed Cycle(l+1,cycle_type);
if (cycle_type= u_CYCLE)

Fixed Cycle(I+1,W_CYCLE) (u — 1) times;

elseif (cycle_type=F_CYCLE)
Fixed Cycle(I+1,V_CYCLE);
} x) = x4 |||+1x(|+1);

Performv, relaxation sweepon Ax(") = p0);

}

Figure8.16 FixedCycle Algorithm

Sohe(A©, xO xO o, cycle_type)
{
Computer, = |[b(@ — AOXO);
Computeall coarsdevel matrices;
for n=1to nmax
{
Fixed Cycle(0,ycle_type)
Compter, = ||b@ — A©xO);
if (r/ro<a)
return;

Figure 8.17 Driver Algorithm for FixedCycle
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Flexible_Cycle(])
{
Compter, = ||b") — AOXO);
Setr g = Io;
if total nunmberof sweeponlevel | notexhausted
{
Performv, relaxation sweepon AMx() = p();
Computer = |[b®) — ADXD]|;
if (r/ry) <a
return;
elseif ((r/ryq) > B) and (I # Imax)
{

ComputeA('H) if first visit to level 1+1;
r() = p) — A0Ox®
p(+1) — |||+1r(|)
X(|+1) =0
Flexible_Cycle(I+1);
x() = xO 4 III+1X(|+1);

Foig =13

Figure8.18: Flexible Cycle Algorithm

ary level, andwe arenot alreadyat the finestlevel, the solutionat thatlevel is used
to correctthe solutionat the next finer level andthe processcontinies. In practical
implementation,alimit is imposedon the numker of relaxation sweepsllowedatary
level. Theflexible cycle canalsobedescribedonpactlyin arecursve form, asshavn

8.10 Closure

In this chapter we examired differentappgoachedo solving the linear equation sets
thatresultfrom discretization.We saw thatthe only viable apprachesor mostfluid
flow prodemswereiterative methodsTheline-bydine TDMA algorithmmaybeused
for structuredmeshesbut is not suitablefor unstructued meshes However, methals
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like Gauss-Seidebr Jacobiiterationdo not have adeqate ratesof corvergerce. We
sav thattheseschemesregoodat redicing high frequeng erross, but cannad rediwce
low-frequemy errors. By the sametoken they are alsoinadeqate on fine meshes.
To accelerat¢heseschemesye examiredgeometic andalgebaic multigrid schemes,
which usecoarsemeshsolutiors for the errorto correctthe fine meshsolution These
scheme$iave beenshawvn in theliteratureto substantiallyacceleratéinearsolver con-
vergence andarevery efficientway to solve unstricturedlinearsystems.
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