(¥WILEY

EXNCELE
ror SCIENTISTS ano
ENGINEERS

NUMERICAL METHODS

LOMOOmeo \

~ r)(_--)) (,\(.\(\“\ X \\\ S

Excel®
for Scientists
and Engineers

Numerical Methods

E. Joseph Billo

NNNNNNNNNNNN

L r
NNNNNNNNNNNN

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

This Page Intentionally Left Blank

Excel®
for Scientists
and Engineers

Numerical Methods

BICENTENNIAL

1807

SWILEY
2007

BICENTENNIAL

BICENTENNIAL

TYINNZANIDI®

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

wiLLiaMm J. PESCE PETER BoOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE OFFIGER CHAIRMAN OF THE BOARD

Excel®
for Scientists
and Engineers

Numerical Methods

E. Joseph Billo

NNNNNNNNNNNN

L r
NNNNNNNNNNNN

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data is available.
ISBN: 978-0-471-38734-3
Printed in the United States of America.

10987654321

Summary of Contents

Detailed Table of CONtents.......ccccuvrvrricieniienie et vii
34 (=3 & 1o1< OO RN XV
AcCKNOWIEdZMENntSoiiiiiiiiieiit e Xix
ADOUL the AULhOT ..o e s xix
Chapter 1 Introducing Visual Basic for Applicationsc....ccccoeeivncnnnincns 1
Chapter2 Fundamentals of Programming with VBA ... 15
Chapter 3 Worksheet Functions for Working with Matricesc..coes 57
Chapter 4 ~ Number Seri€scccooiimiiniiiiiiiii s 69
Chapter 5 Interpolation ... 77
Chapter 6 Differentiationcccoiviiiiiniiinr e, 99
Chapter 7 INtegrationcccecviiiiininvinninc e s 127
Chapter 8 Roots of EQUAtiOns ..o 147
Chapter 9 Systems of Simultaneous Equations ..., 189
Chapter 10 Numerical Integration of Ordinary Differential Equations

Part I: Initial Conditionsccccoceeveerierivonni e 217
Chapter 11 Numerical Integration of Ordinary Differential Equations

Part II: Boundary Conditionsccccvvciiiiniiiiiinniiniinenns 245
Chapter 12 Partial Differential Equationsc.cccccivniininiinininiinninn, 263
Chapter 13 Linear Regression and Curve Fitting ... 287
Chapter 14 Nonlinear Regression Using the Solver ..o, 313
Chapter 15 Random Numbers and the Monte Carlo Method 341
APPENDICES
Appendix 1 Selected VBA Keywords ..o 365
Appendix 2 Shortcut Keys for VBA ... 387
Appendix 3 Custom Functions Help File ..., 389
Appendix 4 Some Equations for Curve Fittingcccocoviniviiinininnnnens 409
Appendix 5 Engineering and Other Functionsccceecemeceninncesicnicnecnn 423
Appendix 6 ASCILCOdES ...occvvviriiniiiiin e 427
Appendix 7 Bibliography ..o e 429
Appendix 8 Answers and Comments for End-of-Chapter Problems 431
INDEX oottt et et s r e et sb s s e n e e e 443

This Page Intentionally Left Blank

Contents

PrEfACE .uiiiiiiieirieitr e s ier ettt sttt e e she e e et e s s XV
ACKNOWIEAZIMENLS ...ttt Xix
AboUt the AULNOL.......ccie et s e s xix
Chapter 1 Introducing Visual Basic for Applications 1
The Visual Basic EAIIOTccovieviiieecinencneetcicnnsreens e b 1
Visual Basic ProcedUIES......cuvirierirreeieirre ettt scecseresis i st sn s sr et sare s 4
There Are Two Kinds of MacCros......coccoiiiieriniiiiniiinr s 4
The Structure of a Sub Procedure............ccooceeivenininnncni e 4
The Structure of a Function Procedureccoocvinniicniiicnieiniecn 5
Using the Recorder to Create a Sub Procedure...........cooeveiiiiineenn, 5
The Personal Macro WorkbooK.........coveeiincniniiiinninneneeens 7
Running a Sub Procedurecccccemiiniininininisere s 8
Assigning a Shortcut Key to a Sub Procedure.........coooviiininninniincinnnn 8
Entering VBA Codeccooviiiiiiiiincnr s 9
Creating a Simple Custom Function..........c..covvevnninncnninen, 10
Using a Function Macroccocvevviiimnnini i 10
A Shortcut to Enter a FUNCHIONc.ccccoieiniiiiiinniniinniisnsssesseeas 12
SOME FAQS c.viivieeiteeiceieteee vttt st st s st sa st b et eb e b na s 13
Chapter 2 Fundamentals of Programming with VBA 15
Components of Visual Basic Statements...........cccouvnenniiinneinnnne 15
(0] 413 721101 ¢ OO OO SOOI PP 16
VATIADIES ..o evevveiritret et ettt b et a b s h s srae e s bt e 16
Objects, Properties, and Methods ... 17
OBJECES ..evrureuinieres et see et ettt et b et e et et 17
PrOPEItIES ...ovevuveririiiiiiiccic ittt 17
USING PrOPEIHIES.coveiviiiiiitiirinie ettt sbe et 19
B UNCHIONS. ettt e et e bbb 20
Using Worksheet Functions with VBA ..., 22
Some Useful Methods.........cccvrrireenirienincese i e 22
Other KeYWOrdS.....ccccoviiiiiieccnircctiic sttt 23
Program COontrol..........cccoireeimiiiiiiineinc s 23
BranChing.......cceoeveiriieriincecii it e s 23
L0gICal OPEratOrSccvvvviiriiriiiiriiiiiiine e es e 24
SELECE CASE.....ecviviereerererieeer e ererer et sr s e b s era et a e sr s sh et r s sbe e 24
LOOPING v trteurreieiriie ettt bbb 24
FOr..NEXE LOOP cveeeeiieienre ettt s 25
DO WHhile... LOOP eeiiieiie ettt s 25

vii

viii EXCEL: NUMERICAL METHODS

For Each...Next LoOp.....coiiii e e 25
NESEEA LOOPS - cnvveeeiiiiereciiterinree e rter ettt s e e nb e sb e s senae s 26
Exiting from a Loop or from a Procedure...........ccocccoeeiiiniciiiicniniiecee 26
VBA Data TYPeS c.uveiiiiiiiniinnini i i s e ssessss s 27
The Variant Data TYPeccoocreereiriierecnie et s 28
SUDBTOULINESc.evee et ettt ettt e st sn e s e n e smee s e s 28
Scoping @8 SUDBFOULINEcccciviiriiiiieniincceei e s 29
VBA Code for Command MAaCIOS........cccoccverrerinieiniineinnnienencsis s sieese s 29
Objects and Collections of ObJects.........ccvcveeieieireriiine e 29
"Objects" That Are Really Properties ..o 30
You Can Define Your Own ODbjJectsc.ccvcvvviriininininiiiinnevnireiicneeneae 30
MEhOAS ..oeeieieieir ettt e sre e e et e e nans 31
Some Useful Methods.........coieirirereiiennreniiesiiecieis e 31
Two Ways to Specify Arguments of Methods.........c.ccovvvenciniiniiiinnnne. 32
Arguments with or without Parenthesesc..ccoeervniicniiiiie 33
Making a Reference to a Cell or a Range..........ccooviiiiiiniiiiiinicii, 33
A Reference to the Active Cell or a Selected Rangeccooeveeeereennennenne 33
A Reference to a Cell Other than the Active Cell.........c.cooociiivinininnce. 34
References Using the Union or Intersect Method...........c.ccccovvininiinnnne, 35
Examples of Expressions to Refer to a Cell or Range........cc..coovvvviinnnnnn, 35
Getting Values from a Worksheet ..o, 36
Sending Values to @ Worksheet.........ccooveeniniiniinici i, 37
Interacting With the USer.........cccveeiiiiiinniii i 37
MSGBOX .eeevreerer ettt e st e s b e e ans 37
MsSgBOX Returnt VAIUESccovireriiiriiiinerei e s 39
FPULBOXeivieieite et ctccteretes et sa e b st b et e s e e st enn s e a s r e s en 39
Visual Basic AITAYS.......ccccviverieriiimiiincieic ettt 41
Dimensioning an ATTAYcccveererienierieniicsiersieseresne s sresstes st cresne 41
Use the Name of the Array Variable to Specify the Whole Array 42
Multidimensional AITaYSccocorieriiinrriiiiie et 42
Declaring the Variable Type of an Arrayccooeiviiiiinniniininns 42
Returning the Size of an Arraycccccvviviniiniiiieie e, 42
DYNAIMIC ATTAYS .c.uvureirenenecrieeetimienesere et ss b seesa s saes st 43
Preserving Values in Dynamic AITays..........ccooivrveriininicniicinnninnnnnnininenne, 43
Working with Arrays in Sub Procedures:
Passing Values from Worksheet to VBA Module............cccoooeiniininnnn. 44
A Range Specified in a Sub Procedure Can Be Used as an Array................. 44
Some Worksheet Functions Used Within VBA
Create an Array Automatically..........ccoocoiviiriiiniiiiiiic e 45
Some Worksheet Functions Used Within VBA
Create an Array Automatically...........cccocoiievniicce e, 45

An Array of Object Variables ..., 45

CONTENTS ix
Working with Arrays in Sub Procedures:
Passing Values from a VBA Module to a Worksheet ... 45
A One-Dimensional Array Assigned to a Worksheet Range
Can Cause Problems. ..o et 46
CuStom FUNCHONSecieieiecereeene ettt e st s 47
Specifying the Data Type of an Argumentocovvinnnnineiniinnn, 47
Specifying the Data Type Returned by a Function Procedure..............c........ 47
Returning an Error Value from a Function Procedure............c.ccoooennnin 48
A Custom Function that Takes an Optional Argumentccocevinnnennn 48
Arrays in Function Procedures...........coooviiiiinn 48
A Range Passed to a Function Procedure Can Be Used as an Array............. 48
Passing an Indefinite Number of Arguments:
Using the ParamArray Keywordcooocoveiiiinic 49
Returning an Array of Values as a Result.............cooooini 49
Creating Add-In Function Macrosccoemioennnnnniisini s 50
How to Create an Add-In Macroccooceniviiiiiniininieceincee 51
Testing and Debuggingccoeeeiiieiiiiiii 51
Tracing EXECULION......c.oriiiiiiiii e 52
Stepping Through Code ... 52
Adding a Breakpoint........coovvveeuieininsnnecinsee s 52
Examining the Values of Variables While in Break Mode.........c.coceccvernennne. 53
Examining the Values of Variables During Execution............ccovccicninnnn, 54
Chapter 3 Worksheet Functions for Working with Matrices 57
Arrays, Matrices and Determinants..........cooveoerereiiniininninrinieessnenes 57
Some Types Of MatriCesovvvrivinrirerminiiensiese s 57
An Introduction to Matrix Mathematics...........ccocoiiiiiiiinniniiec 58
Excel's Built-in Matrix FUnctionsccccoorvrviiiiiiiiniinnn i 60
Some Additional Matrix FUNCHIONScocoviiiiiiiiiiiiiin st 63
01 5] 153 Y- T PO PO PRSI 66
Chapter 4 Number Series 69
Evaluating Series FOrmulas........ccooovemiiiinii i, 70
Using Array Constants to Create Series Formulas ..., 70
Using the ROW Worksheet Function to Create Series Formulas 71
The INDIRECT Worksheet FUNCHON.cccccoiiieiiiiininins et 71
Using the INDIRECT Worksheet Function
with the ROW Worksheet Function to Create Series Formulas 72
The Taylor SETIES ...coviviieiiiiiiie e 72
The Taylor Series: An EXample.........cooooiiiiiiiininen 73
PLODIEIMScveevevitiiiee ettt ettt ettt et ere bbb 75

X EXCEL: NUMERICAL METHODS

Chapter 5 Interpolation 77
Obtaining Values from a Tableccoocoriiis 77
Using Excel's Lookup Functions to Obtain Values from a Table.................. 77
Using VLOOKUP to Obtain Values from a Table......ccoovinini, 78
Using the LOOKUP Function to Obtain Values from a Table.........c............. 79
Creating a Custom Lookup Formula to Obtain Values from a Table............ 80
Using Excel's Lookup Functions
to Obtain Values from a Two-Way Tablecccoervriiiniiiiirnninicinennnn 81
INLErpOation ... cccevieriiirceiiiiii i 83
Linear Interpolation in a Table by Means of Worksheet Formulas................ 83
Linear Interpolation in a Table by Using the TREND Worksheet Function ..85
Linear Interpolation in a Table by Means of a Custom Function.................. 86
Cubic Interpolationc.eoviiiiiieiniiiinienieii e 87

Cubic Interpolation in a Table by Using the TREND Worksheet Function...89
Linear Interpolation in a Two-Way Table

by Means of Worksheet Formulas........cc.cooiiinnnnniicn 90
Cubic Interpolation in a Two-Way Table
by Means of Worksheet Formulas.............cooooonniinn 91
Cubic Interpolation in a Two-Way Table
by Means of a Custom FUunction........ccceoieiiiinneinnn e 93
PIODIEIMIS ..cvtevriereecriitectrecerre e et eee e e sme e e e sr e e bt sassr e e et ean e s ba et b e 96
Chapter 6 Differentiation 99
First and Second Derivatives of Data in a Table ... 99
Calculating First and Second Derivativesccocociviiiinnnniinninsncncees 100
Using LINEST as a Fitting Functionc.cccoovnivnnniii 105
Derivatives of a Worksheet Formula.........occooviviiiniininene, 109
Derivatives of a Worksheet Formula Calculated by Using
a VBA Function Procedurecc.ccoreeceeininncnicinininecnienanes 109
First Derivative of a Worksheet Formula Calculated by Using
the Finite-Difference Methodccoovirnieininienicicinneeneee 110
The NeWton QUOLIENT......ccciciieriiriiiccreieisreeresreermartennessssnseessnseessssasesasssaseesss 110
Derivative of a Worksheet Formula Calculated by Using
the Finite-Difference Methodoccoveiinniiiciiiiiiiic e, 111
First Derivative of a Worksheet Formula Calculated by Using
a VBA Sub Procedure Using the Finite-Difference Method.................... 112
First Derivative of a Worksheet Formula Calculated by Using
a VBA Function Procedure Using the Finite-Difference Method............. 115
Improving the VBA Function Procedure..............ccocoviiiininincnininiiins 118
Second Derivative of a Worksheet Formula...........ccccooeiiiiniiiiiicncnnncccnne 120
Concerning the Choice of Ax for the Finite-Difference Method 123

| (o] o] <3 1 V- P PPN 124

CONTENTS xi

Chapter 7 Integration 127
Area UNAer @ CUIVEoooviiiee ittt se et sbr e srnsstn e evs et es 127
Calculating the Area under a Curve Defined by a Table of Data Points129
Calculating the Area under a Curve Defined by a Table of Data Points
by Means of a VBA Function Procedure..........ccooooiiiieninnnininninnn, 130
Calculating the Area under a Curve Defined by a Formula......................... 131
Area between TWO CUIVES.......ooivciiiiiiiieiic et 132
Integrating @ FUNCHON «.....ooveiiiiiiiiiiiiinier e 133
Integrating a Function Defined by a Worksheet Formula
by Means of a VBA Function Procedure..........ccccoooviminnininiinns 133
Gaussian QUAdratUre...........oocooverereeniniin e e e e e 137
Integration with an Upper or Lower Limit of Infinitycccooeiininni, 140
Distance Traveled Along a Curved Path ..., 141
PrODIBIMIS. ...vveiciiicteee et eet e e e s et e e rer e st e e siassbeesesbe s b e s s s e as e s bas e sare s eaaae e srne e nareean 143
Chapter 8 Roots of Equations 147
A Graphical Method ... 147
The Interval-Halving or Bisection Method..........ccccocniinnininiiiiinicinn. 149
The Interval Method with Linear Interpolation
(the Regula Falsi Method)............ccvinminiiiiniviiiriiec e 151
The Regula Falsi Method with Correction for Slow Convergence.............. 153
The Newton-Raphson Method.........ccocooiiviic 154
Using G0al SEeK.cooeiviiiiiiiiiiciienesc e 156
The Secant Methodccccrvinriiiiii e, 160
The Newton-Raphson Method Using Circular Reference and Iteration...... 161
A Newton-Raphson Custom Function.........c.cceoveeevnniiniiinninecni, 163
Bairstow's Method to Find All Roots of a Regular Polynomial 166
Finding Values Other than Zeroes of a Functioncccccvevivenininininnennn, 174
Using Goal Seek ... to Find the Point of Intersection of Two Curves......... 174
Using the Newton-Raphson Method
to Find the Point of Intersection of Two Lines........c.ccecviiniiiiinnenennn, 176
Using the Newton-Raphson Method to Find Multiple Intersections
of a Straight Line and a Curve. ..o, 178
A Goal Seek Custom FUunctionccccecveiieniiniiiienin e 180
PrODBIEIMISvviieiiectee ettt e s e e 185
Chapter 9 Systems of Simultaneous Equations 189
Cramer's Rule........cooiiiiiiiiiecictec 190
Solving Simultaneous Equations by Matrix Inversioncccoecceeviinnnen. 191
Solving Simultaneous Equations by Gaussian Elimination..............c.c........ 191
The Gauss-Jordan Method..........ccoevriiicnnencncitee e 196
Solving Linear Systems by Iterationcccooiiiiniiiiinnn e 200

The Jacobi Method Implemented on a Worksheet ..o 200

xii EXCEL: NUMERICAL METHODS

The Gauss-Seidel Method Implemented on a Worksheet...................cc....... 203
The Gauss-Seidel Method Implemented on a Worksheet
Using Circular References.........coocvvveviiinennniiinnincees 204
A Custom Function Procedure for the Gauss-Seidel Method...................... 205
Solving Nonlinear Systems by Iteration...........cccorrvennniiiii 207
Newton's Iteration Methodoocooeviivivinnee e 207
PTOBIEIMISeeiveiiieeeetie et e sttt et et et e eat e s bbb e e e s e be e saa e s s e e n e na e st 213
Chapter 10 Numerical Integration of Ordinary Differential Equations
Part I: Initial Conditions 217
Solving a Single First-Order Differential Equation..........cocoovvoriiiiiicnnnns 218
Euler's Methodoovieieeie et st sas et s 218
The Fourth-Order Runge—Kutta Method ..., 220
Fourth-Order Runge-Kutta Method Implemented on a Worksheet............. 220
Runge-Kutta Method Applied to a Differential Equation
Involving Both x and y ..o 223

Fourth-Order Runge-Kutta Custom Function

for a Single Differential Equation with the Derivative Expression

Coded in the Procedureccccoeriiiimiiininiiinenreiesssssese e 224
Fourth-Order Runge-Kutta Custom Function

for a Single Differential Equation with the Derivative Expression

Passed as an ATGUMENt.........cccoeriniivmniiimmricie e 225
Systems of First-Order Differential EQUations..........cccoecevieniininnnnnn, 228
Fourth-Order Runge-Kutta Custom Function
for Systems of Differential EQUationsc.ccevvvmnnnnnininincnnn 229
Predictor-Corrector Methods........cccvvcerereininiiniiiniini e 235
A Simple Predictor-Corrector Method........c.oeeiiiini 235
A Simple Predictor-Corrector Method
Utilizing an Intentional Circular Reference..........ccocooeiinininiinninn 236
Higher-Order Differential EQUAtionsccovimiiinnniiiiinniencens 238
S0 eY Y 13 1 1 PO PP PSPPI 241
Chapter 11 Numerical Integration of Ordinary Differential Equations
Part II: Boundary Conditions 245
The Shooting Method........ccoiriiviiiiiiiii e, 245
An Example: Deflection of a Simply Supported Beamcccooveinnee 246
Solving a Second-Order Ordinary Differential Equation
by the Shooting Method and Euler's Method ... 249
Solving a Second-Order Ordinary Differential Equation
by the Shooting Method and the RK Method...........ccccovviiiin 251
Finite-Difference Methodsccocceiiiieiiiiiiiiitccrcci e 254

Solving a Second-Order Ordinary Differential Equation
by the Finite-Difference Methodc.ccococniiiniiin, 254

CONTENTS Xiii

Another EXamPlecccccoiriiiiiiiiiiiiiie et 258
A Limitation on the Finite-Difference Method.........ccccconviinninnnn. 261
PTODIEINS. ... ceeeeetee et r st b st sr e sr et bbb s b s eabe s 262
Chapter 12 Partial Differential Equations 263
Elliptic, Parabolic and Hyperbolic Partial Differential Equations 263
Elliptic Partial Differential EQUationscococeeeniinicninniin e 264
Solving Elliptic Partial Differential Equations:
Replacing Derivatives with Finite Differences..........c.oouoiiinnecnniincs 265
An Example: Temperature Distribution in a Heated Metal Plate................. 267
Parabolic Partial Differential EQuations.........c.ccccoevvnivnnniiniiniiicie e, 269
Solving Parabolic Partial Differential Equations: The Explicit Method......270
An Example: Heat Conduction in a Brass Rod.........coovoeeniinncnnnnnn. 272
Solving Parabolic Partial Differential Equations:
The Crank-Nicholson or Implicit Method..........ccocoeviviiiiiiinnnnnne 274
An Example: Vapor Diffusion in @ Tube.......coooimminiiniii 275
Vapor Diffusion in a Tube Revisited ..., 277
Vapor Diffusion in a Tube (AaiN).......cccevevrviriiinninniiniisee e 279
A Crank-Nicholson Custom Functionccceeeminiviininminienieeceenenn, 280
Vapor Diffusion in a Tube Solved by Using a Custom Function................ 282
Hyperbolic Partial Differential EQUations..............coovoeeeniiinnnnncnncninns 282
Solving Hyperbolic Partial Differential Equations:
Replacing Derivatives with Finite Differences..........ccccoccoeiinvninn 282
An Example: Vibration of a String..........cocecnmvmmniiinniceen, 283
PrODICMS.....ocviiiieeieie ettt e e 286
Chapter 13 Linear Regression and Curve Fitting 287
LINEar REGIESSION. .c..ecviereiiriiirieicc ittt et st 287
Least-Squares Fit to a Straight Lineccovevviiiiiiinin e, 288
Least-Squares Fit to a Straight Line Using the Worksheet Functions
SLOPE, INTERCEPT and RSQ......ccccoeirrccrcinierenrececeeee s 289
Multiple Linear REGresSioncocvvviiviiimimiinin e et 291
Least-Squares Fit to a Straight Line Using LINEST ..., 292
Multiple Linear Regression Using LINEST ..., 293
Handling Noncontiguous Ranges of known_x's in LINESTccco.ceue.. 297
A LINEST SROrtCut ..t 297
LINEST's Regression StatiStiCsccocereeriercrininniiiiniicene i 297
Linear Regression Using Trendlinecocviviiiniininiicinnineenn, 298
Limitations of Trendlinec.ccccovcneiininniiniccnniicce e 301
Importing Trendline Coefficients into a Spreadsheet
by Using Worksheet Formulas.........c.cc.coocvniiiiiiniiiniic, 302
Using the Regression Tool in Analysis Tools......c..cocvivnininnniiniinnn 303

Limitations of the Regression Toolccoiiiniecininnceceeeeenenceens 305

Xiv EXCEL: NUMERICAL METHODS

Importing the Trendline Equation from a Chart into a Worksheet............... 305
PrODBIEIMS. ...ttt 309
Chapter 14 Nonlinear Regression Using the Solver 313
Nonlinear Least-Squares Curve Fitting.........cccovvvineviiineincrcrenenesecneeneees 314

Introducing the SOIVETccoiviiiiiiiiiii e 316

How the Solver WOrks.......ccoceiieiiriininiienccinesceneesese e s 316

Loading the Solver Add-Inccooiriiiniiiic e 317

Why Use the Solver for Nonlinear Regression?...........ccoccooeiiiirincinnicnnn 317

Nonlinear Regression Using the Solver: An Example..........ccocooviiiiinnnnn. 318

Some Notes on Using the SOIVErccoceeveriiiiiriininrine et e 323

Some Notes on the Solver Parameters Dialog BoXccccoeviiiiiininnes 323

Some Notes on the Solver Options Dialog BoX.......ccccoovviiiiniiinniiininns 324

When to Use Manual Scalingc...cocevvernieiniiiorininrintenrecee e 326
Statistics of Nonlinear Regression ..., 327

The Solver Statistics MACIOc.c.vvevirieire et 328

Be Cautious When Using Linearized Forms of Nonlinear Equations 329
PrODIEITIS .coveuvieeirtieece e et ettt raee s s s e s nme bt et b e 332
Chapter 15 Random Numbers and the Monte Carlo Method 341
Random Numbers in EXCel......c..ccocoiiniiiiineee, 341

How Excel Generates Random Numberscccoceceevirniiiiiniinnnccnnee. 341

Using Random Numbers in EXcel ..., 342

Adding "Noise" to a Signal Generated by a Formula.........c.cccoccoooni 344

Selecting Items Randomly from a Listc.coooveiiiiniiiieiiiccnn, 345

Random Sampling by Using Analysis ToOIS........cc.ccccumvninnniiiininnnnnnnnn. 347

Simulating a Normal Random Distribution of a Variable 349
Monte Carlo SIMUIAtIONc.ccveireiiieececrcercet e 350
Monte Carlo INterationcccovererieiiniiiiincn e 354

The Area of an Irregular Polygon ..., 354
PrODIBITIS ..ottt et s b e s b 362
APPENDICES 363
Appendix 1 Selected VBA Keywordscccccocvucicinnnninicineicciecce 365
Appendix 2 Shortcut Keys for VBA ..., 387
Appendix 3 Custom Functions Help File ..., 389
Appendix 4 Some Equations for Curve Fittingcccccovviiniviniininnnnn, 409
Appendix 5 Engineering and Other Functionsccococeoviiiiininni, 423
Appendix 6 ASCIICOAES ...ccoovrveiiiiiiiiiieece e 427
Appendix 7 Bibliography ... 429
Appendix 8 Answers and Comments for End-of-Chapter Problems 431

Preface

The solutions to mathematical problems in science and engineering can be
obtained by using either analytical or numerical methods. Analytical (or direct)
methods involve the use of closed-form equations to obtain an exact solution, in a
nonrepetitive fashion; obtaining the roots of a quadratic equation by application
of the quadratic formula is an example of an analytical solution. Numerical (or
indirect) methods involve the use of an algorithm to obtain an approximate
solution; results of a high level of accuracy can usually be obtained by applying
the algorithm in a series of successive approximations.

As the complexity of a scientific problem increases, it may no longer be
possible to obtain an exact mathematical expression as a solution to the problem.
Such problems can usually be solved by numerical methods.

The Objective of This Book

Numerical methods require extensive calculation, which is easily
accomplished using today's desktop computers. A number of books have been
written in which numerical methods are implemented using a specific
programming language, such as FORTRAN or C++. Most scientists and
engineers received some training in computer programming in their college days,
but they (or their computer) may no longer have the capability to write or run
programs in, for example, FORTRAN. This book shows how to implement
numerical methods using Microsoft Excel®, the most widely used spreadsheet
software package. Excel® provides at least three ways for the scientist or
engineer to apply numerical methods to problems:

* by implementing the methods on a worksheet, using worksheet formulas
* by using the built-in tools that are provided within Excel

* by writing programs, sometimes loosely referred to as macros, in Excel's
Visual Basic for Applications (VBA) programming language.

All of these approaches are illustrated in this book.

This is a book about numerical methods. 1have emphasized the methods and
have kept the mathematical theory behind the methods to a minimum. In many
cases, formulas are introduced with little or no description of the underlying
theory. (I assume that the reader will be familiar with linear interpolation, simple
calculus, regression, etc.) Other topics, such as cubic interpolation, methods for
solving differential equations, and so on, are covered in more detail, and a few

XV

xvi EXCEL: NUMERICAL METHODS

topics, such as Bairstow's method for obtaining the roots of a regular polynomial,
are discussed in detail.

In this book I have provided a wide range of Excel solutions to problems. In
many cases | provide a series of examples that progress from a very simple
implementation of the problem (useful for understanding the logic and
construction of the spreadsheet or VBA code) to a more sophisticated one that is
more general. Some of the VBA macros are simple "starting points" and [
encourage the reader to modify them; others are (or at least I intended them to
be) "finished products" that I hope users can employ on a regular basis.

Nearly 100% of the material in this book applies equally to the PC or
Macintosh versions of Excel. In a few cases I have pointed out the different
keystrokes requires for the Macintosh version.

A Note About Visual Basic Programming

Visual Basic for Applications, or VBA, is a "dialect”" of Microsoft's Visual
Basic programming language. VBA has keywords that allow the programmer to
work with Excel's workbooks, worksheets, cells, charts, etc.

I expect that although many readers of this book will be proficient VBA
programmers, others may not be familiar with VBA but would like to learn to
program in VBA. The first two chapters of this book provide an introduction to
VBA programming — not enough to become proficient, but enough to understand
and perhaps modify the VBA code in this book. For readers who have no
familiarity with VBA, and who do not wish to learn it, do not despair. Much of
the book (perhaps 50%) does not involve VBA. In addition, you can still use the
VBA custom functions that have been provided.

Appendix 1 provides a list of VBA keywords that are used in this book. The
appendix provides a description of the keyword, its syntax, one or more examples
of its use, and reference to related keywords. The information is similar to what
can be found in Excel's On-Line Help, but readers may find it helpful at those
times when they are reading the book without simultaneous access to a PC.

A Note About Typographic Conventions

The typographic conventions used in this book are the following:

Menu Commands. Excel's menu commands appear in bold, as in the
following examples: "choose Add Trendline... from the Chart menu...," or
"Insert—Function..."

PREFACE xvii

Excel's Worksheet Functions and Their Arguments. Worksheet
functions are in Arial font; the arguments are italicized. Following Microsoft's
convention, required arguments are in bold font, while optional arguments are in
nonbold, as in the following:
VLOOKUP(lookup_value, table_array, column_index_num, range_Jookup)
The syntax of custom functions follows the same convention.

Excel Formulas. Excel formulas usually appear in a separate line, for
example,

=1+1/FACT(1)+1/FACT(2)+1/FACT(3)+1/FACT(4)+1/FACT(5)
Named ranges used in formulas or in the text are not italicized, to distinguish
them from Excel's argument names, for example,

=VLOOKUP(Temp,Table, MATCH(Percent,P_Row,1)+1,1)

VBA Procedures. Visual Basic code is in Arial font. Complete VBA
procedures are displayed in a box, as in the following. For ease in understanding
the code, VBA keywords are in bold.

Private Function Deriv1(x)

'User codes the expression for the derivative here.
Derivi=9*x"2+10*x-5

End Function

Problems and Solutions

There are over 100 end-of-chapter problems. Spreadsheet solutions for the
problems are on the CD-ROM that accompanies this book. Answers and
explanatory notes for most of the problems are provided in Appendix 8.

The Contents of the CD

The CD-ROM that accompanies this book contains a number of folders or
other documents:

» an "Examples" folder. The Examples folder contains a folder for each
chapter, e.g., 'Ch. 05 (Interpolation) Examples.! The examples folder for
each chapter contains all of the examples discussed in that chapter:
spreadsheets, charts and VBA code. The location of the Excel file pertinent
to each example is specified in the chapter text, usually in the caption of a
figure, e.g.,

Figure 5-5. Using VLOOKUP and MATCH to obtain a value from a two-way table.
(folder 'Chapter 05 Interpolation,’ workbook 'Interpolation I,' sheet 'Viscosity')

Xviii

EXCEL: NUMERICAL METHODS

a "Problems" folder. The Problems folder contains a folder for each chapter,
e.g., 'Ch. 06 (Differentiation) problems.! The problems folder for each
chapter contains solutions to (almost) all of the end-of-chapter problems in
that chapter. VBA code required for the solution of any of the problems is
provided in each workbook that requires it; the VBA code will be identical to
the code found in the 'Examples' folder.

an Excel workbook, "Numerical Methods Toolbox," that contains all of the
important custom functions in this book.

a copy of "Numerical Methods Toolbox" saved as an Add-In workbook (an
xla file). If you open this Add-In, the custom functions will be available for
use in any Excel workbook.

Two Excel workbooks containing the utilities Solver Statistics and Trendline
to Cell.

Comments Are Welcomed

I welcome comments and suggestions from readers. I can be contacted at

numerical_methods.billo@verizon.net.

E. Joseph Billo

PREFACE Xix

Acknowledgments

Dr. Richard N. Fell, Department of Physics, Brandeis University, Waltham,
MA; Prof. Michele Mandrioli, Department of Chemistry and Biochemistry,
University of Massachusetts—Dartmouth, North Dartmouth, MA; and Prof.
Christopher King, Department of Chemistry, Troy University, Troy, AL, who
read the complete manuscript and provided valuable comments and corrections.

Prof. Lev Zompa, University of Massachusetts~Boston, and Dr. Peter Gans,
Protonic Software, for UV-vis spectral data.

Edwin Straver and Nicole Steidel, Frontline Systems Inc., for information
about the inner workings of the Solver.

The Dow Chemical Company for permission to use tables of physical
properties of heat transfer fluids.

About the Author

E. Joseph Billo retired in 2006 as Associate Professor of Chemistry at Boston
College, Chestnut Hill, Massachusetts. He is the author of Excel for Chemists: A
Comprehensive Guide, 2nd edition, Wiley-VCH, New York, 2001. He has
presented the 2-day short courses "Advanced Excel for Scientists and Engineers"
and "Excel Visual Basic Macros for Scientists and Engineers" to over 2000
scientists at corporate clients in the United States, Canada and Europe.

This Page Intentionally Left Blank

Chapter 1

Introducing
Visual Basic for Applications

In addition to Excel's extensive list of worksheet functions and array of
calculation tools for scientific and engineering calculations, Excel contains a
programming language that allows users to create procedures, sometimes
referred to as macros, that can perform even more advanced calculations or that
can automate repetitive calculations.

Excel's first programming language, Excel 4 Macro Language (XLM) was
introduced with version 4 of Excel. It was a rather cumbersome language, but it
did provide most of the capabilities of a programming language, such as looping,
branching and so on. This first programming language was quickly superseded
by Excel's current programming language, Visual Basic for Applications,
introduced with version 5 of Excel. Visual Basic for Applications, or VBA, is a
"dialect" of Microsoft's Visual Basic programming language, a dialect that has
keywords to allow the programmer to work with Excel's workbooks, worksheets,
cells, charts, etc. At the same time, Microsoft introduced a version of Visual
Basic for Word; it was called WordBasic and had keywords for characters,
paragraphs, line breaks, etc. But even at the beginning, Microsoft's stated
intention was to have one version of Visual Basic that could work with all its
applications: Excel, Word, Access and PowerPoint. Each version of Microsoft
Office has moved closer to this goal.

The Visual Basic Editor

To create VBA code, or to examine existing code, you will need to use the
Visual Basic Editor. To access the Visual Basic Editor, choose Macro from the
Tools menu and then Visual Basic Editor from the submenu.

The Visual Basic Editor screen usually contains three important windows:
the Project Explorer window, the Properties window and the Code window, as
shown in Figure 1-1. (What you see may not look exactly like this.)

The Code window displays the active module sheet; each module sheet can
contain one or several VBA procedures. If the workbook you are using does not

2 EXCEL: NUMERICAL METHODS

%&Microsoft Visuol Basic - Book1 - [Module] (Code}] SEETE T LWJnie
M Fle Edt View nset Fomat Debig Bun ool Adddns Widow Hep fpeaguwanfobels v o 8 X
® 3-d B A v 0 a M BFY S @ g

[(Generan »] [mectarations) =l

’ = #8 VBAProject (Book1)

| =5 Microsoft Excel Objects
1) sheet1 (Sheet1)

1 i) Sheet2 (Sheet2)

| B Sheet3 (Sheet3)
| 5% ThisWorkbook

| -} ¢ Modules

‘ pod. o1

4 vBAProject (PERSONALXLS)

[Properties - Modu

[Hndldol Module
Alphabetic | Categorized |

(e [T -

= of

Figure 1-1. The Visual Basic Editor window.

contain any module sheets, the Code window will be empty. To insert a module
sheet, choose Module from the Insert menu. A folder icon labeled Modules
will be inserted; if you click on this icon, the module sheet Modulel will
bedisplayed. Excel gives these module sheets the default names Module1,
Module2 and so on.

Use the Project window to select a particular code module from all the
available modules in open workbooks. These are displayed in the Project
window (Figure 1-2), which is usually located on the left side of the screen. If
the Project window is not visible, choose Project Explorer from the View

menu, or click on the Project Explorer toolbutton <& to display it. The Project

Explorer toolbutton is the fifth button from the right in the VBA toolbar.

In the Project Explorer window you will see a hierarchy tree with a node for
each open workbook. In the example illustrated in Figure 1-2, a new workbook,
Book1, has been opened. The node for Book1 has a node (a folder icon) labeled
Microsoft Excel Objects; click on the folder icon to display the nodes it contains—
an icon for each sheet in the workbook and an additional one labeled
ThisWorkbook. If you double-click on any one of these nodes you will display the
code sheet for it. These code sheets are for special types of procedures called
automatic procedures or event-handler procedures, which are not covered in this

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 3

738 funcres (FUNCRES.XLA)
= @ ¥BAProject (Book1})
- [5-£%4 Microsoft Excel Objects
. -HH) sheet1 (Sheet1)
B8 Sheet2 (Sheet2)
-] sheet3 (Sheet3)
_ @ ThisWWorkbook
(142§ Modules

8 [

& @ ¥BAProject (PERSONAL.XLS)

Figure 1-2. The VBE Project Explorer window.

book. Do not use any of these sheets to create the VBA procedures described in
this book. The hierarchy tree in Figure 1-2 also shows a Modules folder,
containing one module sheet, Module1.

The Properties window will be discussed later. Right now, you can press the
Close button to get rid of it if you wish.

Lt ix

|5heetl Worksheet
Alphabetic 'Categorized |

[(Mame) |
DisplayPageBreaks False
DisplayRightToLeft False
EnableAutoFilter False
EnableCalculation True
EnableCutlining False
EnablePivotTable False
EnableSelection O - xINoRestrictions

Name Sheet1

Scrollarea

Standardwidth 5.43

Yisible -1 - xISheetVisible

Figure 1-3. The Properties window.

4 EXCEL: NUMERICAL METHODS

Visual Basic Procedures

VBA macros are usually referred to as procedures. They are written or
recorded on a module sheet. A single module sheet can contain many
procedures.

There Are Two Kinds of Macros

There are two different kinds of procedures: Sub procedures, called
command macros in the older XLM macro language, and Function procedures,
called function macros in the XLM macro language and often referred to as
custom functions or user-defined functions.

Although these procedures can use many of the same set of VBA commands,
they are distinctly different. Sub procedures can automate any Excel action. For
example, a Sub procedure might be used to create a report by opening a new
worksheet, copying selected ranges of cells from other worksheets and pasting
them into the new worksheet, formatting the data in the new worksheet,
providing headings, and printing the new worksheet. Sub procedures are usually
"run" by selecting Macro from the Tools menu. They can also be run by means
of an assigned shortcut key, by being called from another procedure, or in
several other ways.

Function procedures augment Excel's library of built-in functions by adding
user-defined functions. A custom or user-defined function is used in a
worksheet in the same way as a built-in function like, for example, Excel's SQRT
function. It is entered in a formula in a worksheet cell, performs a calculation,
and returns a result to the cell in which it is located. For example, a custom
function named FtoC could be used to convert Fahrenheit temperatures to
Celsius.

Custom functions can't incorporate any of VBA's "action" commands. No
experienced user of Excel would try to use the SQRT function in a worksheet
cell to calculate the square root of a number and also open a new workbook and
insert the result there; custom functions are no different.

However, both kinds of macro can incorporate decision-making, branching,
looping, subroutines and many other aspects of programming languages.

The Structure of a Sub Procedure

The structure of a Sub procedure is shown in Figure 1-4. The procedure
begins with the keyword Sub and ends with End Sub. It has a ProcedureName, a
unique identifier that you assign to it. The name should indicate the purpose of
the function. The name can be long, since after you type it once you will
probably not have to type it again. A Sub procedure has the possibility of using
one or more arguments, Argument1, etc, but for now we will not create Sub

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 5

procedures with arguments. Empty parentheses are still required even if a Sub
procedure uses no arguments.

Sub ProcedureName(Argumentt, ...)
VBA statements
End Sub

Figure 1- 4. Structure of a Sub procedure.

The Structure of a Function Procedure

The structure of a Function procedure is shown in Figure 1-5. The
procedure begins with the keyword Function and ends with End Function. It
has a FunctionName, a unique identifier that you assign to it. The name should be
long enough to indicate the purpose of the function, but not too long, since you
will probably be typing it in your worksheet formulas. A Function procedure
usually takes one or more arguments; the names of the arguments should also be
descriptive. Empty parentheses are required even if a Function procedure takes
no arguments.

Function FunctionName(Argument1, ...)
VBA statements
FunctionName = result

End Function

Figure 1-5. Structure of a user-defined function.

The function's return statement directs the procedure to return the result to
the caller (usually the cell in which the function was entered). The return
statement consists of an assignment statement in which the name of the function
is equated to a value, for example,

FunctionName = result

Using the Recorder to Create a Sub Procedure

Excel provides the Recorder, a useful tool for creating command macros.
When you choose Macro from the Tools menu and Record New Macro... from
the submenu, all subsequent menu and keyboard actions will be recorded until
you press the Stop Macro button or choose Stop Recording from the Macro
submenu. The Recorder is convenient for creating simple macros that involve
only the use of menu or keyboard commands, but you can't use it to incorporate
logic, branching or looping.

The Recorder creates Visual Basic commands. You don't have to know
anything about Visual Basic to record a command macro in Visual Basic. This
provides a good way to gain some familiarity with Visual Basic.

6 EXCEL: NUMERICAL METHODS

To illustrate the use of the Recorder, let's record the action of applying
scientific number formatting to a number in a cell. First, select a cell in a
worksheet and enter a number. Now choose Macro from the Tools menu, then
Record New Macro... from the submenu. The Record Macro dialog box
(Figure 1-6) will be displayed.

The Record Macro dialog box displays the default name that Excel has
assigned to this macro: Macrol, Macro2, etc. Change the name in the Macro
Name box to ScientificFormat (no spaces are allowed in a name). The "Store
Macro In" box should display This Workbook (the default location); if not,
choose This Workbook. Enter "e" in the box for the shortcut key, then press OK.

Record Macro [2] %}
Macro name:
Macrol
Shortcut key: Store macro in:
Ctrl+{_ IThis Workbook :J
Description:

Macro recorded 8/27/2000 by Billo

] OK l Cancel

Figure 1-6. The Record Macro dialog box.

The Stop Recording toolbar will appear (Figure 1-7), indicating that a macro is
being recorded. If the Stop Recording toolbar doesn't appear, you can always
stop recording by using the Tools menu (in the Macro submenu the Record New
Macro... command will be replaced by Stop Recording).

.I w B .:
|

Figure 1-7. The Stop Recording toolbar.

Now choose Cells... from the Format menu, choose the Number tab and
choose Scientific number format, then press OK. Finally, press the Stop
Recording button.

To examine the macro code that you have just recorded, choose Macro from
the Tools menu and Visual Basic Editor from the submenu. Click on the node
for the module in the active workbook. This will display the code module sheet
containing the Visual Basic code. The macro should look like the example
shown in Figure 1-8.

CHAPTER 1| INTRODUCING VISUAL BASIC FOR APPLICATIONS 7

Sub ScientificFormaty()

' ScientificFormat Macro
' Macro recorded 6/22/2004 by Boston College

' Keyboard Shortcut: Ctrl+e

Selection.NumberFormat = "0.00E+00"
End Sub

Figure 1-8. Macro for scientific number-formatting, recorded in VBA.

This macro consists of a single line of VBA code. You'll learn about Visual
Basic code in the chapters that follow.

To run the macro, enter a number in a cell, select the cell, then choose
Macro from the Tools menu, choose Macros... from the submenu, select the
ScientificFormat macro from the Macro Name list box, and press Run. Or you can
simply press the shortcut key combination that you designated when you
recorded the macro (CONTROL+e¢ in the example above). The number should be
displayed in the cell in scientific format.

The Personal Macro Workbook

The Record Macro dialog box allows you to choose where the recorded
macro will be stored. There are three possibilities in the "Store Macro In" list
box: This Workbook, New Workbook and Personal Macro Workbook. The
Personal Macro Workbook (PERSONAL.XLS in Excel for Windows, or Personal
Macro Workbook in Excel for the Macintosh) is a workbook that is automatically
opened when you start Excel. Since only macros in open workbooks are
available for use, the Personal Macro Workbook is the ideal location for macros
that you want to have available all the time.

Normally the Personal Macro Workbook is hidden (choose Unhide... from
the Window menu to view it). If you don't yet have a Personal Macro
Workbook, you can create one by recording a macro as described earlier,
choosing Personal Macro Workbook from the "Store Macro In" list box.

As you begin to create more advanced Sub procedures, you'll find that the
Recorder is a useful tool to create fragments of macro code for incorporation into
your procedure. Instead of poring through a VBA reference, or searching
through the On-Line VBA Help, looking for the correct command syntax, simply
turn on the Recorder, perform the action, and look at the code produced. You
may find that the Recorder doesn't always produce exactly what you want, or
perhaps the most elegant code, but it is almost always useful.

Note that, since the Recorder only records actions, and Function procedures
can't perform actions, the Recorder won't be useful for creating Function
procedures.

8 EXCEL: NUMERICAL METHODS

Running a Sub Procedure

In the preceding example, the macro was run by using a shortcut key. There
are a number of other ways to run a macro. One way is to use the Macro dialog
box. Again, enter a number in a cell, select the cell, then choose Macro from the
Tools menu and Macros... from the submenu. The Macro dialog box will be
displayed (Figure 1-9). This dialog box lists all macros in open workbooks
(right now we only have one macro available). To run the macro, select it from
the list, then press the Run button.

Assigning a Shortcut Key to a Sub Procedure

If you didn't assign a shortcut key to the macro when you recorded it, but
would like to do so "after the fact," choose Macro from the Tools menu and
Macros... from the submenu. Highlight the name of the macro in the Macro

Name list box, and press the Options... button. You can now enter a letter for
the shortcut key: CONTROL+<key> or SHIFT+CONTROL+<key> in Excel for

21|

Macro name:

I ScientificFormat _"_;J] Run i

Cancel

Step Into !
Edit I

Create

Delete

Macros in: ’ml Open Workbooks _--_I Options. |

DESC"DUDH e e e L
Macro recorded 6{22/2004 by Boston College

Figure 1-9. The Macro dialog box.

Windows, OPTION+COMMAND+<key> or SHIFT+OPTION+COMMAND+<key>
in Excel for the Macintosh.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 9

Entering VBA Code

Of course, most of the VBA code you create will not be recorded, but
instead entered at the keyboard. As you type your VBA code, the Visual Basic
Editor checks each line for syntax errors. A line that contains one or more errors
will be displayed in red, the default color for errors. Variables usually appear in
black. Other colors are also used; comments (see later) are usually green and
some VBA keywords (Function, Range, etc.) usually appear in blue. (These
default colors can be changed if you wish.)

If you type a long line of code, it will not automatically wrap to the next line
but will simply disappear off the screen. You need to insert a line-continuation
character (the underscore character, but you must type a space followed by the
underscore character followed by ENTER) to cause a line break in a line of VBA
code, as in the following example:

Worksheets("Sheet1").Range("A2:B7").Copy _

(Worksheets("Sheet2").Range("C2"))

The line-continuation character can't be used within a string, i.e., within
quotes.

I recommend that you type the module-level declaration Option Explicit at the
top of each module sheet, before any procedures. Option Explicit forces you to
declare all variables using Dim statements; undeclared variables produce an error
at compile time.

When you type VBA code in a module, it's good programming practice to
use TAB to indent related lines for easier reading, as shown in the following
procedure.

Sub Iinitialize()

ForJ=1ToN
PJ)=0

Next J

End Sub

Figure 1-10. A simple VBA Sub procedure.

In order to produce a more compact display of a procedure, several lines of
code can be combined in one line by separating them with colons. For example,
the procedure in Figure 1-10 can be replaced by the more compact one in Figure
1-11 or even by the one in Figure 1-12.

Sub Initialize()
ForJ=1To N: P(J) = 0: Next J
End Sub

Figure 1-11. A Sub procedure with several statements combined.

10 EXCEL: NUMERICAL METHODS

[Sub Initialize(): For J = 1 To N: P(J) = 0: Next J: End Sub |

Figure 1-12. A Sub procedure in one line.

Creating a Simple Custom Function

As a simple first example of a Function procedure, we'll create a custom
function to convert temperatures in degrees Fahrenheit to degrees Celsius.

Function procedures can't be recorded; you must type them on a module
sheet. You can have several macros on the same module sheet, so if you
recorded the ScientificFormat macro earlier in this chapter, you can type this
custom function procedure on the same module sheet. If you do not have a
module sheet available, insert one by choosing Module from the Insert menu.

Type the macro as shown in Figure 1-13. DegF is the argument passed by the
function from the worksheet to the module (the Fahrenheit temperature); the
single line of VBA code evaluates the Celsius temperature and returns the result
to the caller (in this case, the worksheet cell in which the function is entered).

Function FtoC(DegF)
FtoC = (DegF — 32) *5/9
End Function
Figure 1-13. Fahrenheit to Celsius custom function.

A note about naming functions and arguments: function names should be
short, since you will be typing them in Excel formulas (that's why Excel's square-
root worksheet function is SQRT) but long enough to convey information about
what the function does. In contrast, command macro names can be long, since
command macros are run by choosing the name of the macro from the list of
macros in the Macro Run dialog box, for example.

Argument names can be long, since you don't type them. Longer names can
convey more information, and thus provide a bit of self-documentation. (If you
look at the arguments used in Excel's worksheet functions, you'll see that single
letters are usually not used as argument names.)

Using a Function Macro

A custom function is used in a worksheet formula in exactly the same way as
any of Excel's built-in functions. The workbook containing the custom function
must be open.

Figure 1-14 shows how the FtoC custom function is used. Cell A2 contains

212, the argument that the custom function will use. Cell B2 contains the
formula with the custom function. You can enter the function in cell B2 by

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 11

typing it (Figure 1-14). When you press enter, the result calculated by the
function appears in the cell (Figure 1-15).

TR
Bl T F ' T.°C
2] 212)=FtoC(A2)

Figure 1-14. Entering the custom function.

i B B

2 212 100

Figure 1-15. The function result.

You can also enter a function by using the Insert Function dialog box. Select
the worksheet cell or the point in a worksheet formula where you want to enter
the function, in this example cell B2. Choose Function... from the Insert menu
or press the Insert Function toolbutton ¥ to display the Insert Function dialog
box. Scroll through the Function Category list and select the User Defined
category. The FtoC function will appear in the Insert Function list box (Figure
1-16).

Search For & Function:

|" ype a brief description of what you want to do and then Go l
chick Go BE

Or select a gategory: |User Defined _'_J

Select a function:

FtoC{deg_F)
No heip available.

Heln on this function oK i Carcel |

Figure 1-16. The Paste Function dialog box.

When you press OK, the Function Arguments dialog box (Figure 1-17) will be
displayed. Enter the argument, or click on the cell containing the argument to
enter the reference (cell A2 in Figure 1-14), then press the OK button.

12 EXCEL: NUMERICAL METHODS

Function Arguments - i 5]

i Ftoc L A A i 0 R N L S A S G S S e Sl S S e B S S S o S S o ..W..M.w.m.-..\.w..,%.
Deg_F | %xi= i

No help available,

Deg_F
Formula result =
Help on this function | oK] Cancel

Figure 1-17. The Function Arguments dialog box.

A Shortcut to Enter a Function

You can enter a function without using Insert Function, but still receive the
benefit provided by the Function Arguments screen. This is useful if the
function takes several (perhaps unfamiliar) arguments. Simply type "="
followed by the function name, with or without the opening parenthesis, and then
press CONTROL+A to bypass the Insert Function dialog box and go directly to
the Function Arguments dialog box.

If you press CONTROL+SHIFT+A, you bypass both the Insert Function dialog
box and the Function Arguments. The function will be displayed with its
placeholder argument(s). The first argument is highlighted so that you can enter
a value or reference (Figure 1-18).

A PENERVE] €
1| T.°F T, °C

Figure 1-18. Entering a custom function by using CONTROL+SHIFT+A.

Unfortunately, if you’re entering the custom function in a different
workbook than the one that contains the custom function, the function name
must be entered as an external reference (e.g., Book1.XLS!FtoC). This can make
typing the function rather cumbersome, and it means that you'll probably enter
the function by using Excel's Insert Function. But, see "Creating Add-In
Function Macros" in Chapter 2.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 13

Some FAQs

Here are answers to some Frequently Asked Questions about macros.

I Recorded a Command Macro. Where Did It Go? If you have
trouble locating the code module containing your macro, here's what to do "when
all else fails": choose Macro from the Tools menu and Macros... from the
submenu. Highlight the name of the macro in the Macro Name list box, and
press the Edit button. This will display the code module sheet containing the
Visual Basic code.

I Can't Find My Function Macro. Where Did It Go? If you're
looking in the list of macros in the Macro Name list box, you won't find it
there. Only command macros (macros that can be Run) are listed. Function
macros are found in a different place: in the list of user-defined functions in the
Insert Function dialog box. (Choose Function... from the Insert menu and
scroll through the Function Category list and select the User Defined category.)

How Do I Rename a Macro? To rename a Sub or Function procedure,
access the Visual Basic Editor and click on the module containing the procedure.
The name of the macro is in the first line of code, immediately following the Sub
or Function keyword. Simply edit the name. Again, no spaces are allowed in the
name.

How Do I Rename a Module Sheet? You use the Properties window to
change the name of a module. The module sheet whose name you want to
change must be the active sheet. If the Properties window is not visible, choose
Properties Window from the View menu, or click on the Properties Window
toolbutton (2" to display it. The Properties Window toolbutton is the fourth

button from the right in the VBA toolbar.

|Modulel Module
Alphabetic |Categorized]

Ld 1

Figure 1-19. Changing the name of a module by using the Properties window.

14 EXCEL: NUMERICAL METHODS

When you display the Properties window, you will see the single property of
a module sheet, namely its name, displayed in the window. Simply double-click
on the name (here, Module1), edit the name, and press Enter. No spaces are
allowed in the name.

How Do I Add a Shortcut Key? If you decide to add a shortcut key to a
command macro "after the fact,"” choose Tools—~Macro—-Macros.... In the
Macro Name list box, click on the name of the macro to which you want to add a
shortcut key, then press the Options button. In the Shortcut Key box, enter a
letter, either lower- or uppercase. To run the macro, use CTRL+<letter> for a
lowercase shortcut key, or CTRL+SHIFT+<letter> for uppercase.

Warning: The shortcut key will override a built-in shortcut key that uses the
same letter. For example, if you use CTRL+s for the ScientificFormat macro,
you won't be able to use CTRL+s for "Save." This will be in effect as long as the
workbook that contains the macro is open.

How Do I Save a Macro? A macro is part of a workbook, just like a
worksheet or a chart. To save the macro, you simply Save the workbook.

Are There Some Shortcut Keys for VBA? Yes, there are several. Here's
a useful one: you can toggle between the Excel spreadsheet and the VBA Editor
by pressing ALT+F11. A list of shortcut keys for VBA programming is found in
Appendix 2.

Chapter 2

Fundamentals of
Programming with VBA

This chapter provides an overview of Excel's VBA programming language.
Because of the specialized nature of the programming in this book, the material
is organized in a way that is different from other books on the subject. This
book deals almost exclusively with creating custom or user-defined functions,
and a significant fraction of VBA's keywords cannot be used in custom
functions. (For example, custom functions can't open or close workbooks, print
documents, sort lists on worksheets, etc. — these are actions that are performed
by command macros.) Therefore, that portion of the VBA language that can be
used in custom functions is introduced in the first part of this chapter, and
programming concepts that are applicable in command macros appear in the
latter part of the chapter.

If you are familiar with programming in other versions of BASIC or in
FORTRAN, many of the programming techniques described in this chapter will
be familiar.

Components of Visual Basic Statements

VBA macro code consists of statements. Statements are constructed by
using VBA commands, operators, variables, functions, objects, properties,
methods, or other VBA keywords. (VBA Help refers to keywords such as Loop
or Exit as statements, but here they'll be referred to as commands, and we'll use
"statement" in a general way to refer to a line of VBA code.)

Much of the VBA code that you will create will consist of assignment
statements. An assignment statement assigns the result of an expression to a
variable or object; the form of an assignment statement is

variable = expression

for example,
increment = 0.00000001*XValue

or

15

16 EXCEL: NUMERICAL METHODS

K=K+1

which, in the second example, says "Store, in the memory location to which the
user has assigned the label 'K', the value corresponding to the expression K + 1."

Operators

VBA operators include the arithmetic operators (+, — * /, *), the text
concatenation operator (&), the comparison operators (=, <, >, <=, >=, <>) and
the logical operators (And, Or, Not)

Variables

Variables are the names you create to indicate the storage locations of values
or references. There are a few rules for naming variables or arguments:

* You can't use any of the VBA reserved words, such as Formula,
Function, Range or Value.

o The first character must be a letter.
* A name cannot contain a space or a period.

o The characters %, $, #, !, & cannot be embedded in a name. If one of
these characters is the last character of a variable name, the character
serves as a type-declaration character (see later).

¢ You can use upper- and lowercase letters. If you declare a variable type
by using the Dim statement (see "VBA Data Types" later in this chapter),
the capitalization of the variable name will be "fixed" — no matter how
you type it in the procedure, the variable name will revert to the
capitalization as originally declared. In contrast, if you have not declared
a variable by using Dim, changing the case of a variable name in any line
of code (e.g., from formuiastring to FormulaString) will cause all instances
of the old form of the variable to change to the new form.

You should make variable names as descriptive as possible, but avoid overly
long names which are tedious to type. You can use the underscore character to
indicate a space between words (e.g., formula_string). You can't use a period to
indicate a space, since VBA reserves the period character for use with objects.
The most popular form for variable names uses upper- and lowercase letters
(e.g., FormulaString).

Long variable names like FormulaString provide valuable self-
documentation; months later, if you examine your code in order to make
changes, you'll probably be more able to understand it if you used (for example)
FormulaString as a variable name instead of F. But typing long variable names is
time-consuming and prone to errors. I like to use short names like F when I'm
developing the code. Once I'm done, I use the Visual Basic Editor's Replace...
menu command to convert all those F's to FormulaString.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 17

To avoid inadvertently using a VBA keyword as a variable name (there are
hundreds of VBA keywords, so this is easy to do), I suggest that you type the
variable name in all lowercase letters. If the variable name becomes capitalized,
this indicates that it is a reserved word. For example, you may decide to use FV
as a variable name. If you type the variable name "fv" in a VBA statement, then
press Enter, you will see the variable become "FV," a sign to you that FV is a
reserved word in VBA (the FV function calculates the future value of an annuity
based on periodic, fixed payments and a fixed interest rate.)

In fact, it's also a good idea to type words that you know are reserved words
in VBA in lowercase also. If you type "activecell," the word will become
"ActiveCell" when you press the Enter key. If it doesn't, you have typed it
incorrectly.

Objects, Properties and Methods

VBA is an object-oriented programming language. Objects in Microsoft
Excel are the familiar components of Excel, such as a worksheet, a chart, a
toolbar, or a range. Objects have properties and methods associated with them.
Objects are the nouns of the VBA language, properties are the adjectives that
modify the nouns and methods are the verbs (the action words). Objects are
used almost exclusively in Sub procedures, while properties and some methods
can be used in Function procedures. A discussion of objects and methods can
be found in the section "VBA Code for Command Macros" later in this chapter.

Objects

Some examples of VBA objects are the Workbook object, the Worksheet
object, the Chart object and the Range object. It's very unlikely that a custom
function would include any of these keywords. But if a custom function takes as
an argument a cell or range of cells, the argument is a Range object and has all
of the properties of a Range object.

Properties

Objects have properties that can be set or read. Some properties of the
Range object are the ColumnWidth property, the NumberFormat property, the
Font property and the Value property. A property is connected to the object it
modifies by a period, for example

CelFmt = Range("E5"). NumberFormat

returns the number format of cell E5 and assigns it to the variable CelFmt, and
Range("E5").NumberFormat = "0.000"

sets the number formatting of cell E5.

18 EXCEL: NUMERICAL METHODS

Some properties, such as Column or Count, are read-only. The Column
property of a Range object is the column number of the leftmost cell in the
specified range; it should be clear that this property can be read, but not changed.
The Count property of a Range object is the number of cells in the range; again,
it can be read, but not changed.

Properties can also modify properties. The following example
Range("A1").Font.Bold = True

makes the contents of cell A1 bold.

There is a large and confusing number of properties, a different list for each
object. For example, as of this writing (Excel 2003), the list of properties
pertaining to the Range object contains 93 entries:

AddIndent Font MergeArea Row

Address FormatConditions MergeCelis RowHeight
AddressLocal Formula Name Rows

AllowEdit FormulaArray Next ShowDetail
Application FormulaHidden NumberFormat ShrinkToFit
Areas FormulaLabel NumberFormatLocal SmartTags
Borders FormulaLocal Offset SoundNote

Cells FormulaR1C1 Orientation Style

Characters FormulaR1C1Local OutlineLevel Summary
Column HasArray PageBreak Text

Columns HasFormula Parent Top
ColumnWidth Height Phonetic UseStandardHeight
Comment Hidden Phonetics UseStandardWidth
Count HorizontalAlignment PivotCell Validation
Creator Hyperlinks PivotField Value
CurrentArray ID Pivotitem Value2
CurrentRegion IndentLevel PivotTable VerticalAlignment
Dependents Interior Precedents Width
DirectDependents ltem PrefixCharacter Worksheet
DirectPrecedents Left Previous WrapText

End ListHeaderRows QueryTable XPath
EntireColumn ListObject Range

EntireRow LocationInTable ReadingOrder

Errors Locked Resize

This large number of properties, just for the Range object, is what makes
VBA so difficult for the beginner. You must find out what properties are
associated with a particular object, and what you can do with them. For our
purposes (creating custom functions), only a limited number of these properties
of the Range object can be used. Some of the properties of the Range object
that can be used in a custom function are listed in Table 2-1. Note that, when
used in a custom function, these properties can only be read, not set.

CHAPTER 2

FUNDAMENTALS OF PROGRAMMING WITH VBA

19

Table 2-1. Some Properties of the Range Object

Column Returns a number corresponding to the first column
in the range.

ColumnWidth Returns or sets the width of all columns in the range.

Count Returns the number of items in the range.

Font Returns or sets the font of the range.

Formula Returns or sets the formula.

Name Returns or sets the name of the range.

NumberFormat Returns or sets the format code for the range.

Row Returns a number corresponding to the first row in
the range.

RowHeight Returns or sets the height of all rows in the range.

Text Returns or sets the text displayed by the cell.

Value Returns or sets the contents of the cell or range.

Using Properties

In a Sub procedure, properties can be set or read. In a Function procedure,
properties can only be read, not changed. To return an object's property, use the
following syntax:

VariableName = ObjectName. PropertyName

For example, to obtain the number of cells in a range of cells passed to a
function procedure as the argument rng, and store it in the variable NCells, use
the following:

NCells = rng.Count

Properties can have values that are numeric, string, or logical.

Functions

Many of the functions available in VBA are similar to the functions
available in Excel itself. There are 187 VBA functions listed in Excel 2003
VBA Help. Tables 2-2 through 2-4 list some of the more useful ones for
mathematical or scientific calculations.

If you are reasonably familiar with Excel's worksheet functions, you will
have little trouble using VBA's functions. The names of many VBA functions,
such as Abs, Exp, Int, Len, Left, Mid and Right, are identical to the

20 EXCEL: NUMERICAL METHODS

corresponding worksheet functions (ABS, EXP, INT, LEN, LEFT, MID AND
RIGHT, respectively). Others, such as Asc, Chr and Sqr, are spelled a little
differently (the corresponding worksheet functions are CODE, CHAR and SQRT,
respectively) or completely differently (LCase and UCase correspond to
LOWER and UPPER). These VBA functions are used in exactly the same way
that they are used in worksheet formulas; they take the same type of arguments
and return the same type of values.

Note that although Excel has three worksheet functions that return
logarithms (LN returns the natural or base-e logarithm, LOG10 returns the base-
10 logarithm, and LOG returns a logarithm to a specified base), VBA has only
one logarithmic function, Log, that returns the base-e logarithm. If you need to
work with base-10 logarithms in your VBA code, use the relationship logo(a) =
loge(a)/ log.(10).

VBA does not provide a function to evaluate =, but you can calculate it in a
function by using the expression 4*Atn(1). Or, you can use the worksheet
function PI(), in the manner described in the following section.

Table 2-2. Some VBA Mathematical Functions

Abs Returns the absolute value of a number,

Atn Returns the arctangent of a number. The result is an angle
in radians.

Cos Returns the cosine of an angle in radians.

Exp Returns e raised to a power.

int Returns the integer part of a number (rounds down).

Log Returns the natural (base-e) logarithm of a number.

Rnd Returns a random number equal to or greater than 0 and
less than 1.

Sin Returns the sine of an angle in radians.

Sqr Returns the square root of a number.

Tan Returns the tangent of an angle in radians.

The above mathematical functions, except for Rnd, have the syntax
FunctionName(argument). Rnd takes no argument, but requires the empty
parentheses.

VBA provides functions for working with text; some of the more useful ones
are listed in Table 2-3. Most of these are identical to Excel's text worksheet
functions. If you are unfamiliar with the use of text functions, see the syntax and
examples in Appendix 1.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 21

Table 2-3. Some VBA Text Functions

Asc Returns the ASCII character code of a character.

Chr Returns the character corresponding to an ASCII code.

Format Formats a number according to a built-in or user-defined
number format expression. The result is a string.

Instr Returns the first occurrence of a substring within a string.
Similar to Excel's FIND worksheet function.

Len Returns the length (number of characters) in a string.

Left Returns the leftmost characters of a string.

Right Returns the rightmost characters of a string.

Mid Returns a specified number of characters from a string.

LTrim Returns a string without leading spaces.

RTrim Returns a string without trailing spaces.

Trim Returns a string without leading or trailing spaces.

Str Converts a number to a string. A leading space is reserved

for the sign of the number; if the number is positive, the
string will contain a leading space.

LCase Converts a string into lowercase letters.

UCase Converts a string into uppercase letters.

VBA also provides a number of information functions, including eight "is"
functions, shown in Table 2-4.

Table 2-4. VBA Information Functions

IsArray Returns True if the variable is an array.

IsDate Returns True if the expression is a date.
IsEmpty Returns True if the variable is uninitialized.
IsError Returns True if the expression returns an error.

IsMissing Returns True if an optional value has not been passed to a
Function procedure.

IsNull Returns True if the expression is null (i.e., contains no
valid data).

IsNumeric Returns True if the expression can be evaluated to a

number.
isObject Returns True if the expression references a valid object.
LBound Returns the lower limit of an array dimension.
UBound Returns the upper limit of an array dimension.

All the above Is functions have the syntax FunctionName(argument) and
return either True or False.

22 EXCEL: NUMERICAL METHODS

Using Worksheet Functions with VBA

In addition to the 187 VBA functions, you can make use of any of Excel's
worksheet functions in your VBA code. To use one of Excel's worksheet
functions, simply use the syntax

Application.WorksheetFunctionName(argument1,...)

and supply arguments for the function just as you would in a worksheet. For
example, to use the SUBSTITUTE function in VBA, use the code

FormulaString = Application.Substitute(FormulaString, XRef, NewX)

to replace all occurrences, in the string contained in the variable FormulaString,
of the variable XRef with the variable NewX.

Some Useful Methods

Although most methods can only be used within Sub procedures, there are a
few methods that can be used within Function procedures. Only methods that
do not "change the appearance of the screen" can be used in Function
procedures; it should be obvious that methods like Cut, Paste, Open, Close etc.,
cannot be used in a custom function.

Table 2-5. Some Methods Applicable to the Range Object
That Can Be Used in a Function Procedure

Address Returns the reference of a cell or range, as text.

Columns Returns a Range object that represents a single
column or multiple columns.

ConvertFormula Converts cell references in a formula between Al-
and R1C1-style, and between relative and absolute.

Evaluate Converts a formula to a value.

Intersect Returns the reference that is the intersection of two
ranges.

Rows Returns a Range object that represents a single row

or multiple rows.

Volatile Marks a user-defined function as volatile. The
function recalculates whenever calculation occurs in
any cell of the worksheet.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 23

Other Keywords

In addition to VBA's objects, properties, methods and functions, there are
additional keywords that deal with program control: looping, branching and so
on. These keywords are described in detail in the following sections.

VBA keywords that will not be discussed in this book include objects such
as menu bars, menus and menu commands, toolbars and toolbuttons and the
many properties and methods pertaining to them.

Program Control

If you are familiar with computer languages such as BASIC or FORTRAN,
you will find yourself quite comfortable with most of the material in this section.

Branching

VBA supports If...Then statements very similar to the Excel worksheet
function IF. The syntax of If...Then is

If LogicalExpression Then statement1 Else statement2
The If...Then statement can be a Simple If statement, for example:

If (x >0) Then numerator = 10 * x

If LogicalExpression (in this example x > 0) is True, statement? is carried
out; if LogicalExpression is False, nothing is done (program execution moves to
the next line).

if...Then...Else structures are also possible. For example:

If Err.Number = 13 Then Resume ptt Else End

In a Block If statement, If LogicalExpression Then is followed by multiple
statement lines and is terminated by End If, as in Figure 2-1.

If Err.Number = 13 Then
On Error GoTo 0 'Disable the error handler.

Resume pt1 'and continue execution.
End i

Figure 2-1. Example of VBA Block If structure.

You can also create a Block-If-type structure in a single line, as in the
following statement.

If LogicalExpression Then statement1 : statement2 Else statement3

If...Then... Elself structures are also possible, as illustrated in Figure 2-2.

24 EXCEL: NUMERICAL METHODS

If reference.Rows.Count > 1 Then
R = equation.Row

Elself reference.Columns.Count > 1 Then
C = equation.Column

End If

Figure 2-2. Example of the VBA Hf...Eiself...End If structure.

Logical Operators

The logical operators And, Or and Not can be used in LogicalExpression, as
in the following example.

If C>=0And C <=9 Then

Select Case

VBA also provides the Select Case decision structure, similar to the ON
value GOTO statement in BASIC. The Select Case statement provides an
efficient alternative to the series of Elself conditionN statements when conditionN
is a single expression that can take various values. The syntax of the Select
Case statement is illustrated in Figure 2-3.

Select Case TestExpression
Case ExpressionList1
statements
Case ExpressionList2
statements
Case ExpressionList3
statements
Case Else
statements
End Select

Figure 2-3. The VBA Select Case structure.

TestExpression is evaluated and used to direct program flow to the
appropriate Case. ExpressionListN can be a single value (e.g., Case 0), a list of
values separated by commas (e.g., Case 1, 3, 5), or a range of values using the
To keyword (e.g., Case 6 To 9). The optional Case Else statement is executed
if TestExpression doesn't match any of the values in any of ExpressionListN.

Looping

Loop structures in VBA are similar to those available in other programming
languages.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 25

For...Next Loop
The syntax of the For...Next loop is given in Figure 2-4.

For Counter = Start To End Step Increment
statements
Next Counter

Figure 2-4. The VBA For...Next structure.

For example,

ForJ=1To 100
statements
Next J

Figure 2-5. Example of a For...Next loop.

The Step Increment part of the For statement is optional. If Increment is
omitted, it is set equal to 1. Increment can be negative or nonintegral, for
example

For J=100 To O Step -1

Do While... Loop

The Do...Loop is used when you don't know beforehand how many times the
loop will need to be executed. You can loop While a condition is True or Until a
condition becomes True. The two possibilities are shown in Figures 2-6 and 2-7.

Do While LogicalExpression
statements
Loop

Figure 2-6. The Do While...Loop structure.

Do
statements
Loop While LogicalExpression

Figure 2-7. Alternate form of the Do...Loop While structure.

Note that this second form of the Do While structure executes the loop at
least once.

For Each...Next Loop

The For Each...Next loop is a loop structure peculiar to an object-oriented

26 EXCEL: NUMERICAL METHODS

language. The For Each...Next loop executes the statements within the loop for
each object in a group of objects. Figure 2-8 illustrates the syntax of the
statement.

For Each Element In Group
statements
Next Element

Figure 2-8. The VBA For Each...Next structure.

The For Each...Next loop returns an object variable in each pass through the
loop. You can access or use all of the properties or methods that apply to
Element. For example, in a loop such as the one shown in Figure 2-9, the
variable cel is an object that has all the properties of a cell (a Range object):
Value, Formula, NumberFormat, etc.

For Each cel In Selection
FormulaText = cel.Value
statements

Next cel

Figure 2-9. Example of a For Each...Next loop.

Note that there is no integer loop counter, as in the For Counter = Start To
End type of loop structure. If an integer counter is needed, you will have to
initialize one outside the loop, and increment it inside the loop.

Nested Loops

Often one loop must be nested inside another, as illustrated in the following
example.

Fori=1To N1
statements
ForJ=1To N2

statements
Next J
Next |

Figure 2-10. Example of nested loops.

Exiting from a Loop or from a Procedure

Often you use a loop structure to search through an array or collection of
objects, looking for a certain value or property. Once you find a match, you
don't need to cycle through the rest of the loops. You can exit from the loop

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 27

using the Exit For (from a For...Next loop or For Each...Next loop) or Exit Do
(from a Do While... loop). The Exit statement will normally be located within an
If statement. For example,

If CeliContents.Value <= 0 Then Exit For

Use the Exit Sub or Exit Function to exit from a procedure. Again, the Exit
statement will normally be located within an If statement.

Exit statements can appear as many times as needed within a procedure.

VBA Data Types

VBA uses a range of different data types. Table 2-6 lists the built-in data
types. Unless you declare a variable's type, VBA will use the Variant type. You
can save memory space if your procedure deals only with integers, for example,
by declaring the variable as Integer. The keyword Dim is used to declare a
variable's data type, as will be described in a following section.

Table 2-6. VBA's Built-in Data Types

Data Type Storage Required Range of Values

Boolean (Logical) 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long integer 4 bytes -2,147,483,648 t0 2,147,483,647
Single precision 4 bytes —3.402823E+38 to —1.401298E-45

for negative values; 1.401298E-45
to 3.402823E+38 for positive
values

Double precision 8 bytes —1.79769313486232E+308 to
—4.94065645841247E-324 for
negative values;
4.94065645841247E-324 to
1.79769313486232E+308 for
positive values

Currency 8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807

Date 8 bytes

Object 4 bytes Any Object reference
String 1 byte/character

Variant 16 bytes Any numeric value up to the

+ 1 byte/character range of a Double or any text

28 EXCEL: NUMERICAL METHODS

The Variant Data Type

The Variant data type is the default data type in VBA. Like Excel itself, the
Variant data type handles and interconverts between many different kinds of
data: integer, floating point, string, etc. The Variant data type automatically
chooses the most compact representation. But if your procedure deals with only
one kind of data, it will be more efficient and usually faster to declare the
variables as, for example, Integer.

Subroutines

By "subroutine" we mean a Sub procedure that is "called" by another VBA
program. In writing a VBA procedure, it may be necessary to repeat the same
instructions several times within the procedure. Instead of repeating the same
lines of code over and over in your procedure, you can place this code in a
separate Sub program; this subroutine or subprogram is then executed by the
main program each time it is required.

There are several ways to execute a subroutine within a main program. The
two most common are by using the Call command, or by using the name of the
subroutine. These are illustrated in Figure 2-11. MainProgram calls subroutines
Task1 and Task2, each of which requires arguments that are passed from the
main program to the subroutine and/or are returned from the subroutine to the
main program.

Sub MainProgram()
efc.

Call Task1(argument1,argument2)
efc

Task2 argument3,argument4
etc

End Sub

Sub Task1(ArgName1,ArgName2)
efc
End Sub

Sub Task2(ArgName3,ArgName4)
efc
End Sub

Figure 2-11. A main program illustrating the different syntax of subroutine calls.

The two methods use different syntax if the subroutine requires arguments.
If the Call command is used, the arguments must be enclosed in parentheses. If
only the subroutine name is used, the parentheses must be omitted. Note that the

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 29

variable names of the arguments in the calling statement and in the subroutine do
not have to be the same.

There are several advantages to using subroutines: you eliminate the
repetition of code, and you make the programming clearer by adopting a modular
approach. Perhaps most important, a subroutine that is of general usefulness can
be called by several different procedures.

Scoping a Subroutine

A Sub procedure can be Public or Private. Public subroutines can be called
by any subroutine in any module. The default for any Sub procedure is Public.
A Private subroutine can be called only by other subroutines in the same
module. To declare the subroutine Task3 as a private subroutine, use the
statement

Private Sub Task3()

A Sub procedure that is declared Private will not appear in the list of
macros that can be run in the Macro dialog box. The name of a Sub procedure
that takes arguments (i.e., a subroutine), will also not appear in the Macro dialog
box; only Sub procedures without arguments, that is, with empty parentheses
following the procedure name, appear in the Macro dialog box.

VBA Code for Command Macros

- Command macros (Sub procedures) are "action" macros: they can enter or
modify data on a spreadsheet, create a report, display a dialog box and so on.
The CD that accompanies this book includes some examples of Sub procedures,
so the material in the following sections will be useful in understanding the VBA
code in these procedures.

Objects and Collections of Objects

Some examples of VBA objects are the Workbook object, the Worksheet
object, the Chart object and the Range object. Note that the Range object can
specify a single cell, such as E5 in the preceding example, or a range of cells, for
example, Range("A1:E101"). There is no "cell" keyword in VBA to refer to a
single cell; that would be redundant.

You can also refer to collections of objects. A collection is a group of
objects of the same kind. A collection has the plural form of the object's name
(e.g., Worksheets instead of Worksheet). Worksheets refers to all worksheets
in a particular workbook.

To reference a particular worksheet in a collection, you can use either
Worksheets(NameText) or Worksheets(index), For example, you can refer to

30 EXCEL: NUMERICAL METHODS

a specific worksheet by using either Worksheets("Book1") or Worksheets(3).
The latter form is useful, for example, if you want to examine all the worksheets
in a workbook, without having to know what text is on each sheet tab.

There is a hierarchy of objects. A Range object is contained within a
Worksheet object, which is contained within a Workbook object. You specify
an object by specifying its location in a hierarchy, separated by periods, for
example,

Workbooks("Book1").Worksheets("'Sheet3").Range("E5")
In the above example, if you don't specify a workbook, but just use
Worksheets("Sheet3").Range("E5")

you are referring to the active workbook. If you don't specify either workbook or
worksheet, e.g.,

Range("ES5")
you are referring to cell E5 in the active sheet.

Instead of the keyword Worksheets, you may sometimes need to use the
keyword Sheets. Sheets is the collection that includes all sheets in a workbook,
both worksheets and chart sheets.

A complete list of objects in Microsoft Excel is listed in Excel's On-line
Help. You can also use the Object Browser to see the complete list of objects.
To display the Object Browser dialog box, choose Object Browser from the
View menu in the VBE.

"Objects" That Are Really Properties

Although ActiveCell and Selection are properties, not objects, you can treat
them like objects. (ActiveCell is a property of the Application object, or the
ActiveWindow property of the Application object.) The Application object has
the following properties that you can treat just as though they were objects: the
ActiveWindow, ActiveWorkbook, ActiveSheet, ActiveCell, Selection and
ThisWorkbook properties. Since there is only one Application object, you can
omit the reference to Application and simply use ActiveCell.

You Can Define Your Own Objects

The Set keyword lets you define a variable as an object, so that you can use
the variable name in your code, rather than the expression for the object. Most
often this is done simply for convenience; it's easier to type or remember a
variable name rather than the (perhaps) long expression for the object. The
variable will have all of the properties of the object type.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 31

Note the difference between identical expressions with and without the use
of the Set keyword. In the expression

XValues = Workbooks("Book1").Worksheets("Sheet3").Range("E2:E32")

the variable XVaiues contains only the values in cells E2:E32, while the
expression

Set MyRange = Workbooks("Book1").Worksheets("Sheet3").Range("E2:E32")

creates an object variable MyRange, a Range object that allows you to read (or
set) any of the properties of this object. For example, in addition to the value of
any cell in the range E2:E32, you can obtain its number format, column width,
row height, font and so on.

Remember, VBA will allow you to equate a variable to an object in an
assignment statement, but the variable does not automatically become an object.
If you then attempt to use the variable in an expression that requires an object,
you'll get an "Object required" error message. You must use the Set keyword in
order to create an object variable.

Methods

Objects also have methods. The Excel 2003 VBA Help lists 71 methods,
listed below, that apply to the Range object. Many of these methods correspond
to familiar menu commands.

Activate ClearNotes FindNext RowDifferences
AddComment ClearOutline FindPrevious Run
AdvancedFilter ColumnDifferences FunctionWizard Select
ApplyNames Consolidate GoalSeek SetPhonetic
ApplyOutlineStyles Copy Group Show
AutoComplete CopyFromRecordset Insert ShowDependents
AutoFil} CopyPicture Insertindent ShowErrors
AutoFilter CreateNames Justify ShowPrecedents
AutoFit Cut ListNames Sort

AutoFormat DataSeries Merge SortSpecial
AutoOutline Delete NavigateArrow Speak
BorderAround DialogBox NoteText SpecialCells
Calculate Dirty Parse Subtotal
CheckSpeliing FillDown PasteSpecial Table

Clear FillLeft PrintOut TextToColumns
ClearComments FillRight PrintPreview Ungroup
ClearContents FillUp RemoveSubtotal UnMerge
ClearFormats Find Replace

Some Useful Methods

Methods can operate on an object or on a property of an object. Some
methods that can be applied to the Range object are the Copy method, the Cut
method, the FillDown method or the Sort method. Statements involving

32 EXCEL: NUMERICAL METHODS

methods usually do not appear in an assignment statement (that is, no equal sign
is required). For example,

Range("A1:E1").Clear
clears the formulas and formatting in the range A1:E1.
Some useful VBA methods are listed in Table 2-7.
Table 2-7. Some Useful VBA Methods

Activate Activates an object (sheet, etc.).

Clear Clears an entire range.

Close Closes an object.

Copy Copies an object to a specified range or to the Clipboard.
Cut Cuts an object to a specified range or to the Clipboard.
FillDown Copies the cell(s) in the top row into the rest of the range.
Select Selects an object. '

Two Ways to Specify Arguments of Methods

VBA methods usually take one or more arguments. The Sort method, for
example, takes 10 arguments. The syntax of the Sort method is

object. Sort(key1, order1, key2, order2, key3, order3, header, orderCustom,
matchCase, orientation)

The object argument is required; all other arguments are optional.

You can specify the arguments of a method in two ways. One way is to list
the arguments in order as they are specified in the preceding syntax, i.e.,

Range("A1:E150").Sort "Last Name", xlAscending

which sorts the data contained in the range A1:E150 in ascending order, using as
the sortkey the values in the column headed by the label Last Name.
xlAscending is one of many built-in constants. You can look them up in the On-
line Help or use the Recorder to provide the correct one.

In the preceding example, only the arguments key? and order? were
specified; the remaining arguments are optional and are not required.

The second way is to use the name of the argument as it appears in the
preceding syntax, with the := operator, to specify the value of the argument, as in
the following:

Selection.Sort Key1:=Range("A2"), Order1:=xlAscending, _
Key2:=Range("B2"), Order2:=xlAscending, Key3:=Range("C2")
Order3:=xIDescending, Header:=xIGuess, OrderCustom:=1, _
MatchCase:=False, Orientation:=xITopToBottom

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 33

When using this method, the arguments can appear in any order, and
optional ones can be omitted if you do not need to specify a value.

Arguments with or without Parentheses

The arguments of a method sometimes appear within parentheses, sometimes
without parentheses (see the examples immediately preceding). Sometimes
either syntax will work, sometimes one or the other fails. Why is this?

As well as performing an action, methods create a return value. The return
value can be either True or False: True means the method worked, False means
that it failed. Even the ChartWizard method creates a return value: True if the
chart was created successfully, False if the method failed. Usually you aren't
interested in these return values; if your procedure executed successfully, you
are happy. But occasionally the return value is important.

An example of a method that creates a useful return value is the
CheckSpelling method. The CheckSpelling method has the following syntax:

Application.CheckSpelling(word)
If you use this method, you'll need the return value (either True or False) to
determine whether the word is spelled correctly.

If you want to use the return value of a method, you must enclose the
arguments of the method in parentheses. If the arguments are not enclosed in
parentheses, then the return value will not be available for use. Put another way,
the expression

result = Application.CheckSpelling(ActiveCell.Value)
does not produce a syntax error, while the expression
result = Application.CheckSpelling ActiveCell.Value

does give a syntax error.

Making a Reference to a Cell or a Range

One of the most important skills you'll need in order to create Sub
procedures that manipulate data in workbooks is the ability to make a reference
to a cell or range of cells. You'll need to be able to send values from a worksheet
to a module sheet so that you can perform operations on the worksheet data, and
you'll need to be able to send the results back from the module sheet to the
worksheet.

A Reference to the Active Cell or a Selected Range
Often a macro will be designed to operate on a user-selected cell or range.

34 EXCEL: NUMERICAL METHODS

To refer to the active cell or a selected range of cells, use the ActiveCell or
Selection keywords. The ActiveCell keyword is usually used when the user has
selected a single cell, whereas the Selection keyword is used when the user has
selected a range of cells. However, Selection can refer to a single cell or a
range.

A Reference to a Cell Other than the Active Cell

Sometime a macro will be designed to operate on values from specified rows
and columns in a worksheet, independent of where the cursor has been "parked"
by the user. To refer to a cell or range other than the selection, use either the
Range keyword or the Cells keyword. The syntax of the latter is
Cells{(Rowlndex, Columnindex).

The following references both refer to cell B3:
Range("B3")
Cells(3,2)

The preceding are "absolute" references, since they always refer to, in this
example, cell B3. You can also use what could be called a "computed”
reference, in which the reference depends on the value of a variable. The Cells
keyword is conveniently used in this way. For example, the expression

Celis(x,2)

allows you to select any cell in column B, depending on the value assigned to the
variable x. The Range keyword can be used in a similar way by using the
concatenation operator, e.g.,

Range("B" & x)

It's usually good programming practice not to use the Select keyword unless
you actually need to select cells in a worksheet. For example, to copy a range of
cells from one worksheet to another, you could use the statements shown in
Figure 2-12, and in fact this is exactly the code you would generate using the
Recorder. But you can do the same thing much more efficiently, and without
switching from one worksheet to another, by using the code shown in Figure 2-
13.

Range("D1:D20").Select
Selection.Copy
Sheets("Sheet15").Select
Range("A1").Select
ActiveSheet.Paste

Figure 2-12. VBA code fragment by the Recorder.

CHAPTER 2 _ FUNDAMENTALS OF PROGRAMMING WITH VBA 35

| Range("D1:D20").Copy (Sheets("Sheet15").Range("A1")) |

Figure 2-13. A more efficient way to accomplish the same thing, without selecting cells.

References Using the Union or Intersect Method

VBA can create references by using methods that are the equivalents of the
union operator (the comma) or the intersection operator (the space character)
that can be used in worksheet formulas. The worksheet union operator creates a
reference that includes multiple selections, for example, SUM(A1,B2,C3,D4,E5).
The syntax of the corresponding VBA Union method is Union(range1,
range2,...). The worksheet intersection operator creates a reference that is
common to two references (e.g., the expression F4:F6 E5:15 returns the reference
F5). The syntax of the corresponding VBA Intersect method is
Intersect(range1, range2). Both range? and range2 must be range objects.

Examples of Expressions to Refer to a Cell or Range

1. Using the Range keyword with an address
Range("B1:D10")

2. Using the Cells keyword with row and column numbers
Celis(15, 5)

This expression refers to cell E15.

3. Usingthe Range keyword with a range name
Range("addr1")

The range name addr1 was assigned previously using Insert—+Name—
Define. This method is useful if the user can possibly modify the spreadsheet so
that the addresses of cells needed by the procedure are changed.

4. Using the Cells keyword with variables
Cells(RowNum, ColNum)

5. Using the Range keyword with a variable
Range(addr2)

The variable addr2 was previously defined by means of a statement such as
addr2 = Selection.Address

36 EXCEL: NUMERICAL METHODS

6. Using the Range keyword with ampersand
TopRow = 2: BtmRow = 12

Range("F" & TopRow & ":G" & BtmRow)
The Range argument evaluates to “F2:G12")

7. Using the Range keyword with two Cells expressions
Range(Cells(1, 1), Cells(5, 5))

This expression refers to the range A1:E5. This method is useful when both
row and column numbers of the reference must be "computed.”

8. Using the Range keyword with Cells(index)
Range("A5:A12").Cells(3)

This expression refers to cell A7; it provides a way to select individual cells
within a specified range.)

Range("A1:J10").Cells(13)

Accesses first across rows, then by columns; this example selects cell C2.

9. Using the Range keyword with Offset
Range("A1").Offset(3, 1)
This example selects cell B4.
Range("A1:A12").Offset(3, 1)
This example selects the range B4:B15.

10. Using the Range keyword with Offset and Resize
Range("A1:A12").0ffset(3, 1).Resize(1, 1)

Use the Resize keyword to select a single cell offset from a range. This
example selects cell B4.

Getting Values from a Worksheet

To transfer values from worksheet cells to a procedure, use a reference to a
worksheet range in an assignment statement like the following.

variablename = ActiveCell.Value
variablename = Worksheets("Sheet1").Range("A9").Value

The Value keyword can usually be omitted:

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 37

variablename = Range("A" & x)
variablename = Cells(StartRow+x,StartCol)

The corresponding Formula property is used to obtain the formula in a cell,
rather than its value.

Sending Values to a Worksheet

To send values from a module sheet back to a worksheet, simply use an
assignment statement like the ones shown in the following examples. You can
send a label

Range("E1").Value = "Jan.-Mar."

a constant

Cells(1, 2).Value=5

the value of a variable
Worksheets("Sheet1").Range("A1") = variable2

or even a worksheet formula
Cells(1, 3).Formula = "=sum(F1.F10)"

to a cell in a worksheet. Again, the .Value keyword can usually be omitted.

Interacting with the User

VBA provides two built-in dialog boxes for display of messages or for input,
MsgBox and InputBox. These are often incorporated in Sub procedures; they
should never be used in Function procedures.

MsgBox

The MsgBox dialog box allows you to display a message, such as "Please
wait..." or "Access denied."” The box can display one of four message icons, and
there are many possibilities in the number and function of buttons that can be
displayed.

The syntax of the MsgBox function is

MsgBox (prompt_text, buttons, title_text, helpfile, context)

where prompt_text is the message displayed within the box, buttons specifies the
buttons to be displayed, and title_text is the title to be displayed in the Title Bar
of the box. For information about helpfile and context, refer to Microsoft Excel
Visual Basic Reference. The value of buttons determines the type of message

38 EXCEL: NUMERICAL METHODS

icon and the number and type of response buttons; it also determines which
button is the default button. The possible values are listed in Table 2-8. The
values 0-5 specify the number and type of buttons, values 16—64 specify the type
of message icon and values 0, 256, 512 specify which button is the default
button. You add together one number from each group to form a value for
buttons. For example, to specify a dialog box with a Warning Query icon, with
Yes, No and Cancel buttons, and with the No button as default, the values 32 + 3
+256 =291.

Table 2-8. Values for the buttons Parameter of MsgBox
buttons Equivalent

Value Constant Description
0 vbOKOnly Display OK button only.
1 vbOKCancel Display OK and Cancel buttons.
2 vbAbortRetrylgnore Display Abort, Retry and Ignore buttons.
3 vbYesNoCancel Display Yes, No and Cancel buttons.
4 vbYesNo Display Yes and No buttons.
5 vbRetryCancel Display Retry and Cancel buttons.
0 No icon.
16 vbCritical Display Critical Message icon.
32 vbQuestion Display Warning Query icon.
48 vbExclamation Display Warning Message icon.
64 vbinformation Display Information Message icon.
0 vbDefauitButton1 First button is default.

256 vbDefaultButton2 Second button is default.
512 vbDefaultButton3 Third button is default.

For example, the VBA expression,

MsgBox "You entered " & incr & "." & Chr(13) & Chr(13) & _
"That value is too large." & Chr(13) & Chr(13) & "Please try again.”, 48

where the VBA variable incr has the value 50, produces the message box shown
in Figure 2-14.

CHAPTER2 FUNDAMENTALS OF PROGRAMMING WITH VBA 39

’j You entered 50,
L]

That value is too large.

Please try again.

Figure 2-14. A Msgbox display.

The values of butfons are built-in constants—for example, the value 64 for
buttons can be replaced by the variable name vbinformation. The same result, a
dialog box with a Warning Query icon, with Yes, No and Cancel buttons and
with the No button as default, can be obtained by using the expression

vbinformation + vbYesNoCancel + vbDefaultButton2

in the MsgBox function instead of the value 323.

MsgBox Return Values

MsgBox can return a value that indicates which button was pressed. This
allows you to take different actions depending on whether the user pressed the
Yes, No or Cancel buttons, for example. To get the return value of the message
box, use an expression like

ButtonValue = MsgBox (prompt_text, buttons, title_text, helpfile, context)
(Note that the arguments of MsgBox must be enclosed in parentheses in order
for it to return a value.)

The return values of the buttons are as follows: OK, 1; Cancel, 2; Abort, 3;
Retry, 4; Ignore, 5; Yes, 6; No, 7.

InputBox

The InputBox allows you to pause a macro and request input from the user.
There are both an InputBox function and an InputBox method.

The syntax of the InputBox function is

InputBox(prompt_text, title_text, default, x_position, y_position, helpfile,
context)

where prompt_text and title_text are as in MsgBox. Default is the expression
displayed in the input box, as a string. The horizontal distance of the left edge of
the box from the left edge of the screen, and the vertical distance of the top edge
from the top of the screen are specified by x_position and y_position,

40 EXCEL: NUMERICAL METHODS

respectively. For information about helpfile and context, refer to Microsoft Excel
Visual Basic Reference.

If the user presses the OK button or the RETURN key, the InputBox function
returns as a value whatever is in the text box. If the Cancel button is pressed, the
function returns a null string. The following example produces the input box
shown in Figure 2-15.

ReturnValu = InputBox("Enter validation code number”, _
"Validation of this copy of SOLVER.STATS")

INPUT BOX DEMO

I
Please enter a value now.

Cancel

Figure 2-15. An InputBox display.

The syntax of the InputBox method is

Object.InputBox(prompt_text, title_text, default, x_position, y_position,
helpfile, context, type_num)

The differences between the InputBox function and the InputBox method
are the following: (i) default can be any data type and (ii) the additional
argument type_num specifies the data type of the return value. The values of
type_num and the corresponding data types are listed in Table 2-9. Values of
type_num can be added together. For example, to specify an input dialog box
that would accept number or string values as input, use the value 1 + 2 = 3 for
type_num.

Table 2-9. InputBox Data Type Values
type_num Data Type
Formula
Number
String
Logical
Reference (as a Range object)
Error value
Array

R —= 0N —=O

A~

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 41

The following example causes the InputBox method to return a Range
object (so that you can use its Address property in addition to its Value
property, for example):

Set known_Ys = Application.InputBox _

("Select the range of Y values", "STEP 1 OF 2", , ,, ,, 8)

Visual Basic Arrays

If you're familiar with other programming languages you are probably
familiar with the concept of an array. An array is a collection of related
variables denoted by a single name, such as Sample. You can then specify any
element in the array by using an index number: Sample(1), Sample(7), etc.

Many scientists make extensive use of arrays in their calculations. Because
some aspects of arrays in VBA can be confusing, this chapter provides detailed
coverage of this important topic.

Dimensioning an Array

The Dim (short for Dimension) statement is used to declare the size of an
array. Unless specified otherwise, VBA arrays begin with an index of 0. Thus
the statement

Dim Sample(10)

establishes array storage for 11 elements, Sample(0) through Sample(10).
However, you can specify that the arrays in your procedure begin with an array
index of 1. Since worksheet ranges, worksheet functions and worksheet arrays
use (or assume) a lower array index of 1, always specifying VBA arrays with
lower array index of 1 can eliminate a lot of confusion.

There are two ways to specify the lower array index. You can specify the
lower bound of an array in the Dim statement. For example,

Dim Sample (1 To 10)

sets the lower array index = 1 for the array Sample. It's considered good
programming practice to put the Dim statements at the beginning of the
procedure.

Alternatively, you can use the Option Base 1 statement, which specifies that
all arrays in the procedure begin with a lower index of 1. The Option Base 1
statement is used at the module level: that is, it must appear in a module sheet
before any procedures.

42 EXCEL: NUMERICAL METHODS

Use the Name of the Array Variable
to Specify the Whole Array

You can refer to the complete array by using the array variable name in your
code. The array name can be used with or without parentheses.

Multidimensional Arrays

Arrays can be multidimensional. Two-dimensional arrays are common; to
create a 2-D array called Spectrum, with dimensions 500 rows x 2 columns, use
the statement

Dim Spectrum (500,2)

Declaring the Variable Type of an Array

Since multidimensional arrays such as the one above can use up significant
amounts of memory, it's a good idea to define the data type of the variable. The
complete syntax of the Dim statement is

Dim VariableName(Lower To Upper) As Type

The optional Lower To can be omitted. Type can be Integer, Single,
Double, Variant, etc. See the complete list of data types in "VBA Data Types"
earlier in this chapter.) A Variant array can hold values of different data types,
such as integer and string, in the same array.

Several variables can be dimensioned in a single Dim statement, but there
must be a separate As Type for each variable. Thus

Dim J As Integer, K As Integer

is OK but Dim J, K As Integer declares only the variable J as integer.

Returning the Size of an Array

Use the LBound and UBound functions to obtain the size of an array during
execution of your procedure. The LBound function returns the lower index of
an array. For example, for the array Sample described previously,
LBound(Sample) returns 1 and UBound(Sample) returns 10.

The complete syntax of LBound and UBound is LBound(arrayname,
dimension). For the array Spectrum dimensioned thus:

Dim Spectrum (500,2)

the statement UBound(Spectrum,1) returns 500 and UBound(Spectrum,2)
returns 2.

CHAPTER 2 _ FUNDAMENTALS OF PROGRAMMING WITH VBA 43

Dynamic Arrays

If you don't know what array size you will need to handle a particular
problem, you can create a dynamic array. This will allow you to declare a
variable as an array but set its size later. Dimension the array using the Dim
command, using empty parentheses, and use the ReDim command later to
specify the array size, as, for example, in Figure 2-16.

Dim MeanX(), MeanY()

'Get number of cells to use in calculation
Ncelis = XValues.Count
ReDim MeanX(Ncells), MeanY(Ncells)

Figure 2-16. Re-dimensioning an array.

You can also use the ReDim command to change the number of dimensions
of an array.

The ReDim command can appear more than once in a procedure. If you use
the ReDim command to change the size of an array after it has been "populated"”
with values, the values will be erased.

Preserving Values in Dynamic Arrays

You can preserve the values in an existing array by using the Preserve
keyword, e.g.,

Dim MeanX(), MeanY()

ﬁeDim Preserve MeanX(Ncells / 2), MeanY(Ncells / 2)

But, there’s a limitation. Only the upper bound of the last dimension of a
multidimensional array can be changed. Thus, the following code is valid:

Dim MeanXandY(2, 1000)
ReDim Preserve MeanXandY (2,Ncells / 2)
but the following code will generate a run-time error:

Dim MeanXandY(1000, 2)

ReDim Preserve MeanXandY (Ncells / 2, 2)

44 EXCEL: NUMERICAL METHODS

If you use Preserve, you can’t use the ReDim command to change the
number of dimensions of an array.

Working with Arrays in Sub Procedures:
Passing Values from Worksheet to VBA Module

There are two ways to get values from a worksheet into a VBA array. You
can either set up a loop to read the value of each worksheet cell and store the
value in the appropriate element of an array, or you can assign the VBA array to
a worksheet range. The former method is straightforward; the latter method is
described in the following section.

Depending on which of these two methods you use, there can be a definite
difference with respect to execution speed that could become important if you
are working with extremely large arrays. An appreciable time is required to read
values from a range of worksheet cells and store them in an internal array, while
calculation using values in an internal array is much faster. Thus, if you need to
access array elements a number of times, it will probably be more time-efficient
to store the values in an internal array.

A Range Specified in a Sub Procedure
Can Be Used as an Array

If a variable in a VBA Sub procedure is set equal to a range of cells in a
worksheet, that variable can be used as an array. No Dim statement is necessary.
Thus the following expression creates a variable called TestArray that can be
treated as an array:

TestArray = Range("A2:A10")

The worksheet array can be a range reference or a name that refers to a
reference. Thus, if the name XRange had been assigned to the range "A2:A10,"
then the following expression would also create a worksheet array called
TestArray:

TestArray = Range("XRange")

A one-row or one-column reference becomes a one-dimensional array; a
rectangular range becomes a two-dimensional array of dimensions array(rows,
columns).

The lower index of these arrays is always 1. Although arrays created within
VBA have a lower array index of zero unless specified otherwise (by means of
the Option Base 1 statement, for example), when you assign a variable name to
a range of worksheet cells, an array is created with lower array index of 1.

Note that the values in the range of cells have not been transferred to an
internal VBA array; the VBA variable simply "points" to the range on the

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 45

worksheet. However, the values in the range can be accessed in the same way
that elements in a true array are accessed; for example, XRange(3) returns the
third element in the "array."

Some Worksheet Functions Used Within VBA
Create an Array Automatically

If you use a worksheet function within VBA that returns an array, the lower
array index will be 1. Such worksheet functions include: LINEST, TRANSPOSE,
MINVERSE and MMULT. That's why it's important to use Option Base 1;
otherwise, you will have some arrays with lower array index of zero and others
with lower array index of one.

An Array of Object Variables
There is an important difference between equating a range of cells in a
worksheet to a simple variable in VBA, e.g.,

ar = Range("A2:B9")
or equating a range of cells in a worksheet an object variable by using the Set
command, e.g.,

Set ar = Range("A2:B9")

Equating a variable in VBA to a worksheet range creates an array in VBA in
which each array element contains the value stored in the cell. Using the Set
command to equate an object variable in VBA to a worksheet range creates a
Range object.

For an array of object variables, you must use a different approach to obtain
the upper or lower bounds of the array indices, e.g.,

ar.Rows.Count
or

ar.Columns.Count.

Working with Arrays in Sub Procedures:
Passing Values from a VBA Module to a Worksheet

There are at least two ways to send values from a VBA array to a worksheet.
You can set up a loop and write the value of each array element to a worksheet
cell, or you can assign the value of the VBA array to the value of a worksheet
range. The latter method can cause a problem when you use this method with a
1-D range, as described next.

46 EXCEL: NUMERICAL METHODS

A One-Dimensional Array
Assigned to a Worksheet Range
Can Cause Problems
Arrays can cause some confusion when you write the array back to a
worksheet by assigning the value of the array to a worksheet range.

VBA considers a one-dimensional array to have the elements of the array in
arow. This can cause problems when you select a range of cells in a column and
assign an array to it, as in the following:

Range("E1:E10").Value = TestArray

The preceding statement causes the same value, the first element of the
array, to be entered in all cells in the column. However, if you write the array to
arow of cells instead of a column, e.g.,

Range("E1:N1").Value = TestArray

each cell of the range will receive the correct array value.

There are at least three ways to "work around" this problem caused by a
“horizontal” array and a “vertical” destination range. One obvious way is to use
a loop to write the elements of the array to individual worksheet cells in a
column.

A second way is to specify both the row and the column dimensions of the
array, so as to make it an array in a column, as illustrated in the Sub procedure
shown in Figure 2-16.

Sub ArrayDemo1 O
'‘Second method to "work around" the row-column problem:
‘specify the row and column dimensions.

Dim TestArray(10, 1)
statements to populate the array
"Then writes the array elements to cells E1:E10.
Range("E1:E10").Value = TestArray
End Sub

Figure 2-16. A "work around” for the row—column problem.

A third way is to use the TRANSPOSE worksheet function (Figure 2-17):

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 47

Sub ArrayDemo2()

'Another method to "work around" the row-column problem: use
Transpose.

'Note that Transpose creates a 1-base array.

Dim TestArray(10)

statements to populate the array
Range("E1.E10").Value = Application. Transpose(TestArray)
End Sub

Figure 2-17. Another "work around" for the row—column problem.

Custom Functions

Chapter 1 provided an introduction to Sub procedures and Function
procedures. By now it should be clear that a Sub procedure (a command macro)
is a computer program that you "run"; it can perform actions such as formatting,
opening or closing documents and so on. A Function procedure (a user-defined
function) is a computer program that calculates a value and returns it to the cell
in which it is typed. A Function procedure cannot change the worksheet
environment (e.g., it can't make a cell Bold).

The following sections provide some examples of more advanced features of
custom functions.

Specifying the Data Type of an Argument

You can specify the data type of an argument passed to a Function
procedure by using the As keyword in the Function statement. For example,
the Function procedure MolWt takes two arguments: formula (a string) and
decimals (an integer). The statement

Function MolWt (formula As String, decimais As Integer)

declares the type of each variable. If an argument of an incorrect type is
supplied to the function, a #/ALUE! error message will be displayed.

Specifying the Data Type
Returned by a Function Procedure

You can also specify the data type of the return value. If none is specified,
the Variant data type will be returned. In the example of the preceding section,
MolWt returns a floating-point result. The Variant data type is satisfactory;
however, if you wanted to specify double precision floating point, use an
additional As Type expression in the statement, for example,

Function MolWt (formula As String, decimals As Integer) As Double

48 EXCEL: NUMERICAL METHODS

Returning an Error Value from a Function Procedure

If, during execution, a function procedure detects an incorrect value or an
incipient error such as a potential divide-by-zero error, we need to return an error
value. You could specify a text message as the return value of the function
procedure, like this:

If (error found) Then FunctionName = "error message": Exit Function
but this is not the best way to handle an error. Use the CVErr(errorvalue)
keyword to return one of Excel's worksheet error values that Excel can handle
appropriately. For example, if a result cannot be calculated by the function, then
a #N/A error message should be returned. This is accomplished by means of the
following:

If (error found) Then FunctionName = CVErr(xIErrNA): Exit Function

The error values are listed in Appendix 1.

A Custom Function that Takes an Optional Argument
A custom function can have optional arguments. Use the Optional keyword
in the list of arguments to declare an optional argument. The optional argument
or arguments must be last in the list of arguments.
Within the procedure, you will need to determine the presence or absence of
optional arguments by using the IsMissing keyword. As well, you will usually
need to provide a default value if an argument is omitted.

Arrays in Function Procedures

You can create Function procedures that use arrays as arguments, or return
an array of results.

A Range Passed to a Function Procedure
Can Be Used as an Array

If a range argument is passed in a function macro, the range can be treated as
an array in the VBA procedure. No Dim statement is necessary. Thus the
expression

Function MyLINEST(known_ys, known_xs)

passes the worksheet ranges known_ys and known_xs to the VBA procedure
where they can be used as arrays. A one-row or one-column reference becomes
a one-dimensional array; a rectangular range becomes a two-dimensional array
of dimensions array(rows, columns).

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 49

Passing an Indefinite Number of Arguments
Using the ParamArray Keyword

Occasionally a Function procedure needs to accept an indefinite number of
arguments. The SUM worksheet function is an example of such a function; its
syntax is =SUM(number1,number2,...). To enable a Function procedure to
accept an indefinite number of arguments, use the ParamArray keyword in the
argument list of the function, as in the following expression

Function ArrayMaker(ParamArray rng())

Only one argument can follow the ParamArray keyword, and it must be the
last one in the function's list of arguments. The argument declared by the
ParamArray keyword is an array of Variant elements. Empty parentheses are
required.

The lower bound of the array is zero, even if you have used the Option Base
1 statement. Use UBound(rng) to find the upper array index.

Elements in the array of arguments passed using the ParamArray keyword
can themselves be arrays. The following code illustrates how to access
individual elements of each array in an array of elements passed using
ParamArray.

Function ArrayMaker(ParamArray rng())

For J = 0 To UBound(rng)
YSize = rng(J).Columns.Count
For K=1To YSize
statements
Next K
Next J

Figure 2-18. Handling an array of array arguments passed by using ParamArray.

Returning an Array of Values as a Result

The most obvious way to enable a Function procedure to return an array of
values is to assemble the values in an array and return the array. The procedure
shown in Figure 2-19 illustrates a function that returns an array of three values.
To use the function, the user must select a horizontal range of three cells, enter
the function and press CONTROL+SHIFT+ENTER.

50 EXCEL: NUMERICAL METHODS

Function MyLINEST(known_ys, known_xs)
Dim Results(3)
code to calculate slope, intercept and R-squared
Results(1) = MySlope
Resulits(2) = Mylntercept
Results(3) = MyRSq
MyLINEST = Results
End Function

Figure 2-19. A Function procedure that returns an array of results.

A second approach is to use the Array keyword. The Array function returns
a variant that contains an array.

Function MyLINEST(known_ys, known_xs)

code to calculate slope, intercept and R-squared
MyLINEST = Array(MySlope,My Intercept, MyRSq)
End Function

Figure 2-20. Using the Array keyword in a Function procedure.

The Array keyword can accommodate only a one-dimensional array. To use
this approach to return a two-dimensional array of results, you must create an
array of arrays, as illustrated in Figure 2-21. Both arrays must contain the same
number of values.

Function MyLINEST2(known_ys, known_xs)
code to calculate slope, intercept, R-squared,
std dev of slope, std dev of intercept, std error of y values.
MyLINEST2 = Array(Array(MySlope, Myintercept, MyRSq), _
Array(stdev_m, _stdev_b, SE_y))
End Function

Figure 2-21. Using the Array keyword to return a 2-D array.

Creating Add-In Function Macros
Saving a custom function as an Add-In is by far the most convenient way to
use it. Here are some of the advantages:

* An Add-In custom function is listed in the Paste Function list box
without the workbook name preceding the name of the function,
making it virtually indistinguishable from Excel's built-in functions.

o If the Add-In workbook is placed in the AddlIns folder, the Add-In will
be available every time you start Excel.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 51

How to Create an Add-In Macro

To save a workbook as an Add-In, choose Save As... from the File menu.
Choose Microsoft Excel Add-In from the Save File As Type drop-down list box,
then press OK. In Excel for Windows, Add-In workbooks are automatically
given the filename extension .xla.

When you save a workbook as an Add-In, the default location is the AddIns
folder.

Command macros can also be saved as Add-Ins.

Testing and Debugging

When an error occurs during execution of a procedure, VBA will stop
execution and display a run-time error message. There are a large number (over
50) of these run-time error messages. Some (but not all) of these error messages
are self-explanatory. Here are some examples:

Subscript out of range Attempted to access an element of an
array outside its specified dimensions.

Property or method not found Object does not have the specified
property or method.

Argument not optional A required argument was not provided.

The line of code in which the error occurred, or the first line of the
procedure (containing the Sub or Function keyword) will be highlighted,
usually in yellow (see Figure 2-22). After you have corrected the error in your
VBA code, the line will still be highlighted. Press F5 to continue execution.

o

Function MySLOPE(known_ys, known_xs)
N = known_ys.Count

Forz=1ToN

Sx = Sx + known_xs(2)

Sy = 8y + known_ys(z)

Sxx = Sxx + known_xs(z) # 2

Syy = Syy + known_ys(z) * 2

Sxy = Sxy + known_xs(z) * known_ys(z)
Next z

Slope = (N * Sxy - Sx * Sy) / (N * Sxx - Sx * Sx)
MySLOPE = Slope
__End Function

Figure 2-22. VBA code with a highlighted line.

52 EXCEL: NUMERICAL METHODS

Tracing Execution

When your program produces an error during execution, or executes but
doesn't produce the correct answer, it is often helpful to execute the code one
statement at a time and examine the values of selected variables during
execution. If your procedure contains logical constructions (If or Select Case,
for example), simply stepping through code will allow you to verify the logic.

Stepping Through Code

There are two ways to begin the process of stepping through the code of a
Sub procedure:

» Select the name of the procedure in the Macro Name list box and press the
Step Into button. This will display the code module containing the
procedure; the first line of the procedure will be highlighted in yellow, as in
Figure 2-22).

» Add a breakpoint as described in the following section, then run the Sub
procedure in the usual way.

When the code window is displayed, with a line of code highlighted, you can
step through the code by pressing F8 or by using the Step Into toolbutton i
The Step Into toolbutton is on the Debug toolbar; choose Toolbars from the
View menu and Debug from the submenu to display the Debug toolbar (Figure
2-23).

The highlighted line of code is the statement to be executed next.

Figure 2-23. The VBA Debug toolbar.

Adding a Breakpoint
A breakpoint allows you to halt execution at a specified line of code, rather

than having to step through the code from the beginning. There are several ways
to add a breakpoint:

= Opposite the line of code where you want to set the breakpoint, click
in the gray bar on the left side of the VBA module sheet. The line of
code will be highlighted (usually in red-brown) and a breakpoint
indicator, a large dot of the same color, will be placed in the margin
(see Figure 2-24).

= Place the cursor in the line of code where you want to set a breakpoint.

Press the Toggle Breakpoint button U on the Debug toolbar.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA 53

» Insert a Stop statement in the VBA code.

» Enter a break expression in the Add Watch dialog box (see
"Examining the Values of Variables" later in this chapter).

Function MySLOPE(known_ys, known_xs)
N = known_ys. Count

Forz=1ToN

S = Sx + known_xs(z)

Sy = S}f + known_ys(z)

Sxx = Sx + known_xs(z) * 2

Syy = Syy + known_ys(z) * 2

Sy = Sxy + known_xs(z) * known_ys(z)
Next z

| @ E_:_,_:_'_“,‘ nga Oy %‘if}.ﬂg"‘%
| MySLOPE = Slope
End Function

Figure 2-24. VBA code with a breakpoint.

When you run the macro, the code will execute until the breakpoint is
reached, at which point execution will stop. You can now step through the code
one statement at a time or examine the values of selected variables, as described
in the following sections.

Since you can't "run" a Function procedure, the only way to step through a
Function procedure is to add a breakpoint, then recalculate a formula containing
the custom function.

To remove a breakpoint, click on the breakpoint indicator, or place the

cursor on the highlighted line and press the Toggle Breakpoint button, or delete a
Stop statement.

Examining the Values of Variables
While in Break Mode

You can examine the values of selected variables while in Break Mode. You
get to be in Break Mode by one of the following:

e Your procedure generated a run-time error and halted.

e Your procedure reached a line with a breakpoint or a Stop statement

To see the current value of a variable, highlight the variable by double-
clicking on it, or simply place the cursor over the variable. The current value of
the variable will be displayed in a yellow "InfoBox" next to the cursor, as
illustrated in Figure 2-25.

54 EXCEL: NUMERICAL METHODS

Function MySLOPE(known_ys, known_xs)
N = known_ys.Count

Forz=1ToN

Sx = Sx + known_xs(z)

Sy = Sy + known_ys(z)

Sxux = Sxx + known_xs(z) * 2

Syy = Syy + known_ys(z) * 2

|Syy = 8507.926157 | + known_xs(z) * known_ys(2)
Next z

oy Slope=(N*Sxy- Sx*Sy)/(N*Sux-Sx™* 5x)
MySLOPE = Slope
| End Function

Figure 2-25. Displaying the value of a variable while in break mode.

Examining the Values of Variables During Execution

You can also display the values of selected variables as the code is executed.
There are several ways to select variables or expressions to be displayed:

s Highlight the variable or expression and then choose Quick Watch...

from the Debug menu or press the Quick Watch button ““ on the
Debug toolbar, to display the Quick Watch dialog box (Figure 2-26).

o Highlight the variable or expression and then choose Add Watch...
from the Debug menu to display the Add Watch dialog box (Figure 2-
27).

LINEST2.xls . Module1 .MySLOPE

Expression

Cancel I
Value - Skt il
<QOut of context> Help !

Figure 2-26. The VBA Quick Watch dialog box.

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING WITH VBA

55

Expression:

| 57 :
Cancel 1
Context 1

Procedure: |MySLOPE ~ Help

f_'],}duhz-: Ir‘hjl‘jlilel _'
Project: LINESTZ2.xls

watch Type

{* \Watch Expression

" Break \When value Is True

{ * Break \When Value Changes

Xl

Figure 2-27. The VBA Add Watch dialog box.

To see the values of the selected variables or expressions, you must be in
Step mode. The variables will be listed in the Watches pane (Figure 2-28),
which is usually located below the Code window. The current values of the

variables will be displayed as you step through the code.

Expr vaiue fType ~ [Context -
&6 Sx 78 VariantDouble Module1 MySLOPE
&4 Sxx 650 WariantDouble Module1 MySLOPE
|66 Sxy 23368138 WariantDoubkle Module1 MySLOPE
isﬁ Sy 299 307 Wariant/Double Module1 MySLOPE
Syy 926157 WariantDouble Module1 MySLOPE

Madule1 MySLOPE

Figure 2-28. The VBA Watches pane.

To remove a variable or expression from the Watches window, select it in
the Watches window, choose Edit Watch from the Debug menu and press the
Delete button. Or you can simply select it in the Watches window and press the

Delete key.

Watch expressions are not saved with your code.

This Page Intentionally Left Blank

Chapter 3

Worksheet Functions
for Working with Matrices

Arrays, Matrices and Determinants

Spreadsheet calculations lend themselves almost automatically to the use of
arrays of values. Arrays in Excel can be either one- or two-dimensional. For the
solution of many types of problem, it is convenient to manipulate an entire
rectangular array of values as a unit. Such an array is termed a matrix. (In Excel,
the terms "range," "array" and "matrix" are virtually interchangeable.) Anm x n
matrix (m rows and » columns) of values is illustrated below:

Ay A - Ay,
Ay Ay ... dyy,
aml am2 amn

The values comprising the array are called matrix elements. Mathematical
operations on matrices have their own special rules, to be discussed in the
following sections.

Some Types of Matrices

A matrix which contains a single column of m rows or a single row of »
columns is called a vector.

A square matrix has the same number of rows and columns. The set of
elements ajj for which i = j (ay, ax,..., am) is called the main diagonal or
principal diagonal.

If all the elements of a square matrix are zero except those on the main

diagonal, the matrix is termed a diagonal matrix. A diagonal matrix whose
diagonal elements are all 1 is a unit matrix.

57

58 EXCEL: NUMERICAL METHODS

An upper triangular matrix has values on the main diagonal and above, but
the values of all elements below the main diagonal are zero; similarly, a lower
triangular matrix has zero values for all elements above the main diagonal.

A tridiagonal matrix contains all zeros except on the main diagonal and the
two adjacent diagonals.

A symmetric matrix is a square matrix in which a;; = aj;.

A determinant is a property of a square matrix; there is a procedure for the
numerical evaluation of a determinant, so that an N x N matrix can be reduced to
a single numerical value. The value of the determinant has properties that make

it useful in certain tests and equations. (See, for example, "Cramer's Rule" in
Chapter 9.)

An Introduction to Matrix Mathematics

Matrix algebra provides a powerful method for the manipulation of sets of
numbers. Many mathematical operations, such as addition, subtraction,
multiplication and division, have their counterparts in matrix algebra. Our
discussion will be limited to the manipulations of square matrices. For purposes
of illustration, two 3 x 3 matrices will be defined, namely
[a b c] [2 3 4]
A=|d e f|=13 2 1

g h i] (4 3 7

and
ros t 2 0 2]
B=\u v w|=1{0 3 3
x y z 3 21

Addition or Subtraction. The following examples illustrate addition or
subtraction.

a+q b+g ct+g
Addition of aconstant: A +g=|d+q e+q f+gq
g+qg h+g i+gq

Addition of two matrices (both must have the same dimensions, i.e., contain the
same numbers of rows and columns):

a b ¢ r s t a+r b+s c+t
A+B=i{d e fl+|u v w|=|d+u e+v f+w
g h i x y z g+x h+y i+:z

CHAPTER 3 MATRICES 59

Multiplication or Division. Multiplication or division by a constant:

ga gb qc
gA=|qd qe qf
qg qh qi

Multiplication of two matrices can be either scalar or matrix multiplication.
Scalar multiplication of two matrices consists of multiplying the elements of a
matrix by a constant, as shown above, or multiplying corresponding elements of
two matrices:

a b c ros ot axr bxs cxt
AxB=|d e fix|lu v w|=|dxu exv fxw
g h i x y z gxx hxy ixz

Thus it’s clear that both matrices must have the same dimensions m x n.
Scalar multiplication is commutative, that is, A x B=B x A.

Matrix Multiplication. The matrix multiplication of two matrices is
somewhat more complicated. The individual matrix elements of the matrix
product C of two matrices A and B are

n
Cy =D 4uBy
k=1

where i is the row number and j is the column number. Thus, for example,

a b c|lr s t ar+bu+cx as+bv+cy at+bw+cz
AB=|d e fiju v w|=|dr+eu+fx ds+ev+fy dit+ew+fz
g h ijlx y z gr+hu+ix gs+hv+iy gt+hw+iz

Matrix multiplication is not generally commutative, that is A'‘B # B-A.

Transposition. The transpose of matrix A, most commonly written as A”, is
the matrix obtained by exchanging the rows and columns of A; that is, the matrix
element g;; becomes the element g;j; in the transposed matrix. The transpose of a
matrix of N rows and M columns is a matrix of M rows and N columns.

Matrix Inversion. The process of matrix inversion is analogous to obtaining
the reciprocal of a number a. The matrix relationship that corresponds to the
algebraic relationship a x (1/a) = 1 is

AA' =1

60 EXCEL: NUMERICAL METHODS

where A" is the inverse matrix and I is the unit matrix. The process for manual
calculation of the inverse of a matrix is complicated and need not be described
here, since matrix inversion can be done conveniently using Excel's worksheet
function MINVERSE.

Evaluation of the Determinant. A determinant is a mathematical value
that can be calculated for a square matrix. Determinants are useful for the
solution of systems of simultaneous equations, as will be discussed in chapter 9.
The "pencil-and-paper" evaluation of the determinant of a matrix of N rows x N
columns is tedious, but it can be done simply by using Excel's worksheet
function MDETERM.

Excel's Built-in Matrix Functions

Performing matrix mathematics with Excel is very simple. Let's begin by
assuming that the matrices A and B have been defined by selecting the 3R x 3C
arrays of cells containing the values shown in Figure 3-1 and naming them by
using Define Name. Remember, we're simply assigning a range name to a range
of cells. We usually refer to it as a range or an array; the fact that we are calling
it a matrix simply indicates what we intend to do with it.

I R
S Matrix A

4 | 2 3

5 | 3 2 -1
6 | 4 3 7
3' : : Matrix B

4 . 2 : 0 5 2
5 | 0 | 3 ' -3
B| 3 2 1

Figure 3-1. Ranges of cells defined as A and B.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Addition or Subtraction. To add a constant (e.g., 3) to matrix A, simply
select a range of cells the same size as the matrix, enter the formula =A+3, then
press COMMAND+RETURN or CONTROL+SHIFT+RETURN (Macintosh) or
CONTROL+SHIFT+ENTER (Windows). When you "array-enter" a formula by
pressing e.g., CONTROL+SHIFT+ENTER, Excel puts braces around the formula, as
shown below:

(=A+3)

CHAPTER 3 MATRICES 61

Do not type the braces; if you do, the result will not be recognized by Excel
as a formula.

o ;o m
——
SN~

Figure 3-2. Result matrix {A + 3}.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Subtraction of a constant, multiplication or division by a constant, or addition
of two matrices is performed in the same way by using standard Excel algebraic
operators.

Scalar Multiplication. Scalar multiplication can be either multiplication of
the elements of a matrix by a constant, e.g., a formula such as {=3*A}, or
multiplication of corresponding elements of two matrices, e.g., {=A*B}. The
result of the latter formula is shown in Figure 3-3.

C = F

16 4 0 8
7 0 B 3
18 -12 s 7

Figure 3-3. Result matrix {A x B}.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Matrix multiplication can be accomplished easily by the use of Excel's
worksheet function MMULT(matrix1, matrix2). For the matrices A and B
defined above, entering the formula =MMULT(A,B) yields the result shown in
Figure 3-4 while the formula =MMULT(B,A) yields the result shown in Figure
3-5.

sl i e F
24| 8 1 K
%9 8 1
%) 13 | 5 6

Figure 3-4. Result matrix A'B.
(folder 'Chapter 03 (Matrices) Examples, workbook "Matrix Math', sheet 'Sheet1")

62 EXCEL: NUMERICAL METHODS

- . g
28 12 12 22
29 3 3 24
30 8 -10 3

Figure 3-5. Result matrix B-A.
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

Matrix multiplication of two matrices is possible only if the matrices are
conformable, that is, if the number of columns of A is equal to the number of
rows of B. The opposite condition, if the number of rows of A is equal to the
number of columns of B, is not equivalent. The following examples, involving
multiplication of a matrix and a vector, illustrate the possibilities:

MMULT (4 x 3 matrix, 3 x 1 vector) =3 x 1 result vector
MMULT (4 x 3 matrix, 1 x 4 vector) = #VALUE!

MMULT (1 x 4 vector, 4 x 3 matrix) = 1 x 4 result vector
In other words, the two inner indices must be the same,

Transposition. The transpose of a matrix may be calculated by using the
worksheet function TRANSPOSE(array) or obtained manually by using the
Transpose option in the Paste Special... menu command.

The size of the array that can be transposed is limited only by the size of the
Excel spreadsheet; the number of rows or columns cannot be* greater than 256.

Matrix Inversion. The process for inverting a matrix "manually"” (i.e., using
pencil, paper and calculator) is complicated, but the operation can be carried out
readily by using Excel's worksheet function MINVERSE(array). The inverse of
the matrix B above is shown in Fi 1gure 3-6.

TR F
6 025 -0.33333333 05
7 0.75 0.66666667 0.5
g 075 0.33333333 05

Figure 3-6. Result matrix B
(folder 'Chapter 03 (Matrices) Examples, workbook 'Matrix Math', sheet 'Sheet1")

The size of the matrix must not exceed 52 rows by 52 columns.

Evaluation of the Determinant. The determinant of a matrix of N rows x
N columns can be obtained by using the worksheet function MDETERM(array).

CHAPTER 3 MATRICES 63

The function returns a single numerical value, not an array, and thus you do not
have to use CONTROL+SHIFT+ENTER. The value of the determinant of B,
represented by [B], is 12.

Some Additional Matrix Functions

Some additional functions useful for working with arrays or matrices are
provided on the CD that accompanies this book. The additional functions are as
follows:

Identity Matrix. The function MIDENT(size) returns an identity matrix of a
specified size. The size argument is optional. Use size when you want to use an
identity matrix in a formula. Omit size when you want to fill a range of cells on
a worksheet with an identity matrix; the size of the matrix is then determined by
the size of the selection. If the selection is not a square matrix, the function
returns the #REF! error value.

The maximum allowable size is 63 x 63 (larger gives #VALUE! error).
Examples:

The expression MIDENT(3) returns {1,0,0;0,1,0;0,0,1}.

The formula =MIDENT() entered in the range A1:ES returns
{1,0,0,0,0,0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1}.

The formula =MIDENT() entered in the range A1:E6 returns #REF! in the
cells (the selection has five rows and six columns).

Finding the Position of a Value in an Array. The function
Mindex(lookup_value, array_, match_type) returns a horizontal 2-element array
containing the row and column numbers of a specified value in an array. The
argument /lookup_value is the value you use to find the value you want in array_.
The argument array_ is a contiguous range of cells containing possible lookup
values. The argument match_type is a number (-1, 0, or 1) that specifies the
value found in array_. If match_type is 0 or omitted, the function returns the
position of the value that is exactly equal to lookup_value, or #N/A. If
match_type is 1, the function returns the position of the largest value that is less
than or equal to Jookup_value. 1If match_type is —1, the function returns the
position of the smallest value that is greater than or equal to lookup_value.
Unlike Excel's INDEX worksheet function, if match_type is —1 or 1, the values do
not have to be sorted in descending or ascending order, respectively.

The array must contain only numbers. If any cells contain text or error
values, Mindex returns the #VALUE! error value. Empty cells are treated as zero.

64 EXCEL: NUMERICAL METHQDS

Examples:

In the following example the range B13:D15, containing the values {13,0,—-
1;5,12,22;-5,0,1}, was assigned the name A.

The expression Mindex(MAX(A),A) returns the array of values {2,3}.

The expression Mindex(7,A) returns the array of values (#N/A #N/A}.

The expression Mindex(15,A,1) returns the array of values {1,1}.

Scaling Arrays. The function MSCALE(array, scale_factor_logical) calculates
and applies scale factors for a N x M matrix and returns a N x M scaled matrix.
All values in a row are scaled by dividing by the largest element in that row. The
function also creates a column vector of N elements, containing the scale factors.

If the optional argument scale_factor_logical = False or omitted, the function
returns the scaled matrix; if scale_factor_logical = True, returns the scale factor
vector.

Examples:

In the following examples the range A5:C7, assigned the name B, contains
the values {3,20,1000;-0.1,3,100,5,10,-5}.

The formula =MSCALE(B) returns the array {0.003,0.02,1;-
0.001,0.03,1;0.5,1,-0.5}.

The formula =MSCALE(B, TRUE) returns the array {0.001;0.01;0.1}.

Combining Separate Ranges into a Single Array. An array in Excel
must be a contiguous range of cells. It sometimes happens that one would like to
combine noncontiguous ranges into a single array. The function Arr(rangef,
range2...) combines individual 1-D or 2-D arrays into a 2-D array. All individual
arrays must be vertical and must have the same number of rows. The VBA code
for the function is shown in Figure 3-7.

This custom function makes use of the ParamArray keyword, which allows
the function to accept an arbitrary number of ranges.

Some uses for this custom function include the following:

In the solution of a system of simultaneous equations by the Gaussian
Elimination method (see Chapter 9), an augmented matrix of N rows x N + 1
columns is created by combining the N x N matrix of coefficients with the ¥

rows x | column vector of constants. This can conveniently be done by using the
custom function.

The LINEST worksheet function for multiple linear regression (see Chapter
13) requires that the argument known_x's be a contiguous selection of cells. The
custom function can be used to convert a series of noncontiguous ranges into an
array that can be used as the argument known_x's in LINEST.

CHAPTER 3 MATRICES 65

Option Explicit

Option Base 1

Function Arr(ParamArray rng())

‘Combines individual 1-D or 2-D arrays into a final 2-D array.
'In this version all individual arrays must be "vertical”.

‘All individual arrays must have same number of rows.
Dim Result()

Dim | As Integer, J As Integer, K As Integer
Dim TempX As Integer, TempY As Integer, XDim As Integer, YDim As Integer
Dim YStart As Integer, YSize As Integer

'First, get sizes of individual arrays, check to make sure all are same size.
For J = 0 To UBound(rng)
'Handles either range, name or array constant arguments
If IsObject(rng(J)) = True Then 'reference is to a range or a name
TempX = rng(J).Rows.Count
TempY = rg(J).Columns.Count
Elself IsArray(rng(J)) Then
TempX = UBound{rg(J), 1)
TempY = UBound(rng(J), 2)
End If
If J = 0 Then XDim = TempX
If XDim <> TempX Then Arr = CVErr(xIErrRef): Exit Function
YDim = YDim + TempY
Next J

'Now combine each individual array into final array.
'l index is used to select within array of arrays.
'K and J are column & row indices of individual arrays.
ReDim Result(XDim, YDim)
YStart =0
For | = 0 To UBound(rng)
YSize = rng(l).Columns.Count
For K=1 To YSize
For J =1 To XDim
Result(J, YStart + K) = Application.Index(rng(l), J, K)
Next J, K
YStart = YStart + YSize
Next |
Arr = Resuit()
End Function

Figure 3-7. VBA function procedure to combine separate ranges into a single array.
(folder 'Chapter 03 (Matrices) Examples, workbook 'ArrayMaker’, module 'Module1")

66 EXCEL: NUMERICAL METHODS

Problems

Answers to the following problems are found in the folder "Ch. 03 (Matrices)" in the
"Problems & Solutions" folder on the CD.

1. Find the inverse and the determinant of the following matrices:

2 9 4
(a) 7 5 3
6 1 8
(2 -1 0
(b) -1 2 -1
0 -1 2
[0.75 0.5 0.25
(c) 05 1 05
1025 0.5 0.75
(2 1 1
(d) 111
Ll 2 1

2. Find the value of the determinant of each of the following.
11 3
(a) 2 2 2
13 39

(b) 1 3

CHAPTER 3 MATRICES

-1 -1 1

67

This Page Intentionally Left Blank

Chapter 4

Number Series

Number series, such as

1

3 reny PR

n

1

N

11
53
are important in many areas of mathematics, such as the evaluation of
transcendental functions, integrals or differential equations. Often, the sum of a
number series is used as an approximation to a function that can't be evaluated
directly. The approximation becomes more and more accurate as more terms are

added to the sum; for example, the value of e, the base of natural logarithms, can
be evaluated by means of the sum of an infinite series:

e=1+Y — (4-1)

If the sum of a series approaches a finite value as the number of terms
approaches infinity, the series is said to be convergent. A series is divergent if
the sum approaches infinity (or does not converge to a definite value) when the
number of terms approaches infinity. Only convergent series will be discussed in
this chapter.

An alternating series in one in which the sign of each successive term is the
opposite of the preceding one. Such a series will always converge if the absolute
value of the nth term approaches zero.

Instead of a series of constant terms, a series may consist of variables, as
exemplified by the series

a0+alx+a2x2+---+a,,x“+--- 4-2)
A series of the form shown above, in which the terms are multiples of non-

negative integral powers of x, is called a power series.

Functions such as €%, sin x, cos x and others can be expressed in terms of the
sum of an infinite series. Of course, Excel already provides worksheet functions
to evaluate €', sin x or cos x, but the ability to use number series in Excel
formulas increases the scope of calculations that you can perform.

69

70 EXCEL: NUMERICAL METHODS

Evaluating Series Formulas

The obvious way to evaluate a series formula is to evaluate individual terms
in the series formula in separate rows of the spreadsheet, and then sum the terms.
Figure 4-1 illustrates the evaluation of e by using equation 4-1, summing terms
until the contribution from the next term in the series is less than 1E-15.

LA vtk R

1. 5o 11K sum

2 | 1
3 1 1 2
4 2 0.5 25
5 3 0.166666667 2.66667
B 4 0.041666667 2.7083333
7 5 0.008333333 2.7166666667
B 6 0.001388889 2.71805555555556
9 7 0.000198413 2.71825386825397
10 8 2.48016E-05 2.71827876984127
11 9 2.75573E-06 2.71828152557319
18 16 4.77948E-14 2.71828182845904
19 17 2.81146E-15 2.71828182845905

Figure 4-1. Evaluation of the terms of a series row-by-row.
The spreadsheet calculates the value of e by using equation (4-1).
Note that some rows of calculation have been hidden.

A more compact way to evaluate the sum of a series is by summing terms in
a single worksheet formula. For example, a value for e can be calculated from
equation 4-1 by using the following worksheet formula

=1+1/FACT(1)+1/FACT(2)+1/FACT(3)+1/FACT(4)+1/FACT(5)

where we sum the first 5 terms of the series. The true value of e to 15 decimal
places) is 2.718 281 828 459 045. The formula returns 2.717 (0.06% error).
Unfortunately, most power series converge much more slowly than this, and
many more terms are required. Hence this is not a practical way to evaluate a
series in a single cell — apart from the fact that it requires a lot of typing, a
worksheet formula is limited to 1024 characters. Fortunately there are other
ways to evaluate the sum of a series in a single worksheet formula.

Using Array Constants to Create Series Formulas

An array constant is an array of values, separated by commas and enclosed in
braces, used as an argument of a function. An example of an array constant,
sometimes referred to as an array literal, is {40,21,300,10}.

CHAPTER 4 NUMBER SERIES 71

You can use an array constant to make the evaluation of a series formula
much more compact and accurate. For example, to evaluate equation 4-1, the
formula

=1+SUM(1/FACT({1,2,3,4,5,6,7,8,9,10}))
returns the value 2.718 281 801 146 38 (1 x 107° % error).

Using the ROW Worksheet Function
to Create Series Formulas

The ROW worksheet function provides a convenient way to generate a series
of integers. To illustrate the use of this function in a formula, enter the formula

=ROW(1:100)

in a worksheet cell. Now highlight the formula in the formula bar or in the cell
and press F9 (Windows) or COMMAND+= (Macintosh) to display the result of the
formula. You will see the array of integers from 1 to 100, as shown below.
{1,2;3;4,5,6;7,8;9;10;11,12;13;14,15;16;17;18;19,20,21,22,23;24;25;26,27,28,29;
30:31;32;33;34;35:36;37;38;39;40,41;42;43,44,45;46,47,48;49,50,51,52;53;54;55
:56;57,58;59:60,61:62:63,64,65,66,67,68,69;70,71,72;73,74,75,76,77,78,79,80;8
1:82;83,84:85;86;87,88;89;90;91;92;93;94:95;96,97,98;99;100}

Using this method you can evaluate series formulas conveniently. For
example, the formula for e becomes

{=1+SUM(1/FACT(ROW(1:100)))}

and returns a value for e of 2.718 281 828 459 05, identical to the value returned
by Excel's built-in function.

This formula is an array formula, so after typing the formula in the cell, you
must enter it by pressing CTRL+SHIFT+ENTER. Excel indicates that the formula is
an array formula by enclosing it in braces. Don't type the braces as part of the
formula; they are added automatically by Excel.

One problem associated with using the ROW function in a formula is that the
row numbers will be adjusted if you insert or delete rows. For example, if you
insert a row above the row in which the expression ROW(1:100) is entered, the
expression will become ROW(2:101). You can avoid this problem by using the
INDIRECT worksheet function, described in the next section.

The INDIRECT Worksheet Function

The INDIRECT worksheet function creates a reference specified by a text
string. Thus, for example, the formula

=INDIRECT("A1")

72 EXCEL: NUMERICAL METHODS

entered in a cell (other than cell A1, of course) creates a reference to cell A1 and
returns the value contained in cell A1. Since the reference is text, it will not
change to A2 if a row is inserted above. The INDIRECT function can be used to
create powerful and versatile worksheet formulas. Some examples will serve to
illustrate.

The formula

=INDIRECT(B1)
(notice the absence of quotation marks) returns the value in cell A27 if cell B1
contains the text value A27.

Since the argument of INDIRECT is a text string, the use of the concatenation
operator (the "&" character) is common. For example, the formula

=INDIRECT("A" & B1)

returns the value in cell A27 if cell B1 contains the value 27.

Using the INDIRECT Worksheet Function
with the ROW Worksheet Function
to Create Series Formulas

The INDIRECT function can be used with the ROW function to create
formulas to evaluate number series. The series formula for e that was shown
previously becomes the formula

{=1+SUM(1/FACT(ROW(INDIRECT("1:20")))}
if you wish to evaluate the first 20 terms, or
{=1+SUM(1/FACT(ROW(INDIRECT("1:"&B1))))}

where the value in cell B1 specifies the number of terms to be evaluated. For
some, but not all, series you can evaluate 65536 (2'®) terms conveniently in this
way.

Again, you must enter the array formula by pressing CTRL+SHIFT+ENTER.

The Taylor Series

A series known as the Taylor series is frequently used in the evaluation of
functions by numerical methods. The Taylor series for the evaluation of a
function F at the point x + /4, given the value of the function and its derivatives at
the point x, is

F(x+h)=F(x)+ Z F k(x)hk L& (4-3)

CHAPTER 4 NUMBER SERIES 73

where F*(x) is the kth derivative of the function at the point x, and ¢ is the
remainder or error term. As has been illustrated by examples we have seen
earlier, the magnitude of ¢ decreases as k (the number of terms) increases.

To obtain a result that closely approximates the true value of a function, we
need to sum a number of terms. Clearly, we will not have available to us
(without a lot of work) values of a large number of derivatives of the function F,
up to the kth derivative. Fortunately, we will usually need only the first
derivative, the first and second derivatives, or the first, second and third
derivatives to obtain results of sufficient accuracy. We will use the Taylor series
expansion of a function in several of the subsequent chapters.

The order of the approximation is determined by the highest-derivative term
that is included in the approximation; thus the first-order Taylor series
approximation is

F(x+h)y= F(x)+ hF'(x) (4-4)
the second-order approximation is
F(x+h)zF(x)+hF'(x)+ﬁ2—2-F"(x) 4-5)
and the third-order approximation is
F(x+h)zF(x)+hF'(x)+%F”(x)+%F”'(x) (4-6)

Obviously, the accuracy of the approximation increases as the number of
terms is increased. It is also obvious that the accuracy of the approximation will
increase as / is made smaller. Higher-order terms will become more important
as A is increased, or if the function is nonlinear.

The Taylor Series: An Example

The following example will illustrate the use of the Taylor series to evaluate
a function. Consider the polynomial ax’ + bx* + ¢cx + d, witha=1.25,b=9, ¢ =
—Sandd=11. Atx=1, F(x) = 16.25. We wish to evaluate the function at x =
1.6. (Since we are dealing with a known function, we could just evaluate it at x =
1.6, but here we use a known function for purposes of illustration. In subsequent
chapters Taylor series will be used to evaluate functions whose value is known at
a certain point but whose form is unknown.)

From simple calculus, F(x) = 3ax® + 2bx + ¢ = 3.75x* + 18x — 5, F'(x) = 6ax
+2b="75x+ 18 and F"(x)=6a=75. Atx=1, F(x)=16.75, F"(x) = 25.5 and
F"(x) =7.5. Substituting these values, along with # = 0.6, into equations 4-4, 4-
5 and 4-6 yields the results shown in Figure 4-2. As expected, the third-order
approximation provides the highest accuracy.

74

EXCEL: NUMERICAL METHODS

Figure 4-2. Evaluation of Taylor series.

A B C Bl E |
10] x F{¢) exact F{ cale error
A1 1 1625 :
12] 16 3116 N S
13| 18 26.3 (term) . 16%
14, 186 3089 (2terms) 0.87%
15| 1.6 ' 3116 (3terms) | 0.00%

CHAPTER 4 NUMBER SERIES 75

Problems

Answers to the following problems are found in the folder "Ch. 04 (Number Series)"
in the "Problems & Solutions" folder on the CD.

1. Evaluate the following infinite series:
(a) 172 (b) 1/ (c) Un!

2. Evaluate the following:
S=1/11-1/2'+ 1/31 - 1/4! ...

3. Evaluate the following infinite series:
Tax", wherea>1,x <1

4. Evaluate the following:
S=1/2"+1/3"

5. Evaluate the following:
S=1/2"-1/3"

6. Evaluate Wallis' series for m:

x =2H[~——(ﬁ—-——}

(2n-1)2n +1)

over the first 100 terms of the series.

7. Evaluate Wallis' series for 7, summing over 65,536 terms. Use a worksheet
formula that uses ROW and INDIRECT to create the series of integers.

8. A simple yet surprisingly efficient method to calculate the square root of a
number is variously called Heron's method, Newton's method, or the divide-
and-average method. To find the square root of the number a:

1. Begin with an initial estimate x.

2. Divide the number by the estimate (i.e., evaluate a/x), to get a new
estimate

3. Average the original estimate and the new estimate (i.e., (x + a/x)/2)
to get a new estimate

76

EXCEL: NUMERICAL METHODS

10.

4. Return to step 2.

Use this method to calculate the square root of a number. The value of the
initial estimate x must be greater than zero.

In the divide-and-average method, the better the initial estimate, the faster the

convergence. Devise an Excel formula to provide an effective initial

estimate.

The series

T =

— (2 -5 2k -1)239%

proposed by Machin in 1706, converges quickly. Determine the value of © to
15 digits by using this series

Chapter 5

Interpolation

Given a table of x, y data points, it is often necessary to determine the value
of y at a value of x that lies between the tabulated values. This process of
interpolation involves the approximation of an unknown function. It will be up
to the user to choose a suitable function to approximate the unknown one. The
degree to which the approximation will be "correct" depends on the function that
is chosen for the interpolation. A large number of methods have been developed
for interpolation; this chapter illustrates some of the most useful ones, either in
the form of spreadsheet formulas or as custom functions. Although some
interpolation formulas require uniformly spaced x values, all of the methods
described in this chapter are applicable to non-uniformly spaced values.

Obtaining Values from a Table

Since interpolation usually involves the use of values obtained from a table,
we begin by examining methods for looking up values in a table.

Using Excel's Lookup Functions
to Obtain Values from a Table

Excel provides three worksheet functions for obtaining values from a table:
VLOOKUP for vertical lookup in a table, HLOOKUP for horizontal lookup and
LOOKUP. The first two functions are similar and have virtually identical syntax.
The LOOKUP function is less versatile than the others but can sometimes be used
in situations where the others fail.

The function VLOOKUP(lookup_value, table_array, column_index_num,
range_lookup) looks for a match between lookup_value and values in the
leftmost column of table_array and returns the value in a specified column in the
row in which the match was found. The argument column_index_num specifies
the column from which the value is to be obtained. The column number is
relative; for example, a column_index_num of 7 returns a value from the seventh
column of table_array.

The optional argument range_lookup (I would have called this argument
match_type_logical) allows you to specify the type of match to be found. If

77

78 EXCEL: NUMERICAL METHODS

range_lookup is TRUE or omitted, VLOOKUP finds the largest value that is less
than or equal to lookup_value; the values in the first column of table_array must
be in ascending order. If range_lookup is FALSE, VLOOKUP returns an exact
match or, if one is not found, the #N/A! error value; in this case, the values in
table_array can be in any order. You can use 0 and 1 to represent FALSE and
TRUE, respectively.

Using VLOOKUP to Obtain Values from a Table

The spreadsheet in Figure 5-1 (see folder 'Chapter 05 Interpolation’,
workbook 'Interpolation I', sheet 'Freezing Point') lists the freezing point, boiling
point and refractive index of aqueous solutions of ethylene glycol; the complete
table, on the CD-ROM, contains data for concentrations up to 95% and extends
to row 54.

Lo g B el L 0
 Freezing and Boiling Points
i of Heat Transfer Fluid
Wi% Boiling Refractive
Ethylene Freezing Point, °F Index
2 | Glycol Point, °F (at1atm) (at 22°C)
i, 00 | 320 212 | 13328
4| 50 | 294 = 213 5 1.3378 |
5 100 | 262 | 214 | 13428
B 150 | 22 | 215 | 1.3478
7,200 179 | 216 1.3530
61210 168 = 216 1.3540
9 220 | 159 216 1.3851 |
10,230 148 217 | 1.3561
11 240 137 217 1.3572
12 250 127 218 13592
13,260 114 218 13503
14 270 104 | 218 | 1.3503
158/280 92 | 219 | 13614
16,290 80 | 219 | 13624
17,300 67 | 220 | 13835
18/ 310 54 = 220 @ 1.3546 |
19320 42 220 | 1365
20 330 @ 29 | 220 | 1.3867
21,340 © 14 = 220 13678
221 350 02 | 221 | 13888 |

Figure 5-1. Portion of a data table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Freezing Point")

CHAPTER 5 INTERPOLATION 19

Using VLOOKUP to find the freezing point of a 33% solution is illustrated in
Figure 5-2. The formula

=VLOOKUP(F3,$A%$3:5D%$54,2,0)
was entered in cell G3 and the lookup value, 33, in cell F3.

\'.'I.I'.",t 1};,:3
Ethylene Freezing
Glycol Point, °F

2
3 33.0 28

Figure 5-2. Using VLOOKUP to obtain a value from a table.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Freezing Point')

The third argument, column_index_num, is 2 since we want to return
freezing point values from relative column 2 of the database. If we wanted to
return the refractive index of the solution we would use column_index_num = 4.

The fourth argument, range_lookup, is set to FALSE because in this case we
want to find an exact match. The formula returns the value 2.9.

HLOOKUP(lookup_value, table_array, row_index_num, range_lookup) is
similar to VLOOKUP, except that it "looks up" in the first row of the array and
returns a value from a specified row in the same column.

Using the LOOKUP Function
to Obtain Values from a Table

When you use VLOOKUP, you must always “look up” in the first column of
the table, and retrieve associated information from columns to the right in the
same row; you cannot use VLOOKUP to look up to the left. If it is necessary to
look to the left in a table (maybe it's not convenient or possible to rearrange the
data table so as to put the columns in the proper order to use VLOOKUP), you can
sometimes accomplish this by using the LOOKUP function.

LOOKUP(lookup_value,lookup_vector,result_vector) has two syntax
forms: vector and array. The vector form of LOOKUP looks in a one-row or one-
column range (known as a vector) for a value and returns a value from the same
position in another one-row or one-column range. The values in lookup_vector
must be sorted in ascending order. If LOOKUP can't find lookup_value, it returns
the largest value in Jookup_vector that is less than or equal to lookup_value.

80 EXCEL: NUMERICAL METHODS

Creating a Custom Lookup Formula
to Obtain Values from a Table

A second way to "lookup" to the left in a table is to construct your own
lookup formula using Excel's MATCH and INDEX worksheet functions. The
MATCH and INDEX functions are almost mirror images of one another: MATCH
looks up a value in an array and returns its numerical position, INDEX looks in an
array and returns a value from a specified numerical position.

The following example illustrates how to use INDEX and MATCH to lookup
to the left in a table. In the table of production figures for phosphoric acid shown
in Figure 5-3 (see folder 'Chapter 05 Interpolation’, workbook 'Interpolation I,
sheet 'VLOOKUP to left), it is desired to find the month with the largest
production.

i A B

| 4 onth Production
5 Jan fb212
b Feb 15379
7 Mar 62220
5 Apr 83118
9 May 33872
10 Jun 80881
11 Jul 54263
12 Aug 35427
13 Sep 50361
14 Oct 7160C
15 Nov 133
16 Dec 22477

Figure 5-3. A table requiring "lookup" to the left.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'VLOOKUP to left')

Use Excel's MAX worksheet function to find the maximum value in the range
of production figures. The expression

=MAX(B5:5B$16)

returns the value 83119. Now we want to return the month value in the column
to the left in the same row. We do this in two steps, as follows. First, use the
MATCH function to find the position of the maximum value in the range.

The syntax of MATCH is similar to that of VLOOKUP:
MATCH(lookup_value,lookup_array,match_type_num). If match_type_num =
0, MATCH returns the position of the first value that is equal to /ookup_value.
The expression

CHAPTER 5 INTERPOLATION 81

=MATCH(83119,B5:B16,0)

returns 4, the maximum value is the fourth value in the range. Second, use the
INDEX function to return the value in the same position in the array of months:

=INDEX(A5:A16,4)

The specific values 83119 and 4 can now be replaced by the formulas that
produced them, to yield the following "megaformula.”

=INDEX($A3$5:$3A%$16, MATCH(MAX(B5:B16),$B%$5:$B%16,0))

This example could not be handled using LOOKUP, since LOOKUP requires
that the lookup values (in this case in column B) be in ascending order.

Using Excel's Lookup Functions
to Obtain Values from a Two-Way Table

A two-way table is a table with two ranges of independent variables, usually
in the leftmost column (x values) and in the top row (y values) of the table; a two-
dimensional array of z values forms the body of the table. Figure 5-4 shows an
example of such a two-way table (see folder 'Chapter 05 Interpolation’, workbook
‘Interpolation I', sheet 'Viscosity'), containing the viscosity of solutions of
ethylene glycol of various concentrations at temperatures from 0 to 250°F. The
table can also be found on the CD; the data extends down to row 32.

The desired z value from a two way table is found at the intersection of the
row and column where the x and y lookup values, respectively, are located.
Unlike in the preceding example showing the application of VLOOKUP, where
column_index_num was the value 2 (a value was always returned from column 2
of the array), we must calculate the value of column_index_num based on the y
lookup value. There are several ways this can be done. A convenient formula is
the following, where names have been used for references. Temp and Percent
are the lookup values, P_Row is the range B3:3K$3 that contains the y
independent variable and Table is the table A4:$3K$32, containing the x
independent variable in column 1. The following formula was entered in cell M2
of Figure 5-5.

=VLOOKUP(Temp,Table, MATCH(Percent,P_Row,1)+1,1)
The corresponding expression using references instead of names is
=VLOOKUP(M2, A4:$1$32, MATCH(N2, B3.:K3,1)+1,1)

82 EXCEL: NUMERICAL METHODS

i Viscosity of Heat Transfer Fluid (cps)
b0 Volume Percent Ethylene Glycol

Temp, ; I ;
3 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

A T e e bt Bl okl sl el R

3

4 I R R | 1 89671287918522
51 -20 § | | . 40.38) 60.46 89.93/131.32/284.48
6| -10 . | | 27.27 42.05 6350 91.88169.83
7

8

9

0 3 _ 1376 19.34| 30.08 4558 65.04107.77
10 683 1013 1426, 2206 3331 46.89 71.87
9! 2 : 380 538 774 1085 1656 2479 3448 4994
10 30 216 314 433 609 848 1268 1877 2584 3591
1] 40 153 182 253 354 491 BJ7 990 1445 1971 26.59
12| 50 130 156 218 285 404 550 7.85 1131 1529 20.18
13| B0 112 135 186 249 338 455 633 897 1205 1565
14, 70 098 118 161/ 213 287 381 517 722 962 1237
151 B0 086 104 141 184 246 323 428 588 779 993
(16| 90 076 093 124 160 213 276 358 485 638 810
17| 100 068 083 111 141 187 239 303 404 528 688
18| 110 061 075 089 125 164 208 258 340 441 558
19| 120 055 088 090 111 146 182 223 288 373 471
20| 130 051 062 081 100 130 161 193 247 317 401
21| 140 046 057 074 090 117 143 169 213 272 345
22| 150 043 053 088 082 105 128 149 186 235 298
23| 160 039 049 063 075 095 115 132 163 205 260
(24| 170 037 046 058 068 087 104 118 143 180 228
25! 180 034 043 054 063 079 094 106 1.27 158 201

26| 190 032 040 050 058 073 085 095 114 140 1.78

Figure 5-4. Portion of a two-way data table.
(folder 'Chapter 05 Interpolation’, workbook ‘Interpolation I', sheet 'Viscosity’)

h | N O

4 Temp Percent Viscosity
5 120 B0% = 223 |

Figure 5-5. Using VLOOKUP and MATCH to obtain a value from a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Viscosity')

CHAPTER 5 INTERPOLATION 83

Interpolation

Often it's necessary to interpolate between values in a table. You can use
simple linear interpolation, which uses a straight line relationship between two
adjacent values. Linear interpolation can be adequate if the table values are close
together, as in Figure 5-6. Most often, though, an interpolation formula that fits a
curve through several data points is necessary; cubic interpolation, in which four
data points are used for interpolation, is common. The following sections
describe methods for performing linear interpolation or cubic interpolation.

Linear Interpolation in a Table
by Means of Worksheet Formulas

To find the value of y at a point x that is intermediate between the table

values xp, yo and xy, ¥y, use the equation for simple linear interpolation (equation
5-1).

(x=x)

P R (5-1)

yx=y0+

40

o

Freezing point, °F

-60 i i I ; ;
0 10 20 30 40 50 60

Wit% Ethylene Glycol

Figure 5-6. Freezing point of ethylene glycol solutions (data from Figure 5-1).
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation")

84 EXCEL: NUMERICAL METHODS

In the following example, we'll assume that values of the independent
variable x in the table are in ascending order, as in Figure 5-1, where the
independent variable is wt% ethylene glycol. We want to find the freezing point
for certain wt% values. Figure 5-2 shows the data (see folder 'Chapter 05
Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation'); it's clear
that, since most of the points are close together, we can use linear interpolation
without introducing too much error.

You can create a linear interpolation formula using Excel's MATCH and
INDEX functions. If match_type_num = 1, MATCH returns the position of the
largest array value that is less than or equal to lookup_value. The array must be
in ascending order. Use this value in the INDEX function to return the values of
X0, Yo, X1 and yy, as shown in the following:

position =MATCHY(lookup_value known_x’s,1)
Xo =INDEX(known_x"s,position)

Xy =INDEX(known_x's,position+1)

Yo =INDEX(known_ys,position)

b%| =INDEX(known_y’s,position+1)

The preceding formulas were applied to the data shown in Figure 5-1 to find
the freezing point of a 33.3 wt% solution of ethylene glycol. The following
named ranges were used in the calculations: known_x's (A3:$3A$47), known_y's
(B3:3B%$47), lookup_value ($F$6), position ($G$6). The intermediate
calculations and the final interpolated value are shown in Figure 5-7.

I 3 Stepwise calculations
| 4 o deveiop formula
5 | Lookup¥alue Value Formula used in column G
| b 33.3 18 (position) =MATCH{LookupValue XValues,1)
L 33 (_0) =INDEX(XValues,GB)
N 34 6 1) =INDEX(xValues,GE+1)
| 8 2.9 (v_0) =INDEX(YValues,G6)
| 10 1.4 i y_1) =INDEX(YValues,G6+1)
(11] resus 2.45 =G8+(FB-G7)*(G10-GIH(GB-GT)

Figure 5-7. Linear interpolation: intermediate calculations.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation’)

CHAPTER 5 INTERPOLATION 85

The formulas in cells G6:G11 can be combined into a single "megaformula”
for linear interpolation, shown below and used in cell G15.

=INDEX(YValues, MATCH(LookupValue,XValues,1))+(F15-INDEX(XValues,
MATCH(LookupValue,XValues,1)))*(INDEX(YValues, MATCH(LookupValue,
XValues,1)+1)-INDEX(YValues, MATCH(LookupValue, XValues,1)))/
(INDEX(XValues,MATCH (LookupValue,XValues, 1)+1)-INDEX(XValues,
MATCH(LookupValue XValues, 1)))

R .
13 | Megaformula version
14 LookupValue Value
15 333 2.45

Figure 5-8. Linear interpolation: final interpolated value.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation I', sheet 'Linear Interpolation')

If you use the megaformula, the formulas in cells G6:G11 are no longer
required.

Linear Interpolation in a Table
by Using the TREND Worksheet Function

Excel provides the TREND worksheet function to perform linear
interpolation in a table of data by means of a linear least-squares fit to all the data
points in the table. But TREND can be used to perform linear interpolation
between two adjacent data points.

The syntax of the TREND function is
TREND(known_y's, known_x's, new_x's, const)

where known_y's and known_x's are one-row or one-column ranges of known
values. The argument new_x's is a range of cells containing x values for which
you want the interpolated value. Use the argument const to specify whether the
linear relationship y = mx + b has an intercept value; if const is set to FALSE or
zero, b is set equal to zero.

The TREND worksheet function provides a way to perform linear
interpolation between two points without the necessity of creating a worksheet
formula. Using the TREND function to perform the linear interpolation
calculation that was illustrated in Figure 5-7 is shown in Figure 5-9. Cell G18
contains the formula

=TREND(B20:B21,A20:A21,F18,1)

86 EXCEL: NUMERICAL METHODS

16 | Other methods for linear interpolation:
17 ! Using TREND worksheet function
18 | wit% o e o

19 | 33.3 2.45

Figure 5-9. Using the TREND worksheet function for linear interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation')

Note that although TREND can be used to find the least-squares straight line
through a whole set of data points, to perform linear interpolation you must select
only two bracketing points, in this example in rows 20 and 21. It should be clear
from Figure 5-6 that the least-squares straight line through all the data points will
not provide the correct interpolated value.

You can also use TREND for polynomial (e.g., cubic) interpolation by
regressing against the same variable raised to different powers (see "Cubic
Interpolation in a Table by Using the TREND Worksheet Function” later in this
chapter.)

Linear Interpolation in a Table
by Means of a Custom Function

The linear interpolation formula can also be easily coded as a custom
function, as shown in Figure 5-10.

Function Interpl(lookup_value, known_x’s, known_y’s)

Dim pointer As Integer
Dim X0 As Double, YO As Double, X1 As Double, Y1 As Double

pointer = Application.Match(lookup_value, known_x’s, 1)
X0 = known_x"s(pointer)

Y0 = known_y s(pointer)

X1 = known_x"s(pointer + 1)

Y1 = known_y s(pointer + 1)

InterpL = YO + (lookup_value - X0) * (Y1 - YO) / (X1 - X0)
End Function

Figure 5-10. Function procedure for linear interpolation.
(folder 'Chapter 05 Interpotation', workbook 'Interpolation I', module 'LinearInterpolation')

The syntax of the function is
InterpL({/ookup_value, known_x’s,known_y’s).

CHAPTER 5 INTERPOLATION 87

The argument lookup_value is the value of the independent variable for
which you want the interpolated y value; known_x's and known_y’s are the
arrays of independent and dependent variables, respectively, that comprise the
table. The table must be sorted in ascending order of known_x's. Figure 5-11
illustrates the use of the custom function to interpolate values in the table shown
in Figure 5-1; cell G24 contains the formula

=InterplL(F22,A3:$A%54,$B$3:$B$54)

21 | Other methods for linear interpolation:
2| Using a custom function for interpolation
23 | wi % ER.F

24 | 33.3 2.45

Figure 5-11. Using the InterpL function for linear interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet 'Linear Interpolation')

The custom function can be applied to tables in either vertical or horizontal
format.

Cubic Interpolation

Often, values in a table change in such a way that linear interpolation is not
suitable. Cubic interpolation uses the values of four adjacent table entries (e.g.,
at xo, X1, x; and x3) to obtain the coefficients of the cubic equation y=a + bx + cx?
+ dx® to use as an interpolating function between x; and x,. For example, to find
the freezing point for a 33.3 wt% solution of ethylene glycol using cubic

interpolation requires the four table values in Figure 5-12 whose x values are
highlighted.

A convenient way to perform cubic interpolation is by means of the
Lagrange fourth-order polynomial

_ e xy) —x3 (x - x4) N (x—x) (x—x3)(x—x,)
’ () —x)(x; —x3)(x; —x4) 1 (35 =Xy)(xy —x3)(X5 —X4) 2
(x = x)(x = Xy {(x — X4) + (x = x)(x — %))(x — x3) (5-2)

(3 =203 —20p)(x5 = %) > (xg = X)X — X)4 — X3)

88 EXCEL: NUMERICAL METHODS

A B B D
Freezing and Boiling Points
1 of Heat Transfer Fluid
: YWi% Boiling Refractive
: Ethylene Freezing Paint, °F Index
| 2 Glycol Point, °F (at1 atm) (&t 22°C)
167 290 80 219 ' 1.3624
|17 300 67 220 1.3635
18] 310 5.4 220 1.3646
19 320 472 220 1.3656
20 33.0 29 220 1.3667
211 340 1.4 220 1.3678
|22] 350 -0.2 221 1.3688
(23] 360 -156 221 1.3699
37.0 -3.0 221 1.3709
38.0 4.5 221 1.3720
39.0 -b.4 221 1.3730

Figure 5-12. Four bracketing x values required
to perform cubic interpolation at x = 33.3%.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet Cubic Interpolation’)

The Lagrange fourth-order polynomial is cumbersome to use in a worksheet
function, but convenient to use in the form of a custom function. A compact and
elegant implementation of cubic interpolation in the form of an Excel 4.0 Macro
Language custom function was provided by Orvis’. A slightly modified version,
in VBA, is provided here (Figure 5-13). The syntax of the custom function is
InterpC(lookup_value, known_x's, known_y’s). The argument /ookup_value is
the value of the independent variable for which you want the interpolated y
value; known_x’s and known_y’s are the arrays of independent and dependent
variables, respectively, that comprise the table. The table must be sorted in
ascending order of known_x’s.

* William J. Orvis, Excel 4 for Scientists and Engineers, Sybex Inc., Alameda, CA, 1993,

CHAPTER 5 INTERPOLATION 89

Function InterpC(lookup_value, known_x’s, known_y’s)

' Performs cubic interpolation, using an array of known_x’s, known_y’s.
' The known_x’s must be in ascending order.

' Based on XLM code from Excel for Chemists”, page 239,

' which was based on W. J. Orvis' code.

Dim row As Integer
Dim i As Integer, j As Integer
Dim Q As Double, Y As Double

row = Application.Match(lookup_value, known_x's, 1)
If row <2 Then row = 2
If row > known_x's.Count - 2 Then row = known_x"s.Count - 2

Fori=row-1Torow +2

Q=1
Forj=row-1Torow+2

Ifi <>j Then Q = Q * (lookup_value - known_x’s(j)) / (known_x"s(i)
known_x"s(j))

Next |

Y =Y + Q*known_y’s(i)
Next i
InterpC =Y

End Function

Figure 5-13. Cubic interpolation function procedure.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', module 'Cubiclnterpolation’)

Figure 5-14 illustrates the use of the custom function to interpolate values in
the table shown in Figure 5-12; cell H22 contains the formula

=InterpC(G22,5A$3:3A$47,5B$3:$B%47)

F G Wi |
20 Using a custom function for cubic interpolation
21 wt% FP, °F
22 33.3 2.47

Figure 5-14. Using the InterpC function procedure for cubic interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation I', sheet ‘Linear Interpolation’)

Cubic Interpolation in a Table
by Using the TREND Worksheet Function

In the TREND function, the array known_x's can include one or more sets of
independent variables. For example, suppose column A contains x values. You
can enter x° values in column B and x’ in column C and then regress columns A
through C against the y values in column D to obtain a cubic interpolation

90 EXCEL: NUMERICAL METHODS

function. But instead of actually entering values of the square and the cube of the
x values, you can use an array constant in an array formula, thus

{=TREND(C19:C22,A19:A224{1,2,3},FON1,2,3},1)}

This example of using the TREND function is found in folder 'Chapter 05
Interpolation’, workbook 'Interpolation I', sheet Cubic Interpolation).

Linear Interpolation in a Two-Way Table
by Means of Worksheet Formulas

To perform linear interpolation in a two-way table (a table with two ranges of
independent variables, x and y and a two-dimensional array of z values forming
the body of the table), we can use the same linear interpolation formula that was
employed earlier. Consider the example shown in Figure 5-15; we want to find
the viscosity value in the table for x = 76°F, y = 56.3 wt% ethylene glycol. The
shaded cells are the values that bracket the desired x and y values.

A B C D E F G H
Viscosity of Heat Transfer Fluid (cps)

Yolume Percent Ethylene Glycol

Temp,
F 20% 30% 40% 50% 60% 70% 80% 90%
0 1376 1934 3008 4558 6504 107.77
10 683 1013 1426 2206 3331 4689 7187

20 3.90 5.38 7.74 1085 1656 2479 3448 4994

30 3.14 4.33 6.09 8.48 1268 1877 2584 350

0 40 2.59 3.54 4.91 6.77 990 1445 1971 26.58
. 50 218 295 404 5.50 785 1131 1528 2018
10 60 1.86 2.49 3.38 4.55 6.33 8.97 1205 1565
11 70 1.61 213 2.87 3.81 517 7.22 962 1237
. 80 1.41 1.84 2.46 3.23 4.28 5.88 7.79 9.93

13 90 1.24 1.60 213 276 3.58 485 6.38 8.10
100 1.11 1.41 1.87 2.39 3.03 4.04 5.28 6.68

Figure 5-15. Linear interpolation in a two-way table.

The shaded cells are the ones used in the interpolation.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Linear Interpolation 2-Way')

We must perform three linear interpolations. First, as shown in Figure 5-16,
for the two bracketing values of x we calculate the value of z at y = 56.3. The
formula used in cell B32 is

=InterpL(0.563,E3:F3,E11:F11)

CHAPTER 5§ INTERPOLATION 91

Temp,
31 "F Zlinterp)
70 467 (value of z at¥x=70°F, y= 56.3%)
80 3.89 (value of z at x=80°F, y= 56.3%)

o
my
-

Figure 5-16. First steps in linear interpolation in a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Linear Interpolation 2-Way')

Then, in this one-way table (A32:B33), we use these two interpolated values
of z to interpolate at x = 76°F, as illustrated in Figure 5-17. The formula in cell
B36 is

=InterpL(A36,A32:A33,B32:B33)

B
Temp,
35 *F zinterp)
36 76 4.20

Figure 5-17. Final step in linear interpolation in a two-way table.
(folder ‘Chapter 05 Interpolation', workbook 'Interpolation II', module ' Linear Interpolation 2-Way")

The resulting interpolated value suffers from the usual errors expected from
linear interpolation (and in this example may be in error by as much as 3%). A
more accurate value can be obtained by performing cubic interpolation, using
four bracketing values to obtain the coefficients of the interpolating cubic. There
are at least two ways to obtain these coefficients: by using LINEST (the multiple
linear regression worksheet function, described in detail in Chapter 13), or by
using the cubic interpolation function. The latter will be described here, in the
following sections.

Cubic Interpolation in a Two-Way Table
by Means of Worksheet Formulas

To perform cubic interpolation between data points in a two-way table, we
use a procedure similar to the one for linear interpolation. Figure 5-18 shows the
table of viscosities that was used earlier. In this example we want to obtain the
viscosity of a 63% solution at 55°F. The shaded cells are the values that bracket
the desired x and y values.

92 EXCEL: NUMERICAL METHODS

s R - A) " AR v AR 0 K A WM o V51 o s |
Viscosity of Heat Transfer Fluid (cps)

1
24 Volume Percent Ethylene Glycol

Temp, | | : |
3 ¥ g 20% 30% 40% 6BH0% 60% 70% 80% 90%
4 0 1376 1934 3008 4558 6504 107.77
5 10 683 1013 1426 2206 3331 46.83 71.87
65 20| 380 538 774 1085 1656 2473 3448 4994
7 301 314 433 609 848 1268 1877 25684 3591
8 | 40 259 354 49 B.77 990 1445 1971 2659
9] 50 219; 295 404 550 785 1131 1529 2018
10 60 186) 249 338 455 633 897 12056 1565
1M1 70 1.61 213 2.87 3.81 517 7.22 962 1237
12 | 80 1.41 1.84° 246 3.23 428 5.88 7.79 9.93
131 90 1.24 1.60 213 276, 358 485 638 810
14 i 100 1.1 1.41 1.87 239 3.03 4.04 5.28 6.68
15 110 099 125 164 208@ 258 340 441 548

Figure 5-18. Cubic interpolation in a two-way table.

The shaded cells are the ones used in the interpolation.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', module ' Cubic Interpolation 2-Way')

We'll use the InterpC function to perform the interpolation. Figure 5-19
shows the z values, interpolated at y = 63% using the four bracketing y values, for
the four bracketing x values. The formula in cell M8 is

=InterpC{63%,E3:H3,E8:H8)

Tl SR R TR
T X zaty=63%
8| 40 1115 |
9. &0 8.80

10 60 705 |
11 70 573 |

Figure 5-19. First steps in cubic interpolation in a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Cubic Interpolation 2-Way")

Then, in this one-way table, we use the formula
=InterpC(L15,L8:5L.$11,$M$8:5M$11)

in cell M15 to obtain the final interpolated result, as shown in Figure 5-20.

CHAPTER 5 INTERPOLATION 93

14 X Z(interp)
15 85 . 786

Figure 5-20. Final step in cubic interpolation in a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ' Cubic Interpolation 2-Way")

Cubic Interpolation in a Two-Way Table
by Means of a Custom Function

The cubic interpolation macro was adapted to perform cubic interpolation in
a two-way table. The calculation steps were similar to those described in the
preceding section. The cubic interpolation function shown in Figure 5-13 was
converted into a subroutine CI; the main program is similar to the Lagrange
fourth-order interpolation program of Figure 5-12.

The VBA code is shown in Figure 5-21. The syntax of the function is
InterpC2(x_lookup,y_lookup,known_x's,known_y’s,known_z's)

The arguments x_lookup and y_lookup are the lookup values. The arguments
known_x’s and known_y’s are the one-dimensional ranges of the x and y
independent variables (in Figure 5-20, the column of temperature values and the
row of volume percent values). The argument known z's is the table of
dependent variables (the two-dimensional body of the table).

Option Explicit

Option Base 1

B I o B I e R S S
Function InterpC2(x_lookup, y_lookup, known_x's, known_y’s, __ known_z’s)

' known_x’s are in a column, known_y’s are in a row, or vice versa.

' In this version, known_x"s and known_y’s must be in ascending order.
"In first call to Sub, XX is array of four known_y’s

' and YY is array of corresponding Z values, pointer is y_lookup.

' This call is made 4 times in a loop,

' obtaining 4 interpolated Z values, ZZ

"In second call to Sub, XX is array of four known_x's

"and YY is the array of interpolated Z values, pointer is x_lookup.

Dim M As Integer, N As Integer

Dim R As Integer, C As Integer

Dim XX(4) As Double, YY(4) As Double, ZZ(4) As Double, Zinterp(4) As _
Double

R = Application.Match(x_lookup, known_x’s, 1)

C = Application.Match(y_lookup, known_y’s, 1)
FR<2ThenR =2

If R > known_x"s.Count - 2 Then R = known_x's.Count - 2

94

EXCEL: NUMERICAL METHODS

fC<2ThenC=2
If C > known_y’s.Count - 2 Then C = known_y’s.Count - 2

ForN=1To 4
' Create array of four known_y’s, four known_z’s, four known_x’s
' Check values to see whether ascending or descending,
‘and transfer input data to arrays in ascending order always.
XX(N) = known_x's(R+ N - 2)
If known_y’s(C + 2) > known_y’'s(C - 1) Then
ForM=1To 4
YY(M) = known_y's(C + M - 2)
Ifknown_z's(R+N-2 C+M-2)=""Then InterpC2 = _
CVErr(xIErrNA): Exit Function
ZZM) =known_z's(R+N-2,C+M-2)
Next M
Else
ForM=1To 4
YY(M) = known_y’s(C - M + 3)
If known_z's(R+N-2,C-M+ 3)=""Then InterpC2 = _
CVErr(xIErrNA): Exit Function
ZZ(M) =known_z's(R+N-2,C-M+3)
Next M
End if
Zinterp(N) = Ci(y_lookup, YY, ZZ)
'This is array of interpolated Z values at y_lookup
Next N

InterpC2 = Cl(x_lookup, XX, Zinterp)

End Function

B 0 1 e e I L L B L B o e i b
Private Function Cl{lookup_value, known_x's, known_y’s)

' Performs cubic interpolation, using an array of known_x’s, known_y’s (four
values of each)

' This is a modified version of the function InterpC.

Dim i As Integer, j As Integer
Dim Q As Double, Y As Double

Fori=1To 4
Q=1
Forj=1To 4

If i <> j Then Q = Q * (lookup_value - known_x"s(j)) / (known_x’s(i) - __
known_x’s(j)}
Next j
Y =Y + Q* known_y’s(i)
Nexti
Cl=Y

End Function

Figure 5-21. Cubic interpolation function procedure for use with a two-way table.
(folder 'Chapter 05 Interpolation’, workbook 'Interpolation II', module ‘Cubic2 Way")

CHAPTER 5 INTERPOLATION 95

The function InterpC2 was used to obtain the viscosity of a 74.5% weight
percent solution of ethylene glycol at 195°F, as illustrated in Figure 5-22. The
formula in cell M7 was

=InterpC2(K7,L7,A4:A29,B3:$1$3,B4:$1$29)

This custom function provides a convenient way to perform interpolation in a
two-way table.

K. L M

5 Using Cubiclnterp2¥Way function
B Temp Percent Viscosity
7 195 | 745% 1.8

Figure 5-22. Result returned by the cubic interpolation function.
(folder 'Chapter 05 Interpolation', workbook 'Interpolation II', sheet ‘Cubic Interp 2-Way by Custom Fn’)

96 EXCEL: NUMERICAL METHODS

Problems

Data for, and answers, to the following problems are found in the folder "Ch. 05
(Interpolation)" in the "Problems & Solutions” folder on the CD.

1. Using the table "Freezing and Boiling Points of Heat Transfer Fluid" shown
in Figure 5-1 (also found on the CD-ROM), obtain the freezing point of
30.5% and 34.5% solutions of ethylene glycol.

3. Using the table "Freezing and Boiling Points of Heat Transfer Fluid," find
the wt% ethylene glycol that has a freezing point of 0°F.

3. Using the following table (also found on the CD-ROM)

Table 5-27. Data Table for Two-Way Interpolation

y=10.0 0.4 0.8 1.2 1.6 2.0
x=0.0 1.00000 0.92106 0.69671 0.36236 { -0.02920 | -0.41615
0.5 2.43916 2.30901 1.93911 1.38787 0.74230 0.10433
1.0 5.00564 4.79106 4.18120 3.27235 2.20798 1.15615
1.5 8.95215 8.59837 7.59289 6.09444 4.33960 2.60542
2.0 14.10791 13.52462 | 11.86685 9.39633 6.50309 3.64392
2.5 19.47338 | 18.51170 | 15.77851 11.70530 6.93516 2.22118

obtain an interpolated value for z at the following values of x and y by cubic
interpolation: x =1 1/3, y=12/3; x = 1.55, y = 1.425.

Using the table "Viscosity of Heat Transfer Fluid" shown in Figure 5.4 (also
found on the CD-ROM), obtain the viscosity of a 30.5% solution of ethylene
glycol at 95°C, and the viscosity of a 74.5% solution of ethylene glycol at
195°C.

Using the following table (also found on the CD-ROM), obtain a value for
the refractive index of benzene at the following pressure and wavelength
values: 1 atm, 5000 A; 1 atm, 6600 A; 500 atm, 5000 A; 900 atm, 5000 A; 1
atm, 4600 A.

CHAPTER 5

INTERPOLATION

97

Table 5-28. Refractive Index of Benzene at Various Wavelengths as a Function of Pressure

Wavelength

4678 A

4800 A | 4922 A

5016 A | 5086 A

5876 A

6438 A

1

1.50690

1.50477 | 1.50284

1.50151 | 1.50050

1.49221

1.48822

246

1.51946

1.51724 | 1.51532

1.51391 | 1.51286

1.50438

1.50025

485

1.52986

1.52762 | 1.52557

1.52421 | 1.52316

1.51445

1.51029

757

Pressure, atm

1.53992

1.53761 | 1.53555

1.53415 | 1.53305

1.52418

1.51991

1108

1.55102

1.54867 | 1.54657

1.53614 | 1.54401

1.53489

1.53052

6. Using the following table (also found on the CD-ROM)

Table 5-29. Data Table for Interpolation

X b 4

0.0 1.0000
0.5 2.2373
1.0 3.7560
1.5 4.7875
2.0 3.6439
2.5 -2.4690
3.0 -17.0501
3.5 -42.6275
4.0 -77.0077
4.5 -106.9697
5.0 -100.2178
5.5 0.7658

obtain an interpolated value for y at the following values of x by cubic
interpolation: 1.81, 3.11,5.2, 5.4.

This Page Intentionally Left Blank

Chapter 6

Differentiation

The analysis of scientific or engineering data often requires the calculation of
the first (or higher) derivative of a function or of a curve defined by a table of
data points. These derivative values may be needed to solve problems involving
the slope of a curve, the velocity or acceleration of an object, or for other
calculations.

Students in calculus courses learn mathematical expressions for the
derivatives of many types of functions. But there are many other functions for
which it is difficult to obtain an expression for the derivative, or indeed the
function may not be differentiable. Fortunately, the derivative can always be
obtained by numerical methods, which can be implemented easily on a
spreadsheet. This chapter provides methods for calculation of derivatives of
worksheet formulas or of tabular data.

First and Second Derivatives
of Data in a Table

The simplest method to obtain the first derivative of a function represented
by a table of x, y data points is to calculate Ax and Ay, the differences between
adjacent data points, and use Ay/Ax as an approximation to dy/dx. The first
derivative or slope of the curve at a given data point x;, y; can be calculated using
either of the following forward, backward, or central difference formulas,
respectively (equations 6-1, 6-2, and 6-3).

dy ~ Ay _Yin =i

e (forward difference) (6-1)
dc Ax x x

i+l TN

d i~ -

@ Vi Vi (backward difference) (6-2)
dx X - X

d y,' - yi—

D Y Vi (central difference) (6-3)

dx X - Xy

The second derivative, dzy/dxz, of a data set can be calculated in a similar
manner, namely by calculating A(Ay/Ax)/Ax.

99

100 EXCEL: NUMERICAL METHODS

Calculation of the first or second derivative of a data set tends to emphasize
the "noise" in the data set; that is, small errors in the measurements become
relatively much more important. The central difference formula tends to reduce
noise resulting from experimental error.

Points on a curve of x, y values for which the first derivative is a maximum, a
minimum, or zero are often of particular importance and are termed critical
points, that is, points where the curvature (the second derivative) changes sign
are termed inflection points. For example, in the analysis of data from an acid-
base titration, the inflection point is used to determine the equivalence point.

Calculating First and Second Derivatives

A pH titration (measured volumes of a base solution are added to a solution
of an acid and the pH measured after each addition) is shown in Figure 6-1, and a
portion of the spreadsheet containing the titration data in Figure 6-2. The end-
point of the titration corresponds to the point on the curve with maximum slope,
and this point can be estimated visually in Figure 6-1. The first and second
derivatives of the data are commonly used to determine the inflection point of the
curve mathematically.

14.0
12.0
10.0
8.0
s
o
6.0

4.0

20

0.0

0.0 1.0 2.0 3.0 4.0
Volume of 0.1000 M NaOH

Figure 6-1. Chart of titration data.
(folder ‘Chapter 06 Examples’, workbook 'Derivs of Titration Data', worksheet 'Derivs')

CHAPTER 6 DIFFERENTIATION 101

A R S R D O R
2| vimL | pH | AV | ApH | V{awge) | ApH/AV
22| 190 4881 0100 @ 0223 180 = 223
23| 195 5157 0050 0176 @ 1925 352
24| 200 5389 0050 & 0232 ' 1975 | 464
25 205 5928 0050 | 0539 2025 1078
26| 208 7900 0030 1972 2065 6573
27, 210 9115 0020 1215 = 2090 = 6075
28| 215 9804 0050 0489 | 2125 978
29| 220 985 0050 0252 2175 @ 504
30| 230 10125 0100 0269 2250 2.69

Figure 6-2. First derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data’, worksheet 'Derivs')

Columns A through F of the spreadsheet shown in Figure 6-2 are used to
calculate the first derivative, ApH/AV. Since the derivative has been calculated
over the finite volume AV = Vi, — ¥, the most suitable volume to use when
plotting the ApH/AV values, as shown in column E of Figure 6-2, is

Vi+1 +Vi

Vaverage = —2— (6-4)

The maximum in ApH/AV indicates the location of the inflection point of the
titration (Figure 6-3).

700 -
60.0
50.0
400

ApHIAV

300 -
200
100

00 L. 1 | I
1.50 1.70 1.90 2.10 2.30 2.50
VvV, mL

Figure 6-3. First derivative of titration data, near the endpoint.
(folder ‘Chapter 06 Examples’, workbook 'Derivs of Titration Data’, worksheet 'Derivs')

102

EXCEL: NUMERICAL METHODS

The maximum in the first derivative curve must still be estimated visually.
The second derivative, A(ApH/AV)/AV, calculated by means of columns E
through J of the spreadsheet (shown in Figure 6-4) can be used to locate the
inflection point more precisely. The second derivative, shown in Figure 6-5,
passes through zero at the inflection point. Linear interpolation can be used to

calculate the point at which the second derivative is zero.

fo
23
24
26

27

O IRJIRT
DD D

(]

25

B F G H | J
Viavge) - ApH/AV AV Al{ApH) Vi{avge) A(ApH)'AV
1.850 2.29 0.100 057 1.800 57
1.925 352 0075 1.23 1.888 16.4
1.975 4.64 0.050 1.12 1.950 22.4
2.025 10.78 0.050 6.14 2.000 122.8
2.085 65.73 0.040 5485 2045 13738
2.090 B60.75 0.025 -4.98 2.078 -199.3
2125 9.78 0.035 -50.97 2.108 -1456.3
2175 504 0.050 -4.74 2.150 -94.8
2250 2.69 0.075 -2.35 2213 -31.3

Figure 6-4. Second derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data’', worksheet 'Derivs')

2000

A(ApH)/AV?
o

-2000

1 1 |

1.50

1.70

1.90 2.10 2.30 2.50

VvV, mL

Figure 6-5. Second derivative of titration data, near the endpoint.
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data’, worksheet 'Derivs')

CHAPTER 6 DIFFERENTIATION 103

There are other equations for numerical differentiation that use three or more
points instead of two points to calculate the derivative. Since these equations
usually require equal intervals between points, they are of less generality. Again,
their main advantage is that they minimize the effect of "noise." Table 6-1 lists
equations for the first, second and third derivatives, for data from a table at
equally spaced interval A.

These difference formulas can be derived from Taylor series. Recall from
Chapter 4 that the first-order approximation is

F(x+h)= F(x)+ hF'(x) (6-5)
or, in the notation used in Table 6-1
YVin =Y +hY (6-6)
which, upon rearranging, becomes
Y T
;I em———— 6'7
Vi P (6-7)

admittedly, an obvious result.
The second derivative can be written as

o _ YV
= 6-8
yl h ()

When each of the)’ terms is expanded according to the preceding expression
for y', the expression for the second derivative becomes

. =(yi+2 _yi+l)/h—(yl+l -‘yl)/h

, 6-9
Yi P (6-9)
or
v Y2 =2 t Y
= 2 2 1 (6-10)

The same result can be obtained from the second-order Taylor series

expansion
2

F(x+h) ~ F(x)+hF'(x) + %F"(x) (6-11)

which is written in Table 6-1 as
2

. h "
Vi =Yithy, +?yi (6-12)

by substituting the backward-difference formula for F' from Table 6-1.
Expressions for higher derivatives or for derivatives using more terms can be
obtained in a similar fashion.

104 EXCEL: NUMERICAL METHODS

Table 6-1. Some Formulas for Computing Derivatives
(For tables with equally spaced entries)

First derivative, using two points:

Forward difference v, =2 i+lh_ Vi

Central difference y, = Yial - Yia
2h

Backward difference y, = Yi "hy -1

First derivative, using three points:

oy 4y =3y,
Forward difference y, = Yix2 +2zz+1 3yi

First derivative, using four points.
C_ T Vi +8yi 8y + i

Central difference v,
12Ah
Second derivative, using three points:
Forward difference y, = Vier = 2Yin + Y
h2
. " -2y,)
Central difference ;=)ﬁil.%*_y_'i
" 2y, +

Backward difference y, = Vi y}'l*z‘ Yi-a

Second derivative, using four points:

. v 2y, =5y, +4Yi, Vi
Forward difference y, = Yi = 2Yin e Yir2 " Vi3

Second derivative, using five points:

Central difference y, =— Yier #1651y —I;ZZ’ 161 = Yo

Third derivative, using four points

Forward difference Y= Yiss = 3Visa 3*3)’”1 —JYi
h

CHAPTER 6 DIFFERENTIATION 105

Using LINEST as a Fitting Function

Instead of calculating a derivative at an x value corresponding to a table
entry, it may be necessary to obtain the derivative at an intermediate x value.
This problem is related to the process of interpolation, and indeed some of the
techniques from the preceding chapter can be applied here (see "Cubic
Interpolation” in Chapter 5). For example, we can obtain a piecewise fitting
function that applies to a localized region of the data set, and use the parameters
of the fitting function to calculate the derivative. In this section and the
following one, we will use a cubic equation

F(x)=ax’ + bx* + cx +d (6-13)

as the fitting function, using four data points to obtain the four coefficients of the
cubic. (The fitted curve will pass exactly through all four points and R will be
exactly 1.) Once we have obtained the coefficients, the derivatives are calculated
from them; the first derivative is

F'(x)=3ax’ +2bx +¢ (6-14)

and the second derivative is
F"(x)=6ax +2b (6-15)

We can use the LINEST worksheet function (the multiple linear regression
worksheet function, described in detail in Chapter 13) to obtain the coefficients a,
b, ¢ and d, then use the coefficients g, b, and ¢ in equation 6-14 or 6-15 to
calculate the first or second derivatives.

The LINEST method will be illustrated using a table of absorbance data taken
at 5-nm increments, part of which is shown in Figures 6-6 and 6-7; the complete
range of x values is in A5:A85 and the y values in B5:B85. We wish to
obtain the first derivative of this data set at 2-nm increments over the range 390—

415 nm. R _—

& A ! B]
3 Original Data

4 Wavelength Absorbance
23 | 390 0552
24 395 0.582

25 400 0.598

26 405 0.600

27 410 0.586

28 | 415 0.559

29 420 0.521

Figure 6-6. Data used to calculate first and second derivatives.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST", sheet 'Using megaformula’)

106 EXCEL: NUMERICAL METHODS

0610 Original data points
0.600

0.590

0.580

Absorbance

0.570

0.560

0.550 L t ' 1 1 1
390 395 400 405 410 415 420

Wavelength, nm

Figure 6-7. Chart of some data used to calculate first and second derivatives.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST", sheet 'Using megaformula')

The steps required in the calculation of the first or second derivative at a
specified value of x are as follows:

(i) Use the MATCH function to find the position of the lookup value x in the
table of x values. The lookup value is in cell D5 in Figure 6-8.

=MATCH(D5, A5:3A$85,1)

(ii) Use the OFFSET function to select the four bracketing x values:
=OFFSET(A5:3A$85,D5-2,0,4,1)

(iii) Use a similar formula to obtain the four bracketing y values:
=OFFSET(B5:B85,05-2,0,4,1)

(iv) Use these two arrays in the LINEST formula, raising the range of x values to
an array of powers; the LINEST formula must be entered in a horizontal
range of three cells, and you must press CONTROL+SHIFT+ENTER:

=LINEST(OFFSET(known_ys,MATCH(D6,known_xs,1)-2,0,4,1),
OFFSET(known_xs,MATCH(D6,known_xs,1)-2,0,4,1)*1,2,3},1,0)

(v) Use the INDEX function to obtain each of the regression coefficients a, b and
¢ from the LINEST array. (To simplify the formula, the cells containing the
preceding LINEST formula have been given the name LINEST_array.) The
following equation returns the coefficient a:

=INDEX(LINEST _array,1)

CHAPTER 6 DIFFERENTIATION 107

(vi) Use the coefficients a, b, and ¢ to calculate the first or second derivative:
If these formulas are combined into one "megaformula”, the result (entered in
cell E5 in Figure 6-8) is

=3*INDEX(LINEST(OFFSET(known_ys,MATCH(D5,x_values,1)-2,0,4,1),
OFFSET(x_values,MATCH(D5,x_values,1)-2,0,4,1)*{1,2,3},1,0),1)*x"2
+2*INDEX(LINEST(OFFSET(known_ys, MATCH(D5,x_values,1)-2,0,4,1),
OFFSET(x_values, MATCH(DS5,x_values,1)-2,0,4,1){1,2,3},1,0),2)*x
+INDEX(LINEST(OFFSET(known_ys, MATCH(D5,x_values,1)-2,0,4,1),
OFFSET(x_values, MATCH(D5,x_values,1)-2,0,4,1)*{1,2,3},1,0),3)

which is rather confusing. A better approach is to use named formulas. The
following table lists the named formulas and ranges used to calculate the first
derivative shown in Figure 6-7.

x_values =Sheet2!A5:3A$85

y_values =Sheet2!B5:B85

lookup_value =Sheet2!D5:D17

pointer =MATCH(INDIRECT(ROW()&™""&ROW()) lookup_value ,x_values,1)
known_xs =OFFSET(x_values,pointer-2,0,4,1)

known_ys =OFFSET(y_values,pointer-2,0,4,1)

LIN_array = =LINEST(Sheet2!known_ys,Sheet2lknown_xs"{1,2,3},1,0)

aa =INDEX(LINEST_array,1)
bb =INDEX(LINEST _array,2)
cc =INDEX(LINEST _array,3)

Using these named formulas, the formula for the first derivative becomes

=3"aa*x*2+2*bb*x+cc

Note the formula used for pointer. It incorporates an "implicit intersection”
expression. Since both lookup_value and x_values are arrays, the formula

=MATCH(lookup_value ,x_values,1)

returns an array of values instead of a single value. The formula using the
expression INDIRECT(ROW()&":"&ROW()) lookup_value returns a single value,
the value in the array lookup_value that is in the same row as the formula.

108 EXCEL: NUMERICAL METHODS

! D E F G
4 X y F'(x) F'00 % 10
5 390 0.552 0.00710 -4.53E-03.
6 392 0.00616 -4 87E-03
7 394 _ 0.00516 -5.20E-03
8 396 0.00405 -5.46E-03
9 398 0.00294 -5.65E-03
{0 400 @ 0.598 0.00176 -5.84E-03
11 402 0.00059 -5.85E-03
12 404 -0.00058 -5.87E-03
3 406 -0.00179 -5.80E-03
14 408 -0.00293 -5.65E-03
115 410 0.586 -0.00408 -5.49E-03
i 16 412 -0.00515 -5.16E-03
(17| 414 -0.00615 -4 88E-03

Figure 6-8. First derivative calculated using LINEST function.
The y values indicate the known experimental points.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST’, sheet 'Using named formulas')

0.005

e
(o]
o
o
First Derivative
Second Derivative x 10

™~

- - . -0.005
TR g 5w \t]

. ! _ _ | -0.010
390 395 400 405 410 415

Figure 6-9. Chart of values of first and second derivative

calculated using LINEST.
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST", sheet 'Using named formulas')

CHAPTER 6 DIFFERENTIATION 109

Part of the table of calculated first derivative values is shown in Figure 6-8,
and the values are charted in Figure 6-9. The formula used in cell F5, for
example, is

=3*aa*x"2+2*bb*x+cc

One could use the x value where F'(x) = 0 to locate the maximum in the
spectrum.

Depending on the data table being differentiated, the errors in the values
returned by this method may be as great as several percent.

Derivatives of a Worksheet Formula

Instead of calculating the first or second derivative of a curve represented by
data points, we may wish to find the derivative of a function (a worksheet
formula). In the following, two different methods are illustrated to calculate the
first or second derivative of a worksheet formula by using a user-defined
function. The calculation of the first derivative of the function y = 3x* + 5x* - 5x
+ 11 is used as the example for each method

Derivatives of a Worksheet Formula
Calculated by Using a VBA Function Procedure

The first example is a Function procedure that returns the first derivative of a
specific worksheet formula. The expression for the derivative is "hard-coded" in
the VBA procedure. The user must be able to provide the expression for the
derivative and must modify the VBA code to apply it to a different formula. The
function's only argument is the value of x, the independent variable for which the
derivative is to be calculated. The main advantage of this approach is that the
returned value of the derivative is exact. This approach will execute the fastest
and would be suitable if the same formula is to be used many times in a
worksheet.

Function Deriv1(x)

'User codes the expression for the derivative here.
Derivi=9*x%2+10*x-5

End Function

Figure 6-10. Function procedure to demonstrate calculation of a first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 1), module 'Modulel')

110 EXCEL: NUMERICAL METHODS

First Derivative of a Worksheet Formula
Calculated by Using the Finite-Difference Method

The second example is a Function procedure that uses the finite-difference
method. The first derivative of a formula in a worksheet cell can be obtained with
a high degree of accuracy by evaluating the formula at x and at x + Ax. Since
Excel carries 15 significant figures, Ax can be made very small. Under these
conditions Ay/Ax approximates dy/dx very well.

The user must "hard-code" the worksheet formula in VBA, in a suitable
form; the derivative is calculated by numerical differentiation. Again, the
function's only argument is the value of x, the independent variable. This
approach would be useful if the user is unable to provide an expression for the
derivative.

Function Deriv2(x)

OldY = fn(x)

xx = (1.00000001) * x

NewY = fn(xx)

Deriv2 = (NewY - OIdY) / (xx - X)
End Function

Function fn(x)

'User codes the expression for the function here.
fn=3*x23+5*x"2-5"x+11

End Function

Figure 6-11. Function procedure to demonstrate calculation of first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 1), module 'Modulel")

The Newton Quotient

In the previous section, the finite-difference method was shown to provide an
excellent estimate of the first derivative of a function expressed as a worksheet
formula. The multiplier used in the preceding user-defined function was
1.00000001. What is the optimum value of this multiplier, so that the Newton
quotient Ay/Ax gives the best approximation to dy/dx?

There are two sources of error in this finite-difference method of computing
dy/dx: the approximation error, inherent in using a finite value of Ax, and the
roundoff error, due to the limited precision of the numbers stored in the
computer. We want to find the value of Ax that strikes the best balance between
these two errors. If Ax is made too large, then the approximation error is large,
since dy/dx — Ay/Ax only when Ax — 0. If Ax is made too small, then the
roundoff error is large, since we are obtaining Ay by subtracting two large and
nearly equal numbers, F(x) and F(x + Ax).

CHAPTER 6 DIFFERENTIATION 111

Excel carries 15 digits in its calculations, and it turns out that multiplying x
by a factor of 1.00000001 (a change in the 8th place) produces the minimum
error, before round-off error begins to have an effect. Figure 6-12 illustrates this,
using a quadratic equation as an example; other functions give similar results.
The values in Figure 6-12 show that we can expect accuracy up to approximately
the tenth digit.

e, e 0 it ., L 5 A S

H A ST

' X i Ax Hrdo Yy AyfAx exact % etror

| :-'5 116.25 1.0E-05 7.5001 116.253 340002 34 66E-04
57.5 116.25 1.0E-06 7.50001 116.2503 3400002 34 6.6E-05
5?5 116.25 1.0E-07 7.500001 116.25003 34.000002 34 6.7E-06

{75 116.25 1.0E-08 7.5000001 116.250003 | 34.0000003 34 84E-07
|75 11625 1.0E-09 7.50000001 116.2500003 34.000001 34 4.2E-06
|75 11625 1.0E-10 7.500000001 116.25000003 3400002 34 49E-05
|75 11625 1.0E-11 7.5000000001 116.250000003 340001 34 42E-04

Wlm~omislwin —

Figure 6-12. Newton quotient Ay/Ax as a function of the magnitude of Ax
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 1), sheet Newton Quotient')

Derivative of a Worksheet Formula
Calculated by Using the Finite-Difference Method

The spreadsheet shown in Figure 6-13 (see folder 'Chapter 06 Examples',
workbook 'Derivs by Sub Procedure') illustrates the calculation of the first
derivative of a function y = x* — 3x* — 130x + 150 by evaluating the function at x
and at x + Ax. Here a value of Ax of 1 x 10°® was used. For comparison, the first
derivative was calculated from the exact expression from differential calculus:
F(x) = 3x* — 6x — 130.

The Excel formulas in cells B11, C11, D11, E11, F11, G11 and H11
(columns C-F are hidden) are

B11 =t"%X"3+u™x"2+v*xX + w F(x)

C11 =A11*(1+delta) x+Ax
D11 =tC1143+u*C11°2+v*C11 + w F(x + Ax)
E11 =A11*delta Ax

F11 =D11-B11 Ay

G11 =F11/E11 Ay/Ax

H11 =3*t*A11/2+2*u*A11+v dy/dx from calculus

112 EXCEL: NUMERICAL METHODS

G, W ORI B St R, SR

1 Numerical Differentiation
sd FGO = b"3 + U2 + vy + w

3 | i 1 '

4 | T -3 delta
5 | v -130 ~ 1.00E-08
B | W 150 |
7 | Ay/AX

. By watksheet

a From calculus
8 x y formula

8 | -10 150 230.0000006 230

10, -9 348 167.000005 167

1] -8 486 110.000002 110

121 -7 570 59.000001, 59

13| -6 606 14.000002 14

141 -5 600 -24.9999984 -25

151 -4 558 -57.999998 -58

161 -3 . 486 -84.9999992 -85

171 -2 390 -105.999999 -106

18] -1 276 -120.8999994 -121

19 0 150 #DIvio! -130

Figure 6-13. First derivative calculated on a worksheet by using Ax.
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv')

The value in cell G21 illustrates that, using this technique, an x value of zero
will have to be handled differently, since multiplying zero by 1.00000001 does
not produce a change in x. This problem will be dealt with in a subsequent
section.

First Derivative of a Worksheet Formula
Calculated by Using a VBA Sub Procedure
Using the Finite-Difference Method

The approach used in the preceding section can be performed by using a
VBA Sub procedure. The VBA code is shown in Figure 6-14. By means of an
input box the user identifies the range of cells containing the formulas for which
the derivative is to be calculated, with a second input box, the corresponding
cells containing the independent variable x, and with a third input box, the range
of cells to receive the first derivative.

CHAPTER 6 DIFFERENTIATION 113

Option Explicit

Option Base 1

B e o R o S o

Sub Derivs()

Dim z As Integer, N As Integer

Dim Old_Ys() As Double, New_Ys() As Double, Old_Xs() As Double,
Dim Derivs() As Double, increment As Double

Dim known_Xs As Object, known_Ys As Object, cel As Object

increment = 0.00000001

'Use the Set keyword to create an object variable
Set known_Ys = Application.InputBox _
("Select the range of Y values”, "STEP 1 OF 3", , ,,,, 8)
N = known_Ys.Count
ReDim Old_Ys(N), New_Ys(N), Old_Xs(N), Derivs(N)
z=1
For Each cel In known_Ys
Old_Ys(z) = cel.Value
z=z+1
Next cel

Set known_Xs = Application.InputBox _
("Select the range of X values”, "STEP 2 OF 3", ,,,,, 8)
z=1
For Each cel In known_Xs
Old_Xs(z) = cel.Value
cel.Value = Old_Xs(z) * (1 + increment)
z=z+1
Next cel
z=1
For Each cel In known_Ys
New_Ys(z) = cel.Value
z=z+1
Next ce!
z=1
For Each cel In known_Xs
cel.Value = Old_Xs(z)
z=z+1
Next cel

Application.InputBox("Select the destination for derivatives”, _
"STEP 3 OF 3", ,,,,, 8).Select
Forz=1ToN
Derivs(z) = (New_Ys(z) - Old_Ys(2)) / (increment * Old_Xs(z))
ActiveCell.Offset(z - 1, 0).Value = Derivs(z)
Next

End Sub

Figure 6-14. Sub procedure to calculate first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', module Derivs')

114 EXCEL: NUMERICAL METHODS

I S, b (R T R R BATHR K

1 Numerical Differentiation

b FOO = D3 + 2 + v+ W

3 t 1 f

4 u -3 delta

5 v -130 1.00E-08

= . i

7 o

3 | 2 v B’yg?::lii;eet From calculus By macro
9|10 150 230.0000006 230 = 230.000001
10| -9 348 167.000005, 167 167.000005
11| -8 ' 488 110.000002 110 110.000002
12| -7 @ s70 59.000001 59 59.0000013
13| -6 = 606 14.000002 14 14.0000016
14| -5 600 -24.9999994 -25 -24.9999994
15| -4 558 -57.999998 -58 -57.999998
16| -3 486 = -84.9999992 -85 -84.9999992
17| -2 3% = -105.999999 -106 -105.399999
18| -1 276 | -120.9999994. 121 121,
9] o 150 | #DMOI 130

120] 1 18 | -132.099998 -133 -133

Figure 6-15. Calculating the first derivative of a formula.
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure’, sheet 'Deriv')

The Sub procedure saves the values of x and y from the worksheet (OldX and
0ldY), then writes the incremented value of x (NewX) to the worksheet cell. This
causes the worksheet to recalculate and display the corresponding value of y + Ay
(NewY). The derivative is calculated and written to the destination cell. Finally,
the original value of x is restored. Figure 6-15 illustrates the spreadsheet of
Figure 6-13 after the Sub procedure has been run. The errors produced by this
method are much smaller than those produced by the function based on LINEST.

The code in Figure 6-14 can easily be modified to calculate the partial
derivatives of a function with respect to one or several parameters of the function
(e.g., dy/da, dy/db, etc.) for a cubic equation. Similar code is used in the SolvStat
macro (see Chapter 14, "The Solver Statistics Add-In") and a similar approach is
used in the Solver itself (see "How the Solver Works" in Chapter 14).

CHAPTER 6 DIFFERENTIATION 115

800 - : 200
600 150
[]
400 - * 100
#

200 / . 50 2
c ®
2 >
g o 0 5
[= ©
Z 7

-200 50 F

-400 -100

-600 -150

-800 i L P -200

-10 -5 0 5 10

Figure 6-16. A chart of a function and its first derivative.
(folder 'Chapter 06 Examples', workbook ‘Derivs by Sub Procedure’, sheet 'Deriv')

The advantage of using a Sub procedure is that the derivative can be
obtained easily, even for the most complicated worksheet formulas. All of the
difficult calculations are done when the spreadsheet updates after the new value
of x is entered in, for example, cell A9. The disadvantage of a Sub procedure is
that if changes are made to precedent cells in the worksheet, the Sub procedure
must be run in order to update the calculations.

First Derivative of a Worksheet Formula
Calculated by Using a VBA Function Procedure
Using the Finite-Difference Method

Unlike the Sub procedure described in the preceding section, a Function
procedure automatically recalculates each time changes are made to precedent
cells. A Function procedure to calculate the first derivative of a formula in a cell
would be very useful. However, a function procedure can't use the approach of
the preceding section (i.e., changing the value of the cell containing the x value),
since a function procedure can't change the contents of other cells. A different
approach will have to be found.

The following VBA code illustrates a simple Function procedure to
calculate the first derivative dy/dx of a formula in cell, using the same approach
that was used in the preceding section: the procedure calculates OldX, OIdY,

116 EXCEL: NUMERICAL METHODS

NewX and NewY in order to calculate Ax/Ay. But in this function procedure, both
the worksheet formula and the independent variable are passed to the function as
arguments. The procedure is shown simply to illustrate the method; a number of
modifications, to be described later, will be necessary in order to produce a
"bulletproof” procedure.

The basic principle used in this Function procedure is the following:

(i) The two arguments of the function are references to the independent
variable x and the cell containing the formula to be differentiated, F(x).

(ii) Use the Value property to obtain the values of the arguments; these are
OldX and OidY.

(iii) Use the Formula property of the cell to get the worksheet formula to be
differentiated as the text variable FormulaText.

(iv) Use the SUBSTITUTE worksheet function to replace references to the x
variable in FormulaText by the incremented x value, NewX.

(v) Use the Evaluate method to get the new value of the formula. This is
NewyY.

Since other procedures in this chapter and in subsequent chapters will use the
same method for modifying and evaluating a formula, it will be worthwhile to
examine the VBA code shown in Figure 6-17. The syntax of the function is
FirstDerivDemo(expression,variable). The nine lines of code in this procedure
perform the following actions:

(1) Get FormulaString, the worksheet formula (as text) by using the Formula
property of expression.

(2) Get OIdY, the value of the worksheet formula, by using the Value property
of expression.

(3) Get XRef, the reference to the independent variable x, by using the Address
property of variable. The address will be an A1-style absolute reference

(4) Get OldX, the value of the independent variable x, by using the Value
property of variable.

(5) Calculate NewX, the incremented value of the independent variable, by
multiplying OldX by 1.000000001.

(6) Convert all references in FormulaString to absolute by using the
ConvertFormula method.

(7) Replace all instances of XRef in FormulaString by the value of the new
variable NewX. This is done by using the SUBSTITUTE worksheet
function. For example, the formula string

=3*B33+5*3B$32-5*$B$3+11
when cell B3 contains the value 2, is converted to
=3*2.00000002/3+5*2.00000002"2-5*x+11.

CHAPTER 6 DIFFERENTIATION 117

(8) Calculate NewY, the new value of the function, by applying the Evaluate
method to the new formula string.
(9) Calculate and return the first derivative.

Option Explicit
Function FirstDerivDemo(expression, variable) As Double
'Custom function to return the first derivative of a formula in a cell.

Dim OldX As Double, OidY As Double, NewX As Double, NewY As Double
Dim FormulaString As String, XAddress As String

FormulaString = expression.Formula

OldY = expression.Value

XAddress = variable.Address 'Default is absolute reference

OldX = variable.Value

NewX = OldX * 1.00000001

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute) ‘Convert all references in formula to absolute
FormulaString = Application.Substitute(FormulaString, XAddress, NewX)
NewY = Evaluate(FormulaString)

FirstDerivDemo = (NewY - OldY) / (NewX - OldX)

End Function

Figure 6-17. Function procedure to demonstrate calculation of first derivative.
(folder 'Chapter 06 Exampies', workbook 'Derivs by VBA (Part 2)', module 'Demo")

Examples of the first derivative of some worksheet formulas calculated by
the custom function are shown in Figure 6-18. The formula in cell D3 is

= FirstDerivDemo (C3,B3)

The formulas labeled "exact" in column E are the appropriate formulas from
differential calculus for the first derivative of the respective functions. For
example, the formula in cell E3 is

=9*B3*2+10*B3-5

BT SO Bl R R R L AR
1] Demo to lllustrate Use of Simple First Derivative Function
2 |Function X Foo F00) exact % Brror
3 EREEE 2 45 51.0000003 51 -5.2E-07
4 ly=sinx 1 0.84147 05403023 0.5403023 -5.8E-08
5 |y=e™ 1038788 0.3678794 0.3678794 2.5E-07
B y=a'(e.n.a=35) 24 104734 243055256 24.3955252 -1.5E-06

Figure 6-18. Using a simple Function procedure to calculate some first derivatives.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet 'Demo Function')

118 EXCEL: NUMERICAL METHODS

Improving the VBA Function Procedure
The simple procedure shown in Figure 6-17 requires some modification.

First, the simple procedure replaces all instances of XRef, the reference to the
independent variable x, in FormulaString with a number value. For example, a
cell reference such as A2 will be replaced with a number value such as 0.05. But
there are cases where the substring A2 should not be replaced. Our procedure
needs to handle the following possibilities, all of which contain the substring A2
within FormulaString:

(i) the reference XRef and references in FormulaString may be relative,
absolute or mixed,

(ii) FormulaString contains a name such as BETA2,
(ili) FormulaString contains a reference such as AA2, or
(iv) FormulaString contains a reference such as A25.

By using the Address property to obtain an absolute reference (e.g., A2)
and using the ConvertFormula method to convert all references in
FormulaString to absolute, we have already eliminated problems arising from
cases (i), (ii), and (iii). Only case (iv) poses a problem: the substring A2 in
A25 will be substituted by 0.05, yielding 0.055. And so, as is often the case
with computer programming, a project that initially appeared to be simple
requires some additional programming.

We could write a formula parser that would break FormulaString into its
component parts and inspect each one. Not impossible, but that would require
extensive programming. A much simpler solution turns out to be the following:
by means of a loop, we replace each instance of, for example, A2 individually,
and, instead of replacing the reference with a number (e.g., 0.05), we replace the
reference with the number concatenated with the space character (e.g., 0.05 0).
We then evaluate the resulting string after each substitution. The reference
A25 yields the string 0.05 5. When evaluated, this gives rise to an error, and
an On Error GoTo statement is used so that the faulty substitution is not
incorporated into the FormulaString to be evaluated. Inspection of the code in the
latter half of the procedure in Figure 6-21 should make the process clear.

A second problem with the simple procedure of Figure 6-17 is that when x =
0, NewX = OldX, NewY = OIdY and the procedure returns a #VALUE! error. The
error produced by a zero value for the independent variable x is handled by
adding an additional optional argument scale_factor. The syntax of the function
is dydx(expression, reference, Optional scale_factor). If x is zero, a value for
scale_factor must be entered by the user. Scale_factor is used to calculate the Ax
for numerical differentiation. Scale_factor should be the same order of
magnitude as typical x values used in the formula.

The Function procedure is shown in Figure 6-19.

CHAPTER 6 DIFFERENTIATION 119

Option Explicit

Function dydx({expression, variable, Optional scale_factor) As Double
‘Custom function to return the first derivative of a formula in a cell.
'expression is F(x), variable is x.

'scale_factor is used to handle case where x = 0.

‘Workbook can be set to either R1C1- or A1-style.

Dim OldX As Double, NewX As Double, OldY As Double, NewY As Double
Dim delta As Double

Dim NRepl As Integer, J As Integer

Dim FormulaString As String, XRef As String, dummy as String

Dim T As String, temp As String

delta = 0.00000001

‘Get formula and value of cell formula (y).

FormulaString = expression.Formula 'Returns A1-style formula; default is
absolute.

OldY = expression.Value

‘Get reference and value of argument (x).

OldX = variable.Value

XRef = variable.Address 'Default is A1-style absolute reference.

'Handle the case where x = 0.
‘Use optional scale_factor to provide magnitude of x.
'If not provided, returns #DIVO!

If OldX <> 0 Then
NewX = OldX * (1 + delta)
Else

If IsMissing(scale_factor) Or scale_factor = 0 Then _
dydx = CVErr(xIErrDiv0): Exit Function
NewX = scale_factor * delta

End If

'Convert all references to absolute
'so that only text that is a reference will be replaced.
T = Application.ConvertFormula(FormulaString, xIA1, xIA1, xlAbsolute)

'Do substitution of all instances of x reference with value.
'‘Substitute reference, e.g., $A%2,
'with a number value, e.g., 0.2, followed by a space
'so that A25 becomes 0.2 5, which results in an error.
'‘Must replace from last to first.
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ™)) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, NewX & " ", J)
If IsError(Evaluate{temp)) Then GoTo pt1
T=temp
pt1: Next J
NewY = Evaluate(T)
dydx = (NewY - OldY) / (NewX - OldX)
End Function

Figure 6-19. Improved Function procedure to calculate first derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'FirstDeriv')

120 EXCEL: NUMERICAL METHODS

i B T R R S R R
4 Demo to llustrate Use of Advanced First Derivative Function

2 Reference in formula or in argument can be absolute, relative, mixed or a name. ;
3 |Function % FOO F'0d exact % error

4 ly=3C+556x+11 | 2 45 51.00000027 51 -5.2E-07
5 ly=sinx 1) 084147 054030231 05403023 -5.8E-08
6 |y -1 036788 0.36787944 03678794 25E-07
7 |y=d'(eg,a=35) 24 19.4734 2439552611 24.395525 3.8E-07
B y=30+555+11 0 11 #VALUE! -5 #VALUE! |
|9 ly=3C+5C-5x+11 0 11, -4.99999988% -5 2.4E-06

Figure 6-20. Using the improved function procedure to calculate some first derivatives.
The optional argument scale_factor is used in row 9 to eliminate the #/ALUE! error seen in row 8.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet Better Function')

The examples in Table 6-20 illustrate the values of the first derivative
calculated by using the function dydx, compared with the "exact" values.

The worksheet formulas in column C and the corresponding functions in
column D are:

C4 =3*B4r3+5*B4r2-5*B4+11 D4 =dydx(C4,B4)
C5 =SIN($B5) D5 =dydx(C5,B5)

C6 =EXP(B6) D6 =dydx(C6,B6)

C7 =a*B7 D7 =dydx(C7,B7)

C8 =3*B8"3+5"B82-5*B8+11 D8 =dydx(C8,B8)

C9 =3*BYA3+5*B9"2-5*B9+11 D9 =dydx(C9,B9,1)

Rows 4-6 illustrate that relative, absolute or mixed references can be used in
the worksheet formula or in the arguments of the custom function. Row 9
illustrates the use of the optional argument scale_factor when the x value is zero.

Second Derivative of a Worksheet Formula

The VBA code for the Function procedure shown in Figure 6-21 requires
only slight modification to provide a function that returns the second derivative
of a function as a cell formula. The syntax of the d2xdy2 function is identical to
that of the function dydx.

The code is shown in Figure 6-21. The function calculates the central
derivative uing three points (see the formula in Table 6-1). Note that the
multiplier used to calculate Ax is 1E-4 instead of 1E-8.

CHAPTER 6 DIFFERENTIATION

121

Option Explicit

Function d2ydx2(expression, variable, Optional scale_factor) As Double
‘Custom function to return the second derivative of a formula in a cell.
‘expression is F(x), variable is x.

'‘Uses central difference formula.

'scale_factor is used to handle case where x = 0.

‘Workbook can be set to either R1C1- or A1-style.

Dim OldX As Double, OldY As Double
Dim NewX1 As Double, NewX2 As Double
Dim NewY1 As Double, NewY2 As Double
Dim XRef As String

Dim delta As Double

Dim FormulaString As String, T As String
Dim temp As String

Dim NRepl As Integer, J As Integer

deilta = 0.0001

'Get formula and value of cell formula (y).

FormulaString = expression.Formula 'Returns A1-style formula
OldY = expression.Value

'Get reference and value of argument (x).

OldX = variable.Value

XRef = variable.Address 'Default is A1-style absolute reference

‘Handle the case where x = 0.
'Use optional scale_factor to provide magnitude of x.
'If not provided, returns #DiVO!
If OldX <> 0 Then
NewX1 = OIdX * (1 + delta)
NewX2 = OldX * (1 - delta)
Else
If IsMissing(scale_factor) Or scale_factor = 0 Then _
d2ydx2 = CVErr(xIErrDiv0): Exit Function
NewX1 = scale_factor ® delta
NewX2 = -scale_factor *® delta
End If

'Convert all references to absolute

'so that only text that is a reference will be replaced.

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute)

T = FormulaString
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ")) / Len(XRef)
'Do substitution of all instances of x reference with incremented x value
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, NewX1 & " “, J)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next J
‘Evaluate the expression.
NewY1 = Evaluate(T)

122 EXCEL: NUMERICAL METHODS

T = FormulaString
‘Now do substitution of all instances of x reference with decremented x value
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, NewX2 & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T =temp
pt2: Next J
NewY2 = Evaluate(T)
d2ydx2 = (NewY1 + NewY2 - 2 * OldY) / Abs((NewX1 - OldX) * (NewX2 - OldX))

End Function

Figure 6-21. Function procedure to calculate second derivative.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2), module 'SecondDeriv')

Figure 6-22 illustrates the use of the dydx and d2ydx2 custom functions. The
formula in cell B4 is

=aa*A4"3+bb*A4"2+cc*Ad+dd
(aa, bb, cc, dd are named ranges. The formula in cell C4 is

=dydx(B4,A4,1)

| RCE IR TR i N - R S L T
| First and Second Derivative Functions
y=2x°-20x* +11x + 30 _
X FO F'é) exact % error F &0 exact % error
| -5 -775 361.0000021 361 5.8E-07 -100.0000002 -100 -2.0E-07
| -4 -462 267.0000003 267 1.0E-07 -88.0000002 -88 -2.0E-07
-3 -237 1850000020 185 1.1E-06 -75.9999997 -76 -45E-07
-2 -88 1149999996 115 3.9E-07 -64.0000003 -64 -5.0E-07
-1 -3 57.0000001 57 1.6E-07 -52.0000000 -52 -7.5E-08
0 30 109939998 11 1.4E-06 -40.0000001 -40 -2.8E-07
23 -22.9999999 -23 -3.9E-07 -28.0000002 -28 -B.BE-07
-12 -45.0000001 -45 -2.0E-07 | -159999999 -16 -6.1E-07
-63 -55.0000004 -55 -7.0E-07 -4.0000003 -4 -8.3E-06
-118 -52.9989997 -53 -50E-07 ~ 7.3999998 8 28E-06
-165 -38.9999993 -39 -1.7E-06 19.9999999 20 2.5E-07

T
L]

P e R R PR TR R R S L S s
=8 (701 T RTY U o b Bt ok A e b bl s

i

M &= W k=

Figure 6-22. Using Function procedures to calculate
first and second derivatives of a function.
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2), sheet 'First and Second Derivs')

Note the use of the optional argument scale_factor that prevents an error in
cells C9 and F9 when the value of the independent variable in cell A9 is zero.

CHAPTER 6 DIFFERENTIATION 123

Concerning the Choice of Ax
for the Finite-Difference Method

In preceding sections, the x + Ax used for the calculation of the derivatives
was calculated by multiplying x by 1.00000001. Thus Ax is a "scaled" increment.
An alternative approach would have been to use a constant Ax of, e.g.,
0.00000001. Either approach has its advantages and disadvantages.

The constant-increment method eliminates the need to handle the case of x =0
separately. However, the method fails when x is very large, e.g., 10®. The
scaled-increment method handles a wide range of x values, but fails in some
special cases, such as for sin x when x = 1000.

You should be aware of these limitations when using the dydx and d2ydx2
custom functions.

124 EXCEL: NUMERICAL METHODS

Problems

Answers to the following problems are found in the folder "Ch. 06 (Differentiation)"
in the "Problems & Solutions" folder on the CD.

1. Using the data file "Titration Curve", obtain the first and second derivative.
The "endpoint" of a titration is considered to be the volume at the "inflexion
point": that is, where the curve y = F(x) has maximum slope, or where the
first derivative reaches a maximum, or where the second derivative passes
through zero; the last is the easiest to determine graphically or
mathematically.

2. Using the data file "Student Potentiometric Data", obtain the first and second
derivative.

3. Using Excel's SIN function, create a table of siné, in one degree increments of
6 (remember that Excel's trigonometric functions require angles in radians).
Now calculate d sin, using one of the formulas in Table 6-1. Compare your
answer with the exact: d sinf = cosf. Experiment with different formulas
from Table 6-1 to compare the errors.

4. Determine the first and second derivatives of the function
y=2x3-20x2 +11x + 30 over the range x = -5 to x = 10.

5. Determine the first derivative of the function y=x? -1x10%x+1x107"
over the range x =0tox =2 x 107

6. Determine the first derivative of the following functions over suitable ranges

of x:

4
a =
@ Y 1+ x2
(b) y=e-
© y=- sin? x

CHAPTER 6 DIFFERENTIATION 125

X
d —
d y Teils

_ expl(x—)2 /207?]
& o2r
7. Show that the slope of the logistic equation
1
14+ e

(e)

at its midpoint (the Hall slope) is equal to a/4.

8. The van der Waals equation is an equation of state that applies to real gases.
For 1 mole of a gas, the van der Waals equation is

(P + %)(V —b)=RT

where R is the gas constant (0.0821 L atm K™ mol™) and T is the Kelvin
temperature. The constants a and b are constants particular to a given gas,
and correct for the attractive forces between gas molecules, and for the
volume occupied by the gas molecules, respectively. For methane (CH,), the
constants are ¢ = 2.253 L? atm and b = 4.278 x 102 L. Using the rearranged
form of the van der Waals equation

RT a

V-b V?
calculate the pressure of 1 mole of methane as a function of container volume
at 0°C (273 K) at suitable volumes from 22.4 L to 0.05 L. Use one of the
custom functions described in this chapter to calculate the first and second
derivatives of the P-V relationship. Compare with the exact expressions

ap___RT | 2a
av y-b vV

d*P 2RT 6a

v’ y-s} V'

This Page Intentionally Left Blank

Chapter 7

Integration

The solution of scientific and engineering problems sometimes requires
integration of an expression. Symbolic integration involves the use of the
methods of calculus to yield a closed-form analytical expression: the indefinite
integral, or mathematical function F(x) whose derivative dy/dx is given. We will
not attempt to find the indefinite integral — Excel is not equipped to do symbolic
algebra — but instead find the area under the curve bounded by a function F(x)
and the x-axis. This area is the definite integral.

It may be difficult or even impossible to obtain an expression for the integral
of a particular function. But by using numerical methods we can always obtain a
value for the definite integral. The result of numeric integration is the area under
the curve, between specified limits, from x = g to x = 5. The calculation will
involve a curve described either by a table of experimental x, y values or by a
function y = F(x).

This chapter provides methods for calculating the area under a curve that is
described by a table of x, y values on a worksheet or by a worksheet formula.
Some methods require evenly spaced x values, while for others the x values can
be irregularly spaced.

Area under a Curve

By "area under a curve" we mean the area bounded by a curve and the x-axis
(the line y = 0), between specified limits. The area can be positive if the curve
lies above the x-axis or negative if it is below.

Calculation of the area under a curve is sometimes referred to as quadrature,
since it involves subdividing the area under the curve into a number of "panels"
whose areas can be calculated. The sum of the areas of the panels will be an
approximation to the area under the curve. The three most common approaches
are the rectangle method, in which the panels are rectangles, the trapezoid
method, in which the panels are trapezoids and Simpson's method, which
approximates the curvature of the function. These methods require that we have

127

128 EXCEL: NUMERICAL METHODS

a table of values of the function; the three methods are illustrated in Figure 7-1.
Only Simpson's method requires panels of equal width.

The simplest approach is to approximate the area of the panel by a rectangle
whose height is equal to the value of one of the two data points, illustrated in
Figure 7-1. If we have a table of » data points, we will have n—1 panels.

As the x increment (the interval between the data points) decreases, this
rather crude approach becomes a better approximation to the area. The area
under the curve bounded by the limits xjjriql and xfinal is the sum of the n

individual rectangles, as given by equation 7-1.

n-l
area A = zyi(xm - Xx;) (7-1)
i=1
A better approximation is to use the average of the two y values as the height
of the rectangle. This is equivalent to approximating the area by a trapezoid
rather than a rectangle. The area under the curve is given by equation 7-2.

n-1
- YitYisl
A= = G -) (7-2)
i=1
10 - .
Simpson's Rule
9 - method
8 I
7 L
& 6
ﬁ 5 L Trapezoid
;0_< method
< 4 -
3 Rectangie
2 method
1
0 ! !
1.5 2 25
Axis Title

Figure 7-1. Graphical illustration of methods of calculating the area under a curve.

Simpson's 1/3 rule approximates the curvature of the function by means of a
quadratic interpolating polynomial. The 1/3 rule, calculated by means of
equation 7-3, requires two intervals of equal width &; thus each element of area is
evaluated by using three data points.

CHAPTER 7 INTEGRATION 129

n-2

h
A= — i +4yia +Yi2) (7-3)
3 i=1,3,5...

The 1/3 rule requires an even number of panels; thus the number of data
points » must be an odd number. If » is even, the area of the first or last panel
can be calculated using the trapezoid formula. The end panel to be so calculated
should be the one in which the function is more linear.

Simpson's 3/8 rule (equation 7-4) approximates the area by a cubic
interpolating polynomial, evaluates the area of three panels of equal width, and
requires four data points for each element of area.

3h
A= ?Z(y,- +3YVi+3Vin2 + Vi) (7-4)
i=1
The 3/8 rule is often used when evaluating the area under a curve described
by an odd number of panels: the first or last three panels are evaluated using the
3/8 rule, and the remainder by the 1/3 rule.

Calculating the Area under a Curve
Defined by a Table of Data Points

In the fields of toxicology and pharmacology, the area under the curve of a
plot of plasma concentration of a drug versus elapsed time after administration of
the drug has a number of important uses. The area can used to calculate the total
body clearance and the apparent volume of distribution.

In a study, a drug was administered intravenously to a patient. Blood
samples were taken at intervals of time, plasma was separated from each blood
sample, and the plasma samples were analyzed for drug concentration. The data
are shown in Figure 7-2. The dashed line indicate extrapolation of the data.

100 |
80 |
60 |
40 |

20 r

concentration, yg/mL

O L i L il \ o
0 2 4 6 8 10

Time after administration, hr

Figure 7-2. Plot of drug concentration versus time.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curvel by worksheet’)

130 EXCEL: NUMERICAL METHODS

__l___: Time, hr Curm;.u.gimL_ area

2 | 0 95

3 | 05 85 45
4 | 1) 74 3975
9 | 2 55 64.5
B | 3 41 48
7| 4 30 355
8 5 22 26
9 B 17 19.5
10 7 12 14.5
11 8 a.1 10.55
12 9 6.7 7.9
13 11 40 10.7
14 20 0 18
15] B Sum= 340

Figure 7-3. Calculating the area under a curve.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet ‘Curvel by worksheet')

The formula in cell C3, used to calculate the area increment by the
trapezoidal approximation, is

=(B2+B3)/2*(A3-A2)

The area increments were summed to obtain the area under the curve.

Calculating the Area under a Curve
Defined by a Table of Data Points
by Means of a VBA Function Procedure
A simple VBA custom function to find the area under a curve defined by a

table of x, y data points, using the trapezoidal approximation, is shown in Figure
7-4. The syntax of the function is CurvArea(x_values, y_values).

Function CurvArea(x_values, y_values)
'Simple trapezoidal area integration

N1 =y_values.Count

ForJ=2To N1

area = area + (x_values(J) - x_values(J - 1)) * (y_values(J) +y_values(J - 1))/ 2
Next J

CurvArea = area

End Function

Figure 7-4. Simple VBA function CurvArea to calculate the area under a curve.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', module 'CurvArea')

CHAPTER 7 INTEGRATION 131

Calculating the Area under a Curve
Defined by a Formula
Instead of determining the area under a curve defined by a table of data
points, you may need to determine the area under a curve defined by a formula.
For example, you may need to determine the area under the curve defined by
equation 7-6
x3

ex —1

y= (7-6)
which is shown in Figure 7-5. It is clear from the figure that summing areas of
panels from x = 0 to x = 15 will provide an accurate determination of the area. In
the calculation of the area, you are not limited by a table of values, as in the
previous section, but instead you can create your own table by calculating values
of the function for a range of suitable x values. Nor are you limited to using
Panels of equal width. You can increase the accuracy obtained from the simple
trapezoidal function by choosing panels of smaller width in regions where the
curvature is greater. A chart of the function will show where the x increments
should be made smaller; this should be evident from Figure 7-5.

16

1.2

0.8

04

00

Figure 7-5. Graph of the function y = x*/(e"*~1).
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve2 by worksheet')

Part of the data table is shown in Figure 7-6, along with the area under the
curve calculated by the trapezoidal approximation. The result returned by the
custom function

=curvarea($B%$4:B39,$A34:$A$39)

132 EXCEL: NUMERICAL METHODS

is 6.514. The exact value for the area under the curve is 7*/15 = 6.494; the error
in the value returned by the custom function is 0.3%.

1 _Integration of Area Under a Curve
2 | y=x1e’- 1)

ER ¥ area

5 | 0.05 0002438 0.000081
6 | 0.1 0009508 0.000299
7] 0.2 0036133 0.002282
a8 | 04 0130128 0.016626
9] 06 0262736 0.039286
10| 0.8 0417775 0.068051
11| 1 0581977 0.099975
12, 1.2 0744790 0132677
38 14, 0002282 0.003624
39 | 15 0.001032 0.001657
40 | . Sum= 6.514127

Figure 7-6. Portion of data table for calculation of area under a curve.
Note that rows 13—37 have been hidden.
(folder 'Chapter 07 Examples', workbook 'Area under Curve', worksheet 'Curve2 by worksheet')

Area between Two Curves

The area between two curves can be determined by using any of the
calculation methods described previously. The area is determined by the
absolute value of the difference between the two curves, as in equation 7-7.

b
A= [|f(0) - gl -7

There are several possibilities for the "area between two curves": the area can
either be bounded by the curves f(x) and g(x) between specified limits (for
example, the vertical lines x = a; and x = b; in Figure 7-7) or by the two curves
ftx) and g(x) between two points where they cross (the points x = g, and x = b, in
Figure 7-7).

CHAPTER 7 INTEGRATION 133

Figure 7-7. Areas bounded by two curves (between g, and a; or between b, and b,).
(folder 'Chapter 07 Examples', workbook 'Area between two curves', worksheet ‘Sheet1')

For the first case (area bounded by two curves between specified limits) the
calculation is straightforward. In the second case, it is necessary to find the two
values of x where the curves intersect. This can be done "manually," by
inspecting the table of values for f{x) and g(x), or by methods described later in
this book (see "Finding Values Other Than Zeroes of a Function" in Chapter 8).

Integrating a Function

Instead of finding the area under a curve defined by a set of data points, you
may wish to integrate a function F(x). You could simply create a table of
function values and use one of the methods described in earlier sections to
calculate the area. But a more convenient solution would be to create a custom
function that uses the Formula property of the cell to get the worksheet formula
to be integrated, in the same way that was used in the preceding chapter, and uses
the formula to find the area under the curve. This approach will be described in
subsequent sections.

Integrating a Function
Defined by a Worksheet Formula
by Means of a VBA Function Procedure

In this section, the trapezoidal and Simpson's rule methods are implemented
as VBA custom functions, using an approach similar to that used in the

134 EXCEL: NUMERICAL METHODS

differentiation functions of the previous chapter. The Formula property of the
cell is used to get the worksheet formula to be differentiated into the VBA code
as text. Then the SUBSTITUTE worksheet function is used to replace the
variable of interest by an incremented value, and the Evaluate method used to get
the new value of the formula. These values are used to calculate the area of each
panel, and the areas of the panels are summed to obtain the area under the curve.

This function procedure can be used to integrate an expression F(x) defined
by a worksheet formula, between specified lower and upper limits a and b
respectively. A table of function values is not required.

b
A= j F(x)dx (7-8)

The syntax of the function is Integrate(expression, variable, from_lower,
to_upper). The argument expression is the integrand, the expression to be
integrated. The argument variable is the variable of integration, and the
arguments from_lower and to_upper are the lower and upper limits of integration,
respectively. The VBA code is shown in Figure 7-8. Function procedures for
both trapezoidal (IntegrateT) and Simpson's rule (integrateS) methods are shown.

The range of x values over which the integration is to be performed
(to_upper - from_lower) is divided into N panels. The user can adjust the
accuracy of the integration by changing the value of N in the procedure, with a
concomitant increase in calculation time.

Option Explicit
Function integrate T(expression, variable, from_lower, to_upper)
'Simple trapezoidal area integration

Dim FormulaString As String, T As String, Xref As String
Dim H As Double, area As Double, X As Double

Dim N As Integer, K As Integer, J As Integer

Dim NRepl As Integer

Dim temp As String

Dim F1 As Double, F2 As Double

FormulaString = expression.Formula
T = Application.ConvertFormula(FormulaString, xIA1, xlA1, xlAbsolute)
XRef = variable.Address

N = 1000
H = (to_upper - from_lower) / N
area=0

X = from_lower
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ""))) / Len(XRef)

ForK=1To N

CHAPTER 7 INTEGRATION 135

For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X &" ", J)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next J
F1 = Evaluate(T)
T = Application.ConvertFormula(FormulaString, xIA1, xIA1, xlAbsolute)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X + H&" ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T =temp
pt2: Next J
F2 = Evaluate(T)

area=area+H*(F1+F2)/2
X=X+H

Next K

integrateT = area

End Function

Figure 7-8. VBA Function procedure to integrate a worksheet formula
by the trapezoidal approximation method.
(folder 'Chapter 07 Examples,' workbook ‘Integration,’ module 'Simplelntegration')

Function IntegrateS(expression, variable, from_lower, to_upper)
'Simpson's 1/3 rule area integration

Dim FormulaString As String, T As String, Xref As String
Dim H As Double, area As Double, X As Double

Dim N As Integer, K As Integer, J As Integer

Dim NRepl As Integer

Dim temp As String

Dim YO As Double, Y1 As Double, Y2 As Double

FormulaString = expression.Formula
XRef = variable Address

N = 1000
H = (to_upper - from_lower) /N / 2

ForK=0ToN-1
X=2*K*H
T = Application.ConvertFormula(FormulaString, xiA1, xIA1, xlIAbsolute)
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ")) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, from_lower + X &" ", J)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next J
YO = Evaluate(T)

136 EXCEL; NUMERICAL METHODS

T = Application.ConvertFormula(FormulaString, xl1A1, xlA1, xlAbsolute)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, from_lower + X+ H & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T =temp
pt2: Next J
Y1 = Evaluate(T)
T = Application.ConvertFormula(FormulaString, xIA1, xlA1, xlAbsolute)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, from_lower+ X +2*H & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt3
T =temp
pt3: Next J
Y2 = Evaluate(T)
area=area+H*(YO+4*Y1+Y2)/3
Next K
IntegrateS = area
End Function

Figure 7-9. VBA function procedure to integrate a worksheet formula
by Simpson’s method.
(folder 'Chapter 07 Examples', workbook 'Integration’, module 'Simplelntegration’)

Some results returned by the IntegrateT and IntegrateS functions are shown
in Figures 7-10 and 7-11, respectively. In general, results are more accurate
when using the Simpson's method function.

T

(R R MR 1< B 1 3 SR ! VO 1 Rt

| 1 Integration function using simple trapezoidal approx.
2 Function ¥ F@ from to Area exact % error
30 ° 1 0 1 02500003 025 1.0E-04
4 4ged 1 00 0 1] 314156 314159 1.2E-03
5 ftriangle | 1 2 0 2 400000000 4 0.0E+00
5 | Gaussian” | 95 0.035 20 180 1.00000000 1 31E-12
8 | *slope = 2, intercept= 4
9 *u=100,6=10

Figure 7-10. Some results returned by the IntegrateT custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, sheet 'Trapezoidal Integration Fn')

CHAPTER 7 INTEGRATION 137

B SR T e T e e |

1] Integration function using Simpson’s method :
2 | Functioh x F0o from to Area exact % error
8 * 1.1 0 1 02600000 025 44E-14
L4 | 40D 1 0 0 1 3141588 3141593 16E-04
| 5 | triangle’ 1 2 0 2 40000000 4 22E-14

6 | Gaussian’ 95 0.035 20 180 1.0000000 1 1.3E-13

E ; ! _

8 *slope =2, _ihtercep't=_4

9 Tp=100,0=10

Figure 7-11, Some results returned by the IntegrateS custom function.
(folder 'Chapter 07 Examples’, workbook 'Integration’, sheet Simpson Integration Fn')

Because some functions may require a large number of iterations, there may
be a noticeable delay in calculation.

Gaussian Quadrature

The preceding methods for numerical integration employ evenly spaced
values of x at which the function is evaluated. Other formulas have been
developed whereby the function is evaluated at specially selected values of x.
These Gaussian quadrature formulas are significantly more efficient, in terms of
the accuracy of the evaluation.

Gaussian quadrature formulas involve the evaluation of the function at a set
of x; values (nodes), with the use of a corresponding set of weights w;, in the
following formula

1 N
A= j F(x)dx=Y wF(x,) (7-9)
-1 i=1

The nodes and weights can be derived from certain kinds of polynomials.
The Legendre polynomials will be used here to determine the values of x; and w;.
The Legendre polynomials are a set of polynomials of degree N. Increasing N
provides an increase in accuracy of evaluation but requires a concomitant
increase in computation time. Values of Legendre polynomials for N up to 100
have been published.

The integration need not be limited solely to the interval —1 to 1. By

employing a change of variable
z= 2x—(a+b) (7-10)
(b-a)

the integral expression is

138 EXCEL: NUMERICAL METHODS

b 1
A:J’F(x)dx:b;aJF((b_a)Z;(b”))dz (7-11)
and equation 7-9 becomes
Aslj[F(x)dx:b_aZN:w,-F((b—a)zi +(b+a)j (7-12)
; 2 = 2

which permits integration over any range.

The code shown in Figure 7-12 performs Gaussian quadrature using equation
7-12 and a tenth-order Legendre polynomial. Some results returned by the
function are shown in Figure 7-13.

Option Explicit

B i T i e o e S T o S S R e L

Function Integrate(expression, variable, from_lower, to_upper, Optional _
tolerance)

Dim FormulaString As String, XAddress As String
Dim result As Double

FormulaString = expression.Formula

XAddress = variable.Address 'Defauit is absolute

FormulaString = Application.ConvertFormula(FormulaString, xIA1, xIA1, _
xlAbsolute)

Call GaussLeGendre10(FormulaString, XAddress, from_lower, to_upper, _
tolerance, result)

Integrate = result

End Function

B o e

Sub GaussLeGendre10(expression, XRef, from_lower, to_upper, tolerance,
result)

'Uses ten-point Gauss-Legendre quadrature formula.

'Adapted from Shoup, p.203

Dim XJ As Variant, AJ As Variant
Dim TotalArea As Double, OldArea As Double, area As Double

Dim T As String, temp As String

Dim | As Integer, J As integer, K As Integer, JJ As Integer

Dim N As Integer, NRepl As Integer

Dim A As Double, B As Double, C As Double, D As Double, F As Double
Dim H As Double

XJ = Array(-0.973906528517172, -0.865063366688984, -0.679409568299024, -
0.433395394129247, -0.148874338981631, 0.973906528517172,

CHAPTER 7 INTEGRATION 139

0.865063366688984, 0.679409568299024, 0.433395394129247,
0.148874338981631)

AJ = Array(0.066671344308688, 0.149451349915058, 0.219086362515982,
0.269266719309996, 0.295524224714753, 0.066671344308688,
0.149451349915058, 0.219086362515982, 0.269266719309996,
0.295524224714753)

If IsMissing(tolerance) Then tolerance = 0.0000000001

OldArea =0

N=1

For K =1 To 10 'increments divided by 1,2,4,8,16,32,64,128,256,512
area=0

H = (to_upper - from_lower) / N

Forl=1ToN

A = from_lower+ (1-1)*H
B=A+H

C=(B+A)/2
D=(B-A)/2

ForJ=1To 10
T = expression
NRep! = (Len(T) - Len(Application.Substitute(T, XRef, "))) / Len(XRef)
For JJ = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, C+ D * XJ(J) &" ", JJ)
If IsError(Evaluate(temp)) Then GoTo pt1
T =temp
pt1: Next JJ
F = Evaluate(T)
area=area + AJWJ) *F
Next J
Next |
area=area*D
If Abs((area - OldArea) / area) < tolerance Then GoTo AllDone
OldArea = area
N=2*N
Next K
AliDone:
result = area
End Sub

Figure 7-12. Integrate custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, module 'Legendrelntegration’)

140 EXCEL: NUMERICAL METHODS

oA FRGC R F G .

Custom Function to Integrate Area Under a Curve
=Integrate{formuia_in_cellvariable,from_lowerto_uppertolerance)

3 | Function X Foo from fto area exactvalue % error
N 1 0 -1 1 31415928 3.1415927 4.0E-06

5 dx 1 1.0 1 0.2500000002 0.25 7.9E-08
B (mx+bydx 2 0 0 2 4.000000003 4 7.6E-08
7 sinGodx 0 0 0 314 2.000000001 2 7.4E-08
|8 (ce™dx 1 037 0 1000 1.000000001 1 9.5E-08
9 (15 dx 1 11 2 069314718 069314718 7.7E-08

Figure 7-13. Some results returned by the Integrate custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, sheet ‘GaussLegendre Integration Fn')

Early versions of this program returned inaccurate results when the range b — a
was large. The function integrate illustrates one approach to overcoming this
problem. First, the integral is evaluated over the total range b — a. Then the
interval is divided into two halves and each "panel" is integrated separately. The
sum of the two panels is compared to the previous value. If the difference is
larger than a tolerance value, the interval is divided into quarters, the areas
summed and so on. The process is continued for 10 cycles of iteration (512
panels) or until the area difference is less than a specified tolerance.

Because some functions may require a large number of iterations, there may

be a noticeable delay in calculation. Increasing the value of tolerance should
speed up calculation, but only at the expense of accuracy.

Integration with an Upper or Lower Limit of Infinity
Integrals such as

A= jF(x)dx (7-13)

can be evaluated by summing the areas of a number of panels covering the range
from x = a to x = a suitably large value. It is to be expected that as x— oo the area
of panel(x) — zero. Thus the integral can be evaluated by summing the integrals
of a series of panels of increasing width (e.g., from 0-1, 1-10, 10-100, etc),
ending the summation when the area of the last panel is suitably small. Manual
adjustment of the panel widths is easily done by inspection of the results. Figure
7-14 shows a typical resulit.

Figure 7-14. Integrating from a lower limit to an upper limit of infinity.
Results returned by the Integrate custom function.
(folder 'Chapter 07 Examples', workbook 'Integration’, sheet 'Integrating to infinity by sum')

CHAPTER 7 INTEGRATION 141
- S T T il
33 Function x F(x) from to integrated value = % error

34 y=1K(efsat() 1 05 O 001 01989708 01989708 | 9367
35 1 05 001 01 04132174 06121882 | 8051
36 | 1 05 01 1 08582416 15704298 5001
37 | 1 05 1 10 09582416 25286714 | 1951 |

138 1 05 10 100 04132174 29418888 | 6.36

139] 1 05 100 1000 01361128 3.0780016 | 202 |

| 40 | 1 05 1E+03 1E+04 00432252 31212268 @ 065 |
41| 1 05 1E+04 1E+05 00136748 31349016 = 0.21

142] 1 05 1E+05 1E+06 00043245 31392261 = 008

| 43] 1 05 1E+06 1E+08 00018000 31410261 0.02

| 44 1 05 1E+08 1E+10 00001800 31412061 001

| 45 1 .05 1E+10 1E+14 00000198 31412253 001
45 1 05 1E+#14 1E+18 00000002 31412261 001
47 | exact value 31415927

Distance Traveled Along a Curved Path

The length of a plane curve can be estimated by dividing the curve into
segments, as in Figure 7-15, and approximating the length of the curve segment

by the straight line AB. The length of AB = J(Ax)2 +(y)* . The distance along
the curve is found by summing the lengths of the segments.

SNA

B

AN

Figure 7-15. Approximating the distance along a curve AB

by the length of the straight line segment AB.

(folder ‘Chapter 07 Examples', workbook 'Curve Distance’, sheet 'Curve Distance (Circle)')

142 EXCEL: NUMERICAL METHODS

A ' B C !
| Distance Travelled Along a Curve
174 circle with r=1

3 (distance should be w/2)

4 * y d
5| 0000 = 1.000

5| 0050 0.999 0.050
e 0.075 0.997 0.025
5 0.100 0.995 0.025
9 0125 0982 0.025
51, 0880 0199 0.024
52 | 0.985 0173 0.027
53 0.990 0.141 0.032
54 0.9925 0.122 0.019
55 0.9950 0.100 0.023
56 0.8975 0.071 . 0.029
57 0999 0.045 0.026
55 1000 0000 @ 0.045
59 . Sumx2= 314145
60 | . %error= 4.BE-03

Figure 7-16. Approximating the circumference of a circle of radius 1.
Note that the rows between 9 and 51 are hidden.
(folder 'Chapter 07 Examples', workbook 'Curve Distance', sheet 'Curve Distance (Circle)')

The procedure is illustrated by estimating the length of one quarter of a circle

of radius r = 1. The equation of the circle is x> +y* =1, or y =‘Jl—x2 . As shown
in Figure 7-16, the value of y and the distance d between successive points was
calculated from x = 0 to x = 1, using an x increment of 0.025. Near the end of the

range of x values, where y changes more rapidly, the x increment was decreased.
The formula in cell C6 is

=SQRT((A8-A5)"2+(B8-B5)"2)

The sum of the distances x 2, in cell C59 is a reasonable estimate of 7.

CHAPTER 7 INTEGRATION 143

Problems

Answers to the following problems are found in the folder "Ch. 07 (Integration)” in
the "Problems & Solutions” folder on the CD.

w 2
1. Find the area under the curve of the function J'——xx—ldx by Simpson's
e —_—
0

method.

2. Integrate the following expressions, using one of the custom functions for

integration.

1
(a) Ix"dx

0

! 2
b feTax

(©) jsin xdx
0
l Inx
(d) j———dx
01+x

1

© J' Inx !

1— x2
0 X

1

) j(ln x)3dx
0
1

(2 Ide

1
o Inx

3. Evaluate the elliptic integral
n/2

J}h —(1/2)sin? xdx
0

144 EXCEL: NUMERICAL METHODS

4. An ellipse is a plane figure described by the locus of a point P(x, y) that
moves such that the sum of its distances from two fixed points (foci) is a
constant. If the ellipse has foci located at A (-c, 0) and B (c, 0) and the

distance ACB is 2a, then by setting b =+va” —c? , the equation of the ellipse
is simplified to

2 2
x—2+%-=1
a b

(a and b are termed the semiaxes of the ellipse).
C
*

1 -
-
0.5 | “\\
¥ s Gl
A S B .’ b

3,,-."-'-0. ..'_I . } -
-1.9 - -0.5 0 0.5 1.5

#
* €

-1
Figure 7-17. Approximating the circumference of an ellipse.

For the ellipse shown in Figure 7-17, with foci atx =-0.5, y=0and x = 0.5,
y=0and a =1, determine the circumference of the ellipse.

5. Determine the area of the ellipse of problem 7-4.
6. Find the area between the curve y = 2x — x” and the line y =-3.
7. Find the area between the curve y = 2x — x* and the line y = 2.5x — 2.3.

8. Find the area enclosed between the two curves shown in Figure 7-7: y; = x° —
20x* — 100x + 2000 and y, = 2x° — 5x” — 300x + 1000. The curves intersect in
the region between x =-5 and x = 15.

9. The area between the curve y = x* and the horizontal line y = 4 is divided into
two equal areas by the horizontal line y = c¢. Find c.

CHAPTER 7 INTEGRATION 145

10. The area between the curve y = x* + 3 and the line y = 12 is divided into two
equal areas by the line y =c. Find c.

11. Integrate the following expression.

12. Integrate the following expressions, using the custom function for

integration.

(a) j e—xdx
0

(b) jxe ~Xdx
0

(©) J' e-x2dx
0

(d) e dx

(e) O]‘—e—_—idx

This Page Intentionally Left Blank

Chapter 8

Roots of Equations

Many problems in science and engineering can be expressed in the form of
an equation in a single unknown, i.e., y = F(x). A value of x that makes y = 0 is
called a root of the function; often the solution to a scientific problem is a root of
a function. If the function to be solved is a quadratic equation, there is a familiar
formula to find the two roots of the expression. But for almost all other
functions, similar formulas aren't available; the roots must be obtained by
successive approximations, beginning with an initial estimate and then refining it.
This chapter presents a number of methods for obtaining the roots or zeroes of a
function.

A Graphical Method

As a preliminary step in finding the roots of a complicated or unfamiliar
function, it is helpful to make a chart of the function, in order to get preliminary
estimates of the roots, and indeed to find out how many roots there are. A cubic
equation such as the one shown in equation 8-1 and Figure 8-1,

y=x"+0.13x* - 0.0005x — 0.0009 (8-1)

always has three roots, either three real roots as in Figure 8-1, or one real and two
imaginary roots. Figure 8-27 later in this chapter shows an example of the latter
case.

0.0004

0.0002 +

-0.0002

T

-0.0004

T

-0.0006 L
-0.20 -0.10 0.00 0.10

X

Figure 8-1. A regular polynomial with three real roots.

147

148 EXCEL: NUMERICAL METHODS

But the number of roots of other functions, such as
y=-1.04 Inx—-1.26 cos x+ 0.0307 ¢* (8-2)

may not be obvious. A chart of the function is useful to show the number and
approximate value of the roots of the function. The chart in Figure 8-2 shows
that the function shown in equation 8-2 has two real roots.

3 r

Figure 8-2. A function with two real roots.

AI - B 131
5] 1.4 | 043

6| 15 03732
17] 1.6 | -0.29985
18] 17 | -0.22146
19/ 18 | -0.1393
20| 19 005493
21] 20 0030316

22, 21 0115193
23| 22 0199584
24 23 027943
25| 24 | 035704

Figure 8-3. Portion of data table of x and y values
showing the pair of values that bracket a root of the function shown in Figure 8-2.
(folder ‘Chapter 08 Examples’, workbook 'Roots of Equations', worksheet 'Graphical Method')

CHAPTER 8 ROOTS OF EQUATIONS 149

Once a chart has been created, it is very easy to expand the scales of the axes
to examine the crossing region at higher and higher magnification. Figure 8-3
shows part of the data table used to create Figure 8-2; the formula in column B is
the function shown in equation 8-1. The two values that bracket one of the roots
of the function are highlighted.

0.0004

0.0003

0.0002

0.0001
1.865

0

1.9
-0.0001

-0.0002

-0.0003

-0.0004

Figure 8-4. Expanded chart of a function, for graphical estimation of a root.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Graphical Method')

The expanded portion of the chart, shown in Figure 8-4, was created by
selecting the four cells A20:B21, creating a chart and changing the x- and y-axis
scales. From the figure, one can estimate that the root that lies between x = 1.9
and x = 2.0 has the value 1.96446. This is probably adequate for most purposes.
Remember to choose the Smoothed Lines option in the ChartWizard.

The Interval-Halving or Bisection Method

This method and the one that follows make use of the fact that, as can be
seen for example in Figure 8-3, a real root of a function lies between two
adjacent x values for which y exhibits a change in sign. In order to obtain a root
of a function by this method, you need to create a table of x values and the
corresponding y values of the function, and identify two adjacent y values, one
positive and the other negative. These and the corresponding x values will be the
starting values for a binary search.

Once you have obtained the two starting x values, x; and x;, the midpoint of
the interval between them, x3, is an approximation to the root. Now choose the
pair of x values with opposite signs, either x; and x3 or x; and x; and bisect the

150 EXCEL: NUMERICAL METHODS

interval between them to get a further improvement. Repeat the process until a
desired level of accuracy is attained. Figure 8-5 illustrates the application of this
method, using equation 8-2. Only a portion of the table is shown; 34 rows were
required to reach convergence at the 1E-10 level, at which point x =
1.96445854473859.

L U, e P SRR I
1] Interval-Halving Method

2 | X1 Y X2 \d
3 5 2525054 1 -059733
4 | 3 072146 1 059733
5 | 2 0.030316 1 059733
B 15 03732 2 0030316
7 | 1.75 -0.18074 2 0.030316
8 | 1875 007615 20030316
g | 1.9375 -0.02299 2 0.030316.
1] 1 I 1.96875 0003661 19375 -0.02293
11 1.953125 .0.00967 196875 0.003661
12| 19809375 -0.003 196875 0.003661

13| 196484375 0000329 19609375 -0.003
14| 1.962890625 -0.00134 1.96484375 0.000329
15| 1963867188 -0.0005 196484375 0.000329
16| 1.964355469 -BBE05 196484375 0.000329
17| 1964599609 0.00012 1.964355469 -8.8E-05

Figure 8-5. Using the binary search method to find a real root of a function.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet 'Binary Search Method")

To construct the worksheet of Figure 8-5, the initial values x; and x, were
entered in cells A3 and C3, respectively, and the formula for the function in cells
B3 and D3. Next, the formulas that perform the binary search were entered in
row 4; the formula in cell A4 calculates the midpoint value between the x values
in the previous row

=(C3+A3)/2

and the formula in cell C4 selects the y value that has the opposite sign to the
value in the previous row.

=|IF(SIGN(B4)<>SIGN(B3),A3,C3).

Cells B4 and D4 contain the formula for the function. Finally, the formulas
in A4:D4 were filled down into subsequent rows. Each row constitutes an
iteration cycle; convergence was observed visually.

Although unsophisticated, this method will always find a root.

CHAPTER 8 ROOQTS OF EQUATIONS 151

The Interval Method with Linear Interpolation
(the Regula Falsi Method)

The interval-halving method can be made much more efficient in the
following way. Instead of simply bisecting the difference between the two
estimates of the root, you can obtain a better estimate of the root by using linear
interpolation, as illustrated in Figure 8-6.

L

Figure 8-6. The binary search method with linear interpolation
(the Regula Falsi method)

The equation for linear interpolation is either

X2 —X

X3 =X+ (8-3)
Y2 =N
or
X, —X
Xy =X —y, —2—— (8-4)
Y= N

Again, two starting values of x must be obtained, for which the y values have
opposite signs.

When applied to the same function as in the preceding example, this method
converges efficiently to a root, as illustrated in Figure 8-7.

Again, cells A3 and C3 contain the initial values for x; and x,, respectively,
and cells B3 and D3 contain the formula for the function. Cell A4 contains the
linear interpolation formula:

152 EXCEL: NUMERICAL METHODS

=C3-D3*(C3-A3)/(D3-B3)

and cell C4 contains the same formula as used in the previous example to select
the y value that has the opposite sign to the value in the previous row:

Interval Method with Linear Interpolation

X Y1 X2 Y2

i 5 2525054 1 059733
1.765222575 -0.1682 5 2525054

1967236444 0.00237 1765222575 -0.1682
1964429524 -25E-05 1967236444 0.00237
1964458545 -16E-10 1.967236444 0.00237
1964458545 -1.2E-15 1.967236444 0.00237
| 1.964458545 0 1.964458545 -1.2E-15

2
3
4
5
B
:E'
8
g

Figure 8-7. Using the Regula Falsi method to find a real root of a function.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi Method")

In general this method converges more efficiently to the root than does the
binary search method, although unfavorable situations can occur, as illustrated in
Figure 8-8. In this example, one end of the interval is "stuck," and even after 19
cycles of iteration, convergence has only reached the 1E-03 level.

CHAPTER 8 ROOTS OF EQUATIONS 153

| A | B | C | D
1 Slow convergence

2] Y1 X2 Y2

3 | 0.01000 3.560449 1 -0.59733
4| 085777 059226 0.01 3.560449
5| 073686 -0.55142 0.01 3.560449
6 | 063939 -0.48778 0.01 3.560449
7| 056355 -0.41478 0.01 3.560449
"B | 050579 -0.34243 0.01 3.560449
9| 046229 -0.27658 0.01 3.560449
10| 0.42969 -0.2198 0.01 3.560449
1] 040529 01726 0.01 3.560449
12| 0.38701 -0.13433 0.01 3.560449
13| 0.37330 -0.10385 0.01 3.560449
14| 0.36301 -0.07989 0.01 3.560449
15| 035526 -0.06123 0.01 3.560449
16| 0.34942 -0.04679 0.01 3.560449
17| 0.34502 -0.03568 0.01 3.560449
18| 034170 -0.02717 0.01 3.560449
19| 0.33919 -0.02066 0.01 3.560449
20| 033728 -0.0157 0.01 3.560449
21| 033585 -0.01192 0.01 3.560449
22| 033476 -0.00904 0.01 3.560449

Figure 8-8. A case with slow convergence of the Regula Falsi method.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet 'Regula Falsi (2))

The Regula Falsi Method
with Correction for Slow Convergence

The preceding example shows that an unlucky choice of starting values can
lead to slow convergence. By examination of the example in Figure 8-7, it can
be seen that the ideal situation for rapid convergence occurs when, in almost
every cycle, there is a change in the value of both x; and x,, y; and y, or in the
sign of y) or y5. Any one of these can be used to test for slow convergence.

The slow-convergence situation in Figure 8-8 was remedied by changing the
interpolation calculation so that if the value of x, does not change from one cycle
to the next, the value of y, used in the interpolation is halved. The performance
of the modified formula is illustrated in Figure 8-9. The only change is the
formula in cell D4

=IF(C4=C3,D3/2,-1.04*LN(C4)-1.26*COS(C4)+0.0307*EXP(C4))

154 EXCEL: NUMERICAL METHODS

This formula divides the value of y, by 2 if there has been no change in x; in the
preceding two iteration cycles (this has occurred in rows 5, 6 and 7, for example).
Otherwise the function is calculated by means of the usual formula.

A nested IF could be used to handle the case where either x; or x; is "stuck."

A4 .0 LR),
1 | Modified formula improves convergence
2 X1 Y1 X2 Y2
3 | 0.01000 3580449 1 -0.59733
4 | 085777 059226 0.01 3.560449
5 | 0.73686 -0.55142 0.01 1.780224
5 056496 -0.41636 0.01 0.890112
7 | 0.38810 -0.13669 0.01 0.445056
§ 0.29926 0092106 0.3881 -0.13669
9 0.33503 -0.00974 0.29926 0.092106
10| 033161 -0.00062 0.29926 0.046053
11 0.33117 0000538 0.33161 -BE-04
12 033137 -25E-07 033117 5E-04
13| 033137 99E-11 033117 3E-04

14 0.33137 993E-11 033137 -1E-10
1‘Si 033137 -1.9E-16° 0.33137 1E-10

Figure 8-9. Modifying the Regula Falsi method to handle slow convergence.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Regula Falsi (3)")

The Newton-Raphson Method

The preceding methods require manual selection of a pair of starting values
with opposite signs. The Newton-Raphson method (sometimes referred to
simply as Newton's method) requires only a single function value as the starting
value, and is therefore self-starting. The Newton-Raphson method is a classic
exercise from freshman calculus—it uses the first derivative of the function (the
slope of the curve) at the initial estimate, x;, and extrapolates this tangent line to
the x axis to obtain an improved value, x,. The process is repeated to obtain
further approximations to the root, as illustrated in Figure 8-10, until the desired
convergence level is reached.

CHAPTER 8 ROOTS OF EQUATIONS 155

500

400 |

300 +

> 200 r

100 +

-100

Figure 8-10. The Newton-Raphson method for obtaining a root of a function.

The slope of the curve at x; is the first derivative of the function, dy/dx. The
improved estimate can be calculated by rearranging the expression for the slope,
m = (y; — y1)/(x2 — x1), and setting y, = 0. This results in the equation

Xy = (mxy—y1)/m (8-5)
or the equivalent
xy=x;—(y/m) (8-6)
sometimes written as
X =x1=yi/n’ (8-6a)

In pencil-and-paper calculations the slope would be obtained by calculating
the first derivative using calculus, but in spreadsheet calculations you can use
numerical differentiation (see Chapter 6, "Differentiation"). Increase x by a small
amount Ax, which increases the y value by a small amount Ay. If you make Ax
small enough, Ay /Ax will be a good approximation to the first derivative dy/dx.
In the following example, x + Ax was obtained by multiplying x by 1.00000001.
(See "The Newton Quotient" in Chapter 6.)

The calculations of the Newton-Raphson method are illustrated in Figure 8-
11. The function for which a root is sought is the regular polynomial

y=3x+2.5x"~5x— 11 (8-7)

156 EXCEL: NUMERICAL METHODS

>
m
L9

S T P I L e Y
Nevvion-Raphson Method
defta= 1 .00E-08
*1 ¥1 X2 y' m nesww X1
5 401.5, 5.00000005 401.50001 245 336122451 —l

. L 3.36122451 114.36208 3.36122454 114 36209 11348659 235351003
. 235351003 30188317 235351005 30.188318 56618636 1.82032311
! 182032311 6.277663 1.82032313 62776637 33.923802 163527123
’ 1.63527123 06276192 163527125 06276196 27.243364 161223373
161223373 0.0091011| 161223374 00091015 26.454847 1.61188970
161188970 2.013E-06' 161188972 2439E-06 26443144 161188963
161188963 1.066E-13 161188964 4.262E-07 26443142 161188963

oo~ oo &= Wik

N3 =21 OO

s b

|
Figure 8-11. Calculation of a root of a function by the Newton—Raphson method.

The formulas in row 6 were filled down until convergence was observed.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet Newton-Raphson Method')

The starting value, in this case 5, was entered in cell B4. The formulas in
cells C4, D4, E4, F4 and G4 are, respectively,

C4: =3"B4"3+2.5*"B4"2-5"B4-11 (the function y)
D4: =B4+0.0000001*B4 (increment x by a small amount Ax)
E4: =3"D4/3+2.5*D4*2-5*D4-11 (this is y + Ay)
F4: =(E4-C4)/(D4-B4) (m = Ax/ Ay)
G4: =(F4*B4-C4)/F4 (Xnew = (M X Xgia=Yoia)/m)

Then the formula =G4 was entered in cell B6, so as to use the improved x
value as the starting value in the next row (row 5 was left empty for purposes of
illustration only). The formulas in C4:G4 were copied and pasted into the
corresponding cells in row 6. Finally, the formulas in cells B6:G6 were Filled
Down into succeeding rows until convergence was observed in column G or a
sufficiently small value of y was obtained in column C.

Using Goal Seek...

Excel provides a built-in way to find a real root of a function. The Goal
Seek... command in the Tools menu can be used to perform what is sometimes
called "backsolving"; that is, it varies x in order to make y reach a specified
value. Thus you can use Goal Seek... to find a value of x that makes the value

CHAPTER 8 ROOTS OF EQUATIONS 157

of the function y become zero, or at least very close to zero. The computer code
that performs the Goal Seek function probably involves the Newton-Raphson
method.”

As an example to illustrate the use of Goal Seek..., we'll return to the cubic
equation 8-1, y = x* + 0.13x* — 0.0005x — 0.0009. Figure 8-12 shows a part of the
data table that was used to produce the chart shown in Figure 8-1.

Ao SO0 o, Pbate, Mabania] - FHASHRA
3 | X Y

4| 015 -4 B5E-04
5 014 -2.16E-04
6| -013 -2 50E-05
7 012 1.14E-04
8 0.1 2 07E-04
9| -010 2 BOE-04

Figure 8-12. Part of a data table.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek")

It can be seen that one of the roots of this function must lie between x = —0.13
and x = —0.12, since there is a change in sign of the function somewhere in this
interval. To use Goal Seek..., enter a trial value of x in a cell and the function in
another cell, as illustrated in Figure 8-13. The cell containing the value of x is
referred to as the changing cell, the cell containing the function as the target cell
or the objective.

Changing Target
26 | cell cell
14 : -0.2 -2.79E-03

Figure 8-13. Target Cell and Changing Cell for Goal Seek.
(folder 'Chapter 08 Examples’, workbook 'Roots of Equations', worksheet 'Using Goal Seek")

Now choose Goal Seek... from the Tools menu to display the Goal Seek
dialog box (Figure 8-14). (Although not necessary, it's convenient to select the
target cell before beginning.)

* According to Microsoft, "Goal Seek uses an iterative process in which the source cell is
incremented or decremented at varying rates until the target value is reached.”

158 EXCEL: NUMERICAL METHODS

Enter a reference to the target cell in the Set Cell box (the cell reference will
appear there if you selected that cell before choosing Goal Seek...). Enter 0 in
the To Value box and a reference to the changing cell in the By Changing Cell
box, and press OK.

x|
Set cell; |B27 d
To value: |D
By chanaing cell: |$,q$27 }J
| QK I Cancel I

Figure 8-14. The Goal Seek dialog box.

After a few iteration cycles the Goal Seek Status dialog box (Figure 8-15)
will be displayed. When you press OK the final values of the changing cell and
target cell will be displayed in the worksheet cells, as shown in Figure 8-16.

Goal Seeking with Cell B27
found a solution,

Cancel
Target value: 0

Current value: -1.86E-18 tern I

Figure 8-15. The Goal Seek Status dialog box.

Lo Sl ORI - Bailiie
Changing Target
26 | cell cell

27 | 01284371 -1.86E-18

Figure 8-16. Obtaining a root of a function by using Goal Seek.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet ‘Using Goal Seek')

For scientific and engineering problems, it's critical that you set the
convergence limit (the stopping parameter) of Goal Seek to suit your problem.
Choose Options... from the Tools menu and choose the Calculation tab (see

CHAPTER 8 ROOTS OF EQUATIONS 159

Figure 8-17). The Maximum Change parameter sets the convergence limit; when
the value of the target cell becomes less than this value, iteration ceases. The
default value for Maximum Change is 0.001, which is suitable for this problem,
but will not be suitable for many other problems. For a problem where the
magnitude of the result (the changing cell value) is a very small number, you can
set Maximum Change to a value such as 1E-15. Alternatively, you can set it to
zero, which will usually result in Goal Seek completing 100 iteration cycles
before quitting.

21
Color I International l Save ’ Error Checking i Spelling l Security l
view Calculation | Edt | Gemeral | Transiion | customtists | chan |
Calculation

(+" Automatic " Manual Calc Now (F9)]
" Automatic except tables M Recalcul

Calc Sheet l
[Ireration

Maxirum iterations: { 100 Maximum change: Ile—15|

¥ Update remote references IV Save external link values
™ Precision as displayed [Accept labels in formulas
[T 1904 date system

1 QK l Cancel

Figure 8-17. The Calculation Options dialog box.

Since Goal Seek... almost certainly uses something like the Newton-
Raphson method to find a root, it should be clear from Figure 8-1 that the trial
value that you use will determine the root that is found. The cubic equation that
we used in our example, shown in Figure 8-1, has three real roots. It is clear that
if 0.01 is used as initial estimate, the largest of the three roots will be calculated,
while using —0.2 as an initial estimate will result in the smallest of the three roots.
Thus, to obtain a particular root, some guidance must be provided by the user.

160 EXCEL: NUMERICAL METHODS

Figure 8-18 illustrates the three roots of the function obtained by using different
initial estimates.

Starting

Value

0.01 - 0.025701

020 -0.128437

001 -0.027264

Root Found

Figure 8-18. Different starting values lead to different roots.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet 'Using Goal Seek')

The Secant Method

The secant method is similar to the Newton-Raphson method, except that it is
not necessary to calculate the slope of the curve. Instead, the slope is
approximated by using two values of x, as illustrated in Figure 8-19. Although
this may be a poor approximation to the tangent to the curve, it becomes more
and more accurate as the iterations approach the root. This method is not self-
starting, since values of the function at two adjacent x values must be provided to
begin the calculation. The calculations are illustrated in Figure 8-20, applied to
the function shown in equation 8-1.

X

L

Figure 8-19. The secant method for obtaining a root of a function.

CHAPTER 8 ROOTS OF EQUATIONS 161

e S e G - sty M Ok, e MDD A e
o Secant Method

2 | X1 ¥1 K2 Y2 m new X2

3 | 5 25251 49 22349 290168 | 4129796266
4 | 49 22343 41207963 1.1268 143875 3.346645771
5 | 41297963 11268 3.3466458 0.8494 0.35412 0.947915289
5 | 33466458 0.8494 09479153 -0.6002 0.60434 1.941087368
7 | 09479153 -0.6002 1.9410874 -0.0199 0.58426 @ 1.975206929
5 | 1.9410874 -0.0199 19752068 0.0092 0.85302 | 1.864457031
9 | 1.9752069 00092 1.964457 00000 0.85314 1.964458545
10 1.9644570 0.0000 1.9644585 0.0000 0.85314 = 1.964458545
11 1.9644585 0.0000 1.9644585 0.0000 0.85313 1.964458545

Figure 8-20. Using the secant method to obtain a root of a function.
(folder 'Chapter 08 Examples', workbook Roots of Equations’, worksheet 'Secant Method')

The formulas in row 3 are identical to those in Figure 8-10, except that cell
C3 contains a value rather than a formula.

The Newton-Raphson Method
Using Circular Reference and Iteration

The Newton-Raphson method discussed in a previous section requires the
user to fill down formulas until convergence is observed visually. One can create
a Newton-Raphson calculation that runs automatically by using an intentional
circular reference.

A circular reference is created when a formula refers to itself, either directly
or indirectly. If a circular reference occurs, Excel issues a "Cannot resolve
circular references" message and displays a zero value in the cell. Usually,
circular references occur because the user entered an incorrect cell reference in
an equation. But occasionally a problem can be solved by intentionally creating
a circular reference.

The calculation is illustrated in Figure 8-21. A single change was made to
the worksheet in Figure 8-11. After entering the formulas in row 4, the initial
value 5 in cell B4 was replaced by the formula =G4. In this way the improved
estimate of x was entered as the start value of the process.

162 EXCEL: NUMERICAL METHODS

AL C D Eo i P 0 TH
1 Newton-Raphsan Method with Circular Reference
| 2 delta = 1E-08

3 K1 Y1 K2 Y2 m ey X1

4 5 401.5 5.00000005: 401.5 2450000 3.36122451

g

Figure 8-21. Calculation of a root of a function by the Newton—Raphson method
(before creating intentional circular reference).
(folder 'Chapter 08 Examples', workbook 'Roots of Equations’, worksheet Newton-Raphson circular’)

When you press ENTER after typing the formula in cell G4, the "Cannot
resolve circular references" message is displayed, and Excel displays a zero in
the cell to indicate a circular reference, as shown in Figure 8-22.

1 Newton-Raphson Method with Circular Reference

|2 | delta= 1E-08

13] X1 Y1 X2 m new X1
4 1 r 0 401.5 5.0000000% 401.5 2450000 3.36122451 -I
0 -

Figure 8-22. Creating an intentional circular reference.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet Newton-Raphson circular’)

To force Excel to evaluate the circular reference, using the results of the
previous calculation cycle as start values for the next cycle, choose Options...
from the Tools menu and choose the Calculation tab. Check the Iteration box
and enter 0 in the Maximum Change box. (The default settings are Maximum
Iterations = 100 and Maximum Change = 0.001.) When you press the OK button
the circular reference will be evaluated. The results of the calculations are shown
in Figure 8-23.

B e A BGRRASH Sarh BIATST SRSV VRN b ST R 6 |H]
1 Newton-Raphson Method with Circular Reference

2 | delta= 1E-08

3] X1 Y1 X2 Y2 m new X1

4 | r 1.61188963 0 161188964 43E-07 26.4431 1.61188963_—|
51 ;

Figure 8-23. Finding a root by the Newton-Raphson method and circular reference.
(folder 'Chapter 08 Examples', workbook 'Roots of Equations', worksheet Newton-Raphson circular')

CHAPTER 8 ROOQOTS OF EQUATIONS 163

A Newton-Raphson Custom Function

The Newton-Raphson method can also be used in the form of a custom
function. The VBA code is shown in Figure 8-24.

Option Explicit

Function NewtRaph(expression, variable, Optional initial_value)
'Finds a root of a function by Newton-Raphson method.
'Expression must be a reference to a cell containing a formula.
'Variable must be a cell reference (cannot be a name).
'Initial_value can be a number, reference or omitted.

‘Reference style can be either A1-style or R1C1-style.

Dim FormutaString As String, XRef As String

Dim delta_x As Double, tolerance As Double

Dim X1 As Double, X2 As Double, X3 As Double
Dim Y1 As Double, Y2 As Double

Dim m As Double

Dim | As Integer, J As Integer, NRepl As Integer
Dim temp As String, T As String, dummy As String

'‘Get F(x) and x.
FormulaString = expression.Formula
If Left(FormulaString, 1) <> "=" _
Then NewtRaph = CVErr(xIErrNA): Exit Function
XRef = variable.Address

‘Convert all references to absolute

'so that only text that is a reference will be replaced.

FormulaString = Application.ConvertFormula(FormulaString, xlA1, xIA1, _
xlAbsolute)

'Handle initial values that cause problems
If IsMissing(initial_value) Then initial_value = variable
If initial_value = """ Then initial_value = variable

'Set delta_x for numerical differentiation, stopping tolerance
delta_x = 0.00000001
tolerance = 0.0000000001

'Perform the Newton-Raphson procedure
X1 = initial_value
Forl=1To 100 '100 iterations maximum
T = FormulaString 'Start with original formula each time thru loop
'Do substitution of all instances of x reference with value.
'Substitute reference, e.g., A2,
‘with a number value, e.g., 0.2, followed by a space
'so that A25 becomes 0.2 5, which results in an error.
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, ")}})) / Len(XRef)
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X1 & " ", J)

164 EXCEL: NUMERICAL METHODS

If IsError(Evaluate(temp)) Then GoTo pt1
T =temp

pt1: Next J

Y1 = Evaluate(T)

T = FormulaString '‘Begin with original formula again.
If X1 =0 Then X1 = delta_x
X2 =X1+X1*delta_x
For J = NRepl To 1 Step -1
temp = Application.Substitute(T, XRef, X2 & " ", J)
If IsError(Evaluate(temp)) Then GoTo pt2
T=temp
pt2: Next J
Y2 = Evaluate(T)
m=(Y2-Y1)/ (X1 * delta_x)
X3=X1-Y1/m
'Exit here if a root is found
If Abs(X3 - X1) < tolerance Then NewtRaph = X3: Exit Function
X1=X3
Next |
'Exit here with error value if no root found
NewtRaph = CVErr(xIErrNA)
End Function

Figure 8-24. VBA code for the Newton-Raphson custom function.
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', module 'Moduiel")

The syntax of the custom function is
NewtRaph(expression,variable,initial_value)

Expression is a reference to a cell that contains the formula of the function,
Variable is the cell reference of the argument to be varied (the x value of F(x) or
Goal Seek's changing cell) and initial_value is an optional argument that can be
used to determine which root will be found.

To illustrate the use of the custom function, we will use it to find a root of the
cubic equation y= —2x* + 16x> + 60x —300. A chart of the function is shown in
Figure 8-25. A portion of the data table to generate the chart is shown in
columns A and B of Figure 8-26. The formula in cell B7 is

=aa*A7"3+bb*A7"2+cc*A7+dd

where aa, bb, cc and dd are the coefficients of the cubic.

CHAPTER 8 ROOTS OF EQUATIONS 165

800
600 +
400 1
> 200 + A
-8 -6 4 6 8 12
-400 1

Figure 8-25. Root of a function returned by the Newton-Raphson custom function.
(folder 'Chapter 08 Examples', workbook "Newton-Raphson Function’, sheet Newton-Raphson')

To use the custom function, enter the function in cell C7 by typing it
following the syntax above, or choose Imsert—Function..., choose the User
Defined category and choose the function from the list box. For the expression
argument, enter a reference to a cell containing the worksheet function (e.g., cell
B7 in Figure 8-26). For the variable argument, enter A7, the cell reference of the
independent variable in the formula expression. If you do not enter a value for
the optional initial_value argument, the value of the independent variable will be
used as the starting value. When you press ENTER, a root of the function is
returned, as shown in Figure 8-26.

2 2 e —
4 y root trial value
<] 7 750 -4.79212051203765 -100
b -6 348 3.29634999529599 0

-5 50 9.49577051674166 100

-4 -156 -4.79212051203764

Figure 8-26. Root of a function returned by the Newton-Raphson custom function.
(folder 'Chapter 08 Examples', workbook "Newton-Raphson Function', sheet Newton-Raphson')

The root that is returned depends on the initial or trial value used by the
Newton-Raphson procedure. In this example, if a relatively large negative value
is used (e.g., —7), the root near —5 will be obtained. (See Figure 8-10 if this is not
clear.) Some caution must be exercised in choosing a trial value to direct the

166 EXCEL: NUMERICAL METHODS

procedure towards a particular root, as illustrated by the results for the same
polynomial shown in Figure 8-27.

&8 C
4 | X v root
17 | 3.296349995295499
18 -4.79212051203765
19 9.48577051674166

Figure 8-27. The root that is returned can be very sensitive to the choice of trial value.
(folder 'Chapter 08 Examples', workbook 'Newton-Raphson Function', sheet 'Newton-Raphson')

If no root is found after 100 cycles of iteration, the function returns the #N/A
error value.

The advantage of this custom function compared to Goal Seek... is, of
course, that if the coefficients aa, bb, cc, or dd are changed, the value of the root
is automatically updated.

Bairstow's Method
to Find All Roots of a Regular Polynomial

A regular polynomial is one that contains only integer powers of x. The
Bairstow (or Bairstow-Lin) method finds all roots, both real and imaginary, of a
regular polynomial with real coefficients. The method involves the successive
extraction of quadratic factors from the original polynomial of degree N and
subsequent reduced polynomials of degree N-2, N—4 and so on. The quadratic
formula is then used to obtain pairs of roots, either real or complex, from the
quadratic factors. If the degree of the polynomial is odd, then the remainder,
after extracting quadratic factors, will be a linear factor, yielding the final root
directly.

The calculation proceeds as follows. For the polynomial
y=ax"+a.x" + ... +ax+a (8-3)
performing synthetic division by a trial quadratic
X +pxtq (8-9)
yields a quotient and a remainder.
Y=+ px+q) (b + b,xX + L+ b)) + (Re + S) (8-10)

If (x* + px + ¢) is an exact divisor, then the remainder (Rx + S) will be zero.
Our task therefore is to find the values of p and ¢ that make (Rx + S) equal to
zero. This will make (x* + »x + 5) a quadratic factor of the polynomial.

CHAPTER 8 ROOTS OF EQUATIONS 167

Examination of the process of synthetic division reveals that there is a
correspondence between the coefficients of the two preceding forms of the
polynomial:

b, = a, (8-11)

byt = Gnt — pb, (8-12)

bpo = Gpy = pbny — qby (8-13)

by k= Apk— Pbrir1 — qbuana (k=2,3, ..., n-1) (8-14)
R=a, - pb, - qb; (8-15)

S=ay—qb; (8-16)

If the polynomial has been normalized so that a, = 1, then the equations are
simplified somewhat.

The trial quadratic will be a factor of the polynomial if the remainder is zero,
that is, R=S5=0. Since R and S are functions of p and g:

R=R(,q) (8-17)

§=S8@, q) (8-18)

we need to find the values of p and g that make R and S equal to zero. We will
do this by means of a two-dimensional analog of the Newton-Raphson method.
If p* and g* are the desired solution, then the solution can be expressed as a
Taylor series

. % ob ob
R(p*,q")=R(p,q)+—Ap+—LAg + - (8-19)

op &

and

. b b
S(p*,q*)=S(p,q) + —=>Ap + —>Ag + - (8-20)

op oq
where Ap=p*-p (8-218)
and Ag=qg*—¢q (8-22)

ignoring terms other that the first, since as we approach the correct answer the
higher terms become negligible. The preceding result in two equations in two
unknowns, which can be solved to obtain

168

EXCEL: NUMERICAL METHODS

AP = ZR3S 35 oR

§OR R3S
dq oq

(8-23)

“BRAS oS oR (8-24)

O0p dq Op oq

To find the partial derivatives SR/dp, etc, we could follow the usual
procedure of making a small change in p to find the corresponding change in b.
Instead, we will calculate the partial derivatives using analytical expressions.
Differentiating the expressions 8-11 to 8-14 with respect to p yields the

following:

c, = b (8-25)
op
b d
Dozt - pn (8-26)
15/ " dp
d 3
_ b,z =—b —p%— % (8-27)
P P
ob,_ ob,,_
= by k1 = P g;*‘ -q ”a;” (8-28)
b b
=g (8-29)

B op op

CHAPTER 8 ROOTS OF EQUATIONS 169

Equations 8-25 to 8-29 can be written in the form

¢, =0 (8-30)
cor =b, —pe, (8-31)
Cpa =b _ —pCyu—qc, (8-32)
Cpok =bp_k = PCr_s1 —4C k12 (8-33)
co =—4cC; (8-34)
The simultaneous equations to be solved are
CAp + c3Aqg =-by (8-35)
ciAp + cAqg = by (8-36)
Using Cramer's rule, we obtain
b <
-b
Ap=20_ 2l (8-37)
€2 €3
&G O
¢ —b
c; -b
Ag = 1~ 7ol (8-38)
C2 €3
G &

The procedure for calculating the roots therefore is as follows: with initial
estimates of p and g (zero or one can be used), calculate the values of b; and c;.
Use these values to calculate Ap and Ag, and correct the initial values. Continue
until convergence is reached. Obtain the two roots by use of the quadratic
formula. Use the result of synthetic division of the polynomial as the new
polynomial, and repeat the process. Continue until the polynomial is of order
one or zero.

The VBA code is shown in Figure 8-28. The portion of the code that
performs the Bairstow calculation is based on code found in Shoup, T. E.,
Numerical Methods for the Personal Computer, Prentice-Hall, 1983.

170 EXCEL: NUMERICAL METHODS

This procedure contains code, not found in other procedures in this book, that
allows the macro to accept a polynomial equation as a reference to a cell that
contains a formula or as a reference to a cell that contains a formula as text. The
procedure also handles an implicit reference.

Option Explicit

B T a0 b o b e e ot 20 AL o o o o o o o o o o it ot ot
Function Bairstow(equation, reference)

'Obtains the coefficients of a regular polynomial (maximum order = 6).
'Polynomial is a cell formula.

'Polynomial can contain cell references or names.

'Poynomial can be text.

'Reference can be a cell reference or a name.

Dim A() As Double, Root() As Double

Dim J As Integer, N As Integer

Dim p1 As integer, p2 As Integer, p3 As Integer

Dim expnumber As Integer, ParenFlag As Integer

Dim R As Integer, C As Integer

Dim FormulaText As String, RefText As String, NameText As String
Dim char As String, term As String

ReDim A(6)

' GET equation EITHER AS CELL FORMULA OR AS TEXT.
If Application.IsText(equation) Then
FormulaText = equation
'If in quotes, remove them.
If Asc(lLeft(FormulaText, 1)) = 34 Then _
FormuiaText = Mid(FormulaText, 2, Len(FormulaText) - 1)
Else
FormulaText = equation.Formula
End If
If Left(FormulaText, 1) = "=" Then FormulaText = Mid(FormulaText, 2,