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Chapter 1

Mathematical Modeling

In orderto simulatefluid flow, heattransfer, andotherrelatedphysical phenomena,
it is necessaryto describethe associatedphysics in mathematical terms. Nearly all
the physical phenomenaof interestto us in this book aregovernedby principlesof
conservation and are expressedin termsof partial differential equations expressing
theseprinciples. For example, the momentumequations expressthe conservation of
linearmomentum; theenergy equation expressestheconservationof total energy. In
this chapterwe derive a typical conservation equationandexamine its mathematical
properties.

1.1 Conservation Equations

Typical governing equations describing theconservation of mass,momentum, energy,
or chemicalspeciesarewrittenin termsof specificquantities- i.e.,quantitiesexpressed
onaperunit massbasis.For example,themomentumequationexpressestheprinciple
of conservation of linear momentumin termsof the momentum per unit mass,i.e.,
velocity. Theequation for conservation of chemicalspeciesexpressestheconservation
of themassof thespeciesin termsof its massfraction

Let usconsidera specificquantity φ , which maybemomentum perunit mass,or
theenergy perunit mass,or any othersuchquantity. Consideracontrol volumeof size
∆x � ∆y � ∆z shown in Figure1.1.We wantto expressthevariationof φ in thecontrol
volume over time. Let us assumethat φ is governedby a conservationprinciple that
states

Accumulationof φ in thecontrol volumeover time ∆t �
Net influx of φ into control volume �
Net generationof φ
insidecontrol volume

(1.1)
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Jx x+ x∆
∆y

x∆

J

∆z

Figure1.1: ControlVolume

Theaccumulationof φ in thecontrol volume over time∆t is givenby�
ρφ∆ ��� t � ∆t 	 � ρφ∆ �
� t (1.2)

Here,ρ is thedensityof thefluid, ∆ � is thevolumeof thecontrol volume(∆x � ∆y �
∆z) andt is time.

Thenetgeneration of φ insidethecontrol volumeover time∆t is given by

S∆ � ∆t (1.3)

whereS is thegeneration of φ perunit volume.S is alsosometimescalledthesource
term.

Let usconsidertheremaining term,thenetinflux of φ into thecontrol volume. Let
Jx representtheflux of φ coming into thecontrol volumethrough facex, andJx� ∆x the
flux leaving thefacex � ∆x. Similar fluxesexist on they andz facesrespectively. The
netinflux of φ into thecontrol volume over time∆t is�

Jx 	 Jx� ∆x � ∆y∆z∆t ��
 Jy 	 Jy� ∆y � ∆x∆z∆t � � Jz 	 Jz� ∆z � ∆x∆y∆t (1.4)

We have not yet saidwhat physical mechanismscausethe influx of φ . For physical
phenomenaof interestto us,φ is transported by two primary mechanisms: diffusion
dueto molecular collision,andconvectiondueto themotionof fluid. In many cases,
thediffusionflux maybewrittenas

Jdiffusion� x � 	 Γ
∂φ
∂x

(1.5)

Theconvectiveflux maybewrittenas

Jconvection� x � ρuφ (1.6)
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Here,thevelocityfield is givenby thevector V � ui � vj � wk. Thusthenetconvective
anddiffusive flux maybewrittenas

Jx � � ρuφ 	 Γ
∂φ
∂x � x

Jx� ∆x � � ρuφ 	 Γ
∂φ
∂x � x� ∆x

(1.7)

where
�
ρu� x is themassflux through thecontrol volumefaceatx. Similarexpressions

maybewritten for they andz directionsrespectively.
Accumulating terms,anddividing by ∆ � ∆t Equation1.1maybewrittenas�

ρφ � t � ∆t 	 � ρφ � t
∆t

� �
Jx 	 Jx� ∆x �

∆x
� 
 Jy 	 Jy� ∆y �

∆y
��

Jz 	 Jz� ∆z �
∆z

� S (1.8)

Takingthelimit ∆x � ∆y� ∆z� ∆t � 0, we get

∂
�
ρφ �
∂ t

� 	 ∂Jx

∂x 	 ∂Jy

∂y 	 ∂Jz

∂z
� S (1.9)

It is convenientto write Equation1.9as

∂
∂ t

�
ρφ ��� ∂

∂x

�
ρuφ ��� ∂

∂y

�
ρvφ ��� ∂

∂z

�
ρwφ ���

∂
∂x
� Γ

∂φ
∂x � � ∂

∂y
� Γ

∂φ
∂y � �

∂
∂z
� Γ

∂φ
∂z � � S

or, in vectornotation

∂
�
ρφ �
∂ t

� ∇ � ρVφ � ∇ � � Γ∇φ ��� S (1.10)

1.1.1 Discussion

It is worthnoting thefollowing about theabovederivation:� The differential form is derived by considering balancesover a finite control
volume.� Thoughwehavechosenhexahedral control volumeonwhichto doconservation,
we can,in principle, chooseany shape.We should get the samefinal govern-
ing differentialequation regardlessof theshapeof thevolume chosento do the
derivation.
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� Theconservation equationis writtenin termsof aspecificquantity φ , whichmay
beenergy perunit mass(J/kg), ormomentumperunit mass(m/s)or somesimilar
quantity.� The conservation equation is written on a per unit volumeper unit time basis.
Thegenerationtermin Equation 1.10for example, is thegenerationof φ perunit
volumeperunit time. If φ wereenergy perunit mass,Swouldbethegeneration
of energy perunit volumeperunit time.

1.1.2 Conservation Form

Equation 1.10representstheconservativeordivergenceformof theconservationequa-
tion. This form is characterizedby thefact that in steadystate,in theabsence of gen-
eration, thedivergenceof theflux is zero:

∇ � J � 0 (1.11)

whereJ = Jxi � Jyj � Jzk. By usingthe continuity equation, we may write the non-
conservativeform of Equation1.10

∂
�
ρφ �
∂ t

� ρV � ∇φ � Γ∇ � ∇φ � ∇Γ � ∇φ � S (1.12)

Thedivergenceof J representsthenetefflux perunit volumeof J. Thus,theconser-
vative form is a direct statementabouttheconservationof φ in termsof thephysical
fluxes(convectionanddiffusion). The non-conservative form doesnot have a direct
interpretationof this sort. Numericalmethods thataredevelopedwith thedivergence
form asastartingpoint canbemadeto reflecttheconservationpropertyexactly if care
is taken.Thosethatstartfrom Equation1.12canbemadeto approximateconservation
in somelimiting sense,but notexactly.

1.2 Governing Equations

Thegoverningequationsfor fluid flow, heatandmasstransfer, aswell asothertransport
equations, may be representedby the conservative form, Equation 1.10. Let us now
considersomespecificcasesof theconservation equationfor φ .

1.2.1 The Energy Equation

Thegeneral form of theenergy equation is quiteelaborate,though it canalsobecast
into thegeneralform of Equation1.10. For simplicity, let usassumelow-speedflow
andnegligible viscousdissipation.

For this case,theenergy equation maybewritten in termsof thespecificenthalpy
h as �

∂ρh�
∂ t

� ∇ � � ρVh��� ∇ � � k∇T ��� Sh (1.13)
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wherek is the thermalconductivity and T is the temperature. For ideal gasesand
incompressiblesubstances,

dh � CpdT (1.14)

sothatEquation1.13maybewrittenas

∂ρh
∂ t

� ∇ � � ρVh��� ∇ � � k
Cp

∇h� � Sh (1.15)

Comparing Equation 1.15with Equation 1.10shows that the energy equationcanbe
castinto the form of the general conservation equation, with φ � h, Γ � k � Cp and
S � Sh.

1.2.2 The Momentum Equation

Themomentumequationfor aNewtonianfluid in thedirection x maybewrittenas

∂ρu
∂ t

� ∇ � � ρVu��� ∇ � � µ∇u� 	 ∂ p
∂x
� Su (1.16)

Here,Su contains thosepartsof thestresstensornotappearing directly in thediffusion
term,and∂ p� ∂x is pressure gradient. We seethatEquation1.16hasthesameform as
thegeneral conservationequation 1.10,with φ � u, Γ � µ andS � 	 ∂ p� ∂x � Su.

1.2.3 The SpeciesEquation

Considerthetransport of a mixtureof chemicalspecies.Theequation for theconser-
vation of massfor a chemicalspeciei may be written in termsof its massfraction,
Yi , whereYi is defined asthe massof speciesi per massof mixture. If Fick’s law is
assumedvalid, thegoverningconservationequation is

∂ρYi

∂ t
� ∇ � � ρVYi ��� ∇ � � Γi∇Yi ��� Ri (1.17)

Γi is thediffusioncoefficient for Yi in themixture andRi is therateof formation of Yi
throughchemical reactions.AgainweseethatEquation1.17hasthesameform asthe
generalconservationequation1.10,with φ � Yi , Γ � Γi , andS � Ri .

1.3 The GeneralScalar Transport Equation

Wehaveseenthattheequationsgoverningfluid flow, heatandmasstransfercanbecast
into asinglegeneral form whichwe shallcall thegeneral scalartransport equation:

∂
�
ρφ �
∂ t

� ∇ � � ρVφ ��� ∇ � � Γ∇φ ��� S (1.18)

If numericalmethodscanbedevisedto solve this equation, we will have a framework
within whichto solve theequationsfor flow, heat,andmasstransfer.
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1.4 Mathematical Classification of Partial Differ ential
Equations

The general scalartransport equationis a second-order partial differential equation
(PDE)governing thespatialandtemporal variationof φ . If thepropertiesρ andΓ, or
thegenerationtermSφ arefunctions of φ , it is non-linear. Ignoring non-linearitiesfor
themoment, weexamine thebehavior of this equation.

It is instructive to considera general second-orderPDEgiven by

aφxx � bφxy � cφyy � dφx � eφy � f φ � g � 0 (1.19)

Thecoefficients a,b,c,d,e,f andg arefunctionsof thecoordinates(x,y), but not of φ
itself.

Thebehavior of Equation1.19maybeclassifiedaccording to thesignon thedis-
criminant � � b2 	 4ac (1.20)

If
�! 

0 thePDEis calledelliptic. If
� � 0, thePDEis calledparabolic. If

�!"
0 the

PDEis calledhyperbolic. Let usconsidertypicalexamplesof eachtypeof equation.

1.4.1 Elliptic Partial Differ ential Equations

Let us considersteadyheatconduction in a one-dimensional slab,asshown in Fig-
ure1.2. Thegoverning equation andboundaryconditions aregivenby

∂
∂x
� k∂T

∂x � � 0 (1.21)

with

T
�
0�#� T0

T
�
L �$� TL (1.22)

For constant k, thesolutionis given by

T
�
x��� T0 � � TL 	 T0 �

L
x (1.23)

Thissimpleproblemillustratesimportantpropertiesof elliptic PDEs.Theseare

1. Thetemperatureat any point x in thedomainis influencedby thetemperatures
onbothboundaries.

2. In the absenceof sourceterms,T
�
x� is bounded by the temperatures on the

boundaries.It cannot beeitherhigher or lower thantheboundarytemperatures.

It is desirablewhendevisingnumerical schemesthatthesebasicpropertiesbereflected
in thecharacteristicsof thescheme.
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Figure1.2: Conduction in a One-DimensionalSlab
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1.4.2 Parabolic Partial Differ ential Equations

Considerunsteadyconduction in the slabin Figure1.2. If k, ρ andC p areconstant,
Equation 1.13maybewritten in termsof thetemperatureT as

∂T
∂ t
� α

∂ 2T
∂x2 (1.24)

whereα � k � � ρCp � is thethermaldiffusivity. Theinitial andboundaryconditionsare
givenby

T
�
x � 0�#� Ti

�
x�

T
�
0 � t �%� T0

T
�
L � t �#� T0 (1.25)

Usingaseparationof variablestechnique,wemaywrite thesolutionto thisproblemas

T
�
x � t �&� T0 � ∞

∑
n' 1

Bnsin 
 nπx
L � e ( αn2π2

L2 t (1.26)

where

Bn � 2
L ) L

0

�
Ti

�
x� 	 T0 � sin 
 nπx

L � dx n � 1 � 2 � 3 �+*,*,* (1.27)

We notethefollowing about thesolution:

1. TheboundarytemperatureT0 influencesthetemperatureT(x,t) at everypoint in
thedomain, just aswith elliptic PDE’s.

2. Only initial conditionsarerequired(i.e.,conditionsatt � 0). No final conditions
arerequired, for example conditionsatt � ∞. Wedonotneedto know thefuture
to solve thisproblem!

3. Theinitial conditions only affect future temperatures,notpasttemperatures.

4. Theinitial conditions influencethetemperature at everypoint in thedomainfor
all future times. Theamount of influencedecreaseswith time, andmayaffect
different spatialpointsto differentdegrees.

5. A steadystateis reachedfor t � ∞. Here,thesolutionbecomesindependentof
Ti

�
x � 0� . It alsorecoversits elliptic spatialbehavior.

6. Thetemperature is boundedby its initial andboundaryconditions in theabsence
of sourceterms.

It is clearfrom this problemthat thevariable t behavesvery differently from thevari-
ablex. Thevariationin t admitsonlyone-wayinfluences,whereasthevariable x admits
two-wayinfluences. t is sometimesreferredto asthemarching or parabolic direction.
Spatialvariablesmayalsobehavein thisway, for example, theaxialdirection in apipe
flow.
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1.4.3 Hyperbolic Partial Differ ential Equations

Letusconsidertheone-dimensional flow of afluid in achannel, asshown in Figure1.3.
Thevelocityof thefluid, U , is a constant; alsoU

"
0. For t - 0, thefluid upstream of

thechannel entranceis heldat temperature T0. Thepropertiesρ andCp areconstant
andk � 0. Thegoverning equationsandboundaryconditionsaregivenby:

∂
∂ t

�
ρCpT ��� ∂

∂x

�
ρCpUT ��� 0 (1.28)

with

T
�
x � 0�#� Ti

T
�
x . 0 � t �#� T0 (1.29)

You canconvinceyourself thatEquation 1.28 is hyperbolic by differentiatingit once
with respectto eithert or x andfinding thediscriminant. Thesolutionto this problem
is

T
�
x � t �&� T

�+�
x 	 Ut �/� 0� (1.30)

or to put it anotherway

T
�
x � t �#� Ti for t

 
x
U� T0 for t - x
U

(1.31)

Thesolutionis essentiallyastepin T traveling in thepositivex directionwith avelocity
U , asshown in Figure1.4.

We shouldnotethefollowing about thesolution:

1. The upstreamboundarycondition (x � 0) affects the solution in the domain.
Conditions downstream of thedomain donotaffect thesolutionin thedomain.

2. Theinlet boundarycondition propagateswith a finite speed,U .

3. Theinlet boundarycondition is not felt at pointx until t � x� U .

1.4.4 Behavior of the ScalarTransport Equation

Thegeneral scalartransport equationwe derived earlier(Equation 1.10) hasmuchin
commonwith thepartialdifferential equationswehaveseenhere.Theelliptic diffusion
equationis recoveredif weassumesteadystateandthereis noflow. Thesameproblem
solvedfor unsteadystateexhibits parabolic behavior. Theconvectionsideof thescalar
transport equation exhibits hyperbolic behavior. In mostengineering situations,the
equationexhibits mixedbehavior, with thediffusiontermstending to bring in elliptic
influences,andtheunsteadyandconvectiontermsbringing in parabolic or hyperbolic
influences. It is sometimesusefulto considerparticularcoordinatesto be elliptic or
parabolic. For example, it is usefulin parabolic problemsto think about time asthe
parabolic coordinateandto think of spaceastheelliptic coordinate.
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Though it is possibleto devisenumericalmethodswhichexploit theparticular na-
ture of the general scalartransport equation in certainlimiting cases,we will not do
that here. We will concentrateon developing numerical methods which aregeneral
enoughto handle themixedbehavior of thegeneral transport equation.

Whenwe studyfluid flow in greaterdetail,we will have to dealwith coupledsets
of equations,asopposedto a singlescalartransport equation. Thesesetscanalsobe
analyzedin termssimilar to thediscussionabove.

1.5 Closure

In this chapter, we have seenthatmany physicalphenomenaof interestto usaregov-
erned by conservationequations. Theseconservationequationsarederivedby writing
balancesoverfinitecontrol volumes.Wehaveseenthattheconservationequationsgov-
erning the transport of momentum, heatandotherspecificquantities have a common
form embodied in the general scalartransport equation. This equation hasunsteady,
convection, diffusionandsourceterms.By studying thebehavior of canonicalelliptic,
parabolic andhyperbolic equations,we begin to understandthebehavior of thesedif-
ferent termsin determining thebehavior of thecomputedsolution. Theidealnumerical
schemeshouldbeableto reproducetheseinfluences correctly.
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Chapter 2

Numerical Methods

In the previous chapter, we saw that physical phenomenaof interestto us could be
describedby ageneralscalartransport equation.In thischapter, weexaminenumerical
methods for solving this type of equation, and identify the main componentsof the
solutionmethod. We alsoexamine waysof characterizing our numerical methodsin
termsof accuracy, consistency, stabilityandconvergence.

2.1 Overview

Our objective hereis to develop a numerical methodfor solving the general scalar
transport equation.Fundamentalto thedevelopmentof anumerical methodis theidea
of discretization.An analytical solutionto a partial differentialequation givesus the
valueof φ asafunctionof theindependentvariables(x � y� z� t). Thenumerical solution,
ontheotherhand,aimsto provideuswith valuesof φ atadiscretenumberof points in
thedomain.Thesepoints arecalledgrid points, thoughwemayalsoseethemreferred
to asnodesor cell centroids, depending on the method. The processof converting
our governing transport equationinto a setof equations for thediscretevaluesof φ is
calledthediscretizationprocessandthespecificmethodsemployedto bringabout this
conversionarecalleddiscretizationmethods.

Thediscretevaluesof φ aretypically describedby algebraic equationsrelatingthe
valuesat grid points to eachother. The developmentof numerical methods focuses
on both the derivation of the discretesetof algebraic equations, aswell asa method
for their solution. In arriving at thesediscreteequations for φ we will be required
to assumehow φ variesbetweengrid pointsi.e., to make profile assumptions. Most
widely usedmethods for discretizationrequire local profile assumptions. That is, we
prescribehow φ variesin thelocalneighborhoodsurroundingagrid point,but notover
theentiredomain.

Theconversionof a differentialequationinto a setof discretealgebraic equations
requiresthediscretizationof space.Thisis accomplishedbymeansof meshgeneration.
A typicalmeshis shown in Figure2.1.Meshgenerationdividesthedomainof interest
into elements or cells, andassociateswith eachelementor cell oneor morediscrete
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Vertex

Cell

Figure2.1: An Example of a Mesh

valuesof φ . It is thesevalues of φ wewish to compute.

We shouldalsodistinguishbetweenthediscretizedequationsandthemethods em-
ployedto solve them. For our purposes,let ussaythat theaccuracy of thenumerical
solution, i.e., its closenessto the exact solution, depends only on the discretization
process,andnot on the methods employed to solve the discreteset (i.e., the pathto
solution). The pathto solutiondetermineswhetherwe aresuccessfulin obtaininga
solution, andhow muchtime andeffort it will costus. But it doesnot determinethe
final answer. (For somenon-linearproblems, thepathto solutioncandeterminewhich
of severalpossiblesolutionsis obtained. For simplicity, weshallnotpursuethis line of
investigationhere.)

Sincewe wish to getananswerto theoriginal differential equation, it is appropri-
ateto askwhetherour algebraic equation setreally gives usthis. Whenthenumberof
grid pointsis small,thedepartureof thediscretesolutionfrom theexactsolutionis ex-
pectedto belarge. A well-behavednumerical schemewill tendto theexact solutionas
thenumberof grid points is increased.Therateat which it tendsto theexactsolution
depends on the type of profile assumptionsmadein obtaining the discretization. No
matterwhatdiscretizationmethod is employed,all well-behaved discretizationmeth-
odsshouldtendto the exact solutionwhena large enough number of grid points is
employed.
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Figure2.2: MeshTerminology

2.2 MeshTerminology and Types

Thephysicaldomain is discretizedby meshingor gridding it.(We shall usethe terms
meshandgrid interchangeablyin this book). We shall usethe terminology shown in
Figure 2.2 in describing our meshes.The fundamentalunit of the meshis the cell
(sometimescalledtheelement).Associatedwith eachcell is thecell centroid. A cell
is surroundedby faces, which meetat nodes or vertices. In threedimensions,theface
is asurfacesurroundedby edges. In two dimensions,facesandedgesarethesame.

A varietyof meshtypesareencounteredin practice.Thesearedescribedbelow.

2.2.1 Regular and Body-fitted Meshes

In many cases,our interestlies in analyzing domainswhichareregular in shape:rect-
angles, cubes,cylinders, spheres.Theseshapescanbe meshedby regular grids, as
shown in Figure2.3(a). Thegrid linesareorthogonalto eachother, andconform to the
boundariesof thedomain. Thesemeshesarealsosometimescalledorthogonalmeshes.

Formany practicalproblems,however, thedomainsof interestareirregularly shaped
andregular meshesmaynotsuffice. An example is shown in Figure2.3(b). Here,grid
linesarenotnecessarilyorthogonalto eachother, andcurveto conformto theirregular
geometry. If regular gridsareusedin thesegeometries,stair steppingoccursatdomain
boundaries,asshown in Figure2.4.Whenthephysicsat theboundaryareimportantin
determining thesolution,e.g., in flowsdominatedbywall shear, suchanapproximation
of theboundarymaynotbeacceptable.

2.2.2 Structured, Block Structured,and Unstructured Meshes

Themeshesshown in Figure2.3areexamplesof structuredmeshes.Here,every inte-
rior vertex in thedomainis connectedto thesamenumber of neighbor vertices. Fig-
ure2.5shows a block-structuredmesh.Here,themeshis dividedinto blocks,andthe
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Figure2.3: RegularandBody-FittedMeshes

Figure2.4: Stair-SteppedMesh
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Block

Figure2.5: Block-StructuredMesh

meshwithin eachblock is structured. However, thearrangementof theblocksthem-
selvesis notnecessarilystructured. Figure2.6showsanunstructuredmesh.Here,each
vertex is connectedto anarbitrarynumber of neighbor vertices.Unstructuredmeshes
imposefewertopological restrictionsontheuser, andasaresult,makeit easierto mesh
very complex geometries.

2.2.3 Conformal and Non-Conformal Meshes

An example of a non-conformal meshis shown in Figure2.7. Here,theverticesof a
cell or elementmayfall on thefacesof neighboring cellsor elements.In contrast,the
meshesin Figures2.3,2.5and2.6areconformalmeshes.

2.2.4 Cell Shapes

Meshesmaybeconstructedusinga varietyof cell shapes.Themostwidely usedare
quadrilateralsandhexahedra.Methodsfor generatinggood-quality structuredmeshes
for quadrilateralsandhexahedrahave existedfor sometime now. Thoughmeshstruc-
ture imposesrestrictions, structuredquadrilateralsandhexahedraarewell-suitedfor
flowswith adominantdirection,suchasboundary-layerflows. Morerecently, ascom-
putationalfluid dynamicsis becomingmorewidely usedfor analyzing industrialflows,
unstructuredmeshesarebecoming necessaryto handlecomplex geometries.Here,tri-
anglesandtetrahedra areincreasinglybeingused,andmeshgeneration techniquesfor
their generationarerapidly reaching maturity. As of this writing, thereareno general
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Figure2.7: Non-Conformal Mesh
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Figure2.8: Cell Shapes:(a) Triangle,(b) Tetrahedron,(c) Quadrilateral, (d) Hexahe-
dron, (e)Prism,and(f) Pyramid

purposetechniquesfor generatingunstructuredhexahedra.Another recenttrendis the
useof hybrid meshes.Forexample,prismsareusedin boundarylayers,transitioning to
tetrahedra in thefree-stream. In thisbook, wewill develop numerical methodscapable
of usingall thesecell shapes.

2.2.5 Node-Basedand Cell-BasedSchemes

Numerical methods which storetheir primary unknowns at the node or vertex loca-
tions arecallednode-basedor vertex-basedschemes.Thosewhich storethemat the
cell centroid, or associatethemwith the cell, arecalledcell-basedschemes.Finite
elementmethods aretypically node-basedschemes,andmany finite volume methods
arecell-based.For structuredandblock-structuredmeshescomposedof quadrilaterals
or hexahedra,thenumber of cells is approximatelyequalto thenumber of nodes,and
thespatialresolutionof bothstorageschemesis similar for thesamemesh.For other
cell shapes,theremaybequitea big differencein thenumberof nodesandcellsin the
mesh.For triangles, for example, therearetwice asmany cellsasnodes,on average.
This factmustbe taken into account in deciding whether a given meshprovidesade-
quateresolution for a givenproblem. Fromthepoint of view of developingnumerical
methods,bothschemeshaveadvantagesanddisadvantages,andthechoicewill depend
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onwhatwewish to achieve.

2.3 Discretization Methods

So far, we have alludedto the discretizationmethod, but have not said specifically
whatmethodwe will useto convert our general transport equation to a setof discrete
algebraic equations.A numberof popular methodsareavailablefor doingthis.

2.3.1 Finite Differ enceMethods

Finite difference methods approximate the derivatives in the governing differential
equationusingtruncatedTaylor seriesexpansions.Considera one-dimensional scalar
transport equation with a constantdiffusioncoefficient andno unsteadyor convective
terms:

Γ
d2φ
dx2 � S � 0 (2.1)

Wewishto discretizethediffusionterm.Referringto theone-dimensional meshshown
in Figure2.10,we write

φ1 � φ2 	 ∆x � dφ
dx � 2

� � ∆x� 2
2

� d2φ
dx2 � 2

� O
� �

∆x� 3 � (2.2)

and

φ3 � φ2 � ∆x � dφ
dx � 2

� � ∆x� 2
2

� d2φ
dx2 � 2

� O
� �

∆x� 3 � (2.3)

The term O
�+�

∆x� 3 � indicatesthat the termsthat follow have a dependenceon
�
∆x� n

wheren
"

3. Subtracting Equations2.2from Equation 2.3gives� dφ
dx � 2

� φ3 	 φ1

2∆x
� O

�0�
∆x� 2 � (2.4)

By addingthetwo equationstogether, wecanwrite� d2φ
dx2 � 2

� φ1 � φ3 	 2φ2

∆x2 � O
�+�

∆x� 2 � (2.5)
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Figure2.10: One-DimensionalMesh

By including thediffusioncoefficient anddropping termsof O
�+�

∆x� 2 � or smaller, we
canwrite

Γ � d2φ
dx2 � 2

� Γ
φ1 � φ3 	 2φ2

∆x2 (2.6)

ThesourcetermS is evaluatedat thepoint 2 using

S2 � S
�
φ2 � (2.7)

SubstitutingEquations2.6and2.7into Equation2.1gives theequation

2Γ�
∆x� 2 φ2 � Γ�

∆x� 2 φ1 � Γ�
∆x� 2 φ3 � S2 (2.8)

This is thediscreteform of Equation2.1. By obtaining anequation like this for every
point in themesh,we obtainansetof algebraicequations in thediscretevaluesof φ .
Thisequation setmaybesolvedby avarietyof methods whichwewill discusslaterin
thebook.

Finite differencemethods do not explicitly exploit the conservation principle in
deriving discreteequations. Though they yield discreteequations that look similar to
othermethodsfor simplecases,they arenot guaranteedto do soin morecomplicated
cases,for example onunstructuredmeshes.

2.3.2 Finite Element Methods

We consider againthe one-dimensional diffusion equation, Equation 2.1. Thereare
differentkindsof finite elementmethods. Let uslook atapopular variant, theGalerkin
finite elementmethod. Let φ beanapproximationto φ . Sinceφ is only anapproxima-
tion, it does notsatisfyEquation 2.1exactly, sothatthereis a residualR:

d2φ
dx2 � S � R (2.9)

We wish to find a φ suchthat ) domain
WRdx � 0 (2.10)

W is a weightfunction,andEquation2.10requiresthattheresidualR become zeroin
a weighted sense.In orderto generatea setof discreteequations we usea family of
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weight functionsWi , i � 1 � 2 �+*,*,*N, whereN is thenumberof grid points,ratherthana
singleweightfunction. Thus,we require) domain

WiRdx � 0 i � 1 � 2 �+*,*1*N (2.11)

The weight functionsWi aretypically local in that they arenon-zero over element i,
but arezeroeverywhereelsein thedomain. Further, we assumea shapefunctionfor
φ , i.e.,assumehow φ varies betweennodes.Typically this variation is alsolocal. For
example we mayassumethatφ assumesa piece-wiselinearprofile betweenpoints1
and2 andbetweenpoints 2 and3 in Figure2.10. TheGalerkinfinite elementmethod
requires that theweightandshapefunctionsbe thesame.Performing the integration
in Equation 2.11resultsin a setof algebraic equations in thenodal valuesof φ which
maybesolvedby a varietyof methods.

We shouldnoteherethatbecausetheGalerkinfinite elementmethod only requires
the residualto be zeroin someweightedsense,it doesnot enforce the conservation
principle in its original form. Wenow turnto amethod whichemploysconservationas
a tool for developingdiscreteequations.

2.3.3 Finite VolumeMethod

Thefinite volume method(sometimescalledthe control volumemethod) dividesthe
domain in to a finite number of non-overlappingcellsor control volumesover which
conservationof φ is enforcedin a discretesense.It is possibleto startthediscretiza-
tion processwith adirectstatementof conservationonthecontrolvolume,asin Equa-
tion 1.9 in thepreviouschapter. Alternatively we maystartwith thedifferentialequa-
tion andintegrateit over thecontrol volume. Let usexamine thediscretizationprocess
by lookingat one-dimensional diffusionwith asourceterm:

d
dx
� Γ

dφ
dx � � S � 0 (2.12)

Considera one-dimensionalmesh,with cells asshown in Figure2.11. Let us store
discretevalues of φ at cell centroids, denoted by W, P and E. The cell facesare
denotedby w ande. Let usassumethefaceareasto beunity.

We focus on thecell associatedwith P. We startby integrating Equation 2.12over
thecell P. Thisyields ) e

w

d
dx
� Γ

dφ
dx � dx � ) e

w
Sdx � 0 (2.13)

sothat � Γ
dφ
dx � e

	 � Γ
dφ
dx � w

� ) e

w
Sdx � 0 (2.14)

We notethatthis equationcanalsobeobtainedby writing a heatbalanceover thecell
P from first principles.Thus far, wehavemadenoapproximation.
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Figure2.11: Arrangementof ControlVolumes

Wenow makeaprofileassumption, i.e.,wemakeanassumptionabouthow φ varies
betweencell centroids. If we assumethatφ varieslinearly betweencell centroids,we
maywrite

Γe
�
φE 	 φP ��
δxe � 	 Γw

�
φP 	 φW ��
δxw � � S∆x � 0 (2.15)

HereS is theaveragevalueof Sin thecontrol volume. Wenotethattheaboveequation
is no longerexactbecauseof theapproximation in assumingthatφ variesin a piece-
wiselinearfashionbetweengrid points.

Collectingterms,we obtain

aPφP � aEφE � aWφW � b (2.16)

where

aE � Γe � � δxe �
aW � Γw � � δxw �
aP � aE � aW

b � S∆x (2.17)

Equationssimilar to Equation2.16maybederived for all cellsin thedomain,yielding
a setof algebraic equations,asbefore; thesemaybesolvedusinga varietyof director
iterativemethods.

We notethefollowing aboutthediscretization process.

1. Theprocessstartswith thestatementof conservation over thecell. We thenfind
cell valuesof φ which satisfythis conservationstatement.Thusconservationis
guaranteedfor eachcell, regardlessof meshsize.
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2. Conservation doesnot guaranteeaccuracy, however. Thesolutionfor φ maybe
inaccurate,but conservative.

3. The quantity 	 � Γdφ � dx� e is diffusion flux on the e face. The cell balance is
written in termsof facefluxes.Thegradient of φ mustthereforebeevaluatedat
thefacesof thecell.

4. Theprofileassumptionsfor φ andSneednotbethesame.

We will examine additionalpropertiesof this discretizationin thenext chapter.

2.4 Solution of Discretization Equations

All thediscretizationmethods described hereresultin a setof discretealgebraicequa-
tions which mustbe solved to obtainthe discretevaluesof φ . Theseequations may
be linear (i.e. the coefficients are independent of φ ) or they may be non-linear (i.e.
the coefficients are functionsof φ ). The solutiontechniquesare independentof the
discretization method, andrepresentthepathto solution. For thelinearalgebraic sets
wewill encounterin thisbook, weareguaranteedthatthereis only onesolution, andif
our solutionmethodgivesusa solution, it is thesolutionwe want. All solutionmeth-
ods(i.e. all pathsto solution)which arrive at a solutionwill give usthesamesolution
for the samesetof discreteequations. For non-linearproblems, we do not have this
guarantee,andtheanswerwe getmaydepend on factorslike theinitial guess,andthe
actualpathto solution. Though this is animportantissuein computingfluid flows,we
will notaddressit here.

Solutionmethodsmaybebroadly classifiedasdirector iterative. Weconsidereach
briefly below.

2.4.1 Dir ect Methods

Usingoneof thediscretization methodsdescribedpreviously, wemaywrite theresult-
ing systemof algebraic equationsas

Aφ � B (2.18)

whereA is thecoefficientmatrix, φ �32 φ1 � φ2 �+*,*,* 4 T is avectorconsistingof thediscrete
valuesof φ , andB is thevectorresultingfrom thesourceterms.

Directmethodssolvetheequationset2.18 usingthemethodsof linearalgebra. The
simplestdirectmethod is inversion,whereby φ is computedfrom

φ � A 5 1B (2.19)

A solution for φ is guaranteedif A 5 1 canbe found. However, the operationcount
for the inversion of an N � N matrix is O

�
N2 � . Consequently, inversion is almost

never employed in practicalproblems. More efficient methods for linearsystemsare
available.For thediscretizationmethodsof interesthere,A is sparse,andfor structured
meshesit is banded. For certaintypesof equations, for example, for purediffusion,the
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matrixis symmetric.Matrix manipulationcantakeinto account thespecialstructureof
A in devising efficient solutiontechniquesfor Equation2.18. We will studyonesuch
method, thetri-diagonalmatrixalgorithm(TDMA), in a laterchapter.

Direct methods arenot widely usedin computationalfluid dynamics becauseof
large computationalandstoragerequirements.Most industrial CFD problemstoday
involve hundredsof thousandsof cells,with 5-10unknownspercell evenfor simple
problems. Thusthematrix A is usuallyvery large,andmostdirectmethods become
impractical for theselargeproblems.Furthermore,thematrix A is usuallynon-linear,
so that the direct methodmustbe embeddedwithin an iterative loop to update non-
linearitiesin A. Thus,thedirectmethodis appliedover andover again,makingit all
themoretime-consuming.

2.4.2 Iterati veMethods

Iterative methods are the mostwidely usedsolutionmethods in computationalfluid
dynamics.Thesemethodsemploy aguess-and-correctphilosophywhichprogressively
improvestheguessedsolutionby repeatedapplication of thediscreteequations.Let us
consideranextremely simpleiterative method,theGauss-Seidelmethod. Theoverall
solutionloop for theGauss-Seidelmethodmaybewrittenasfollows:

1. Guessthediscretevaluesof φ at all grid pointsin thedomain.

2. Visit eachgrid point in turn. Updateφ using

φP � � aEφE � aWφW � b�
aP

(2.20)

The neighbor values,φE andφW arerequired for the updateof φP. Theseare
assumedknown at prevailing values.Thus,pointswhich have alreadybeenvis-
ited will have recently updatedvaluesof φ andthosethathavenot will haveold
values.

3. Sweepthedomainuntil all grid pointsarecovered.Thiscompletesoneiteration.

4. Checkif an appropriateconvergence criterion is met. We may, for example,
requirethat themaximum change in thegrid-point valuesof φ be lessthan0 * 1
%. If thecriterionis met,stop.Else,go to step2.

Theiterationproceduredescribedhereis not guaranteedto converge to a solution
for arbitrarycombinationsof aP, aE andaW. Convergenceof theprocessis guaranteed
for linearproblemsif theScarboroughcriterion is satisfied.TheScarborough criterion
requiresthat 6

aE

6 � 6aW

66
aP

6 . 1 for all grid points 
1 for at leastonegrid point (2.21)

Matriceswhich satisfytheScarboroughcriterionhave diagonal dominance. We note
thatdirectmethods do not require theScarborough criterionto besatisfiedto obtaina
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solution; we canalwaysobtaina solutionto our linearsetof equations aslong asour
coefficient matrix is notsingular.

TheGauss-Seidelschemecanbeimplementedwith very little storage.All that is
required is storagefor thediscretevaluesof φ at thegrid points. Thecoefficients aP,
aE, aW andb canbecomputedon thefly if desired, sincetheentirecoefficient matrix
for thedomainis notrequiredwhenupdatingthevalueof φ atany grid point. Also, the
iterativenatureof theschememakesit particularly suitablefor non-linearproblems.If
thecoefficients depend on φ , they maybeupdatedusingprevailing valuesof φ asthe
iterations proceed.

Nevertheless,the Gauss-Seidelschemeis rarely usedin practicefor solving the
systemsencounteredin CFD. Therateof convergenceof theschemedecreasesto un-
acceptably low levelsif thesystemof equations is large. In a laterchapter, wewill use
a multigrid method to acceleratethe rateof convergenceof this schemeandmake it
usableasa practicaltool.

2.5 Accuracy, Consistency, Stability and Convergence

In this section,we turn to certainimportantpropertiesof numerical methods.

2.5.1 Accuracy

Accuracy refers to thecorrectnessof a numericalsolutionwhencomparedto anexact
solution. In mostcases,we do not know theexactsolution.It is therefore more useful
to talk of the truncation error of a discretization method. Thetruncationerrorassoci-
atedwith thediffusiontermusingthefinite differencemethodis O

�+�
∆x� 2 � , asshown

by Equation2.5.This simply saysthat if d2φ � dx2 is representedby the first term in
Equation2.5,thetermsthatareneglectedareof O

�+�
∆x� 2 � . Thus,if werefinethemesh,

weexpectthetruncation errorto decreaseas
�
∆x� 2. If wedouble thex-directionmesh,

we expectthetruncation error to decreaseby a factorof four. Thetruncation errorof
a discretizationschemeis the largesttruncation errorof eachof the individual terms
in theequation beingdiscretized.Theorder of a discretization methodis n if its trun-
cationerror is O

�0�
∆x� n � . It is importantto understandthatthetruncation errortells us

how fasttheerrorwill decreasewith meshrefinement, but is not an indicatorof how
hightheerroris onthecurrent mesh.Thus,evenmethodsof veryhighordermayyield
inaccurateresultsona givenmesh.However, we areguaranteedthattheerrorwill de-
creasemorerapidly with meshrefinement thanwith a discretizationmethod of lower
order.

2.5.2 Consistency

A consistentnumerical methodis onefor which thetruncationerrortendsto vanishas
themeshbecomesfiner andfiner. (For unsteadyproblems,bothspatialandtemporal
truncationerrors mustbeconsidered).We areguaranteedthis if thetruncationerror is
somepower of themeshspacing∆x (or ∆t). Sometimeswe maycomeacrossschemes

35



wherethe truncation errorof themethod is O
�
∆x� ∆t � . Here,consistency is not guar-

anteedunless∆x is decreasedfasterthan∆t. Consistency is a very important property.
Without it, we havenoguaranteethatmeshrefinementwill improveoursolution.

2.5.3 Stability

Theprevioustwo propertiesreferto thebehavior of thediscretizationmethod. Stability
is apropertyof thepathto solution. For steadystateproblems,for example, weobtain
a discretizedset of algebraic equations which must be solved. We may choose to
solve this setusingan iterative method. Depending on theproperties of the method,
solutionerrorsmaybeamplifiedor damped. An iterative solutionmethodis unstable
or divergent if it fails to yield asolutionto thediscreteset.

It is alsopossibleto speakof thestability of time-marching schemes. Whensolv-
ing unsteadyproblems,we will usenumerical methodswhich computethesolutionat
discreteinstantsof time,usingthesolutionatoneor moreprevioustimestepsasinitial
conditions. Stability analysisallow us to determine whethererrors in thesolutionre-
mainboundedastime marching proceeds.An unstabletime-marchingschemewould
not beableto reachsteadystatein anunsteadyheatconduction problem,for example
(assumingthata steadystateexists).

It is possibleto analyze iterative andtime marching methodsusingstability anal-
ysis. However, this is mostconvenient for linearproblems,andis usuallytoo difficult
for mostrealisticproblems.Here,non-linearitiesin thegoverning equations,boundary
conditions,andproperties,aswell ascoupling betweenmultiple governing equations,
make a formal analysisdifficult. In reality thepractitionerof CFD mustrely on expe-
rienceandintuition in devising stablesolutionmethods.

2.5.4 Convergence

We distinguishbetweentwo popular usagesof thetermconvergence.We maysaythat
aniterative method hasconvergedto a solution, or thatwe have obtainedconvergence
usinga particularmethod. By this we meanthatour iterative methodhassuccessfully
obtaineda solutionto our discretealgebraicequationset. We mayalsospeakof con-
vergenceto meshindependence.By this,wemeantheprocessof meshrefinement,and
its usein obtaining solutions thatareessentiallyinvariant with further refinement. We
shallusethetermin bothsensesin this book.

2.6 Closure

In this chapter, we have presented a broadoverview of discretizationandintroduced
terminology associatedwith numerical methods. Wehavelearnedthatthereareanum-
ber of different philosophiesfor discretizingthe scalartransport equation. Of these,
only the finite volumemethod enforcesconservation on eachcell, and thusensures
thatbothlocalandglobalconservationareguaranteednomatterhow coarsethemesh.
In thenext chapter, weconsiderthefinite volumemethod in moredetail,andstudythe
propertiesof thediscretizations it produceswhenappliedto diffusionproblems.
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Chapter 3

The Diffusion Equation: A First
Look

In this chapterwe turn our attentionto an important physical process,namelydiffu-
sion. Diffusionoperatorsarecommon in heat,massandmomentumtransfer andcan
alsobeusedto modelelectrostatics,radiation, andotherphysics.We considerthedis-
cretization andsolutionof thescalartransportequationfor bothsteadyandunsteady
diffusionproblems. We will attemptto relatethepropertiesof our discreteequations
with thebehavior of thecanonical partialdifferentialequationswe studiedpreviously.
The methodology we develop in this chapter will allow us to examine morecompli-
catedmeshtypes andphysicsin laterchapters.

3.1 Two-DimensionalDiffusion in RectangularDomain

Let us considerthe steadytwo-dimensionaldiffusion of a scalarφ in a rectangular
domain. FromEquation1.10, thegoverningscalartransport equationmaybewritten
as

∇ � J � S (3.1)

whereJ � Jxi � Jyj is thediffusionflux vectorandis givenby

J � 	 Γ∇φ (3.2)

In Cartesiangeometries,thegradient operatoris givenby

∇ � ∂
∂x

i � ∂
∂y

j (3.3)

We notethat Equation 3.1 is written in conservative or divergenceform. WhenΓ is
constantandS is zero, theequationdefaultsto thefamiliar Laplaceequation. WhenΓ
is constant andS is non-zero,thePoissonequation is obtained.
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3.1.1 Discretization

Thearrangement of cellsunderconsiderationis shown in Figure3.1.As in theprevious
chapter, wefocusoncell Pandits neighbors,thecellsE,W, N andS.Discretevaluesof
φ arestoredatcell centroids. Wealsostorethediffusioncoefficient Γ atcell centroids.
Thefacese,w, n ands areassociatedwith areavectorsA e, Aw, An andAs. Thevectors
arepositive pointing outwards from the cell P. The volumeof the cell P is ∆ �7�
∆x � ∆y.

We begin theprocessof discretizationby integrating Equation3.1over thecell P:) ∆ 8 ∇ � Jd �9� ) ∆ 8 Sd � (3.4)

Next, we applythedivergencetheoremto yield) A
J � dA � ) ∆ 8 Sd � (3.5)

Thefirst integral representstheintegral over thecontrol surfaceA of thecell. We have
madenoapproximations thusfar.

Wenow makeaprofileassumption about theflux vector J. WeassumethatJ varies
linearly over eachfaceof the cell P, so that it may be representedby its valueat the
facecentroid. Wealsoassumethatthemeanvalueof thesourcetermSoverthecontrol
volume is S. Thus, �

J � A � e � � J � A � w � � J � A � n � � J � A � s � S∆ � (3.6)

or, morecompactly

∑
f ' e�w � n � sJ f � A f � S∆ � (3.7)

ThefaceareasAe andAw aregiven by

Ae � ∆y i

Aw � 	 ∆y i (3.8)

Theotherareavectors maybewrittenanalogously. Further

Je � Ae � 	 Γe∆y � ∂φ
∂x � e

Jw � Aw � Γw∆y � ∂φ
∂x � w

(3.9)

Thetransport in theotherdirections maybewrittenanalogously.
In orderto completethediscretization process,wemakeonemoreround of profile

assumptions. We assumethat φ varieslinearly betweencell centroids. Thus,Equa-
tion 3.9maybewrittenas

Je � Ae � 	 Γe∆y
φE 	 φP�

δx� e
Jw � Aw � Γw∆y

φP 	 φW�
δx� w (3.10)
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Similarexpressionsmaybewritten for theotherfluxes.
Let usassumethatthesourcetermShastheform

S � SC � SPφ (3.11)

with SP . 0. We saythatShasbeenlinearized. Wewill seelaterhow general formsof
Scanbewritten in this way. We write thevolume-averagedsourcetermS in thecell P
as

S � SC � SPφP (3.12)

SubstitutingEquations3.10, 3.8and 3.12into Equation3.6yieldsadiscreteequa-
tion for φP:

aPφP � aEφE � aWφW � aNφN � aSφS � b (3.13)

where

aE � Γe∆y�
δx� e

aW � Γw∆y�
δx� w

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

aP � aE � aW � aN � aS 	 SP∆x∆y

b � SC∆x∆y (3.14)

Equation3.13maybewritten in a morecompact form as

aPφP � ∑
nb

anbφnb � b (3.15)

Here,thesubscriptnbdenotesthecell neighborsE, W, N, andS.

3.1.2 Discussion

We make thefollowing importantpointsaboutthediscretization wehavedone sofar:

1. Thediscreteequation expressesabalanceof discreteflux (theJ’s)andthesource
term. Thusconservationover individual control volumesis guaranteed.How-
ever, overall conservation in thecalculationdomainis notguaranteedunlessthe
diffusiontransferfrom onecell entersthenext cell. For example, in writing the
balancefor cell E, we mustensurethattheflux usedon thefacee is J e, andthat
it is discretizedexactlyasin Equation3.10.

2. The coefficientsaP andanb areall of the samesign. In our casethey areall
positive. This hasphysical meaning. If the temperature at E is increased,we
wouldexpectthetemperatureatP to increase,notdecrease.(Thesolutionto our
elliptic partial differential equation alsohasthis property). Many higher order
schemesdonothavethisproperty. Thisdoesnotmeantheseschemes arewrong
– it means they donothavea propertywewould like to have if atall possible.
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3. Werequire thatSP in Equation 3.11benegative. Thisalsohasphysicalmeaning.
If for example S is a temperaturesource,we do not want a situationwhereas
T increases,S increasesindefinitely. We control this behavior in thenumerical
schemeby insistingthatSP bekeptnegative.

4. WhenSP � 0, wehave
aP � ∑

nb

anb (3.16)

Equation 3.13 maythenbewrittenas

φP � ∑
nb

� anb

aP
φnb� (3.17)

where∑nb

�
anb � aP �:� 1. SinceφP is theweightedsumof its neighborvalues,it is

alwaysboundedby them.By extension, φP is alwaysboundedby theboundary
valuesof φ . We noticethatthis property is alsosharedby our canonical elliptic
equation.

WhenS ;� 0, φP neednotbeboundedin thismanner, andcanovershootor under-
shootits boundaryvalues,but thisis perfectly physical.Theamount of overshoot
is determinedby themagnitudeof SC andSP with respectto theanb’s.

5. If SP � 0 andaP � ∑nbanb, we noticethat φ andφ � C aresolutionsto Equa-
tion 3.13. This is alsotrue of the original differentialequation, Equation 3.1.
Thesolutioncanbemadeuniqueby specifying boundaryconditionsonφ which
fix thevalueof φ at somepointontheboundary.

3.2 Boundary Conditions

A typicalboundarycontrol volumeis shown in Figure3.2.A boundarycontrolvolume
is onewhichhasoneor more faceson theboundary. Discretevaluesof φ arestoredat
cell centroids, asbefore. In addition, we storediscretevaluesof φ at thecentroids of
boundaryfaces.

Let usconsiderthediscretization processfor a near-boundary control volumecen-
teredabout thecell centroid P with afaceontheboundary. Theboundaryfacecentroid
is denotedby b. Thefaceareavector of theboundaryfaceis A b, andpointsoutward
from thecell P asshown.

Integratingthegoverningtransport equation over thecell P asbeforeyields�
J � A � b � � J � A � e � � J � A � n � � J � A � s � S∆ � (3.18)

Thefluxeson theinterior facesarediscretizedasbefore. TheboundaryareavectorA b
is given by

Ab � 	 ∆y i (3.19)

Let usassumethat theboundaryflux Jb is given by theboundaryfacecentroidvalue.
Thus

Jb � 	 Γb∇φb (3.20)
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sothat

Jb � Ab � ∆yΓb∇φb (3.21)

Assumingthatφ varieslinearlybetweenb andP, wewrite

Jb � Ab � ∆yΓb

�
φP 	 φb ��

δx� b (3.22)

Thespecificationof boundaryconditionsinvolveseitherspecifying theunknownbound-
ary value φb, or alternatively, the boundary flux Jb. Let us consider somecommon
boundaryconditionsnext.

3.2.1 Dirichlet Boundary Condition

Theboundarycondition is given by

φb � φb � given (3.23)

Usingφb � given in Equation3.22, andincluding Jb � Ab in Equation3.18 yields the fol-
lowing discreteequationfor boundarycell P:

aPφP � aEφE � aNφN � aSφS � b (3.24)

42



where

aE � Γe∆y�
δx� e

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

ab � Γb∆y�
δx� b

aP � aE � aN � aS � ab 	 SP∆x∆y

b � abφb � SC∆x∆y (3.25)

We notethefollowing important pointsabout theabove discretization:

1. At Dirichlet boundaries,aP

" �
aE � aN � aS� . This property ensuresthat the

Scarboroughcriterion is satisfiedfor problemswith Dirichlet boundary condi-
tions.

2. φP is guaranteedto beboundedby thevalues of φ E, φN, φS andφb if SC andSP
arezero. This is in keepingwith the behavior of the canonical elliptic partial
differentialequation we encounteredearlier.

3.2.2 NeumannBoundary Condition

Here,we aregiventhenormal gradient of φ at theboundary:	 � Γ∇φ � b � i � qb � given (3.26)

We arein effectgiventheflux Jb at Neumann boundaries:

Jb � Ab � 	 qb � given∆y (3.27)

We may thus include
� 	 qb � given∆y� directly in Equation 3.18 to yield the following

discreteequationfor theboundarycell P:

aPφP � aEφE � aNφN � aSφS � b (3.28)

where

aE � Γe∆y�
δx� e

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

aP � aE � aN � aS 	 SP∆x∆y

b � qb � given∆y � SC∆x∆y (3.29)

We notethefollowing aboutthediscretizationat theboundarycell P:
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1. aP � � aE � aN � aS� at Neumann boundariesif S � 0.

2. If bothqb � given andSarezero,φP is boundedby its neighbors.Otherwise,φP can
exceed(or fall below) theneighbor valuesof φ . This is admissible.If heatwere
beingaddedat theboundary, for example, we would expect the temperaturein
theregion closeto theboundaryto behigher thanthatin theinterior.

3. OnceφP is computed, the boundary value, φb may be computedusingEqua-
tion 3.22:

φb � qb � given � � Γb � δxb � φP�
Γb � δxb � (3.30)

3.2.3 Mixed Boundary Condition

Themixedboundarycondition is given by	 � Γ∇φ � b � i � hb

�
φ∞ 	 φ � (3.31)

SinceAb � ∆yi, wearegiventhat

Jb � Ab � 	 hb

�
φ∞ 	 φ � ∆y (3.32)

UsingEquation 3.22 wemaywrite

Γb

�
φP 	 φb �

δxb
� 	 hb

�
φ∞ 	 φb � (3.33)

We maythuswrite φb as

φb � hbφ∞ � � Γb � δxb � φP

hb � � Γb � δxb � (3.34)

UsingEquation 3.34 to eliminateφb from Equation3.33we maywrite

Jb � Ab � 	 Req
�
φ∞ 	 φP � ∆y (3.35)

where

Req � hb

�
Γb � δxb �

hb � � Γb � δxb � (3.36)

We arenow readyto write thediscretizationequation for theboundarycontrol volume
P. Substitutingthe boundaryflux from Equation 3.35 into Equation3.18 given the
following discreteequationfor φP:

aPφP � aEφE � aNφN � aSφS � b (3.37)
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where

aE � Γe∆y�
δx� e

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

ab � Req∆y

aP � aE � aN � aS � ab 	 SP∆x∆y

b � Req∆yφ∞ � SC∆x∆y (3.38)

We notethefollowing abouttheabovediscretization:

1. aP

" �
aE � aN � aS� for theboundarycell P if S � 0. Thus,mixedboundaries

arelikeDirichlet boundariesin thattheboundaryconditionhelpsensurethatthe
Scarboroughcriterionis met.

2. The cell value φP is boundedby its neighbor values φE, φN and φS, and the
external value,φ∞.

3. Theboundaryvalue, φb, maybecomputedfrom Equation 3.34oncea solution
hasbeenobtained. It is boundedby φP andφ∞, asshown by Equation3.34.

3.3 UnsteadyConduction

Let usnow considertheunsteadycounterpartof Equation 3.1:

∂
∂ t

�
ρφ ��� ∇ � J � S (3.39)

We aregiven initial conditions φ
�
x � y� 0� . As we saw in a previous chapter, time is

a “marching” coordinate. By knowing the initial condition, andtaking discretetime
steps∆t, we wish to obtainthesolutionfor φ ata eachdiscretetime instant.

In order to discretizeEquation3.39, we integrateit over the control volume as
usual.We alsointegrate it over thetimestep∆t, i.e., from t to t � ∆t.) ∆t ) ∆ 8 ∂

∂ t

�
ρφ � d � dt � ) ∆t ) ∆ 8 ∇ � Jd � dt � ) ∆t ) ∆ 8 Sd � dt (3.40)

Applying thedivergencetheoremasbefore,weobtain) ∆ 8 � � ρφ � 1 	 � ρφ � 0 � d �3� ) ∆t ) A
J � dAdt � ) ∆t ) ∆ 8 Sd � dt (3.41)

Thesuperscripts 1 and0 in thefirst integral denotethevaluesat thetimest � ∆t andt
respectively. Let usconsidereachtermin turn. If weassumethat) ∆ 8 ρφd �<� � ρφ � P ∆ � (3.42)
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wemaywrite theunsteady termas

∆ � � � ρφ � 1P 	 � ρφ � 0P � (3.43)

We now turn to the flux term. If we assumeasbefore that the flux on a faceis
representedby its centroidvalue,we maywrite thetermas) ∆t

∑
f ' e�w � n � sJ f � A f dt (3.44)

We arenow required to make a profile assumption about how the flux J varieswith
time. Let usassumethatit canbeinterpolatedbetweentime instantst � ∆t andt using
a factor f betweenzeroandone:) ∆t

J � Adt � � f J1 � A � � 1 	 f � J0 � A � ∆t (3.45)

Proceeding asbefore,makinglinearprofile assumptions for φ betweengrid points,we
maywrite

J1
e � Ae � 	 Γe∆y

φ1
E 	 φ1

P�
δx� e

J1
w � Aw � Γw∆y

φ1
P 	 φ1

W�
δx� w (3.46)

and

J0
e � Ae � 	 Γe∆y

φ0
E 	 φ0

P�
δx� e

J0
w � Aw � Γw∆y

φ0
P 	 φ0

W�
δx� w (3.47)

Let usnow examine thesourceterm.Linearizing SasSC � SPφ andfurtherassum-
ing that ) ∆ 8 � SC � SPφ � d �9� � SC � SPφP � ∆ � (3.48)

wehave ) ∆t ) ∆ 8 Sd � dt � ) ∆t

�
SC � SPφP � ∆ � dt (3.49)

Again, interpolating S betweent � ∆t andt usinga weightingfactor f betweenzero
andone:) ∆t

�
SC � SPφP � ∆ � dt � f

�
SC � SPφP � 1 ∆ � ∆t � � 1 	 f � � SC � SPφP � 0 ∆ � ∆t (3.50)

For simplicity, let usdropthesuperscript 1 andlet theun-superscriptedvaluerepresent
thevalueat time t � ∆t. Thevaluesat time t arerepresentedasbeforewith thesuper-
script0. Collectingtermsanddividing through by ∆t, weobtain thefollowing discrete
equation for φ :

aPφP � ∑
nb

anb

�
f φnb � � 1 	 f � φ0

nb � � b �9= a0
P 	 � 1 	 f � ∑

nb

anb> φ0
P (3.51)
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wherenbdenotesE,W, N andS. Further

aE � Γe∆y�
δx� e

aW � Γw∆y�
δx� w

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

a0
P � ρ∆ �

∆t
aP � f ∑

nb

anb 	 f SP∆ �?� a0
P

b � �
f SC � � 1 	 f � S0

C � � 1 	 f � S0
Pφ0

P � ∆ � (3.52)

It is usefulto examine thebehavior of Equation3.51for a few limiting cases.

3.3.1 The Explicit Scheme

If we set f � 0, we obtain the explicit scheme.This meansthat the flux andsource
termsareevaluatedusingvaluesexclusively from theprevioustime step.In this limit,
weobtainthefollowing discreteequations:

aPφP � ∑
nb

anbφ0
nb � b � = a0

P 	 ∑
nb

anb> φ0
P (3.53)

and

aE � Γe∆y�
δx� e

aW � Γw∆y�
δx� w

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

a0
P � ρ∆ �

∆t
aP � a0

P

b � �
S0

C � S0
Pφ0

P � ∆ � (3.54)

We noticethefollowing aboutthediscretization:

1. The right handsideof Equation3.53contains valuesexclusively from thepre-
vioustime t. Thus,giventhecondition at time t, it is possiblefor usto evaluate
theright handsidecompletely, andfind thevalueof φ P at time t � ∆t.
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2. We donotneedto solvea setof linearalgebraicequations to find φ P.

3. When∆t � ∞, we seethat the discreteequationfor steadystateis recovered.
This is alsotruewhensteadystateis reachedthrough time marching, i.e.,when
φP � φ0

P. Thus,weareassuredthatoursolutionuponreaching steadystateis the
sameasthatwe would have obtained if we hadsolveda steadyproblemin the
first place.

4. Theexplicit schemecorrespondsto theassumption thatφ 0
P prevails over theen-

tire timestep.

5. We will seelaterin thechapterthattheexplicit schemehasa truncationerror of
O
�
∆t � . Thus,theerror reducesonly linearlywith time-steprefinement.

This type of schemeis very simpleandconvenient,and is frequently usedin CFD
practice.However, it suffersfromaseriousdrawback. Weseethatthetermmultiplying
φ0

P canbecome negativewhen
a0

P

 
∑
nb

anb (3.55)

Whena0
P

 
∑nbanb, we seethatanincreasein φ at theprevioustime instantcancause

a decreasein φ at the current instant. This type of behavior is not possiblewith a
parabolic partial differential equation. We canavoid this by requiring a0

P - ∑nbanb.
For a uniform mesh,andconstantproperties,this restrictioncanbeshown , for one-,
two- andthree-dimensional casesto be,respectively

∆t . ρ
�
∆x� 2
2Γ

(3.56)

∆t . ρ
�
∆x� 2
4Γ

(3.57)

and

∆t . ρ
�
∆x� 2
6Γ

(3.58)

Thiscondition is sometimescalledthevonNeumannstabilitycriterion in theliterature.
It requires that the forward time stepbe limited by thesquare of themeshsize. This
dependenceon

�
∆x� 2 is very restrictive in practice.It requiresus to take smallerand

smallertimestepsasourmeshis refined, leadingto very longcomputationaltimes.

3.3.2 The Fully-Implicit Scheme

Thefully-implicit schemeis obtainedby setting f � 1 in Equation3.51. In this limit,
weobtainthefollowing discreteequationfor φP.

aPφP � ∑
nb

anbφnb � b � a0
Pφ0

P (3.59)

48



with

aE � Γe∆y�
δx� e

aW � Γw∆y�
δx� w

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

a0
P � ρ∆ �

∆t
aP � ∑

nb

anb 	 SP∆ �?� a0
P

b � SC∆ � (3.60)

We notethefollowing important pointsabout theimplicit scheme:

1. In theabsenceof source terms,aP � ∑nbanb � a0
P. Becauseof this property, we

areguaranteedthatφP is boundedby thevaluesof its spatialneighborsat t � ∆t
andby the valueat point P at the previous time. This is in keepingwith the
behavior of canonical parabolic partial differential equation. We may consider
φ0

P to bethetimeneighbor of φP. Also, theScarboroughcriterionis satisfied.

2. Thesolutionat time t � ∆t requiresthesolutionof a setof algebraic equations.

3. As with theexplicit scheme,as∆t � ∞, we recover thediscreteequationsgov-
erningsteadystatediffusion. Also, if we reachsteadystateby time marching,
i.e.,φ 0

P � φP, we recover thediscretealgebraicsetgoverningsteadydiffusion.

4. Thefully-implicit schemecorrespondsto assumingthatφ P prevailsover theen-
tire timestep.

5. Thereis no time steprestrictionon the fully-implicit scheme.We cantake as
big a time stepaswe wish without gettinganunrealisticφP. However, physical
plausibilitydoesnotimply accuracy – it ispossibletogetplausiblebut inaccurate
answersif our time stepsaretoobig.

6. We will seelater in this chapterthat the truncationerror of the fully-implicit
schemeis O

�
∆t � , i.e., it is afirst-orderaccuratescheme.Thoughthecoefficients

it produceshave useful properties,the rateof error reduction with time stepis
ratherslow.
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3.3.3 The Crank-Nicholson Scheme

TheCrank-NicholsonSchemeis obtainedby setting f � 0 * 5. With this valueof f , our
discreteequation becomes

aPφP � ∑
nb

anb

�
0 * 5φnb � 0* 5φ 0

nb � � b �@= a0
P 	 0 * 5∑

nb

anb> φ0
P (3.61)

with

aE � Γe∆y�
δx� e

aW � Γw∆y�
δx� w

aN � Γn∆x�
δy� n

aS � Γs∆x�
δy� s

a0
P � ρ∆ �

∆t
aP � 0 * 5∑

nb

anb 	 0 * 5SP∆ �A� a0
P

b � 0 * 5 � � SC � S0
C ��� S0

Pφ0
P � ∆ � (3.62)

We notethefollowing about theCrank-Nicholsonscheme:

1. For a0
P

 
0 * 5∑nbanb the term multiplying φ 0

P becomesnegative, leadingto the
possibility of unphysicalsolutions. Indeed, any valueof f different from one
will have this property.

2. The Crank-Nicholsonschemeessentiallymakesa linear assumptionabout the
variationof φP with time betweent andt � ∆t. We will seelater in this chap-
ter that though this leadsto a possibilityof negative coefficients for large time
steps,theschemehasa truncation errorof O

�+�
∆t � 2 � . Consequently, if usedwith

care,theerror in the our solutionscanbe reducedmore rapidly with time-step
refinement thantheotherschemeswehaveencounteredthusfar.

3.4 Diffusion in Polar Geometries

SinceEquation 3.1is written in vectorform, it maybeusedto describediffusive trans-
port in othercoordinatesystemsaswell. Indeedmuchof ourderivation thusfarcanbe
appliedwith little change to othersystems.Let usconsidertwo-dimensionalpolarge-
ometriesnext. A typical controlvolume is shown in Figure 3.3.Thecontrol volumeis
locatedin ther 	 θ planeandis boundedbysurfacesof constantr andθ . Thegridpoint
P is locatedat thecell centroid. Thevolumeof thecontrol volumeis ∆ �B� r P∆θ∆r.
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Figure3.3: ControlVolume in PolarGeometry

We assume∂φ � ∂x � 0, so that all transportis confinedto the r 	 θ plane. We also
assumesteadydiffusion,though theunsteadycounterpartis easilyderived.

IntegratingEquation 3.1over thecontrol volumeasbefore,andapplying thediver-
gencetheorem yieldsEquation 3.6:�

J � A � e � � J � A � w � � J � A � n � � J � A � s � S∆ � (3.63)

Thefaceareavectors aregivenby

Ae � ∆r eθ � e
Aw � 	 ∆r eθ �w
An � rn∆θ er

As � 	 rs∆θ er (3.64)

We recallthatthediffusiveflux J is givenby

J � 	 Γ∇φ (3.65)

For polargeometriesthegradient operatoris givenby

∇ � ∂
∂ r

er � 1
r

∂
∂θ

eθ (3.66)
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Thusthefluxeson thefacesaregivenby

Je � Ae � 	 Γe∆r
1
re
� ∂φ

∂θ � e

Jw � Aw � Γw∆r
1
rw
� ∂φ

∂θ � w

Jn � An � 	 Γnrn∆θ � ∂φ
∂ r � n

Js � As � Γsrs∆θ � ∂φ
∂ r � s

(3.67)

Assumingthatφ varieslinearlybetweengrid pointsyields

Je � Ae � 	 Γe∆r
φE 	 φP

re
�
δθ � e

Jw � Aw � Γw∆r
φP 	 φW

rw
�
δθ � w

Jn � An � 	 Γnrn∆θ
φN 	 φP�

δ r � n
Js � As � Γsrs∆θ

φP 	 φS�
δ r � s (3.68)

Thesourcetermmaybewrittenas �
SC � SPφP � ∆ � (3.69)

Collectingterms,wemaywrite thediscreteequationfor thecell P as

aPφP � aEφE � aWφW � aNφN � aSφS � b (3.70)

where

aE � Γe∆r
re
�
δθ � e

aW � Γw∆r
rw
�
δθ � w

aN � Γnrn∆θ�
δ r � n

aS � Γsrs∆θ�
δ r � s

aP � aE � aW � aN � aS 	 SP∆ �
b � SC∆ � (3.71)

We notethefollowing about theabove discretization:
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1. Regardlessof theshapeof thecontrol volume,thebasicprocessis thesame.The
integration of theconservation equationover thecontrol volumeandtheappli-
cationof the divergence theorem resultsin a control volumebalanceequation,
regardlessof theshapeof thecontrol volume.

2. The only differencesare in the form of the faceareavectors andthe gradient
operator for thecoordinatesystem.Thelattermanifestsitself in theexpressions
for thedistancesbetweengrid points.

3. The polar coordinatesystemis orthogonal, i.e., er andeθ arealwaysperpen-
dicular to eachother. Becausethe control volume facesarealignedwith the
coordinatedirections, the line joining thecell centroids (P andE, for example)
is perpendicular the face(e, for example). As a result, the flux normal to the
facecanbewrittenpurely in termsof thecell centroidφ valuesfor thetwo cells
sharingthe face. We will seein the next chapterthat additional termsappear
whenthemeshis non-orthogonal,i.e.,whentheline joining thecell centroidsis
notperpendicularto theface.

3.5 Diffusion in Axisymmetric Geometries

A similar procedurecanbeusedto derive thediscreteequation for axisymmetric ge-
ometries.Weassumesteadyconduction.Sincetheproblem is axisymmetric,∂φ � ∂θ �
0. A typical control volumeis shown in Figure3.4,andis locatedin the r 	 x plane.
Thegrid point P is locatedat thecell centroid. Thevolumeof the control volumeis
∆ �9� rP∆r∆x.

Thefaceareavectors aregiven by

Ae � re∆r i

Aw � 	 rw∆r i

An � rn∆x er

As � 	 rs∆x er (3.72)

For axisymmetric geometriesthegradient operator is given by

∇ � ∂
∂ r

er � ∂
∂x

i (3.73)

Thus thefluxes on thefacesaregivenby

Je � Ae � 	 Γere∆r � ∂φ
∂x � e

Jw � Aw � Γwrw∆r � ∂φ
∂x � w

Jn � An � 	 Γnrn∆x � ∂φ
∂ r � n

Js � As � Γsrs∆x � ∂φ
∂ r � s

(3.74)
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Assumingthatφ varieslinearlybetweengrid pointsyields

Je � Ae � 	 Γere∆r
φE 	 φP�

δx� e
Jw � Aw � Γwrw∆r

φP 	 φW�
δx� w

Jn � An � 	 Γnrn∆x
φN 	 φP�

δ r � n
Js � As � Γsrs∆x

φP 	 φS�
δ r � s (3.75)

Thesourcetermmaybewrittenas �
SC � SPφP � ∆ � (3.76)

Collectingterms,wemaywrite thediscreteequationfor thecell P as

aPφP � aEφE � aWφW � aNφN � aSφS � b (3.77)
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where

aE � Γere∆r�
δx� e

aW � Γwrw∆r�
δx� w

aN � Γnrn∆x�
δ r � n

aS � Γsrs∆x�
δ r � s

aP � aE � aW � aN � aS 	 SP∆ �
b � SC∆ � (3.78)

3.6 Finishing Touches

A few issuesremainbefore we have truly finisheddiscretizingour diffusionequation.
We dealwith thesebelow.

3.6.1 Inter polation of Γ

We notice in our discretizationthat the diffusion flux is evaluatedat the faceof the
control volume.As a result,wemustspecifythefacevalueof thediffusioncoefficient
Γ. Sincewe storeΓ at cell centroids,we mustfind away to interpolateΓ to theface.

Referringto thenotation in Figure3.5, it is possibleto simpleinterpolateΓ linearly
as:

Γe � feΓP � � 1 	 fe � ΓE (3.79)

where

fe � 0 * 5∆xE�
δx� e (3.80)

As long asΓe is smoothlyvarying, this is a perfectly adequateinterpolation. When
φ is usedto representenergy or temperature,stepjumpsin Γ maybe encounteredat
conjugateboundaries.It is useful to deviseaninterpolation procedurewhichaccounts
for thesejumps.

Our desireis to representthe interface flux correctly. Let Je be themagnitude of
theflux vectorJe. Let usassumelocally one-dimensional diffusion. In this limit, we
maywrite

Je � 	 �
φE 	 φP ��

0 * 5∆xP �0� ΓP � � 0 * 5∆xE �0� ΓE
(3.81)

Thus,anequivalent interface diffusioncoefficientmaybedefinedas

δxe

Γe
� 0 * 5∆xP

ΓP
� 0 * 5∆xE

ΓE
(3.82)
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Thetermδxe � Γe maybeseenasa resistanceto thediffusion transferbetweenP and
E. We maywrite Γe as

Γe �C� 1 	 fe
ΓP

� fe
ΓE � 5 1

(3.83)

Equation 3.83representsa harmonic meaninterpolation for Γ. Thepropertiesof this
interpolationmaybebetterunderstoodif we considerthecasef e � 0 * 5, i.e., thefacee
lies midwaybetweenP andE. In this case,

Γe � 2ΓPΓE

ΓP � ΓE
(3.84)

In thelimit ΓP D ΓE, wegetΓe � 2ΓE. This is asexpectedsincethehigh-diffusion co-
efficientregion doesnotoffer any resistance,andtheeffectiveresistanceis thatoffered
by thecell E, corresponding to adistanceof 0 * 5∆xE.

It is important to realizethattheuseof harmonicmeaninterpolation for discontin-
uous diffusioncoefficients is exactonly for one-dimensional diffusion. Nevertheless,
its usefor multi-dimensional situationshasanimportantadvantage.With this typeof
interpolation, nothing specialneedbe doneto treatconjugateinterfaces.We simply
treatsolid andfluid cellsasa partof thesamedomain, with differentdiffusioncoeffi-
cientsstoredat cell centroids. With harmonic-meaninterpolation, thediscontinuity in
temperaturegradient at theconjugateinterfaceis correctlycaptured.
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3.6.2 SourceLinearization and Treatmentof Non-Linearity

Our goal is to reduce our differential equation to a setof algebraic equations in the
discretevaluesof φ . Whenthescalartransportis non-linear, theresultingalgebraicset
is alsonon-linear. Non-linearity canarisefrom a numberof differentsources.For ex-
ample, in diffusionproblems, thediffusioncoefficient maybea function of φ , suchas
in thecaseof temperature-dependentthermal conductivity. ThesourcetermSmayalso
bea function of φ . In radiative heattransferin participatingmedia,for example, the
source termin theenergy equationcontains fourth powersof the temperature. There
aremany waysto treatnon-linearities.Here,we will treatnon-linearitiesthrough Pi-
card iteration. In this method, thecoefficientsaP, anb, SC andSP areevaluatedusing
prevailing valuesof φ . They areupdatedasφ is updatedby iteration.

We saidpreviously thatthesource termScouldbewritten in theform

S � SC � SPφ (3.85)

We now examinehow this canbedone whenS is anon-linearfunction of φ .
Let the prevailing value of φ be called φ E . This is the value that exists at the

current iteration. We write a Taylor seriesexpansionfor S aboutits prevailing value
SE&� S

�
φ EF� :

S � SE �!� ∂S
∂φ � E � φ 	 φ E � (3.86)

sothat

SC � SE 	 � ∂S
∂φ � E φ E

SP � � ∂S
∂φ � E (3.87)

Here,
�
∂S� ∂φ �GE is thegradientevaluatedat theprevailing valueφ E . For mostproblems

of interestto us,∂S� ∂φ is negative, resultingin a negative SP. This ensuresthat the
source tendsto decreaseasφ increases,providing a stabilizingeffect. However, this
typeof dependenceis notalwaysguaranteed.In anexplosionor afire, for example, the
applicationof ahightemperature(thelightingof amatch)causesenergy to bereleased,
andincreasesthetemperaturefurther. (Thecounter-measureis providedby thefactthat
thefuel is eventually consumedandthefire burnsout). Froma numericalviewpoint,
a negative SP makesaP

"
∑nbanb in our discretization, andallows us to satisfy the

Scarborough criterion. It aidsin theconvergenceof iterativesolutiontechniques.

3.6.3 Under-Relaxation

Whenusingiterativemethodsfor obtaining solutions or wheniteratingto resolvenon-
linearities,it is frequentlynecessaryto control therateatwhichvariablesarechanging
during iterations.Whenwe have a strongnon-linearity in a temperature source term,
for example,andourinitial guessis far from thesolution,wemaygetlargeoscillations
in the temperaturecomputedduring thefirst few iterations,makingit difficult for the
iterationto proceed. In suchcases,we oftenemploy under-relaxation.
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Let thecurrent iterateof φ beφ EP. We know thatφP satisfies

aPφP � ∑
nb

anbφnb � b (3.88)

sothatafterthesystemhasbeensolvedfor thecurrent iteration,we expectto compute
a value of φP of

φP � ∑nbanbφnb � b

aP
(3.89)

Wedonot,however, wantφP to changeasmuchasEquation3.89implies.Thechange
in φP from oneiterationto thenext is givenby

∑nbanbφnb � b

aP
	 φ EP (3.90)

We wish to makeφP changeonly by a fractionα of this change. Thus

φP � φ EP � α � ∑nbanbφnb � b

aP
	 φ EP � (3.91)

Collectingterms,wemaywrite

aP

α
φP � ∑

nb

anbφnb � b � 1 	 α
α

aPφ EP (3.92)

We notethefollowing aboutEquation3.92:

1. Whentheiterationsconverge to a solution,i.e.,whenφ P � φ EP, theoriginal dis-
creteequationis recovered. So we areassuredthat under-relaxation is only a
changein the pathto solution,andnot in the discretizationitself. Thus,both
under-relaxedandun-underrelaxedequationsyield thesamefinal solution.

2. Thoughover-relaxation(α
"

1) is apossibility, wewill for themostpartbeusing
α . 1. With α . 1,weareassuredthataP � α " ∑nbanb. Thisallowsusto satisfy
theScarborough criterion.

3. Theoptimum valueof α dependsstronglyon thenature of thesystemof equa-
tionswe aresolving,on how strongthenon-linearitiesare,on grid sizeandso
on. A valuecloseto unity allows thesolutionto move quickly towardsconver-
gence,but may be moreprone to divergence. A low valuekeepsthe solution
closeto theinitial guess,but keepsthesolutionfrom diverging. Weuseintuition
andexperiencein choosinganappropriatevalue.

4. We notethe similarity of under-relaxationto time-stepping. The initial guess
actsastheinitial condition. ThetermsaP � α and

�+�
1 	 α �0� α � apφ EP representthe

effectof theunsteadyterms.
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3.7 Discussion

At this point, our discretizedequation set is readyfor solution. We have seenthat
our diffusionequationcanbediscretizedto yield coefficients thatguaranteephysical
plausibility for theorthogonalmesheswe have consideredhere.This property is very
useful in a numericalscheme.However, we will seein thenext chapter that it cannot
usuallybeobtainedwhenmeshesarenon-orthogonalor unstructured.

We have thusfar not addressedthe issueof solving the discretizationequations.
For the moment, we shall usethe simpleGauss-Seidelschemeto solve our equation
set. This is admittedlyslow for large meshes,andfar betteriterationschemesexist.
Thesewill becoveredin a laterchapter.

3.8 Truncation Err or

We now examine thevariousprofile assumptions we have madein thecourseof dis-
cretizingour diffusionequation to quantify the truncation error of our finite volume
scheme.

3.8.1 Spatial Truncation Err or

In comingupwith ourspatialapproximationswemadethefollowing assumptions:

1. Thefaceflux (Je, for example) wasrepresentedby thefacecentroidvalue.That
is, themeanflux throughthefacee wasrepresentedby thefacecentroidvalue.

2. ThesourcetermS∆ � waswrittenas
�
SC � SPφP � ∆ � ,i.e.,thecell centroidvalue

φP wasusedto represent themeanφ valuein thecell.

3. The gradient at the facewascomputedby assumingthat φ varieslinearly be-
tweencell centroids. Thus

�
dφ � dx� e waswrittenas

�
φE 	 φP �0� � δx� e.

Items 1 and 2 essentiallyinvolve the sameapproximation: that of representing the
meanvalueof avariableby its centroidvalue.Item3 involvesanapproximationto the
facegradient. Let usexamineeachof theseapproximations in turn. Wewill considera
one-dimensional control volume andauniform grid.

Mean Value Approximation

Considerthecontrol volume in Figure3.6andthefunction φ
�
x� in thecontrol volume.

We expandφ
�
x� as

φ
�
x�:� φP � � x 	 xP �H� dφ

dx � P
� � x 	 xP � 2

2!
� d2φ

dx2 � P
� � x 	 xP � 3

3!
� d3φ

dx3 � P
� O

� �
∆x� 4 �
(3.93)
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IntegratingEquation3.93over thecontrol volume,we have) xe

xw

φ
�
x� dx � φP ) xe

xw

dx �@� dφ
dx � P ) xe

xw

�
x 	 xP � dx� � d2φ

dx2 � P ) xe

xw

�
x 	 xP � 2

2!
dx � O

� �
∆x� 4 � (3.94)

sothat ) xe

xw

φ
�
x� dx � �

∆x� φP � 1
2

� �
xe 	 xP � 2 	 � xw 	 xP � 2 � � dφ

dx � P� 1
6

� �
xe 	 xP � 3 	 � xw 	 xP � 3 � � d2φ

dx2 � P� O
� �

∆x� 4 � (3.95)

For auniform mesh,Equation3.95maybewrittenas) xe

xw

φ
�
x� dx � � ∆x� φP � 1

24

� �
∆x� 3 � � d2φ

dx2 � P
� O

� �
∆x� 4 � (3.96)

Dividing throughby ∆x we get

φ � 1
∆x ) xe

xw

φ
�
x� dx � φP � O

� �
∆x� 2 � (3.97)

Thus,we seethat the centroid valueφP represents the meanvalue with a truncation
error of O

�0�
∆x� 2 � . For a constantφ , all derivatives are zero. If φ

�
x� is linear, all

derivativesof order higherthandφ � dx arezero. For thesetwo cases,φ � φ P is true
exactly. Thesameanalysiscanbeappliedto thefaceflux Je, or indeed to any variable
beingrepresentedby its centroid value.

Gradient Approximation

Let usnow examinethetruncationerror in representingthegradient
�
dφ � dx� e as

�
φE 	

φP �0� � δx� e. Referringto Figure3.6,we write:

φE � φe � ∆x
2
� dφ

dx � e
� � ∆x� 2

8
� d2φ

dx2 � e
� � ∆x� 3

48
� d3φ

dx3 � e� O
� �

∆x� 4 �
φP � φe 	 ∆x

2
� dφ

dx � e
� � ∆x� 2

8
� d2φ

dx2 � e
	 � ∆x� 3

48
� d3φ

dx3 � e� O
� �

∆x� 4 � (3.98)

Subtracting thesecondequation from thefirst anddividing by ∆x yields� dφ
dx � e

� φE 	 φP

∆x
� O

� �
∆x� 2 � (3.99)
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Thus the assumptionthat φ varies linearly betweengrid points leadsto a truncation
error of O

�+�
∆x� 2 � in dφ � dx. We seethatall theapproximations in a steadydiffusion

equationareO
�+�

∆x� 2 � . Sothediscretizationschemehasatruncation errorof O
�+�

∆x� 2 � .
Themean-valueapproximationis O

�0�
∆x� 2 evenfor a non-uniform mesh.Thegra-

dientapproximations is O
�+�

∆x�+� 2 only for uniform meshes.For non-uniform meshes,
theO

�0�
∆x� 2 � termsin theTaylorseriesexpansiondonotcanceluponsubtraction, leav-

ing a formal truncation error of O
�
∆x� ondφ � dx.

3.8.2 Temporal Truncation Err or

Letusconsiderthefully-implicit scheme.Theprofileassumptionsmadein discretizing
theunsteady diffusionequationusingthis schemeare

1. Thecell centroidvalues
�
ρφ � 1P and

�
ρφ � 0P in theunsteady termareassumedto

represent theaveragevaluefor thecell.

2. Thespatialassumptionsareasdescribed above.

3. Theflux andsourcetermsfrom time t � ∆t areassumedto prevail over thetime
step∆t.

Thefirst assumptionis equivalentto the meanvalueassumptionanalyzedabove and
engendersa spatialerror of O

�+�
∆x� 2. We have alreadyseenthat the otherspatialas-

sumptionsresultin a truncationerror of O
�+�

∆x� 2 � . Let usexaminethetruncation error
implicit in item3. In effect,wewish to evaluatea termof thetype) t1

t0

S
�
t � dt (3.100)
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ExpandingS(t) about S1, its valueat t1, we have

S
�
t ��� S1 �!� dS

dt � 1 �
t 	 t1 � �!� d2S

dt2 � 1 � t 	 t1 � 2
2

� O
� �

∆t � 3 � (3.101)

Integratingover thetimestep∆t, i.e. from t0 to t1, we get

) t1

t0

S
�
t � dt � S1∆t � � dS

dt � 1 ) t1

t0

�
t 	 t1 � dt � O

� �
∆t � 3 � (3.102)

Integratinganddividing by ∆t weget

1
∆t ) t1

t0

S
�
t � dt � S � S1 	 � dS

dt � 1 ∆t
2
� O

� �
∆t � 2 � (3.103)

Thusthetemporal truncationerrorof thefully implicit schemeis O
�
∆t � .

Westatewithout proof thatthetruncationerrorof theexplicit schemeis alsoO
�
∆t �

andthatof theCrank-Nicholsonschemeis O
�+�

∆t � 2 � .
3.9 Stability Analysis

In this section,we perform a vonNeumannstability analysis.Stability canbeunder-
stoodin two ways.For steadystateproblems,we wish to determine whetherthepath
to solutionis stable,i.e.,we wish to analyzea particular iterative methodfor stability.
For unsteadyproblems,we askwhethera particularmarching schemeis stable. For
example,for anunsteadyheatconductionproblem,wemaywantto determinewhether
takingsuccessivetimestepscausetheerrors in thesolutionto grow. Thissimilarity be-
tweeniterationandtime-stepping is notsurprising.Wemayconsiderany time-stepping
schemeto beaniterativescheme, i.e.,awayof obtaining asteadystatesolution, if one
exists.

Let usconsiderthestability of theexplicit scheme.For simplicity, let usconsider
a one-dimensional casewith constantpropertiesandno sourceterm. Thediscretized
diffusionequationmaybewrittenas:

aPφP � aEφ0
E � aWφ0

W � � a0
P 	 aE 	 aW � φ0

P (3.104)

and

aE � Γe�
δx� e

aW � Γw�
δx� w

a0
P � ρ∆x

∆t
aP � a0

P (3.105)
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Let Φ representtheexactsolutionto Equation3.104. By exactwe meanthat it is
thesolutionto thediscreteequation, obtainedusingacomputerwith infinite precision.
However, all real computers available to us have finite precision,and therefore, we
mustcontend with round-off error. Let thisfinite-precisionsolutionbegiven by φ . The
error ε is givenby

ε � φ 	 Φ (3.106)

We askthefollowing question:Will theexplicit schemecauseour error ε to grow, or
will theprocessof time-stepping keeptheerror within bounds?

SubstitutingEquation3.106 into Equation3.104 yields

aP

�
ΦP � εP �&� aE

�
Φ0

E � ε0
E � � aW

�
Φ0

W � ε0
W � � � a0

P 	 aE 	 aW � � Φ0
P � ε0

P � (3.107)

As before, theΦ andε termssuperscripted0 representthevaluesat thetimestept, and
theun-superscriptedvaluesrepresentthevalues at time t � ∆t. SinceΦP is theexact
solution, it satisfiesEquation3.104. Therefore,theΦ termsin Equation3.107 cancel,
leaving

aPεP � aEε0
E � aWε0

W � � a0
P 	 aE 	 aW � ε0

P (3.108)

Let usexpand theerror ε in aninfinite series

ε
�
x � t ��� ∑

m
eσmteiλmx m � 0 � 1 � 2 �0*1*,*M (3.109)

whereσm maybeeitherrealor complex, andλm is givenby

λm � mπ
L
� m � 0 � 1 � 2 �+*,*1*M (3.110)

L is the width of the domain. Equation 3.109 essentiallypresents the spatialdepen-
denceof theerrorby thesumof periodic functionseiλmx, andthetime dependenceby
eσmt . If σm is realandgreaterthanzero, theerrorgrows with time, andif σ m is real
andlessthanzero, theerror is damped. If σm is complex, thesolutionis oscillatoryin
time. We wish to find theamplification factor

ε
�
x � t � ∆t �
ε
�
x � t � (3.111)

If theamplificationfactoris greaterthanone,our error grows with time step,andour
schemeis unstable. If it is lessthanone,our error is damped in the processof time
marching, andourschemeis stable.

Sincethediffusion equationfor constantΓ andzeroS is linear, we mayexploit the
principleof superposition.Thus,wecanexaminethestabilityconsequencesof asingle
error term

ε � eσmteiλmx (3.112)

ratherthanthesummationin Equation 3.109. SubstitutingEquation 3.112into Equa-
tion 3.108,weget

aPeσm I t � ∆t J eiλmx � eσmt 
 aEeiλm I x� ∆xJ � aWeiλm I x 5 ∆xJ �� � a0
P 	 aE 	 aW � eσmteiλmx (3.113)
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Dividing throughby aPeσmteiλmx weget

eσm∆t � aE

aP
eiλm∆x � aW

aP
e5 iλm∆x� a0

P 	 aE 	 aW

aP
(3.114)

For auniform meshaE � aW � Γ � ∆x anda0
P � ρ∆x� ∆t. Thus

eσm∆t � Γ∆t
ρ
�
∆x� 2 
 eiλm∆x � e5 iλm∆x � � � 1 	 2Γ∆t

ρ
�
∆x� 2 � (3.115)

Usingβ � λm∆x andtheidentities

eiλm∆x � e5 iλm∆x � 2cosβ � 2 	 4sin2 β
2

(3.116)

weget

eσm∆t � 1 	 4Γ∆t
ρ
�
∆x� 2 sin2 β

2
(3.117)

We recognize thattheamplificationfactoris

ε
�
x � t � ∆t �
ε
�
x � t � � eσm∆t � 1 	 4Γ∆t

ρ
�
∆x� 2 (3.118)

We require that 6
ε
�
x � t � ∆t �
ε
�
x � t � 6 . 1 (3.119)

or 6
1 	 4Γ∆t

ρ
�
∆x� 2 6 . 1 (3.120)

If
�
1 	 4Γ∆t

ρ I ∆xJ 2 � " 0, we require

4Γ∆t
ρ
�
∆x� 2 - 0 (3.121)

This is always guaranteedsinceall termsare positive. If, on the otherhand,
�
1 	

4Γ∆t
ρ I ∆xJ 2 �K. 0, we require

4Γ∆t
ρ
�
∆x� 2 . 2 (3.122)

or

∆t . ρ
�
∆x� 2
2Γ

(3.123)

We recognizethis criterionto bethesameasEquation3.56. Usinganerrorexpansion
of thetype

ε
�
x � y� t ��� eσmteiλmxeiλny (3.124)
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we mayderiveanequivalentcriterionfor two-dimensionaluniform meshes(∆x � ∆y)
as

∆t . ρ
�
∆x� 2
4Γ

(3.125)

A similar analysismayalsobedoneto obtainthecriterion for three-dimensionalsitu-
ations. It is alsopossibleto show, usinga similar analysis,that the fully-implicit and
Crank-Nicholsonschemesareunconditionally stable.

Though thevon Neumann stability analysisandour heuristicrequirementof posi-
tive coefficientshave yieldedthesamecriterionin thecaseof theexplicit scheme,we
should notconcludethatthetwo will alwaysyield identicalresults.ThevonNeumann
analysis yields a time-steplimitation required to keepround-off errors bounded. It
is possibleto get boundedbut unphysicalsolutions. This happens in the caseof the
Crank-Nicholsonscheme,which thevon Neumann stability analysisclassifiesasun-
conditionally stable.However, weknow thatfor ρ∆x� ∆t

 
0 * 5 ∑nbanb, it is possibleto

getunphysicalresults.In this case,thevonNeumannstabilityanalysistells usthatthe
oscillationsin our solutionwill remainbounded, but it cannotguaranteethatthey will
bephysicallyplausible.

VonNeumannstabilityanalysisis aclassictool for analyzing thestabilityof linear
problems.However, weseeright awaythatit wouldbesubstantiallymorecomplicated
to dotheaboveanalysisif Γ wereafunctionof φ , or if wehadnon-linearsourceterms.
It becomesverydifficult to usewhenwesolvecouplednon-linearequationssuchasthe
Navier-Stokesequations. In practice,weusevonNeumannstabilityanalysisto giveus
guidanceonthebaselinebehavior of idealizedsystems,realizingthatthecouplednon-
linearequationswereallywantto solvewill probablyhavemuchstringentrestrictions.
For these,wemustrely on intuition andexperiencefor guidance.

3.10 Closure

In this chapter, we have completedthediscretizationof thediffusionequation on reg-
ular orthogonal meshesfor Cartesian,polar andaxisymmetric geometries. We have
seenthat our discretizationguaranteesphysically plausiblesolutions for both steady
andunsteadyproblems. We have alsoseenhow to handle non-linearities. For uni-
form meshes,we have shown that our spatialdiscretizationis formally second-order
accurate,andthat if we usethe fully-implicit scheme,our temporal discretizationis
first-order accurate.We have alsoseehow to conduct a stability analysisfor the ex-
plicit schemeasappliedto thediffusion equation. In thenext chapter, we will address
theissueof meshnon-orthogonality andunderstand theresultingcomplications.
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Chapter 4

The Diffusion Equation: A
Closer Look

In thelastchapter, wesaw how to discretizethediffusionequationfor regular (orthog-
onal) meshescomposedof quadrilaterals. In this chapter, we addressnon-orthogonal
meshes,both structured andunstructured. We will seethat non-orthogonality leads
to extra termsin our discreteequations which destroy someof thepropertieswe had
particularly prizedin ourdiscretizationscheme.Wewill alsoaddressthespecialissues
associatedwith thecomputationof gradientsonunstructuredmeshes.

4.1 Diffusion on Orthogonal Meshes

Let us considera meshconsistingof convex polyhedra,andparticularly, equilateral
triangles,asshown in Figure4.1. Regardlessof theshapeof thecells,any face f in the
meshis sharedby only two neighborcells.Weshallconsiderthemeshto beorthogonal
if theline joining thecentroidsof adjacent cellsis orthogonalto thesharedfacef . This
is guaranteedfor theequilateral triangular meshin thefigure. A detailof thecellsC0
andC1 is shown in Figure4.2.

Considerthesteadydiffusionequation:

∇ � J � S (4.1)

where
J � 	 Γ∇φ (4.2)

WefocusonthecellC0. To discretizeEquation 4.1,weintegrateit overthecontrol
volumeC0 asbefore: ) ∆ 8 0

∇ � Jd �9� ) ∆ 8 0

Sd � (4.3)

Applying thedivergencetheorem, weget) A
J � dA � ) ∆ 8 0

Sd � (4.4)
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Wenow makeaprofileassumption. WeassumethatJ canbeapproximatedby its value
at thecentroidof theface f . Also, let usassumethatS � SC � SPφ0 asbefore. Thus

∑
f

J f � A f � � SC � SPφ0 � ∆ � 0 (4.5)

Thesummation in thefirst termis overall thefacesof thecontrol volumeC0, andA f
is theareavector on theface f pointingoutwards from cell C0. Further,

J f � 	 Γ f

�
∇φ � f� 	 Γ f � ∂φ

∂x
i � ∂φ

∂y
j � f

(4.6)

In order to evaluate ∂φ � ∂x and ∂φ � ∂y at the face f , we needcell centroidvalues
of φ which aresuitablyplacedalongthe x andy axes. This is easyto arrange for a
rectangularmesh,aswesaw in thepreviouschapter. We seefrom Figure4.2thatsuch
valuesarenot availablefor themeshunder consideration.We musttake analternative
approach.

Considerthe coordinatedirections ξ andη in Figure4.2. The unit vectoreξ is
aligned with theline joining thecentroids. Theunit vector eη is tangential to theface
f . Becausethemeshis orthogonal,theunit vectorsareperpendicularto eachother. We
maywrite thefaceflux vectorJ f in thecoordinatesystemξ 	 η as

J f � 	 Γ f � ∂φ
∂ξ

eξ � ∂φ
∂η

eη � (4.7)

TheareavectorA f maybewrittenas

A f � Af eξ (4.8)

Therefore

J f � A f � 	 Γ f Af � ∂φ
∂ξ � f

(4.9)

We seethat if the line joining the centroids is perpendicular to the face,the normal
diffusiontransport Jf � A f only dependsonthegradientof φ in thecoordinatedirection
ξ andnot on η . We realizethatsincecell centroidvaluesof φ areavailablealongthe
eξ direction,it is easyfor usto write ∂φ � ∂ξ .

As before, let usmakealinearprofileassumptionfor thevariation of φ
�
ξ � between

thecentroids of cellsC0 andC1. Thus

J f � A f � 	 Γ f Af

�
φ1 	 φ0 �

∆ξ
(4.10)

where∆ξ is the distancebetweenthe cell centroids, asshown in Figure 4.2, andφ 0
andφ1 arethe discretevaluesof φ at the cell centroids. We seethat if the meshis
orthogonal, thediffusiontransport normal to theface f canbewritten purely in terms
of valuesof φ at thecentroids of thecellssharing theface.
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Sofar we have lookedat thetransport througha singleface f . SubstitutingEqua-
tion 4.10 into Equation 4.5 andsummingover all the facesof the cell C0 yields an
equation of theform

aPφP � ∑
nb

anbφnb � b (4.11)

where

anb � � Γ f Af

∆ξ � nb
� nb � 1 � 2 �0*1*,*M

aP � ∑
nb

anb 	 SP∆ � 0

b � SC∆ � 0 (4.12)

In theabove equations,nb denotesthe faceneighborsof thecell underconsideration,
P. That is, the “neighbor” cells arethosewhich sharefaceswith the cell undercon-
sideration. Thecell P sharesvertices with othercells, but thesedo not appearin the
discretization. M is the number of faceneighbors. If the cell is a triangle,thereare
threefaceneighbors,andM � 3 in theabove equation.We notethefollowing:

1. In thedevelopmentabove, wehavenotusedthefactthatcell underconsideration
is a triangle. All we have required is that thecell bea polyhedronandthat line
joining thecell centroids beorthogonal to theface.

2. It is necessaryfor themeshto consistof convex polyhedra. If thecellsarenot
convex, thecell centroid maynot fall insidethecell.

3. We neednot make the assumptionof two-dimensionality. Theabove develop-
mentholdsfor threedimensional situations.

4. We have not madeany assumptions aboutmeshstructure, though it is usually
difficult to generateorthogonalmesheswithoutsometypeof structure.

5. Theschemeis conservative becausewe usetheconservationprinciple to derive
thediscreteequations. The faceflux J f leavesonecell andenterstheadjacent
cell. Thusoverall conservation is guaranteed. It is worth noting herethat J f
shouldbethoughtof asbelongingto thefacef ratherthatto eithercellC0 orC1.
Thus,whateverprofileassumptions areusedto evaluateJ f areusedconsistently
for bothcellsC0 andC1.

6. As with our orthogonal rectangular meshin thepreviouschapter, we geta well-
behavedsetof discreteequations. In theabsenceof sourceterms,aP � ∑nbanb.
We arethusguaranteedthatφP is boundedby its faceneighborswhenS � 0.

7. All thedevelopmentfrom thepreviouschapterregardingunsteady flow, interpo-
lationof Γ f andlinearizationof sourcetermsmaybecarriedoverunchanged.

8. It is possibleto solve the discreteequation setusingtheGauss-Seideliterative
scheme,whichdoes notplaceany restrictions on thenumber of neighbors.
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4.2 Non-Orthogonal Meshes

In practice,it is rarelypossibleto useorthogonal meshesin industrialgeometriesbe-
causeof their complexity. Our interesttherefore lies in developingmethods whichcan
dealwith non-orthogonalmeshes,andpreferably, with unstructuredmeshes.We will
startby looking atgeneralnon-orthogonal meshesandderiveexpressionsfor structured
meshesasaspecialcase.

ConsiderthecellsC0andC1shown in Figure4.3.Weconsiderthismeshtobenon-
orthogonalbecausethe line joining thecell centroids C0 andC1 is not perpendicular
to theface f .

As before,weconsiderthesteadydiffusionequation

∇ � J � S (4.13)

andfocuson the cell C0. We integratethe equation over the control volume C0 and
apply thedivergencetheorem asbefore. AssumingthatJ f , theflux at thefacecentroid,
prevails over theface f , we obtain:

∑
f

J f � A f � � SC � SPφ0 � ∆ � 0 (4.14)

Thus far, theprocedureis thesameasthatfor anorthogonalmesh.Theareavector A f
is given by

A f � Ax i � Ay j (4.15)

As before,writing J f in termsof ∂φ � ∂x and∂φ � ∂y is notusefulsincewedonothave
cell centroid valuesof φ alongthesedirections. Let usconsiderinsteadthecoordinate
systemξ 	 η on the face f . Theunit vector eξ is parallelto the line joining thecen-
troids. The unit vector eη is tangential to the face. However, sincethe meshis not
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orthogonal,eξ andeη arenot orthogonal to eachother. Writing J f in termsof the

ξ 	 η coordinatesystemseemspromisingsincewe have cell centroidvaluesaligned
alongtheξ direction.

As usual,we maywrite J f � A f as

J f � A f � 	 Γ f � ∂φ
∂x

Ax � ∂φ
∂y

Ay � f
(4.16)

In order to express∂φ � ∂x and∂φ � ∂y in termsof ξ andη , we startbewriting

φξ � φxxξ � φyyξ

φη � φxxη � φyyη (4.17)

whereφξ denotes∂φ � ∂ξ , xξ denote ∂x� ∂ξ andsoon. Solvingfor φx andφy, we get

φx � φξ yη 	 φηyξL
φy � 	 φξ xη � φηxξL (4.18)

where L � xξ yη 	 xηyξ (4.19)

Therefore

J f � A f � 	 Γ f � Axyη 	 AyxηL � 
 φξ � f	 Γ f = 	 Axyξ � AyxξL > � φη � f (4.20)

Furthermore,we maywrite

xξ � x1 	 x0

∆ξ

yξ � y1 	 y0

∆ξ

xη � xb 	 xa

∆η

yη � yb 	 ya

∆η
Ax � �

yb 	 ya �
Ay � 	 � xb 	 xa � (4.21)

Theunit vectors eξ andeη maybewrittenas

eξ � �
x1 	 x0 � i � � y1 	 y0 � j

∆ξ

eη � �
xb 	 xa � i � � yb 	 ya � j

∆η
(4.22)
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where∆ξ is the distancebetweenthe centroids and∆η is the distancebetweenthe
verticesa andb. We recognizethat

∆η � Af (4.23)

Now, let usexamine theJacobian
L

. Usingtheequations4.21, wemaywriteL � xξ yη 	 xηyξ� x1 	 x0

∆ξ
yb 	 ya

∆η 	 y1 	 y0

∆ξ
xb 	 xa

∆η� A f � eξ

∆η
(4.24)

Theφξ termin Equation4.20maybewrittenas

φξ � Axyη 	 AyxηL � � φξ M Ax
�
yb 	 ya � 	 Ax

�
xb 	 xa �ONP� ∆η

A f � eξ � ∆η� φξ

A f � A f

A � eξ
(4.25)

Theφη termin Equation4.20maybewrittenas

φη = 	 Axyξ � AyxξL > � 	 φη M � y1 	 y0 � � yb 	 ya ��� � x1 	 x0 � � xb 	 xa � N � ∆ξ
A f � eξ � ∆η� 	 φη

�
∆η � 2 eξ � eη

A f � eξ� 	 φη
A f � A f

A f � eξ
eξ � eη (4.26)

Collectingterms,we maywrite

J f � A f � 	 Γ f

A f � A f

A f � eξ

 φξ � f

� Γ f

A f � A f

A f � eξ
eξ � eη

�
φη � f (4.27)

We now needprofile assumptionsfor φ . For themoment,we shall consideronly the
φξ term.Assumingthatφ varies linearlybetweencell centroids,wemaywrite
 φξ � f

� φ1 	 φ0

∆ξ
(4.28)

Furthermore,we define Q
f � Γ f

A f � A f

A f � eξ
eξ � eη

�
φη � f (4.29)

Therefore

J f � A f � 	 Γ f

∆ξ
A f � A f

A f � eξ

�
φ1 	 φ0 � � Q f (4.30)
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4.2.1 Discussion

We have thusfar derived anexpressionfor thequantity J f � A f for theface f . We see
that,unlike for orthogonal meshes,theflux cannot bewritten in termsof ∂φ � ∂ξ alone
– anadditional gradient, ∂φ � ∂η is involved. We call the term involving ∂φ � ∂ξ the
primary gradient or theprimary diffusionterm. Theterm

Q
f is calledthesecondary

gradient or thesecondary diffusion term. For orthogonalmeshes,eξ � eη is zerosince
the line joining the centroids is perpendicular to the face. Therefore

Q
f is zerofor

orthogonalmeshes.Furthermore,from Equation4.8, the term
�
A f � A f �G� � A f � eξ � re-

ducesto A f for anorthogonal mesh.Thus,weareassuredthatourformulationdefaults
to theright expressionwhenthemeshis orthogonal.

Thesecondary gradienttermis alittle problematicto computesincewedonothave
any cell centroid valuesof φ availablein theη direction. We mustdeviseamethodby
which ∂φ � ∂η canbecomputedon theface f . Preciselyhow this is done will depend
onwhether ourmeshis structuredor unstructured.

4.2.2 SecondaryGradient Calculation

For structured meshes,the computation of the gradient ∂φ � ∂η posesno particular
problem. In two dimensions, theproblem maybeboileddown to eitherfinding theφ a

andφb by interpolation andthusfinding ∂φ � ∂η , or alternatively, finding ∂φ � ∂η at
thecellsC0 andC1 andinterpolatingthesevaluesto theface f .

For three-dimensional situationsonstructuredmeshes,again,thereis noparticular
difficulty. Thestructuredmeshshown in thex-y planein Figure4.4(a)consistsof mesh
linesof ξ � c andη � c which form thefacesof thecell. In threedimensions, a cell
is boundedby facesof constantξ , η andζ . Thegradient ∇φ maybedecomposedin
thesethreenon-orthogonaldirections,resultingin secondary gradient termsinvolving
∂φ � ∂η and∂φ � ∂ζ . Thesetangential gradientsmaybewritten in termsof valuesof
φ at the points a, b, c andd shown in Figure4.4(b). Thesevaluesin turn may be
interpolatedfrom neighboringcell-centroid values.

For unstructuredmeshes,it is possibleto write ∂φ � ∂η in termsof φa andφb in
two dimensions sincethe coordinatedirection η can be uniquely defined. In three
dimensions,however, it notpossibleto definetheη direction uniquely. Thefacef is in
general ann-sided polyhedron,with nouniquemeshdirections,andthetwo tangential
directions η andζ would have to bechosenarbitrarily. We should notehowever that
theξ directionis uniquely definedasthecentroid-to-centroid direction.

For unstructuredmeshes,we write

J f � A f � 	 Γ f

∆ξ
A f � A f

A f � eξ

�
φ1 	 φ0 � 	 Γ f

�
∇φ � f � A f � Γ f

∆ξ
A f � A f

A f � eξ

�
∇φ � f � eξ ∆ξ (4.31)

sothatthesecondary gradient termis givenbyQ
f � 	 Γ f

�
∇φ � f � A f � Γ f

∆ξ
A f � A f

A f � eξ

�
∇φ � f � eξ ∆ξ (4.32)
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ThreeDimensions

Equation4.32writesthesecondarygradient termasthedifferenceof thetotal transport
through the face f andthe transport in the direction eξ . Both termsrequire the face
gradient

�
∇φ � f ; its computationis addressedin a latersection.

Thustheproblemof computing thesecondary gradient is reducedto theproblem
of computing the facegradient of φ . It is possibleto compute

�
∇φ � f directly at the

faceusingthemethods we will presentin a latersection.It is oftenmore convenient
to store∇φ at thecellsC0 andC1. Assumingthat thegradient of φ in eachcell is a
constant,wemayfind anaverage as�

∇φ � f � ∇φ0 � ∇φ1

2
(4.33)

The unstructured meshformulation can of course be applied to structuredmeshes.
However, it is usuallysimplerand lessexpensive to exploit meshstructurewhen it
exists.

4.2.3 DiscreteEquation for Non-Orthogonal Meshes

Thediscretizationprocedureat theface f canberepeatedfor eachof thefacesof the
cellC0. Theresultingdiscreteequationmaybewritten in theform

aPφP � ∑
nb

anbφnb � b (4.34)
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where

anb � = Γ f

∆ξ
A f � A f

A f � eξ
>

nb

nb � 1 � 2 �+*,*1*M
aP � ∑

nb

anb 	 SP �R� 0

b � SC∆ � 0 	 ∑
nb


 Q f � nb
(4.35)

As before,nb denotesthecell neighborsof thecell underconsideration,P. Thequan-
tities Γ f , eξ , ∆ξ , A f and

Q
f correspond to the face f sharedby the cell P andthe

neighborcell nb.
We seethat the primary termsresult in a coefficient matrix which hasthe same

structureasfor orthogonalmeshes.Theabovediscretizationensures thataP � ∑nbanb
if S � 0. However, we no longerhave the guaranteethat φ P is boundedby its cell
neighbors. This is becausethe secondary gradient term,

Q
f , involvesgradientsof φ

whichmustbeevaluatedfrom thecell centroid valuesby interpolation. As we will see
later, this termcanresultin thepossibilityof spatialoscillationsin thecomputedvalues
of φ .

Though the formulation hasbeendonefor steadydiffusion, the methods for un-
steadydiffusionoutlinedin thepreviouschapterarereadilyapplicable here.Similarly
themethodsfor sourcetermlinearization andunder-relaxationarealsoreadilyapplica-
ble. Thetreatmentof interfaceswith stepjumpsin Γ requiresa modestchange,which
we leaveasanexerciseto thereader.

4.3 Boundary Conditions

Considerthecell C0 with thefaceb on theboundary, asshown in Figure4.5. Thecell
valueφ0 is storedat the centroidof the cell C0. As with regular meshes,we storea
discretevalueφb at thecentroidof theboundaryfaceb. TheboundaryareavectorA b
pointsoutwards from the cell C0 asshown. The cell balancefor cell C0 is given as
before by

∑
f

J f �A f � Jb �Ab � � SC � SPφ0 � ∆ � 0 (4.36)

Herethesummationover f in thefirst termontheleft handsideis overall theinterior
facesof cellC0,andthesecondtermrepresentsthetransport of φ throughtheboundary
face. We have seenhow the interior fluxesarediscretized. Let us now considerthe
boundarytermJb �Ab.

Theboundarytransport termis writtenas

Jb �Ab � 	 Γb

�
∇φ � b �Ab (4.37)

We definethe direction ξ to be the directionconnecting the cell centroid to the face
centroid, asshown in Figure4.5, andthedirectionη to betangential to theboundary
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face.Decomposingtheflux Jb in theξ andη directions asbefore,weobtain

Jb � Ab � 	 Γb

Ab � Ab

Ab � eξ

 φξ � b

� Γ f

Ab � Ab

Ab � eξ
eξ � eη

�
φη � b (4.38)

As before,we definethesecondarydiffusiontermQ
b � Γ f

Ab � Ab

Ab � eξ
eξ � eη

�
φη � b (4.39)

We notethatif eξ andeη areperpendicularto eachother,

Q
b is zero.

Thus,thetotal transport acrosstheboundaryfaceb is givenby

Jb � Ab � 	 Γb

Ab � Ab

Ab � eξ

 φξ � b

� Q b (4.40)

As beforewemakealinearprofileassumptionfor thevariation of φ betweenpointsC0
andb. This yields

Jb �Ab � 	 Γb�
∆ξ � b Ab � Ab

Ab � eξ

�
φb 	 φ0 � � Q b (4.41)

As with interior faces,we arefacedwith thequestion of how to compute φ η at the
faceb. For structuredmeshes,andtwo-dimensionalunstructuredmeshes,we mayuse
interpolationto obtainthevertex valuesφc andφd in Figure4.5.For three-dimensional
unstructuredmeshes,however, theboundaryfacetangential directionsarenotuniquely
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defined. Consequently, we write the boundarysecondary gradient termasthe differ-
enceof thetotalandprimary terms:Q

b � 	 Γb

�
∇φ � b � Ab � Γb�

∆ξ � b Ab � Ab

Ab � eξ

�
∇φ � b � eξ

�
∆ξ � b (4.42)

Furtherassumingthat �
∇φ � b � � ∇φ � 0 (4.43)

wemaywrite thesecondarygradient termat theboundaryasQ
b � 	 Γb

�
∇φ � 0 � Ab � Γb�

∆ξ � b Ab � Ab

Ab � eξ

�
∇φ � 0 � eξ

�
∆ξ � b (4.44)

We will seein a latersectionhow thecell gradient
�
∇φ � 0 is computed.

Having seenhow to discretizetheboundaryflux, we now turn to theapplication of
boundaryconditions.

Dirichlet Boundary Condition

At Dirichlet boundaries,we aregiventhevalueof φb

φb � φb � given (4.45)

Usingφb � given in Equation4.41andincludingJb �Ab in theboundarycell balanceyields
a discreteequationof thefollowing form:

aPφP � ∑
nb

anbφnb � b (4.46)

where

anb � = Γ f

∆ξ
A f � A f

A f � eξ
>

nb

nb � 1 � 2 �0*1*,*M
ab � Γb�

∆ξ � b Ab � Ab

Ab � eξ

aP � ∑
nb

anb � ab 	 SP �R� 0

b � SC∆ � 0 	 ∑
nb


 Q f � nb
� abφb � given 	 Q b (4.47)

Here,nb denotesthe interior cell neighbors of the cell underconsideration,P. The
quantities Γ f , eξ , ∆ξ , A f and

Q
f correspond to theface f sharedby thecell P andthe

neighborcell nb. In theab term,eξ correspondsto thedirectionshown in Figure4.5.
As with interior cells,we seethat theprimary termsresultin a coefficient matrix

which hasthesamestructureasfor orthogonal meshes.Theabove discretizationen-
suresthat aP

"
∑nbanb if S � 0. However, we no longer have the guaranteethat φ P
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is boundedby its cell neighbors. This is becausethe secondary gradient terms,

Q
f

and

Q
b, involve gradients of φ which mustbeevaluatedfrom thecell centroidvalues

by interpolation. As we will seelater, this term cancausespatialoscillationsin the
computedvaluesof φ .

Equivalentdiscreteequationsfor Neumannandmixed boundaryconditions may
be derived startingwith Equation4.41 andfollowing the proceduresin the previous
chapter. We leave this asanexercisefor thereader.

4.4 Gradient Calculation

As wesaw in theprevioussection,for non-orthogonalgridsweneedto determinegra-
dientsof φ atthecell facecentroidstocomputethesecondarydiffusionterm.Gradients
arealsorequired in many othercases.For example, velocity derivativesarerequired
to compute theproductiontermin turbulencemodels or to compute thestrainratefor
non-Newtonian viscositymodels. In this section,we will learnabout techniquesfor
evaluatinggradients for differenttypesof meshtopologies.

4.4.1 Structured Meshes

For a one-dimensional problem, a linearprofile assumptionfor thevariation of φ be-
tweencell centersresultsin thefollowing expressionfor thederivative at thecell face

dφ
dx SSSS f � φE 	 φP

∆x
(4.48)

In thesamemannerwe canwrite thederivative at a cell centerusingthevaluesat the
two adjacentcells.

dφ
dx SSSS P � φE 	 φW

2∆x
(4.49)

Thisexpressionis usuallyreferredto asthe“centraldifference”approximationfor the
first derivative.

For Cartesiangridsin multiple dimensions,we cancomputethederivativesby ap-
plying thesameprinciplealong therespectivecoordinatedirections. Consider, for ex-
amplethegrid shown in Fig. 4.6.For simplicity, werestrictthefollowing development
to equispacedgrids. Usingthecentraldifferenceapproximation introducedearlierwe
canwrite

∂φ
∂x SSSS P � φE 	 φW

2∆x
(4.50)

∂φ
∂y SSSS P � φN 	 φS

2∆y
(4.51)

Theprocedureis similar in caseof general non-orthogonalstructuredgrids,where
we usecentraldifferenceapproximationsto write the derivatives in the transformed
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coordinates.Figure4.7shows a non-orthogonalmeshin thex 	 y planeandthecorre-
sponding transformedmeshin theξ 	 η plane.We write

∂φ
∂ξ SSSS P � φE 	 φW

2∆ξ
(4.52)

∂φ
∂η SSSS P � φN 	 φS

2∆η
(4.53)

Knowing thecell gradients, we cancompute the facevaluerequired in thesecondary
diffusionterm(Equation 4.29)by averaging. For example, for auniform mesh

∂φ
∂η SSSS f �

∂ φ
∂ η SSS P � ∂ φ

∂ η SSS E2
(4.54)

An alternativeapproachwouldbeto write thefacederivative in termsof thevalues
at thenodesa andb

∂φ
∂η SSSS f � φb 	 φa

∆η
(4.55)

For Cartesiangrids, it is easyto show thatthetwo approximations areequivalentif the
nodal valuesareobtainedby linearinterpolation. For anequispacedCartesiangrid this
meansthatthenodalvalueφa is

φa � φP � φE � φSE � φS

4
(4.56)

Thesecondinterpretation(Equation4.55) is usefulbecauseit suggestsoneway of
obtaining derivativesat facesfor generalunstructuredgrid wherewe no longerhave
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orthogonal directions to apply thefinite-differenceapproximation. Thus,we canuse
Equation 4.55for the face f shown in Figure4.3. The nodal valuesin this caseare
obtainedby someaveraging procedureover thesurroundingcells.

4.4.2 Unstructur ed Meshes

The methodoutlined above is applicablefor arbitrary unstructured grids in two di-
mensions. However, aswe commented earlier, extension to threedimensions is not
straightforward. This is becausein 3D we no longerhave unique directionsin the
planeof thefaceto usea finite-differenceapproximation. Also, in many instanceswe
needto know all threecomponentsof the derivative at cell centers, not just deriva-
tivesin theplaneof thecell face.Thereforewe needto seekotherwaysof calculating
derivativesthatareapplicablefor arbitrary grids.

Gradient TheoremApproach

Oneapproachis suggestedby the gradient theoremwhich statesthat for any closed
volume ∆ � 0 surroundedby surfaceA) ∆ 8 0

∇φd �B� ) A
φdA (4.57)

wheredA is theoutward-pointing incremental areavector. To obtainadiscreteversion
of Equation 4.57, we make our usualround of profile assumptions. First, we assume
thatthegradient in thecell is constant.This yields

∇φ � 1
∆ � 0

∑
f ) A

φdA f (4.58)
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Next, we approximatetheintegral overa cell faceby thefacecentroid valuetimesthe
facearea.Thuswecanwrite

∇φ � 1
∆ � 0

∑
f

φ f A f (4.59)

We still needto definethefacevalue,φ f before we canusethis formula. Thesimple
approximationis to usetheaverage of thetwo cellsvaluessharingtheface:

φ f � φ0 � φ1

2
(4.60)

Theadvantageof thisapproachis thatit isapplicablefor arbitrarycell shapes,including
non-conformal grids. All theoperations involvedin this procedureareface-basedjust
like theoperationsinvolvedin thediscretizationof thetransport equations anddo not
require any additional grid connectivity. Also, this procedure is easily extended to
three-dimensional cases.

Oncewe have obtained the derivative by usingEquations 4.59and4.60, we can
improve on our initial approximationof the faceaverageby reconstructing from the
cell. Thus,from Figure4.8we canwrite

φ f � � φ0 � ∇φ0 � ∆r0 ��� � φ1 � ∇φ1 � ∆r1 �
2

(4.61)

This suggestsaniterative approachfor computing successively betterapproximations
to thegradients. During eachiteration,we cancompute the faceaveragevalue using
thegradients computedfrom theprevious iterationandusethesefacevaluesto com-
putenew valuesof the gradients. However, this increasesthe effective stencilwith
increasingiterationsandcanleadto oscillatoryresults.In practice,therefore only one
or two iterationsare typically used. In addition, aswe will seein the next chapter,
thegradients usedto reconstruct facevalues arealsolimited to thebounds dictatedby
suitableneighborvalues,soasto avoid undershootsandovershootsin thesolution.

Notethatin applying thegradient theoremwe usedthecell around thepoint C0 as
theintegrationvolume.While this practice involvesthesmallestpossiblestencil,it is
notmandatory thatweusethesamecontrol volumefor computing thegradient thatwe
usefor applying the discreteconservation laws. Otherintegration volumesareoften
used,speciallyin node-baseddiscretization algorithms.

Thegradient resultingfrom theuseof thecell asthe integrationvolumeinvolves
valuesof φ only at the faceneighborsandis not always the mostoptimal solution.
In the next sectionwe learnabout the useof another approachthat canusea bigger
stencil.

LeastSquaresApproach

Theideahereis to computethegradient atacell suchthatit reconstructsthesolutionin
theneighborhood of thecell. For example, considercell C0. We would like thevalue
of φ computedat thecentroid of cell C1 in Figure4.9 to beequal to φ 1. By assuming
a locally linearvariationof φ , wewrite

φ0 � ∇φ0 � ∆r1 � φ1 (4.62)
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Here∆r1 s thevectorfrom thecentroid of cell 0 to thecentroid of cell 1

∆r1 � ∆x1i � ∆y1j (4.63)

We rewrite Equation4.62as

∆x1
∂φ
∂x SSSS 0 � ∆y1

∂φ
∂y SSSS 0 � φ1 	 φ0 (4.64)

Werequirethatthesamebetrueatall othercellssurroundingcellC0. For acellCj the
equationreads

∆x j
∂φ
∂x SSSS 0 � ∆y j

∂φ
∂y SSSS 0 � φ j 	 φ0 (4.65)

It is convenient to assembleall theequationsin a matrix form asfollows

Md � φ (4.66)

HereM is theJ � 2 matrix

M �UTVVVW ∆x1 ∆y1
∆x2 ∆y2

...
...

∆xJ ∆yJ

XZYYY[ (4.67)
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andd is thevector of thecomponentsof gradientsof φ at cellC0

d \^]__` ∂ φ
∂x aaa 0
∂ φ
∂y aaa 0

X YY[ (4.68)

and φ is thevector of differencesof φ

φ \ ]___` φ1 b φ0
φ2 b φ0

...
φJ b φ0

X YYY[ (4.69)

Equation4.66 represents J equationsin two unknowns.Sincein general J is larger
than2 this is anover-determinedsystem.Physically, thismeansthatwecannot assume
a linear profile for φ around the cell C0 suchthat it exactly reconstructs the known
solutionat all of its neighbors. We canonly hopeto find a solutionthatfits the data
in the bestpossibleway, i.e., a solutionfor which the RMS value of the difference
betweentheneighboring cell valuesandthereconstructedvaluesis minimized. From
Equation 4.65weknow thatthedifferencein thereconstructedvalueandthecell value
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for cell Cj is givenby

Rj \ ∆x j
∂φ
∂x
aaaa 0 c ∆y j

∂φ
∂y
aaaa i bed φ j b φ0 f (4.70)

Thesumof thesquares of erroroverall theneighboringcellsis

R \ ∑
j

R2
j (4.71)

Let ∂ φ
∂x aaa 0 \ a and ∂ φ

∂y aaa 0 \ b. Equation 4.71 canthenbewrittenas

R \ ∑
j g a∆x j c b∆y j bhd φ j b φ0 fji 2

(4.72)

Ourobjective is to find a andb suchthatR is minimized. Recallthatthestandardway
of solvingtheproblem is to differentiateR with respectto a andb andsettheresultto
zero, ie.,

∂R
∂a

\ 0

∂R
∂b

\ 0 (4.73)

This givesustwo equationsin thetwo unknowns,viz. thecomponentsof thegradient
at cell C0. It is easyto show that this equation set is the sameas that obtained by
multiplying Equation 4.66by thetransposeof thematrixM

MTMd \ MT φ (4.74)

MTM is a 2 k 2 matrix that canbe easily inverted analyticallyto yield the required
gradient ∇φ . We shouldnoteherethatsinceM is purelya functionof geometry, the
inversiononlyneedsto bedoneonce. In practicalimplementations,wewouldcompute
a matrix of weightsfor eachcell. The gradient for any scalarcanthenbe computed
easilyby multiplying thematrixwith thedifferencevector φ .

Mathematically, for thesolutionto exist thematrixM mustbenon-singular, i.e., it
should have linearly independentcolumns andits rankmustbe greaterthanor equal
to 2. Physically this implies that we must involve at least3 non-collinearpoints to
compute the gradient. Another way of understandingthis requirementis to notethat
assuminga linearvariationmeansthatφ is expressedas

φ \ A c Bx c Cy (4.75)

Sincethisinvolvesthreeunknowns,weneedatleastthreepointsatwhichφ is specified
in order to determine thegradient.

The leastsquaresapproachis easilyextended to threedimensions. We notethat
it placesno restrictionson cell shape,anddoesnot requirea structuredmesh.It also
does not require us to chooseonly faceneighbors for the reconstruction. At corner
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boundaries,for example, it maynot bepossibleto obtaina sufficient number of face
neighbor cells,andwe maybeforcedto reconstruct at cellssharingverticeswith cell
C0 in additionto theusualcomplementof faceneighbors.In othercases,wemaywish
to involvemorecellsnearcellC0 to getabetterestimateof thegradient. This requires
storingadditional meshconnectivity information.

4.5 Influence of SecondaryGradients on Coefficients

We notedearlierthatthepresenceof secondarygradient termsintroducesthepossibil-
ity thatφP maynot beboundedby its neighborsevenwhenS \ 0. Herewe examine
this assertionin somewhat greaterdetail.

For simplicity, let usconsiderthecalculationof secondary gradient thetermonthe
structured meshshown in Figure 4.7. To computed the secondary gradient term,we
mustfind thegradient d ∂φ l ∂η f f . As wenotedbefore,oneway to find this is to writem

∂φ
∂η n f

\ φb b φa

∆η
(4.76)

For auniform non-orthogonal meshwith ∆ξ \ ∆η , wemaywrite

φa \ φP c φE c φSE c φS

4

φb \ φP c φE c φNE c φN

4
(4.77)

sothat m
∂φ
∂η n f

\ 0 o 5 p φN c φNE qrb 0o 5 p φS c φSEq
2∆η

(4.78)

WenotethatφN, φNE, φS andφSE donotall havethesamesignin theaboveexpression.
When d ∂φ l ∂η f f is includedin thecell balanceasapartof thesecondarygradientterm
for theface,it effectively introducesadditional neighbors– φ NE andφSE. Thesearenot
faceneighbors; the correspondingcells shareverticeswith point P. Thesetermsare
hidden in s f . Noticethatthey do notall havepositivecoefficients. Consequently it is
possiblefor anincreasein oneof theneighbor φ ’s to resultin adecreasein φ P. We are
no longer guaranteedthatφP is boundedby its neighborswhenS \ 0.

Eventhough wehaveadoptedaparticular gradient calculationmethodhere,similar
termsresultfrom othercalculationmethodsaswell. Themagnitudeof thesecondary
gradient termsis proportional to eξ t eη . For mostgood quality meshes,this term is
nearlyzero,andtheinfluenceof neighborswith negativecoefficientsis relatively small.
Thus,for good qualitymeshes,ourdiscussionsin thepreviouschapterabout coefficient
positivity andboundednessof φ holdin largemeasure. However, wenolonger havethe
absoluteguaranteeof boundednessandpositivity thatwehadwith orthogonalmeshes.
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4.6 Implementation Issues

4.6.1 Data Structur es

For both structuredandunstructured meshes,the faceflux J f is most conveniently
construedasbelonging to theface f rather thanto eitherof thecellssharingtheface.
Suchaninterpretationis in keeping with theconservationidea,whereby thediffusive
flux of φ out of cell C0 enterscell C1 without modification. We canensure this by
thinking of J f asbelonging to the face,andusing it for the cell balancein cellsC0
andC1 in turn. This associationof the flux with the faceandnot the cell makesa
face-baseddatastructurea convenientonefor implementingfinite volumeschemes.

In a typical implementation,we would carrya linked list or arrayof faces.Each
facewould carry a pointer or index to eachof the two cells that shareit, i.e., cells
C0 andC1. The influenceof cell C1 on theequationfor cell C0 is given by a01; the
influenceof cell C0 on theequationfor cell C1 is givenby a10. Thus,we computethe
coefficient

anb \ Γ f

∆ξ
A f t A f

A f t eξ
(4.79)

for thefaceandmake theassignment:

a01 u anb

a10 u anb

(4.80)

A visit to all thefacesin thelist completesthecalculationof theneighbor coefficients
anb for all thecellsin thedomain.

If the cell gradient is available, the facevalueof the gradient may be found by
averaging, asin Equation4.33. Thesecondary gradient termsmaythenbecomputed
during the visit to the facesincethey are also associatedwith the face. Eachface
contributesasecondary gradient termto theb termfor cellsC0 andC1:

b0 u b0 b s f

b1 u b1 c s f

Notice that the secondary gradient term is addedto onecell andsubtractedfrom the
other. This is becausethefaceflux leavesonecell andenterstheother.

It is alsousefulto carrya linked list or arrayof cells. Oncethecoefficient calcu-
lation is complete,aP for all cellsmaybecomputedby visiting eachcell, computing
SP∆ v andsumminganb. Similarly theSC contribution to b mayalsobecomputed.

Not all gradient calculationproceduresareamenable to apurelyface-basedimple-
mentation. Calculationsbasedon the gradient theorem areamenableto a face-based
calculation procedure.Here,thefacevalueis computedusingEquation4.60during the
visit to theface,aswell asthecontribution to thesumin Equation4.59for eachof the
cellssharingthe face.Thereconstruction proceduredescribedby Equation4.61may
alsobeimplementedin a face-basedmanner. Theleast-squares approachfor gradient
calculation may be implementedby a mixture of faceandcell-basedmanipulations,
dependingon thecalculationstencilchosen.
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4.6.2 Overall Solution Loop

It is convenient to compute and storecell gradients prior to coefficient calculation.
Usingthegradient theoremto computecell gradients, for example,theoverall solution
looptakesthefollowing nominal form.

1. Guessφ at all cell centroidsandat boundaryfacecentroidsasnecessary.

2. For f \ 1 w nfacesx
Findφ f by averaging neighborcell valuesφ0 andφ1.
Add gradient contribution to cellsC0 andC1.y
A visit to all facescompletesthecell gradient calculation.

3. For f \ 1 w nfacesx
Finda01 anda10.
Find s f ; find b0 andb1 by adding/subtracting secondary gradient contributions
to C0 andC1.y

4. For c \ 1 w ncellsx
FindaP \ ∑nbanb b SP∆ v
Findb \ b c SC∆ vy
At this point thecoefficient calculation is complete.

5. Solve for φ at cell centroids usinga linearsolversuchasGauss-Seideliteration.

6. Checkfor convergence.If iterationsareconverged,stop.Elsegoto 2.

We refer to onepassthrough the above loop asan outer iteration. During an outer
iteration, we make one call to a linear solver, suchas a Gauss-Seidelsolver. The
Gauss-Seidelsolver may perform a number of inner iterationsto obtainthe solution
to the nominally linearsystem.For linear problemson orthogonalmeshes,only one
outeriteration(with sufficient inneriterationsof thelinearsolver) wouldberequiredto
obtaintheconverged solution. For non-linearproblems,many outer iterations would
berequired. For non-orthogonalmeshes,theaboveprocedureemploysadeferredcom-
putationof secondary gradient terms.Consequently, many outeriterationsarerequired
for convergence,evenfor linearproblems.

A comment on the Scarborough criterion is appropriatehere. Sincethe Scarbor-
ough criterion is satisfiedby theprimary diffusiontermswhenDirichlet boundarycon-
ditionsarepresent,we areguaranteedconvergenceof theGauss-Seidelsolver during
any outeriteration.In ourdeferredcalculationprocedure,thesecondary gradient terms
remainfixedduring anouteriteration.Therefore,eventhough thenegativecoefficients
they introducetendto violatetheScarborough criterion, they arenot relevantsincethe
secondarygradient termsareheldconstantduring theGauss-Seideliteration.
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4.7 Closure

In thischapter, wehaveseenhow todiscretizethediffusionequationonnon-orthogonal
meshes,bothstructuredandunstructured.Theoverall ideais thesameasfor regular
meshes,and involves a balanceof diffusive fluxeson the facesof the cell with the
source insidethe cell. However, we have seenthat the facefluxesmayno longer be
written purely in termsof the neighbor cell valuesif the meshis non-orthogonal;an
extrasecondarygradient termappears. To computethis term,werequirefacegradients
of φ , which may be averaged from cell gradients. We have seenhow cell gradients
maybecomputed for structuredandunstructuredmeshes.Finally, we have seenhow
muchof thecalculationis amenable to a face-baseddatastructure.In thenext chapter,
we addressthe discretizationof the convective term, andtherefore, the solutionof a
completescalartransport equation.
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Chapter 5

Convection

In this chapter, we turn to theremaining termin thegeneral transport equationfor the
scalarφ , namely theconvectionterm. We will seehow to differencethis termin the
framework of the finite volume method, andthe specialproblemsassociatedwith it.
Wewill addressbothregular andnon-orthogonalmeshes.Oncewehaveaddressedthis
term,wewill havedevelopeda tool for solvingthecompletescalartransport equation,
or theconvection-diffusionequation,asit is sometimescalledin theliterature.

In thedevelopmentthat follows, we will assumethat thefluid flow is known,i.e.,
the velocity vector V is known at all the requisitepoints in the domain. We seekto
determine how the scalarφ is transported in the presence of a givenfluid flow field.
In reality, of course,the fluid flow would have to be computed. We will addressthe
calculation of thefluid flow in laterchapters.

5.1 Two-DimensionalConvectionand Diffusion in A Rect-
angular Domain

Letusconsideratwo-dimensionalrectangulardomainsuchasthatshown in Figure5.1.
ThedomainhasbeendiscretizedusingaregularCartesianmesh.For thesakeof clarity,
let us assumethat ∆x and ∆y are constant, i.e., the meshis uniform in eachof the
directionsx andy. As before,we storediscretevaluesof φ at cell centroids.

Theequation governing steadyscalartransport in thedomainis givenby

∇ t J \ S (5.1)

whereJ is given by
J \ ρVφ b Γ∇φ (5.2)

Here,ρ is thedensityof thefluid andV is its velocity, andis given by

V \ ui c vj (5.3)

As before,we integrateEquation 5.1over thecell of interest,P, sothatz
∆ { ∇ t Jd v|\ z

∆ { Sd v (5.4)
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Figure5.1: Convection ona CartesianMesh

Applying thedivergencetheorem,we writez
A

J t dA \ S∆ v P (5.5)

As usual,weassumethatJ is constantovereachof thefacese, w, n andsof thecell P,
andthatthefacecentroid valueis representative of thefaceaverage. Also, we assume
S \ SC c SPφP asbefore. Thus

Je tAe c Jw t Aw c Jn tAn c Js tAs \ p SC c SPφP q ∆ v P (5.6)

with

Ae \ ∆y i

Aw \ b ∆y i

An \ ∆x j

As \ b ∆x j

(5.7)

Thusfar thediscretizationprocessis identicalto our procedurein previous chapters.
Let usnow consideroneof thetransport terms,say, Je tAe. This is givenby

Je tAe \ d ρuφ f e∆y b Γe∆y

m
∂φ
∂x n e

(5.8)

We seefrom Equation5.8thattheconvectioncomponenthastheform

Feφe (5.9)
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where
Fe \ d ρuf e∆y (5.10)

is themassflow ratethrough thefacee. We notethatthe facevalue,φe, is required to
determine thetransport dueto convectionat theface.For thepurposesof this chapter,
weshallassumethatFe is given.

We haveseenthatthediffusive termon thefacee maybewrittenasb De d φE b φP f (5.11)

where

De \ Γe
∆yd δxf e (5.12)

Similardiffusiontermscanbewritten for otherfacesaswell. Thequantity

Pe \ F
D
\ ρuδx

Γ
(5.13)

is calledthe Pecletnumber, andmeasuresthe relative importance of convectionand
diffusionin thetransport of φ . If it is basedon a cell lengthscale,δx, it is referredto
asthecell Pecletnumber.

We seethat writing the faceflux Je requires two typesof information: the face
value φe, and the facegradient d ∂φ l ∂xf e. We alreadyknow how to write the face
gradient. We turn now to differentmethods for writing the facevalue φ e in termsof
thecell centroidvalues.Onceφe is determined,it is thensimply a matterof doingthe
sameoperation on all thefaces,collectingterms,andwriting thediscreteequation for
thecell P.

5.1.1 Central Differ encing

Theproblemof discretizingtheconvectiontermreducesto findinganinterpolation for
φe from the cell centroidvaluesof φ . Oneapproximationwe canuseis the central-
differenceapproximation. Here,we assumethatφ varies linearlybetweengrid points.
For a uniform mesh,we maywrite

φe \ φE c φP

2
(5.14)

sothattheconvective transport through thefaceis

Fe
d φE c φP f

2
(5.15)

Similarexpressionsmaybewrittenfor theconvectivecontributionsonotherfaces.We
notewith trepidationthatφE andφP appearwith thesamesignin Equation5.15.

Collectingthe convectionanddiffusion termson all faces,we maywrite the fol-
lowing discreteequation for thecell P:

aPφP \ ∑
nb

anbφnb c b

93



where

aE \ De b Fe

2

aW \ Dw c Fw

2

aN \ Dn b Fn

2

aS \ Ds c Fs

2
aP \ ∑

nb

anb b SP∆ v P c d Fe b Fw c Fn b Fs f
b \ SC∆ v P (5.17)

In theabove equations,

De \ Γe
∆yd δxf e

Dw \ Γw
∆yd δxf w

Dn \ Γn
∆xd δyf n

Ds \ Γs
∆xd δyf s

Fe \ d ρuf e∆y

Fw \ d ρuf w ∆y

Fn \ d ρvf n ∆x

Fs \ d ρvf s∆x

(5.18)

Theterm d Fe b Fw c Fn b Fsf (5.19)

representsthenet massoutflow from thecell P. If theunderlying flow field satisfies
thecontinuity equation,we wouldexpect this termto bezero.

Let usconsiderthecasewhenthevelocity vector V \ d ui c vj f is suchthatu } 0
andv } 0. For Fe } 2De, we seethataE becomesnegative. Similarly for Fn } 2Dn,
aN becomesnegative. (Similar behavior would occurwith aW andaS if the velocity
vector reversessign). Thesenegative coefficients meanthat though aP \ ∑nbanb for
S \ 0, we arenot guaranteedthatφP is boundedby its neighbors. Furthermore,since
theequationviolatestheScarboroughcriterion,wearenotguaranteedtheconvergence
of theGauss-Seideliterativescheme.

For u } 0 andv } 0, we seethataslong asFe ~ 2De andFn ~ 2Dn, we areguar-
anteedpositivecoefficients,andphysically plausiblebehavior. Thatis, thefacePeclet
numbersPee \ Fe l De ~ 2 andPen \ Fn l Dn ~ 2 arerequired for uniform meshes.For
a given velocity field andphysicalpropertieswe canmeetthis Pecletnumber criterion
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by reducing thegrid sizesufficiently. For many practicalsituations,however, the re-
sultingmeshmaybe very fine, andthestorageandcomputationalrequirementsmay
betoo large to afford.

5.1.2 Upwind Differ encing

Whenwe examine the discretizationprocedure describedabove, we realizethat the
reasonweencounternegativecoefficients is thearithmeticaveraging in Equation 5.14.
We now consider an alternative differencing procedure call the upwinddifferencing
scheme.In this scheme,the facevalueof φ is setequalto the upwindcell centroid
value. Thus,for facee in Figure5.1, wewrite

φe \ φP if Fe � 0\ φE if Fe ~ 0 (5.20)

Theseexpressions essentiallysaythatthevalueof φ on thefaceis determinedentirely
by themeshdirection from which theflow is comingto theface.Similar expressions
may be written on the other faces. Using Equation 5.20 in the cell balancefor cell
P, andthediffusiontermdiscretizationin Equation 5.11, we maywrite the following
discreteequationfor cell P:

aPφP \ ∑
nb

anbφnb c b

where

aE \ De c Max� b Fe w 0�
aW \ Dw c Max� Fw w 0�
aN \ Dn c Max� b Fn w 0�
aS \ Ds c Max�Fs w 0�
aP \ ∑

nb

anb b SP∆ v P c d Fe b Fw c Fn b Fsf
b \ SC∆ v P (5.22)

Here

Max� a w b��\ a if a } b\ b otherwise (5.23)

Weseethattheupwindschemeyieldspositivecoefficients,andaP \ ∑nbanb if theflow
field satisfiesthecontinuity equationandS \ 0. Consequently, we areguaranteedthat
φP is boundedby its neighbors.

We will seein latersectionsthatthough theupwind schemeproducesa coefficient
matrix that guaranteesphysically plausibleresultsand is ideally suitedfor iterative
linear solvers, it cansmeardiscontinuousprofiles of φ even in the absenceof diffu-
sion.We will examineotherhigherorderdifferencingschemeswhichdonothavethis
characteristic.
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5.2 Convection-Diffusion on Non-Orthogonal Meshes

For non-orthogonalmeshes,bothstructuredandunstructured,counterpartsof thecen-
tral differenceandupwind schemesareeasilyderived. We startwith the integration
of the convection-diffusion equation asusual,integrate it over the cell C0 shown in
Figure5.2,andapplythedivergencetheorem to getz

A
J t dA \ p SC c SPφ0 q ∆ v 0 (5.24)

As before, we assumethat the flux on the facemay be written in termsof the face
centroid value, sothat

∑
f

J f tA f \ p SC c SPφ0 q ∆ v 0 (5.25)

wherethesummation is over thefacesf of thecell.The flux is givenby

J f \ d ρVφ f f b Γ f d ∇φ f f (5.26)

Thetransport of φ at theface f maythusbewrittenas

J f tA f \ d ρV f f t A f φ f b Γ f d ∇φ f f tA f (5.27)

We definethefacemassflow rateas

Ff \ d ρV f f tA f (5.28)

This is themassflow rateoutof thecell C0.
We havealreadyseenin thepreviouschapterthatthediffusiontransport at theface

maybewrittenas: b Γ f

∆ξ
A f tA f

A f t eξ
p φ1 b φ0 q c s f (5.29)
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Defining

D f \ Γ f

∆ξ
A f tA f

A f t eξ
(5.30)

wewrite thenettransport acrosstheface f as

J f t A f \ Ff φ f b D f p φ1 b φ0 q c s f (5.31)

We notethat,aswith regularmeshes,theconvective transport of φ at thefacerequires
theevaluationof thefacevalue φ f .

5.2.1 Central Differ enceApproximation

As with regular meshes,we mayfind φ f through eithera central differenceor anup-
wind approximation.Thesimplestcentral differenceapproximationis to write

φ f \ φ0 c φ1

2
(5.32)

With this approximation, thefollowing discreteequationis obtained:

aPφP \ ∑
nb

anbφnb c b

where

anb \ D f b Ff

2
aP \ ∑

nb

anb b SP∆ v 0 c ∑
f

Ff

b \ SC∆ v 0 b ∑
nb g s f i nb

(5.34)

We seethat, just aswith structured meshes,it is possibleto get negative coefficients
usingcentraldifferencing. If F f } 0, we expectanb ~ 0 if Ff l D f } 2, ie, if thePeclet
numberPef } 2. As before, thequantity∑ f Ff is thesumof theoutgoing massfluxes
for thecell,andisexpectedtobezeroif theunderlying flow fieldsatisfiesmassbalance.

5.2.2 Upwind Differ encing Approximation

Under theupwinddifferencingapproximation,

φ f \ φ0 if Ff } 0\ φ1 otherwise (5.35)

Usingthisapproximationin thediscretecell balanceweget

aPφP \ ∑
nb

anbφnb c b
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where

anb \ D f c Max� b Ff w 0�
aP \ ∑

nb

anb b SP∆ v 0 c ∑
f

Ff

b \ SC∆ v 0 b ∑
nb g s f i nb

(5.37)

As with structuredmeshes,weseethattheanb is alwaysguaranteedpositive.
Thus,we seethat the discretization for unstructured meshesyields a coefficient

structurethatis very similar to thatfor regularmeshes.In bothcases,thecentral differ-
enceschemeintroducesthepossibilityof negative coefficientsfor cell Pecletnumbers
greaterthan2 for uniform meshes.Theupwind schemeproducespositivecoefficients,
but, aswewill seein thenext section,thiscomesat thecostof accuracy.

5.3 Accuracyof Upwind andCentral Differ enceSchemes

Let usconsiderthetruncation errorassociatedwith theupwindandcentral difference
schemes.Let usassumeauniform mesh,asshown in Figure5.3.UsingaTaylorseries
expansionabout pointe, we maywrite

φP \ φe b m ∆x
2 n m dφ

dx n e c 1
2

m
∆x
2 n 2 m d2φ

dx2 n e c O g d ∆xf 3 i (5.38)

φE \ φe c m ∆x
2 n m dφ

dx n e c 1
2

m
∆x
2 n 2 m d2φ

dx2 n e c O g d ∆xf 3 i (5.39)

FromEquation5.38, weseethat

φe \ φP c O d ∆xf (5.40)

RecallthatweuseEquation5.40whenFe } 0. Weseethatupwind differencingis only
first order accurate.

AddingEquations 5.38and5.39, dividing by two, andrearrangingterms,we get

φe \ φP c φE

2 b d ∆xf 2
8

m
d2φ
dx2 n e c O g d ∆xf 3 i (5.41)

We seethatthecentral differenceapproximationis second-orderaccurate.

5.3.1 An Illustrati veExample

Considerconvectionof a scalarφ over the square domainshown in Figure5.4. The
left andbottom boundariesareheldat φ \ 0 andφ \ 1 respectively. Theflow field in
thedomainis givenby

V \ 1 o 0i c 1 o 0j (5.42)
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sothevelocity vectoris alignedwith thediagonal asshown. We wish to compute the
distribution of φ in the domain usingthe upwindandcentraldifferenceschemesfor.
The flow is governedby the domain Pecletnumber Pe \ ρ �V � L l Γ. For Γ \ 0, i.e.,
Pe � ∞, thesolutionis φ \ 1 below thediagonal andφ \ 0 above thediagonal. For
othervaluesof Pe, weexpectadiffusionlayerin which0 ~ φ ~ 1. Thediffusionlayer
is wider for smallerPe. We compute the steadyconvection-diffusionproblem in the
domainusing13 k 16quadrilateralcellsto discretizethedomain. Weconsiderthecase
Pe � ∞. Figure5.5 shows thepredicted φ valuesalongthevertical centerline of the
domain (x=0.5). We seethat the upwind schemesmearsthe phi profile so that there
is a diffusion layer even whenthereis no physical diffusion. The centraldifference
scheme,on the other hand, shows unphysical oscillationsin thevalueof phi. In this
problem,it is not possibleto control theseoscillationsby refiningthemesh,sincethe
cell Pecletnumberis infinite nomatterhow fine themesh.

5.3.2 FalseDiffusion and Dispersion

We can gain greaterinsight into the behavior of the upwind and centraldifference
schemesthrough the useof model equations. The main drawbackof the first order
upwind schemeis that it is very diffusive. To understandthe reasonsbehindthis we
develop a model equation for the scheme.Considercaseof steadytwo-dimensional
convectionwith nodiffusion:

∂
∂x d ρuφ f c ∂

∂y d ρvφ f \ 0 (5.43)

Considerthecaseof aconstantvelocity field, with u } 0, v } 0, andρ constant.Using
upwind differencing,weobtainthefollowing discreteform

ρu
φP b φW

∆x c ρv
φP b φS

∆y
\ 0 (5.44)
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Considerthecomputationaldomainshown in Figure5.1.Expanding φ W andφS about
φP usinga Taylorseries,weget

φW \ φP b ∆x
∂φ
∂x c d ∆xf 2

2!
∂ 2φ
∂x2 b d ∆xf 3

3!
∂ 3φ
∂x3 c o0o+o (5.45)

φS \ φP b ∆y
∂φ
∂y c d ∆yf 2

2!
∂ 2φ
∂y2 b d ∆yf 3

3!
∂ 3φ
∂y3 c o+o0o (5.46)

All derivativesin theaboveequations areevaluatedat P. Rearranging,

φP b φW

∆x
\ ∂φ

∂x b d ∆xf
2!

∂ 2φ
∂x2 c d ∆xf 2

3!
∂ 3φ
∂x3 c o+o0o (5.47)

φP b φS

∆y
\ ∂φ

∂y b d ∆yf
2!

∂ 2φ
∂y2 c d ∆yf 2

3!
∂ 3φ
∂y3 c o+o+o (5.48)

Usingtheaboveexpressions in Eq5.44 andrearrangingweobtain

ρu
∂φ
∂x c ρv

∂φ
∂y

\ ρu∆x
2

∂ 2φ
∂x2 c ρv∆x

2
∂ 2φ
∂y2 c O g d ∆xf 2 i c O g d ∆yf 2 i (5.49)

For simplicity let usconsiderthecasewhenu \ v and∆x \ ∆y. Equation5.50reduces
to

ρu
∂φ
∂x c ρv

∂φ
∂y
\ ρu∆x

2

m
∂ 2φ
∂x2 c ∂ 2φ

∂y2 n c O g d ∆xf 2 i (5.50)

Thedifferential equation derivedin thismanneris referredto astheequivalentor mod-
ified equation. It representsthecontinuousequation thatour finite-volume numerical
schemeis effectively modeling. The left handsideof Equation5.50 is our original
differentialequation andtheright handsiderepresentsthetruncationerror.The leading
termin Equation5.50is O d ∆xf , asexpectedfor a first-order scheme.It is interesting
to compareEquation5.50with the onedimensional form of the convection-diffusion
equation (Equation 5.1). We find that the leading order error term in Equation 5.50
looks similar to thediffusiontermin theconvection-diffusionequation. Thuswe see
thatalthough we aretrying to solve a pureconvectionproblem, applying theupwind
schememeansthateffectively we aregettingthesolutionto a problem with somedif-
fusion. Thisphenomenonis variouslycalledartificial, falseor numerical diffusion(or
viscosity, in thecontext of momentum equations). In caseof theupwindscheme,the
artificial diffusion coefficient is proportional to the grid sizeso we would expect its
effects to decreaseaswe refinethegrid, but it is alwayspresent.

The sameanalysisfor the two-dimensionalcentraldifferenceschemestartswith
Equation5.43andthediscreteequation

ρu
φE b φW

2∆x c ρv
φN b φS

2∆y
\ 0 (5.51)

ExpandingφW andφE about φP usinga Taylorseries,weget

φW \ φP b ∆x
∂φ
∂x c d ∆xf 2

2!
∂ 2φ
∂x2 b d ∆xf 3

3!
∂ 3φ
∂x3 c o0o+o (5.52)
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φE \ φP c ∆x
∂φ
∂x c d ∆xf 2

2!
∂ 2φ
∂x2 b d ∆xf 3

3!
∂ 3φ
∂x3 c o+o+o (5.53)

Subtracting thetwo equations,weget

φE b φW

2∆x
\ ∂φ

∂x c d ∆xf 2
3!

∂ 3φ
∂x3 c o0o+o (5.54)

A similarprocedurein they-directionyields

φN b φS

2∆y
\ ∂φ

∂y c d ∆yf 2
3!

∂ 3φ
∂y3 c o+o0o (5.55)

As before,we considerthecasewhenu \ v and∆x \ ∆y. SubstitutingEquations5.54
and5.55 into Equation5.51we get

ρu
∂φ
∂x c ρv

∂φ
∂y

\ b ρu∆x2

3!

m
∂ 3φ
∂x3 c ∂ 3φ

∂y3 n c O g d ∆xf 3 i (5.56)

We seethat the leading truncation term is O d ∆x2 f , as expectedin a secondorder
scheme.Though we setout to solve a pureconvectionequation, the effective equa-
tion we solve usingthe centraldifferenceschemecontains a third derivative termon
theright handside.This termis responsible for dispersion, i.e., for theoscillatorybe-
havior of φ . Thus,theupwindschemeleadsto falseor artificial diffusionwhich tends
to smearsharpgradients,whereasthecentral-differenceschemetendsto bedispersive.

5.4 First-Order SchemesUsing Exact Solutions

A number of first-order schemesfor theconvection-diffusionequation have beenpub-
lishedin the literaturewhich treattheconvectionanddiffusion termstogether, rather
thandiscretizingthemseparately. Theseschemesuselocal profile assumptions which
areapproximationsto theexactsolutionto a local convection-diffusionequation. We
presenttheseherefor historical completeness.Their behavior in multi-dimensional
situationshasthesamecharacteristicsastheupwind scheme.

5.4.1 Exponential Scheme

Theone-dimensional convectiondiffusionequationwith nosourcetermmaybewritten
as

∂
∂x d ρuφ f b ∂

∂x

m
Γ

∂φ
∂x n \ 0 (5.57)

Theboundaryconditions are

φ \ φ0 atx \ 0

φ \ φL atx \ L (5.58)
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Theexactsolutionto theproblemis

φ b φ0

φL b φ0
\ exp d+d Pef xl L f b 1

exp d Pef b 1
(5.59)

wherePe is thePecletnumbergivenby

Pe \ ρuL
Γ

(5.60)

We wiish to usethis exact solutionin making profile assumptions. Considerthe
one-dimensional meshshown in Figure 5.3andtheconvection-diffusionequation:

∂
∂x d ρuφ f b ∂

∂x

m
Γ

∂φ
∂x n \ S (5.61)

We wish to obtaina discreteequation for point P. IntegratingEquation5.61over the
cell P yields

Je tAe c Jw tAw \ p SC c SPφP q ∆ v P (5.62)

Assuming, for this 1-D casethat

Ae \ i

Aw \ b i (5.63)

wemaywrite

Je t Ae \ d ρuφ f e b Γe

m
dφ
dx n e

Jw tAw \ b�d ρuφ f w c Γw

m
dφ
dx n w

(5.64)

As before, we must make profile assumptionsto write φe, φw andthe gradientsd dφ l dxf e and d dφ l dxf w. We assumethatφ d xf maybetakenfrom Equation 5.59. We
will usethis profile to evaluatebothφ anddφ l dx at theface.Thus

Je tAe \ Fe

m
φP c φP b φE

exp d Peef b 1 n (5.65)

Here

Pee \ d ρuf eδxe

Γe
\ Fe

De
(5.66)

A similarexpressionmaybewritten for thew face.Collectingtermsyieldsthefollow-
ing discreteequationfor φP:

aPφP \ aEφE c aWφW c b
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where

aE \ Fe

exp d Fe l De f b 1

aW \ Fwexp d Fw l Dw f
exp d Fw l Dw f b 1

aP \ aE c aW b SP∆ v P c d Fe b Fw f
b \ SC∆ v P (5.68)

This schemealwaysyields positive coefficientsandboundedsolutions. For the case
of S \ 0, for one-dimensional situations,it will yield theexact solutionregardlessof
meshsizeor Pecletnumber. Of course,this is not true whena sourceterm exists or
whenthe situationis multi-dimensional.It is possibleto show that for thesegeneral
situationstheschemeis only first-orderaccurate.

Becauseexponentialsareexpensive to compute,researchershavecreatedschemes
which approximate the behavior of the coefficients obtainedusing the exponential
scheme.Theseinclude the hybrid andpower law schemeswhich aredescribedbe-
low.

5.4.2 Hybrid Scheme

Thehybrid schemeseeksto approximatethebehavior of thediscretecoefficientsfrom
the exponentialschemeby reproducing their limiting behavior correctly. The coeffi-
cientaE in theexponentialschememaybewrittenas

aE

De
\ Pe

exp d Pee f b 1
(5.69)

A plot of aE l De is shown in Figure5.6. It shows thefollowing limiting behavior:

aE

De
� 0 for Pee � ∞

aE

De
� b Pee for Pee � b ∞

aE

De
\ 1 b Pee

2
atPee \ 0 (5.70)

The hybrid schememodels aE l De using the threebounding tangentsshown in Fig-
ure5.6. Thus

aE

De
\ 0 for Pee } 2

aE

De
\ 1 b Pee

2
for b 2 � Pee � 2

aE

De
\ b Pee for Pee ~ b 2 (5.71)

Theoverall discreteequationfor thecell P is given by

aPφP \ aEφE c aWφW c b
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Figure5.6: Variation of aE l De (Adaptedfrom Patankar(1980))

where

aE \ Max� b Fe w De b Fe

2
w 0�

aW \ Max� Fw w Dw c Fw

2
w 0�

aP \ aE c aW b SP∆ v P c d Fe b Fw f
b \ SC∆ v P (5.73)

5.4.3 Power Law Scheme

Here,theobjectiveis tocurve-fit theaE l De curveusingafifth-orderpolynomial, rather
thanto usethebounding tangents asthehybrid schemedoes.Thepower-law expres-
sionsfor aE l De maybewrittenas:

aE

De
\ Max� 0 w m 1 b 0 o 1 �Fe �

De n 5 � c Max� 0 w b Fe� (5.74)

This expressionhasthe advantagethat it is lessexpensive to compute that the expo-
nential scheme,while reproducingits behavior closely.

5.5 UnsteadyConvection

Let usnow focusourattentiononunsteadyconvection.For simplicity we will setρ to
beunity andΓ \ 0. Theconvection-diffusionequation(Equation 5.1) thentakesthe
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Figure5.7: Exactsolutions for linearconvectionof (a)sinewave(b) squarewave

form
∂φ
∂ t c ∂uφ

∂x
\ 0 (5.75)

Equation 5.75 is alsoknown as the linear advection or linear waveequation. It is
termedlinearbecausetheconvectionspeedu is notafunction of theconvectedquantity
φ . We saw in a previouschapterthatmathematically this is classifiedasa hyperbolic
equation. To completethespecificationof theproblemweneedto definetheinitial and
boundaryconditions. Let usconsider a domainof lengthL andlet the initial solution
begivenby aspatialfunction φ0, i.e.,

φ d x w 0f \ φ0 d xf (5.76)

Theexactsolutionto this problemis givenby

φ d x w t f \ φ0 d x b ut f (5.77)

In otherwords, theexactsolutionis simply the initial profile translatedby a distanceb ut.
Considertheconvectionof two initial profilesby a convectionvelocity u \ 1 in a

domain of lengthL, asshown in Figure5.7. Oneis a singlesinewave andthe other
is asquarewave,Theboundaryconditions for bothproblemsareφ d 0 w t f \ φ d L w t f \ 0.
Figure5.7 shows the initial solutionaswell asthe solutionat t \ 0 o 25. We seethat
the profileshave merelyshifted to the right by 0 o 25u. We will usetheseexamples
to determine whetherour discretizationschemesare able to predict this translation
accurately, withoutdistorting or smearing theprofile.

Even though Equation 5.75appears to be quite simple, it is important becauseit
providesa greatdealof insight into the treatmentof the morecomplex, non-linear,
coupled equations thatgovernhigh speedflows. For thesereasons,historically it has
beenoneof the most widely studiedequations in CFD. Many different approaches
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have beendevelopedfor its numerical solutionbut in this book we will concentrate
mostlyon modern techniquesthat form thebasisof solutionalgorithms for theEuler
andNavier-Stokesequations.

5.5.1 1D Finite VolumeDiscretization

For simplicity let usexaminethediscretizationof Equation 5.75. Weassumeauniform
meshwith a cell width ∆x asshown in Figure5.3. IntegratingEquation5.75over the
cell P yields m

∂φ
∂ t n P

∆x c d ueφe b uwφw f \ 0 (5.78)

Sinceu is constant,we mayrearrangetheequation to writem
∂φ
∂ t n P c u

∆x d φe b φw f \ 0 (5.79)

Sincefor thelinearproblemthevelocity u is known everywhere,theproblemof deter-
mination of thefaceflux simply reducesto thedetermination of thefacevalues φ .

In general, weareinterestedin two kindsof problems.In someinstanceswemight
beinterestedin thetransientevolution of thesolution. Sincetheequation is hyperbolic
in thetime coordinateandthesolutiononly dependson thepastandnot thefuture, it
would seemlogical to devisemethods thatyield thesolutionat successive instantsin
time, startingwith the initial solution,usingtimemarching. Often,however, only the
steady-statesolution(i.e., thesolutionas ∂ φ

∂ t � 0) is of interest.In thepreviouschap-
ter we saw that we couldobtainthe steady-statesolutionby solvinga sparsesystem
of nominally linearalgebraicequations, iteratingfor non-linearities.An alternative to
iterations is to usetime-marching, andto obtain thesteadystatesolutionastheculmi-
nationof anunsteadyprocess.With thegeneral framework in hand, let’s look at some
specificschemes.

5.5.2 Central Differ enceScheme

Usingtheexplicit schemewe developedin apreviouschapter, we maywrite

φP b φ0
P

∆t c u d φ0
E b φ0

W f
2∆x

\ 0 (5.80)

where, asperourconvention, theun-superscriptedvaluesdenotethevaluesat thecur-
rent time, andthe termscarrying thesuperscript“0” denote thevalueat theprevious
time level. As we notedearlier, in the explicit scheme,φP for every cell is only a
functionof the(known) solutionat theprevioustime level.

We haveshown from a truncation erroranalysisthatthecentral differencescheme
is second-orderaccuratein space;explicit time discretizationis first order accuratein
time. Thus the schemedescribedabove is second-order accuratein spaceandfirst-
order accurate in time. Applying thevon-Neumannstability analysisto this scheme,
however, shows that it is unconditionally unstable.As suchit is not usablebut there
areseveral important lessonsonecanlearnfrom this.
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The first point to noteis that the instability is not causedby eitherthe spatialor
the temporal discretizationalonebut by the combinationof the two. Indeed,we get
very different behavior if we simply usingan implicit temporal discretization while
retainingthecentraldifferenceschemefor thespatialterm:

φP b φ0
P

∆t c u d φE b φW f
2∆x

\ 0 (5.81)

It is easyto show thattheresultingimplicit schemeis unconditionally stable.However,
it is important to realizethat stability doesnot guaranteephysical plausibility in the
solution. We mayrewrite theschemein thefollowing form:

φP \ u∆t d φE b φW f
2∆x c φ0

P (5.82)

We seethat aW is negative for u } 0 andaE is negative for u ~ 0. The solution is
therefore not guaranteedto be bounded by the spatialandtemporal neighbor values.
Sincethe schemeis implicit, it requiresthe solutionof a linear equation setat each
timestep.However, theScarboroughcriterionis notsatisfied,makingit difficult to use
iterativesolvers.

5.5.3 First Order Upwind Scheme

Usingtheupwind differenceschemefor spatialdiscretizationandanexplicit time dis-
cretization, weobtainthefollowing scheme

φP b φ0
P

∆t c u d φ0
P b φ0

W f
∆x

\ 0 (5.83)

We have shown that the upwind differencingschemeis only first-order accurateand
thattheexplicit schemeis alsoonly first-order accurate.Stability analysisreveals that
theschemeis stableaslongas

0 � u
∆t
∆x � 1 (5.84)

Thequantity ν \ u ∆t
∆x is knownastheCourantorCFLnumber (afterCourant,Friedrichs

andLewy [1, 2]) who first analyzed theconvergencecharacteristicsof suchschemes.
Explicit schemesusuallyhave a stability limit which dictatesthe maximumCourant
number thatcanbeused.This limits thetimestepandmakestheuseof timemarching
with explicit schemesundesirablefor steadystateproblems.

It is interestingto notethat our heuristic requirementof all spatialandtemporal
neighbor coefficientsbeingpositive is alsometwhentheabove condition is satisfied.
This is easilyseenby writing Equation5.83in theform

φP \ d 1 b ν f φ0
P c νφW (5.85)

We therefore theexpecttheschemeto alsobemonotonewhenit is stable.
To seehow well theupwindschemeperformsfor unsteady problemslet usapplyit

to theproblem of convection of singlesineandsquarewaveswe described above. To
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Figure 5.8: First order upwind solutionsfor linear convection of (a) sine wave (b)
square wave

computethisnumerical solutionweuseanequispacedsolutionmeshof 50cells.Using
ν \ 0 o 5, we apply the explicit schemefor 25 time steps. We compare the resulting
solutions at t \ 0 o 25 with the exact solutionsin Figure5.8. The exact solution,as
expected,is theinitial profile translatedto therightbyadistanceof 0.25. Ournumerical
solutionis similarly shiftedbut wenotethatthesharpdiscontinuities in eithertheslope
of thevariable itself havebeensmoothenedoutconsiderably. In caseof thesinewave,
the peakamplitude hasdecreasedbut nowherehasthe solutionexceeded the initial
bounds.We alsoobserve thattheprofilesin bothexamplesaremonotonic.

5.5.4 Err or Analysis

We candevelop a modelequationfor thetransientform of theupwind scheme(Equa-
tion 5.83) usingtechniquessimilar thosewe usedfor steadystateto obtain

∂φ
∂ t c u

∂φ
∂x
\ u∆x

2 d 1 b ν f ∂ 2φ
∂x2 c o+o0o (5.86)

Weseethat,just likesteadystate,thetransientform of theupwindschemealsosuffers
from numericaldissipation,which is now a function of theCourantnumber.

We know that physically the effect of diffusion(or viscosity) is to smoothenout
thegradients. Thenumericaldiffusionpresentin theupwind schemeactsin a similar
manner andthis is why we find theprofilesin Figure5.8 aresmoothened.Although
this resultsin a lossof accuracy, this sameartificial dissipationis alsoresponsiblefor
thestability of our scheme.This is becausetheartificial viscosityalsodampsout any
errors thatmight ariseduringthecourseof time marching (or iterations)andprevents
theseerrors from growing. Note also that for ν } 1 the numerical viscosity of the
upwind schemewouldbenegative. We cannow appreciatethephysicalreasonbehind
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theCFL condition; whenit is violatedthenumerical viscositywill benegativeandthus
causeany errorsto grow.

Let usnow analyzetheexplicit centraldifferencescheme(Equation5.80)we saw
earlier. Thecorresponding modifiedequationis

∂φ
∂ t c u

∂φ
∂x
\ b u2∆t

2
∂ 2φ
∂x2 c o+o0o (5.87)

This schemehasa negativeartificial viscosityin all casesandtherefore it is not very
surprising that it is unconditionally unstable. It canalsobe shown that the implicit
version(Equation5.81hasthefollowing modifiedequation

∂φ
∂ t c u

∂φ
∂x
\ u2∆t

2
∂ 2φ
∂x2 c o0o+o (5.88)

Thusthisschemeis stablebut alsosuffersfrom artificial diffusion.

5.5.5 Lax-Wendroff Scheme

A largenumber of schemeshave beendevelopedto overcometheshortcomingsof the
explicit central differenceschemethatwe discussedin theprevioussection.Of these,
themostimportantis theLax-Wendroff schemesinceit formsthebasisof several well-
known schemesusedfor solutionof EulerandcompressibleNavier-Stokesequations.

Theprinciple ideais to removethenegativeartificial diffusionof theexplicit central
differenceschemeby addinganequal amount of positivediffusion.Thatis, weseekto
solve

∂φ
∂ t c u

∂φ
∂x
\ u2∆t

2
∂ 2φ
∂x2 (5.89)

ratherthantheoriginal convectionequation. Discretizingthesecondderivative using
linear profilesassumptions, as in previous chapters,we obtainthe following explicit
equation for cell P

φP b φ0
P

∆t c u d φ0
E b φ0

W f
2∆x b u2∆t

2
d φ0

E b 2φ0
P c φ0

W fd ∆xf 2 \ 0 (5.90)

It is possibleto show that this schemeis secondorder accurate in bothspaceand
time. Stability analysisshows thatit is stablefor � ν � � 1. Applying it to thesinewave
convectionproblem, weseethatit resolvesthesmoothlyvarying regions of theprofile
muchbetterthantheupwind scheme(seeFigure 5.9(a)). However, in regionsof slope
discontinuity we seespurious“wiggles”. Suchnon-monotonic behavior is evenmore
pronouncedin thepresence of discontinuities,asshown in Figure5.9(b). We alsonote
thatthesolutionin this caseexceeds theinitial bounds. At somelocations it is higher
thanonewhile in otherplacesit is negative. If φ is a physicalvariable suchasspecies
concentrationor the turbulencekinetic energy that is alwayssupposedto bepositive,
suchbehavior couldcausea lot of difficulties in ournumerical procedure.

Thereasons for thisbehavior canonceagainbeunderstoodby examining thetrun-
cationerror. Themodified equation for theLax-Wendroff schemeis

∂φ
∂ t c u

∂φ
∂ t
\ b u d ∆xf 2

6 d 1 b ν2 f ∂ 3φ
∂x3 c O d ∆xf 3 (5.91)
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Figure 5.9: Lax-Wendroff solutions for linearconvectionof (a) sinewave (b) square
wave

Theleadingorder termis proportional to the third derivative of φ andthereis no dif-
fusionlike term. This is characteristicof second-order schemesandis thereasonwhy
wigglesin thesolutiondonotgetdamped. Theerrorsproducedby second-orderterms
aredispersive in nature whereasthoseproducedby first-orderschemesare dissipa-
tive. In wave-mechanicsterms,dispersion refersto the phenomenon that altersthe
frequency content of a signalanddissipationrefersto thereduction in amplitude. For
smooth profiles that containfew frequencies,second-orderschemeswork very well;
thelack of numerical diffusionpreservestheamplitude. However, in caseof disconti-
nuities(whicharecomposedof many frequencies),theeffectof numerical dispersionis
tocausephaseerrorsbetweenthedifferent frequencies.Thefirst orderupwind scheme,
ontheotherhand, doesnotalterthephasedifferencesbut damps all modes.

All thenumerical schemeswe saw in previoussectionswerederivedby separate
profile assumptions for thespatialandtemporal variations.TheLax-Wendroff scheme
is different in that thespatialprofile assumption is tied to the temporal discretization.
Thisbecomesmoreclearif we re-arrangeEquation5.90in thefollowing form

φP b φ0
P

∆t c u
∆x ��� φ0

E c φ0
P

2 b u∆t
2∆x d φ0

E b φ0
P fO� b � φ0

P c φ0
W

2 b u∆t
2∆x d φ0

P b φ0
W fO�K� \ 0

We recognize the termsin squarebracketsasthe faceflux definitionsfor thee andw
facesrespectively. If we areusingthis schemefor computing a steadystatesolution,
theequation thatis satisfiedatconvergenceis given by� φE c φP

2 b u∆t
2∆x d φE b φP f � b � φP c φW

2 b u∆t
2∆x d φP b φW f � \ 0 (5.92)

The consequenceof this is that the final answerwe obtaindepends on the time-step
size ∆t ! Although the solutionstill hasa spatial truncation error of O d ∆xf 2 f , this

111



dependenceonthetimestepis clearlynotphysical. In thisparticular case,theresulting
error in the final solutionmaybesmall sincestability requirementsrestrict the time
stepsize. We will seein laterchapters thatsimilar pathdependenceof theconverged
solutioncanoccurevenin iterativeschemesif wearenotcareful.

5.6 Higher-Order Schemes

We have seenthusfar that both the upwind andcentral differenceschemeshave se-
verelimitations,theformer dueto artificial diffusion,andthelatterdueto dispersion.
Therefore therehasbeena greatdealof researchto improve the accuracy of the up-
wind scheme,by usinghigher-orderinterpolation. Thesehigher-orderschemesaim to
obtainat leasta second-ordertruncation error, while controlling theseverity of spatial
oscillations.

Thusfar, we have assumethat, for the purposesof writing the facevalueφ e, the
profileof φ is essentiallyconstant.Thatis, for Fe } 0,

φe \ φP (5.93)

Insteadof assumeaconstantprofile assumption for φ , wemayusehigher-order profile
assumptions, suchas linear or quadratic, to derive a setof upwindweightedhigher-
order schemes.If Fe } 0, wewrite aTaylorseriesexpansion for φ in theneighborhood
of theupwindpointP:

φ d xf \ φP c d x b xP f ∂φ
∂x c d x b xP f 2

2!
∂ 2φ
∂x2 c O d ∆xf 3 (5.94)

5.6.1 Second-Order Upwind Schemes

We mayderive a second-orderupwind schemeby making a linearprofile assumption.
This is equivalentto retainingthefirst two termsof theexpansion.Evaluating Equa-
tion 5.94at xe \ xP c d ∆xf l 2, we obtain

φe \ φP c ∆x
2

∂φ
∂x

(5.95)

This assumptionhasa truncationerror of O d ∆xf 2. In order to write φe in termsof
cell centroidvalues,we mustwrite ∂ φ

∂x in termsof cell centroidvalues. On our one-
dimensionalgrid wecanrepresentthederivativeatP usingeithera forward, backward
or centraldifferenceformula to give us threedifferent second-order schemes.If we
write ∂ φ

∂x using
∂φ
∂x

\ φE b φW

2∆x
(5.96)

weobtain

φe \ φP c p φE b φW q
4

(5.97)
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or, adding andsubtractingφP l 4, we get

φe \ φP c p φP b φW q
4 c d φE b φP f

4
(5.98)

Thisschemeis referredto astheFrommschemein theliterature.
If we write ∂ φ

∂x using
∂φ
∂x

\ φP b φW

∆x
(5.99)

weobtain

φe \ φP c p φP b φW q
2

(5.100)

Thisschemeis referredto in theliteratureastheBeam-Warming scheme.

5.6.2 Third -Order Upwind Schemes

We mayderive third-orderaccurateschemesby retainingthesecondderivative in the
Taylorseriesexpansion:

φ d xf \ φP c d x b xP f ∂φ
∂x c d x b xP f 2

2!
∂ 2φ
∂x2 (5.101)

andusingcell-centroid valuesto write thederivatives ∂ φ
∂x and ∂ 2φ

∂x2 . Using

∂φ
∂x
\ p φE b φW q

2∆x c O d ∆x2 f (5.102)

and
∂ 2φ
∂x2 \ p φE c φW b 2φP qd ∆xf 2 c O d ∆x2 f (5.103)

wemaywrite

φe \ φP c p φE b φW q
4 c p φE c φW b 2φP q

8
(5.104)

Re-arranging,we maywrite

φe \ d φE c φP f
2 b p φE c φW b 2φP q

8
(5.105)

This schemeis calledthe QUICK scheme(Quadratic Upwind Interpolation for Con-
vective Kinetics) [3]. This schememaybeviewedasa parabolic correctionto linear
interpolationfor φe. We canemphasizethis by introducinga curvature factor C such
that

φe \ 1
2 d φE c φP f b C d φE c φW b 2φP f (5.106)

andC=1/8.
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Thesecond-andthird-orderschemeswe have seenheremaybecombined into a
singleexpressionfor φe using

φe \ φP c d 1 b κ f
4 d φP b φW f c d 1 c κ f

4 d φE b φP f (5.107)

Here,κ \ b 1 yields theBeam-Warming scheme,κ \ 0 theFromm schemeandκ \
1l 2 theQUICK scheme.For κ \ 1 wegetthefamiliarcentraldifferencescheme.

We seefrom thesignsof thetermsin Equation 5.107 that it is possibleto produce
negative coefficients in our discreteequationusingthesehigher-order schemes.How-
ever, theextentof the resultingspatialoscillationsis substantiallysmallerthanthose
obtained through thecentraldifferencescheme,while retainingat leastsecond-order
accuracy.

5.6.3 Implementation Issues

If iterativesolversareusedtosolvetheresultingsetof discreteequations,it is important
to ensurethat theScarborough criterion is satisfiedby thenominally linearequations
presentedto theiterativesolver. Consequently, typicalimplementationsof higher-order
schemesusedeferredcorrection strategieswherebythehigherordertermsareincluded
ascorrectionsto anupwind flux. For theQUICK scheme,for example, theconvective
transport Feφe for Fe } 0 is writtenas

Feφe \ FeφP c Fe

m d φ �E c φ �P f
2 b d φ �E c φ �W b 2φ �P f

8 b φ �P n (5.108)

Here,thefirst termon theright handsiderepresentstheupwind flux. Thesecondterm
is a correction term, andrepresentsthe differencebetweenthe QUICK andupwind
fluxes. The upwind term is includedin thecalculationof thecoefficientsa p andanb
while thecorrection termis includedin theb term. It is evaluatedusingtheprevailing
valueof φ . At convergence,φP \ φ �P, andthe resultingsolutionsatisfiestheQUICK
scheme.Sincethe upwindschemegives us coefficients that satisfythe Scarborough
criterion, we areassuredthat the iterative solver will converge every outer iteration.
Justaswith non-linear problems,we have no guaranteethat the outeriterations will
themselves converge. It is sometimes necessaryto usegoodinitial guessesandunder-
relaxation strategiesto obtainconvergence.

5.7 Higher-Order Schemesfor Unstructur ed Meshes

All the higher-orderschemeswe have seenso far assumeline structure. In orderto
write φe, wemusttypically know thevaluesφW, φP andφE; asimilarstencilis required
for φw, andinvolves thevalues φWW, φW, andφP in Figure5.3. Thus,wecanno longer
write the facevaluepurely in termsof cell centroidvalues on eithersideof the face.
Thispresentsabig problemfor unstructuredmeshessincenosuchline structureexists.
Higher-orderschemesfor unstructuredmeshesareanareaof active researchandnew
ideascontinue to emerge . We presentherea second-order accurateupwindscheme
suitablefor unstructuredmeshes.
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Our startingpoint is themulti-dimensional equivalent of Equation5.95.If F f } 0,
referring to Figure5.10, we may write φ usinga Taylor seriesexpansionabout the
upwindcell centroid:

φ d x w yf \ φ0 c d ∇φ f 0 t ∆r c O d �∆r � 2 f (5.109)

Here,∆r is givenby
∆r \ p x b x0 q i c p y b y0 q j (5.110)

To find the facevalueφ f , we evaluateEquation 5.109 at ∆r \ ∆r 0, asshown in Fig-
ure5.10

φ f \ φ0 c d ∇φ f 0 t ∆r0 c O d �∆r0 � 2 f (5.111)

As with structured meshes,the problemnow turns to the evaluation of d ∇φ f 0. We
havealreadyseenin thepreviouschapter several methodsfor thecalculationof thecell
centeredgradient. Any of thesemethodsmaybeusedto provide d ∇φ f 0.

5.8 Discussion

We have touched upona number of different first andsecond-orderschemesfor dis-
cretizingthe convectionterm. We have seenthat all the schemeswe have discussed
herehave drawbacks. The first-order schemesarediffusive, whereasthe centraldif-
ference and higher-order differencingschemesexhibit non-monotonicity to varying
degrees. All the schemeswe have seenemploy linear coefficients, i.e., the discrete
coefficientsareindependentof φ . Thus, for linearproblems,we do not, in principle,
require outeriterationsunlessadeferredcorrectionstrategy is adopted.

A number of researchershave sought to control thespatialoscillationsinherent in
higher-order schemesby limiting cell gradientsso asto ensuremonotonicity. These
schemestypically employ non-linearcoefficientswhichareadjustedto ensureadjacent
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cell valuesaresmoothly varying [4]. Thoughwedonotaddressthisclassof discretiza-
tion schemehere, they neverthelessrepresent animportant arenaof research.

5.9 Boundary Conditions

Whendealingwith thediffusionequation, we classifiedboundariesaccording to what
informationwasspecified. At Dirichlet boundaries,the valueof φ itself wasspeci-
fied whereasat Neumannboundaries,thegradient of φ wasspecified.For convection
problemswe must further distinguishbetweenflow boundarieswhereflow entersor
leavesthecomputationaldomain,andgeometricboundaries.Flow boundariesoccurin
a problem becausewe cannot include theentireuniversein our computationaldomain
andareforcedto consider only a subset.We mustthensupplytheappropriateinfor-
mationthat representsthe partof the universethat we arenot considering but that is
essentialto solve the problem we areconsidering. For example, while analyzing the
exhaustmanifold of anautomobile we might not includethecombustionchamber and
external airflow but thenwe mustspecifyinformationabout thetemperature,velocity
etc. of theflow asit leavesthecombustionchamberandentersour computationaldo-
main. Thegeometric boundariesin sucha problem would betheexternal walls of the
manifold aswell thesurfacesof any componentsinsidethemanifold.

Flow boundariesmay further be classifiedas inflow andoutflow boundaries.We
considereachin turn.

5.9.1 Inflow Boundaries

At inflow boundaries,we aregiventheinlet velocity distribution, aswell thevalueof
φ

V \ Vb; Vb tAb � 0

φ \ φgiven (5.112)

Considertheboundarycell shown in Fig5.11. Thedashedlineshowstheinflow bound-
ary. Thediscreteequation for thecell is givenby

Jb tAb c ∑
f

J f tA f \|p SC c SPφ0 q ∆ v 0 (5.113)

Thesummation in thesecondtermis overtheinterior facesof thecell. Wehavealready
seenhow to dealwith theinteriorfluxesJ f . Theboundaryflux mayJb is givenby

Jb tAb \ ρVb tAbφb b Γb d ∇φ f b tAb (5.114)

Usingφb \ φgiven, andwriting thediffusionflux asin thepreviouschapter,

Jb tAb \ ρVb t Abφgiven b Γb

∆ξ
Ab tAb

Ab t eξ g φ0 b φgiveni c s b (5.115)

Thisboundaryflux maybeincorporatedinto thecell balancefor thecellC0.
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5.9.2 Outflow Boundaries

At outflow boundaries,weassumeb Γb d ∇φ f b t Ab \ 0 (5.116)

That is, thediffusive componentof theflux normal to theboundaryis zero.Thus,the
netboundaryflux at theoutflow boundaryis

Jb tAb \ ρVb tAbφb; Vb tAb } 0 (5.117)

Thecell balancefor cell nearanoutflow boundary, suchasthatshown in Figure5.12
is given by Equation 5.113. Usingafirst-orderupwindscheme,wemaywrite φ b \ φ0,
sothat

Jb tAb \ ρVb tAbφ0 (5.118)

Thus, at outflow boundaries,we do not require the valueof φ to be specified– it is
determinedby thephysicalprocessesin thedomain,andconvectedto theboundaryby
theexiting flow. This resultmakesphysicalsense.For example, if weweresolvingfor
temperaturein anexhaust manifold wherethefluid wascooledbecauseof conduction
throughthewalls,we wouldcertainlyneedto know thetemperatureof thefluid where
it enteredthedomainbut thetemperature at theoutletwould bedeterminedaspartof
thesolutionandthuscannot bespecifieda priori .

Therearetwo key implicit assumptions in writing Equation 5.118. Thefirst is that
convectiveflux is moreimportantthandiffusiveflux. Indeed,wehaveassumedthatthe
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localgridPecletnumberat theoutflow faceis infinitely large. For theexhaustmanifold
example, this meansthat theflow rateis high enoughso thatconditions downstream
of our boundary do not affect the solution inside the domain. If the flow rate was
not sufficiently high comparedto the diffusion, then we would expect that a lower
temperaturedownstreamof theourdomainwouldcausealowertemperatureinsidethe
domain aswell. Thesecondassumptionis that theflow is directed out of thedomain
atall pointsontheboundary. Considertheflow pasta backward-facingstep,asshown
in Figure5.13. If we chooselocationA asthetheoutflow boundary, we cut acrossthe
recirculationbubble. In thissituation,wewouldhaveto specifytheφ valuesassociated
with theincomingportionsof theflow for theproblemto bewell-posed.Thesearenot
usuallyavailableto us.Location B, locatedwell pasttherecirculationzone, is a much
betterchoice for an outflow boundary. It is very important to placeflow boundaries
at theappropriatelocation. Inflow boundariesshouldbeplacedat locationswherewe
have sufficient data,either from another numerical simulationor from experimental
observations.Outletboundariesshould beplacedsuchthattheconditionsdownstream
haveno influenceon thesolution.

5.9.3 GeometricBoundaries

At geometricboundaries,suchastheexternal wallsof anexhaustmanifold, thenormal
componentof thevelocity is zero:

Vb tAb \ 0 (5.119)
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Consequently theboundaryflux Jb is purely diffusiveandgiven by

Jb \ b Γb d ∇φ f b (5.120)

At geometric boundaries,we aretypically giveneitherDirichlet, Neumann or mixed
boundaryconditions. We havealready shown how thesemaybediscretizedin a previ-
ouschapter.

5.10 Closure

In this chapter, we have addressedthediscretizationof theconvection-diffusionequa-
tion. We haveseenthattheconvectiontermrequirestheevaluation of φ at thefacesof
thecell for bothstructuredandunstructuredmeshes.If the facevalue is interpolated
usinga centraldifferencescheme,we haveseenthatoursolutionmayhavespatialos-
cillationsfor highPecletnumbers. Theupwind schemeon theotherhand,smearsdis-
continuities,thoughthesolutionis bounded.Wehavealsoexaminedaclassof upwind-
weightedsecond-orderandthird–orderschemes.All thesehigher-orderschemesyield
solutions whichcanhavespatialoscillations.In developingtheseschemesfor convec-
tion, wehaveassumedthattheflow field is known. In thenext chapterweshallturn to
thetaskof computing theflow andpressurefields.
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Chapter 6

Fluid Flow: A First Look

We have thusfar consideredconvectionanddiffusionof a scalarin thepresenceof a
knownflow field. In thischapter, weshallexaminetheparticularissuesassociatedwith
thecomputationof theflow field. Themomentum equationshavethesameform asthe
general scalarequation, andassuchwe know how to discretizethem. The primary
obstacleis the fact that the pressurefield is unknown. The extra equation available
for its determination is the continuity equation. The calculationof the flow field is
complicatedby thecoupling betweenthesetwo equations. We shall examine how to
dealwith this coupling, especiallyfor incompressibleflows. We shallalsoseehow to
developformulationssuitablefor unstructuredmeshes.

6.1 Discretization of the Momentum Equation

Considerthetwo-dimensionalrectangular domain shown in Figure6.1.Let usassume
for the moment that the velocity vectorV and the pressurep are storedat the cell
centroids. Let us, for simplicity, assumea Newtonian fluid though the issuesraised
hereapplyto otherrheologiesaswell. Let usalsoassumesteadystate.Themomentum
equationsin thex andy directions maybewrittenas:

∇ t d ρVuf \ ∇ t d µ∇uf b ∇p t i c Su (6.1)

∇ t d ρVvf \ ∇ t d µ∇vf b ∇p t j c Sv (6.2)

In the above equations, the stresstensorterm hasbeensplit so that a portion of the
normal stressappearsin thediffusionterm,andtherestis contained in Su andSv. The
reader maywish to confirmthat

Su \ fu c ∂
∂x

m
µ

∂u
∂x n c ∂

∂y

m
µ

∂v
∂x n b 2

3
∂
∂x d µ∇ t V f (6.3)

and

Sv \ fv c ∂
∂y

m
µ

∂v
∂y n c ∂

∂x

m
µ

∂u
∂y n b 2

3
∂
∂y d µ∇ t V f (6.4)
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Here, fu and fv containthe body force componentsin the x andy directions respec-
tively. We seethat Equations 6.1 and6.2 have the sameform as the general scalar
transport equation, andassuchwe know how to discretizemostof the termsin the
equation. Eachmomentumequation containsa pressuregradient term,whichwe have
written separately, aswell asa source term(Su or Sv) which contains the body force
term,aswell asremnants of thestresstensorterm.

Let usconsider thepressuregradient term. In deriving discreteequations,we in-
tegratethegoverningequations over thecell volume. This resultsin theintegrationof
thepressuregradient over thecontrol volume.Applying thegradient theorem,we getz

∆ { ∇pdv9\ z
A

pdA (6.5)

Assumingthatthepressureat thefacecentroid representsthemeanvalueon theface,
wewrite z

A
pdA \ ∑

f

pf A f (6.6)

Thefaceareavectors are

Ae \ ∆yi

Aw \ b ∆yi

An \ ∆xj

As \ b ∆xj (6.7)

Thus,for thediscreteu- momentumequation, thepressure gradient termisb i t z ∆ { ∇pdv9\ b i t ∑
f

pf A f (6.8)

which in turn is given by b i t ∑
f

pf A f \ d pw b pef ∆y (6.9)

Similarly, for thediscretev-momentumequation, thepressure gradient termisb j t ∑
f

pf A f \ d ps b pn f ∆x (6.10)

Completing thediscretization, thediscreteu- andv-momentumequationsmaybewrit-
tenas

aPuP \ ∑
nb

anbunb c d pw b pef ∆y c bu

aPvP \ ∑
nb

anbvnb c d ps b pn f ∆x c bv (6.11)
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The next stepis to find the facepressurespe, pw, pn and ps. If we assumethat the
pressure varieslinearlybetweencell centroids,we maywrite, for a uniformgrid

pe \ pE c pP

2

pw \ pW c pP

2

pn \ pN c pP

2

ps \ pS c pP

2
(6.12)

Thereforethepressuregradient termsin themomentumequationsbecomed pw b pef ∆y \ p pW b pE q ∆yd ps b pn f ∆x \ p pS b pN q ∆x (6.13)

Givenapressurefield,wethusknow how to discretizethemomentumequations. How-
ever, thepressurefield mustbecomputed,andtheextraequationwe needfor its com-
putation is thecontinuity equation. Let usexamine its discretization next.

6.2 Discretization of the Continuity Equation

For steadyflow, thecontinuity equation, which takestheform

∇ t d ρV f \ 0 (6.14)
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Integratingover thecell P andapplyingthedivergencetheorem, wegetz
∆ { ∇ t d ρV f d v<\ z

A
ρV t dA (6.15)

Assumingthat the ρV on the faceis represented by its facecentroidvalue,we may
write z

A
ρV t dA \ ∑

f
d ρV f f t A f (6.16)

UsingV \ ui c vj andEquations6.7,wemaywrite thediscretecontinuity equation asd ρuf e∆y bhd ρuf w ∆y c d ρvf n ∆x bhd ρvf s∆x \ 0 (6.17)

Wedonothavethefacevelocitiesavailableto usdirectly, andmustinterpolate thecell
centroid values to theface.For auniform grid, wemayassumed ρuf e \ d ρuf P c d ρuf E

2d ρuf w \ d ρuf W c d ρuf P
2d ρvf n \ d ρvf P c d ρvf N
2d ρvf s \ d ρvf S c d ρvf P
2

(6.18)

Gathering terms,thediscretecontinuity equationfor thecell P isd ρuf E ∆y b�d ρuf W ∆y c d ρvf N ∆x bhd ρvf S∆x \ 0 (6.19)

We realizethatcontinuity equationfor cell P doesnot containthevelocity for cell P.
Consequently, a checkerboardvelocity patternof thetypeshown in Figure6.2canbe
sustainedby thecontinuity equation. If themomentum equationscansustainthis pat-
tern,thecheckerboardingwouldpersistin thefinalsolution.Sincethepressuregradient
is not givena priori , andis computedasa partof thesolution, it is possibleto create
pressurefieldswhosegradientsexactlycompensatethecheckerboarding of momentum
transport impliedby thecheckerboarded velocityfield. Underthesecircumstances,the
final pressureandvelocityfieldswouldexhibit checkerboarding.

We seealsothat the pressuregradient term in the u-momentumequation (Equa-
tion 6.13) involvespressures thatare2∆x aparton themesh,anddoesnot involve the
pressureat thepoint P. Thesameis true for thev-momentumequation. This means
thatif a checkerboardedpressurefield wereimposedon themeshduringiteration,the
momentum equationswould not be ableto distinguishit from a completelyuniform
pressurefield. If the continuity equation wereconsistentwith this pressurefield as
well, it wouldpersistat convergence.

In practice, perfect checkerboarding is rarely encounteredbecause of irregulari-
ties in the mesh,boundaryconditions andphysicalproperties. Instead,the tendency
towardscheckerboarding manifests itself in unphysical wiggles in the velocity and
pressurefields. We shouldemphasize that thesewigglesarea property of the spa-
tial discretizationandwould be obtained regardlessof the methodusedto solve the
discreteequations.
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Figure6.2: CheckerboardVelocityField

6.3 The StaggeredGrid

A popular remedyfor checkerboarding is theuseof a staggeredmesh.A typical stag-
gered mesharrangementis shown in Figure6.3.We distinguish betweenthemaincell
or control volume andthestaggeredcell or control volume. Thepressureis storedat
centroids of the main cells. The velocity componentsarestoredon the facesof the
main cells asshown, andareassociatedwith the staggered cells. The u velocity is
storedon thee andw facesandthev velocity is storedon then ands faces.Scalars
suchasenthalpy or speciesmassfractionarestoredat thecentroidsof thecell P asin
previous chapters. All properties,suchasdensityandΓ, arestoredat the main grid
points.

Thecell P is usedto discretizethecontinuity equation asbefore:d ρuf e∆y bed ρuf w ∆y c d ρvf n ∆x bed ρvf s∆x \ 0 (6.20)

However, no further interpolationof velocity is necessarysincediscretevelocitiesare
availabledirectly whererequired. Thusthepossibilityof velocity checkerboarding is
eliminated.

For themomentumequations, thestaggeredcontrolvolumesareusedto write mo-
mentumbalances.Theprocedureis thesameasabove,exceptthatthepressuregradient
termmaybewritten directly in termsof thepressures on the facesof themomentum
control volumesdirectly, without interpolating asin Equation 6.12. Thusfor thedis-
cretemomentumequation for thevelocityue, thepressuregradient termisd pP b pE f ∆y (6.21)

Similarly, for thevelocity vn, thepressuregradient termisp pP b pN q ∆y (6.22)

Thus,we nolongerhavea dependency onpressurevalues thatare2∆x apart.
We notethat themeshfor theu-momentumequation consistsof non-overlapping

cellswhichfill thedomaincompletely. This is alsotruefor thev-momentumequation
andthecontinuity equation. Thecontrol volumesfor u andv overlap eachotherand
thecell P, but this is of noconsequence.
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Figure6.3: StaggeredMesh

We notefurtherthatthemassflow rates

Fe \ d ρuf e∆y

Fw \ d ρuf w ∆y

Fn \ d ρvf n ∆x

Fs \ d ρvf s∆x (6.23)

areavailableat themaincell faces,wherethey areneededfor thediscretizationof the
convective termsin scalartransport equations.

6.4 Discussion

The staggeredmeshprovidesan ingenious remedy for the checkerboarding problem
by locating discretepressuresandvelocitiesexactlywhererequired. At this point,our
discretizationof thecontinuity andmomentumequationsis essentiallycomplete. The
ue momentumequationmaybewrittenas

aeue \ ∑
nb

anbunb c ∆y d pP b pE f c be (6.24)

Similarly theequation for vn maybewrittenas:

anvn \ ∑
nb

anbvnb c ∆x p pP b pN q c bn (6.25)

Here, nb refersto the momentum control volumeneighbors. For the e momentum
equation, theneighborsnb would involve theu velocities at pointsee, nnew andsse
shown in Figure6.4. A similar stencilinfluencesvn. Thediscretecontinuity equation
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is givenby Equation 6.20. (Note that becauseof grid staggering, the coefficients a p

andanb aredifferentfor theu andv equations). It is notyetclearhow thisequationset
is to besolvedto obtainu, v andp. We turn to this matternext.

6.5 Solution Methods

Thus far, we have examined issuesrelatedto discretizationof thecontinuity andmo-
mentum equations. Thediscretizationaffectstheaccuracy of thefinal answerwe ob-
tain. We now turn to issuesrelatedto the solutionof theseequations. The solution
pathdetermineswhetherweobtainasolutionandhow muchcomputertimeandmem-
ory we require to obtainthesolution.For thepurposesof this book, thefinal solution
we obtainis consideredindependentof thepathusedto obtainit, andonly dependent
on the discretization.(This is not true in general for non-linear problems,wherethe
solutionpathmaydetermine whichof several possiblesolutionsis captured).

Thusfar, our solutionphilosophyhasbeento so solve our discreteequations it-
eratively. Though we have not emphasizedthis, whensolving multiple differential
equations,aconvenientwayis to solvethemsequentially. Thatis, whencomputingthe
transport of Ns chemicalspecies,for example,oneoptionis to employ a solutionloop
of thetype:

1. for speciesi =1,Ns� Discretizegoverningequation for speciesi
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� Solve for massfractionsof speciesi at cell centroids,assumingprevailing
valuesto resolve non-linearitiesanddependenceson themassfractionsof
speciesj

2. If all speciesmassfractionshaveconverged, stop;elsego to step1.

Otheralternatives arepossible. If we arenot worried about storageor computa-
tional time,we maywish to solve theentireproblemdirectly usinga linearsystemof
thetype

Mφ \ b (6.26)

whereM is a coefficient matrix of size d N k Nsf k d N k Ns f , whereN is the number
of cells andNs is the number of species,φ is a column vectorof sizeN k Ns, andb
is a columnvector alsoof sizeN k Ns. That is, our intent is to solve for the entire
set of N k Ns speciesmassfractionsin the calculationdomain simultaneously. For
mostpracticalapplications, this type of simultaneous solutionis still not affordable,
especiallyfor non-linear problemswherethe M matrix (or a relatedmatrix) would
haveto berecomputedevery iteration.

For practicalCFDproblems,sequential iterativesolutionproceduresarefrequently
adoptedbecauseof low storagerequirementsandreasonable convergencerate. How-
ever thereis a difficulty associatedwith the sequentialsolutionof the continuity and
momentumequationsfor incompressibleflows. In orderto solveasetof discreteequa-
tions iteratively, it is necessaryto associatethediscretesetwith a particular variable.
For example, we usethediscreteenergy equationto solve for the temperature. Simi-
larly, we intendto usethediscreteu-momentum equation to solve for theu-velocity. If
we intendto usethecontinuity equation to solve for pressure,we encounteraproblem
for incompressibleflows becausethepressuredoesnot appearin thecontinuity equa-
tiondirectly. Thedensitydoesappearin thecontinuity equation, but for incompressible
flows, thedensityis unrelatedto thepressure andcannot beusedinstead.Thus,if we
wantto usesequential,iterativemethods, it is necessaryto find a way to introducethe
pressureinto thecontinuity equation. Methodswhichusepressureasthesolutionvari-
ablearecalledpressure-basedmethods. They arevery popular in theincompressible
flow community.

Therearea numberof methodsin theliterature[5] which usethedensityasa pri-
maryvariable ratherthanpressure.Thispracticeis especiallypopular in thecompress-
ible flow community. For compressibleflows,pressureanddensityarerelatedthrough
anequation of state.It is possibleto find thedensityusingthecontinuityequation, and
to deducethepressure from it for usein themomentumequations. Suchmethodsare
calleddensity-basedmethods.For incompressibleflows,a classof methods calledthe
artificial compressibilitymethodshave beendevelopedwhich seekto ascribea small
(but finite) compressibilityto incompressibleflows in order to facilitatenumerical so-
lution through density-basedmethods [6]. Conversely, pressure-basedmethods have
alsobeendevelopedwhichmaybeusedfor compressibleflows [7].

It is importantto realizethatthenecessityfor pressure-anddensity-basedschemes
is directly tied to our decisionto solve ourgoverningequationssequentially anditera-
tively. It is this choice that forcesusto associateeachgoverning differentialequation
with a solutionvariable. If we wereto usea directmethod, andsolve for thediscrete
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velocitiesandpressureusinga domain-widematrixof size3N k 3N, (threevariables-
u,v,p - over N cells),no suchassociationis necessary. However, evenwith thepower
of today’s computers,directsolutions of this typearestill out of reachfor mostprob-
lemsof practical interest.Othermethods,including local directsolutions at eachcell,
coupledto aniterativesweep,havebeenproposed[8] but arenotpursued here.

In thischapter, weshallconcentrateondevelopingpressure-basedmethodssuitable
for incompressibleflows, but which canbe extendedto compressibleflows aswell.
Thesemethodsseekto createanequation for pressureby usingthediscretemomentum
equations. They thensolve for thecontinuity andmomentumequations sequentially,
with eachdiscreteequationsetbeingsolved usingiterative methods. We emphasize
herethatthesemethodsdefinethepathto solutionandnot thediscretizationtechnique.

6.6 The SIMPLE Algorithm

TheSIMPLE(Semi-Implicit Method for PressureLinkedEquations)algorithm andits
variants area setof pressure-basedmethods widely usedin the incompressibleflow
community [9]. Theprimary ideabehind SIMPLE is to createa discreteequationfor
pressure (or alternatively, a relatedquantity called the pressurecorrection) from the
discretecontinuity equation (Equation 6.20). Sincethe continuity equation contains
discretefacevelocities, we needsomeway to relatethesediscretevelocitiesto the
discretepressure field. TheSIMPLEalgorithm usesthediscretemomentum equations
to derive this connection.

Let u� andv � bethediscreteu andv fieldsresultingfrom a solutionof thediscrete
u andv momentumequations.Let p � represent thediscretepressurefield whichis used
in thesolutionof themomentumequations.Thus,u �e andv�n satisfy

aeu�e \ ∑
nb

anbu�nb c ∆y d p�P b p�E f c be

anv�n \ ∑
nb

anbv�nb c ∆x d p�S b p�P f c bn (6.27)

Similar expressionsmay be written for u �w andv�s. If the pressurefield p � is only a
guessor a prevailing iterate,thediscreteu � andv � obtainedby solvingthemomentum
equationswill not, in general, satisfythediscretecontinuity equation(Equation6.20).
We proposea correction to the starredvelocity field suchthat the corrected values
satisfyEquation 6.20:

u \ u� c u�
v \ v� c v� (6.28)

Correspondingly, wewish to correcttheexistingpressurefield p � with

p \ p� c p� (6.29)

If wesubtractEquations6.27 from Equations6.24 and6.25we obtain

aeu�e \ ∑
nb

anbu�nb c ∆y p p�P b p�E q
anv� \ ∑

nb

anbv�nb c ∆x p p�S b p�P q (6.30)
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Similarexpressions maybewritten for u �w andv�s. Equations6.30representthedepen-
denceof thevelocitycorrectionsu � andv� onthepressurecorrectionsp � . In effect,they
tell us how thevelocity field will respondwhenthepressuregradient is increasedor
decreased.

We now makeanimportant simplification.We approximateEquations 6.30as

aeu�e � ∆y p p�P b p�E q
anv�n � ∆x p p�S b p�P q (6.31)

or, defining

de \ ∆y
ae

dn \ ∆x
an

(6.32)

wewrite Equations6.31 as

u�e \ de p p�P b p�E q
v�n \ dn p p�P b p�Sq (6.33)

sothat

ue \ u�e c de p p�P b p�E q
vn \ v�n c dn p p�P b p�Sq (6.34)

Further, usingEquations6.23 we maywrite thefaceflow ratesobtainedafterthesolu-
tion of themomentumequationsas

F �e \ ρeu�e∆y

F �n \ ρnv�n∆x (6.35)

Thecorrectedfaceflow ratesaregivenby

Fe \ F �e c F �e
Fn \ F �n c F �n (6.36)

with

F �e \ ρede∆y p p�P b p�E q
F �n \ ρndn∆x p p�P b p�Sq (6.37)

Similarexpressionsmaybewritten for Fw, F �w, Fs andF �s.
Thusfar, wehavederivedexpressionsdescribing how thefaceflow ratesvaryif the

pressuredifferenceacrossthefaceis changed. We now turn to thetaskof creatingan
equation for pressurefrom thediscretecontinuity equation.
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6.6.1 The Pressure Corr ection Equation

We now considerthe discretecontinuity equation. The starredvelocitiesu � andv � ,
obtainedby solvingthemomentumequationsusingtheprevailing pressure field p � do
notsatisfythediscretecontinuity equation.Thusd ρu� f e∆y bed ρu� f w ∆y c d ρv� f n ∆x bed ρv� f s∆x �\ 0 (6.38)

or, in termsof F , wehave

F �e b F �w c F �n b F �s �\ 0 (6.39)

We requireour correctedvelocities, given by Equations 6.28, to satisfycontinu-
ity. Alternately, the correctedfaceflow rates,given by Equation 6.36, must satisfy
continuity. Thus,

F �e c F �e b F �w b F �w c F �n c F �n b F �s b F �s \ 0 (6.40)

or usingEquations6.37

F �e c ρede∆y p p�P b p�E qrb F �w b ρwdw∆y p p�W b p�P q (6.41)c F �n c ρndn∆x p p�P b p�N q&b F �s b ρsds∆x p p�S b p�P q \ 0 (6.42)

Rearranging terms,wemaywrite anequationfor thepressurecorrection p �P as:

aPp�P \ ∑
nb

p�nb c b

where

aE \ ρede∆y

aW \ ρwdw∆y

aN \ ρndn∆x

aS \ ρsds∆x

aP \ ∑
nb

anb

b \ F �w b F �e c F �s b F �n (6.44)

We notethatthesourcetermin thepressurecorrectionequation is themasssourcefor
the cell P. If the faceflow ratesF � satisfythe discretecontinuity equation(i,e, b is
zero), we seethat p� \ constantsatisfiesEquation6.44. Thus,thepressurecorrection
equationyieldsnon-constantcorrectionsonlyaslongasthevelocityfieldsproducedby
themomentumequations do not satisfycontinuity. Oncethesevelocity fields satisfy
thediscretecontinuity equations,thepressurecorrectionequationwill yield aconstant
correction. In this limit, differencesof p � arezeroandno velocity correctionsareob-
tained. If the constant correction valueis chosento be zero(we will seewhy this is
possiblein a latersection),thepressurewill notbecorrected.Thus,convergenceis ob-
tainedoncethevelocitiespredictedby themomentumequationssatisfythecontinuity
equation.
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6.6.2 Overall Algorithm

Theoverall procedurefor theSIMPLEalgorithm is thefollowing:

1. Guessthepressurefield p � .
2. Discretizeandsolvethemomentumequationsusingtheguessedvaluep � for the

pressuresourceterms.This yieldstheu � andv� fields.

3. Find the massflow ratesF � using the starredvelocity fields. Hencefind the
pressurecorrectionsourcetermb.

4. Discretizeandsolve thepressurecorrectionequation, andobtainthe p � field.

5. Correctthe pressurefield usingEquation 6.29 and the velocitiesusingEqua-
tion 6.28. Thecorrectedvelocity field satisfiesthediscretecontinuity equation
exactly.

6. Solvethediscreteequationsfor scalarφ if desired,usingthecontinuity-satisfying
velocityfield for theconvectionterms.

7. If thesolutionis converged, stop.Elsego to step2.

6.6.3 Discussion

Thepressurecorrection equation is a vehicleby which thevelocityandpressurefields
arenudgedtowardsasolutionthatsatisfiesboththediscretecontinuity andmomentum
equations. If we startwith an arbitrary guessof pressure andsolve the momentum
equations,thereis noguaranteethattheresultingvelocity field will satisfythecontinu-
ity equation. Indeed theb termin thecontinuityequation is a measure of theresulting
massimbalance.The pressurecorrection equation correctsthepressureandvelocity
fields to ensure that the resultingfield annihilatesthis massimbalance. Thus,once
we solve thepressure correctionequation andcorrect theu � andv � fieldsusingEqua-
tions 6.28, the correctedvelocity fields will satisfy the discretecontinuity equations
exactly. It will no longer satisfythe discretemomentum equations,andthe iteration
betweenthetwo equationscontinuesuntil thepressure andvelocity fieldssatisfyboth
equations.

It is important to realizethat becausewe aresolving for the pressurecorrection
ratherthatthepressureitself, theomissionof the∑nbanbu�nb and∑nbanbv�nb termsin de-
riving thepressurecorrection equationis of noconsequenceasfarasthefinal answers
areconcerned.This is easilyseenif we consider what happensin the final iteration.
In the final iteration,u � , v� and p� satisfy the momentumequations, andthe b term
in the p� equationis zero. As discussedearlier, the p � equationdoesnot generateany
corrections,andu \ u � , v \ v� , p \ p� holds true. Thus, the p � equation playsno role
in the final iteration. Only discretemomentumequation, andthe discretecontinuity
equation (embodiedin theb term)determine thefinal answer.

Thedropping of the ∑nbanbu�nb and∑nbanbv�nb termsdoeshave consequencesfor
the rateof convergence,however. Theu-velocity correction in Equation 6.30,for ex-
ample,is a function of both the velocity correction term ∑nbanbu�nb andthe pressure
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correctionterm. If we dropthe ∑nbanbu�nb term,we placetheentireburdenof correct-
ing theu-velocity uponthepressurecorrection. Theresultingcorrectedvelocity will
satisfythecontinuity equation all thesame,but theresultingpressureis over-corrected.
Indeed,becauseof this over-correction of pressure,theSIMPLE algorithmis proneto
divergence unlessunderrelaxationis used. We underrelaxthe momentum equations
usingunderrelaxation factorsαu andαv in the manner outlinedin previous chapters.
In addition, the pressurecorrection is not appliedin its entiretyas in Equation 6.29.
Instead, only a partof thepressurecorrection is applied:

p \ p� c αpp� (6.45)

Theunderrelaxationfactorα p is chosento belessthanonein orderto correct for the
over-correctionof pressure.It is importantto emphasizethatwe donot underrelaxthe
velocity corrections in themanner of Equation6.45. Theentirepoint of thepressure
correctionprocedure is to createvelocity corrections suchthat thecorrectedvelocity
fields satisfy continuity. Underrelaxing the velocity corrections would destroy this
feature.

Thus,theSIMPLEalgorithm approachesconvergencethroughasetof intermediate
continuity-satisfying fields. The computationof transported scalarssuchasenthalpy
or speciesmassfractionis thereforedone soonafterthevelocity correction step(Step
6). This ensuresthat the faceflow ratesusedin discretizingthe φ transport equation
areexactlycontinuity satisfyingeverysingleiteration.

6.6.4 Boundary Conditions

Wehavealreadydealtwith theboundaryconditions for scalartransport in theprevious
chapter. Theseapply to themomentum equations aswell. We turn now to boundary
conditionsfor pressure.Two common boundaryconditionsareconsideredhere:given
normal velocityandgivenstaticpressure.A third condition, givenstagnationpressure
andflow angle, is alsoencountered,but wewill notaddressit here.

At a given-velocity boundary, we aregiven thenormal componentof thevelocity
vector Vb at the boundary. This type of boundarycould involve inflow or outflow
boundariesor boundariesnormal to which thereis noflow, suchawalls.

Considerthenear-boundary cell shown in Figure6.5.Outobjective is to derivethe
pressurecorrectionequationfor C0. Integratingthecontinuity equation for thecell C0
in theusualfashion,we have

Fe b Fb c Fn b Fs \ 0 (6.46)

We know how to write the interior faceflow ratesFe, Fn andFs in termsof the the
pressure corrections. For Fb, no suchexpansionin termsof pressurecorrection is
necessarybecauseFb is known, andis givenby

Fb \ ρbub∆y

Thisknownflow rateis incorporateddirectlyinto themassbalanceequation for cellC0.
Whenall boundariesaregiven-velocity boundaries,we mustensurethat thespecified
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Figure6.5: Near-BoundaryCell for Pressure

boundaryvelocitiessatisfyoverall massbalanceover theentirecomputationaldomain;
otherwisetheproblemwouldnotbewell-posed.

At a given-pressure boundary, thepressurecorrection p �b is setequalto zero.

6.6.5 Pressure Level and Incompressibility

For incompressibleflows,where densityis not a function of pressure, it is common to
encountersituationswhich arebestmodeledwith given-velocity boundaryconditions
onall boundaries.In sucha case,thelevel of pressurein thedomain is notset.Differ-
encesin pressureareunique,but theindividual pressurevaluesthemselvesarenot. The
readermayverify thatp andp c C aresolutionsto thegoverningdifferential equations.

From a computationalviewpoint we may interpret this situationin the following
way. We aregiven velocity boundary conditions that arecontinuity-satisfyingin an
overall sense.Thus,if we divide thecomputationaldomaininto N cells,andimpose
a massbalanceon them,only N b 1 uniqueequationscanresult.Therefore we do not
haveenoughequationsfor N pressure(orpressurecorrection)unknowns. Thissituation
mayberemediedby settingthepressureat onecell centroid arbitrarily; alternatively,
wemaysetp� \ 0 in onecell in thedomain.

We should emphasizethissituationonly occursif all boundariesaregiven-velocity
boundaries.Whenthestaticpressure p is givenon a boundary, thepressureis made
unique,andtheproblemdoesnotarise.For compressibleflows,where thedensityis a
function of pressure,it is necessaryto specifypressureboundaryconditionsonat least
partof thedomain boundary.

Let usgobackto thepressurecorrectionequation, Equation6.44andits behavior at
convergence.We have saidthatthepressure correction becomesa constantat conver-
gence.If all boundariesaregiven-velocity boundaries,thepressure correctionhasan
arbitrary level,whichwearefreetosetequalto zero.Thus,thepressurep � seesnocor-
rections at convergence.(Evenif we did not setp � to zero,theresultis still converged;
thepressure level would riseby a constantevery iteration,but this is acceptable since
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only differencesof pressurearerelevant with all given-velocity boundaries).If oneor
moregiven-pressureboundariesarepresent,p � \ 0 is setatat leastoneboundaryface.
Thus theconstantvaluepredictedby thepressurecorrection will comeout to bezero.
In this casealso,thepressurecorrectionpredicts zerocorrectionsat convergence.

6.7 The SIMPLER Algorithm

The SIMPLE algorithmhasbeenwidely usedin the literature. Nevertheless,there
have beena numberof attemptsto accelerateits convergence,andonesuchalgorithm
is SIMPLER(SIMPLE-Revised) [10]. Oneof thedrawbacksof theSIMPLEalgorithm
is theapproximatenature of thepressurecorrection equation. Becausethe ∑nbanbu�nb
and∑nbanbv�nb termsaredroppedin its derivation, the pressurecorrections resulting
from it aretoolarge, andrequire under-relaxation. Thisslowsdownconvergence,since
optimal valuesareproblemdependentandrarelyknow a priori . Thevelocity correc-
tions,however, aregood,andguaranteethat thecorrectedvelocitiessatisfytheconti-
nuity equation. Consequently, it wouldseemappropriateto usethepressurecorrection
equationto correctvelocities,while finding anotherway to computethepressure.

A good way of understandingthis is to consider whattheSIMPLE algorithm does
whenwe know thevelocity field, but do not know thepressurefield. If we solve the
momentumequations with a guessedpressurefield p � , we destroy theoriginal (good)
velocity field, andthenembark on a long iterative processto recover it. A good guess
of thevelocityfield is no usewhenusingtheSIMPLE algorithm, unlessaccompanied
by agoodpressureguess.Wewouldpreferanalgorithm whichcanrecover thecorrect
pressure field immediatelyif theexactvelocity field is known.

With SIMPLER,we derive the pressureequation by re-arranging the momentum
equationsasfollows:

ue \ ∑nbanbunb c be

ae c de d pP b pE f
vn \ ∑nbanbvnb c bn

an c dn p pP b pN q (6.48)

By defining

ûe \ ∑nbanbunb c be

au
e

v̂n \ ∑nbanbvnb c bn

ae
(6.49)

wemaywrite

ue \ ûe c de d pP b pE f
vn \ v̂n c dn p pP b pN q (6.50)

Furthermore,we maydefine

F̂e \ ρeûe∆y

F̂n \ ρnv̂n∆x (6.51)

135



sothat

Fe \ F̂e c ρede∆y d pP b pE f
Fn \ F̂n c ρndn∆x p pP b pN q (6.52)

SubstitutingEquations 6.52 into the discretecontinuity equation (Equation 6.20) we
obtainthefollowing equation for thepressure:

aPpP \ ∑
nb

anbpnb c b

where

aE \ ρede∆y

aW \ ρwdw∆y

aN \ ρndn∆x

aS \ ρsds∆x

aP \ ∑
nb

anb

b \ F̂w b F̂e c F̂s b F̂n (6.54)

Theform of thepressure equation is identicalto thatof thepressure correctionequa-
tion, andtheaP andanb coefficientsareidenticalto thosegoverningthepressurecor-
rection. Theb term,however, is different, andinvolvesthevelocities ûandv̂ ratherthan
theprevailing velocitiesu � andv� . Weshouldemphasizethatalthough theb termlooks
similar in form to thatin thep � equation, it doesnotrepresentthemassimbalance.An-
otherimportant differenceis that no approximations have beenmadein deriving the
pressureequation. Thus,if thevelocityfield is exact,thecorrectpressure field will be
recovered.

6.7.1 Overall Algorithm

TheSIMPLERsolutionloop takesthefollowing form:

1. Guessthevelocityfield.

2. Computeû andv̂.

3. Solve the pressure equation(Equation6.54)usingtheguessedfield andobtain
thepressure.

4. Solve themomentumequations usingthepressurefield just computed,to obtain
u� , andv� .

5. Computethemasssource termb in thepressurecorrection equation.

6. Solve thepressurecorrectionequation to obtainp � .
7. Correctu � andv� usingEquations6.28. Do notcorrectthepressure !
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8. At this point we have a continuity satisfyingvelocity field. Solve for any scalar
φ ’s of interest.

9. Checkfor convergence.If converged,stop.Elsego to 2.

6.7.2 Discussion

The SIMPLER algorithm hasbeenshown to perform better than SIMPLE. This is
primarily becausethe SIMPLER algorithm doesnot require a good pressureguess
(which is difficult to provide in any case).It generatesthepressurefield from a good
guessof the velocity field, which is easierto guess.Thus,the SIMPLER algorithm
does not have the tendency to destroy a goodvelocity field guesslike the SIMPLE
algorithm.

TheSIMPLERalgorithm solvesfor two pressurevariables- theactualpressureand
thepressure correction. Thus,it usesoneextra equation, andtherefore involves more
computationaleffort. Thepressurecorrection solver in theSIMPLE loop typically ac-
countsfor half thecomputationaleffort during aniteration.Thisis becausethepressure
correctionequationis frequently solvedwith given-velocity boundaryconditions. The
lack of Dirichlet boundaryconditions for p � causeslinearsolvers to converge slowly.
Thesameis trueof pressure.Thus,addinganextrapressureequation in theSIMPLER
algorithm increasesthecomputationaleffort by about50%. Themomentum equation
coefficientsareneededin two places– to find û andv̂ for thepressureequation, and
later, to solve themomentum equations. To avoid computing themtwice, storagefor
eachof thecoefficient setsis required.This is alsotruefor thepressurecoefficients.

Becausethe pressurecorrection p � is not usedto correct the pressure,no under-
relaxation of thepressurecorrectionin themanner of Equation 6.45 is required. The
pressureequationmayitself beunderrelaxed if desired, but this is notusuallyrequired.
Themomentumequationsmustbeunderrelaxedto account for non-linearitiesandalso
to account for thesequential natureof thesolutionprocedure.

6.8 The SIMPLEC Algorithm

TheSIMPLE-Corrected(SIMPLEC)algorithm [11] attemptsto curetheprimary fail-
ing of theSIMPLEalgorithm, i.e.,theneglect of the ∑nbanbu�nb and∑nbanbv�nb termsin
writing Equations 6.33. Insteadof ignoring thesecompletely, theSIMPLECalgorithm
attemptsto approximatetheneighborcorrectionsby usingthecell correctionas:

∑
nb

anbu�nb � u�e∑
nb

anb

∑
nb

anbv�nb � v�e∑
nb

anb (6.55)
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Thus,thevelocity correctionstake theform�
ae b ∑

nb

anb� u�e \ ∆y p p�P b p�E q�
an b ∑

nb

anb� v�n \ ∆x p p�P b p�N q (6.56)

Redefiningde anddn as

de \ ∆yp ae b ∑nbanb q
dn \ ∆xp an b ∑nbanbq (6.57)

Therestof theprocedureis thesameasthat for theSIMPLE algorithm exceptfor the
fact that thepressurecorrection neednot beunderrelaxed asin Equation 6.45. How-
ever, we shouldnotethat the de anddn definitions require the momentumequations
to beunderrelaxedto prevent thedenominatorfrom going to zero.TheSIMPLECal-
gorithm hasbeenshown to converge fasterthanthe SIMPLE anddoesnot have the
computationaloverheadof theSIMPLERalgorithm. However, it doessharewith SIM-
PLE the property that a goodvelocity field guesswould be destroyed in the initial
iterationsunlessaccompaniedby agoodguessof thepressurefield.

6.9 Optimal Underrelaxation for SIMPLE

It is possibleto makeSIMPLEduplicatethespeed-up exhibitedby SIMPLECthrough
the judicious choiceof underrelaxationfactors. The SIMPLE procedure employs a
pressurecorrection of thetype

p \ p� c αpp� (6.58)

whereastheSIMPLECalgorithm employs a pressure correction of thetype

p \ p� c p� (6.59)

Ratherthansolve for p � , let us make the SIMPLE algorithm solve for a variable p̂ �
definedas

p̂��\ αpp� (6.60)

Thenits correction equation takesthe form of Equation6.59. We maythink of SIM-
PLECassolvingfor p̂ � ratherthanp� .

Now let us examine the p � equation (or p̂ � equation) solved by SIMPLEC. The
equation hastheform

aPp̂�P \ ∑
nb

anbp̂�nb c b (6.61)
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with thecoefficients anb having theform

anb \ ρ∆y2

ae b ∑nbanb
(6.62)

Letusassumefor simplicity thatthemomentumequationcoefficientshavenoSP terms,
sothat

ae \ ∑nbanb

αu
(6.63)

Thus, thepressurecorrectioncoefficients in Equation 6.62maybewrittenas

anb \ ρ∆y2

1 � αu
αu

∑nbanb

(6.64)

Now we turn to theSIMPLE algorithm. If we castits p � equation in p̂ � form, we
get

aPp̂�P \ ∑
nb

anbp̂�nb c b (6.65)

with thecoefficients anb having theform

anb \ ρ∆y2

αp
αu

∑nbanb

(6.66)

If we require theanb coefficient in Equation6.64to beequalto that in Equation 6.66,
weconcludethat

αp \ 1 b αu (6.67)

Thus, we seethat if we useEquation6.67in underrelaxingthemomentumequations
andthepressurecorrection,wewouldessentiallyreproducetheiterationscomputedby
SIMPLEC.

6.10 Discussion

Wehaveseenthreedifferentpossibilitiesfor asequentialsolutionof thecontinuity and
momentumequations usinga pressure-basedscheme.A number of othervariants and
improvementsof thebasicSIMPLEprocedurearealsoavailablein theliterature. These
are,however, variations on thebasicthemeof sequentialsolution,andthesamebasic
advantagesanddisadvantagesobtain.All theseprocedureshave theadvantageof low
storage, andreasonably goodperformanceover a broadrange of problems. However,
they areknown to require a large number of iterations in problems with large body
forcesresultingfrom buoyancy, swirl andotheragents; in stronglynon-linear cases,
divergencemayoccur despiteunderrelaxation. Many of thesedifficultiesarea result
of thesequentialnature of themomentumandcontinuity solutions,whicharestrongly
coupled through thepressuregradient termwhenstrongbody forcesarepresent. For
suchproblems,theuserwouldnot find muchdifferencein theperformanceof thedif-
ferent SIMPLEvariants.A varietyof coupledsolvershavebeendevelopedwhichseek
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(a)
(b)

Figure6.6: VelocitySystemsfor StructuredBodyfitted Meshes:(a) Cartesian,and(b)
Grid-Following

to replacethesequential solutionof themomentumandcontinuity equations through
tighter coupling of the two equations (see[8] for example). Theseproceduresusu-
ally incur a storagepenaltybut exhibit substantialconvergence acceleration, at least
for laminarflow problems. This areacontinuesto be active areafor new research,
especiallyin connectionwith unstructuredmeshes.

6.11 Non-Orthogonal Structur ed Meshes

Whenstructured non-orthogonal meshesareused,thestaggeredmeshproceduresde-
scribedabove may be usedin principle. However, greatcaremust be taken in the
choiceof velocity components.For example, it is not possibleto useCartesianveloc-
ity componentswith astaggeredmesh,asillustratedin Figure6.6(a). Hereweconsider
a 90� elbow. If we storethe u andv velocities on the facesasshown, similar to our
practiceonregularmeshes,it is possibleto encountercellswherethestoredfaceveloc-
ity componentis tangentialto the face,makingit difficult to discretizethecontinuity
equation correctly. If staggeredmeshesareused,it is necessaryto usegrid following
velocities, i.e.,velocities whoseorientation is definedwith respectto thelocal face.In
Figure6.6(b), for example, we usevelocity components normal to the facein ques-
tion. Thesevelocity componentsareguaranteedto never become tangential to theface
becausethey turn asthe meshturns. Any velocity setwith a fixed (non-zero)angle
to thelocal facewould do aswell.(Otheroptions,suchasstoringbothcomponents of
theCartesianvelocitiesat all faces,have beentried; though formulationsof this type
canbeworkedout, theresultis notveryelegant; for example, overlappingmomentum
control volumesresult).

Two primary grid-following or curvilinearvelocity systemshave beenusedin the
literaturefor this purpose. Thesearethecovariant velocity andthecontravariant ve-
locity systems.Considerthe cells P andE is Figure6.7(a). The vectorseξ andeη
arecalledthecovariantbasisvectors.Theeξ vectoris alignedalongthe line joining
thecell centroids. Theeη vectoris alignedtangential to the face. Thevelocity com-
ponentsalongthesebasisdirectionsarecalledthecovariant velocity components. On
eachface,thecomponentalongtheline joining thecentroids is stored.Thuson Karki
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Figure6.7: CurvilinearVelocityComponents(a)Covariant, and(b) Contravariant

andPatankar [7] haveuseacovariantvelocityformulationto develop astaggeredmesh
SIMPLEalgorithm for body-fittedstructured meshes.

Alternatively, contravariant basisvectors maybeused,asshown in Figure6.7(b).
Here,thebasisvectoreξ is perpendicularto theface,andthebasisvector eη is perpen-
dicular to the line joining the cell centroids. The contravariantvelocitiesarealigned
alongthesebasisdirections. Eachfacestoresonecontravariantcomponent,thecom-
ponentperpendicularto theface.

The SIMPLE family of algorithms may be developedfor a staggeredmeshdis-
cretization usingeitherof thesetwo coordinatesystems.Though theseefforts have
generally beensuccessful,curvilinear velocities are not particularly easyentitiesto
dealwith. SinceNewton’s laws of motionconserve linear momentum,themomentum
equationswritten in Cartesiancoordinatesmay alwaysbe castin conservative form.
Curvilinearcoordinatesdonothavethisproperty. Sincecovariantandcontravariantba-
sisvectors changedirectionwith respectto aninvariantCartesiansystem,themomen-
tum equations written in thesecurvilineardirections cannot bewritten in conservative
form; momentumin thecurvilinear directionsis not conserved.As a result,additional
curvaturetermsappear, just as they do in cylindrical-polar or sphericalcoordinates.
Thus wearenotguaranteedconservation.(Researchers haveproposedclevercures for
this problem; seeKarki andPatankar [7], for example). Furthermore,velocity gra-
dientsarerequired in otherequations,for example for productiontermsin turbulence
models,or for strainratesin non-Newtonianrheologies.Thesequantitiesareextremely
cumbersometo derive in curvilinear coordinates.To overcomethis, researchershave
computedtheflow field in curvilinearcoordinatesandstoredbothCartesianandcurvi-
linearvelocities. They useCartesianvelocity componentsfor all suchmanipulations.
Despitetheseworkarounds,curvilinearvelocitiesremaincumbersomeandaredifficult
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Pressure Storage Location

Velocity Storage Location

Figure 6.8: StorageArrangement for Node-BasedUnequal Order Finite Volume
Scheme

to interpret andvisualizein complex domains.

6.12 Unstructur ed Meshes

For unstructuredmeshes,thestaggeredmeshdiscretizationmethodwehavederivedso
far is almostentirelyuselesssincenoobviousmeshstaggering is possible.In thefinite
elementcommunity, a classof unequal order methods have beendeveloped which
interpolatepressureto lower order thanvelocity. This hasbeenshown to circumvent
checker-boarding. Node-basedfinite-volumeschemes[12] havebeendevelopedwhich
employ thesameunequal-orderidea.In thework by BaligaandPatankar, for example,
triangular macro-elementsareemployed,asshown in Figure6.8. Pressureis storedat
thenodesof themacroelement.Themacroelementis subdividedinto 4 sub-elements,
andvelocity is storedontheverticesof thesubelements.Thoughthis arrangementhas
beenshown to prevent checkerboarding, pressure is resolved to only one-fourth the
meshsizeasthevelocity in two dimensions,promptingconcernsabout accuracy. For
cell basedschemesthereis noobviouscounterpartof this unequalorderarrangement.

6.13 Closure

In this chapter, we have developedstaggeredmeshbaseddiscretizationtechniquesfor
thecontinuity andmomentumequations.Staggering wasshown to benecessaryto pre-
ventcheckerboardingin thevelocity andpressurefields.Wethendevelopedsequential
anditerative pressure-basedtechniquescalledSIMPLE,SIMPLERandSIMPLECfor
solvingthis setof discreteequations.

We seethat thestaggereddiscretizationdevelopedin this chapteris not easilyex-
tendedto body-fitted andunstructuredmeshes.The useof staggeredmeshmethods
basedon curvilinear velocities is cumbersomeanduninviting for structured meshes.
For unstructuredmeshes,it is not easyto identify a workable staggered mesh,even
if we couldusecurvilinear velocity components.Becauseof thesedifficulties, efforts
have beenunderway to do away with staggering altogether andto develop techniques
known variously asnon-staggered , equal-order, or co-locatedmethods. Thesetech-
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niquesstorepressureandvelocity at the samephysical locationandattemptto solve
theproblemof checkerboarding through clever interpolationtechniques.They alsodo
awaywith thenecessityfor curvilinearvelocity formulations,anduseCartesianveloc-
ities in thedevelopment.We will addressthis classof techniquesin thenext chapter.

We shouldemphasizethatthematerialto bepresentedin thenext chapter changes
only the discretizationpractice. We may still usesequential anditerative techniques
suchasSIMPLEto solve theresultingsetof discreteequations.
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Chapter 7

Fluid Flow: A Closer Look

In this chapter, we turn to the problem of discretizingthe continuity andmomentum
equationsusinga non-staggeredor co-locatedmesh. We saw in the last chapterthat
storingpressureandvelocity at the samelocation, i.e., at the cell centroids, leadsto
checkerboarding in thepressureandvelocityfields.Wecircumventedthis in Cartesian
meshesby usingstaggeredstorageof pressureandvelocity. We alsousedCartesian
velocity components asourprimary variables.

For unstructuredmeshes,it is notobvioushow to definestaggeredpressureandve-
locity control volumes. Furthermore,staggered meshesaresomewhat cumbersometo
use.For Cartesianmeshes,staggering requiresthestorageof geometry informationfor
themainandstaggered u andv control volumes,aswell increasedcodingcomplexity.
For body-fitted meshes,we saw in the previous chapterthat staggeredmeshescould
only beusedif grid-following velocitieswereused;we saw thatthis optionis alsonot
entirelyoptimal. As a result,recent researchhasfocusedon developingformulations
whichemploy Cartesianvelocitycomponents,storingbothpressureandvelocityat the
cell centroid. Specializedinterpolationschemesareusedto preventcheckerboarding.

The changeto a co-locatedor non-staggeredstorageschemeis a change in the
discretization practice. Theiterativemethodsusedto solvetheresultingdiscretesetare
thesameasthosein thepreviouschapter, albeitwith a few minor changesto account
for thechangein storagescheme.For thepurposesof this chapter, wewill continue to
usetheSIMPLEfamily of algorithmsfor thesolutionof thediscreteequations.

7.1 Velocity and PressureCheckerboarding

Co-locatedor non-staggeredmethods storepressureandvelocity at thecell centroid.
Furthermore,we useCartesianvelocity componentsu andv, definedin a globalcoor-
dinatesystem.Thus,in Figure7.1,u, v andp arestoredat thecell centroidP, asare
otherscalarsφ . Theprincipleof conservationis enforcedonthecell P.

In the discussionthat follows, let us assumean orthogonalone-dimensional uni-
form mesh. We will addresstwo-dimensionalandnon-orthogonal meshesin a later
section,oncethebasicideais clear. Themeshandassociatednomenclatureareshown
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Figure7.1: Co-LocatedStorage of PressureandVelocity

in Figure7.2.

7.1.1 Discretization of Momentum Equation

The discretizationof the u-momentumequation for the cell P follows the principles
outlinedin previouschaptersandyieldsthefollowing discreteequation:

aPuP \ ∑
nb

anbunb c bu
P c d pw b pef (7.1)

Here,a unit areaof crosssection∆y \ 1 hasbeenassumed.The neighbors nb for
this co-locatedarrangement includethevelocitiesat thepoints E andW. Thepressure
at the facese andw arenot known sincethe pressureis storedat the cell centroids.

W P E EE

ue
e

Figure7.2: ControlVolumesfor Velocity Interpolation
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Consequently, interpolationis required. Adoptinga linearinterpolation,andauniform
mesh,we maywrite

aPuP \ ∑
nb

anbunb c bu
P c p pW b pE q

2
(7.2)

Similarly, for uE, wemaywrite

aEuE \ ∑
nb

anbunb c bu
E c d pP b pEE f

2
(7.3)

We seethat theu-momentumequationat point P doesnot involve thepressure at the
point P; it only involvespressuresatcellsoneitherside.Thesameis truefor uE. Thus,
theu-momentumequation cansupport a checkerboardedsolutionfor pressure.If we
retainthis typeof discretizationfor thepressure termin themomentumequation, we
mustmake surethat the discretizationof the continuity equationsomehow disallows
pressure checkerboarding.

7.1.2 Discretization of Continuity Equation

In order to discretizethecontinuity equation, we integrateit over thecell P asbefore
andapplythedivergencetheorem.This yields

Fe b Fw \ 0 (7.4)

where

Fe \ ρeue∆y

Fw \ ρwuw∆y (7.5)

As we discussedin theprevious chapter, we mustinterpolateu from thecell centroid
valuesto thefacein orderto find ue anduw. If we usea linearinterpolation

ue \ uP c uE

2

uw \ uW c uP

2
(7.6)

Substituting theserelationsinto Equation7.4andassumingunit ∆y yields

ρeuE b ρwuW \ 0 (7.7)

7.1.3 Pressure Checkerboarding

Letusnow considerthequestionof whether Equation7.7cansupport acheckerboarded
pressurefield. Dividing Equations7.2and7.3by their respectivecentercoefficientsa P
andaE, we have

uP \ ûP c 1
aP

p pW b pE q
2

uE \ ûE c 1
aE

d pP b pEE f
2

(7.8)
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where

ûP \ ∑nbanbunb c bu
P

aP

ûE \ ∑nbanbunb c bu
E

aE
(7.9)

If we average uP anduE usingEquation7.8to find ue in Equation 7.7we obtain

ue \ ûP c ûE

2 c 1
aP

m
pW b pE

4 n c 1
aE

m
pP b pEE

4 n (7.10)

A similarequation canbewritten for uw:

uw \ ûW c ûP

2 c 1
aW

m
pWW b pP

4 n c 1
aP

m
pW b pE

4 n (7.11)

We seeright away thatany checkerboardedpressurefield whichsetspW \ pE and
pP \ pEE \ pWW will be seenasa uniform pressure field by ue anduw. Theseface
velocities areusedto write the one-dimensionaldiscretecontinuity equation (Equa-
tion 7.7). Sincethe sametype of checkerboarding is supported by the discretemo-
mentum equations, a checkerboardedpressurefield canpersistin thefinal solutionif
boundaryconditions permit. Our discretecontinuity equation doesnothing to filter
spuriousoscillatorymodesin thepressurefield supportedby themomentumequation.

7.1.4 Velocity Checkerboarding

In additionto pressurecheckerboarding, the linearinterpolation of cell velocitiesalso
introducescheckerboarding. As we have seenin the previous chapter, the resulting
discretecontinuity equation, Equation7.7,doesnot involvethecell-centeredvelocities
uP. Thus, the continuity equationsupports a checkerboardedvelocity field. Sucha
checkerboardedvelocityfield impliescheckerboardedmomentain thecell momentum
balance. If we enforce momentum balanceon thecell, we will in effect createa pres-
surefield to offsetthesecheckerboardedmomenta; thispressurefield mustof necessity
becheckerboarded. In order to preventcheckerboarding in thefinal solution,we must
ensurethat thediscretizationof eitherthemomentum or thecontinuity equationpro-
videsa filter to remove theseoscillatorymodes.

7.2 Co-LocatedFormulation

Co-locatedformulationspreventcheckerboarding by devisinginterpolationprocedures
whichexpressthefacevelocitiesue anduw in termsof adjacentpressurevalues rather
thanalternatepressurevalues.Furthermorethe facevelocity ue is not definedpurely
asa linear interpolant of the two adjacentcell values; an additional term, calledthe
addeddissipationpreventsvelocitycheckerboarding.
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As we saw in theprevioussection,thediscreteone-dimensional momentum equa-
tionsfor cellsP andE yield

uP \ ûP c dP

p pW b pE q
2

uE \ ûE c dE
d pP b pEE f

2
(7.12)

where

dP \ 1
aP

dE \ 1
aE

(7.13)

Writing thecontinuity equation for cell P we have

Fe b Fw \ 0 (7.14)

or equivalently
ρeue b ρwuw \ 0 (7.15)

As before,unit cross-sectional areais assumed.If we interpolate ue linearly, weget

ue \ uP c uE

2
\ ûP c ûE

2 c dP

m
pW b pE

4 n c dE

m
pP b pEE

4 n (7.16)

Insteadof interpolating linearly, weuse

ue \ uP c uE

2 b dP

m
pW b pE

4 n b dE

m
pP b pEE

4 n c de d pP b pE f\ ûP c ûE

2 c de d pP b pE f (7.17)

where

de \ dP c dE

2
(7.18)

A similar expressionmaybewritten for uw.
It is importanttounderstandthemanipulation thathasbeendonein obtainingEqua-

tion 7.17. We have removedthepressure gradient termresultingfrom linear interpo-
lation of velocities(which involvesthepressurespW, pE, pP andpEE) andaddedin a
new pressuregradient termwritten in termsof thepressuredifferenced pP b pE f . An-
otherwayof looking at this is to saythatin writing ue, we interpolatetheû component
linearly betweenP andE, but write thepressuregradient termdirectly in termsof the
adjacentcell-centroid pressurespP an pE.

This typeof interpolation is sometimes referred to asmomentuminterpolation in
the literature.It is alsosometimesreferredto asanadded dissipationscheme.It was
proposed,with smallvariations,bydifferentresearchers in theearly1980’s[13, 14, 15]
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for usewith pressure-basedsolvers.Ideassimilar to it havealsobeenusedin thecom-
pressibleflow community with density-basedsolvers. Momentum interpolation pre-
ventscheckerboarding of thevelocity field by not interpolatingthevelocitieslinearly.
Thefacevelocitiesue anduw areusedto write thediscretecontinuity equation for cell
P. Sincethey arewritten in termsof adjacent pressuresratherthat alternateones, a
continuity-satisfyingvelocityfield wouldnotbeableto ignore a checkerboardedpres-
surefield. Thus,even thoughthemomentumequationcontainsapressuregradient term
thatcansupport acheckerboardedpattern,thecontinuity equation doesnotpermit such
a pressure field to persist.

Anotheruseful way to think about momentum interpolation is to considertheface
velocity ue to be a sort of staggeredvelocity. The momentuminterpolation formula,
Equation 7.17, maybeinterpretedasa momentum equationfor thestaggered velocity
ue. Insteadof deriving thestaggeredmomentumequationfrom first principles,themo-
mentum interpolation procedurederivesit by interpolating û linearly, andadding the
pressuregradientappropriatefor thestaggeredcell. (Recallthatthequantity û contains
theconvection,diffusionandsourcecontributionsof themomentumequation.) By not
usinganactualstaggered-cell discretization, momentum interpolation avoids thecre-
ationof staggeredcell geometry andmakesit possibleto usetheideafor unstructured
meshes.

7.3 The Conceptof AddedDissipation

It is usefulto understandwhy momentum interpolationis alsoreferredto astheadded
dissipationscheme.For simplicity, let us assumethat dP \ dE \ de. This would be
thecaseif themeshwereuniform, andtheflow field, diffusioncoefficients andsource
termswereconstantfor thecellsPandE. Let usconsiderthefirst of theexpressionsin
Equation 7.17:

ue \ uP c uE

2 b dP

m
pW b pE

4 c pP b pEE

4 n c dP d pP b pE f
Let uslook at thepressuretermsb dP

m
pW b pE

4 c pP b pEE

4 n c dP d pP b pE f
Rearranging, wehave b dP

m
pW b pE

4 c pP b pEE

4 bhd pP b pE f n\ b dP

4
p�p pW c pE b 2pP q&bhd pP c pEE b 2pE f q (7.21)

Usinga Taylorseriesexpansion,wecanshow thatm
∂ 2p
∂x2 n P

\ p pW c pE b 2pP q
∆x2 c O p ∆x2 q (7.22)
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Similarly m
∂ 2p
∂x2 n E

\ d pP c pEE b 2pE f
∆x2 c O p ∆x2 q (7.23)

Thepressuretermin themomentuminterpolationschememaythusbewrittenas

ue \ uP c uE

2 b dP

4

m�m
∂ 2p
∂x2 n P

b m ∂ 2p
∂x2 n E n ∆x2 (7.24)

or, dividing andmultiplying thepressure termby ∆x, we maywrite

ue \ uP c uE

2 b dP

4

m
∂ 3p
∂x3 n e

∆x3 (7.25)

A similar expressionmaybewritten for uw:

uw \ uW c uP

2 b dP

4

m
∂ 3p
∂x3 n w

∆x3 (7.26)

Now, let uslook at thecontinuity equation. If we write thecontinuity equationfor
constantρ , anddividing throughby ∆x weget

ue b uw

∆x
\ 0 (7.27)

Substituting for ue anduw from Equations7.25and7.26 weget

uE b uW

2∆x b dP

4

m
∂ 4p
∂x4 n P

∆x3 (7.28)

UsingaTaylorseriesexpansion,we mayshow that

uE b uW

2∆x
\ m ∂u

∂x n P c O d ∆x2 f (7.29)

sothatEquation7.28maybewrittenasm
∂u
∂x n P

b dP

4

m
∂ 4p
∂x4 n P

∆x3 \ 0 (7.30)

Weseethatmomentuminterpolationis equivalentto solvingacontinuity equation with
anaddedfourth derivative of pressure. Evenderivativesarefrequently referred to in
theliteratureasdissipation; hencethenameaddeddissipationscheme.

7.4 Accuracy of Added DissipationScheme

Let usnow examine theaccuracy of themomentuminterpolation or theaddeddissipa-
tion scheme. TheinterpolationschememaybewrittenusingEquation 7.21

ue \ uP c uE

2 b dP

4
p�p pW c pE b 2pP q bhd pP c pEE b 2pE f q (7.31)
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Let usconsiderthefirst term d uP c uE f l 2. UsingaTaylorseriesexpansionaboute, we
maywrite

uP \ ue b m ∂u
∂x n e

∆x
2 c m ∂ 2u

∂x2 n e

∆x2

8 c O d ∆x3 f
uE \ ue c m ∂u

∂x n e

∆x
2 c m ∂ 2u

∂x2 n e

∆x2

8 c O d ∆x3 f
(7.32)

Adding thetwo equations anddividing by two yields

ue \ uP c uE

2 c O d ∆x2 f (7.33)

Thus the truncation error in writing the first term in Equation 7.31 is O d ∆x2 f . We
alreadysaw from Equation7.22thatthepressuretermmaybewrittenasb dP

4
p�p pW c pE b 2pP q bhd pP c pEE b 2PE f q \ b dP

4

m
∂ 3p
∂x3 n e

∆x3 (7.34)

sothatthetotalexpressionfor ue is

ue \ uP c uE

2 b dP

4

m
∂ 3p
∂x3 n e

∆x3 c O d ∆x2 f (7.35)

We seethatthepressure termwe have addedis O d ∆x3 f , which is of higherorderthan
thesecond-order truncation errorof the linear interpolation. Consequently, theadded
dissipationtermdoes not changethe formal second-orderaccuracy of theunderlying
scheme.

7.5 Discussion

Thusfar we have beenlooking at how to interpolate the facevelocity in order to cir-
cumventthecheckerboarding problemfor co-locatedarrangements.We haveseenthat
momentuminterpolation is equivalent to solvingthecontinuity equation with anextra
dissipationtermfor pressure.Addingthis dissipationtermdoesnot change theformal
accuracy of our discretizationschemesincethetermaddedhasa dependenceO d ∆x3 f
whereastheothertermshave a truncation errorof O d ∆x2 f . Our intent is to write the
continuity equation usingthis interpolation for thefacevelocity. Thediscretizationof
themomentumequations retainstheform of Equation7.1.

An extremely important point to be madeis that the discretecontinuity equation
(Equation 7.14) is written in termsof the facevelocitiesue anduw. It is not written
directlyin termsof thecell-centeredvelocitiesuP anduE. Thus,atconvergence,it is the
facevelocitiesthatdirectlysatisfythediscretecontinuity equation,notthecell-centered
velocities. In a co-locatedformulation, thecell-centeredvelocitiesdirectly satisfythe
discretemomentum equations. They satisfy the continuity equations only indirectly
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throughtheir role in definingue anduw. Conversely, in a co-locatedformulation,the
facevelocitiesue anduw directlysatisfythecontinuity equation, but donotsatisfyany
discretemomentumequation sincenodirectmomentumconservationover astaggered
cell is ever written for them. They satisfymomentum conservationonly indirectly, in
thesensethatthey satisfythemomentuminterpolation formula.

To completethedevelopment,let us look at regular two-dimensionalmeshesand
derive theequivalentforms for the facevelocity interpolation. Thoughtheproperties
of themomentum interpolationschemearelessclearlyevident in 2D, everything we
have saidabouttheone-dimensionalcaseis alsotruein two dimensions. We will use
this development asa steppingstoneto developinga SIMPLE algorithm for solving
thediscretesetof equations.

7.6 Two-DimensionalCo-LocatedVariable Formulation

Let usgeneralize our developmentto two-dimensionalregularmeshesbefore consid-
eringhow to solveourdiscretesetof equations.We considerthecell P in Figure7.1.

7.6.1 Discretization of Momentum Equations

Usingtheproceduresdescribedearlier, wemayderivethediscreteu- andv-momentum
equationsfor thevelocitiesuP andvP:

au
PuP \ ∑

nb

au
nbunb c bu

P c ∆y
p pW b pE q

2

av
PvP \ ∑

nb

av
nbvnb c bv

P c ∆x
p pS b pN q

2
(7.36)

Here,thecoefficientsau
P andau

nb arethecoefficients of theu-momentumequation for
cell P. Similarly, av

P andav
nb arethe coefficientsof the v-momentumequation. We

notethatthepressure gradient termsinvolve pressures2∆x and2∆y apart respectively.
Similardiscreteequationsmaybewritten for theneighboringcells.

7.6.2 Momentum Inter polation

Considerthefacee in Figure7.1,andtheu momentumequations for thecellsP andE.
Dividing thediscretemomentumequationsby thecentercoefficients weobtain:

uP \ ûP c du
P
p pW b pE q

2

uE \ ûE c du
E
d pP b pEE f

2
(7.37)
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where

du
P \ ∆y

au
P

du
E \ ∆y

au
E

(7.38)

Thefactor∆y appears becausethepressuregradient termis multiplied by it in a two-
dimensionalmesh.By analogy wemaydefineequivalent quantities atotherfaces:

du
W \ ∆y

au
W

dv
N \ ∆x

av
N

dv
S \ ∆x

av
S

(7.39)

Usingmomentuminterpolationfor thefacevelocity ue, we obtain

ue \ ûe c de d pP b pE f (7.40)

where

ûe \ ûP c ûE

2

de \ du
P c du

E

2
(7.41)

By analogy, we maywrite facevelocities for theotherfacesas:

uw \ ûw c dw p pW b pP q
vn \ v̂n c dn p pP b pN q
vs \ v̂s c ds p pS b pP q (7.42)

with

dw \ du
W c du

P

2

dn \ dv
P c dv

N

2

ds \ dv
S c dv

P

2
(7.43)

7.7 SIMPLE Algorithm for Co-LocatedVariables

Having definedthe facevelocitiesasmomentum-interpolants of cell centeredvalues,
we now turn to thequestionof how to write thediscretecontinuity equation,andhow
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to solve thediscreteset. In keeping with our philosophy of usingsequentialiterative
solutions, we wish to usetheSIMPLE algorithm. We mustnow devise a way to for-
mulatea pressure correctionequation that canbe usedwith the co-located variables.
Theprocedureis similar to thatadoptedin thepreviouschapter, albeitwith a few small
changes.

7.7.1 Velocity and Pressure Corr ections

As before, let u � andv � denote thesolutionto thediscretemomentumequations using
aguessedpressurefield p � . Thefacevelocitiesue, uw, vn andvs foundby interpolating
theu� andv� to the faceusingmomentuminterpolation arenot guaranteedto satisfy
thediscretecontinuity equation. Thus,

F �e b F �w c F �n b F �s �\ 0 (7.44)

The facemassflow ratesF aredefinedin termsof the momentum-interpolatedface
velocitiesas

F �e \ ρeu�e∆y

F �n \ ρnv�n∆x (7.45)

Similar expressionsmay be written for F �w andF �s . We wish to correct the faceve-
locities (andthe faceflow rates)suchthat thecorrectedflow ratessatisfythediscrete
continuity equation. Thus,we proposefacevelocitycorrections

ue \ u�e c u�e
vn \ v�n c v�n (7.46)

andthecell pressurecorrections

pP \ p�P c p�P (7.47)

Correspondingly, wemaywrite faceflow ratecorrections

Fe \ F �e c F �e
Fn \ F �n c F �n (7.48)

where

F �e \ ρe∆yu�e
F �n \ ρn∆xv�n (7.49)

Wenow seekto expressu � andv� in termsof thecell pressurecorrections p � , andto
usetheseexpressionsto derive a pressurecorrection equation. Fromour facevelocity
definitions,wewrite

u�e \ û�e c de p p�P b p�E q
u�w \ û�w c dw p p�W b p�P q
v�n \ v̂�n c dn p p�P b p�N q
v�s \ v̂�s c ds p p�S b p�P q (7.50)
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In keeping with theSIMPLEalgorithm, weapproximateEquations7.50 as

u�e \ de p p�P b p�E q
u�w \ dw p p�W b p�P q
v�n \ dn p p�P b p�N q
v�s \ ds p p�S b p�P q (7.51)

by droppingtheû � andv̂� terms.This is analogousto dropping the ∑nbanbu�nb termsin
thestaggeredformulation.

Thecorrespondingfaceflow ratecorrectionsare

F �e \ ρe∆yde p p�P b p�E q
F �w \ ρw∆ydw p p�W b p�P q
F �n \ ρn∆xdn p p�P b p�N q
F �s \ ρs∆xds p p�S b p�P q (7.52)

We noticethat the velocity corrections in Equations 7.51correct the facevelocities,
but not thecell-centered velocities. For lateruse,we write thecell-centeredvelocity
correctionsby analogy:

u�P \ du
P
d p�W b p�E f

2

v�P \ dv
P
p p�S b p�N q

2
(7.53)

7.7.2 Pressure Corr ection Equation

To derive thepressurecorrectionequation for theco-locatedformulation,wewrite the
continuity equationin termsof thecorrectedfaceflow ratesF asbefore:

F �e c F �e b F �w b F �w c F �n c F �n b F �s b F �s \ 0 (7.54)

Substitutingfrom Equations 7.51and7.49 for the F � values,we obtainthe pressure
correctionequation:

aPp�P \ ∑
nb

anbp�nb c b

with

aE \ ρede∆y

aW \ ρwdw∆y

aN \ ρndn∆x

aS \ ρsds∆x

aP \ aE c aW c aN c aS

b \ F �w b F �e c F �n b F �s (7.56)

We seethat the pressurecorrection equation hasthe samestructureas that for the
staggeredgrid formulation. Thesource termin thepressurecorrection equationis the
massimbalanceresultingfrom thesolutionof themomentumequations.
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7.7.3 Overall Solution Procedure

The overall SIMPLE solution procedurefor co-locatedmeshestakes the following
form:

1. Guessthepressurefield p � .
2. Solve theu andv momentum equationsusingtheprevailing pressurefield p � to

obtainu � andv� atcell centroids.

3. Computethe facemassflow ratesF � usingmomentum interpolation to obtain
facevelocities.

4. Solve the p� equation.

5. Correctthefaceflow ratesusingEquation7.48.

6. Correctthecell-centeredvelocitiesu �P andv �P usingEquation 7.50.

7. Correct the cell pressure using Equation7.47. In keepingwith the SIMPLE
algorithm, underrelaxthepressurecorrectionas:

p \ p� c αpp�
8. Solve for otherscalarsφ if desired.

9. Checkfor convergence.If converged,stop.Elsego to 2.

7.7.4 Discussion

Weseethattheoverall SIMPLEprocedureis verysimilar to thatfor staggeredmeshes.
However, weshouldnoteavery important difference.Thepressurecorrection equation
containsasourcetermb whichis themassimbalancein thecell P. Thecomputedpres-
surecorrectionsaredesignedto annihilatethis massimbalance. Thus,we areassured
correctedfaceflow ratesin step5 will satisfythediscretecontinuity equation identi-
cally ateachiterationof theSIMPLEprocedure.However, thecell-centeredvelocities
eitherbeforeor afterthecorrection in step6 areneverguaranteedto satisfythediscrete
continuity equation. This is becausetheflow ratesF arenot written directly usinguP
andvP; themomentum-interpolatedvaluesareusedinstead.Thus, in a co-locatedfor-
mulation, thecell-centeredvelocities satisfythediscretemomentumequations,but not
thediscretecontinuity equation. We shouldalsonotethat thecell-velocity correction
in step7 is designedto speedup convergence, but doesnothingto make u P andvP
satisfythediscretecontinuity equation. By thesametoken, thefaceflow rates(andby
implication thefacevelocities)satisfythediscretecontinuity equationatstep5 in each
iteration, andalsoat convergence.However, they do not satisfya discretemomentum
equationdirectly. This curious disconnectbetweenthecell-centerandfacevelocities
is aninherentpropertyof co-locatedschemes.

Thesolutionof passive scalarsφ in step8 employs the continuity-satisfying face
flow ratesF in discretizingtheconvectiveterms.Thecell-centeredvelocitiesarenever
usedfor this purposesincethey do not satisfythediscretecontinuity equation for the
cell.
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7.8 Underrelaxation and Time-StepDependence

We have thusfar saidvery little aboutthe role of underrelaxation in developing our
co-locatedformulation. Majumdar[16] hasshown that unlesscareis taken in un-
derrelaxing thefacevelocities,theresultingco-locatedformulationis underrelaxation
dependent. That is, the final solutiondependson the underrelaxationemployed,and
different underrelaxationfactorsmay lead to different solutions. This is clearly ex-
tremelyundesirable.

Considerthefacevelocityue, whichmaybewrittenas

ue \ ûe c de d pP b pE f (7.58)

Recall that de involves the averagesof 1l au
P and1l au

E, the centercoefficientsof the
momentumequations at points P andE. Similarly, ûe alsocontains au

P andau
E in the

denominator. Letussaythatûe andde in Equation7.40correspondstoun-underrelaxed
valuesof au

P andau
E.

If themomentumequationsareunderrelaxed, thecell-centeredvelocitiessatisfy

uP \ α

�
ûP c du

P
p pW b pE q

2 � c d 1 b α f u�P
uE \ α

m
ûE c du

E
d pE b pEE f

2 n c d 1 b α f u�E (7.59)

Usingmomentuminterpolationasbefore,weobtain

ue \ α d ûe c de d pP b pE f+f c d 1 b α f u�P c u�E
2

(7.60)

In order for a variable φ to be underrelaxation-independentat convergence,the
underrelaxation expressionmusthavetheform

αφ c d 1 b α f φ � (7.61)

At convergence,φ \ φ � , andtheabove expressionrecoversφ regardlessof whatun-
derrelaxationis used.

Weseethattheunderrelaxedvalueof ue doesnothavethis form. Theunderrelaxed
facevelocityhastheform

αue c d 1 b α f u�linear (7.62)

whereu �linear is theprevailing linearly interpolatedfacevalue. Sinceue is never equal
to u�linear, notevenat convergence,thevalueof ue is underrelaxationdependent.

Theremedyis to useanunderrelaxationof theform

ue \ α d ûe c de d pP b pE f0f c d 1 b α f u�e (7.63)

Hereûe andde arecomputedusingun-underrelaxedmomentum equations for cellsP
andE. Thefacevelocityis thenunderrelaxed separatelyto obtain thedesiredform. We
notethattheinterpolation requiresthestorageof thefacevelocityue, sincewe cannot
underrelaxue withoutstoringit.
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Figure7.3: Cell Clusterfor UnstructuredMesh

Similarargumentsmaybemadeabout time-stepdependenceof co-locatedschemes.
Unlessremedied, thesteadystateobtainedby co-locatedformulationswill depend on
the time steptaken during the preceding unsteady process. Recall that the unsteady
schemesweusedfor scalartransport (andindeedall reasonable time-steppingschemes)
yield steadystatesolutionsthat areindependentof the time-stepstaken in gettingto
steadystate.A remedy similar to thatfor underrelaxationmaybedevised.

Weshouldnotethatthedifferencebetweenthemomentum-interpolatedandlinearly-
interpolatedfacevaluedecreasesas∆x3, asshown by our erroranalysisof theadded
dissipationscheme.Thus,even if we did not take stepsto remedy the situation,we
expectthedependenceto disappear progressively asthemeshis refined.

7.9 Co-Located Formulation for Non-Orthogonal and
Unstructur ed Meshes

Theco-locatedformulation presentedabove canbeappliedreadilyto non-orthogonal
andunstructuredmeshes.ConsiderthecellsC0 andC1 in Figure7.3. In keeping with
theco-locatedformulation,we storetheCartesianvelocitiesu andv andthepressure
p at thecell centroids. We notethatthedirectioneξ is alignedwith theline joining the
centroids,andfor generalnon-orthogonal meshes,is notparallelto thefaceareavector
A f . Thevectoreη is any direction tangential to theface.

The proceduresfor discretizingthe u andv momentum equations on the cell are
similar to thoseadopted in previous chapters for the convection-diffusion equation.
Theonly termthatneedsspecialconsiderationis thepressuregradient term.Sincethe
cell momentum equations arederived by integrating the governing equationover the
cell, thepressuregradient termis alsointegratedover thecell. Applying thegradient
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theorem, we maywrite b z
∆ { 0

∇pdv9\ b z
A

pdA (7.64)

Assumingthat the pressureat the facecentroid prevails over the face,the pressure
gradient termin theu andv momentumequationsmaybewrittenasb ∑

f

pf A f (7.65)

Thefaceareavector is givenby

A f \ Axi c Ayj (7.66)

Thepressuregradient termsin theu andv momentumequations areb i t z ∆ { 0

∇pdv \ b i t ∑
f

pf A f \ b ∑
f

pf Axb j t z ∆ { 0

∇pdv \ b j t ∑
f

pf A f \ b ∑
f

pf Ay (7.67)

In keeping with our co-locatedmeshtechnique, p f is interpolatedlinearly to the
face.For auniform meshthis interpolationwould take theform

pf \ p0 c p1

2
(7.68)

For non-uniform meshes,we mayusethereconstructedvalue

pf \ p0 c ∇p0 t r0 c p1 c ∇p1 t r1

2
(7.69)

wherer 0 andr 1 arethedistancesfrom thecell centroidsof cellsC0 andC1 to theface
centroid. In eitherevent, p f maybewritten in termsof thecell-centroid valuesof the
pressure.Since

∑
f

A f \ 0 (7.70)

it is clearthatthesummationin Equation7.65eliminatesthecell pressure p0. Thus,as
with regular meshes,themomentum equationscansupport a checkerboardedpressure
field. If ∇p0 and∇p1 arecomputed usingthe sametype of linear assumptions, the
reconstructedpressurevaluefrom Equation 7.69will alsobehave in thesameway.

For futureuse,let uswrite thepressuregradient termin thecell asb ∑
f

pf A f \ b ∇p0∆ v 0 (7.71)

where∇p0 denotestheaveragepressure gradient in thecell.
Having discretizedthe pressure gradient term, the discretemomentum equations

for thecellC0 maynow bewritten:

au
0u0 \ ∑

nb

au
nbunb c bu

0 b ∇p0 t i∆ v 0

av
0v0 \ ∑

nb

av
nbvnb c bv

0 b ∇p0 t j∆ v 0 (7.72)
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Here,au
0 andav

0 denotethecentercoefficientsof theu andv momentum equationsand
bu

0 andbv
0 thesourceterms.Thepressuregradient termssumthefacepressureson all

thefacesof thecell.

7.9.1 FaceNormal Momentum Equation

Let us consider the face f betweenthe cellsC0 andC1. Sinceit is the facenormal
velocity thatappears in thediscretecontinuity equation for cellsC0 andC1, it is nec-
essaryto understand theform takenby themomentumequation for thevelocity in the
facenormal direction. Thefacenormal vectorn is givenby

n \ A f�A � f \ nxi c nyj (7.73)

LetVn
0 denotethecomponentof thecell-centeredvelocityatcellC0 in thedirection of

thefacenormal n. Thisvelocity is givenby

Vn
0 \ V0 t n \ u0nx c v0ny (7.74)

In a co-locatedvariable formulation, thecoefficientsof themomentum equations
areequalto eachotherwhenthereareno body forcespresent,andfor mostboundary
conditions. This is becausethe flow ratesgoverning convectionarethe samefor all
φ ’s. Thediffusion coefficient for theu andv momentum equations is thesame,andis
equal to viscosityµ . Awayfrom theboundaries,theonly differencebetweenthecenter
coefficientsau

0 andav
0 occurs becauseof sourcetermswith Sp componentswhich act

preferentiallyin thex or y directions. At Dirichlet boundaries,thecoefficient modifi-
cations for bothvelocity directionsarethesame;thesameis trueat inlet andoutflow
boundaries.The main differenceoccurs at symmetry boundariesalignedwith either
thex or y directions.But for theseexceptions,theu momentumcoefficient set( au

0 and
au

nb) areequalto thecoefficientsof thev momentum equation( av
0 andav

nb).
Underthesecircumstances, themomentumequationin thecell C0 for thevelocity

in thefacenormaldirectionmaybewrittenas:

an
0V

n
0 \ ∑

nb

an
nbV

n
nb c bn

0 b ∇p0 t n (7.75)

where

an
0 \ au

0 \ av
0

an
nb \ au

nb \ av
nb (7.76)

Thepressuregradient termmaybewrittenasb ∑
f

pf Af \ b m ∂ p
∂n n 0

∆ v 0 \ b ∇p0 t n∆ v 0 (7.77)

We notefurtherthat
bn

0 \ bu
0nx c bv

0ny (7.78)
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Dividing Equation 7.75by an
0, we maywrite

Vn
0 \ V̂n

0 b ∆ v 0

an
0

∇p0 t n (7.79)

Usingsimilarprocedures,we maywrite, for cell C1

Vn
1 \ V̂n

1 b ∆ v 1

an
1

∇p1 t n (7.80)

Here

V̂n
0 \ û0nx c v̂0ny

V̂n
1 \ û1nx c v̂1ny (7.81)

7.9.2 Momentum Inter polation for FaceVelocity

Themomentuminterpolationprocedureis appliedto thenormalvelocity at the face.
Let thelinearly interpolatedfacenormalvelocitybegivenbyV f . Ona uniform mesh

V f \ Vn
0 c Vn

1

2
(7.82)

For non-uniform meshes,facevaluesof u andv maybereconstructedto thefaceand
averagedin themanner of Equation 7.69,andafacenormalvelocity foundusingEqua-
tion 7.74.

Themomentum-interpolatedfacenormal velocity is given by

Vf \ V f c ∆ v f

an
f

�
∇p t n b m ∂ p

∂n n f
� (7.83)

Here,thequantities∆ v f andan
f representthecell volumeandcentercoefficientassoci-

atedwith theface.Thesemaybechosenin a number of differentways,aslong asthe
associatedtruncationerror is keptO d ∆x3 f . For thepurposesof thischapter, we choose
themas

∆ v f \ ∆ v 0 c ∆ v 1

2

an
f \ an

0 c an
1

2
(7.84)

Thepressuregradient ∇p is themeanpressure gradient at thefaceandis given by

∇p \ ∇p0 c ∇p1

2
(7.85)

The quantity d ∂ pl ∂nf f is the facevalueof the pressuregradient. In writing Equa-
tion 7.83we areremoving the meannormal pressure gradient, andaddingin a face
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pressure gradient termwritten. We intendto write this facepressure gradient in terms
of theadjacent pressurevaluesp0 andp1, just like wedid for regularmeshes.

We realizehowever, that thenormalgradient of pressurecannot bewritten purely
in termsof p0 and p1 for generalnon-orthogonal meshes;otherneighboring values
would be involved. Only the gradient ∂ pl ∂ξ may be written in termsof p0 and p1
alone. Thus,we decomposethenormal gradient into thedirections ξ andη to obtain,
asin previouschapters:m

∂ p
∂n n f

\ n t n
n t eξ

m
∂ p
∂ξ n f c n t n

n t eξ
eξ t eη

m
∂ p
∂η n f

(7.86)

We now write thegradient d ∂ pl ∂η f f in termsof themeanpressuregradient:m
∂ p
∂n n f

\ n t n
n t eξ

p1 b p0

∆ξ c n t n
n t eξ

eξ t eη∇p t eη (7.87)

Using
∇p t eη \ ∇p t n b ∇p t eξ (7.88)

andcombining Equations7.83and7.87, we get

Vf \ V f c ∆ v f

an
f

n t n
n t eξ

m
∇p t eξ b p1 b p0

∆ξ n (7.89)

Thus, our manipulation resultsin adding a dissipationassociatedwith the gradient
∂ pl ∂ξ ratherthan∂ pl ∂n, sincethis theonly gradient thatcanbedirectly associated
with theadjacentpressure differencep1 b p0.

Rearranging terms,we maywrite

Vf \ V̂f c df p p0 b p1 q (7.90)

where

V̂f \ V f c df ∇p t eξ ∆ξ

df \ ∆ v f

∆ξ an
f

n t n
n t eξ

(7.91)

7.10 The SIMPLE Algorithm for Non-Orthogonal and
Unstructur ed Meshes

The procedure for deriving the pressure correction closelyparallelsthat for regular
meshes.Thefaceflow rateis definedas

Ff \ ρ f V f tA f \ ρ fVf Af (7.92)

and representsthe outflow from cell C0. As before, let u � and v� be the solutions
to the cell momentum equations usinga guessedor prevailing pressurefield p � . As
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before, thediscretecontinuity equationfor thecellC0 is notsatisfiedby u � andv � . We
postulatefaceflow ratecorrectionsF � suchthat

∑
f

F �f c F �f \ 0 (7.93)

whereF � arethefacemassflow ratescomputedfrom themomentum-satisfyingveloc-
ities u� andv � . As before,wepostulatefacenormal velocity corrections

V �f \ df p p�0 b p�1 q (7.94)

Herethe correctionto V̂f hasbeendropped in keepingwith the SIMPLE algorithm.
Thecorresponding faceflow ratecorrectionsare

Ff \ ρ f df Af p p�0 b p�1 q (7.95)

We alsopostulatea cell pressure correction

p�0 \ p�0 c p�0 (7.96)

As with regular meshes,wedefinecell velocity corrections

u�0 \ ∆ v 0

au
0
b ∑

f

p� f Ax

v�0 \ ∆ v 0

av
0
b ∑

f

p� f Ay (7.97)

with facepressurecorrections

p� f \ p�0 c p�1
2

(7.98)

SubstitutingEquations7.94and7.96 into thediscretecontinuity equation(Equation7.93)
yieldsa pressurecorrectionequation for thecell centerpressure.We maywrite this in
theform

aPp�P \ ∑
nb

p�nb c b

where

anb \ ρ f df Af

aP \ ∑
nb

anb

b \ b ∑
f

F �f (7.100)

7.10.1 Discussion

The broadstructure of the pressure correction equationis the sameas for regular
meshes.TheoverallSIMPLEalgorithm takesthesameform, andis not repeatedhere.
However a few important pointsmustbemade.

164



In writing ouraddeddissipationterm,wehavechosentoaddadissipationinvolving
theterm∂ pl ∂ξ , andto write this gradient explicitly in termsof d p0 b p1 f . Thetotal
gradient driving the facenormal velocity, however, alsocontainsa pressuregradient
tangential to theface.But becauseit is noteasyto write thisexplicitly , wehavechosen
to leave it embedded in the V̂f termin Equation7.91. Theaccuracy of this omission

is not a concernsincetheaddeddissipationschemeis O d ∆ξ 3 f accurate. However, we
should notethatthischoicedoeshaveconsequencesfor convergence.

The primary consequenceof this choice is that the pressurecorrectionequation
ignorespressurecorrections dueto ∂ pl ∂η . The ∂ pl ∂η term is proportional to the
non-orthogonality of the mesh. For orthogonalmeshes(eη t eξ \ 0), the term drops
out altogether. But whenthemeshis not orthogonal, thepressurecorrection equation
attributesto ∂ pl ∂ξ the corrections that shouldhave beenattributedto ∂ pl ∂η . The
final answeris thesamewhetherwe include thecorrectionsdueto ∂ pl ∂η or not;only
therateof convergencechanges.Our experienceshows thatthis approximationin the
pressure correctionequationis tolerable for most reasonable meshes.Sincewe are
droppingthecorrectionsto V̂f in keeping with theSIMPLEalgorithmanyway, wemay
think of this asan additional approximationto thecoefficients of pressure correction
equation.

In theinterestof clarity, oneimportantaspecthasbeenpushed to thebackground:
the linear interpolation of facepressure. For many flows, thepressurefield is smooth
anda linearinterpolationis adequate.In othercases,thepresenceof strongbody force
terms,suchas in swirling or buoyant flows, meansthat the cell pressuregradient is
steeperthanthatimpliedby linearinterpolation.Sincea linearinterpolationunderpre-
dicts the cell pressuregradient, the flow field mustdistort itself to provide the extra
momentumsourcesrequiredto balancethebody force. This canleadto distortions in
thecell-centered velocities. Improvementof co-locatedschemesfor large-bodyforce
problemscontinuesto beanactiveareaof research.

7.11 Closure

In thischapter, wehavedevelopedaco-locatedformulationfor structuredandunstruc-
turedmeshes.We haveseenthattheprimary difficulty hasto dowith thecomputation
of thefacenormal velocity, which is usedto write thediscretecontinuity equation. To
circumventcheckerboarding resultingfrom linearinterpolation of thefacenormal ve-
locity, we developeda momentuminterpolation or addeddissipationscheme.We saw
that the ideais easilyextended to unstructuredmeshesandthata SIMPLE algorithm
maybedevelopedusingit.

At this point,we have a completeprocedurecapable of computingtheconvection
anddiffusion of scalars,aswell theunderlying flow field. Thedevelopmenthasbeen
done for generalorthogonalandnon-orthogonalmeshes,bothstructuredandunstruc-
tured. Theschemepreserves thebasicconservationprinciple regardlessof cell shape.
Indeedwehavemadenoassumptionsabout cell shapesavethatthecell beanarbitrary
convex polyhedron. We turn now to theproblemof solvinggeneral unstructuredsets
of algebraic equationswhichresultfrom theunstructuredmeshdiscretizationswehave
seenin this andprecedingchapters.
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Chapter 8

Linear Solvers

As we have seenin theearlierchapters,implicit schemesresultin a systemof linear
equationsof theform

Ax \ b (8.1)

HereA is a N k N matrix andx is a vectorof theunknowns. Theefficient solutionof
suchsystemsis animportant componentof any CFD analysis.

Linearsystemsalsoarisein numerousotherengineeringandscientificapplications
anda largenumberof techniqueshavebeendevelopedfor theirsolution.However, the
systemsof equations thatwe dealwith in CFD havecertaindistinguishingcharacteris-
tics thatweneedto bearin mindwhile selectingtheappropriatealgorithms.

Oneimportantcharacteristicof our linearsystemsis thatthey areverysparse, i.e.,
therearea largenumber of zeroesin thematrixA. Recallthatthediscreteequationat
a cell hasnon-zerocoefficients for only theneighboring cells. Thusfor a two dimen-
sionalstructured quadrilateralgrid, for example, out of the N 2 entriesin the matrix,
only about 5 � N of themarenon-zero. It wouldseemto beagood ideato seeksolution
methodsthattakeadvantageof thesparsenature of ourmatrix.

Depending on the structureof the grid, the matrix might also have specificfill
pattern, i.e the patternof locationof the non-zeroentries. The systemof equations
resultingfrom a one-dimensionalgrid, for example, hasnon-zeroentriesonly on the
diagonal andtwo adjacent “lines” on eitherside.For a meshof 5 cells,thematrix has
theform

A \ ]____` x x 0 0 0
x x x 0 0
0 x x x 0
0 0 x x x
0 0 0 x x

 Z¡¡¡¡¢ (8.2)

Herex denotethenon-zeroentries.As we shall seeshortly, linearsystemsinvolving
suchmatrices,known astri-diagonalmatrices,canbesolvedeasilyandform thebasis
of somesolutionmethods for more generalmatricesaswell. We alsonotethat two
andthree-dimensionalstructuredgrids similarly result in banded matrices,although
theexactstructureof thesebandsdependsonhow thecellsarenumbered.Onceagain,
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it wouldseemadvantageousto exploit thebandstructureof ourmatrix,bothfor storage
andsolutiontechniques.

Anotherimportantcharacteristic of ourlinearsystemsis thatin many instancesthey
areapproximate. By this we meanthatthecoefficientsof thematrix and/or thesource
vector b are themselves subjectto changeafter we have solved the equation. This
maybe becauseof coupling betweendifferentequations(e.g., themassflux appearing
in convectivecoefficientsof theenergy equation), variableproperties(temperaturede-
pendent thermalconductivity, for example) or othernon-linearitiesin the governing
equations.Whatever theunderlyingreason,theimplication for thelinearsolver is that
it maynotbereallyworthwhileto solve thesystemto machineaccuracy. Sincewe are
goingto recomputethecoefficient matrixandsolve thelinearproblemonceagain,it is
usuallysufficient if weobtainonly anapproximatesolutionto any givenlinearsystem.
Also, aswe areiterating,we usuallyhave a goodinitial guessfor the unknown and
linearsolvers thatcantakeadvantageof this areobviouslydesirable.

8.1 Dir ect vs Iterati veMethods

Linearsolutionmethods canbroadly beclassifiedinto two categories,director itera-
tive. Direct methods,suchasGausselimination, LU decompositionetc.,typically do
not take advanatageof matrixsparsityandinvolvea fixednumber of operationsto ob-
tain thefinal solutionwhich is determinedto machine accuracy. They alsodonot take
advantageof any initial guessof the solution. Given the characteristicsof the linear
systemsoutlinedabove, it is easyto seewhy they arerarelyusedin CFD applications.

Iterative methods on the otherhand, caneasilybe formulatedto take advantage
of thematrix sparsity. Sincethesemethods successively improve thesolutionby the
application of afixednumberof operations,wecanstoptheprocesswhenthesolution
at any given outeriteration 1 hasbeenobtainedto a sufficient level of accuracy and
nothave to incur theexpenseof obtaining themachine-accuratesolution. As theouter
iterationsprogressandwe have betterinitial guessesfor the iterationsof the linear
solver, theeffort requiredduringthelinearsolutionalsodecreases.Iterative methods
arethereforepreferredandwe shalldevotethebulk of this chapterto suchmethods.

8.2 StorageStrategies

As we have alreadynoted, a largenumber of theentriesof our coefficient matrix are
zero. Consequently, it is very inefficient to usea two dimensionalarraystructureto
storeour matrix. In this sectionwe considersomesmarterwaysof storingonly the
non-zeroentriesthat will still allow us to perform any of the matrix operationsthat
thesolutionalgorithmmight require. Theexact way of doing this will dependon the
natureof thegrid.

1To distinguish the iterations being performedbecauseof equation non-linearity and/or inter equation
couplingfrom theiterationsbeingperformedto obtain thesolution for agivenlinearsystem,weusetheterm
“outer iteration” for theformerand“inner iteration” or simply iterationfor thelatter.
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Figure8.1: StorageSchemefor UnstructuredMeshCoefficientMatrix

For aone-dimensional grid of N cells,for example,wecouldstorethediagonal and
thetwo linesparallelto it usingthreeone-dimensional arraysof lengthN. Following
thenotation wehaveusedin thepreviouschapters,we labelthesearraysAP, AE and
AW, respectively. Thenon-zeroentriesof thematrixA canthenbeobtainedas

A d i w i f \ AP(i) (8.3)

A d i w i b 1f \ b AW(i) (8.4)

A d i w i c 1f \ b AE(i) (8.5)

For a two dimensional structured grid of NI k NJ cells, it is usuallyconvenient
to refer to the cells usinga double index notationandtherefore we could use5 two
dimensionalarraysof dimension d NI w NJ f to storethe AP, AE, AW, AN andAS
coefficients. Alternatively, onemight preferto number the cells usinga singleindex
notation andstorecoefficientsusing5 one-dimensional arraysof sizeNI � NJ instead.
In eithercase,becauseof thegrid structureweimplicitly know theindicesof theneigh-
boring cellsandthusthepositionof thesecoefficients in thematrix A. It is therefore
easyto interpret any matrix operation involving the coefficient matrix A in termsof
thesecoefficient arrays.

For unstructuredgridshowever, theconnectivity of thematrix mustbestoredex-
plicitly. Another difficulty is causedby the fact that the number of neighborsis not
fixed. Thereforewe cannotusetheapproachmentionedabove of storingcoefficients
asaP, aE, aW etc.arrays. We will look atonestrategy thatis oftenusedin thesecases.

Considera meshof N cellsandlet ni representthenumber of neighborsof cell i.
Thetotal numberof neighbor coefficients thatweneedto storeis thengivenby

B \ N

∑
i £ 1

ni (8.6)

We allocatetwo arrays of lengthB, oneof integers(labelledNBINDEX) andoneof
floatingpoint numbers(labelledCOEFF). We alsoallocateoneotherintegerarrayof
lengthN c 1, labelledCINDEX which is definedas

CINDEX(1) \ 1 (8.7)

CINDEX(i) \ CINDEX(i-1) c ni � 1 (8.8)
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TDMA(AP,AE,AW,B,X)x
for i = 2 to Nx

r = AW(i)/AP(i-1);
AP(i) = AP(i) - r*AE(i-1);
B(i) = B(i) - r*B(i-1);y

X(N) = B(N)/AP(N);
for i = N-1 down to 1x

X(i) = (B(i) - AW(i)*X(i+1))/AP(i);yy
Figure8.2: Tri-DiagonalMatrix Algorithm

The idea is that the indicesof the neighbours of cell i will be storedin the array
NBINDEX atlocationslocations j thataregivenbyCINDEX(i) ~ \ j ~ CINDEX(i+1).
Thecorrespondingcoefficients for theseneighborsarestoredin thecorrespondinglo-
cationsin theCOEFF array. Finally thecentercoefficient is storedin a separatearray
AP of lengthN. This is illustratedin Fig. 8.1whichshowsthecontentsof theCINDEX
andNBINDEX for a two dimensionalunstructuredgrid.

8.3 Tri-Diagonal Matrix Algorithm

Although the bulk of this chapteris concernedwith iterative solutiontechniques,for
thetridiagonal linearsystemarisingoutof aone-dimensional problemthereis apartic-
ularly simpledirectsolutionmethod thatwe considerfirst. Theideais essentiallythe
sameasGaussianelimination;however the sparse,tri-diagonal patternof the matrix
allowsusto obtainthesolutionin O d N f operations.This is accomplishedin two steps.
First, the matrix is upper-triangularized, i.e., the entriesbelow the diagonal aresuc-
cessively eliminatedstartingwith thesecondrow. Thelastequationthushasony one
unknown andcanbesolved. Thesolutionfor theotherequationscanthenbeobtained
by working our way backfrom the last to the first unknown, in a processknown as
back-substitution. Using thestoragestrategy described by Eq. 8.3, thealgorithm can
bewritten in theform shown in Fig. 8.3
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Figure8.3: StructuredGrid for Line by Line TDMA

8.4 Line by line TDMA

Linearsystemsarisingfrom two or threedimensionalstructuredgridsalsohavea reg-
ular fill pattern.Unfortunately, thereareno simplemethodsanalogousto theTDMA
thatwe saw in theprevioussectionfor thedirectsolutionof suchsystems.However,
usingtheTDMA we candevise iterativemethods. Consider, for example, thetwo di-
mensionalstructuredgrid shown in Fig.8.3.Wewill assumethatthecoefficient matrix
is storedusingthestrategy discussedin Sec.8.2, i.e, in 5 two dimensional arraysAP,
AE, AW, AN andAS. Theequationatpoint d I w J f is thengiven by

AP(I,J) X(I,J) c AE(I,J) X(I+1,J) c AW(I,I) X(I-1,J)c AN(I,J) X(I,J+1) c AS(I,J) X(I,J-1) \ B(I,J) (8.9)

We alsoassumethat we have a guessfor the solutioneverywhere. We rewrite this
equationas

AP(I,J) X(I,J) c AE(I,J) X(I+1,J) c AW(I,I) X(I-1,J) \\ B(I,J) b AN(I,J) X � (I,J+1) b AS(I,J) X � (I,J-1) (8.10)

wherethesuperscript denotesguessedvalues.Theright handsideof Eq.8.10is thus
consideredto beknown andonlyX(I,J), X(I+1,J) andX(I-1,J) areconsid-
eredto beunknowns.Writing similarequations for all thecells d i w J f w i \ 1 w NI (shown
by thedottedoval in Fig. 8.3we obtaina systemwhich hasthesameform asthe tri-
diagonalsystemwhichwecanthensolveusingTDMA. Thisgivesusvaluesfor X(i)
for all cells i along j \ J line. However, unlike theone-dimensional problem, this is
not the exact solutionbut only an approximateonesincewe hadto guessfor values
of X(i,J+1) andX(i,J-1) in building up the tri-diagonal system.We cannow
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for j = 1 to NJx
for i = 1 to NIx

AP1D(i) = AP(i,j);
AE1D(i) = AE(i,j);
AW1D(i) = AW(i,j);
B1D(i) = B(i,j);
if (j > 1) B1D(i) = B1D(i) - AS(i,j)*X(i,j-1);
if (j < NJ) B1D(i) = B1D(i) - AN(i,j)*X(i,j+1);y

TDMA(AP1D,AE1D,AW1D,B1D,X1D);
for i = 1 to NIx

X(i,j) = X1D(i);yy
Figure8.4: Line By Line TDMA Algorithm along j lines

applythesameprocessalongthenext line, j \ J c 1. In doingsowe will usethere-
centlycomputedvalueswheneverX(i,J)’s arerequired. Theoverall procedurecan
bedescribedwith thepseudocodeshown in Fig. 8.4

Oncewehaveapplied theprocessfor all the j lines,wewill haveupdatedthevalue
of eachX d i w j f . As notedabove theseareonly approximatevaluesbut hopefully they
arebetterapproximations thanour initial guess.As in all iterative methods, we will
try to improve thesolutionby repeatingtheprocess.To this end,we couldapply the
algorithm in Fig. 8.4again.However, we noticethatvisiting j lines in sequencefrom
1 to NJ means thatall cellshave seentheinfluenceof theboundaryat y \ 0 but only
thecellsat j \ NJ have seeninfluenceof y \ 1 boundary. If we repeat theprocessin
Fig. 8.4again,this time thecellsat j \ NJ b 1 will seethis influence(sincethey will
usethe values obtainedat j \ NJ during thepresentupdate)but it will takesseveral
repetitionsbeforecellsnearJ \ 1 seeany influenceof theboundaryaty \ 1. Oneeasy
way of removing this biasis to visit the j lines in thereverseorderduring thesecond
update. With this symmetricvisiting sequence we ensurethat all cells in thedomain
seetheinfluence of bothboundariesassoonaspossible.

The sequenceof operationswherebyall the valuesof X d i w j f areupdatedonceis
referred to asa sweep. An iteration is thesequence that is repeatedmultiple number
of times. Thusfor the line by line TDMA, an iterationmay consistof two sweeps,
first visiting all j lines in increasingorder of their index andthenin decreasingorder
asdescribed above. Of course,it is not mandatoryto applytheTDMA for a constant
j line. We could apply the sameprocessalonga constanti, considering only the j
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direction neighbours implicitly. Depending on the coordinatedirection alongwhich
informationtransferis mostcritical, sweepingby visiting i or j linesmightbethemost
optimal. In generalcases,however, it is useful to combine both. Thusoneiteration
of the line by line TDMA would consistof visiting, say eachof the i lines first in
increasing orderandthenin decreasingorderfollowedby similar symmetric sweeps
along j lines(andk linesin threedimensionalproblems).

8.5 Jacobiand GaussSeidelMethods

Formatricesresultingfromunstructuredgrids,liketheoneshown in Fig.8.1,of course,
no line-by-line procedureis possible.Instead,we mustusemore general update meth-
ods.Thesimplestof thesearetheJacobiandGauss-Seidelmethods. In bothcases,the
cellsarevisitedin sequenceandat eachcell i thevalueof xi is updatedby writing its
equationas

Ai ¤ ixi \ b b ∑Ai ¤ nbxnb (8.11)

wherethesummationis over all theneighborsof cell i. Thetwo methodsdiffer in the
valuesof theneighboringxi thatareemployed. In caseof theJacobimethod, the“old”
valuesof xi areusedfor all the neighborswhereasin the Gauss-Seidelmethod, the
latestvaluesof xi areusedat all theneighbours thathave alreadybeenupdatedduring
thecurrent sweepandold valuesareusedfor theneighbours thatareyet to bevisited.
As in thecaseof the line by line TDMA, theorderof visiting thecell is reversedfor
thenext sweepsoasto avoid directional bias.

In general theGauss-Seidelmethodhasbetterconvergencecharacteristicsthanthe
Jacobimethod andis thereforemostwidely usedalthough thelatteris sometimesused
on vectorandparallelhardware. Using the storageschemeoutlinedin Sec.8.2, one
iterationof the Gauss-Seidelmethodcanbe expressedin the pseudo-codeshown in
Fig. 8.5.

8.6 General Iterati veMethods

Thegeneralprinciple in all iterativemethods is thatgivenanapproximatesolutionx k,
we seekto obtain a betterapproximationxk¥ 1 andthenrepeatthewholeprocess. We
definetheerroratany given iterationas

ek \ x b xk (8.12)

wherex is theexactsolution. Of course,sincewe don’t know theexact solution, we
alsodon’t know theerrorat any iteration. However, it is possibleto checkhow well
any givensolutionsatisfiestheequationby examining theresidualr , definedas

rk \ b b Axk (8.13)

As the residualapproacheszero,the solutionapproachesthe exact solution. We can
determine therelationbetweenthemusingEqs.8.12and 8.13as

Aek \ r k (8.14)
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GaussSeidel(AP,COEFF,CINDEX,NBINDEX,B,X)x
for sweep= 1 to 2x

if (sweep= 1)
IBEG = 1, IEND = N, ISTEP = 1;

else
IBEG = N, IEND = 1, ISTEP = -1;

for i = IBEG to IEND steppingby ISTEPx
r = B(i);
for n = CINDEX(i) to CINDEX(i+1)-1x

j = NBINDEX(n);
r = r - COEFF(n)*X(j);y

X(i) = r/AP(i);yyy
Figure8.5: SymmetricGauss-SeidelSweep
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Thus the error satisfiesthe samesetof equations asthe solution,with the residual r
replacing thesourcevectorb. This is animportant property thatwe will make useof
in devisingmultigrid schemes.

UsingEq.8.14andthedefinitionof theerrorwe obtain

x b xk \ A � 1rk (8.15)

Most iterativemethodsarebasedonapproximatingthis expressionas

xk ¥ 1 \ xk c Brk (8.16)

whereB is someapproximation of theinverseof A thatcanbecomputedinexpensively.
For example,it canbeshown thattheJacobimethod is obtained whenB \ D � 1, where
D is thediagonalpartof thematrixA.

Anotherway of expressingany iterative schemethat we will find useful in later
analysis is

xk ¥ 1 \ Pxk c gk (8.17)

whereP is known asthe iteration matrix. For theJacobimethodthe iterationmatrix
is given by P \ D � 1 d L c U f while for theGauss-Seidelmethodit is P \ d D b L f � 1U.
HereD, L andU arethe diagonal, strictly lower anduppertriangular partsof A ob-
tainedby splitting it as

A \ D c L c U (8.18)

8.7 Convergenceof Jacobiand GaussSeidelMethods

Although the JacobiandGauss-Seidelmethods arevery easyto implement andare
applicable for matriceswith arbitraryfill patterns their usefulnessis limited by their
slow convergencecharacteristics. Theusualobservation is thatresidualsdropquickly
during the first few iterationsbut afterwards the iterations “stall”. This is specially
pronouncedfor large matrices.

To demonstratethis behavior, let us consider the following 1D Poissonequation
overa domain of lengthL.

∂ 2φ
∂x2 \ sd xf (8.19)

andspecifiedDirichlet boundaryconditions φ d 0f \ φ0 andφ d L f \ φL. Recallthatthis
equationresultsfrom our 1d scalartransport equationin thepurediffusionlimit if we
choosea diffusioncoefficient of unity. If we discretizethis equation on a grid of N
equispacedcontrol volumesusingthe method outlinedin Chapter3 we will obtaina
linearsystemof theform

1
h

]_____`
3 b 1 0 t+t0t 0 0 0b 1 2 b 1 t+t0t 0 0 0
...
0 0 0 t+t0t b 1 2 b 1
0 0 0 t+t0t 0 b 1 3

  ¡¡¡¡¡¢ ]_____`
φ1
φ2
...

φN � 1
φN

  ¡¡¡¡¡¢ \ ]______`
hs1 c 2φ0

h
hs2
...

hsN � 1

hsN c 2φL
h

  ¡¡¡¡¡¡¢ (8.20)
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Figure8.6: FourierModesonN \ 64grid

whereh \ L
N andhsi represents thesourcetermintegratedover thecell.

Anothersimplificationwemakeis to chooseφ0 \ φL \ 0 aswell assd xf \ 0. Thus
theexactsolutionto thisproblemis simplyφ d xf \ 0. Wecannow studythebehavior of
iterative schemesby startingwith arbitraryinitial guesses;theerror at any iterationis
thensimply thecurrent valueof thevariable φ . In order to distinguishtheconvergence
characteristicsfor differenterror profileswewill solvetheproblemwith initial guesses
givenby

φi \ sin

m
kπxi

L n (8.21)

Equation 8.21representsFourier modes andk is known asthe wavenumber. Figure
8.6 shows thesemodesover thedomainfor a few valuesof k. Note that for low val-
uesof k we get“smooth” profiles while for higherwavenumberstheprofilesarevery
oscillatory.

Startingwith theseFouriermodes,we apply theGaussSeidelmethodfor 50 iter-
ationson a grid with N \ 64. To judgehow the solution is converging we plot the
maximum φi (which is alsothemaximum error). Theresultsareshown in Fig. 8.7(a).
We seethatwhenwe startwith aninitial guesscorresponding to k \ 1, themaximum
errorhasreducedby lessthan20%but with a guessof k \ 16 Fouriermode,theerror
reducesby over 99%evenafter10 iterations.

In general cases,our initial guesswill of course containmore thanoneFourier
mode. To seewhattheschemedoesin suchcaseswestartwith aninitial guessconsist-
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Figure8.7: Convergenceof Gauss-Seidelmethod onN \ 64grid for (a) initial guesses
consistingof singlewavenumbers(b) initial guessconsistingof multiplemodes

ing of k \ 2 w 8 and16modesi.e.

φi \ 1
3 � sin

m
2πxi

L n c sin

m
8πxi

L n c sin

m
16πxi

L n � (8.22)

In this caseweseefrom Fig. 8.7(b) thattheerrordropsrapidly atfirst but thenstalls.
Anotherway of looking at theeffect of the iterative schemeis to plot thesolution

after10 iterations asshown in Fig. 8.8. We seethat theamplitude is not significantly
reducedwhentheinitial guessis of low wave numbermodesbut it is greatlyreduced
for thehigh wave numbermodes.Interestingresultsareobtainedfor themixedmode
initial guessgiven by Eq. 8.22. We seethat the oscillatorycomponenthasvanished
leaving a smoothmodeerrorprofile.

Thesenumerical experimentsbegin to tell us the reasonsbehind the typical be-
havior of theGauss-Seidelscheme.It is very effective at reducing high wavenumber
errors. This accounts for the rapiddrop in residualsat thebeginning whenonestarts
with anarbitrary initial guess.Oncetheseoscillatorycomponentshave beenremoved
we areleft with smootherrorprofileson which the schemeis not very effective and
thusconvergencestalls.

Usingour sampleproblemwe canalsoverify anothercommonly observed short-
coming of the Gauss-Seideliterative schemeviz. that the convergencedeteriorates
asthe grid is refined. Retainingthe sameform of initial guessandusingk \ 2, we
solve theproblemon a grid that is twice asfine, ie., N \ 128. The resultingconver-
gence plot shown in Fig. 8.9 indicatethat the convergence becomes evenworse. On
thefiner grid we canresolve more modesandagainthehigheronesamong thosecon-
vergequickly but the lower modes appearmore“smooth” on thefiner grid andhence
converge slower. We alsonotefrom Fig. 8.9 that the converseis alsotrue, ie., on a
coarsegrid with N \ 32,theconvergenceis quicker for thesamemode.It appears that
thesameerrorprofile behavesasa lesssmooth profile whensolvedon a coarsergrid.
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Figure8.8: Initial andfinal solutinafter10 Gauss-Seideliterationson N ¦ 64 grid for
(a) initial guessesconsistingof k ¦ 2 (b) initial guessesconsistingof k ¦ 8 (c) initial
guessconsistingof multiple modes

Someof themethodsfor accelerating convergenceof iterative solversarebasedupon
this property.

8.8 Analysis Of Iterati veMethods

For simplelinearsystemslike theonewe usedin theexamplesabove andfor simple
iterative schemeslike Jacobi,it is possibleto understandthe reasonsfor the conver-
gencebehaviour analyically. We will notgo into detailsherebut briefly describesome
of theimportantresults.Usingtheiterativeschemeexpressedin theform Eq.8.16, we
canshow that theerror at any iterationn is relatedto theinitial error by thefollowing
expression

en ¦ Pne0 (8.23)

In order for theerrorto reducewith iterations,thespectral radiusof theiterationmatrix
(which is the largestabsoluteeigenvalueof thematrix) mustbe lessthanoneandthe
rateof convergencedependsonhow smallthis spectralradius is.

Theeigenvaluesof theJacobiiterationmatrixarecloselyrelatedto theeigenvalues
of matrix A andthetwo matriceshave thesameeigenvectors. Now, if we choosethe
matrix linearsystemto be2

1
h

§¨¨¨¨¨© 2 ª 1 0 t0t+t 0 0 0ª 1 2 ª 1 t0t+t 0 0 0
...
0 0 0 t0t+t ª 1 2 ª 1
0 0 0 t0t+t 0 ª 1 2

«Z¬¬¬¬¬­
§¨¨¨¨¨© φ1

φ2
...

φN ® 1
φN

«Z¬¬¬¬¬­ ¦
§¨¨¨¨¨¨© hs1 ¯ φ0

h
hs2
...

hsN ® 1

hsN ¯ φL
h

« ¬¬¬¬¬¬­ (8.24)

2 This is the systemoneobtains usinga finite difference discretization of Eq. 8.19with an equispaced
meshconsisting of N interior nodesandis only slightly differentfrom thesystemwe usedin the previous
section. Both thesystemshavesimilar convergencecharacteristics; thereasonfor choosingthis form instead
of Eq.8.20is that it is mucheasier to studyanalytically.
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Figure 8.9: Convergence of Gauss-Seidelmethod on different sizedgrids for initial
guesscorresponding to k ¦ 2 mode

we canfind analytical expressionfor theeigenvaluesof thecorresponding Jacobiiter-
ationmatrix. They aregivenby

λk ¦ 1 ª sin2 ° kπ
2N ± k ¦ 1 ² 2 ²0³1³,³N (8.25)

Theeigenvectorsof theJacobiiterationmatrix,wk turnouttobethesameastheFourier
modeswe usedin theprevioussectionasstartingguesses.The j th componentof the
eigenvectorcorrespondingto theeigenvalueλ k is givenby

wk ´ j ¦ sin ° jkπ
N ± j ¦ 1 ² 2 ²+³,³1³N (8.26)

Now, if our initial erroris decomposedinto Fouriermodes,we canwrite it in termsof
theseeigenvectorsas

e0 ¦ ∑αkwk (8.27)

Substituing thisexpressionin Eq.8.16andusingthedefinitionof eigenvalue,weobtain

en ¦ ∑αkλ n
k wk (8.28)

We seefrom this expressionthatthekth mode of theinitial error is reducedby a factor
λ n

k . FromEq.8.25we notethat the largest eigenvalueoccursfor k ¦ 1 andtherefore
it is easyto seewhy the lower modes aretheslowestto converge. Also notethat the
magnitudeof thelargesteigenvalueincreasesasN increases;this indicatesthereason
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behind our otherobservation that convergenceon coarsergrids is betterthanthat on
finergridsfor thesamemode.

Althoughwehaveanalyzedtheconvergencebehaviour of averysimpleschemeon
a simplematrix, theseconclusionshold true in general. The eigenvaluesof the ma-
trix A aswell asthatof the iterationmatrix play animportant role in determining the
convergencecharacteristics. Our insistenceon maintaining diagonal dominance and
positivecoefficients is motivatedby therequirementof keepingthespectralradiusbe-
low unity. Practicessuchaslinearizing sourcetermsandunderrelaxation thatwe need
in order to handle non-linearitiesalsohelpin reducing thespectralradius.However in
many cases,e.g.,thepressurecorrection equation, wemusthandlestiff linearsystems,
i.e., thosewith spectralradiuscloseto 1.

Many iterativeschemeshavebeendevisedto handlestiff systems.They usuallyin-
volvesomeform of preconditioning to improvetheeigenvaluesof theiterationmatrix.
In general, thesemethods area lot morecomplicatedto implement compared to the
simpleJacobiandGauss-Seidelmethodswe have studiedso far. We will not discuss
any of themherebut ratherlook at another strategy, which is basedon the improved
convergencecharacteristicsof thesimpleiterativeschemes oncoarsermeshes.

8.9 Multigrid Methods

We saw in theprevioussectionthat the reasonfor slow convergenceof Gauss-Seidel
method is that it is only effective at removing high frequency errors. We also ob-
servedthatlow frequency modesappearmoreoscillatoryoncoarsergridsandthenthe
Gauss-Seideliterationsaremore effective. Theseobservationssuggestthatwe could
acceleratetheconvergenceof theseiterativelinearsolversif wecouldsomehow involve
coarsergrids.

Thetwo mainquestions we needto answerare(1) whatproblem should besolved
onthecoarsegridand(2)how shouldwemakeuseof thecoarsegrid informationin the
finegrid solution. Certainconstraintscanbeeasilyidentified.Weknow thatin general
theaccuracy of thesolutiondependson thediscretization;thereforewe would require
that our final solutionbe determined only by the finestgrid that we areemploying.
This means that the coarsegrids canonly provide us with correctionsor guessesto
the fine grid solutionandas the fine grid residuals approachzero(i.e., the fine grid
solutionapproachesthe exact answer)the influenceof any coarselevels shouldalso
approachzero.Oneconsequenceof this requirementis that it is enoughto solve only
an approximateproblem at the coarselevels sinceits solutionwill never govern the
final accuracy weachieve.

Onestrategy for involving coarselevelsmight beto solve theoriginal differential
equation on a coarsegrid. Oncewe have a converged solutionon this coarsegrid,
we could interpolateit to a finer grid. Of course,the interpolatedsolutionwill not in
general satisfythediscreteequations at thefine level but it would probablybea better
approximationthananarbitraryinitial guess.We canrepeattheprocessrecursively on
evenfinergridstill we reachthedesiredgrid.

Thedisadvantagewith this strategy, known asnestediteration is that it solvesthe
problem fully on all coarsegrids eventhough we areonly interestedin thefinestgrid
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solution. It alsodoesnotmakeuseof any guesswemighthavefor thefinestlevel grid
from previousouteriterations.More importantly however, thephysicalproblem may
not be well resolvedon the coarsegrid andthusthe solutionon coarsegrid may not
alwaysbea goodguessfor thefine grid solution. Smootherror modesmayariseonly
onthefinergridsandthentheconvergencewill still belimited by them.

8.9.1 CoarseGrid Corr ection

A more useful strategy, known ascoarsegrid correctionis basedontheerrorequation
(Eq. 8.14). Recallthattheerror e satisfiesthesamesetof of equationsasour solution
if we replace thesourcevector by theresidual:

Ae ¦ r (8.29)

NotealsothatsolvingEq. 8.1with an initial guessx0 is identicalto solvingEq. 8.29
with the residualr 0 ¦ b ª Ax0 andan initial guessof zeroerror. Now supposethat
aftersomeiterationson thefinestgrid we have a solutionx. Although we don’t know
theerrorwe do know thattheerrorat this stageis likely to besmoothandthatfurther
iterations will not reduce it quickly. Insteadwe could try to estimateit by solving
Eq.8.29ona coarsergrid. We expectthaton thecoarsergrid thesmootherrorwill be
more oscillatoryandtherefore convergencewill bebetter. Whenwe have obtaineda
satisfactorysolutionfor e wecanuseit to correct ourfinegrid solution.

Of course, even on the coarselevel the error (which of course now is the error
in Eq. 8.29, i.e., the error in the estimationof the fine grid error) will have smooth
components. We cannow view Eq.8.29asa linearproblem in its own right. We can
thusapply thesamestrategy for its solutionthatwe usedfor thefinestgrid, i.e., solve
for its erroronaneven coarsermesh.Thiscanbecontinuedrecursively onsuccessively
coarsermeshestill we reachonewith a few number (2-4) of cells. At this stagewe
cansimply solve thelinearanalytically, although usingGauss-Seideliterationusually
sufficesaswell.

We still haveto specifyexactly whatwemeanby solvingEq.8.29onacoarsegrid
andhow exactly weintendto usetheerrorsestimatedfrom thecoarselevelsbut wecan
already seethatthestrategy outlinedabovehasthedesiredproperties.Firstof all, note
thatif thefinegridsolutionisexact,theresidual will bezeroandthusthesolutionof the
coarselevel equation will alsobezero.Thuswe areguaranteedthat thefinal solution
is only determinedby the finest level discretization. In addition,sincewe startwith
a zeroinitial guessfor thecoarselevel error, we will achieve convergenceright away
andnot wasteany time on further coarselevel iterations.Anotherusefulcharacteristic
of this approachis thatwe usecoarselevel to only estimatefine level errors. Thusany
approximationswe make in thecoarselevel problemonly effect theconvergencerate
andnot thefinal finestgrid solution.

8.9.2 GeometricMultigrid

Having developeda general ideaof how coarsegrids might beusedto acceleratecon-
vergence, let us now look at somedetails. To distinguishbetweenthe matricesand
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Figure8.10: Coarsening for 1D grid

vectors at different grid levels, we shall employ a parenthicatedsuperscript, starting
with (0) for thefinestgrid andincreasingit asthegrid is coarsened; a secondsuper-
script,if present,will denotetheiterationnumber. Thustheproblemto besolvedat the
level µ l ¶ is givenby

A · l ¸ x · l ¸ ¦ b · l ¸ (8.30)

andtheresidualat level l afterk iterationsis

r · l ¸¹´ k ¦ b · l ¸ ª A · l ¸ x · l ¸¹´ k (8.31)

We have alreadyseenhow to discretizeanditerateon the finest level (l ¦ 0) grid of
N cells andcompute the residual r · 0̧ . We alsoknow that for coarselevels (l º 0),
the unknown x · l ¸ representsthe estimateof the errorat the µ l ª 1¶ level andthat the
sourcevectorb · l ¸ is somehow to be basedon the residualr · l ® 1̧ . After doing some
iterationson the coarsegrid (andperhapsrecursively repeatingtheprocessat further
coarselevels)wewouldliketo makeuseof theerrorscalculatedat level l to correct the
current guessfor solutionat thefiner level. Thenext stepis to definetheexactmeans
of doing thesecoarsegrid operationsandtheintergrid transfers.

The simplestway of obtaining the coarsegrid for our sample1D problem is to
merge cells in pairsto obtaina grid of N » 2 cells,asshown in Fig. 8.10. Theresulting
grid is similar to theoriginal grid, with acell width of 2h. We cannow applyourusual
discretizationprocedureonthedifferential equation (rememberingthattheunknown is
a correctionto thefine level unknown) andobtain thelinearsystemof thesameform
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as8.20.Thecoarselevel matrix is givenby

A · 1̧ ¦ 1
2h

§¨¨¨¨¨© 3 ª 1 0 ¼+¼+¼ 0 0 0ª 1 2 ª 1 ¼+¼+¼ 0 0 0
...
0 0 0 ¼+¼+¼$ª 1 2 ª 1
0 0 0 ¼+¼+¼ 0 ª 1 3

« ¬¬¬¬¬­ (8.32)

We alsonotefrom Fig. 8.10thatthecell centroid of acoarselevel cell liesmidway
betweenthecentroidsof its parentfine level cells.Thesourcetermfor thecoarselevel
cell canthusbeobtainedby averaging theresidualsat theparentcells:

b · l ½ 1̧
i

¦ 1
2 ¾ r · l ¸2i ® 1 ¯ r · l ¸

2i ¿ (8.33)

Thisoperation of transfering theresidual from afine level to thecoarselevel is known
asrestrictionandis denotedby theoperator I l ½ 1

l definedas

b · l ½ 1̧ ¦ I l ½ 1
l r · l ¸ (8.34)

For our equispaced grid we usedaveraging asthe restrictionoperator; in the general
casewe will needto usesomeform of interpolation operator.

We alreadyknow that the startingguessfor the coarselevel unknownsx · l ½ 1̧¹´ 0 is
zero. Thuswenow haveall theinformationto iteratethecoarselevel systemandobtain
an esitmatefor the error. The processof transfering this correction backto the finer
level is known asprolongation andis denotedby theoperator I l

l ½ 1. Thecorrection of
thesolutionat thefine level usingthecoarselevel solutionis writtenas

x · l ¸ ¦ x · l ¸ ¯ I l
l ½ 1x · l ½ 1̧ (8.35)

The simplestprolongation operator that we canuseon our 1D grid (Fig. 8.10) is to
apply thecorrection from acoarselevel cell to boththeparent fine level cells,i.e. usea
zeroth order interpolation.A moresophisticatedapproachis to uselinearinterpolation;
for example, for cell 2 at thefine level we use

x · 0̧
2
¦ x · 0̧

2 ¯ ° 3
4

x · 1̧
1 ¯ 1

4
x · 1̧

2 ± (8.36)

Thestrategy outlinedin this sectionis known asgeometricmultigrid becausewe
madeuseof thegrid geometry andthedifferentialequation at thecoarselevelsin order
to arrive at the linear systemto be solved. In the onedimensional case,of course,
thecoarselevel cellshadthesametypeof geometry asthoseat thefine level andthis
madethediscretizationprocessstraightforward.For multidimensionalcases,however,
the cell shapesobtained by agglomeratingfine level cells canbe very different. As
shown in Fig. 8.11the coarselevel cells may not evenbe convex. With suchnested
grid hierarchiesit maynotbefeasibleto discretizetheoriginal differentialequationon
thecoarselevel cells.
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(a) l=0 (b) l=1 (c) l=2

Figure8.11:NestedCoarsening For 2D grid

(a) l=0 (b) l=1 (c) l=2

Figure8.12:IndependentCoarsening For 2D grid
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Oneapproachto getaround this problemis to usea sequenceof non-nested,inde-
pendentgrids,asshown in Fig. 8.12. In this casethereareno common facesbetween
any two grids. Themainproblem with this approachis that the prolongation andre-
striction operatorsbecome very complicatedsincethey involve multidimensional in-
terpolation. Also, in someinstances,for example, thepressurecorrection equationthat
we derived algebraically, we may not have a formal differential equation that canbe
discretizedto obtainthe coarselevel system.For thesereasons,it is usefulto devise
methodsof obtaining coarsegrid linearsystemsthatdonotdependonthegeometryor
thedifferentialequation. We will look at suchalgebraic multigrid methodsin thenext
section.

8.9.3 Algebraic Multigrid

The general principlesbehindalgebraic multigrid methods arethe sameasthosefor
thegeometric multigrid methodwe saw in thelastsection.Themaindifferenceis that
thecoarselevel systemis derivedpurelyfrom thefine level systemwithout reference
to theunderlying grid geometry or physicalprinciplethat led to thefine level system.
Insteadof thinking in termsof agglomeratingtwo or morefine level cellsto obtainthe
geometryof a coarselevel cell, we speakof agglomeratingtheequationsat thosecells
to directlyobtainthelinearequationcorrespondingto thatcoarsecell.

We will seeshortlyhow to selecttheequations to beagglomeratedin thegeneral
case.For themoment let usjustconsiderthe1D grid andthecoarsegrid levels,shown
in Fig. 8.10,thatwe usedin thegeometric multigrid sectionabove. Let i andi ¯ 1 be
the indicesof thefine level equations thatwe will agglomerateto producethecoarse
level equation with index I . For instance,cells1 and2 at level 0 arecombinedto obtain
theequation for cell 1 at level 1. Writing out theerror equation (Eq.8.14) for indicesi
andi ¯ 1 we have

A · 0̧
i ´ i ® 1

e· 0̧
i ® 1 ¯ A · 0̧

i ´ i e· 0̧
i ¯ A · 0̧

i ´ i ½ 1
e· 0̧

i ½ 1
¦ r · 0̧

i
(8.37)

A · 0̧
i ½ 1 ´ ie· 0̧i ¯ A · 0̧

i ½ 1 ´ i ½ 1
e· 0̧

i ½ 1 ¯ A · 0̧
i ½ 1́ i ½ 2

e· 0̧
i ½ 2

¦ r · 0̧
i ½ 1

(8.38)

Now, the multigrid principle is that the errors at level l areto be estimatedfrom the
unknownsat level l ¯ 1. Weassumethattheerrorfor boththeparentcells i andi ¯ 1 is
thesameandis obtainedfrom x · 1̧

I
. Likewise,e· 0̧

i ® 1
¦ x · 1̧

I ® 1
ande· 0̧

i ½ 2
¦ x · 1̧

I ½ 1
. Substituting

theserelationsandaddingEqs.8.37and8.38givesustherequiredcoarselevelequation
for index I :

A · 0̧
i ´ i ® 1

x · 1̧
I ® 1 ¯ µ A · 0̧i ´ i ¯ A · 0̧

i ´ i ½ 1 ¯ A · 0̧
i ½ 1 ´ i ¯ A · 0̧

i ½ 1 ´ i ½ 1
¶ x · 1̧

I ¯ A · 0̧
i ½ 1 ´ i ½ 2

x · 1̧
I ½ 1
¦ r · 0̧

i ¯ r · 0̧
i ½ 1

(8.39)

Thus we seethat the coefficients for the coarselevel matrix have beenobtained by
summing up coefficientsof thefine level matrix andwithout any useof thegeometry
ordifferentialequation. Thesourcetermfor thecoarselevel cellsturnoutbethesumof
theresiduals at theconstituentfine levelscells.This is equivalentto theuseof addition
astherestrictionoperator. Our derivation above implieszerothorder interpolationas
theprolongation operator.
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8.9.4 Agglomeration Strategies

In the 1D casethat we have seenso far, agglomerationwasa simplematterof com-
bining equationsat cells 2i and2i ¯ 1 to obtainthecoarselevel systemof equations.
For linearsystemsresultingfrom two or threedimensionalstructured grids,thesame
ideacanbeappliedin oneor moredirectionssimultaneously. Besidessimplifying the
book-keeping this practicehasthe additional advantageof maintaining the penta-or
equationsata timeto obtainsepta-diagonalform of thelinearsystem.Thispermitsthe
useof relaxation methods suchasline-by-line TDMA on thecoarselevel systemsas
well asthefine level systems.

For unstructured grids, however, we needto devise moregeneralagglomeration
criteria. Oneuseful practiceis to try to combine cells that have the largest mutual
coefficients. Thiscreatescoarselevelgrids3 thatallow theoptimaltransferof boundary
informationto interior regions andthusacceleratesconvergence.

To implementsucha coarsening procedure,we associatea coarseindex with each
fine level cell and initialize it to zero. We also initialize a coarselevel cell counter
C ¦ 1 We thenvisit thecells (or equations) in sequence,andif hasnot beengrouped
(i.e., its coarseindex is 0), group it andn of its neighboursfor which the coefficient
Ai ´ j is thelargest(i.e,assignthemthecoarselevel index C) andincrement C by 1.

Wehavealreadyseenthatthecoefficientsof thecoarselevel matrixareobtainedby
summing up appropriatecoefficients of thefine level matrix. Proceeding in thesame
manner thatweusedto derive Eq.8.39we canshow that

A · l ½ 1̧
I ´ J ¦ ∑

i À GI

∑
j À GJ

Al
i ´ j (8.40)

whereGI denotesthesetof fine level cells thatbelongto thecoarselevel cell I . Also,
aswe have seenbefore, thesourcevectorfor thecoarselevel equation is obtainedby
summing up theresiduals of theconstituent fine level cells

b · l ½ 1̧
I

¦ ∑
i À GI

r · l ¸
i

(8.41)

Thecoarselevel matricescanbestoredusingthesamestoragestrategiesoutlined
in Sec.8.2 for the finest level. Best multigrid performanceis usuallyobserved for
n ¦ 2, i.e., a coarselevel grid thatconsistsof roughly half thenumber of cellsasthe
finestlevel. If sucha division is continuedtill we have just 2 or 3 cellsat thecoarsest
level, thetotalmemory requiredfor storingall thecoarselevelsis roughly equalto that
required for thefinestlevel.

Thelinearsystemsencounteredin CFDapplicationsarefrequentlystiff. Thisstiff-
nessis a resultof a number of factors: large aspect-ratiogeometries,disparategrid
sizestypical of unstructuredmeshes,largeconductivity ratiosin conjugateheattrans-
fer problems,andothers.Theagglomerationstrategy outlinedabove is very effective
in acceleratingtheconvergencerateof thelinearsolver.

3Eventhough we arenot concernedwith theactual geometry of thecoarselevel gridsin algebraicmulti-
grid, it is neverthelessquite usefulto visualize the effective grids resulting from the coarsening in orderto
understand thebehaviour of themethod.
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Figure8.13: Conduction in compositedomain: multigrid coarsening

Considerthe situationdepicted in Fig. 8.13. A compositedomainconsistsof a
low-conductivity outerregion surrounding a highly conducting innersquaredomain.
Theratioof conductivities is 1000; a ratioof thisorderwouldoccurfor acopperblock
in air. The temperatureis specifiedon the four external walls of the domain. Con-
vergenceof typical linear solvers is inhibited by the large anisotropy of coefficients
for cells bordering the interfaceof the two regions. Coefficients resultingfrom the
diffusionterm scaleaskA» ∆x, whereA is a typical faceareaand∆x is a typical cell
lengthscale. For interfacecells in the highly conducting region, coefficients to inte-
rior cellsareapproximatelythreeorders of magnitudebigger thancoefficients to cells
in the low-conducting region. However, Dirichlet boundaryconditions,which setthe
level of thetemperaturefield, areonly availableat theouterboundariesof thedomain,
adjacent to the low-conducting region. Informationtransferfrom the outerboundary
to the interior region is inhibited because the large-coefficient termsoverwhelm the
boundaryinformationtransferred through the small-coefficient terms. An agglomer-
ationstrategy which clusterscell neighborswith the largestcoefficientsresultsin the
coarselevelsshown in Fig. 8.13.At thecoarsestlevel, thedomain consistsof a single
cell in thehigh-conductingregion, andanother in thelow-conductingregion. Theas-
sociatedcoefficient matrixhascoefficients of thesameorder. Thetemperature level of
theinnerregion is setprimarily by themultigrid correctionsat this level, andresultsin
very fastconvergence.
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Figure 8.14: Orthotropic conduction: multigrid coarsening

Anotherexample is shown in Fig. 8.14.Theprobleminvolves orthotropicconduc-
tion in atriangular domainwith temperaturedistributionsgiven onall boundaries[17].
Thematerialhasaconductivity kηη º 0 in theη direction, aligned atπ » 3 radians from
thehorizontal; theconductivity kξ ξ in thedirectionperpendicular to η is zero. Mesh
agglomerationbasedon coefficient sizeresultsin coarse-level meshesalignedwith η
asshown. Sinceall faceswith normals in the ξ directionhave zerocoefficients, the
primary direction of informationtransferis in the η direction. Thus,thecoarselevel
meshcorrectly capturesthedirectionof informationtransfer.

We shouldnoteherethat the coefficient basedcoarseningstrategy aredersirable
even on structured grids. Athough coarselevels createdby agglomeratingcomplete
grid linesin eachgrid directionhavetheadvantageof preserving thegrid structureand
permitting the useof the sameline-by-line relaxationschemesasusedon the finest
level, they do not alwaysresultin optimalmultigrid acceleration in general situations
sincecoefficientanisotropiesarenotalwaysalignedalonglines.

Algebraic multigrid methods usedwith sequential solution procedureshave the
advantagethat theagglomerationstrategy canbeequation-specific;thediscretecoef-
ficientsfor the specificgoverningequation canbe usedto createcoarsemeshlevels.
Sincethe coarseningis basedon the coefficients of the linearizedequations it also
changesappropriatelyasthesolutionevolves. This is speciallyusefulfor non-linear
and/or transientproblems. In someapplications, however, the mutual coupling be-
tweenthegoverning equations is themaincauseof convergencedegradation.Geomet-
ric multigrid methods thatsolve thecoupledproblemonasequenceof coarsermeshes
mayoffer betterperformancein suchcases.
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8.9.5 Cycling Strategiesand Implementation Issues

The attractiveness of multigrid methods lies in the fact that significantconvergence
acceleration canbeachievedjust by usingsimplerelaxationsweepson a sequenceof
coarsemeshes.Various strategiescanbedevisedfor themannerin which thecoarse
levels arevisited. Thesecycling strategiescanbe expressedrathercompactly using
recursionandthis makesit very easyto implement them,speciallyusinga computer
languagesuchasC thatallows recursion(i.e.,a function is allowedcall itself).

Mutigrid cyclescanbroadlybeclassifiedinto two categories– (1) fixedcyclesthat
repeat a setpatternof coarsegrid visits and(2) flexible cyclesthat involve coarsegrid
relaxations asandwhenthey areneeded. We will look at both of theseideasnext.
Thegeneral principlesof thesecycling strategiesareapplicable for bothgeometricand
algebraic multigrid methodsbut weshallconcentrateon thelatter.

Fixed Cycles

We have seenthatthecoarselevel sourcevectoris computedfrom theresidualsat the
previousfine level andthusit changesevery timewevisit a coarselevel. However, the
coarselevel matrix is only a functionof coefficientsof thefine level matrix andthus
remains constant.Thestartingpoint in all fixedgrid methods therefore is to compute
all thecoarselevel coefficients. With algebraic multigrid it is usuallydesirableto keep
coarseningthegrid till thereareonly two or threecellsleft; for geometric multigrid the
coarsestpossiblegrid sizemightbedictatedby theminimum number of cellsrequired
to reasonably discretizethegoverningequation.

Thesimplestfixedcycle is known astheV cycleandconsistsof two legs. In the
first leg we startwith thefinestlevel andperform afixednumberof relaxationsweeps,
thentransfer the residuals to the next coarselevel andrelaxon that level, continuing
till we reachthe coarsestlevel. After finishing sweepson the coarsestlevel we start
the upward leg, using the solution from the current level to correct the the solution
at the next finer level, thenperfoming somerelaxationsweepsat that finer level and
continuing theprocesstill we reachthefinestlevel. Thetwo parametersdefiningthe
V-cycle are the number of sweepsperformed on the down and up legs, ν 1 and ν2
respectively. The two neednot be equal; in many applications it is mostefficient to
haveν1 ¦ 0, i.e., to notdoany sweepsonthedown leg but to simplykeepinjectingthe
residuals till thecoarsestlevel. Thecoarsestlevel thenestablishesanaverage solution
over theentiredomain which is thenrefinedby relaxationsweepson theupwardleg.
We shouldnotethatsincethecoarsegridsonly provide anestimateof theerror, it is
generally a good ideato alwayshave non-zeroν 2 in orderto ensurethat thesolution
satisfiesthediscreteequation at thecurrent level. This cycle is graphically illustrated
in Fig. 8.15(a) whereeachcircle represents relaxation sweepsandthe up anddown
arrows represent prolongationandrestrictionoperators,respectively.

For very stiff systems,the V-cycle may not be sufficient and morecoarselevel
iterations arecalledfor. This canbeachieved by usinga µ cycle. It is bestunderstood
througharecursivedefinition.Onecanthink of theV-cycleasafixedgrid cyclewhere
the cycle is recursively appliedat eachcoarsegrid if we haven’t reachthe coarsest
grid. The µ-cycle can thenbe thought of asa cycle which is recursively applied µ
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Figure8.15: RelaxationandGrid Transfer Sequencesfor SomeFixedCycles

timesateachsuccessivelevel. Thecommonly usedversion is theonecorresponding to
µ ¦ 2, which is alsoknown astheW-cycle. It is illustratedin Fig. 8.15(b). Becauseof
therecursiveness,a W-cycle involvesa lot of coarselevel relaxation sweeps,specially
whenthenumber of levels is large. A slight variantof theW-cycle, known astheF-
cycle,involvessomewhatlesscoarselevel sweepsbutstill morethantheV-cycle. It can
bethought of asa fixedcycle whereonerecursively appliesonefixedcycle followed
by aV-cycleat eachsuccessive level. It is illustratedin Fig. 8.15(c).

All thefixedgrid cycleswehaveseensofarcanbeexpressedverycompactlyin the
recursivepseudocodeshown in Fig.8.16Theentirelinearsolvercanthenbeexpressed
usingthecodeshown in Fig. 8.17.

Hereα is theterminationcriterion whichdetermineshow accuratelythesystemis
to besolvedandnmaxis themaximum numberof fixedmultigrid cyclesallowed. Á1Á x Á,Á
representssomesuitablenorm of the vectorx. Usually the L-2 norm (i.e., the RMS
value)or theL-∞ norm(i.e.,thelargestvalue)is employed.

Flexible Cycles

For linearsystemsthatarenotverystiff, it is notalwayseconomicalto useall multigrid
levels all the time in a regular pattern. For suchcasesthe useof flexible cycles is
preferred.Here,wemonitor theresidualsaftereverysweeponagivengrid level andif
theratiois aboveaspecifiedrateβ , wetransfertheproblemto thenext coarseleveland
continuesweepsat thatlevel. If theratio is below β wecontinue sweepsat thecurrent
level till the termination criterion is met. Whenwe meetthe terminationcriterionat
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Fixed Cycle(l,cycle type)Â
Performν1 relaxation sweepsonA · l ¸ x · l ¸ ¦ b · l ¸ ;
if (l Ã¦ lmax)Â

r · l ¸ ¦ b · l ¸ ª A · l ¸ x · l ¸ ;
b · l ½ 1̧ ¦ I l ½ 1

l r · l ¸ ;
x · l ½ 1̧ ¦ 0;
Fixed Cycle(l+1,cycle type);
if (cycle type= µ CYCLE)

Fixed Cycle(l+1,W CYCLE) µ µ ª 1¶ times;
elseif (cycle type= F CYCLE)

Fixed Cycle(l+1,V CYCLE);
x · l ¸ ¦ x · l ¸ ¯ I l

l ½ 1x · l ½ 1̧ ;Ä
Performν2 relaxation sweepsonA · l ¸ x · l ¸ ¦ b · l ¸ ;Ä

Figure8.16: FixedCycleAlgorithm

Solve(A · 0̧ , x · 0̧ , x · 0̧ , α , cycle type)Â
Computer0 ¦?Á,Á b · 0̧ ª A · 0̧ x · 0̧ Á,Á ;
Computeall coarselevel matrices;
for n = 1 to nmaxÂ

Fixed Cycle(0,cycle type);
Compute rn ¦�Á1Á b · 0̧ ª A · 0̧ x · 0̧ Á1Á ;
if µ rn » r0 Å α ¶

return;ÄÄ
Figure 8.17: DriverAlgorithm for FixedCycle
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Flexible Cycle(l)Â
Compute r0 ¦?Á,Á b · l ¸ ª A · l ¸ x · l ¸ Á1Á ;
Setrold ¦ r0;
if total numberof sweepson level l notexhaustedÂ

Performν1 relaxation sweepsonA · l ¸ x · l ¸ ¦ b · l ¸ ;
Computer ¦�Á1Á b · l ¸ ª A · l ¸ x · l ¸ Á1Á ;
if µ r » r0 ¶ Å α

return;
elseif µ0µ r » rold ¶rº β ¶ and (l Ã¦ lmax)Â

ComputeA · l ½ 1̧ if first visit to level l+1;
r · l ¸ ¦ b · l ¸ ª A · l ¸ x · l ¸ ;
b · l ½ 1̧ ¦ I l ½ 1

l r · l ¸ ;
x · l ½ 1̧ ¦ 0;
Flexible Cycle(l+1);
x · l ¸ ¦ x · l ¸ ¯ I l

l ½ 1x · l ½ 1̧ ;Ä
elseÂ

rold ¦ r;ÄÄÄ
Figure8.18: Flexible CycleAlgorithm

any level, andwe arenot alreadyat the finest level, the solutionat that level is used
to correctthe solutionat the next finer level andthe processcontinues. In practical
implementation,a limit is imposedon thenumber of relaxation sweepsallowedat any
level. Theflexible cyclecanalsobedescribedcompactlyin arecursiveform,asshown
in Fig. 8.18

8.10 Closure

In this chapter, we examined differentapproachesto solving the linear equation sets
that resultfrom discretization.We saw that theonly viableapproachesfor mostfluid
flow problemswereiterativemethods.Theline-by-line TDMA algorithmmaybeused
for structuredmeshes,but is not suitablefor unstructuredmeshes.However, methods
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like Gauss-Seidelor Jacobiiterationdo not have adequateratesof convergence. We
saw thattheseschemesaregoodat reducing high frequency errors, but cannot reduce
low-frequency errors. By the sametoken, they arealso inadequateon fine meshes.
To acceleratetheseschemes,weexaminedgeometric andalgebraicmultigrid schemes,
which usecoarsemeshsolutions for theerrorto correctthefine meshsolution. These
schemeshavebeenshown in theliteratureto substantiallyacceleratelinearsolvercon-
vergence, andareveryefficientway to solveunstructuredlinearsystems.
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