Language Specification

File: C# Language Specification.doc
Last saved: 10/22/2001
Version 0.22

Confidential Material —Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.
Please send corrections, comments, and other feedback to sharp@microsoft.com

Notice

This documentation is an early release of the final documentation, which may be changed substantially prior to final
commercial release, and is confidential and proprietary information of Microsoft Corporation. It is disclosed pursuant to a
non-disclosure agreement between the recipient and Microsoft.

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied,
in this document. Information in this document is subject to change without notice.

Theentirerisk of the use or the results of the use of this document remains with the user. Complying with all applicable
copyright laws is the responsibility of the user.

Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a
retrieval system, or transmitted in any formor by any means (el ectronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Cor poration.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

Unpublished work. © 1999-2000 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

Table of Contents

I 4 oo [ox o o TR 1
R T g0 [= (= PSPPSRI 1
O I o TP 2

1.2.1 PredefiNeO fYDES. ...ttt ekttt e e e e e e e nnre e e nn e e neeas 4
A ©0 01V < = o] o TR 6
R B (= V1Y 0= TP ST PUPPPPRPPPPRPN 6
1.2.4 TYPE SYSLEIM UNITICAHON.ccieiiiieie ittt ettt sttt e et e e e e nnb e e e nnneeeneeas 8
1.3 VariahleS and ParaMELErS.ccciiieie et et r e e e e e et e e e e annrraeeearreeeeaan 9
1.4 AutomatiC MEMOrY MEBNBOEMENTciiurrieeeiitieeeeeetee e e e e e e e e et e e e e e sbeeeeesasseeeeaasaeeeeaasseeeesansseeeesaseeeens 12
Y 0 (=55 o] SRR 14
SIS =< .01 1S 15
A O = s =TT 18
5 O 1 = | 20
L7 2 FHEIOS ...ttt ettt ettt ettt ittt ittt ittt ittt ittt s nnn ittt e et nnnnnnnnnnnnnnnnnnnnns 20
L 7.3 IMIEINOOS. ...ttt n et st nnnnnnnnnnnnnnnnnnnnnn 21
I o0 1] =S PR 23
N Y= 01T T TR PRTRTRRPRRTTRTIN 23
T 0= -0 =N 24
A A1 410 (= = £ 26
1. 7.8 INSLANCE CONSLIUCIONS....cevveiiietiseeiett e et e e e eea e e e e e b e e e seb e e s e aba e s s e aba e e s e s b s e s ea b e sebbas e sebbasseserannss 26
e I I 1S 1 U od o] 27
AR P Lo o0 g1 {0010 (=TT 28
A I L4 1 = oD 28
RIS 1 (1 (o £ 29
R I 1 01 =0T 30
IOl D= [e (=R 32
O 1 R 32
1.12 NamespaceS and aSSaMBDIIEScuiiiiiiic e e 33
ISV £ 0] 111 o RS RR 35
1 1] 01U =TT 37

I (Lo I o U o (U TR 39
2.1 PNOSES Of TrANGIBEIONuvvvvereieiereieeeieteeeeerereseseeeseseseseseseseseseseeesesesesssesssesesssesesesssesssssesssssesesssessssssssserens 39
A €= 0010 001 (] R 39
G A (o = 7=) PR 40

20 T I 1 oo L USSP 40
2.3.2 INPUL CNBIBCIEIS. ...t ettt ettt et s b e e s st e e e s st e e e sab e e e emb e e e enne e e anneeenneeennneas 40
A R T 101 (< 4001107 (0] TR 40
PR N O] 101101 1T 41
PR R VY (R o= o T PRSPPI 42
R o= TR 42
2.4.1 Unicode CharaCter ESCaPE SEQUENCES.cuvrreeeiiureeeeeaitteeeeseseeeesaasseeeesasssesesaaseeeesaassseeesanssesessssees 42
A [0 < 0 1) 1= £ 43
P Q=TT 0] {0 PP 44
N | (= = YT 45
2441 BOOIEAN [HEEIAIS ..ottt ettt e e e e et e e e e e e e e e ee s bbb s e e sasseesaabaaseeeeaaeenes 45
2442 INTEOEN [ITEIAIS ...ttt e et e e nr e e e eneeean 45
N Rl = s W T < = F TR 46
PR N O g = o (= g [(< = F TR 47

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. i

C#LANGUAGE SPECIFICATION

R 1o 1] (= = PSSRSO 48
2446 THE NUIL TIEEIEL.......oeoeeiee e 49
2.4.5 OpErators a0 PUNCLUBIONS.vveeeeitrieeeesteeeesassteeeessssteeeesssseeeesaseeeeessnsseeessanseeeesanssseeesansseeeesnnsees 50
2.5 Pre-proCeSSiNG QIFECHIVES.eiiei ettt e st e et e e e st e e e st e e e e snsae e e e e ssbeeeeeansseeeeaannaeeeeennsees 50
2.5.1 Pre-proCeSSiNg IENTTIEIS.ccueeiee ettt e et e e e s e e e e st e e e e snne e e e e snnreeeeennnees 50
2.5.2 Pre-ProCeSSING EXPIESSIONS.ueeeureeaireeaireaaateeaateeeateeeaseeeaseeeasseeeasseeaanseeeasseesanseesasseeanneesnneas 50
2.5.3 Pre-proCessiNg GECIAIEHIONScciieiiiiiie ettt e e e e e san e nn e enneas 51
254 Hif, HElif, HAlSe, HONGIT ... 52
2.5.5HEITON ANAAWBININGveieieie ettt st et e e s bt e e sab e e e sabe e e aabeeeasbeesasbeeeasbeeenseeesnneeas 54
2.5.6 #region and HENAIEJION.ciiiiii et e e e e e e et e e e et e e e e s bt e e e e e eb e e e e e aasnreeeeanraeeeeannees 55

2 5.7 HIINE .. 55

T T S Lo o [0 o S PRPRSOTRR 57
TN I (00 | = 0 4IRS = 4 (U o PP PPPPPPPPPPPPIN: 57
2 (oo =0 (= 100110 (o] o TSP 58
BB DECIAIALIONS ...ttt bt b R e Rt b et b e n e e he e r e ne e nnre e 58
A MEBIMDELS.....cc e 60
4.1 NaMESPACE MEIMIDEIS. ... tteee ettt ettt e e sttt e e ettt e e e st b e e e e esbe e e e e asbeeeeaansbeeeeeanbeeeeeasaeeeesansseeeeennnees 60
S (N o 111= 0101 07 £ RS 60
3.4.3 ENUMEIELiON MEIMDENS.eeeeeiiieieeeeiiiee e e sttt e e et ee e e sttt e e e e ssseeeeesnsseeeeaansseeeeeanseeeeeansneeeeannsneeeennsees 61
O O = Y 4= 0] o= £ TSR 61
R g1 (= g = "o = 0= 011 01 £ SRS 61
346 ATTAY MEMDEIS. ... ittt ettt ettt e st e e sab e e e st e e s sbbe e s nabeeebneesnnneas 61
A7 DElEOAE MEIMDEIS.....c ittt st e st e e st e e e s ab e e e aabe e e ssbe e e esbeessnbeeebeeesnneeas 61
D IMEIMIDEN BOCESS. ...ttt ettt ettt ekt h e bt e st e bt e e a et e bt e e ab e e b e e ehe e e b e e e e bt e b e e na et e e beeann e e nneennre e 61
3.5.1 DeClared @CCESIIDIITYueiiieee i e e e e e e e e e e e e aaaaeas 62
3.5.2 ACCESIIDIITY TOMAINSeeiiiiiiiiie ettt e et e e e st e e et e e e e sbae e e e e annreeeeennnees 62
3.5.3 PrOtECIEA BCCESS.......eeeeieeitie ettt ettt et e e s e e nn e e nn e 65
3.5.4 ACCESSIDIITY CONSITAINTSeeiiiiieiee ettt e et e e e et e e e st e e e e enbe e e e e snneeeeesnneeeeeennnees 65
3.6 SIGNAUrES 8N OVEITOBHINGeeiiiiieeiiie ettt e e e ann e e s nn e e s neeeeneeas 66
S o0 o= TSP PPPRPPPPPPRPIN: 67
A8 A= 0107= T o o 1o [PPSR 69
3.7. 1.1 Hiding through NESINGeeeeiiieiiiie ettt sbb e e s sae e e e nneesnneesnneeas 69
3.7.1.2 Hiding through iNNEITTaNCE...........coooiiiie e e e e eaaee s 70

3.8 NAMESPACE AN LYPE NAIMIES......eeeeeiie e e i ittt e e e e e e ee e e e e e e e e s st e e e e eee e s s e s ata e e e eeaaesseasassraseeeaaeesaaasnrrenes 71
BB.LFUIlY QUAITIEA NAIMESceiie e e e e e e e e s e s e e e e e e e s s sanrraneeeaaeas 72
IR/ 0T T 75
Y 1 = 1Y o= SO PEPSUPRPR: 75
4.1.1 DEFAUIT CONSIIUCTONS ...ttt ettt etttk b et e et e be e et b e et e e nne e e nneennees 76
S 0 B Y 0= PN 77
RS S 0T o 1= 1Y 0= U RRPTRRR 7
I g1 (o = Y 0= SRS 78
A.1.5 FIOBLING POINE TYIES...veteeeiuteieeeeeitiieeeesttteeesetteeeesssseeeeeassteeeesaseeeeeaasaeeeeaasseeeeeansseeeeeanseeesaansseeesanns 79
4.1.6 THE JECIME (YD ...tttk e bt e ettt e et e e st e e e et e e e eabe e e snn e e e nneeenneas 80
O A 0T oo Yo N B 1Y o= S SRR 81
Rl o W01 = (gl Y 0= PRSI 81
e = (= 0 To R LY =TSRRI 81
N R O oS3 1 o= TP PP OPR PP 82
A 41X 0] o <ot B Y o< PRSP 82
R B TR (] 070 1Y o= TR 82

iv Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

L 1 = = o= Y 0> SRR 82
Y = Y 1Y/ - TN 83
A Sl B s [o (S 1 0= PRI 83
4.3 BOXIiNG @NA UNDOXING ... teeeeeeitite e eiieee e e sttt e e e sttt e e e ettt e e e sssee e e e s ssate e e e sssteeeesansaeeeeennseeeeeasseeeesansseeenanns 83
4.3.1 BOXING CONVEISIONSeeieiiuieieeeaastiieeeantteeeesaseeeesaassseeesaassesessanssseeeaasseeessassseeesansssesessnssseesssnsseessanns 83
4.3.2 UNDOXING CONMVEISIONSuutiieitieatieeaieee sttt e asteeeasseeeaseeeeaaseeabeeeaabeeeanbeeeanbeeeanbeeeanneeeanseeanneesnneas 34
TV = T =1 o] =SS SRRSO 85
I Y P o [0 (o 0 1SR PRPPTPPRR 85
TN S = o7 = o) =S RRR 85
5.1.2 INSIANCE VANTBDIES......cee ettt e et e e e et e e e s st e e e e e ntee e e e snneeeeeannaeeeeennnees 85
5.1.2.1 Instance variabl €S iN ClaSSES.cccoiiiiiie et e e e e e nnnaeee s 85
5.1.2.2 INStanCe VariablES 1N SITUCES........ceeiiiiiiee ettt e e e e e e e e e et ae e e e snnaeeeannnneeens 86
R I N g = VA= 1= 11 01T PRSPPI 86
Y [y o7 = 041 = £ R 86
5.1.5 REFEIENCE PAIAMELENS.ceii ettt e e e e e e e st e e e e e e e e s st beaeeeaeeesssnntranreeaaens 86
B.1.6 OULPUL ParaIMELENS. ... 86
I ooz 7 - o =R 87
B2 DEfAUIT VAIUES ...ttt e e ettt e e e et e e e e s ns e e e e nbe e e e e ensteeeeeannaeeeeennnneeeeanns 87
5.3 DEfINITE BSSIGNMIENTeeeeeie ettt ettt et e e e st e e sab e e e sab e e e ambe e e ame e e e asneeenneeenneesnnneas 83
5.3.1 Initially assigned Variabls..........cooiiiiie s 0
5.3.2 Initialy unassigned VariableSooiiiiiiie e 0
Y = o [N = 1 (=00 =TSO PRPSUPRRRN 0
OO0)= S T T ST 91
6.1 IMPLICIT CONVEISIONS.eeieiiiiiie e etiee ettt e e ettt e e e et e e e e st e e e eesteeeeeasteeeeaansaeeaeeasseeeeeansneeeeeannsneeeennsees 91
L0 0 I o = 1]V @0 V7= £ T TSR 91
6.1.2 IMPliCIt NUMEIC CONVEISIONSveieeiiiiieeeeiieeeeeitieee e e st eaeestae e e e sssaeeeeassseaeeeansaaeeesnsnseeeaansseeeeennnees 91
6.1.3 ImpliCit eNUMEration CONMVEISIONSuvieiitiieeeeiteeeeeeireeeeesteeeeeassseeeeeasreeeeaaseeeeeaassneeesassneeeeannees 92
6.1.4 IMpliCit refErenCe CONVEISIONS.ccuiiie e ettt e et e e e e e e e st e e e e et e e e e e enae e e e e anreeeeeannees 92
6.1.5 BOXING CONVEISIONSuuveieiiieesiieeasieeeesstesassseeateeeasaeesnseeessseeessseeeasseeessseesasseeeasseesassesssssessnssessneens 92
6.1.6 Implicit constant EXPreSIION CONVEISIONS.ccoiiuuriieiiireeeearireeesssiteeeesssreeeessbeeeessnssseessasreeessnnsees 92
6.1.7 User-defined IMpPliCit CONVEISIONScoiiiiiiieiiiiiiee st e e e e s snne e e e e snnreeeeennnees 93
O (o [T 00 V= £ 0] RSP 93
6.2.1 EXPlICIt NUMENTIC CONVEISIONSeiiieieiiiieeitie ettt e ettt et e ate e e sabe e st e e e ssbe e e ssne e e anne e e enneesasneesnneeannneas 93
6.2.2 EXPliCit ENUMEration CONVEISIONScoiueieiieieaieeeateee et e sbeeesbe e e sabe e e ssbe e e sabeeessseeeasneesasseesnneesnneas A
6.2.3 EXPIICIt FEfEreNCE CONVEISIONS. ...ttt e e e e nab e e snn e e e nn e e enneas A
6.2.4 UNDOXING COMVEISIONS ...ttt eiieeeiteeasiteeatee e s teeeste e e ssbe e e sabe e e ssbe e e ssbe e e aabeeensbeesanseesnnseesnneesnnneas 95
6.2.5 User-defined expliCit CONVEISIONSuuiiiiiiiiiiee ittt e s sna e neeesneeas 95
RIS -0 = o Hee 01V £ [o] 0 1S3 RPRIN 95
6.3.1 Standard iIMPlICIt CONVEISIONS.ueeiiiieeiiiiiiiieee e e e e e ee s e e e e e e s ss b re e e e e e e e e sssarraeeeeeeeeessnnnrranreeaeeas 95
6.3.2 Standard eXPliCIt CONVEISIONScceiiiiiiieiiiiiee et ie e e sttt e et e e e st e e e s saee e e e e snbeeee s ssaeeeeeannreeeeennnees 9%
6.4 USEr-0defiNed CONVEISIONSuiiiiiieiiee it e e eiteee e e sttt e e s st e e e e sste e e e s aseeeeeasnsaeeaeessseeeeeasseeeeeanneeeeeennsees 9%
6.4.1 Permitted user-defined CONMVEISIONSccuuiieiiiieieeesiieee e siiee e e e e e s e e e e sntee e e e ennee e e e snneeeeeennnees 9%
6.4.2 Evaluation Of USer-defined CONVEISIONS.........cuiiiiiiiieeiiiieeeeeiiee e e esseeee e e snee e e e e sneeeeessnnneeeeesnnseeeeennnees 9%
6.4.3 User-defined impliCit CONVEISIONSueiiiiiiiiiie ettt 97
6.4.4 User-defined expliCit CONVEISIONSuuiiiiiiiiiiie ittt sb e saae e saa e e neeesneeas 98

A 0T =-= Lo LTSS 99
7.1 EXPreSSiON ClasSIiCAIIONS.eiiiiiieiiie ettt ettt st e e st e e s e e e enn e e e enn e e e nneesnneeen 9
7. 1.1 VaAUES OF EXPIESSIONScouieieiiieeitee et ee ettt ettt ettt sttt et e st e e s b e e sab e e e aab e e e enb e e e asseeeanneeenneeenees 100
A © o= £ (o] £ TP PP PPPPPPPPRPI 100

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. Vv

C#LANGUAGE SPECIFICATION

7.2.1 Operator precedence and aSSOCIALVILYc.vveeeiiiieee i e e et e e e e e e e e e e e e e e e s rraeeeeanas 100
PV @)= ¢ (o g0 L= g [o7='o [oo HR SRR 101
7.2.3 Unary operator OVEr1oad rESOIULION.coiuieieeiiiiiee e esieie e sttt e e e e e e e s nnnaeeeeenes 102
7.2.4 Binary operator oVerload reSOIULIONcvuiiie it e e e e e nnraeeeeenes 103
7.2.5 Candidate USer-defiNed OPEIEIOIS.uuieiiiiieeeeiiiiee e et e e s ettt e e s s e e e s st e e e sssseeeeesnbeeeesansneeeeanns 103
7.2.6 NUMEXIC PIrOMOLIONSceiiiie ettt eitee ettt et e et et e e st e e s abe e e e sbe e e aabe e e asb e e e ambe e e ans e e e asneeenneeennneeennes 103
7.2.6.1 UNary NUMESIC PIrOMOLIONS.ceeiueeeeitieaieeeeiteeaieeeetee e st e e sbe e e ssbe e e sabe e e snbe e e snneeenneeeenneeennneas 104
7.2.6.2 Binary NUMEXIC PrOMOLIONS.ceeuteeeirieaieeeaiteeeieeesteeessbeeesbeesssbeeessbeeessbeessnseeesseeesseeesnneas 104
SR\ 1= 1010 T= gl [T (U o PR 104
7.3, L Ba Iy DS it 105
7.4 FUNCLION MEIMDETS.......eiiiieieit ettt eab e e e bb e e abn e e s b e e s s 105
TAL ATQUMENT TISES. ..eiiiiieiee ittt ettt e e ettt e e sttt e e e s s st e e e e e nbe e e e e esneeeeeansbeeeesnnsneeeeanns 107
7.4.2 OVE1080 TES0IULION ...ttt e e e e e e e e e e 109
7.4.2.1 Applicable fuNClioN MEMDENcooiiii e e enneeee s 110
7.4.2.2 Better TUNCLION MEIMDES ..ot et e e e et e e e e snsa e e e e snnee e e e enseeeeennnneeens 111

P RS T =T= 1 = g w'e 0 V= = Lo o PSR 111
7.4.3 FUNCLION MEMDEN INVOCELION.eeiiiiiiiee et e esiiie e e e e e e et e e e e s e e e e steeeeesnsneeeeesnaeaeesensaeeeeanns 111
7.4.3.1 Invocations 0N DOXEA INSLANCESeveeiiiiiie e e e e e e e e e e e e e snnaeee s 112
7.4.4 Virtua function Member I00KUDueeeiiiiie et e e e e e e e e e e e earneeeeenas 113
7.4.5 Interface function MEMDBEr IOOKUDcoiiiiiiie e e e e e e 113
AN 110 A= 0 =55 0] = TSR 113
AN = ST TRTOTR PR 113
7.5.2 SIMPIE NBIMIES....ce ittt e e ettt ettt e ettt e e e ettt e e e s bt eeeeasste e e e e asseeeeaassaeaeeaansseeeeasseeeeeansseeaesansneeneanns 113
7.5.2.1 Invariant meaning iNBIOCKSc.uiiiii s 114
7.5.3 ParentheSIZE0 EXPIESSIONSco.uviieiiieaiteeaitie ettt ettt ettt et e e st e e e st e e sabe e e aab e e e snb e e e asseeennneeeneeeenees 115
754 MEBIMDEN BCCESS ... utiiee ittt e ettt e e et e e e ettt e e e st et e e e sstee e e e e sseeeeeassaeeaeassseaeeeasseeeeeanssnaeesansneeeeanns 115
7.5.4.1 Identical SMple NAMES anNd tYPE NBMES........ccouuiiiieie ittt neeas 117
7.5.5 INVOCAL ON EXPIESSIONS......uveeeitieestteeesieeeasteeeabeeesbeeeasbeeesabeeessbeeesmbeeeambeeeanbeeeanbeeaanseeeneeesneeesnnes 117
7.5.5.1 MENOU INVOCELIONSceeuvieiiieeieeeite ettt ettt ettt sbe e e et e e ne e e 117
7.5.5.2 DElEQAE INVOCALIONS.eeiiiiee e ittt e e e e e e eec et e e e e e e e s s e e e e e e e s s assatbaaeeeeaaeeessasnrereneeaeeseananns 118
7.5.6 EIBIMENT BCCESS.......eeiiiiiieiee ettt et e e e bt e e b ene e 119
T.5.6. 1 ATTEY BCCESS....oei e i ettt ee e e e e ettt e e e e e e s e et teeeeeeae e e s s sa ettt eeeaeeeeaansbbeeeeeaaeeeaaannbenneeeaeaeeaanes 119
7.5.6.2 INUEXEN BCCESS......uveeeeeiieieeeastieeeeestteeeeestteeeeassaeeeeassaeeeeaanseeeeeaasseeeeaassseeeeassaaeeeassneeeaansneeens 119
AR IS 1] 0o W aTo =] oo U PP 120
A A 1 S o 0= S TSSO 120
7. 5.8 BaSE BCCESS....ceiie e et i ettt ettt e e et ettt et e e e e e e ettt e et ee e e e s e ———teeaeeeeaaa———a—rrtaeee e e e antaareeaaeeeaannnrraees 121
7.5.9 Postfix increment and deCremMent OPEIELONS..........cuivuieiieie e sieeestee e stee e sbee e nree e e e 121
T.5.00 NEW OPEIEIOL ...cceiiiieeeee e 122
7.5.10.1 ObJECt Creation EXPIESSIONSuuuiieiieeeeeeiiirirereeeeeeeessitrrereeaeesssassrrrreeeeaeesssasrsreseeaaeseananns 122
7.5.10.2 Array Creation EXPIESIIONSceeeiureeeeeitreeeeaasseeeesasseeeesasseeessaasseeeesasseeesssssseeessnsseeesssnsseees 123
7.5.10.3 Delegate Creation EXPIESSIONS.ccuveeeeeitreeeeaateereaasteeessssseeeeesasseeeesassseeeesssseeeesansseesesansseees 125
75,11 LY PEOT OPEIEIONuuueiiieiiiiititittiet bbbttt ettt b e e e bnnnnnnnnnres 126
7.5.12 checked and unchecked OPEIAIOIS..........coiuiieiiee ettt e e 127
7.6 UNGIY EXPIESSIONSuveieiuieieiuteee ettt e ateeeaiteeeatbe e e tbeeese e e e be e e et e e e eabe e e aabe e e embe e e ambe e e ambe e e asbeeeanneeenneeeanneas 129
7.6.1 UNGIY PIUS OPEIGLONeeeeiiee ettt ettt ettt ettt st e st e e st e e s st e e e sab e e e sab e e e nnb e e e bbeeenneeenneeeennes 129
7.6.2 UNGIY MINUS OPEIBEONeeuteeeiiieestteeestteeasteeeateeesbeeessbeeessbeeessbeesssbeeeasbeeeanseeeasseesansessneessneeesnnes 130
FARCY Moo o= W= o= ([0 g Koo = - (o (PSSRSO 130
7.6.4 Bitwise COMPIEMENT OPEIAIOTuuviieieeeee ittt e e e e e e e s et e e e e e e e e e st r e e e e e e e e e s aannrreereeeeeesaannnrrnees 130
PR g lo (= witlolalelo = = o] SO SRRSO 131
FA NI (o[5S ST 0 0 < £ o) (PSPPSRI 131
7.6.7 Prefix increment and deCremMent OPEIaOrS.uiureeeeiiieeeeeaiieeeeeesseeeeessieeeesssssreeesssneeeesanseeeeeans 131

Y Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

7.6.8 Cast EXPIESSIONS.ueeeeiitrieeeiitteeeeeiteeeeeeetteeeeaaateeaeaasbeeeeeaasseeeeaassseeaesanssseeeaassseeesaseneaesansneeeeans 132
AT N 1110001 (ol 0] 0= (] = USSR 132
WAV TN ef o NTer= i Lo g le o = - (o PRSPPI 132
WA DNV T o g el o = (o] R TSSRTPRRR 133
AT RS R = 007 TaT0 (= e o = (o] SR USSRSPRRR 134
Py o (o Lo g Nel o = = (o SO TP TPRPP 135
7.7.5 SUDLFACHION OPEIGIONeiiiiee ettt ettt ettt ettt ettt e et e st e e s st e e e e ab e e e sab e e e sn e e e nneeenneeennes 137
RS 1100 = (o £ TSP TPR 138
PR R F 110 0o 1< = 0] =TSRRI 139
7.9.1 Integer COMPAISON OPEIGIOISeeeeiiureeeeeiitteeeeeitreeeeesteeeeeeasseeeeassseeeeassaeeeesasseeeesasseseesasaeeeeans 139
7.9.2 Floating-point COMPariSON OPEFEIOIS.cciieiriieeeeeeee e e s eettree e e e e e e e es st beeeeeeeeessaaatereeeeeaeeeeaannnnenees 140
7.9.3 Decimal COMPAITSON OPEIEIOISceeiuveeeeeitieeeeestreeeesssteeeesasbeeeesssaeeesasnbseeessasneeeesasseeeesansseessanns 141
7.9.4 BOOI €8N EQUEIITY OPEIBIOIS.ieeieeeeitiieeeeiteeeeesitee e e et e e s sttt e e s ssbbe e e e e snbseeessnsneeeesansbeeeesanseeeneanns 141
7.9.5 Enumeration COMPariSON OPEIEIOIS.eeeeiurreeeesstteeeeassteeeessnsseeeeassseeeesssseeessasssesesssssesessansseessanns 141
7.9.6 Reference type eqUality OPEIELOIS.ueeiirieiieie et e ettt e st et sbe et e e e e e e ene e e s enne e eneeeenees 141
7.9.7 SHINQG EQUAIITY OPEIBIOIS.eieitei ettt eeitie et e ettt ettt e st e e st e e e sab e e e aab e e e snb e e e abs e e e eneeeeneeeennes 143
7.9.8 Delegate €qUAlItY OPEIBIOIS.eieieeeeiiieeeieee ettt e et e et e st e st e e et e e st e e asb e e e sab e e e nbee e s anneeeneeeennes 143
AR N 4 S Yo o= - o] SRR 144
7.9.00 TRE @S OPEIGIONeeeeeiteiee e ettt e e ettt e e e ettt e e et e e e e e eabe e e e e eaaseeeeaaasaeeaeaansseeeeaasnseeeeaseaeaesansnneeeanns 144

4 O T Lo oo = = (0] £SO PPPSSPPRR 145
7.10.1 INteger |0QiCal OPEIGLIONS.......cciiciiveeeeeee e e e s eecttee e e e e e e e s e et e e e e e e e e e et b b e e e e eaeesssanteaeeeeeaeeesaannnreeees 145
7.10.2 ENUMEration [OQiCal OPEIEIOIS.cciuuiiieeiiiieeeesieie e e ettt e e sttt e et e e st e e s snne e e e s snnbeeeesnnrneeeeanns 145
7.10.3 BOOIEAN 10QICal OPEIGLOIS........eeeeeeeiiiieeeeiieee e e sitee e e ettt e e e ettt e e e e st e e e s snbee e e e esneeeeesnnbeeeesansaeeeeanns 146
7.11 Conditional 10giCal OPEIBIOIS........ceeiueeieiiii ettt ettt e et e et e e e anb e e e esn e e e snneeeneeesneeas 146
7.11.1 Boolean conditional 10giCal OPEIaOrScciiuuieiiiie ittt 146
7.11.2 User-defined conditional 10giCal OPEIratorS.........cocuueeiieieiieieiiee et 147
A O e lalo 1110 g Il o = = (o (TP 147
AN [0 007 000/ = 0] 1= PR TRR 148
7.13.1 SIMPIE ASSIGNIMIENLcteieee ittt e e et e e e et e e e e et e e e e et e e e e e aeaseeeeaasseeaeaaaseeeeeaassseeesanssaeaesanrneeeeanns 149
A8 T2 @0 0 01N 0T =SS [0 1= | ST 150

7. 13.3 EVENT BSSIGNIMIENEeeeeiiitieeeeeiiitie e e et eee s sttt e e e st e e e e ssbee e e e ssbeeeeasssbeeeeaanbeeeeeanaeeeeeansbeeeesnnsneeneanns 151
0 o === o o SRR 151
7.15 CONSLANE EXPIESSIONS.eeeeeuteeeeuteeeaieeeeauteeaasbeeaaseeeabeeeaseeeabeeeaabeeeaabeeeambeeeambeeeambeeaasseeaanneeanreeannneas 151
7.16 BOOIEAN EXPIESSIONS.eeieiieiie ittt ettt ettt ettt ettt e bt e e s bt e e et e e e e st e e e anb e e e emb e e e esbeeeanseeenneeeaneeas 152
LSS = = T RSSO 155
8.1 End pointS and reaChalIITYccoiiueiieiiiiiie ettt e st e e e s e e s s s e e e s s nneeeeann 155
LS 2N = oo <SSR PEPTRRR 157
S S - (=011 01 L OSSP 157
8.3 The EMPLY STAIEMENT.ei ittt ettt e e e it e e e se e e e emb e e e eane e s neeeenneeannes 157
o I o< = o S = 0= 1RSSR 158
8.5 DECIAratioN SIAEIMENES.ceciiiiiie e it e e ettt e e e e e e et e e e et e e e e et e e e e e saaeeaeessseeeeaassaeeeeasseeaesasnneeeanns 158
8.5.1 Local variahle deClarationsS............cuuiiiiie it 159
8.5.2 Local CONSLaNt AECIArELIONScoiuvieieeiiie ettt nne e 159
8.6 EXPIrESSION SalEMENES. ... ieiieeee e e et e e e e e e e e e e e s et e e e e e e e e e e et b a e e e e aeeeeaaanrraareeaaeeeaanns 160
8.7 SElECHION STALEIMENES ... e ettt st et e st e e e e i e e e e s e e e e bn e e e nn e e e nn e e s nneeennes 160
o A I 0o N S = = 10T | USSR 161
8.7.2 The SWITCH SIAEIMENLeeeie et e e e e e et e e e e st e e e s snteeeeeesneeeeesnneeeeesansneeeeanns 161
8.8 LN Al ON SLALEIMENTS. ... eeiee ettt e e ettt e ettt e e e e e et e e e e st e e e e s steeeeeensseeeeeasssaeeeanssseeeeasseaeeeansnnnenanns 165
8.8. 1 The WhIle SLALEIMENL........ et e e e et e e e e e e e e st e e e e e ssneeeeeansaaaesanrneeeeanns 165
8.8.2 ThE O SLALEIMENT......eeieiiiieiee et e e e e e e et e e e e s b e e e e e ssteeeeeesneeeeeanssneeessnsneeeeanns 165

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. Vii

C#LANGUAGE SPECIFICATION

R R R I 1 SR (0 S = (= 1 1= | AT 166
R R R Lol R Y ==Ll I = (<. <. | TR 167
8.9 JUMD SEBLEIMIENIES ...t eeeee e e ettt e ettt e e e e e e bbbttt e e e e e e e s e aabb b et e e e e e e e s e abbbeeeeaaeeeesannbebeeeaaeaeeaanne 168
ORI R 1 0 (] o (== L = (= 1115 LA 169
8.9.2 The CONLINUE SEALEMIENTcoieieieee et e et e e e e e e e e e b e e e e e ssees bbb s eessssessabaansseeasennes 169
8.9.3 ThE gOTO STAEMENT.uiiiiiii e e e e e e e e e e e e e e e e e e e bbb e e e e e eeeeessanaabreeeeeaaseeeansnsrnns 170
R I N B o TN = (U g g [= < 11 0 ST 171
R R I 8 SR TV = (< 111 | TR 172
(O R (g (< 1 1= 0| P RPRP 172
8.11 The checked and UNCheCKEd SEALEMENTS......vveiiii it e e e re e e e e e e eeanes 175
I SN o o S = = 11 | R PPPPPPRRPPPPPPPRS 175
8. L3 THE USING STAIEMIENTeeeeeiiiiiie ettt e st e e e st e e e et e e e e s aba e e e s ssbee e e e s nbeeeeeansbeaeesansneeeeanns 176
8 I A = T T o =T = PSSRSO PRI 179
SOl aTo | F= Lo UL PSR PRP 179
9.2 NamMESPACE UECIAIAIONS ...t e e e e e e e e et e e e e e b e e e e enbeeeesenneeeeanns 179
Q.3 USING IFECHIVES.uteieeiie e e e i ettt e e e e e e ettt e e e e e s e et e e e e e e e e e e s saaateaeeeeaaeessaaassbaeeeeaeeessaasnssanneeaeeseannnes 180
0.3, 1 USING @li@S TITECHIVES.eeeeee ittt e e ettt e e s s e e e s nbe e e e esne e e e e ansbeeeesnnsaeeeeanns 181
9.3.2USING NAMESPACE TITECLIVESeeeeeiiiieee e eiiiee e s sitee e e ettt e e e ettt e e e st e e e s snte e e e e ssneeeesannseeeesansaeeeeanns 183
9.4 NaMESPECE MEIMDEIS. ...ttt ettt ettt e be e e et e e st et e sabe e e aab e e e aab e e e asse e e amseeeemneeeneeesnneeannes 185
0.5 TYPE AECIAIBLIONS ...ttt ettt et e e e e st e e e e ab e e e esb e e e nmn e e e ann e e e neeeenneennnes 185
OO =1 TR 187
O O =Yoo = = 10 PR 187
O I O == Y 1 0 Lo [1= £ 187
O AN o 1 = ot W £ = =T 187
O S < 1o [= s ST 188
10.1.2 Class hase SPECITICALIONeeiiiieiiiie ettt sttt et e e e e e snb e e s nneeen 188
O B B T2 s Y £ s =TT 188
10.1.2.2 Interface iMPIEMENLALIONSooiiiieiiie et naae e s neeeen 190
O @ = Y oo Y TSP SRPI 190
JO.2 ClaSS MEIMDEIScceieeeeeeeeeeeeeeeeeeeeeeee et 190
L0 2 R L 0151 (= TR RPRRPPRRR 191

L T I = 0 1T 470 o [L= T 192
(O RCY A Noo== oY 11100 1 1< £ 192
10.2.4 CONSHTUBNE TYPES.....eeeeeteeeieee ettt ettt ettt ettt e e st e ettt e e tb e e e be e e sbe e e anbeeeasbe e e anbeeesnseeeanneesnneeans 192
10.2.5 Static and iNSLANCE MEMDIEISoieieiee e ettt e et et e e e e e e e e e st s e e e seseesssbaa e seessseeesssaans 192
10.2.6 NESIEO TY S ..ttt ettt ettt ettt et e e bt e e tb e e e be e e et e e eabe e e sabe e e snbe e e esbeeeaneeeebreeen 193
0 G 2 00 = | £ 193
JOA FHEAS. ... 195
10.4.1 StatiC and INSANCE FIEIAS .. .uuvuuiiiiiiiiiii bbb bbbbbbabarbbbrabssessssssssrsssssrrrrrres 196
10.4.2 REBAONIY FIEIAS ...oovveeeieiie et et e e e et e e s see e snte e e snaeeesnteeesneeeeseeeans 196
10.4.2.1 Using static readonly fieldS fOr CONSIANTS.........ceveiiiiiiie e 196
10.4.2.2 Versioning of constants and static readonly fieldS..........ooovevieiiiiiiiii e 197
(O R R = T= o RT ki E: [(Lo o FU T 197
1044 VaaDl@ INITTIAIIZEIS.....coeeeeeeee ettt e e e e e et e e e e e e e e e e s s b b eeeeeeeereeaaaans 198
O W7 N S vz (Lol 1= Lo W T L (= [z (o) T 199
10.4.4.2 INSLANCE Field iNItTAliZAIONvveeee et e et e e e e e e et e e e e e eeeseeera e eeeas 199
JOS MENOGS ..o 199
10.5.1 MEthOd Par@mELEN'S...........uuviiiiieee e iiciiti e e e e e s et e e e e e e e e et e e e e e e e s s satbraereeaeessaansnrareeaaessaannns 200
1O.5. 1.1 VAUE PAIBIMELEIS.c.eveeeeeeiieiee ettt ettt e e st e e e e st e e e e nbe e e e snbe e e e e ansbeeeeesnsteeeeannneeee s 201

viii Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

10.5.1.2 REfEreNCe PArAMELENS ...ttt e e e e e e e e s e e e e e e e s na e eeaaeeeeeennnreees 201
J10.5. 1.3 OULPUL PAIrAMELETS......ccc e 202
10.5.1.4 ParaMELEN @ITAYS. .. . eeeeeeeeeiiettiet et a e e e e ettt e e e e e e e s s e bbb et e e e e e e e s s asabeeeeeaaeessaanbbbeeeeaaaeesaannreees 203
10.5.2 Static and iNSLANCE MELNOUS..........covuiii et e e e e e e e e e e e e e e e s bbb e e e e e seesesasaans 205
O RS Y AT ¢ 0= I 41151 200 T 205
10.5.4 OVETIAE MELNOASooeveiie ettt e e ettt e e e e e e e s e e st b b s e e sesssessbbaa e eeessseessssnnns 207
(O RSS2 [o 1 01S 1 10 0 T 209
QRSN WA 0= (= ol 01= 1100 TR 210
LRSI L= = I 11010100 TR 211
10.5.8 MENOA BOYceeeiiiiiee et e e et e e e s e e e e s e e e e et e e e e s enaeeeeeanneeeas 211
10.5.9Method OVETOAOING.........c..uiiiiiiiee e e e e e e e e s e e e e e e e e s seanrrareeaaeeeeanes 212
O G 00T 1= PSPPSR 212
10.6.1 SEALIC PIOPEITIES. .. cueveeeeeeieeie e ettt e e ettt e e e sttt e e et et e e e asbe e e e e anbe e e e e asbeeeeeansbeeeeennbeeeesannaeeeeannnneeens 213
QI X0 o= o) = 214
10.6.3 Virtual, sealed, override, and abDSIraCt GCCESSOIS........cooiiiieeiiie e eeee e e e e e e e e e s e e e e e e eeeaaaaas 218
O /< 1= 220
O R < 0 1A= 00 o £ T 222
LA = (o =Y = 01T 223
10.7.3 Virtual, sealed, override, and abSIraCt A0CESSOIS.uuuuuurrrrrerrrrrerarrrrrrrrrrrrrerrerrererrerrrreree———————.. 224
LR R 100 (S (T 224
10.8.1 INndexer OVETOaOINGc..viiiiiiiee e e e e e e e e e e e s e rraaaaeeaaans 227
ORS00 £ T PP 227
10.9.2 UNGIY OPEIGIONS. ... ceeteeeeiiiuttteeeeeaee e e s et teeeeeeeeeaaaaanaeeeeeeaaeesaansbeeeeaeaaeeasaassbsseeaaaesesaanssrneeaaeesssannes 228
10.9.2 BINAIY OPEIAIOIS. ... eeeeutieeiteeeattee ettt e et e e et e e esbe e e aase e e aseeease e e ate e e amteeeanbeeeasbeeesnbeeeanneeeanneeanneeans 228
10.9.3 CONVEISION OPEIBEOIS. ... eeeuuteeetteeatteeateeeateeeasteeeasteeaaseeeaaaseeateeeateeeanbeeeanbeeessbeeeanseeeaneeeennneeans 229
10.20 INSLANCE CONSETUCLOIS.....ceeeeteieiettseeeettseetesaseesestssssestasesesaasssasaassassssasssssssnssessssnsssssssnssssssnnsssrsnen 230
0 T O T A @00 0= U T o G T 0L (= = £ 231
10.10.2 INStaNCe Variahl € INItTAlIZEISceeeveeieee ettt ettt e e e ettt e s e e e e e e eeea e e e e eeeseeeessraaans 231
10.10.3 CONSLIUCLOT EXECULIONuuvvvurrsursusrsrarssssssssssssssssssssssesssssessessssssssssssssssssssssssssssssssssssessssssssrssres 232
10.10.4 DEfAUIt CONSITUCTOIS.uvveiiiiieei ettt e e ettt e e e e e e e et e e e e e e s ee s bbb s eeeesseessbbba e seesseeessssrans 233
OO RSN o V7= (=X 00 g1 (8 (0x o £ 234
10.10.6 Optional CONSIIUCLOr PAIraIMELES.veieeeirieeeeeieeeeeeatteeeessteeeesassteeeeessreeeeasnsaeeesansseeeeaaneeees 234
J0.11 SEALIC CONSIIUCTOTS. eieeeeeettte e e e e e et eee et e e e e e e s eeeeaa e s e eesseee s e b s sseeassesaa b b ssesssesas bbb sesssssesssssnns 235
O 2 B T< s T (o] =T 237
S o = 239
IS U o o (< o =T (0] T 239
I S (0 (o 1 00 o [< £ 239
I S 1 0 o] 1 = 0T 240
1103 SHUCE BOAY ...ttt ettt ettt et e e st e e st e e e s sb e e e anbeeeeneeeenneean 240
S (0 (ol 0101<11107= £ TR 240
RN O F= o a0 B (g0 (o o (1 (= (= 116 = TR 240
R AV A TUTSNC <0172 0 o TR 240
RGN 0151 {1 =1 o TR 241
GG AN T 010 1= o | AR PPPPPR 241
R N B = U [7= 10 (T 241
11.3.5 BOXING @NA UNDOXING. 100t tiutteeeeeiiiieeeeiieee e e sttt e e esieeeeesssteeeessnteeeesssseeeeesnsseeeeennsaeeesansseeeesnnnneeens 242
11.3.6 MEANING OF thiSueeiiiiiiiiie ettt e e e e sab e e e enn e e e nnneeenneeans 242
RS =< o BT TN E= T4 = £ 242
G SO0 1= T (0] =T 243
GRS I B Tc s 1 (T (o] = 243

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. iX

C#LANGUAGE SPECIFICATION

11,4 SHTUCE EXAMPIES ...ttt e e e e e et e e e e st et e e e e st e e e e e aaaeeeesasseeeeeaneeeaeeasnees 243
DT v 0 s 1100 = 1Y 0 SRR PPPPRR 243
11.4.2 Datahase DOOIEAN LYeeeee ettt s e e e st e e e et e e s ena e e e e nnnaee s 244

N - Y £ U PRRRT 247

i N = Y 1 1< ST T PP PPT PR PPPTPPIN 247
I R TS VS =YY o o= A 1Y o= TSSO 248

A N = Ve (= (o] SRR 248

12.3 ATTAY ElOIMEIE BCCESS. . .eiiuuveieeeiitiee e ettt e e et beee e s steeee e e s sse e e e aabeeeesansbeeeeaansbeeeeeanbeeeesansseeeeaanneeeaeennsees 248

N g Y 07 1010 = £ SRR 248

12.5 ATTAY COVAIANCE.......eeiuteeeiteeetteeateee ettt e ettt e e et e e asee e e st e e e ket e e be e e aabe e e aabe e e aabe e e embe e e eabeeeanseeenneeanneeans 248

12.6 ATTAY TNITTBIIZENS.eeeeeeee ettt ettt e e be e e s bt e e sabe e e aab e e e nnbeeesnbeeenneeans 249

G 1 01 0= g =T PSPPSR 251

13.1 INtErfaCe ECIAIAIIONSc.eveie et e e e et e e e s e e e et e e s esbe e e e e nnnbeeeeeneees 251
3 I g 1= g = 0= 00 o = RSP 251
T D T] 1 = o =SS 251
13. 1.3 INEITACE DOAY ...t ettt ettt et e e s e e e enn e e e anae e enreeea 252

(I 1 = g = o 0= 010 £ TSR 252
13.2.1 INterfaCe MELNOGSeeii et e et e e e e e e e e e e e e e s be e e e e enaeeeeeannneeeas 253
13.2.2 INtEIfACE PrOPEITIES.eeee ettt e e e e et e e e e e e e e s b e e e e sabaeeesanneeeeeannneeens 253
13.2.3 INLEITACE EVENES. ...ttt e ettt e e s s e e e e s bt e e e e e nbne e e s anbne e e e e nnnneee s 254
(S 1 (= g =0 R [0 (S £ T PP 254
13.2.5 INterfane MEMDEN BCCESSeiiiiiiiiie ettt et e e et e e st e e e anb b e e e e enbee e e s anaeeeeannnneeens 254

13.3 Fully qualified interface MembDEr NBMES..........cooiiiiiie e ee e e e nneees 256

13.4 Interface IMPIEMENTBLIONSooueieiiiie ettt e et e e st e e e sabe e e aab e e e enseeesnneeenneeans 256
13.4.1 Explicit interface member implementationsc.cei i 257
13.4.2 INtEITACE MBPPING ...ttt ettt ettt ettt ettt et e bt e e e be e e e be e e eabeeeanbeeesabeeesnbeeesnseeeanneesbeeeans 259
13.4.3 Interface implementation iINNEMTANCEc.eiiiiii e 261
13.4.4 Interface re-iMPIeMENLAIONcooeii i sae e e s beeeens 263
13.4.5 Abstract classes and INTEITACESuii i e 264

I TS 265

I g TW T g o = o = o) 1RSSR 265

I 0 I 0o o = OSSR 265

TA.3 ENUM MEMDENS....cc ittt ettt et e et e e et e e et e e sabe e e anbe e e snbeeeanbeesnnneeanneeans 266

14.4 ENUM VAUES @ OPEIGLIONSeeviieiiiee e e e ettt e e e e e e s s ee e e e e e s s e st e e e e e e e e s s e sanabaeeeeaaeeessnnnaraneeeaeens 268

ST B = o= =SSR 269

15.1 DEl@QAe AECIAIAIONScoueeeeiiee ettt ettt et e et e s be e e ebe e e s abe e e sabe e e sabeeenabeeennneesnneeans 269
15.1.1 CombiNabl @ AEl@QELE tYPES.c.veeeieiie ittt sitee et ettt sttt e e b e e nabe e e snaeeeneeeen 270

15.2 DEleQate INSLANIBLION.veeeeeiiiiee e et eet e e e e e e e e e e e e et e e e s s e e e esabe e e e s asnaeeeeaneeeaeennnees 270

15.3 MUILFCASE QEIEQALES. ... eeeeieeieeiiie ettt ettt s et e et e et e e et e e ebe e e e sbe e e snbe e e snbeeensseeessneeaneeeans 270

(SR B Tc Lo (=R 01Y/0 o= 1o o PP 270

G (o= o] [0 PRSP 273

16.1 CAlISES Of EXCEPLIONS.veeeieieetteeeteee sttt e st e e st e s ste e e sttt e e bt e e e be e e s abeeesabeeesnbe e e snbeeeanbeeensbeesnnbeesnneeans 273

16.2 The System.EXCePtion ClaSS.........coouiiiiiiiiiiiieeeeeeeee 273

16.3 How exceptionsare handled..............ooeiiiii e 273

16.4 ComMON EXCEPLION ClESSES.......uuiiiiiiiiiieeiiieie e ettt ettt e s et e e e s e e e e sabe e e s ssse e e e e annreeeeenneees 274

N 1 10 -SSP 277

X Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

N L €] 10 (Yo = o =S 277
17.1.1 The Attributeusage atriDULE.uiuiiiiriiiiii bbb rbrbrersrrsrasrrerrrrrres 277
17.1.2 Positional and NamMed ParaMELEIS..........uuieeiiiiiie et e e st steee e s e e s e e e s e e e s snae e e e e nnnneee s 278
17.1.3 AttriDULE ParamMEter TYPES. ... eeeeiiieieeeeiieie e e ettt e e ettt e e e st e e e e sttt e e e s st e e e e snnae e e e aenseeeesennneeeeannnneeens 278

17.2 ATriDULE SPECITICAIION ...ttt e e e e e et e e e s e e e e nbe e e e e esneeeeennnneeeeennnees 279

17.3 AT DULE INSLANCES. ... ettt e e e ettt e e e e e e e et e e e b e s e e e e e eeeaa b b sseesssesas bbb seeesesessssnnas 282
17.3.1 Compilation Of 8N @trTDULE...........cooiuiiiiiiie e 282
17.3.2 Run-time retrieval of an attribULE INSLANCE.uuvvererriiieiiiiiiiiiiririrerrrrrrrrareaereraeaebeerrraererrarrereraaee 282

R R o= S AV o I 1] 010 | (=TT 283
17.4.1 The Attributeusage aMUIE..........vveeiiie e e e e e e e e e e e e eeanes 283
17.4.2 Theconditional @triBULE..........cuuueoiiii e e e e e e e e e aeaaaaas 283
R N a1 Y o] X o N =N Y- 1111 01U (TR RRPPRPR 286

YN 12 1 (oo o [T 287

AL UNSA @ CONEXES....oeteeereteee et e e et eeeett e e e s e e e ettt e st e aeseeeeee e s et s e sseeeeseassaaseeeeessee st s seeesseessstannssrseeseenes 287

F N o o] 1 = Y 0= SRR 288

A.3 Fixed and moveable VariabIES. ... 290

YN N o g1 (= o0 01V £ [0 290

A5 POINTEIS TN EXPIESSIONS ... eeiieeetiieeeeeteieeeastteeeeeasteeeessteeeeeaasseeeeeasseeeesasseeeeaassaeeeeanssseeesasseeesaansneeens 291
YRS N o T4 1= 1o (1= Lo [T 291
A5, 2 POINEEY MEMDET GCCESS ... uue ettt e e e e e e et et e e e e e e e eesab b e s eeeseeeessaanns 291
YR] = o101 (= = L= 11 g LA 0= NS 292
A.5.4 The address-0f OPEIEION..........iiiieieiiie ettt ettt et e e sb e e e sabe e s abneesneeeens 293
A.5.5 Pointer iNCrement N0 0ECIEMENT.uuuuuiiiriiiritiiieiririrrrrr e e aaaerrrarearareerea——e—errrrararaerererererrreree 29
A L6 POINIEN ATNMELICoeeiiiitee e e e e e e e e e e e e s esabbbreeeeeeeeeeenes 294
YT A o g1 = oo 0107 <o) o 1 PPRRRR 294
A 5.8 THE STZEOT OPEIEION.....cci ittt e et e e e e nbe e e s sbne e e e e nnnaeee s 295

AB ThEFIXEA SEAEMENL. ... 295

FANAS 7o - | [o/wr= (1) H T 297

A.8 DYNamiC MEMONY @llOCAIONccoueieiiiieeee ettt ettt ettt e et e e s e e sane e e snne e e snneeennneeennes 298

1= oo 1= =1 o1 L PSPPSR 301

B.1 The COMATTaSNAME GITDULEttt e e e e e et e e e e e e e e e et e s e e sseesaabbb s eesseeessrsaans 301

B.2 The COMIMPOrt aliDULEcoo e e e e e e s e e e e e e e e s s anrraeeeeaaeas 301

B.3 The ComRegisterFunction @trbULEuviiiiiie e e e 302

B.4 The ComSourceInterfaces aITDULEcoiiiiiiiieeeeee ettt e e e e e e s s e e e e e e eeaaaaaas 302

B.5 The comunregisterFunction atribUte.............coooiiiiiiii e 302

B.6 The COMVISTDT@ GHITDULEcvveee ettt ettt e e e e e e e et e e et e e s e e e e eesaabsaasseeeseeesersaaas 302

B.7 ThE DI SPIA @IDULEvvveeeiie ettt e e e e e e et e e e e e e s e e sabb b s e e e e e e e e e e eabbrreeeeeeens 303

B.8 TheDTTIMPOrt aliDULEoeeeeeeeeeeeeeeeeeeeeeeeee e 303

B.OThe FieTdOTfset @triBULE..........oooiviiiiiiieeeeee 304

B.I0 The GUId AMDULE ... 304

B.11 TheHasDefaultInterface ailiDULEoooiiiieiiieee e e e e e e 304

B.12 The ImportedFromTypeLib atribDULEoovvieeeee 305

B.13The In and Out aITDULES.........coooeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 305

B.14 The IndeXerName GITULEoooiiiiiieeeeee ettt e e e e e et et e e e e e e e e e s aeba e s eeseeeeenrsaaas 306

B.15 The InterfaceType @trDULEooiiiiiiiie e e e e e 306

B.16 ThE MarShaTAS GITDULEcvveeeeieeeeeeeeetee e e e e e et e eee e e e e e e e et eeas e s sseeeeeeeaa s ssseeseseesssrraasreeseesessrrnans 306

B.17 The NoIDispatch atribDULEooooiiiiiieieeeeee 306

B.18 The PreserveSig atribUIEoooviiiiiiiii 307

B.19 The StructLayout atlibDULEooooiiiiie 307

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. Xi

C#LANGUAGE SPECIFICATION

B.20 The TypeLibFunc atribDULEooooieiiieeeeeee 307

B.21 The TypeLibType atriDULEoooovieiei 308

B.22 The TypeLibVar atribDULEoooviiie 308

B.23 SUPPOIING ENUIMSeeiiiiiiiiee et et e e e s et e e e s e e e e s e e e e s ansseeeeaanneeeeeeanseeeeeansseeeeaannneeeeennnees 308
O C 1= = g [0SR E R POOPP 311
Xii

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

1. Introduction

C# isasimple, modern, object oriented, and type-safe programming language derived from C and C++. C#
(pronounced “C sharp”) is firmly planted in the C and C++ family tree of languages, and will immediately be
familiar to C and C++ programmers. C# aims to combine the high productivity of Visua Basic and the raw
power of C++.

C# isprovided as part of Microsoft Visua Studio 7.0. In addition to C#, Visua Studio supports Visua Basic,
Visua C++, and the scripting languages VB Script and JScript. All of these languages provide access to the
Microsoft .NET platform, which includes a common execution engine and arich class library. The Microsoft
NET platform defines a“Common Language Subset” (CLS), a sort of lingua franca that ensures seamless
interoperability between CLS-compliant languages and class libraries. For C# devel opers, this means that even
though C# is a new language, it has complete access to the same rich class libraries that are used by seasoned
tools such as Visua Basic and Visual C++. C# itsdlf does not include a classlibrary.

The rest of this chapter describes the essential features of the language. While later chapters describe rules and
exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and brevity at
the expense of completeness. The intent is to provide the reader with an introduction to the language that will
facilitate the writing of early programs and the reading of later chapters.

1.1 Getting started
The canonical “hello, world” program can be written as follows:
using System;

class Hello

static void Main() {
console.wWriteLine("hello, world");

}

The source code for a C# program is typically stored in one or more text files with afile extenson of . cs, asin
hello.cs. Using the command-line compiler provided with Visua Studio, such a program can be compiled
with the command line directive

csc hello.cs

which produces an executable program named hel1o. exe. The output of the program is:
hello, world

Close examination of this program is illuminating:

Theusing system; directive references anamespace called System that is provided by the Microsoft
NET Framework class library. This namespace contains the Console classreferred to in the Main method.
Namespaces provide a hierarchica means of organizing the elements of aclasslibrary. A “using” directive
enables unqualified use of the types that are members of the namespace. The “hello, world” program uses
Cconsole.writeLine asashorthand for System.Console.writeLine.

The main method is amember of the classHe11o0. It hasthe static modifier, and so it is amethod on the
class He11o rather than on instances of this class.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 1

C#LANGUAGE SPECIFICATION

The main entry point for a program—the method that is called to begin execution—is aways a static
method named Main.

The “hello, world” output is produced through the use of a class library. The language does not itself
provide aclasslibrary. Instead, it uses a common class library that is aso used by languages such as Visua
Basic and Visua C++.

For C and C++ developers, it isinteresting to note a few things that do not appear in the “hello, world” program.

The program does not use a global method for Main. Methods and variables are not supported at the global
level; such elements are always contained within type declarations (e.g., class and struct declarations).

The program does not use either “: :” or “->" operators. The“: :” isnot an operator at al, and the “->"
operator is used in only asmall fraction of programs. The separator “.” is used in compound names such as
console.writeLine.

The program does not contain forward declarations. Forward declarations are never needed, as declaration
order is not significant.

The program does not use #1include to import program text. Dependencies among programs are handled
symbolically rather than textualy. This system eliminates barriers between programs written in different
languages. For example, the Console class could be written in another language.

1.2 Types

C# supports two kinds of types: value types and reference types Vaue typesinclude smple types (e.g., char,
int, and float), enum types, and struct types. Reference types include class types, interface types, delegate
types, and array types.

Vaue types differ from reference types in that variables of the vaue types directly contain their data, whereas
variables of the reference types store references to objects. With reference types, it is possible for two variables
to reference the same object, and thus possible for operations on one variable to affect the object referenced by
the other variable. With value types, the variables each have their own copy of the data, and it is not possible for
operations on one to affect the other.

The example
using System;
class Classl

public int value = 0;
}

class Test

static void Main() {
int vall = 0;
int val2 = vall;
val2 = 123;

Classl refl new Classl();
Classl ref2 refl;
ref2.value = 123;

Console.wWriteLine("values: {0}, {1}", vall, val2);
console.writeLine("Refs: {0}, {1}", refl.value, ref2.value);

}
}

shows this difference. The output of the program is

2 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

values: 0, 123
Refs: 123, 123

The assignment to the local variable val1 does not impact the local variable val2 because both local variables
are of avauetype (thetype int) and each local variable of avalue type hasits own storage. In contrast, the
assgnment ref2.value = 123; affectsthe object that both refl and ref2 reference.

Thelines

console.writeLine("values: {0}, {1}", vall, val2);
console.writeLine("Refs: {0}, {1}", refl.value, ref2.value);

deserve further comment, as they demonstrate some of the string formatting behavior of Console.writeLine,
which in fact takes a variable number of arguments. The first argument is a string, which may contain numbered
placeholderslike {0} and {1}. Each placeholder refersto atrailing argument with {0} referring to the second
argument, {1} referring to the third argument, and so on. Before the output is sent to the console, each
placeholder is replaced with the formatted value of its corresponding argument.

Developers can define new value types through enum and struct declarations, and can define new reference
types via class, interface, and delegate declarations. The example

using System;
pubTlic enum Color

{

Red, Blue, Green

ublic struct Point

pubTlic int x, y;

ublic interface IBase

void FQ);

ublic interface IDerived: IBase

void GQO);

ublic class A

AT Y AT Y AT Y AT WY

protected virtual void H(Q) {
console.writeLine("A.H");

}

public class B: A, IDerived

pubTic void FQ {
console.writeLine("B.F, implementation of IDerived.F");

pubTic void GQ) {
Console.writeLine("B.G, implementation of IDerived.G");

override protected void H() {
console.writeLine("B.H, override of A.H");

}
pubTlic delegate void EmptyDelegate();

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 3

C#LANGUAGE SPECIFICATION

shows an example or two for each kind of type declaration. Later sections describe type declarations in greater
detail.

1.2.1 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The predefined reference types are object and string. Thetype object isthe ultimate base type of al other
types. Thetype string isused to represent Unicode string values. Vaues of type string areimmutable.

The predefined value types include signed and unsigned integra types, floating point types, and the types booT,
char, and decimal. The signed integral types are sbyte, short, int, and Tong; the unsigned integra types
are byte, ushort, uint, and ulong; and the floating point types are f1oat and doubTe.

The boo1 typeis used to represent boolean values: values that are either true or false. The inclusion of boo1
makes it easier to write self-documenting code, and also helps eiminate the al-too-common C++ coding error

in which a developer mistakenly uses “=" when “==" should have been used. In C#, the example
int i = .
FC1);
if E; = 0) // Bug: the test should be (i == 0)
GQO;

isinvalid because the expression i = 0 isof type int, and i f statements require an expression of type booT.

The char typeis used to represent Unicode characters. A variable of type char represents a single 16-hit
Unicode character.

The decimal type is appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common examples include financia calculations such as tax computations
and currency conversions. The decimal type provides 28 significant digits.

The table below lists the predefined types, and shows how to write literal values for each of them.

4 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

Type Description Example
object The ultimate base type of al other types object o = null;
string String type; a string is a sequence of Unicode string s = "hello";
characters
sbyte 8-hit signed integral type sbyte val = 12;
short 16-hit signed integral type short val = 12;
int 32-bit signed integral type int val = 12;
long 64-bit signed integral long vall = 12;
g cgra ype long val2 = 34L;
byte 8-hit unsigned integral byte vall = 12;
g cgral ype byte val2 = 34u;
ushort | 16-bit unsigned integral type ushort vall = 12;
ushort val2 = 34u;
uint 32-hit unsigned integrdl t uint vall = 12;
9 egra ype uint val2 = 34u;
ulong 64-bit unsigned integra type ulong vall = 12;
ulong val2 = 34uU;
ulong val3 = 56L;
ulong val4 = 78UL;
float Single-precision floating point type float val = 1.23F;
double | Double-precision floating point type double vall = 1.23;
double val2 = 4.56D;
bool Boolean type; aboo1 valueis either true or fase bool vall = true;
bool val2 = false;
char Character type; achar valueisaUnicode character | char val = 'h';
decimal | Precise decimal type with 28 significant digits decimal val = 1.23Mm;

Each of the predefined types is shorthand for a system-provided type. For example, the keyword int refersto
the struct system.Int32. Asamatter of style, use of the keyword is favored over use of the complete system

type name.

Predefined value types such as int are treated specialy in afew ways but are for the most part treated exactly
like other structs. Operator overloading enables devel opers to define new struct types that behave much like the
predefined value types. For instance, aD1igi t struct can support the same mathematical operations as the
predefined integral types, and can define conversions between D1git and predefined types.

The predefined types employ operator overloading themselves. For example, the comparison operators == and
I = have different semantics for different predefined types:

Two expressions of type int are considered equal if they represent the same integer value.

Two expressions of type object are considered equa if both refer to the same object, or if both are nu11.

Two expressions of type string are considered equal if the string instances have identical lengths and

identical characters in each character position, or if both arenu11.

The example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

C#LANGUAGE SPECIFICATION

class Test

static void Main() {
string s = "Test";
string t = string.Copy(s);
console.WriteLine(s == t);
Console.writeLine((object)s == (object)t);

}
produces the output

True

False
because the first comparison compares two expressions of type string, and the second comparison compares
two expressions of type object.

1.2.2 Conversions

The predefined types also have predefined conversions. For instance, conversions exist between the predefined
types int and Tong. C# differentiates between two kinds of conversions. implicit conversions and explicit
conversions. Implicit conversions are supplied for conversions that can safely be performed without careful
scrutiny. For instance, the conversion from int to Tong is an implicit conversion. This conversion aways
succeeds, and never resultsin aloss of information. Implicit conversions can be performed implicitly, as shown
in the example

using System;
class Test

static void Main() {
int intvalue = 123;
Tong longvalue = intvalue;
console.writeLine("{0}, {1}", intvalue, Tongvalue);

}
}

which implicitly convertsan int toa Tong.

In contrast, explicit conversions are performed with a cast expression. The example
using System;
class Test

{
static void Main() {
Tong longvalue = Int64.Maxvalue;
int intvalue = (int) longvalue;
Cconsole.writeLine("(int) {0} = {1}", Tongvalue, intvalue);
ks

uses an explicit conversion to convert a Tong to an int. The output is:
(int) 9223372036854775807 = -1
because an overflow occurs. Cast expressions permit the use of both implicit and explicit conversions.

1.2.3 Array types
Arrays may be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are supported.

Single-dimensional arrays are the most common type, so thisis a good starting point. The example

using System;

6 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

class Test

static void Main() {
int[] arr = new int[5];

for (int i = 0; i < arr.Length; i++)
arr[i] =1 * 1i;

for (int i = 0; i < arr.Length; i++)
Console.writeLine("arr[{0}] = {1}", i, arr[il);

}
}

crestesasingle-dimensiona array of int values, initidizes the array e ements, and then prints each of them out.
The program output is:

arr[0] =0
arr[l] =1
arr[2] = 4
arr[3] =9
arr[4] = 16

Thetypeint[] usedin the previous example is an array type. Array types are written using a non-array-type
followed by one or more rank specifiers. The example

class Test

{
static void Main() {
int[] al; // single-dimensional array of 1int
int[,] a2; // 2-dimensional array of int
int[,,] a3; // 3-dimensional array of 1int
int[][] j2; // "jagged" array: array of (array of int)
) int[J[1[] 33; // array of (array of (array of 1int))
}

shows avariety of local variable declarations that use array typeswith int asthe element type.

Array types are reference types, and so the declaration of an array variable merely sets aside space for the

reference to the array. Array instances are actualy created via array initializers and array creation expressions.
The example

class Test

{
static void Main() {
int[] al = new int[] {1, 2, 3};
int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
int[,,] a3 = new int[10, 20, 30];
int[]J[] j2 = new int[3][];
j2[0] = new int[] {1, 2, 3};
j2[1] = new int[] {1, 2, 3, 4, 5, 6};
j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};
}
}

shows avariety of array creation expressions. The variables al, a2 and a3 denote rectangular arrays, and the
variable j2 denotes a jagged array. It should be no surprise that these terms are based on the shapes of the
arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the array, its
rectangular shape is clear. For example, the length of a3’s three dimensions are 10, 20, and 30 respectively, and
it is easy to see that this array contains 10*20*30 elements.

In contrast, the variable j2 denotes a“jagged” array, or an “array of arrays’. Specifically, j2 denotes an array of
an array of int, or asingle-dimensional array of typeint[]. Each of these int[] variables can beinitidized

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 7

C#LANGUAGE SPECIFICATION

individualy, and this alows the array to take on ajagged shape. The example gives each of theint[] arraysa
different length. Specifically, the length of j2[0] is 3, thelength of j2[1] is 6, and thelength of j2[2] is9.

The element type and shape of an array—including whether it is jagged or rectangular, and the number of
dimensions it has—are part of its type. On the other hand, the size of the array—as represented by the length of
each of its dimensions—is not part of an array’s type. This split is made clear in the language syntax, as the
length of each dimension is specified in the array creation expression rather than in the array type. For instance
the declaration

int[,,] a3 = new int[10, 20, 30];
has an array type of int[,,] and an array creation expression of new int[10, 20, 30].

For locdl variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state the
array type. For instance, the example

int[] al = new 1int[] {1, 2, 3};
can be shortened to

int[] al = {1, 2, 3};
without any change in program semantics.

The context in which an array initidlizer suchas {1, 2, 3} isused determines the type of the array being
initialized. The example

class Test

static void Main() {
short[] a = {1, 2, 3};
int[]l] b = {1, 2, 3};
long[] c = {1, 2, 3};

shows that the same array initializer syntax can be used for several different array types. Because context is
required to determine the type of an array initidizer, it is not possible to use an array initiaizer in an expression
context.

1.2.4 Type system unification

C# provides a“ unified type system”. All types—including value types—derive from the type object. It is
possible to call object methods on any value, even values of “primitive” types such as int. The example
using System;
class Test

{
static void Main() {
console.writeLine(3.ToString());

}
}

callsthe object-defined Tostring method on an integer literal.
The example

8 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

class Test

static void Main() {
int i = 123;
object o = 1; // boxing
int j = (int) o; // unboxing

}

ismoreinteresting. An int value can be converted to object and back again to int. This example shows both
boxing and unboxing. When avariable of a value type needs to be converted to a reference type, an object box
is alocated to hold the value, and the value is copied into the box. Unboxing isjust the opposite. When an
object box is cast back to its original value type, the valueis copied out of the box and into the appropriate
storage location.

This type system unification provides value types with the benefits of object-ness without introducing
unnecessary overhead. For programs that don't need int valuesto act like objects, int vaues are smply 32-bit
values. For programs that need int vauesto behave like objects, this capability is available on demand. This
ability to treat value types as objects bridges the gap between value types and reference types that exists in most
languages. For example, a stack class can provide Push and Pop methods that take and return object values.

pubTic class Stack

public object Pop() {.}

pubTlic void Push(object o) {.}
ks

Because C# has a unified type system, the stack class can be used with elements of any type, including value
typeslikeint.

1.3 Variables and parameters

Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. Local variables are variables that are declared in methods, properties, or indexers. A local variableis
usually defined by specifying a type name and a declarator that specifies the variable name and an optional
initial value, asin:

int a;
int b = 1;

but it is also possible for alocal variable declaration to include multiple declarators. The declarations of a and b
can be rewritten as.

int a, b = 1;
A variable must be assigned before its value can be obtained. The example

class Test

{
static void Main() {
int a;
int b = 1;
int ¢ = a + b;
ks
}

isinvalid because it attempts to use the variable a before it is assigned a value. The rules governing definite
assgnment are defined in 85.3.

A fidd (810.4) isavariable that is associated with a class or struct, or an instance of a class or struct. A field
declared with the static modifier defines a static variable, and a field declared without this modifier defines

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 9

C#LANGUAGE SPECIFICATION

an instancevariable. A satic field associated with atype, whereas an instance variable is associated with an
instance. The example

using System.Data;
class Employee

private static DataSet ds;

public string Name;
pubTlic decimal salary;

}
shows an EmpToyee classthat has a private static variable and two public instance variables.

Formal parameter declarations aso define variables. There are four kinds of parameters: value parameters,
reference parameters, output parameters, and parameter arrays.

A value parameter isused for “in” parameter passing, in which the vaue of an argument is passed into a
method, and modifications of the parameter do not impact the original argument. A value parameter refersto its
own variable, one that is distinct from the variable of the corresponding argument. This variable is initidized by
copying the vaue of the corresponding argument. The example

using System;

class Test {
static void F(int p) {
console.writeLine("p = {0}", p);
p++;

static void Main() {

int a = 1;

console.writeLine("pre: a = {0}", a);
F(a);

Console.writeLine("post: a = {0}", a);

}
}

shows amethod F that has a value parameter named p. The example produces the output:
pre: a =1
p=1
post: a =1
even though the value parameter p is modified.
A reference parameter is used for “by reference” parameter passing, in which the parameter acts as an adiasfor
acaller-provided argument. A reference parameter does not itself define avariable, but rather refersto the

variable of the corresponding argument. Modifications of a reference parameter directly and immediately impact
the corresponding argument. A reference parameter is declared with a ref modifier. The example

using System;

class Test {
static void Swap(ref int a, ref int b) {

int t = a;
a =b;
b = t;

}

10 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

static void Main() {
int x 1;
int y 2;

console.writeLine("pre: x = {0}, y = {1}", x, y);
swap(ref x, ref y);
) console.writeLine("post: x = {0}, y = {1}", X, y);
}

shows a swap method that has two reference parameters. The output of the program is.

pre: x =1, y =2

post: x =2, y=1
The ref keyword must be used in both the declaration of the formal parameter and in uses of it. The use of ref
at the call site calls specia attention to the parameter so that a developer reading the code will understand that
the argument could change as a result of the call.

An output parameter issimilar to areference parameter, except that the initial value of the caller-provided
argument is unimportant. An output parameter is declared with an out modifier. The example

using System;

class Test {
static void Divide(int a, int b, out int result, out int remainder) {
result = a / b;
remainder = a % b;
}
static void Main() {
for (int i = 1; i < 10; i++)
for (int j = 1; j < 10; j++) {
int ans, r;
Divide(i, j, out ans, out r);
Cconsole.writeLine("{0} / {1} = {2}r{3}", i, j, ans, r);

}
}

shows a Divide method that includes two output parameters—one for the result of the division and another for
the remainder.

For value, reference, and output parameters, there is a one-to-one correspondence between caller-provided
arguments and the parameters used to represent them. A parameter array enables a many-to-one relationship:
many arguments can be represented by a single parameter array. In other words, parameter arrays enable
variable length argument lists.

A parameter array is declared with aparams modifier. There can be only one parameter array for agiven
method, and it is always the |last parameter specified. The type of a parameter array is dways asingle
dimensiona array type. A caller can either pass a single argument of this array type, or any number of
arguments of the element type of this array type. For instance, the example

using System;
class Test

static void F(params int[] args) {
console.writeLine("# of arguments: {0}", args.Length);
for (int i = 0; i < args.Length; i++)
Console.writeLine("\targs[{0}] = {1}", i, args[il);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 11

C#LANGUAGE SPECIFICATION

static void Main() {
FQO;

F(1, 2, 3),
) F(new int[] {1, 2, 3, 4});
}

shows amethod F that takes a variable number of int arguments, and severa invocations of this method. The
output is:

of arguments: 0O
of arguments: 1

args[0] =1

of arguments: 2
args[0] =1
args[1] = 2

of arguments: 3
args[0] =1
args[1] = 2
args[2] = 3

of arguments: 4
args[0] =1
args[1l] = 2
args[2] = 3
args[3] = 4

Most of the examples presented in this introduction use the wri teLine method of the Console class. The
argument substitution behavior of this method, as exhibited in the example

inta=1, b =
console. Wr1teL1ne(= {0}, b = {1}", a, b);

is accomplished using a parameter array. Thewri teLine method provides severa overloaded methods for the
common cases in which asmall number of arguments are passed, and one method that uses a parameter array.

namespace System

public class Console

{

public static void writeLine(string s) {.}
public static void writeLine(string s, object a) {.}
public static void writeLine(string s, object a, object b) {.}

pubTlic static void writeLine(string s, params object[] args) {..}

}
}

1.4 Automatic memory management

Manual memory management requires developers to manage the allocation and de-alocation of blocks of
memory. Manua memory management is both time consuming and difficult. In C#, automatic memory
management is provided so that developers are freed from this burdensome task. In the vast majority of cases,
automatic memory management increases code quality and enhances developer productivity without negatively
impacting either expressiveness or performance.

The example

using System;

12 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

public class Stack

private Node first = null;
public bool Empty {
get {
return (first == null);

}

pubTlic object Pop() {
if (first == null)
throw new Exception("Can't Pop from an empty Stack.");
else {
object temp = first.value;
first = first.Next;
return temp;

}

public void Push(object o) {
first = new Node(o, first);

class Node

pubTic Node Next;
pubTlic object value;
pubTic Node(object value): this(value, null) {}

pubTic Node(object value, Node next) {
Next = next;
value = value;

}
}
shows a stack classimplemented as alinked list of Node instances. Node instances are created in the Push
method and are garbage collected when no longer needed. A Node instance becomes digible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed from
the stack, the associated Node instance becomes eligible for garbage collection.

The example
class Test

static void Main() {
Stack s = new Stack();
for (int i = 0; i < 10; i++)
s.Push(i);
s = null;
}
}
shows atest program that usesthe stack class. A stack is created and initialized with 10 elements, and then
assigned the value nu11. Once the variable s is assigned null, the stack and the associated 10 Node instances
become eligible for garbage collection. The garbage collector is permitted to clean up immediately, but is not
required to do so.

The garbage collector underlying C# works by moving objects around in memory, but this motion isinvisible to
most C# developers. For developers who are generally content with automatic memory management but
sometimes need fine-grained control or that extraiota of performance, C# provides the ability to write “ unsafe”

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 13

C#LANGUAGE SPECIFICATION

code. Such code can dedl directly with pointer types and object addresses, C# requires the programmer to fix
objects to temporarily prevent the garbage collector from moving them.

This*“unsafe” code featureisin fact a*“safe” feature from the perspective of both developers and users. Unsafe
code must be clearly marked in the code with the modifier unsafe, so developers can't possibly use unsafe
language features accidentally, and the compiler and the execution engine work together to ensure that unsafe
code cannot masquerade as safe code. These restrictions limit the use of unsafe code to situations in which the
code is trusted.

The example

using System;
class Test

{
unsafe static void WriteLocations(byte[] arr) {
fixed (byte *p_arr = arr) {
byte *p_elem = p_arr;
for (int i = 0; i < arr.Length; i++) {
byte value = *p_elem;
string addr = int. Format((1nt) p_elem, "X");
Console.writeLine("arr[{0}] at Ox{1} 1is {2}", i, addr, value);
p_elem++;
}
}
}
static void Main() {
byte[] arr = new byte[] {1, 2, 3, 4, 5};
writeLocations(arr);
}
}

shows an unsafe method named wri teLocations that fixes an array instance and uses pointer manipulation to

iterate over the elements. The index, value, and location of each array element iswritten to the console. One

possible output of the program is:
arr[0] at Ox8E0360 is
arr[1] at Ox8E0361 is
arr[2] at Ox8E0362 is

arr[3] at Ox8E0363 is
arr[4] at Ox8E0364 is

but of course the exact memory locations may be different in different executions of the program.

VA WNER

1.5 Expressions

C# includes unary operators, binary operators, and one ternary operator. The following table summarizes the
operators, listing them in order of precedence from highest to lowest:

14 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

Section | Category Operators

75 Primary (x) x.y f(x) a[x] x++ x-- new
typeof sizeof checked unchecked

7.6 Unary + - I~ ++x --x (Mx

7.7 Multiplicative /%

1.7 Additive + -

0 Shift << >>

79 Relational < > <= >= s

79 Equality = I=

7.10 Logical AND &

7.10 Logica XOR A

7.10 Logica OR I

711 Conditional AND | &&

711 Conditiona OR |

7.12 Conditional ?:

713 Assignment = ¥= /= %= += -= <<= >>= &= A= |=

When an expression contains multiple operators, the precedence of the operators controls the order in which the
individual operators are evaluated. For example, the expression x + y * z isevaluated as x + (y * z) because
the * operator has higher precedence than the + operator.

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

Except for the assignment operators, al binary operators are |eft-associative, meaning that operations are
performed from left to right. For example, x + y + z isevauated as (x + y) + z.

The assignment operators and the conditional operator (? :) are right-associative, meaning that operations
are performed from right to left. For example, x =y = z isevaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z
and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

1.6 Statements

C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications. The table below lists the kinds of statements that can be used, and provides an example for each.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

15

C#LANGUAGE SPECIFICATION

16

Statement Example
Statement lists and block statlc(:)_/oid Main() {
statements G();
{
HO;
10;
3
3
Labeled statementsand goto | static void Main(string[] args) {
statements if (args.Length == 0)
goto done:
Console.wWriteLine(args.Length);
done:

console.wWriteLine("Done");

Local constant declarations

static void Main() {
const float pi = 3.14;
const int r = 123;
Console.writeLine(pi * r * r);

}
Local variable declarations Statictvoid Main() {
int a;
int b =2, c = 3;
a =1;
console.writeLine(a + b + c);
}

Expression statements

static int F(int a, int b) {
return a + b;
}

static void Main() {
F(1, 2); // Expression statement
}

if statements

static void Main(string[] args) {
if (args.Length == 0)
Console.writeLine("No args");
else
console.writeLine("Args");

}

switch statements

static void Main(string[] args) {
switch (args.Length) {

case O:
Console.WriteLine("No args");
break;

case 1:
Console.writeLine("One arg ");
break;

default:
int n = args.Length;
console.writeLine("{0} args", n);

break;
}
3
while statements static void Main(string[] args) {
int i = 0;

while (i < args.length) {
console.WriteLine(args[il);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

T++;
3
3
do statements static void Main() {
string s;
do { s = console.ReadLine(); }
while (s != "Exit");

for statements

static void Main(string[] args) {
for (int i = 0; i < args.length; i++)
Console.writeLine(args[il);

}

foreach statements

static void Main(string[] args) {
foreach (string s in args)
Console.writeLine(s);

}
break statements static void Main(string[] args) {
int i = 0;
while (true) {
if (i > args.Length)
break;
console.wWriteLine(args[i++]);
3
continue Statements static void Main(string[] args) {
int i = 0;
while (true) {
console.writeLine(args[i++]);
if (i > args.Length)
continue;
break;
3

return statements

static int F(int a, int b) {
return a + b;
}

static void Main() {
console.writeLine(F(1, 2));
return;

throw satementsand try
statements

static int F(int a, int b) {
if (b == 0)
throw new Exception('"Divide by zero");
return a / b;

3
static void Main() {
try {
) console.writeLine(F(5, 0));
catch(Exception e) {
console.writeLine("Error");
3

checked and unchecked
statements

static void Main() {
int x = 100000, y = 100000;
Console.writeLine(unchecked(x * y));

console.writeLine(checked(x * y)); // Error
console.WriteLine(x * y); // Error

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

17

C#LANGUAGE SPECIFICATION

B
Tock statements static void Main() {
A a = ..
Tock(a) {
a.P = a.P + 1;
3
}

using statements using System;

class Resource: IDisposable

public void FQ {

}

public void Dispose() {..}

static void Main() {
using(Resource r

Console.writeLine("Resource.F");

new Resource()) {
r.FQ;

1.7 Classes

Class declarations define new reference types. A class can inherit from another class, and can implement

interfaces.

Class members can include constants, fields, methods, properties, indexers, events, operators, constructors,
destructors, and nested type declarations. Each member has an associated accessibility, which controls the
regions of program text that are able to access the member. There are five possible forms of accessibility. These

are summarized in the table below.

Form I ntuitive meaning
pubTic Access not limited
protected Access limited to the containing class or types derived from the containing class
internal Access limited to this program
p rgtecta?d Access limited to this program or types derived from the containing class
Tnterna
private Access limited to the containing type
The example

using System;
class MycClass

pubTic MyClass() {

console.WriteLine("Constructor");

18

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

public MyClass(int value) {
MyField = value;
console.WriteLine("Constructor");

~MyClass() {
console.WriteLine("Destructor");

public const int MyConst = 12;
pubTlic int MyField = 34;

public void MyMethod(){
console.writeLine("MyClass.MyMethod");

3
public int MyProperty {
get {
return MyField;
set {
MyField = value;
}
pubTlic int this[int index] {
get {
return O;
3
set {
console.wWriteLine("this[{0}] = {1}", index, value);
3
3

public event EventHandler MyEvent;

pubTic static MyClass operator+(MyClass a, MyClass b) {
return new MyClass(a.MyField + b.MyField);

internal class MyNestedClass

}
shows a class that contains each kind of member. The example

class Test

static void Main() {
// Constructor usage
MyClass a = new MyClass();
MyClass b new MyClass(123);

// Constant usage
console.wWriteLine("MyConst = {0}", MyClass.MyConst);

// Field usage
a.MyField++;
Console.writeLine("a.MyField = {0}", a.MyField);

// Method usage
a.MyMethod();

// Property usage
a.MyProperty++;
Console.writeLine("a.MyProperty = {0}", a.MyProperty);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 19

C#LANGUAGE SPECIFICATION

// Indexer usage
a[3] = a[l1] = a[2];
console.writeLine("a[3] = {0}", a[3]);

// Event usage
a.MyEvent += new EventHandler(MyHandler);

// Ooverloaded operator usage
MyClass ¢ = a + b;

}

static void MyHandler(object sender, EventArgs e) {
Cconsole.wWriteLine("Test.MyHandler");

internal class MyNestedClass

}
shows uses of these members.

1.7.1 Constants

A constant is a class member that represents a constant value: avalue that can be computed at compile-time.
Congtants are permitted to depend on other constants within the same program as long as there are no circular
dependencies. The rules governing constant expressions are defined in constant expression §7.15. The example

class Constants

public const int A
public const int B

1;
A+ 1;

shows aclass named Constants that has two public constants.

Even though constants are considered static members, a constant declaration neither requires nor allows a
static modifier. Constants can be accessed through the class, asin

class Test

{
static void Main() {
Cconsole.writeLine("{0}, {1}", Constants.A, Constants.B);
}

}
which prints out the values of Constants.A and Constants.B.

1.7.2 Fields
A fidd is amember that represents a variable associated with an object or class. The example
class Color

internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;

pubTic color(ushort red, ushort blue, ushort green) {
redPart = red;
bluePart = blue;
greenPart = green;

20 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

shows a color class that hasinterna instance fields named redpPart, greenpPart, and bluePart. Fields can
also be dtatic, as shown in the example

class color

pubTic static Color Red = new Color(OxFF, 0, 0);

public static Color Blue = new Color(0, OxFF, 0);

public static Color Green new Color(0, 0, OXFF);
pubTic static Color Wwhite new Color(OxFF, OXFF, OXFF);

}
which shows stetic fields for Red, BTue, Green, and whi te.

Static fields are not a perfect match for this scenario. The fields are initialized at some point before they are
used, but after this initialization there is nothing to stop a client from changing them. Such a modification could
cause unpredictable errors in other programs that use Color and assume that the values do not change.
Readonly fields can be used to prevent such problems. Assignments to areadonly field can only occur as part of
the declaration, or in a constructor in the same class. Thus, the Color class can be enhanced by adding the
readonly modifier for the static fields:

class color

{
internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;
pubTlic color(ushort red, ushort blue, ushort green) {
redPart = red;
bluePart = blue;
greenPart = green;
public static readonly Color Red = new Color(OxFF, 0, 0);
public static readonly Color Blue = new Color(0, OxFF, 0);
public static readonly Color Green = new Color(0, 0, OXFF);
) public static readonly Color white = new Color(OxFF, OxFF, OXFF);

1.7.3 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods have alist of forma parameters (which may be empty), areturn value (or void), and are either static
or non-static. Static methods are accessed through the class. Non-static methods, which are dso caled instance
methods, are accessed through instances of the class. The example

using System;

pubTic class Stack
public static Stack Clone(Stack s) {..}
pubTlic static Stack Flip(stack s) {..}
pubTic object Pop() {..}
public void Push(object o) {..}
pubTlic override string ToString() {..}

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 21

C#LANGUAGE SPECIFICATION

class Test

static void Main() {
Stack s = new Stack();
for (int i =1; i < 10; i++)
s.Push(i);

Stack flipped = Stack.Flip(s);
Stack cloned = stack.Clone(s);

console.writeLine("original stack: " + s.ToString());
console.WriteLine("Flipped stack: " + flipped.ToString());
Console.writeLine("Cloned stack: " + cloned.ToString());

}
3
shows a stack that has severd static methods (C1one and F11p) and severa instance methods (Push, Pop,
and Tostring).

Methods can be overloaded, which means that multiple methods may have the same name so long as they have
unique signatures. The signature of a method consists of the name of the method and the number, modifiers, and
types of its formal parameters. The signature of a method specifically does not include the return type. The
example

class Test

static void FQO {
console.writeLine("FQO");

static void F(object o) {
Cconsole.writeLine("F(object)");

static void F(int value) {
console.writeLine("F(int)");

static void F(int a, int b) {
console.writeLine("F(int, int)");

static void F(int[] values) {
console.writeLine("F(int[])");

static void Main() {

FQO;

F(L);
F((object)1);
F(1, 2);
! F(new int[] {1, 2, 3});
}

shows a class with a number of F methods. The output of the program is

FQ

F(int)
F(object)
F(int, int)
F(int[])

22 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

1.7.4 Properties

A property isamember that provides access to an attribute of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields. Both are named members with associated types, and the syntax for
accessing fields and propertiesis the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to execute in order to read or write their values.

Properties are defined with property declarations. The first part of a property declaration looks quite smilar to a
field declaration. The second part includes a get accessor and/or a set accessor. In the example below, the

Button classdefinesa caption property.

pubTlic class Button

private string caption;

public string Caption {
get {
return caption;

set {
caption = value;
Repaint();

}
}

Properties that can be both read and written, like the caption property, include both get and set accessors. The
get accessor is called when the property’ s value is read; the set accessor is called when the property’ svalueis
written. In a set accessor, the new value for the property is given in an implicit parameter named value.

Declaration of propertiesisreatively straightforward, but the true value of properties shows itself in use rather
than in declaration. The Caption property can be read and written in the same way that fields can be read and
written:

Button b = new Button();

b.Ccaption = "ABC"; // set; causes repaint
string s = b.Caption; // get

b.Caption += "DEF”; // get & set; causes repaint

1.7.5 Events

An event is amember that enables an object or class to provide natifications. A class defines an event by
providing an event declaration, which resembles afield declaration, though with an added event keyword, and
an optional set of event accessors. The type of this declaration must be a delegate type.

In the example
pubTlic delegate void EventHandler(object sender, System.EventArgs e);
public class Button
public event EventHandler Click;

pubTlic void Reset() {
Click = null;

}

the Button class definesa c11ck event of type EventHandler. Inside the Button class, the 11 ck member
corresponds exactly to a private field of type EventHand1er. However, outside the Button class, the c1ick

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 23

C#LANGUAGE SPECIFICATION

member can only be used on the left hand side of the += and -= operators. The += operator adds a handler for
the event, and the -= operator removes an handler for the event. The example

using System;
public class Forml

public Forml() {
// Add Buttonl_Click as an event handler for Buttonl’s Click event
Buttonl.Click += new EventHandler(Buttonl_cClick);

}
Button Buttonl = new Button();

void Buttonl_click(object sender, EventArgs e) {
console.writeLine("Buttonl was clicked!");

pubTic void Disconnect() {
Buttonl.Click -= new EventHandler(Buttonl_cClick);

}

shows a Form1l class that adds Buttonl_cC11ck asan event handler for Buttonl's C11ck event. In the
Disconnect method, the event handler is removed.

For a smple event declaration such as
pubTlic event EventHandler Click;
the compiler automatically provides the implementation underlying the += and -= operators.

An implementer who wants more control can do so by explicitly providing add and remove accessors. The
Button class could be rewritten to include add and remove accessors as follows:

pubTlic class Button

¢ private EventHandler handler;
pubTlic event EventHandler Click {
add { handler += value; }
remove { handler -= value; }
}

This change has no effect on client code, but allows the Button class more implementation flexibility. For
example, the event handler for c11 ck need not be represented by afield.

1.7.6 Operators

An operator isamember that defines the meaning of an expression operator that can be applied to instances of
the class. There are three kinds of operators that can be defined: unary operators, binary operators, and
conversion operators.

The following examples defines abigi t type that represents decimal digits—integral values between 0 and 9.
using System;
pubTic struct Digit

byte value;

pubTlic Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

}

24 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

public Digit(int value): this((byte) value) {}

pubTic static implicit operator byte(Digit d) {
return d.value;

pubTic static explicit operator Digit(byte b) {
return new Digit(b);

public static Digit operator+(Digit a, Digit b) {
return new Digit(a.value + b.value);

public static Digit operator-(Digit a, Digit b) {
return new Digit(a.value - b.value);

pubTlic static bool operator==(Digit a, Digit b) {
return a.value == b.value;

pubTlic static bool operator!=(Digit a, Digit b) {
return a.value != b.value;

pubTic override bool Equals(object value) {
return this == (Digit) value;

pubTlic override int GetHashCode() {
return value.GetHashCode();

pubTlic override string ToString() {
return value.ToString(Q);

}

class Test

static void Main() {
Digit a = (Digit) 5;
Digit b = (pigit) 3;
Digit plus = a + b;

Digit minus = a - b

bool equals = (a == b);

console. Wr1teL1ne("{0} + {1} = {21}" a, b, plus);
console.writeLine("{0} - {1} = {2®" b, minus);
console.writeLine("{0} 1} = {2} , a, b, equals);

}
}

The D1 g1 t type defines the following operators:
An implicit conversion operator from Digit to byte.
An explicit conversion operator from byte to Digit.
An addition operator that adds two Digit values and returnsapigit vaue.

A subtraction operator that subtracts one b1 g1t vaue from another, and returnsa pigi t value.

The equality (==) and inequdlity (!=) operators, which compare two D1ig1it vaues.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

25

C#LANGUAGE SPECIFICATION

1.7.7 Indexers

Anindexer isamember that enables an object to be indexed in the same way as an array. Whereas properties
enable field-like access, indexers enable array-like access.

As an example, consider the stack class presented earlier. This class might want to expose array-like access so
that it is possible to inspect or dter the items on the stack without performing unnecessary Push and Pop
operations. The stack isimplemented as a linked list, but wants to provide the convenience of array access.

Indexer declarations are similar to property declarations, with the main differences being that indexers are
nameless (the “name”’ used in the declaration is this, since this is being indexed) and that indexers include
indexing parameters. The indexing parameters are provided between square brackets. The example

using System;
public class Stack

{
private Node GetNode(int index) {
Node temp = first;
while (index > 0) {
temp = temp.Next;
index--;
ks

return temp;

pubTic object this[int index] {
get {
if (!validindex(index))
] throw new Exception("Index out of range.™);
else
return GetNode(index) .value;

}

set {
if (!validindex(index))
] throw new Exception("Index out of range.™);
else
GetNode(index).value = value;

}

class Test

static void Main() {
Stack s = new Stack();

s.Push(1);

s.Push(2);

s.Push(3);

s[0] = 33; // Changes the top item from 3 to 33
s[1] = 22; // Changes the middle item from 2 to 22
s[2] = 11; // changes the bottom item from 1 to 11

}
}

shows an indexer for the stack class.

1.7.8 Instance constructors
An instance constructor is amember that implements the actions required to initialize an instance of a class.

26 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

The example
using System;
class Point

pubTlic double x, y;

public Point() {
this.x 0;
this.y 0;

pubTic Point(double x, double y) {
this.x X;
this.y y,

}

public static double Distance(Point a, Point b) {
double xdiff = a X - b.x;
double ydiff = a.y - b.y
return Math. Sqrt(xd1ff ‘ "xdiff + ydiff * ydiff);

pubTlic override string ToString()
return string.Format(" ({0}, {1}

{
)"y X, y);,

}

class Test

static void Main() {
Point a new Point();
Point b new Point(3, 4);
double d = Point.Distance(a, b);
console.writeLine("Distance from {0} to {1} is {2}", a, b, d);

}
}

shows a Point class that provides two public constructors. One Point constructor takes no arguments, and the
other takestwo doub1e arguments.

If no constructor is supplied for a class, then an empty constructor with no parameters is automatically provided.

1.7.9 Destructors
A destructor isamember that implements the actions required to destruct an instance of a class. Destructors
cannot take parameters, cannot have accessibility modifiers, and cannot be called explicitly. The destructor for
an instance is called automatically during garbage callection.
The example
using System;
class Point
public double x, y;
pubTic Point(double x, double y) {

this.x = x;
this.y = y;
~Point() {

console.writeLine("Destructed {0}", this);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 27

C#LANGUAGE SPECIFICATION

pubTic override string ToString()
return string.Format(" ({0}, {1}
3

{
' X, Y)
}

shows a Point class with a destructor.

1.7.10 Static constructors

A static constructor isamember that implements the actions required to initialize a class. Static constructors
cannot take parameters, cannot have accessibility modifiers, and cannot be called explicitly. The static
congtructor for aclassis called automatically when the classis |oaded.

The example

using System.Data;
class Employee

private static DataSet ds;

static Employee() {
ds = new DataSet(..);
}

pubTic string Name;
public decimal salary;

}
shows an Employee class with a static constructor that initializes a satic field.

1.7.11 Inheritance
Classes support single inheritance, and the type object is the ultimate base class for al classes.

The classes shown in earlier examples al implicitly derive from object. The example
class A

pubTic void F() { console.writeLine("A.F"); }

shows aclass A that implicitly derives from object. The example
class B: A

public void G() { Console.writeLine("B.G"); }

class Test

{
static void Main() {
B b =new BQ;
b.FQ); // Inherited from A
b.GQO; // Introduced in B
A a = b; // Treat a B as an A
a.FQ;
}
}

shows aclass B that derives from A. The class B inheritsA’s F method, and introduces a G method of its own.

28 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

Methods, properties, and indexers can be virtual, which means that their implementation can be overridden in
derived classes. The example

using System;
class A

public virtual void FO { Console.writeLine("A.F"); }

class B: A

public override void F(O) {
base.F();
console.writeLine("B.F");

}

class Test

static void Main() {
B b =new BQ;
b.FQO;

A a = b;
a.FQ;
b
}

shows a class A with avirtua method F, and a class B that overrides F. The overriding method in B contains a
cdl base.F() which calsthe overridden method in A.

A class can indicate that it is incomplete, and is intended only as a base class for other classes by including the
abstract modifier. Such aclassis caled an abstract class. An abstract class can specify abstract members—
members that a non-abstract derived class must implement. The example

using System;

abstract class A

public abstract FQ);

class B: A

public override F() { Console.writeLine("B.F"); }

class Test

static void Main() {
B b =new BQ;
B.FO;
A a = b;
a.FQ;
}
}

introduces an abstract method F in the abstract class A. The non-abstract class B provides an implementation for
this method.

1.8 Structs

Thelist of similarities between classes and structs is long—structs can implement interfaces, and can have the
same kinds of members as classes. Structs differ from classesin severa important ways, however: structs are

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 29

C#LANGUAGE SPECIFICATION

value types rather than reference types, and inheritance is not supported for structs. Struct values are stored
either “on the stack” or “in-ling”. Careful programmers can sometimes enhance performance through judicious
use of structs.

For example, the use of a struct rather than aclassfor a Point can make alarge difference in the number of
memory allocations performed by a program. The program below creates and initializes an array of 100 points.
With point implemented as a class, the program instantiates 101 separate objects—one for the array and one
each for the 100 elements.

class Point

public int x, y;

public Point(int x, int y) {
this.x X;
this.y Y;

}

class Test

static void Main() {
Point[] points = new Point[100];
for (int i = 0; i < 100; i++)
points[i] = new Point(i, i*i);
}
}

If Point isinstead implemented as a struct, as in

struct Point

public int x, y;

pubTic Point(int x, int y) {
this.x X;
this.y Y;

}

then the test program instantiates just one object—the one for the array. The Point instances are alocated in-
line within the array. This optimization can be mis-used. Using structs instead of classes can a'so make a
program slower and fatter, as passing a struct instance as a value parameter causes a copy of the struct to be
created. Thereis no substitute for careful data structure and algorithm design.

1.9 Interfaces

An interface defines a contract. A class or struct that implements an interface must adhere to its contract.
Interfaces can contain methods, properties, indexers, and events as members.

The example
interface IExample

{
string this[int index] { get; set; }

event EventHandler E;
void F(int value);
string P { get; set; }

pubTlic delegate void EventHandler(object sender, EventArgs e);

shows an interface that contains an indexer, an event E, amethod F, and a property P.

30 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

Interfaces may employ multiple inheritance. In the example

interface IControl

void Paint();

}
interface ITextBox: IControl
{

void SetText(string text);
}

interface IListBox: IControl

void SetItems(string[] items);

interface IComboBox: ITextBox, IListBox {}
the interface 1ComboBox inherits from both 1TextBox and IL1stBox.
Classes and structs can implement multiple interfaces. In the example

interface IDataBound

void Bind(Binder b);

pubTlic class EditBox: Control, IControl, IDataBound

public void Paint() {..}
pubTlic void Bind(Binder b) {.}

the class Edi tBox derives from the class control1 and implements both IControl and IDataBound.

In previous example, the Paint method from the 1Control interface and the Bind method from IDataBound
interface are implemented using public members on the Edi tBox class. C# provides an alternative way of
implementing these methods that allows the implementing class to avoid having these members be public.
Interface members can be implemented using a qualified name. For example, the Edi tBox class could instead
be implemented by providing IControl.Paint and IDataBound.B1ind methods.

pubTlic class EditBox: IControl, IDataBound

void IControl.Paint() {..}
void IDataBound.Bind(Binder b) {..}

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented. Explicit interface members can only be caled
viathe interface. For example, the Edi tBox’s implementation of the paint method can be called only by
casting to the IControl interface.

class Test

{
static void Main() {]
EditBox editbox = new EditBox();
editbox.Paint(); // error: no such method
IControl control = editbox;]])
control.Paint(); // calls EditBox’s Paint implementation
s
ks

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 31

C#LANGUAGE SPECIFICATION

1.10 Delegates

Delegates enable scenarios that C++ and some other languages have addressed with function pointers. Unlike
function pointers, delegates are object-oriented, type-safe, and secure.

Delegates are reference types that derive from a common base class. System.Delegate. A delegate instance
encapsulates a method—a callable entity. For instance methods, a callable entity consists of an instance and a
method on the instance. For static methods, a callable entity consists of a class and a static method on the class.

An interesting and useful property of adelegate is that it does not know or care about the type of the object that
it references. Any object will do; al that matters is that the method’ s signature matches the delegate’s. This
makes del egates perfectly suited for “anonymous’ invocation. Thisis a powerful capability.

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates are
declared using del egate declaration syntax. The example

deTegate void SimpleDelegate();
declares a delegate named simpleDelegate that takes no arguments and returns void.

The example
class Test

static void FQ { _ _
System.Console.writeLine("Test.F");

static void Main() {
SimpleDelegate d = new SimpleDelegate(F);
dO;

}
creates asimpleDelegate instance and then immediately cdlsit.
There is not much point in instantiating a delegate for a method and then immediately calling via the delegate, as

it would be smpler to call the method directly. Delegates show their usefuness when their anonymity is used.
The example

void Multicall(SimpleDelegate d, int count) {
fordggnt i=0; i < count; i++)

}

shows aMulticall method that repeatedly callsasimpleDbelegate. TheMulticall method doesn't know
or care what type method that is the target method for the Simp1eDelegate, what accessbility this method
has, or whether the method is static or non-static. All that matters is that the signature of the target method is
compatible with simpTeDelegate.

1.11 Enums

An enum type declaration defines a type name for arelated group of symbolic constants. Enums are used for
“multiple choice” scenarios, in which aruntime decision is made from afixed number of choices that are known
a compile-time.

The example

32 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

enum Color

Red,
Blue,
Green

}

class Shape

pubTlic void Fill(color color) {
switch(color) {
case Color.Red:

Break;
case Color.Blue:

Break;
case Color.Green:

Break;

default:
break;
}
}
}
shows a Color enum and a method that uses this enum. The signature of the Fi11 method makesit clear that
the shape can be filled with one of the given colors.

The use of enums is superior to the use of integer constants—as is common in languages without enums—
because the use of enums makes the code more readable and self-documenting. The self-documenting nature of
the code also makes it possible for the development tool to assist with code writing and other * designer”
activities. For example, the use of coTor rather than int for aparameter type enables smart code editors to
suggest color values.

1.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on afew system-provided classes
such asthe system.Console class. It isfar more common for real-world programs to consist of severa
different pieces. For example, a corporate application might depend on severa different components, including
some developed internally and some purchased from independent software vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide alogical organizational
system. Namespaces are used both as an “internal” organization system for a program, and as an “externa”
organization system—a way of presenting program elements that are exposed to other programs.

Assemblies are used for physical packaging and deployment. An assembly acts as a container for types. An
assembly may contain types, the executable code used to implement these types, and references to other
assemblies.

Thereare two main kinds of assemblies. applications and libraries. Applications have amain entry point and
usualy have afile extension of . exe; libraries do not have a main entry point, and usually have afile extension
of .d11.

To demonstrate the use of namespaces and assemblies, this section revisits the “hello, world” program presented
earlier, and splitsit into two pieces: alibrary that provides messages and a console application that displays
them.

The library will contain asingle class named Hel1oMessage. The example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 33

C#LANGUAGE SPECIFICATION

// HelloLibrary.cs
namespace Microsoft.CSharp.Introduction

pubTic class HelloMessage

public string Message {
get {
return "hello, world";
}

}
}
}

shows the He1ToMessage classin a namespace named Microsoft.CSharp.Introduction. The
HelloMessage class provides a read-only property named Message. Namespaces can nest, and the declaration

namespace Microsoft.CSharp.Introduction

is shorthand for several levels of namespace nesting:

namespace Microsoft

{

namespace CSharp

nhamespace Introduction

}

The next step in the componentization of “hello, world” isto write a console application that uses the
HelloMessage class. The fully qualified name for the class—
Microsoft.CSharp.Introduction.HelloMessage—could be used, but this name is quite long and

unwieldy. An easier way iSsto use a using namespace directive, which makesit possible to use al of the typesin
a namespace without qualification. The example

// HelloApp.cs

using Microsoft.CSharp.Introduction;
class HelloApp
static void Main() {

HelloMessage m = new HelloMessage();
System.Console.wWriteLine(m.Message);

}
}

shows a using namespace directive that refersto the Microsoft.csharp.Introduction namespace. The
occurrences of HeTloMessage are shorthand for Microsoft.CSharp.Introduction.HelloMessage.

C# d so enables the definition and use of aliases. A using aliasdirective defines an alias for atype. Such aliases
can be useful in situation in which name collisions occur between two libraries, or when a small number of types
from amuch larger namespace are being used. The example

using MessageSource = Microsoft.CSharp.Introduction.HelloMessage;
shows a using dias directive that definesMessageSource asan diasfor theHelloMessage class.

The code we have written can be compiled into a library containing the class He11oMessage and an application
containing the classHe1ToApp. The details of this compilation step might differ based on the compiler or tool
being used. Using the command-line compiler provided in Visua Studio 7.0, the correct invocations are

csc /target:Tlibrary HelloLibrary.cs

34 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

which producesthe classlibrary HelloLibrary.d11 and
csc /reference:HelloLibrary.d11 HelloApp.cs
which produces the application He1ToApp . exe.

1.13 Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source compatiblewith a previous version if code that depends on the previous version can, when
recompiled, work with the new version. In contrast, a new version of a component is binary compatible if a
program that depended on the old version can, without recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source compatibility.
In fact, some languages contain flaws that make it impossible, in generd, to evolve a class over time without
breaking at least some client code.

As an example, consider the situation of a base class author who ships a class named Base. In the first version,
Base containsno F method. A component named Derived derives from Base, and introduces an F. This
Derived class, along with the class Base that it depends on, is released to customers, who deploy to numerous
clients and servers.

// Author A
namespace A

pubTic class Base // version 1

}
}

// Author B
namespace B

class Derived: A.Base

public virtual void F() { _
System.Console.wWriteLine("Derived.F");

}
}
}

So far, so good. But now the versioning trouble begins. The author of Base produces a new version, and adds its
own F method.

// Author A
namespace A

public class Base // version 2

public virtual void FO { // added in version 2
System.Console.writeLine("Base.F");

}
}

This new version of Base should be both source and binary compatible with the initia version. (If it weren’t
possible to smply add a method then a base class could never evolve)) Unfortunately, the new F in Base makes
the meaning of berived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely, since
when Derived was compiled, Base did not even havean F! Further, if Derived’s F does override Base’'S F,
then it must adhere to the contract specified by Base—a contract that was unspecified when perived was
written? In some cases, thisisimpossible. For example, the contract of Base’s F might require that overrides of
it ways call the base. berived’s F could not possibly adhere to such a contract.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 35

C#LANGUAGE SPECIFICATION

C# addresses this versioning problem by requiring devel opers to clearly state their intent. In the origina code
example, the code was clear, since Base did not even have an F. Clearly, berived’s F isintended as a new
method rather than an override of a base method, since no base method named F exists.

// Author A
namespace A

?ub11c class Base
}
}

// Author B
namespace B

{
class Derived: A.Base
public virtual void F() { _
System.Console.wWriteLine("Derived.F");
}
}

If Base addsan F and ships anew version, then the intent of a binary version of berived istill clear—
Derived’sF issemantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear—the author of bDerived may intend its F to
override Base’s F, or to hide it. Since the intent is unclear, the compiler produces awarning, and by default
makes Derived’s F hideBase’s F. This course of action duplicates the semantics for the casein which
Derived isnot recompiled. The warning that is generated aerts berived’s author to the presence of the F
method in Base.

If Derived’s F issemantically unrelated to Base’s F, then Derived’s author can express this intent—and, in
effect, turn off the warning—by using the new keyword in the declaration of F.

// Author A
namespace A

pubTic class Base // version 2

public virtual void FO { // added in version 2
System.Console.writeLine("Base.F");

}
}

// Author B
namespace B

class Derived: A.Base // version 2a: new

new public virtual void FO {]
System.Console.writeLine("Derived.F");

}
}
}

On the other hand, Derived’s author might investigate further, and decide that berived’s F should override
Base’'s F. Thisintent can be specified by using the override keyword, as shown below.

36 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1 Introduction

// Author A
namespace A

public class Base // version 2

public virtual void F() { // added in version 2
System.Console.writeLine("Base.F");

}
}

// Author B
namespace B

class Derived: A.Base // version 2b: override

pubTlic override void F(Q) {
base.F(Q);
System.Console.wWriteLine("Derived.F");

}
}
The author of Der1ived has one other option, and that is to change the name of F, thus completely avoiding the
name collision. Though this change would break source and binary compatibility for berived, the importance
of this compatibility varies depending on the scenario. If Derived isnot exposed to other programs, then
changing the name of F islikely agood idea, as it would improve the readability of the program—there would
no longer be any confusion about the meaning of F.

1.14 Attributes

C# isaprocedura language, but like al procedural languages it does have some declarative e ements. For
example, the accessibility of amethod in aclassis specified by decorating it pub1ic, protected, internal,
protected internal, or private. Through its support for attributes, C# generalizes this capability, so that
programmers can invent new kinds of declarative information, specify this declarative information for various
program entities, and retrieve this declarative information at run-time. Programs specify this additional
declarative information by defining and using attributes.

For instance, a framework might define aHe1pAttribute attribute that can be placed on program elements
such as classes and methods, enabling developers to provide a mapping from program elements to
documentation for them. The example

using System;

[AttributeUsage(AttributeTargets.Al1)]
public class HelpAttribute: Attribute

pubTic HelpAttribute(string url) {
this.url = url;
b

pubTlic string Topic = null;

private string url;

public string url {
get { return url; }

}

defines an attribute class named HelpAttribute, or Help for short, that has one positiona parameter
(string url) and one named argument (string Topic). Positional parameters are defined by the forma

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 37

C#LANGUAGE SPECIFICATION

parameters for public constructors of the attribute class, and named parameters are defined by public read-write
properties of the attribute class.

The example

[Help("http://www.mycompany.com/../Classl.htm")]
public class Classl

[Help("http://www.mycompany.com/../Classl.htm", Topic = "F")]
public void FO {}

shows several uses of the attribute.

Attribute information for a given program element can be retrieved at run-time by using reflection support. The
example

using System;
class Test

static void Main() {

Type type = typeof(Classl);

object[] arr = type.GetCustomAttributes(typeof(HelpAttribute));

if (arr.Length == 0)

] Co?so1e.WriteLine("C1assl has no Help attribute.");

else
HelpAttribute ha = (HelpAttribute) arr[0];
Cconsole.writeLine("url = {0}, Topic = {1}", ha.url, ha.Topic);

}
}

checksto seeif class1 hasaHelp attribute, and writes out the associated Topic and ur1 vauesif the
atribute is present.

38 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

2. Lexical structure

2.1 Phases of translation

A C# program congsts of one or more source files. A sourcefile is an ordered sequence of Unicode characters.
Source files typically have a one-to-one correspondence with filesin afile system, but this correspondenceis
not required.

Conceptually speaking, a program is compiled using two steps:
1. Lexical analysis, which trandates a stream of input characters into a stream of tokens.
2. Syntactic analysis, which trandates the stream of tokens into executable code.

2.2 Grammar notation

Lexica and syntactic grammars for C# are interspersed throughout this specification. The lexical grammar
defines how characters can be combined to form tokens; the syntactic grammar defines how tokens can be
combined to form C# programs.

Grammar productions include non-termina symbols and terminal symbols. In grammar productions, non-
terminal symbols are shown initalic type, and terminal symbols are shown in afixed-width font. Each non-
termina is defined by a set of productions. The first line of a set of productions is the name of the non-termindl,
followed by a colon. Each successive indented line contains the right-hand side for a production that has the
non-terminal symbol as the left-hand side. The example:

nonsense:
terminall
terminal2

defines the nonsense non-terminal as having two productions, onewith terminall on the right-hand side and
onewith terminal2 on the right-hand side.

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase
“one of” precedes alist of the options. Thisis simply shorthand for listing each of the aternatives on a separate
line. The example:

|etter: one of
A B C a b c

is shorthand for:

|etter: one of
A

B
C
a
b

(g}

A subscripted suffix “o”, @in identifier,y, is used as shorthand to indicate an optional symbol. The example:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 39

C#LANGUAGE SPECIFICATION

whole:
first-part second-part,, last-part

is shorthand for:

whole:
first-part last-part
first-part second-part last-part

2.3 Lexical analysis

The lexical analysis phase trandates a stream of input characters into a stream of input elements. If more than
one input element could possibly match the next sequence of characters, the longest possible input element is
used, regardless of whether subsequent characters or tokens could be correct. For example, the text “5++6”
always becomes three input elements: “5”, “++”, and “6”, even though the aternative decomposition of “5”,
“+7, "+, “6” might be syntactically more correct.

Each character in the stream of input charactersis part of only one input element at a time; once a sequence of
characters is formed into a input element, it is not subject to being rescanned for other tokens. For example,
within a verbatim string literal token (82.4.4.5), characters are not subject to being matched as preprocessing
tokens.

Once the character stream has been broken into input elements, whitespace and comments are discarded, and
pre-processing directives are processed, leaving only a stream of tokens. Syntactic and semantic processing then
occurs only upon that stream of tokens.

2.3.1 Input

input:
I Nput-elementSqy

input-elements:
input-element
input-elements input-el ement

input-el ement:
comment
white-space
pp-directive
token

2.3.2 Input characters

input-character:
any Unicode character

2.3.3 Line terminators
new-line:
The carriage return character (U+000D)
The line feed character (U+000A)
The carriage return character followed by aline feed character
The line separator character (U+2028)
The paragraph separator character (U+2029)

40 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

2.3.4 Comments
Two forms of comments are supported: regular comments and one-line comments.

A regular comment begins with the characters /* and ends with the characters * /. Regular comments can
occupy a portion of aline, asingle line, or multiple lines. The example

/* Hello, world program
This program writes “hello, world” to the console

class Hello

static void Main() {
console.writeLine("hello, world");

}
includes a regular comment.

A one-linecomment begins with the characters // and extends to the end of the line. The example

// Hello, world program
// This program writes “hello, world” to the console

class Hello // any name will do for this class

static void Main() { // this method must be named "Main"
console.writeLine("hello, world");

}
shows several one-line comments.

comment:
regular-comment
one-line-comment

regular-comment:
/ * rest-of-regular-comment

rest-of-regular -comment:
rest-of-regular -comment-star
not-star rest-of-regular-comment

rest-of-regular -comment-star:
/
rest-of-regular -comment-star
not-star-or-slash rest-of-regular-comment

not-star:

Any input-character except *
not-star -or-dash:

Any input-character except * and /
one-line-comment:

/ / one-line-comment-text new-line

one-line-comment-text:
input-character
one-line-comment-text input-character

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 41

C#LANGUAGE SPECIFICATION

2.3.5 White space

white-space:
new-line
The tab character (U+0009)
The vertical tab character (u+000B)
The form feed character (U+000C)
The “control-Z” or “substitute” character (U+001A)
All characters with Unicode class Zs

2.4 Tokens

There are severa kinds of tokens. identifiers, keywords, literals, operators, and punctuators. White space and
comments are not tokens, though they may act as separators for tokens.

token:
identifier
keyword
literal
oper ator -or -punctuator

2.4.1 Unicode character escape sequences

A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences are
processed in identifiers, non-verbatim string literals, and character literals. A Unicode character escape is not
processed in any other location (for example, to form an operator, punctuator, or keyword).

unicode-character -escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hexdigit hex-digit hex-digit

A Unicode escape sequence represents the single Unicode character formed by the hexadecimal number
following the “\u” or “\uU” characters. Since C# uses a 16-bit encoding of Unicode charactersin characters and
strings, a Unicode character in the range U+10000 to U+10FFFF is represented using two Unicode “surrogate”
characters. Unicode characters with code points above Ox10FFFF are not supported.

Multiple trandations are not performed. For instance, the string literal “\u005cu005C” isequivaent to
“\u005c” rather than “\\". (The Unicode value \u005c is the character “\".)

The example

class Classl

static void Test(bool \u0066) {
char c = '"\u0066"';
if (\u0066)
) console.writeLine(c.ToString());
}

shows several uses of \u0066, which isthe character escape sequence for the letter “f”. The program is
equivaent to

42 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

class Classl

static void Test(bool f) {
char c = 'f';
if ()

) console.writeLine(c.ToString());

}

2.4.2 ldentifiers

These identifier rules exactly correspond to those recommended by the Unicode 3.0 standard, Technical Report
15, Annex 7, except that underscoreis allowed as an initia character (asis traditional in the C programming
language), Unicode escape characters are permitted in identifiers, and the “@” character is alowed as a prefix to
enable keywords to be used as identifiers.
identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not akeyword

identifier-or-keyword:
identifier-start-character identifier -part-character Sy

identifier-start-character:
|etter -char acter
_ (the underscore character)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classesLu, LI, Lt, Lm, Lo, or NI
A unicode-character-escape-sequence representing a character of classes Lu, LI, Lt, Lm, Lo, or NI

combining-character:
A Unicode character of classesMn or Mc
A unicode-char acter-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-character-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-character-escape-sequence representing a character of the class Pc

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 43

C#LANGUAGE SPECIFICATION

formatting-character:
A Unicode character of the class Cf
A unicode-character-escape-sequence representing a character of the class Cf

Examples of legal identifiersinclude “identifierl”, “_identifier2”, and “@if”".

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, and so might be seen in other
languages as a normal identifier, without the prefix. Use of the @ prefix for identifiers that are not keywordsis
permitted, but strongly discouraged as a matter of style.

The example:
class @class
{
static void @static(bool @bool) {
if (@bool)
console.WriteLine("true");
else
console.WriteLine("false");
}
}
class Classl
{
static void M {
@class.@static(true);
}
}

defines a class named “class” with a static method named “static” that takes a parameter named “boo1”.

Two identifiers are considered the same if they are identical after the following transformations are applied, in
order:

The prefix “@”, if used, is removed.
Each unicode-character -escape-sequence is transformed into its corresponding Unicode character

Identifiers beginning with two consecutive underscore characters are reserved for use by the implementation,
and are not recommended for use by ordinary programs. For example, an implementation may provide
extensions that are triggered by the use of keywords that begin with two underscores.

2.4.3 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except
when prefaced by the @ character.

44 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

keyword: one of

abstract as base bool
byte case catch char
class const continue decimal
delegate do doubTe else
event explicit extern false
fixed float for foreach
if impTlicit in int
internal is Tock Tong

new nuli object operator
override params private protected
readonly ref return sbyte
short sizeof stackalloc static
struct switch this throw
try typeof uint ulong
unsafe ushort using virtual
while

In some places in the grammar, specific identifiers have special meaning, but are not keywords. For example,

Chapter 2 Lexical structure

break
checked
default
enum
finally
goto
interface
namespace
out
public
sealed
string
true
unchecked
void

within a property declaration, the “get” and “set” identifiers have specia meaning (810.6.2). An identifier is

never avalid token in these locations, so this use does not conflict with a use of these words as identifiers.

2.4.4 Literals
A literal is a source code representation of avalue.
literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.4.4.1 Boolean literals
There are two boolean literal values. true and false.
boolean-literal:

true
false

The type of a boolean-literal isboo1.

2.4.4.2 Integer literals
Integer literals have two possible forms: decimal and hexadecimal.

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal
decimal-integer-literal:
decimal-digits integer-type-suffiXyp

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

45

C#LANGUAGE SPECIFICATION

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 45 6 7 8 9

integer-type-suffix: one of
U u L 1T ur Ul ur ul LU Lu 1TU Tu

hexadecimal-integer-literal:
0x hex-digits integer-type-SuffiXop
0x hex-digits integer-type-suffiXy

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 45 6 7 8 9 A B CDEF ab cd e f

The type of an integer literd is determined as follows:

If the literal has no suffix, it has the first of these typesin which its value can be represented: int, uint,
Tong, ulong.

If the litera is suffixed by u or u, it has the first of these types in which its value can be represented: uint,
ulong.

If the literal is suffixed by L or 1, it has the first of these types in which its value can be represented: Tong,
ulong.

If the literal is suffixed by uL, u1, uL, ul, LU, Lu, Tu, or Tu, it isof type ulong.
If the value represented by an integer litera is outside the range of the ulong type, an error occurs.

Asamatter of style, it is suggested that “L” be used instead of “1” when writing literals of type Tong, sinceit is
easy to confuse the letter “1” with the digit “1”.

To permit the smallest possible int and Tong values to be written as decimal integer literas, the following two
rules exist:

When adecimal-integer-literal with the value 2147483648 (2°!) and no integer-type-suffix appears as the

token immediately following a unary minus operator token (87.6.2), the result is a constant of type int with

the value -2147483648 (-2"). In dl other situations, such a decimal-integer-literal is of type uint.

When adecimal-integer-literal with the value 9223372036854775808 (2°*) and no integer-type-suffix or the
integer-type-suffix L or 1 appears as the token immediately following a unary minus operator token (87.6.2),
the result is a constant of type Tong with the value -9223372036854775808 (-2°). In all other situations,
such adecimal-integer-literal is of type ulong.

2.4.4.3 Real literals

real-literal:
decimal-digits . decimal-digits exponent-party,: real-type-suffiXep
. decimal-digits exponent-partyy real-type-suffiXqp
decimal-digits exponent-part real-type-suffiXopt
decimal-digits real-type-suffix

46 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

exponent-part:
e Signy decimal-digits
E Signy decimal-digits
sign: oneof
+ -
real-type-suffix: one of
F f Dd M m

If no real type suffix is specified, the type of the redl literal is doub1e. Otherwise, the red type suffix
determines the type of the red literal, as follows:

A red literd suffixed by F or f isof type f1oat. For example, the literals 1f, 1.5, 1e10f, and
123.456F are dl of type float.

A red litera suffixed by D or d is of type double. For example, the literals 1d, 1. 5d, 1e10d, and
123.456D areall of typedouble.

A redl litera suffixed by M or m is of type decimal. For example, the literals 1m, 1. 5m, 1e10m, and
123.456Mm are dl of typedecimal.

If the specified literal cannot be represented in the indicated type, then a compile-time error occurs.

2.4.4.4 Character literals
A character literal represents a single character, and usually consists of a character in quotes, asin 'a'.

character-literal:
' character '

character:
single-character

simple-escape-sequence
hexadeci mal-escape-sequence
unicode-character -escape-segquence

single-character:
Any character except ' (U+0027), \ (U+005C), and new-line

simple-escape-sequence: one of
AN AN N0 Na \b \f \n \r \t \v

hexadeci mal-escape-sequence:
\x hex-digit hex-digityx hex-digity: hex-digit,p

A character that follows a backdash character (\) in acharacter must be one of the following characiers. ', ",
\,0,a,b,f,n,r, t,u,U,x, v. Othewise, acompile-time error occurs.

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the
hexadecimal number following “\x”.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 47

C#LANGUAGE SPECIFICATION

Escape Character Unicode
sequence name encoding
\' Single quote 0x0027
\" Double quote 0x0022
\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return | 0x000D
\t Horizontal tab | 0x0009
\v Vertical tab 0x0008

The type of a character-literal is char.

2.4.4.5 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals. A regular string literal
consists of zero or more characters enclosed in double quotes, asin "hello, world", and may include both
simple escape sequences (such as \ t for the tab character) and hexadecimal escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. A simple exampleis@"hello, world". Inaverbatim string
literal, the characters between the delimiters are interpreted verbatim, with the only exception being a quote-
escape-sequence In particular, smple escape sequences and hexadecimal escape sequences are not processed in
verbatim string literals. A verbatim string literal may span multiple lines.

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-characters,,, "

regular-string-literal-characters:

regular-string-literal-character

regular-string-literal-characters regular-string-literal-character
regular-gring-literal-character:

single-regular-string-literal-character

simple-escape-sequence

hexadeci mal-escape-sequence

unicode-char acter -escape-sequence
single-regular-string-literal-character:

Any character except " (U+0022), \ (U+005C), and new-line

48 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

verbatimstring-literal:
@" verbatim -string-literal-charactersy,: "

ver batim-string-literal-characters:
ver batim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

ver batim-string-literal-character:
single-ver batim-string-literal-character

quote-escape-sequence
single-verbatim-string-literal-character:
any character except "
quote-escape-sequence:
A character that follows a backdash character (\) in aregular-string-literal-character must be one of the
following characters: ', ",\,0,a, b, f,n, r, t,u, U, x, v. Otherwise, a compile-time error occurs.
The example
string a = "hello, world"; // hello, world
string b = @"'hello, world"; // hello, world
string ¢ = "hello \t world"; // hello world
string d = @"'hello \t world"; // hello \t world
string e = "Joe said \"Hello\" to me"; // Joe said "Hello"
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello"
string g = "\\\\sever\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\ntwo\nthree";
string j = @"one
two
three";

shows a variety of string literals. The last string literal, j, is averbatim string literal that spans multiple lines.
The characters between the quotation marks, including white space such as newline characters, are preserved
verbatim.

The type of a string-literal isstring.

Each string literal does not necessarily result in anew string instance. When two or more string literals that are
equivaent according to the string equality operator (87.9.7) appear in the same program, these string literals
refer to the same string instance. For instance, the output of the program

class Test

static void Main() {

object a = "hello";
object b = "hello";
console.WriteLine(a == b);

}
}

isTrue because the two literas refer to the same string instance.

2.4.4.6 The null literal

null-literal:
null

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 49

C#LANGUAGE SPECIFICATION

The type of a null-literal is the null type.

2.4.5 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe operations
involving one or more operands. For example, the expression a + b uses the + operator to add the two
operands a and b. Punctuators are for grouping and separating. For example, the punctuator ; is used to separate
statements that appear in statement lists.

operator -or -punctuator: one of

{ } L] () . , : ;

+ - / % & | A ! ~

= < > ? ++ -— && | << >>

== ! = <= >= += -= *= /= %: =
= A= <<= >>= ->

2.5 Pre-processing directives

The term “pre-processing directives’ in C# is used for consistency with the C programming language only. In
CH#, there is no separate pre-processing step; pre-processing directives are processed as part of the lexical
anaysis phase.

Pre-processing directives aways begin with a‘#’ character, which must be at the beginning of the line,
excepting whitespace. Whitespace may optionally occur between the ‘#’ and the following identifier.

pp-directive:

pp-declaration

pp-conditional-compilation

pp-line-number

pp-diagnostic-line

pp-region
For pp-declaration, pp-conditional-compilation, and pp-line-number directives, the rest of the line islexicaly
analyzed according the usual rules, and comments and white-space are ignored. It isillega for an input element
(such as aregular comment) to be unterminated at the end of the line.

For pp-diagnostic-lineand pp-region directives, the rest of the line is not lexicdly analyzed.

2.5.1 Pre-processing identifiers
Pre-processing identifiers employ a grammar similar to the grammar used for regular C# identifiers:
pp-identifier:
Anidentifier-or-keyword that isnot true or false

The symbols true and false are not legal pre-processing identifiers, and so cannot be defined with #define
or undefined with #undef.

2.5.2 Pre-processing expressions

The operators !, ==, !=,&& and | | are permitted in pre-processing expressions. Parentheses can be used for
grouping in pre-processing expressions. Pre-processing expressions are evauated at compile-time according to
the same rules as boolean expressions are evaluated at run-time. An identifier that is “ defined” (82.5.3)
evaluates as true, otherwise as false.

pp-expression:
pp-equality-expression

50 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

pp-primary-expression:
true
false
pp-identifier
(pp-expression)
pp-unary-expression:
pp-primary-expression
I pp-unary-expression

pp-equality-expression:

pp-equality-expression == pp-logical-and-expression
pp-equality-expression != pp-logical-and-expresson

pp-logical-and-expression:
pp-unary-expression
pp-logical-and-expression && pp-unary-expression

pp-logical-or-expression:
pp-logical-and-expression
pp-logical-or-expression || pp-logical-and-expression

2.5.3 Pre-processing declarations

Names can be defined and undefined for usein pre-processing. A #def1ine defines an identifier within the
scope of afile. A #undef “undefines’ an identifier within the scope of afile—if the identifier was defined
earlier then it becomes undefined. If an identifier is defined then it is semantically equivaent to true; if an
identifier is undefined then it is semanticaly equivalent to false.

Note that defining a pre-processing identifier with #define has no impact on any uses of that identifier outside
of pre-processing directives.

pp-declaration:
define pp-identifier new-line
undef pp-identifier new-line

The example:

#define A
#undef B

class C

#f A

void FQO {}
#else

void GO {}
#endif

#if B
void HO {}

se
void 1) {}
?endif

becomes:

#el

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 51

C#LANGUAGE SPECIFICATION

class C

A pp-declaration is restricted to occur before any tokensin the input file. In other words, #define and #undef
must precede any “real code” in thefile, or a compile-time error occurs. Thus, it is possible to intersperse #1 f
and #define asin the example below:

#define A

#f A
#define B

#endif

namespace N

#if B
class Classl {}
#endif

The following example isillega because a #define followsreal code:

#define A
namespace N

#define B

#if B

class Classl {}
#endif

}

A #undef may “undefing” a name that is not defined. The example below defines a name and then undefines it
twice; the second #undef has no effect but is il legd.
#define A

#undef A
#undef A

2.5.4 #if, #elif, #else, #endif
pp-conditional-compilation:
if pp-expresson new-line
elif pp-expression new-line
else new-line groupyy
endif new-line

A set of pp-conditional-compilation directives are used to conditionally include or exclude portions of program
text. The pp-conditional-compilation directives must occur in order, as follows: exactly one #1 f directive, zero
or more #e11 f directives, zero or one #else directive, and exactly one #endi f directive. Sets of pp-
conditional-compilation directives can nest, as long as one complete set occurs entirely between two directives
of the containing set.

When aset of pp-conditional-compilation directives is processed, it causes some of the text between directives
to be included, or subject to lexical anaysis, and some to be excluded, and not subject to any further processing.
The text to be included or excluded is the text that lies strictly between the pp-conditional-compilation
directives. The affected text isincluded or excluded before being subject to lexical analysis; if excluded, it is not
scanned for input e ements such as comments, literals, or other tokens.

Text isincluded or excluded according to the results of evaluating the expression(s) in the directives as follows:

52 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

If the pp-expression on the #1 f directive evauatesto true, then the text between the #1 and the next
pp-conditional-compilation directive in the set isincluded, and al other text between the #1 f and the
#endif directiveis excluded.

Otherwisg, if any #e11 f directives are present, then the pp-expressions associated with them are
evaluated in order. If any evaluatesto true, then the text between the first #e11 f directive that
evaluates to true and the next pp-conditional-compilation directive in the set isincluded, and all other
text between the #1 f and the #end1i f directivesis excluded.

Otherwisg, if an #e1se directive is present, then the text between the #e1se directive and the #endi f
directive isincluded, and all other text between the #1 f and the #endi f directivesis excluded.

Otherwise, dl of the text between the #1i f and the #endi f directivesis excluded.

The example:

#define Debug
class Classl

#if Debug
void Trace(string s) {}
#endif

}
becomes:

class Classl

void Trace(string s) {}

If sections can nest. Example:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction

void Commit() {

#if Debug
CheckConsistency();
#if Trace

writeToLog(this.ToString());

#endif

#endif

commitHelper();

}

Text that is not included is not subject to lexical analysis. For example, the following is lega despite the
unterminated comment in the “#e1se” section:

#define Debug // Debugging on
class PurchaseTransaction

void Commit() {
#if Debug
CheckConsistency();
#else
/* Do something else
#endif

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 53

C#LANGUAGE SPECIFICATION

Pre-processing directives are not processed if they appear inside other input elements. For example, the
following program:

class Hello

static void Main() {

System.Console.writeLine(@"hello,
#if Debug

world
#else

Nebraska
#endif

")

}
}

produces the following output

hello,
#if Debug
world
#else
Nebraska
#endif

2.5.5 #error and #warning
The #error and #warning directives enable code to report error and warning conditions to the compiler for
integration with standard compile-time errors and warnings.
pp-diagnostic-line:
error pp-message
warning pp-message

pp-message:
pp-message-characters new-line

pp-message-characters:
pp-mesage-character
pp-message-characters pp-message-character

pp-message-character:
Any character except new-line

The example
#warning Code review needed before check-in
#define DEBUG

#if DEBUG && RETAIL
#error A build can't be both debug and retail!
#endif

class Classl

{.}

aways produces awarning (“Code review needed before check-1in"), and produces an error if the pre-
processing identifiers DEBUG and RETAIL are both defined.

54 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 2 Lexical structure

2.5.6 #region and #endregion

pp-region:
region pp-message
endregion pp-message

The #region and #endregion directives bracket a“region” of code. No semantic meaning is attached to a
region; regions are intended for use by the programmer or automated tools to mark a piece of code. The message
attached to the #region and #endregion has no semantic meaning; it merely serves to identify the region.
Each source file must have an equal number of #region and #endregion directives, and each #region must
be matched with a#endregion later in the file.

#region and #endregion must nest properly with respect to conditional compilation directives. More
precisely, it isillegal for a pp-conditional-compilation directive to occur between a#region directiveand it's
matching #endregion directive, unless al of the pp-conditional-compilation directives of the set occur
between #region and #endregion.

2.5.7 #line

The #11 ne feature enables a devel oper to ater the line number and source file names that are used by the
compiler in output such as warnings and errors. If no line directives are present then the line number and file
name are determined automatically by the compiler. The #11ne directive is most commonly used in meta-
programming tools that generate C# source code from some other text input. After a#11ne directive, the
compiler treats the line after the directive as having the given line number (and file name, if specified).

pp-line-number:
Tine integer-literal
Tine integer-literal file-name

file-name:
" file-name-characters "

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any character except " (U+0022), and new-line

Note that afile-name differs from an ordinary string literal in that escape characters are not processed; the '\
character simply designates an ordinary back-dash character within afile-name.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 55

Chapter 3 Basic concepts

3. Basic concepts

3.1 Program Startup

Program startup occurs when the execution environment calls a designated method, which is referred to asthe
program's entry point. This entry point method is always named Ma1in, and can have one of the following
signatures:

static void Main() {..}
static void Main(string[] args) {.}
static int Main(Q) {..}
static int Main(string[] args) {.}

As shown, the entry point may optionally return an int value. Thisreturn vaueis used in program termination
(83.2.

The entry point may optionally have one formal parameter, and this formal parameter may have any name. If
such a parameter is declared, it must obey the following constraints:

The value of this parameter must not be nu11.

Let args be the name of the parameter. If the length of the array designated by args is greater than zero,
the array members args [0] through args[args.Length-1], inclusive, must refer to strings, caled
program parameters, which are given implementation-defined values by the host environment prior to
program startup. The intent is to supply to the program information determined prior to program startup
from elsawhere in the hosted environment. If the host environment is not capable of supplying strings with
letters in both uppercase and lowercase, the implementation shall ensure that the strings are received in
lowercase.

Since C# supports method overloading, a class or struct may contain multiple definitions of some method,
provided each has a different signature. However, within a single program, no class or struct shall contain more
than one method called Main whose definition qualifies it to be used as a program entry point. Other overloaded
versions of Main are permitted, provided they have more than one parameter, or their only parameter is other
thantypestring[].

A program can be made up of multiple classes or structs, two or more of which contain amethod called Main
whose definition qudifiesit to be used as a program entry point. In such cases, one of these Main methods must
be chosen as the entry point so that program startup can occur. This choice of an entry point is beyond the scope
of this specification—no mechanism for specifying or determining an entry point is provided.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility
(83.5.1) of amethod is determined by the access modifiers (810.2.3) specified in its declaration, and smilarly
the declared accessibility of atype is determined by the access modifiers specified in its declaration. In order for
a given method of a given type to be calable, both the type and the member must be accessible. However, the
program entry point is a specia case. Specifically, the execution environment can access the program's entry
point regardless of its declared accessibility and regardless of the declared accessibility of its enclosing type
declarations.

In al other respects, entry point methods behave like those that are not entry points.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 57

C#LANGUAGE SPECIFICATION

3.2 Program Termination
Program termination returns control to the execution environment.

If the return type of the program’s entry point method is i nt, the value returned serves as the program's
termination status code. The purpose of this code isto alow communication of success or failure to the
execution environment.

If the return type of the entry point method is vo1id, reaching the right brace (3) which terminates that method,
or executing a return statement that has no expression, resultsin a termination status code of 0.

Prior to a program’s termination, finalizers for al of its objects that have not yet been finalized are called, unless
such finalization has been suppressed. (The means by which afinalizer can be suppressed is outside the scope of
this specification.)

3.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs are organized using
namespaces (89), which can contain type declarations and nested namespace declarations. Type declarations
(89.5) are used to define classes (810), structs (811), interfaces (§13), enums (814), and delegates (815). The
kinds of members permitted in a type declaration depends on the form of the type declaration. For instance, class
declarations can contain declarations for instance constructors (810.10), destructors (810.12), static constructors
(810.11), constants (810.3), fields (810.4), methods (810.5), properties (8§10.6), events (810.7), indexers (§10.8),
operators (810.9), and nested types.

A declaration defines a name in the declaration space to which the declaration belongs. Except for overloaded
constructor, method, indexer, and operator names, it is an error to have two or more declarations that introduce
members with the same name in a declaration space. It is never possible for a declaration space to contain
different kinds of members with the same name. For example, a declaration space can never contain afield and
amethod by the same name.

There are severa different types of declaration spaces, as described in the following.

Within dl source files of a program, namespace-member-declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space

Within all source files of a program, namespace-member-decl ar ations within namespace-declarations that
have the same fully qualified namespace name are members of a single combined declaration space.

Each class, struct, or interface declaration creates a new declaration space. Names are introduced into this
declaration space through class-member-declarations, struct-member-declarations, or interface-member-
declarations. Except for overloaded constructor declarations and static constructor declarations, a class or
struct member declaration cannot introduce a member by the same name as the class or struct. A class,

struct, or interface permits the declaration of overloaded methods and indexers. A class or struct furthermore
permits the declaration of overloaded constructors and operators. For instance, a class, struct, or interface
may contain multiple method declarations with the same name, provided these method declarations differ in
their signature (83.6). Note that base classes do not contribute to the declaration space of a class, and base
interfaces do not contribute to the declaration space of an interface. Thus, a derived class or interface is
alowed to declare a member with the same name as an inherited member. Such a member is said to hide the
inherited member.

Each enumeration declaration creates a new declaration space. Names are introduced into this declaration
space through enum-member-declarations

Each block or switch-block creates a separate declaration space for local variables. Names are introduced
into this declaration space through local-variable-declarations. If ablock is the body of a constructor or
method declaration, the parameters declared in the formal-parameter-list are members of the block’s local

58 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

variable declaration space. The loca variable declaration space of a block includes any nested blocks.
Thus, within a nested block it is not possible to declare aloca variable with the same name asaloca
variable in an enclosing block.

Each block or switch-block creates a separate declaration space for labels. Names are introduced into this
declaration space through |abel ed-statements, and the names are referenced through goto-statements. The
label declaration space of ablock includes any nested blocks. Thus, within a nested block it is not possible
to declare alabel with the same name as alabel in an enclosing block.

The textua order in which names are declared is generally of no significance. In particular, textual order is not
significant for the declaration and use of namespaces, types, constants, methods, properties, events, indexers,
operators, constructors, destructors, and static constructors. Declaration order is significant in the following

ways:

Declaration order for field declarations and local variable declarations determines the order in which their
initializers (if any) are executed.

Locd variables must be defined before they are used (83.7).

Declaration order for enum member declarations (80) is significant when constant-expression values are
omitted.

The declaration space of a namespace is “open ended”, and two namespace declarations with the same fully
qualified name contribute to the same declaration space. For example

namespace Megacorp.Data

class Customer

}
}

namespace Megacorp.Data

class order

}
}
The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified namesmMegacorp.Data.Customer and Megacorp.Data.oOrder. Because the
two declarations contribute to the same declaration space, it would have been an error if each contained a
declaration of a class with the same name.

The declaration space of ablock includes any nested blocks. Thus, in the following example, the F and G
methods are in error because the name 1 is declared in the outer block and cannot be redeclared in the inner
block. However, the H and T methods are valid since thetwo 1i’s are declared in separate non-nested blocks.

class A

void FQO {
int i = 0;
if (true) {
int i = 1;
}

}

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 59

C#LANGUAGE SPECIFICATION

void GO {
if (true) {
int i = 0;
int i = 1;
}
void HO) {
if (true) {
) int i = 0;
if (true) {
int i = 1;
}
void I() {
for (int i = 0; i < 10; i++)
HO;
for (int i = 0; i < 10; i++)
HO;
}
3.4 Members

Namespaces and types have members. The members of an entity are generally available through the use of a
qudified name that starts with a reference to the entity, followed by a*“.” token, followed by the name of the
member.

Members of atype are either declared in the type or inherited from the base class of the type. When atype
inherits from a base class, al members of the base class, except constructors and destructors, become members
of the derived type. The declared accessibility of abase class member does not control whether the member is
inherited—inheritance extends to any member that isn't a constructor or destructor. However, an inherited
member may not be accessible in a derived type, either because of its declared accessibility (83.5.1) or because
it is hidden by a declaration in the type itself (83.7.1.2).

3.4.1 Namespace members

Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds directly
to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal namespaces,
and namespace names are aways publicly accessible.

3.4.2 Struct members
The members of astruct are the members declared in the struct and the members inherited from class object.

The members of a smple type correspond directly to the members of the struct type aliased by the smple type:
The members of sbyte are the members of the system.SByte struct.
The members of byte are the members of the System.Byte struct.
The members of short are the members of the System.Int16 struct.

The members of ushort are the members of the Ssystem.uIntl16 struct.

60 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

The members of int are the members of the system.Int32 struct.

The members of uint are the members of the system.uInt32 struct.

The members of Tong are the members of the system.Int64 struct.

The members of ulong are the members of the System.uInt64 struct.
The members of char are the members of the system. Char struct.

The members of float are the members of the System.single struct.
The members of doub1e are the members of the System.Doub1e struct.
The members of decimal are the members of the System.Decimal struct.

The members of boo1 are the members of the System.Boolean struct.

3.4.3 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members inherited from
classobject.

3.4.4 Class members

The members of a class are the members declared in the class and the members inherited from the base class
(except for class object which has no base class). The membersinherited from the base class include the
constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the
constructors, destructors, and static constructors of the base class. Base class members are inherited without
regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, constructors, destructors, static constructors, and types.

The members of object and string correspond directly to the members of the class typesthey dlias:
The members of object arethe members of the System.object class.

The members of string arethe members of the System.string class.

3.4.5 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the interface,
and the members inherited from class object.

3.4.6 Array members
The members of an array are the members inherited from class System.Array.

3.4.7 Delegate members
The members of a delegate are the membersinherited from class Ssystem.Delegate.

3.5 Member access

Declarations of members alow control over member access. The accessibility of a member is established by the
declared accessibility (83.5.1) of the member combined with the accessibility of the immediately containing

type, if any.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 61

C#LANGUAGE SPECIFICATION

When access to a particular member is alowed, the member is said to be accessible. Conversdly, when access to
a particular member is disallowed, the member is said to be inaccessible. Access to a member is permitted when
the textua location in which the access takes place is included in the accessibility domain (83.5.2) of the
member.

3.5.1 Declared accessibility
The declared accessibility of amember can be one of the following:

Public, which is selected by including a pub11ic modifier in the member declaration. The intuitive meaning
of pubTic is“access not limited”.

Protected internal (meaning protected or internal), which is selected by including both aprotected and an
internal modifier in the member declaration. The intuitive meaning of protected internal is“access
limited to this program or types derived from the containing class’.

Protected, which is selected by including aprotected modifier in the member declaration. The intuitive
meaning of protected is"access limited to the containing class or types derived from the containing
class’.

Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is"“access limited to this program”.

Private, which is selected by including aprivate modifier in the member declaration. The intuitive
meaning of private is"“access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared accessibility
are permitted. Furthermore, when a member declaration does not include any access modifiers, the context in
which the declaration takes place determines the default declared accessibility.

Namespaces implicitly have pub11i c declared accessibility. No access modifiers are allowed on namespace
declarations.

Types declared in compilation units or namespaces can have public or internal declared accessbility
and default to internal declared accessibility.

Class members can have any of the five types of declared accessibility and default to private declared
accessibility. (Note that atype declared as amember of a class can have any of the five types of declared
accessibility, whereas a type declared as a member of a namespace can have only public or internal
declared accessibility.)

Struct members can have public, internal, or private declared accessibility and default to private
declared accessibility. Struct members cannot have protected or protected internal declared
accessibility.

Interface members implicitly have pub1i ¢ declared accessibility. No accessmodifiers are allowed on
interface member declarations.

Enumeration membersimplicitly have pub11i c declared accessibility. No access modifiers are allowed on
enumeration member declarations.

3.5.2 Accessibility domains

The accessibility domain of amember isthe (possibly digoint) sections of program text in which access to the
member is permitted. For purposes of defining the accessibility domain of a member, a member is said to be
top-leve if it is not declared within atype, and a member is said to be nested if it is declared within another
type. Furthermore, the program text of a program is defined as al program text contained in all source files of
the program, and the program text of atype is defined as all program text contained between the opening and

62 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

closing “{” and “}" tokens in the class-body, struct-body, interface-body, or enumbody of the type (including,
possibly, types that are nested within the type).

The accessibility domain of a predefined type (such asobject, int, or double) isunlimited.
The accessibility domain of atop-level type T declared in a program P is defined as follows:

If the declared accessibility of T ispub1ic, the accessibility domain of T is the program text of p and any
program that references p.

If the declared accessibility of T isinternal, the accessibility domain of T isthe program text of p.

From these definitions it follows that the accessibility domain of atop-level typeis aways at |east the program
text of the program in which the type is declared.

The accessibility domain of a nested member M declared in atype T within aprogram P is defined as follows
(noting that M may itself possibly be atype):

If the declared accessibility of M ispub1i c, the accessibility domain of M is the accessibility domain of T.

If the declared accessibility of M isprotected internal, the accessibility domain of M is the intersection
of the accessibility domain of T with the program text of p and the program text of any type derived from T
declared outside p.

If the declared accessibility of M isprotected, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of T and any type derived from T.

If the declared accessibility of M isinternal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of p.

If the declared accessibility of M isprivate, the accessibility domain of M is the program text of T.

From these definitions it follows that the accessibility domain of a nested member is aways at least the program
text of the type in which the member is declared. Furthermore, it follows that the accessibility domain of a
member is never more inclusive than the accessibility domain of the type in which the member is declared.

In intuitive terms, when atype or member M is accessed, the following steps are evaluated to ensure that the
access is permitted:

Firg, if M is declared within atype (as opposed to a compilation unit or a namespace), an error occurs if that
typeis not accessible.

Then, if M ispublic, the access is permitted.

Otherwise, if Misprotected internal, the accessis permitted if it occurs within the program in which m
is declared, or if it occurs within a class derived from the class in which m is declared and takes place
through the derived class type (83.5.3).

Otherwise, if Misprotected, the access is permitted if it occurs within the classin which m is declared, or
if it occurs within a class derived from the class in which m is declared and takes place through the derived
class type (83.5.3).

Otherwise, if Misinternal, the access is permitted if it occurs within the program in which M is declared.
Otherwise, if M isprivate, the accessis permitted if it occurs within the type in which M is declared.
Otherwise, the type or member is inaccessible, and an error occurs.

In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 63

C#LANGUAGE SPECIFICATION

public class A

public static int X;
internal static int Y;
private static int z;

internal class B

public static int X;
internal static int Y;
private static int z;

pubTic class C

pubTlic static int X;
internal static int Y;
private static int Zz;

private class D

pubTlic static int X;
internal static int Y;
private static int Zz;

}
the classes and members have the following accessibility domains:

The accessibility domain of A and A. X is unlimited.

The accessibility domainof A.Y,B,B.X,B.Y,B.C,B.C.X,and B.C.Y isthe program text of the containing
program.
The accessibility domain of A.z isthe program text of A.

The accessibility domain of B. z and B. D is the program text of B, including the program text of B. C and
B.D.

The accessibility domain of B. C.z isthe program text of B. C.
The accessibility domain of B.D.X,B.D.Y,and B.D.Zz isthe programtext of B.D.

Asthe exampleillustrates, the accessibility domain of a member is never larger than that of a containing type.
For example, even though al x members have public declared accessibility, al but A. x have accessibility
domainsthat are constrained by a containing type.

As described in 83.4, all members of a base class, except for constructors and destructors, are inherited by
derived types. This includes even private members of a base class. However, the accessibility domain of a
private member includes only the program text of the type in which the member is declared. In the example

class A
i
int x;
static void F(B b) {
b.x = 1; // ok
}
}

64 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

class B: A

static void F(B b) {
) b.x = 1; // Error, X not accessible

}

the B class inherits the private member x from the A class. Because the member is private, it is only accessible
within the class-body of A. Thus, the accessto b . x succeedsin the A. F method, but failsin the 8. F method.

3.5.3 Protected access

When aprotected member is accessed outside the program text of the classin which it is declared, and when
aprotected internal member is accessed outside the program text of the program in which it is declared,
the access is required to take place through the derived class type in which the access occurs. Let B be abase
class that declares a protected member M, and let D be a class that derives from B. Within the class-body of D,
accessto M can take one of the following forms:

An unqualified type-name or primary-expression of the form wm.

A type-name of theform T.M, provided T isD or aclass derived from D.

A primary-expression of the form .M, provided the type of E isD or aclass derived from D.
A primary-expression of the form base . m.

In addition to these farms of access, a derived class can access a protected constructor of abase classin a
constructor-initializer (810.10.1).

In the example
public class A

{

protected int x;

static void F(A a, B b) {
a.x 1; // Ok
b.x 1; // ok

}
}

?ub11c class B: A
static void F(A a, B b) {

a.x 1; // Error, must access through instance of B
b.x 1; // Ok

}
}

within A, it is possible to access x through instances of both A and B, since in either case the access takes place
through an instance of A or aclass derived from A. However, within B, it is not possible to access x through an
instance of A, since A does not derive from B.

3.5.4 Accessibility constraints

Severa congtructs in the C# language require atype to be at least as accessible as a member or another type. A
type T issaid to be at |east as accessible as a member or type M if the accessibility domain of T is a superset of
the accessibility domain of M. In other words, T isat least as accessible asm if T isaccessiblein all contexts
where M is accessible.

The following accessibility constraints exist:

The direct base class of a class type must be at least as accessible as the class type itsdlf.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 65

C#LANGUAGE SPECIFICATION

The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

The return type and parameter types of a delegate type must be at least as accessible as the delegate type
itself.

The type of a constant must be at least as accessible as the constant itself.

The type of afidd must be at least as accessible as the field itself.

The return type and parameter types of a method must be at least as accessible as the method itsalf.
The type of a property must be at least as accessible as the property itself.

The type of an event must be at least as accessible as the event itself.

The type and parameter types of an indexer must be at |east as accessible as the indexer itsdlf.

The return type and parameter types of an operator must be at least as accessible as the operator itself.

The parameter types of a constructor must be at least as accessible as the constructor itself.

In the example

class A {..}
public class B: A {.}

the B classisin error because A is not at least as accessible as B.

Likewise, in the example

class A {..}
public class B

AFO {.}
internal A () {.}
pubTlic A HO {..}

the H method in B isin error because the return type A is not at least as accessible as the method.

3.6 Signatures and overloading
Methods, constructors, indexers, and operators are characterized by their signatures:

The signature of a method consists of the name of the method and the type and kind (value, reference, or
output) of each of its forma parameters. The signature of a method specifically does not include the return
type, nor does it include the params modifier that may be specified for the last parameter.

The signature of a constructor consists of the type and kind (value, reference, or output) of each of its formal
parameters. The signature of a constructor specifically does not include the params modifier that may be
specified for the last parameter.

The signature of an indexer consists of the type of each of its forma parameters. The signature of an indexer
specifically does not include the element type.

The signature of an operator consists of the name of the operator and the type of each of its forma
parameters. The signature of an operator specifically does not include the result type.

Signatures are the enabling mechanism for overloading of membersin classes, structs, and interfaces:

66

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

Overloading of methods permits a class, struct, or interface to declare multiple methods with the same name,
provided the signatures of the methods are al unique.

Overloading of constructors permits a class or struct to declare multiple constructors, provided the
signatures of the constructors are al unique.

Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided the
signatures of the indexers are all unique.

Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided the signatures of the operators are all unique.

The following example shows a set of overloaded method declarations along with their signatures.

interface ITest

void FQ; // FO

void F(int x); // F(int)

void F(ref int x); // F(ref int)
void F(out int x); // F(out int)
void F(int x, int y); // F(int, int)
int F(string s); // F(string)
int F(int x); // F(int)

void F(string[] a); // F(string[])
void F(params string[] a); // F(string[])

}

Note that the ref and out parameter modifiers (810.5.1) are part of asignature. Thus, F(int), F(ref int),
and F(out int) aredl unique signatures. Also note that the return type and the params modifier are not part
of asignature, and that it is not possible to overload solely based on return type or solely based on the inclusion
or exclusion of the params modifier. Because of these restrictions, compiling the above example would produce
errors for the methods with the duplicate signatures F(int) and F(string[]).

3.7 Scopes

The scope of aname is the region of program text within which it is possible to refer to the entity declared by
the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare the
meaning of a name from an outer scope. The name from the outer scope is then said to be hidden in the region
of program text covered by the inner scope, and access to the outer name is only possible by qudifying the
name.

The scope of a namespace member declared by a namespace-member-declaration with no enclosing
namespace-declaration is the entire program text of each compilation unit.

The scope of a namespace member declared by a namespace-member-declaration within a namespace-
declaration whose fully qualified nameisN is the namespace-body of every namespace-declaration whose
fully qualified nameisN or starts with the same sequence of identifiers asN.

The scope of aname defined or imported by a using-directive extends over the namespace-member -
declarations of the compilation-unit or namespace-body in which the using-directive occurs. A using-
directive may make zero or more namespace or type names available within a particular compilation-unit or
namespace-body, but does not contribute any new members to the underlying declaration space. In other
words, a using-directive is not trangitive but rather affects only the compilation-unit or namespace-body in
which it occurs.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 67

C#LANGUAGE SPECIFICATION

The scope of amember declared by a classmember-declaration is the class-body in which the declaration
occurs. In addition, the scope of a class member extends to the class-body of those derived classes that are
included in the accessibility domain (83.5.2) of the member.

The scope of amember declared by a struct-member-declaration is the struct-body in which the declaration
occurs.

The scope of amember declared by an enummember-declaration is the enum-body in which the declaration
occurs.

The scope of a parameter declared in a constructor -declaration is the constructor-initializer and block of
that constructor -declaration.

The scope of a parameter declared in a method-declaration is the method-body of that method-declaration.

The scope of a parameter declared in an indexer-declaration is the accessor-declarations of that indexer-
declaration.

The scope of a parameter declared in an operator -declarationis the block of that operator-declaration.

The scope of alocal variable declared in alocal-variable-declaration isthe block in which the declaration

occurs. It isan error to refer to alocal variable in atextual position that precedes the variable-declarator of
the local variable.

The scope of alocal variable declared in afor-initializer of a for statement is thefor-initializer, thefor-
condition, thefor -iterator, and the contained statement of the for statement.

The scope of alabel declared in alabeled-statement is the block in which the declaration occurs.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member in a
textual position that precedes the declaration of the member. For example

class A
void FQO {
i=1;
}
int i = 0;
}

Here, it isvalid for F to refer to i beforeit is declared.

Within the scope of aloca variable, it is an error to refer to the local variable in atextua position that precedes
the variable-declarator of the local variable. For example

class A
int i = 0;

void FQO {
i=1; // Error, use precedes declaration
int 1,
i=2;

}

void GO {
int j

G =1; // Legal

void HO {
int a

1, b = ++a; // Legal

68 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

In the F method above, the first assignment to i specifically does not refer to the field declared in the outer
scope. Rather, it refersto the local variable and it is in error because it textually precedes the declaration of the
variable. In the G method, the use of j in the initiaizer for the declaration of j islegal because the use does not
precede the variable-declarator. In the H method, a subsequent variable-declarator legally refersto aloca
variable declared in an earlier variable-declarator within the same |ocal-variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an expression
context is always the same within ablock. If the scope of aloca variable was to extend only from its declaration
to the end of the block, then in the example above, the first assignment would assign to the instance variable and
the second assignment would assign to the local variable, possibly leading to errorsif the statements of the block
were |ater to be rearranged.

The meaning of a name within a block may differ based on the context in which the name is used. In the
example

class Test

{
static void Main() {
string A = "hello, world";
string s = A; // expression context
Type t = typeof(A); // type context
console.wWriteLine(s); // writes "hello, world"
; Cconsole.writeLine(t.ToString()); // writes "Type: A"
}

the name A is used in an expression context to refer to the local variable A and in atype context to refer to the
classA.

3.7.1 Name hiding

The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity may include declarations that introduce new declaration spaces containing
entities of the same name. Such declarations cause the origind entity to become hidden. Conversaly, an entity is
said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following sections.

3.7.1.1 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a result
of nesting types within classes or structs, and as aresult of parameter and local variable declarations. Name
hiding through nesting of scopes aways occurs “silently”, i.e. no errors or warnings are reported when outer
names are hidden by inner names.

In the example
class A
inti=0

void F(Q) {

int i 1;

void GO {
) i=1;

}

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 69

C#LANGUAGE SPECIFICATION

within the F method, the instance variable i is hidden by the local variable 1, but within the G method, i ill
refers to the instance variable.

When aname in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that name.
In the example

class outer

{
static void F(int i) {}

static void F(string s) {}
class Inner

void GO {
F(1); // Invokes outer.Inner.F
F("Hello"); // Error

static void F(long 1) {}

}

thecal F(1) invokesthe F declared in Inner because al outer occurrences of F are hidden by the inner
declaration. For the same reason, thecall F("He1T10") isin eror.

3.7.1.2 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from base
classes. Thistype of name hiding takes one of the following forms:

A constant, field, property, event, or type introduced in a class or struct hides all base class members with
the same name.

A method introduced in aclass or struct hides all non-method base class members with the same name, and
all base class methods with the same signature (method name and parameter count, modifiers, and types).

An indexer introduced in a class or struct hides al base class indexers with the same signature (parameter
count and types).

The rules governing operator declarations (810.9) make it impossible for a derived class to declare an operator
with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. In the example

class Base

pubTic void FQ {}

class Derived: Base

public void FQO {} // Warning, hiding an inherited name

the declaration of F in Derived causes awarning to be reported. Hiding an inherited name is specifically not an
error, since that would preclude separate evolution of base classes. For example, the above situation might have
come about because a later version of Base introduced an F method that wasn't present in an earlier version of
the class. Had the above situation been an error, then any change made to a base classin a separately versioned
class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:

70 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

class Base

pubTlic void FQ {}

class Derived: Base

new pubTlic void FQ {}

The new modifier indicates that the Fin berived is“new”, and that it isindeed intended to hide the inherited
member.

A declaration of a new member hides an inherited member only within the scope of the new member.

class Base

pubTlic static void FQ {}

class Derived: Base

new private static void FQ {} // Hides Base.F in Derived only

}

class MoreDerived: Derived

static void GO { FO; } // Invokes Base.F

In the example above, the declaration of F in Derived hidesthe F that was inherited from Base, but since the
new F in Derived has private access, its scope does not extend to MoreDerived. Thus, thecal F() in
MoreDerived.G isvalid and will invoke Base. F.

3.8 Namespace and type names

Severa contexts in a C# program require anamespace-name or atype-name to be specified. Either form of
name is written as one or more identifiers separated by “.” tokens.
namespace-name:
namespace-or -type-name
type-name:
namespace-or -type-name
namespace-or -type-name;
identifier
namespace-or-type-name . identifier
A type-name is anamespace-or-type-name that refers to a type. Following resolution as described below, the
namespace-or -type-name of atype-name must refer to atype, or otherwise an error occurs.

A namespace-name is a namespace-or-type-name that refers to a namespace. Following resolution as described

below, the namespace-or -type-name of anamespace-name must refer to a namespace, or otherwise an error
occurs.

The meaning of a namespace-or -type-name is determined as follows:
If the namespace-or -type-name consists of asingle identifier:

o |f the namespace-or -type-name appears within the body of a class or struct declaration, then starting
with that class or struct declaration and continuing with each enclosing class or struct declaration (if
any), if amember with the given name exists, is accessible, and denotes a type, then the namespace-or -

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 71

C#LANGUAGE SPECIFICATION

type-name refers to that member. Note that non-type members (constructors, constants, fields, methods,
properties, indexers, and operators) are ignored when determining the meaning of a namespace-or -type-
name.

o Otherwise, starting with the namespace declaration in which the namespace-or -type-name occurs (if
any), continuing with each enclosing namespace declaration (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

If the namespace contains a namespace member with the given name, then the namespace-or -type-
name refers to that member and, depending on the member, is classified as a namespace or atype.

Otherwisg, if the namespace declaration contains a using-alias-directive that associates the given
name with an imported namespace or type, then the namespace-or-type-name refers to that
namespace or type.

Otherwisg, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the namespace-or -type-name refers
to that type.

Otherwisg, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the namespace-or -type-name is
ambiguous and an error occurs.

0 Otherwise, the namespace-or-type-name is undefined and an error occurs.

Otherwise, the namespace-or -type-name is of the form N. I, where N is a namespace-or-type-name
consisting of al identifiers but the rightmost one, and 1 is the rightmost identifier. N isfirst resolved as a
namespace-or -type-name. If the resolution of N is not successful, an error occurs. Otherwise, N. T is
resolved as follows:

o If Nisanamespace and 1 isthe name of an accessible member of that namespace, then N. I refersto
that member and, depending on the member, is classified as a namespace or atype.

o If Nisaclassor struct type and 1 isthe name of an accessbletypein N, then N. I refers to that type.

0 Otherwise, N. I isan invalid namespace-or -type-name, and an error occurs.

3.8.1 Fully qualified names

Every namespace and type has a fully qualified name which uniquely identifies the namespace or type amongst
all others. The fully qualified name of a namespace or type N is determined as follows:

If N isamember of the globa namespace, its fully qualified nameisN.

Otherwisg, itsfully qudified nameiss.N, where s isthe fully quaified name of the namespace or typein
which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiersthat lead to N,
starting from the global namespace. Because every member of a namespace or type must have a unique name, it
follows that the fully qualified name of a namespace or type is dways unique.

The example below shows several namespace and type declarations aong with their associated fully qualified
names.

class A {} // A

72 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 3 Basic concepts

namespace X // X
class B // X.B
class C {} // X.B.C
namespace Y // X.Y
class D {} // X.Y.D
}
namespace X.Y // X.Y
class E {} // X.Y.E

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 73

Chapter 4 Types

4. Types

The types of the C# language are divided into two categories. Vaue types and reference types.

type:
value-type

reference-type
A third category of types, pointers, is available only in unsafe code. Thisis discussed further in 8A.2.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to their data, the latter known as objects. With reference types,
it is possible for two variables to reference the same object, and thus possible for operations on one variable to
affect the object referenced by the other variable. With value types, the variables each have their own copy of
the data, and it is not possible for operations on one to affect the other.

C# stype system is unified such that a value of any type can be treated as an object Every type in C# directly
or indirectly derives from the object classtype, and object isthe ultimate base class of dl types. Vaues of
reference types are treated as objects simply by viewing the values as type object. Values of value types are
treated as objects by performing boxing and unboxing operations (84.3).

4.1 Value types

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types called the
simple types. The simple types are identified through reserved words, and are further subdivided into numeric
types, integral types, and floating-point types.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
simple-type:
numeric-type
bool
numeric-type:
integral-type
floating-point-type

decimal

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 75

C#LANGUAGE SPECIFICATION

integral-type:
sbyte
byte
short
ushort
int
uint
Tong
ulong
char

floating-poi nt-type:
float
double

enum-type:
type-name

All value types implicitly inherit from classobject. It is not possble for any type to derive from avaue type,
and value types are thus implicitly sealed.

A variable of avalue type aways contains a value of that type. Unlike reference types, it is not possible for a
value of avauetypeto be nul1 or to reference an object of a more derived type.

Assignment to a variable of avalue type creates a copy of the value being assigned. This differs from
assignment to a variable of areference type, which copies the reference but not the object identified by the
reference.

4.1.1 Default constructors

All value types implicitly declare a public parameterless constructor called the default constructor . The default
constructor returns a zero-initialized instance known as the default value for the value type:

For al simple-types, the default value is the value produced by a bit pattern of all zeros:

For sbyte, byte, short,ushort, int,uint, Tong, and ulong, the default value is 0.
For char, the default valueis '\x0000".

For float, the default valueis 0. 0f.

For doube, the default valueis 0. 0d.

For decimal, the default valueis 0. Om.

For booT, the default value is false.

O O O O O o

For an enumtype E, the default value is 0.

For a struct-type, the default value is the value produced by setting al value type fields to their default value
and all referencetypefieldsto nulT.

Like any other congtructor, the default constructor of avaue type isinvoked using the new operator. In the
example below, the i and j variables are both initialized to zero.

76 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 4 Types

class A
void FQO) {
int i = 0;
int j = new int(Q);
}
ks

Because every value type implicitly has a public parameterless constructor, it is not possible for a struct type to
contain an explicit declaration of a parameterless constructor. A struct type is however permitted to declare
parameterized constructors. For example

struct Point

int x, y;

public Point(int x, int y) {
this.x = x;
this.y = vy;

}
Given the above declaration, the statements

new Point();
new Point(0, 0);

Point pl
Point p2

both create a Point with x and y initialized to zero.

4.1.2 Struct types

A struct type is avalue type that can declare constructors, constants, fields, methods, properties, indexers,
operators, and nested types. Struct types are described in §11.

4.1.3 Simple types

C# provides a set of predefined struct types called the smple types. The simple types are identified through
reserved words, but these reserved words are smply aliases for predefined struct typesin the System
namespace, as described in the table below.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 77

C#LANGUAGE SPECIFICATION

Reserved word Aliased type
shyte System.SByte
byte System.Byte
short System.Intl6
ushort System.UIntl6
int System.Int32
uint System.UInt32
Tong System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.DoubTle
bool System.Boolean
decimal System.Decimal

Because asimple type aliases a struct type, every smple type has members. For example, int has the members
declared in system. Int32 and the membersinherited from system.object, and the following statements
are permitted:

int i = int.Maxvalue;

string s = i.ToString();
string t = 123.ToString();

// System.Int32.Maxvalue constant
// System.Int32.ToString() instance method
// System.Int32.ToString() instance method

The simple types differ from other struct typesin that they permit certain additional operations:

Most simple types permit values to be created by writing literals (82.4.4). For example, 123 isalitera of
typeint and 'a' isalitera of type char. C# makes no provision for literals of other struct types, and
values of other struct types are ultimately aways created through constructors of those struct types.

When the operands of an expression are al simple type congtants, it is possible for the compiler to evaluate
the expression a compile-time. Such an expression is known as aconstant-expression (87.15). Expressions
involving operators defined by other struct types always imply run time evaluation.

Through const declarations it is possible to declare constants of the simple types (810.3). It is not possible
to have constants of other struct types, but a similar effect is provided by static readonly fields.

Conversions involving simple types can participate in evaluation of conversion operators defined by other
struct types, but a user-defined conversion operator can never participate in evaluation of another user-
defined operator (86.4.2).

4.1.4 Integral types

C# supports nine integra types. sbyte, byte, short, ushort,int,uint, Tong, ulong, and char. The
integral types have the following sizes and ranges of values:

The sbyte type represents signed 8-bit integers with values between —128 and 127.

The by te type represents unsigned 8-bit integers with values between 0 and 255.

The short type represents signed 16-bit integers with values between —32768 and 32767.
The ushort type represents unsigned 16-bit integers with values between 0 and 65535.

78 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 4 Types

The 1int type represents signed 32-bit integers with values between —2147483648 and 2147483647.
The uint type represents unsigned 32-bit integers with values between 0 and 4294967295.

The Tong type represents signed 64-bit integers with values between —9223372036854775808 and
9223372036854775807.

The ulong type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

The char type represents unsigned 16-bit integers with values between 0 to 65535. The set of possible
valuesfor the char type corresponds to the Unicode character set.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

For the unary + and ~ operators, the operand is converted to type T, where T isthe first of int, uint, Tong,
and uTong that can fully represent al possible values of the operand. The operation is then performed using
the precision of type T, and the type of the result is T.

For the unary—operator, the operand is converted to type T, where T isthefirst of int and Tong that can
fully represent al possible values of the operand. The operation is then performed using the precision of
type T, and the type of the result is T. The unary—operator cannot be applied to operands of type ulong.

For thebinary +, -, *, /,%, & A, |, ==, !=,>, <, >=, and <= operators, the operands are converted to type T,
where T isthefirst of int, uint, Tong, and ulong that can fully represent al possible values of each
operand. The operation is then performed using the precision of type T, and the type of the result is T (or
boo1 for the relationa operators). It is not possible for one operand to be of type Tong and the other to be
of type uTong with the binary operators.

For the binary << and >> operators, the left operand is converted to type T, where T isthe first of int,
uint, Tong, and ulong that can fully represent all possible values of the operand. The operation is then
performed using the precision of type T, and the type of the result isT.

The char typeis classified as an integral type, but it differs from the other integral typesin two ways.

There are no implicit conversions from other typesto the char type. In particular, even though the sbyte,
byte, and ushort types have ranges of values that are fully representable using the char type, implicit
conversonsfrom sbyte, byte, or ushort to char do not exist.

Constants of the char type must be written ascharacter-literals. Character constants can only be written as
integer-literalsin combination with a cast. For example, (char)10 isthe same as '\x000A".

The checked and unchecked operators and statements are used to control overflow checking for integral-type
arithmetic operations and conversions (87.5.12). In a checked context, an overflow produces a compile-time
error or causes an overfloweException to bethrown. In an unchecked context, overflows are ignored and
any high-order bits that do not fit in the destination type are discarded.

4.1.5 Floating point types

C# supports two floating point types. float and double. The float and double types are represented using
the 32-bit single-precision and 64-bit double-precision |EEE 754 formats, which provide the following sets of
values:

Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as the
simple value zero, but certain operations distinguish between the two.

Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For example 1.0 / 0.0 yieds positiveinfinity, and -1.0 / 0.0 yields negative infinity.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 79

C#LANGUAGE SPECIFICATION

The Not-a-Number value, often abbreviated NaN. NaN'’s are produced by invalid floating- point operations,
such as dividing zero by zero.

The finite set of non-zero values of the form s x mx 2°, where sis 1 or -1, and mand e are determined by
the particular floating-point type: For float, 0< m< 2** and -149 = e = 104, and for double, 0< m< 2*°
and -1075 = e = 970.

The float type can represent values ranging from approximately 1.5 x 10*° to 3.4 x 10*® with a precision of 7
digits.

The doub1e type can represent values ranging from approximately 5.0 x 10°%* to 1.7 x 10°*® with a precision of
15-16 digits.

If one of the operands of a binary operator is of a floating-point type, then the other operand must be of an
integral type or afloating-point type, and the operation is evauated as follows:

If one of the operands of is of an integral type, then that operand is converted to the floating-point type of
the other operand.

Then, if either of the operandsiis of type doube, the other operand is converted to doube, the operation is
performed using at least doub1e range and precision, and the type of the result isdoubTe (or boo1 for the
relational operators).

Otherwise, the operation is performed using at least f1oat range and precision, and the type of the result is
float (or boo1 for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptiona situations, floating-point operations produce zero, infinity, or NaN, as described below:

If the result of a floating-point operation is too small for the destination format, the result of the operation
becomes positive zero or negative zero.

If the result of afloating-point operation istoo large for the destination format, the result of the operation
becomes positive infinity or negative infinity.

If afloating-point operation isinvalid, the result of the operation becomes NaN.
If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For
example, some hardware architectures support an “extended” or “long double” floating- point type with greater
range and precision than the doub1e type, and implicitly perform al floating-point operations using this higher
precision type. Only at excessive cost in performance can such hardware architectures be made to perform
floating-point operations with less precision, and rather than require an implementation to forfeit both
performance and precision, C# alows a higher precision type to be used for al floating-point operations. Other
than delivering more precise results, this rarely has any measurable effects. However, in expressions of the form
x *y / z, where the multiplication produces aresult that is outside the doub1e range, but the subsequent
division brings the temporary result back into the doub1e range, the fact that the expression is evaluated in a
higher range format may cause a finite result to be produced instead of an infinity.

4.1.6 The decimal type

The decimal typeisa 128-bit data type suitable for financial and monetary calculations. The decimal type
can represent values ranging from 1.0 x 10°%® to approximately 7.9 x 10°® with 28-29 significant digits.

The finite set of values of type decimal are of theform sx mx 10°, wheresis1or—1,0=m< 2% ad-28=¢
= 0. The decimal type does not support signed zeros, infinities, or NaN's.

80 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 4 Types

A decimal isrepresented as a 96-bit integer scaled by a power of ten. For decimals with an absolute value
lessthan 1.0m, the value is exact to the 28" decimal place, but no further. For decimalswith an absolute value
greater than or equd to 1.0m, the value is exact to 28 or 29 digits. Contrary to the f1oat and double data
types, decimal fractional numbers such as 0.1 can be represented exactly in the decimal representation. In the
float and double representations, such numbers are often infinite fractions, making those representations

more prone to round-off errors.

If one of the operands of a binary operator is of type decimal, then the other operand must be of an integral
type or of type decimal. If anintegral type operand is presert, it is converted to decimal before the operation
is performed.

Operations on values of type decimal are exact to 28 or 29 digits, but to no more than 28 decimal places.
Results are rounded to the nearest representable value, and, when aresult is equally close to two representable
values, to the value that has an even number in the least significant digit position.

If adecimal arithmetic operation produces a value that is too small for the decimal format after rounding, the
result of the operation becomes zero. If adecimal arithmetic operation produces a result that is too large for the
decimal format, an overflowException isthrown.

The decimal type has greater precision but smaller range than the floating-point types. Thus, conversions from
the floating-point typesto decimal might produce overflow exceptions, and conversions from decimal to the
floating-point types might cause loss of precision. For these reasons, no implicit conversions exist between the
floating-point types and decimaT, and without explicit casts, it is not possible to mix floating-point and
decimal operands in the same expression.

4.1.7 The bool type
The boo1 type represents boolean logical quantities. The possible values of type boo1 are true and false.

No standard conversions exist between boo1 and other types. In particular, the boo1 typeis distinct and
Separate from the integral types, and aboo1 value cannot be used in place of an integral value, nor vice versa

In the C and C++ languages, a zero integral value or anull pointer can be converted to the boolean value false,
and anon-zero integral value or anon-null pointer can be converted to the boolean value true. In C#, such
conversions are accomplished by explicitly comparing an integral value to zero or explicitly comparing an
object referenceto nul1.

4.1.8 Enumeration types

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying type,
which may be byte, sbyte, short, ushort,int, uint, long or uTong. Enumeration types are defined
through enumeration declarations (814.1).

4.2 Reference types
A reference typeis a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
object
string

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 81

C#LANGUAGE SPECIFICATION

interface-type:

type-name
array-type:

non-array-type rank-specifiers
non-array-type:

type

rank-specifiers:

rank -specifier

rank-specifiers rank-specifier
rank -specifier:

[dimseparators,:]
dim-separators:

éi mseparators
delegate-type:
type-name

A reference type value is areference to an instance of the type, the latter known as an object. The specia value
null iscompatible with al reference types and indicates the absence of an instance.

4.2.1 Class types

A class type defines a data structure that contains data members (constants, fields, and events), function
members (methods, properties, indexers, operators, constructors, and destructors), and nested types. Class types
support inheritance, a mechanism whereby derived classes can extend and specialize base classes. Instances of
class types are created using obj ect-creation-expressions (8§7.5.10.1).

Class types are described in §10.

4.2.2 The object type

The object classtype is the ultimate base class of al other types. Every type in C# directly or indirectly
derives from the object classtype.

The object keyword is ssimply an alias for the predefined system.object class. Writing the keyword
object isexactly the same aswriting System.0Object, and vice versa.

4.2.3 The string type

The string typeisaseded class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (82.4.4).

The string keyword is smply an dias for the predefined system. string class. Writing the keyword
string isexactly the same aswriting System.String, and vice versa.

4.2.4 Interface types

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interface types are described in 813.

82 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 4 Types

4.2.5 Array types

An array is adata structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, aso caled the elements of the array, are dl of the same type, and this type
is called the dement type of the array.

Array types are described in §12.

4.2.6 Delegate types

A delegate is a data structure that refers to a static method or to an object instance and an instance method of
that object.

The closest equivalent of adelegate in C or C++ is afunction pointer, but whereas a function pointer can only
reference static functions, a delegate can reference both static and instance methods. In the latter case, the
delegate stores not only a reference to the method’ s entry point, but also a reference to the object instance for
which to invoke the method.

Delegate types are described in §15.

4.3 Boxing and unboxing

Boxing and unboxing is a central concept in C# s type system. It provides a binding link between value-types
and reference-types by permitting any value of a value-typeto be converted to and from type object. Boxing
and unboxing enables a unified view of the type system wherein a value of any type can ultimately be treated as
an object.

4.3.1 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type vaue into that instance.

The actual process of boxing a value of avalue-type is best explained by imagining the existence of a boxing
class for that type. For any value-type T, the boxing class would be declared as follows:

class T_Box

T value;

T_Box(T t) {
value = t;

}

Boxing of avaue v of type T now consists of executing the expression new T_Box(v), and returning the
resulting instance as a value of type object. Thus, the statements

int i = 123;
object box = 1i;

conceptually correspond to

int i = 123;
object box = new int_Box(i);

Boxing classeslike T_Box and int_Box above don't actualy exist and the dynamic type of a boxed valueisn't
actudly a classtype. Instead, a boxed value of type T has the dynamic type T, and a dynamic type check using
the is operator can simply reference type T. For example,

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 83

C#LANGUAGE SPECIFICATION

int i = 123;
object box = 1i;
if (box is int) {
console.write("Box contains an int");

will output the string “Box contains an int” onthe console.

A boxing conversion implies making a copy of the value being boxed. Thisis different from a conversion of a
reference-typeto type object, in which the value continues to reference the same instance and smply is
regarded as the less derived type object. For example, given the declaration

struct Point

public int x, y;

public Point(int x, int y) {
this.x X;
this.y Y;

}
the following statements

Point p = new Point(10, 10);

object box = p;

p.x = 20;

console.write(((Point)box).x);
will output the value 10 on the console because the implicit boxing operation that occurs in the assignment of p
to box causes the value of p to be copied. Had point instead been declared a c1ass, the vaue 20 would be
output because p and box would reference the same instance.

4.3.2 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an object
box to a value-type T consists of executing the expression ((T_Box)box) .value. Thus, the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new int_Box(123);
int i = ((int_Box)box) .value;

For an unboxing conversion to a given value-type to succeed a run-time, the value of the source argument must
be a reference to an object that was previoudy created by boxing a value of that value-type. If the source
argument isnu11 or areference to an incompatible object, an InvalidCastException isthrown.

84 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 5 Variables

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. C# is atype-safe language, and the C# compiler guarantees that values stored in variables are always of
the appropriate type. The value of a variable can be changed through assignment or through use of the ++ and

-- operators.

A variable must be definitely assigned (85.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially unassigned. Aninitialy
assigned variable has awell-defined initial value and is always considered definitely assigned. An initially
unassigned variable has no initia vaue. For an initially unassigned variable to be considered definitely assigned
at a certain location, an assignment to the variable must occur in every possible execution path leading to that
location.

5.1 Variable categories

C# defines seven categories of variables: static variables, instance variables, array elements, value parameters,
reference parameters, output parameters, and loca variables. The sections that follow describe each of these
categories.

In the example

class A

public static int x;
int y;
void F(int[] v, int a, ref int b, out int c) {
int i = 1;
C = a + b++;
}
ks

x isadatic variable, y isan instance variable, v[0] isan array element, a isavaue parameter, b isareference
parameter, c isan output parameter, and i isalocal variable.

5.1.1 Static variables

A field declared with the static modifier is called adtatic variable. A static variable comes into existence
when the type in which it is declared is loaded (810.11), and ceases to exist when the program terminates.

Theinitial value of a static variable is the default value (85.2) of the variable' s type.

For purposes of definite assignment checking, a static variable is considered initially assigned.

5.1.2 Instance variables
A field declared without the static modifier is called an instance variable.

5.1.2.1 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that classis created, and ceasesto
exist when there are no references to that instance and the instance' s destructor (if any) has executed.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 85

C#LANGUAGE SPECIFICATION

Theinitial value of an instance variable of aclassis the default value (85.2) of the variable' s type.
For purposes of definite assignment checking, an instance variable of a class is considered initialy assigned.

5.1.2.2 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In other
words, when a variable of a struct type comes into existence or ceases to exist, so too do the instance variables
of the struct.

The initial assgnment state of an instance variable of a struct in the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance variables,
and when a struct variable is considered initially unassigned, its instance variables are likewise unassigned.

5.1.3 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when there
are no references to that array instance.

Theinitial value of each of the elements of an array is the default value (85.2) of the type of the array elements.

For purposes of definite assignment checking, an array element is considered initially assigned.

5.1.4 Value parameters
A parameter declared without a ref or out modifier is avalue parameter.

A value parameter comes into existence upon invocation of the function member (method, constructor, accessor,
or operator) to which the parameter belongs, and is initialized with the vaue of the argument given in the
invocation. A value parameter ceases to exist upon return of the function member.

For purposes of definite assignment checking, a value parameter is considered initially assigned.

5.1.5 Reference parameters
A parameter declared with a ref modifier is areference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of a
reference parameter is aways the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output
parameters described in §85.1.6.

A variable must be definitely assigned (85.3) before it can be passed as a reference parameter in afunction
member invocation.

Within a function member, areference parameter is considered initialy assigned.

Within an instance method or instance accessor of a struct type, the this keyword behaves exactly asa
reference parameter of the struct type (87.5.7).

5.1.6 Output parameters
A parameter declared with an out modifier isan output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of an
output parameter is always the same as the underlying variable.

86 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 5 Variables

The following definite assignment rules apply to output parameters. Note the different rules for reference
parameters described in §85.1.5.

A variable need not be definitely assigned before it can be passed as an output parameter in afunction
member invocation.

Following a function member invocation, each variable that was passed as an output parameter is considered
assigned in that execution path.

Within afunction member, an output parameter is considered initialy unassigned.

Every output parameter of a function member must be definitely assigned (85.3) before the function
member returns.

Within a constructor of a struct type, the th1is keyword behaves exactly as an output parameter of the struct
type (87.5.7).

5.1.7 Local variables

A local variable is declared by a local-variable-declaration, which may occur in ablock, a for-statement, a
switch-statement, or ausing-statement. A local variable comes into existence when control enters the block, for-
statement, switch-statement, or using-statement that immediately contains the local variable declaration. A loca
variable ceases to exist when control leavesits immediately containing block, for-statement, switch-statement, or
using-statement.A local variable is not automatically initialized and thus has no default value. For purposes of
definite assignment checking, alocal variable is considered initially unassigned. A local-variable-declaration
may include avariable-initializer, in which case the variable is considered definitely assigned in its entire scope,
except within the expression provided in the variable-initializer.

Within the scope of aloca variable, it isan error to refer to the local variable in atextua position that precedes
its variable-declarator .

| ssue

The* comesinto existence” and “ ceasesto exist” language used here refers to scope and not to garbage collection. We
need to clarify this. The language description should be loose enough to allow an aggressive implementation to deter mine
that a local variable can no longer be used and that there are no other references to the object, and to conclude that it is ok
to make the referenced object available for garbage collection. This may result in the object being garbage collected before
thelocal variable goes out of scope or “ ceasesto exist” , using the language above.

5.2 Default values
The following categories of variables are automatically initialized to their default values:

Static variables.
Instance variables of classinstances.
Array elements.
The default value of a variable depends on the type of the variable and is determined as follows:

For avariable of a value-type, the default value is the same as the va ue computed by the value-type’'s
default constructor (84.1.1).

For avariable of areference-type, the default value isnul1.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 87

C#LANGUAGE SPECIFICATION

5.3 Definite assignment

At agiven location in the executable code of afunction member, avariable is said to be definitely assigned if
the compiler can prove, by static flow analysis, that the variable has been automatically initiaized or has been
the target of at least one assignment. The rules of definite assignment are:

Aninitially assigned variable (85.3.1) is dways considered definitely assigned.

An initially unassigned variable (85.3.2) is considered definitely assigned at a given location if al possible
execution paths leading to that location contain at least one of the following:

0 A smple assgnment (87.13.1) in which the variable is the left operand.

0 Aninvocation expression (87.5.5) or object creation expression (87.5.10.1) that passes the variable as an
output parameter.

0 For alocal variable, alocal variable declaration (88.5) that includes a variable initidizer.

The definite assignment state of instance variables of astruct-type variable are tracked individually as well as
collectively. In additional to the rules above, the following rules apply to struct-type variables and their instance
variables:

An ingtance variable is considered definitely assigned if its containing struct-typevariable is considered
definitely assigned.

A struct-type variable is considered definitely assigned if each of its instance variables are considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

A variable must be definitely assigned at each location where its value is obtained. This ensures that
undefined values never occur. The occurrence of avariable in an expression is considered to obtain the
value of the variable, except when

o thevariableistheleft operand of a smple assignment,
o thevariableis passed as an output parameter, or
o thevariableisa structtype variable and occurs as the left operand of a member access.

A variable must be definitely assigned at each location where it is passed as a reference parameter. This
ensures that the function member being invoked can consider the reference parameter initially assigned.

All output parameters of a function member must be definitely assigned at each location where the function
member returns (through a return statement or through execution reaching the end of the function member
body). This ensures that function members do no return undefined values in output parameters, thus
enabling the compiler to consider a function member invocation that takes a variable as an output parameter
equivalent to an assignment to the variable.

The th1is variable of a struct-type constructor must be definitely assigned at each location where the
constructor returns.

The following example demonstrates how the different blocks of a try statement affect definite assignment.

88 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

class A
static void FO {
int i, j;
try {
// ne1ther i nor j definitely assigned
// i def1n1te1y assigned
// i and j definitely assigned

catch {
// ne1ther i nor j definitely assigned

// i def1n1te1y assigned

}
finally {
// neither i nor j definitely assigned

4:
// i def1n1te1y assigned
5;
// i and j definitely assigned
// 1 and j definitely assigned

}
}

Chapter 5 Variables

The dtatic flow andysis performed to determine the definite assignment state of a variable takes into account the

special behavior of the&&, | |, and ?: operators. In each of the methods in the example

class A
{ o .
static void F(int x, int y) {
int i;

if X>=08&8% (i =y) >=0) {
// 1 definitely assigned

else {
// 1 not definitely assigned

// 1 not definitely assigned

static void G(int x, int y) {
int 1i;
if (x>=0 1| (A=y)>=0) {
// 1 not definitely assigned

else {
// 1 definitely assigned

}
// i not definitely assigned
}

the variable i is considered definitely assigned in one of the embedded statements of an i f statement but not in
the other. In the 1 f statement in the F method, the variable i is definitely assigned in the first embedded
statement because execution of the expression (i = y) aways precedes execution of this embedded statement.
In contrast, the variable i is not definitely assigned in the second embedded statement since the variable i may
be unassigned. Specifically, the variable i is unassigned if the value of the variable x is negative. Similarly, in
the G method, the variable i is definitely assigned in the second embedded statement but not in the first

embedded statement.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

89

C#LANGUAGE SPECIFICATION

5.3.1 Initially assigned variables
The following categories of variables are classified asinitially assigned:

Static variables.

Instance variables of class instances.

Instance variables of initially assigned struct variables.
Array elements.

Vaue parameters.

Reference parameters.

5.3.2 Initially unassigned variables
The following categories of variades are classified as initially unassigned:

Instance variables of initially unassigned struct variables.
Output parameters, including the this variable of struct constructors.
Locd variables.

5.4 Variable references

A variable-reference isan expression that is classified as avariable. A variable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value. In C and C++, avariable-
reference is known as an Ivalue.

variable-reference:
expression

The following constructs require an expression to be a variable-reference:
The left hand side of an assignment (which may aso be a property access or an indexer access).

An argument passed asa ref or out parameter in a method or constructor invocation.

90 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 6 Conversions

6. Conversions

6.1 Implicit conversions
The following conversions are classified asimplicit conversions.

Identity conversions

Implicit numeric conversions

Implicit enumeration conversions.
Implicit reference conversions

Boxing conversions

Implicit constant expression conversions
User-defined implicit conversions

Implicit conversions can occur in avariety of situations, including function member invocations (87.4.3), cast
expressions (87.6.8), and assignments (87.13).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly
designed user-defined implicit conversions should exhibit these characteristics as well.

6.1.1 Identity conversion

An identity conversion converts from any type to the same type. This conversion exists only such that an entity
that aready has a required type can be said to be convertible to that type.

6.1.2 Implicit numeric conversions
The implicit numeric conversions are:

From sbyte to short, int, Tong, float, double, or decimal.

From byte to short, ushort, int,uint, long, ulong, float, double, or decimal.
From short to int, Tong, float, double, or decimal.

Fromushorttoint,uint, Tong, ulong, float, double, or decimal.

Fromintto Tong, float, double, or decimal.

Fromuint to Tong, ulong, float, double, or decimal.

From Tong to float, double, or decimal.

FromuTong to float, double, or decimal.

From char to ushort, int, uint, Tong, ulong, float, double, or decimal.

From fl1oat to doubTe.

Conversonsfrom int,uint, or Tong to f1oat and from Tong to doubT1e may cause aloss of precision, but
will never cause aloss of magnitude. The other implicit numeric conversions never lose any information.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 91

C#LANGUAGE SPECIFICATION

There are no implicit conversions to the char type. Thisin particular means that values of the other integral
types do not automatically convert to the char type.

6.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer-literal 0 to be converted to any enum-type.

6.1.4 Implicit reference conversions
The implicit reference conversions are:

From any reference-type to object.

From any class-type s to any class-type T, provided s is derived from T.

From any class-type s to any interface-type T, provided s implements T.

From any interface-type s to any interface-type T, provided s is derived from T.

From an array-type s with an element type st to an array-type T with an element type Te, provided dl of the
following are true:

o s and T differ only in element type. In other words, s and T have the same number of dimensions.
0 Both se and Te arereference-types.

o0 Animplicit reference conversion exists from Se to Te.

From any array-typeto System.Array.

From any delegate-type to System.Delegate.

From any array-type or delegate-type to System.ICloneable.

From the null type to any reference-type.

The implicit reference conversions are those conversions between reference-types that can be proven to always
succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of avalue, it never changes the vaue itsdlf.

6.1.5 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type value into that instance.

Boxing conversions are further described in 84.3.1

6.1.6 Implicit constant expression conversions
An implicit constant expression conversion permits the following conversions:

A constant-expression (87.15) of type int can be converted to type sbyte, byte, short, ushort, uint,
or uTong, provided the value of the constant-expression is within the range of the destination type.

A constant-expression of type Tong can be converted to type ulong, provided the value of the constant-
expression is not negative.

92 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 6 Conversions

6.1.7 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by execution
of a user-defined implicit conversion operator, followed by another optional standard implicit conversion. The
exact rules for evaluating user-defined conversions are described in §86.4.3.

6.2 Explicit conversions
The following conversions are classified as explicit conversions.

All implicit conversions.
Explicit numeric conversions.
Explicit enumeration conversions.
Explicit reference conversions.
Explicit interface conversions.
Unboxing conversions.
User-defined explicit conversions.
Explicit conversions can occur in cast expressions (87.6.8).

The explicit conversions are conversions that cannot be proved to always succeed, conversions that are known
to possibly lose information, and conversions across domains of types sufficiently different to merit explicit
notation.

The set explicit conversions includes al implicit conversions. Thisin particular means that redundant cast
expressions are allowed.

6.2.1 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for which an
implicit numeric conversion (86.1.2) does not already exist:

From sbyte to byte, ushort, uint, ulong, or char.

From byte to sbyte and char.

From short to sbyte, byte, ushort, uint, ulong, or char.

Fromushort to sbyte, byte, short, or char.

Fromint to sbyte, byte, short, ushort,uint,ulong, or char.

Fromuint to sbyte, byte, short, ushort, int, or char.

From Tong to sbyte, byte, short, ushort, int,uint, ulong, or char.

FromuTong to sbyte, byte, short, ushort, int,uint, Tong, or char.

From char to sbyte, byte, or short.

From float to sbyte, byte, short,ushort, int,uint, lTong, ulong, char, or decimal.
From double to sbyte, byte, short, ushort, int, uint, Tong,ulong, char, float, or decimal.

From decimal to sbyte, byte, short, ushort, int,uint, Tong, ulong, char, float, or doubTe.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 93

C#LANGUAGE SPECIFICATION

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible to
convert from any numeric-type to any other numeric-type using a cast expression (87.6.8).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

For a conversion from an integral type to another integral type, the processing depends on the overflow
checking context (87.5.12) in which the conversion takes place:

0 Inachecked context, the conversion succeeds if the source argument is within the range of the
destination type, but throvsan overflowException if the source argument is outside the range of the
destination type.

0 Inanunchecked context, the conversion dways succeeds, and smply consists of discarding the most
significant bits of the source value.

For aconversion from float, double, or decimal to an integra type, the source value is rounded towards
zero to the nearest integral value, and this integral value becomes the result of the conversion. If the
resulting integral value is outside the range of the destination type, an overflowException isthrown.

For aconversion from double to float, the doub1e valueisrounded to the nearest f1oat vaue. If the
double valueistoo small to represent asa float, the result becomes positive zero or negative zero. If the
double vaueistoo large to represent as a f1oat, the result becomes positive infinity or negative infinity.
If the double valueis NaN, the result is also NaN.

For aconversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number after the 28" decimal place if required (84.1.6). If the
source value is too small to represent asa decimal, the result becomes zero. If the source value is NaN,
infinity, or too large to represent asa decimal, an InvalidCastException isthrown.

For aconversion from decimal to float or double, the decimal valueis rounded to the nearest double
or float value. While this conversion may lose precision, it never causes an exception to be thrown.

6.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

From sbyte, byte, short,ushort,int,uint, Tong, ulong, char, float, double, or decimal to any
enum-type.

From any enum-type to sbyte, byte, short, ushort, int,uint, Tong, ulong, char, float, double,
or decimal.

From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-typeas
the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion between
the resulting types. For example, given an enum+type E with and underlying type of int, aconversion from E to
byte isprocessed as an explicit numeric conversion (86.2.1) from int to byte, and a conversion from byte to
E isprocessed as an implicit numeric conversion (86.1.2) from byte to int.

6.2.3 Explicit reference conversions
The explicit reference conversions are:

From object to any reference-type.

From any class-type s to any class-type T, provided s isabase class of T.

94 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 6 Conversions

From any class-type s to any interface-type T, provided s isnot sealed and provided s does not implement
T.

From any interface-type s to any class-type T, provided T is not sealed or provided T implements s.
From any interface-type s to any interface-type T, provided s is not derived from T.

From an array-type s with an element type st to an array-type T with an element type Te, provided dl of the
following are true:

0 S and T differ only in element type. In other words, s and T have the same number of dimensions.
0 Both se and Te arereference-types.

0 Anexplicit reference conversion exists from Se to Te.

From system.Array to any array-type.

From system.Delegate to any delegate-type

From system.ICloneable to any array-type or delegate-type.

The explicit reference conversions are those conversions between reference-types that require run-time checks
to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source argument must be nu11 or
the actual type of the object referenced by the source argument must be a type that can be converted to the
destination type by an implicit reference conversion (86.1.4). If an explicit reference conversion fails, an
InvalidcastException isthrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of avaue, it never changes the value itsdlf.

6.2.4 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Unboxing conversions are further described in 84.3.2.

6.2.5 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by execution of
a user-defined implicit or explicit conversion operator, followed by another optiona standard explicit
conversion. The exact rules for evaluating user-defined conversions are described in §6.4.4.

6.3 Standard conversions
The standard conversions are those pre-defined conversions that can occur as part of a user-defined conversion.

6.3.1 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:

Identity conversions (86.1.1)
Implicit numeric conversions (86.1.2)

Implicit reference conversions (86.1.4)

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 95

C#LANGUAGE SPECIFICATION

Boxing conversions (86.1.5)
Implicit constant expression conversions (86.1.6)

The standard implicit conversions specifically exclude user-defined implicit conversions.

6.3.2 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. In other words, if a standard implicit
conversion exists from atype A to atype B, then a standard explicit conversion exists from type A to type B and
from type B to type A.

6.4 User-defined conversions

C# alows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions. User-
defined conversions are introduced by declaring conversion operators (810.9.3) in class and struct types.

6.4.1 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an
aready existing implicit or explicit conversion. A class or struct is permitted to declare a conversion from a
sourcetype s to atarget type T only if al of the following are true:

s and T are different types.
Either s or T isthe class or struct type in which the operator declaration takes place.
Neither s nor T isobject or an interface-type
Tisnot abaseclassof s,and s isnot abase classof T.
The restrictions that apply to user-defined conversions are discussed further in 810.9.3.

6.4.2 Evaluation of user-defined conversions

A user-defined conversion converts a value from its type, called the source type, to another type, called the
target type. Evaluation of a user-defined conversion centers on finding the most specific user-defined
conversion operator for the particular source and target types. This determination is broken into several steps:

Finding the set of classes and structs from which user-defined conversion operators will be considered. This
set consists of the source type and its base classes and the target type and its base classes (with the implicit
assumptions that only classes and structs can declare user-defined operators, and that non-class types have
no base classes).

From that set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it must be possible to perform a standard conversion (86.3) from the
source type to the argument type of the operator, and it must be possible to perform a standard conversion
from the result type of the operator to the target type.

From the set of applicable user-defined operators, determining which operator is unambiguously the most
specific. In general terms, the most specific operator is the operator whose argument typeis “closest” to the
source type and whose result type is “closest” to the target type. The exact rules for establishing the most
specific user-defined conversion operator are defined in the following sections.

Once amost specific user-defined conversion operator has been identified, the actual execution of the user-
defined conversion involves up to three steps:

96 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 6 Conversions

First, if required, performing a standard conversion from the source type to the argument type of the user-
defined conversion operator.

Next, invoking the user-defined conversion operator to perform the conversion.
Findly, if required, performing a standard conversion from the result type of the user-defined conversion
operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion from type s to type T will never first execute a user-defined conversion from s to x
and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

If astandard implicit conversion (86.3.1) exists from atype A to atype B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

The most encompassing type in aset of typesis the one type that encompasses al other typesin the set. If
no single type encompasses al other types, then the set has no most encompassing type. In more intuitive
terms, the most encompassing type is the “largest” type in the set—the one type to which each of the other
types can be implicitly converted.

The most encompassed typein a set of typesis the one type that is encompassed by all other typesin the set.
If no single type is encompassed by al other types, then the set has no most encompassed type. In more
intuitive terms, the most encompassed type is the “smallest” type in the set—the one type that can be
implicitly converted to each of the other types.

6.4.3 User-defined implicit conversions
A user-defined implicit conversion from type s to type T is processed as follows:

Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of s (if sisaclassor struct), the base classes of s (if sisaclass), T (if T isaclass or struct), and the base
classes of T (if Tisaclass).

Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
conversion operators declared by the classes or structsin D that convert from atype encompassing s to a
type encompassed by T. If U is empty, the conversion is undefined and an error occurs.

Find the most specific source type, Sx, of the operatorsin u:

o If any of the operatorsin u convert from s, then sxiss.

0 Otherwise, sx isthe most encompassed type in the combined set of source types of the operatorsin u. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

Find the most specific target type, Tx, of the operatorsin u:
o If any of the operatorsin u convert to T, then TxisT.

0 Otherwise, Tx isthe most encompassing type in the combined set of target types of the operatorsin u. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

If u contains exactly one user-defined conversion operator that converts from Sx to Tx, then thisis the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is applied:

o If sisnot sx, then astandard implicit conversion from s to Sx is performed.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 97

C#LANGUAGE SPECIFICATION

o Themost specific user-defined conversion operator is invoked to convert from sx to Tx.
o0 If Txisnot T, then agtandard implicit conversion from Tx to T is performed.

6.4.4 User-defined explicit conversions
A user-defined explicit conversion from type s to type T is processed as follows:

Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of s (if s isaclass or struct), the base classes of s (if s isaclass), T (if T isaclassor struct), and the base
classes of T (if Tisaclass).

Find the set of applicable user-defined conversion operators, u. This set consists of the user-defined implicit
or explicit conversion operators declared by the classes or structs in D that convert from atype
encompassing or encompassed by S to atype encompassing or encompassed by T. If U isempty, the
conversion is undefined and an error occurs.

Find the most specific source type, Sx, of the operatorsin u:
o If any of the operatorsin u convert from s, then sx iss.

o Otherwise, if any of the operatorsin u convert from types that encompass s, then sx is the most
encompassed type in the combined set of source types of those operators. If no most encompassed type
can be found, then the conversion is ambiguous and an error occurs.

0 Otherwise, sx isthe most encompassing type in the combined set of source types of the operatorsin u. If
no most encompassing type can be found, then the conversion is ambiguous and an efror occurs.

Find the most specific target type, Tx, of the operatorsin u:
o If any of the operatorsin u convert to T, then TxisT.

o Otherwise, if any of the operatorsin u convert to types that are encompassed by T, then Tx is the most
encompassing type in the combined set of source types of those gperators. If no most encompassing
type can be found, then the conversion is ambiguous and an error occurs.

0 Otherwise, Tx isthe most encompassed type in the combined set of target types of the operatorsin u. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

If u contains exactly one user-defined conversion operator that converts from Sx to Tx, then thisis the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is applied:

o If sisnot sx, then astandard explicit conversion from s to Sx is performed.
o The most specific user-defined conversion operator isinvoked to convert from Sx to Tx.
o If Txisnot T, then astandard explicit conversion from Txto T is performed.

98 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7. Expressions

An expression is a sequence of operators and operands that specifies a computation. This chapter defines the
syntax, order of evaluation, and meaning of expressions.

7.1 Expression classifications
An expression is classified as one of the following:

A value. Every value has an associated type.
A variable. Every variable has an associated type, namely the declared type of the variable.

A namespace. An expression with this classification can only appear as the left hand side of a member-
access (87.5.4). In any other context, an expression classified as a namespace causes an error.

A type. An expression with this classification can only appear as the left hand side of a member-access
(87.5.4), or as an operand for the as operator (87.9.10), the s operator (§7.9.9), or the typeof operator
(87.5.112). In any other context, an expression classified as a type causes an error.

A method group, which is a set of overloaded methods resulting from a member lookup (87.3). A method
group may have associated instance expression. When an instance method is invoked, the result of
evaluating the instance expression becomes the instance represented by this (87.5.7). A method group is
only permitted in an invocation-expression (87.5.5) or adelegate-creation-expression (87.5.10.3). In any
other context, an expression classified as a method group causes an error.

A property access. Every property access has an associated type, namely the type of the property. A
property access may furthermore have an associated instance expression. When an accessor (the get or set
block) of an instance property access is invoked, the result of evaluating the instance expression becomes
the instance represented by this (87.5.7).

An event access. Every event access has an associated type, namely the type of the event. An event access
may furthermore have an associated instance expression. An event access may appear as the left hand
operand of the += and -= operators (87.13.3). In any other context, an expression classified as an event
access calses an error.

An indexer access. Every indexer access has an associated type, namely the element type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list. When
an accessor (the get or set block) of an indexer access is invoked, the result of evaluating the instance
expression becomes the instance represented by this (87.5.7), and the result of evaluating the argument list
becomes the parameter list of the invocation.

Nothing. This occurs when the expression is an invocation of a method with areturn type of void. An
expression classified as nothing is only valid in the context of a statement-expression (88.6).

Thefinal result of an expression is never a namespace, type, method group, or event access. Rather, as noted
above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or indexer
access: If the accessis the target of an assignment, the set-accessor isinvoked to assign anew value (87.13.1).
Otherwise, the get-accessor isinvoked to obtan the current value (87.1.1).

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 99

C#LANGUAGE SPECIFICATION

7.1.1 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In such
cases, if the actual expression denotes a namespace, atype, a method group, or nothing, an error occurs.
However, if the expression denotes a property access, an indexer access, or a variable, the value of the property,
indexer, or variable isimplicitly substituted:

The value of avariable is smply the value currently stored in the storage location identified by the variable.
A variable must be considered definitely assigned (85.3) before its value can be obtained, or otherwise a
compile-time error occurs.

The value of aproperty access expression is obtained by invoking the get-accessor of the property. If the
property has no get-accessor, an error occurs. Otherwise, afunction member invocation (87.4.3) is
performed, and the result of the invocation becomes the value of the property access expression.

The value of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, an error occurs. Otherwise, a function member invocation (87.4.3) is performed
with the argument list associated with the indexer access expression, and the result of the invocation
becomes the value of the indexer access expression.

7.2 Operators

Expressions are constructed from operands and operators The operators of an expression indicate which
operations to apply to the operands. Examples of operatorsinclude +, -, *, /, and new. Examples of operands
include literds, fields, local variables, and expressions.

There are three types of operators:

Unary operators. The unary operators take one operand and use either prefix notation (such as -x) or postfix
notation (such as x++).

Binary operators. The binary operators take two operands and al use infix notation (such as x + y).

Ternary operator. Only one ternary operator, 7:, exists. The ternary operator takes three operands and uses
infix notation (c? x: y).

The order of evaluation of operators in an expression is determined by the precedenceand associativity of the
operators (87.2.1).

Certain operators can be overloaded. Operator overloading permits user-defined operator implementations to be
specified for operations where one or both of the operands are of a user-defined class or struct type (87.2.2).

7.2.1 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators control the order in which the
individual operators are evaluated. For example, the expression x + y * z isevaluated as x + (y * z) because
the * operator has higher precedence than the + operator. The precedence of an operator is established by the
definition of its associated grammar production. For example, an additive-expression consists of a sequence of
multiplicative-expressions separated by + or - operators, thus giving the + and - operators lower precedence
than the *, /, and % operators.

The following table summarizes al operators in order of precedence from highest to lowest:

100 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

Section | Category Operators

75 Primary (x) x.y f(x) a[x] x++ x-- new
typeof sizeof checked unchecked

7.6 Unary + - I~ ++x --x (Mx

7.7 Multiplicative * /%

1.7 Additive + -

7.8 Shift << >>

79 Relational < > <= >= 1is as

79 Equality = I=

7.10 Logical AND &

7.10 Logica XOR A

7.10 Logica OR I

711 Conditional AND | &&

711 Conditiona OR |

7.12 Conditional 7!

713 Assignment = ¥= /= %= += -= <<= >>= &= A= |=

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

Except for the assignment operators, al binary operators are |eft-associative, meaning that operations are
performed from left to right. For example, x + y + z isevauated as (x + y) + z.

The assignment operators and the conditional operator (? :) are right-associative, meaning that operations
are performed from right to left. For example, x = y = z isevaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multipliesy by z
and then adds the result to x, but (x + y) * z first adds x and y and then multipliesthe result by z.

7.2.2 Operator overloading

All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced by
including operator declarations in classes and structs (810.9). User-defined operator implementations aways
take precedence over predefined operator implementations. Only when no applicable user-defined operator
implementations exist will the predefined operator implementations be considered.

The overloadable unary operatorsare:
+ - ! ~ 4+ -- true false
The overloadable binary operators are:
+ - * / % & | A << >> == I= > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access,
method invocation, or the =, &&, | |, ?:, new, typeof, sizeof, and is operators.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 101

C#LANGUAGE SPECIFICATION

When a binary operator is overloaded, the corresponding assignment operator is also implicitly overloaded. For
example, an overload of operator * is also an overload of operator *=. Thisis described further in 87.13. Note
that the assignment operator itself (=) cannot be overloaded. An assignment always performs a ssimple bit-wise
copy of avaueinto avariable.

Cast operations, such as (T) x, are overloaded by providing user-defined conversions (86.4).

Element access, such asa[x], ishot considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (810.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced
using functiona notation. The following table shows the relationship between operator and functional notations
for unary and binary operators. In the first entry, op denotes any overloadable unary operator. In the second
entry, op denotes the unary ++ and -- operators. In the third entry, op denotes any overloadable binary operator.

Operator notation | Functional notation
op x operator op(x)
X op operator op(x)
X 0py operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct type
that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the same
signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For
example, the * operator is ways a binary operator, always has the precedence level specified in §7.2.1, and is
always left-associative.

Whileit is possible for a user-defined operator to perform any computation it pleases, implementations that
produce results other than those that are intuitively expected are strongly discouraged. For example, an
implementation of operator == should compare the two operands for equality and return an appropriate resullt.

The descriptions of individua operatorsin 87.5 through §7.13 specify the predefined implementations of the
operators and any additional rules that apply to each operator. The descriptions make use of the terms unary
operator overload resolution, binary operator overload resolution, and numeric promotion, definitions of
which are found in the following sections.

7.2.3 Unary operator overload resolution

An operation of the form op x or x op, where op is an overloadable unary operator, and x is an expression of
type X, is processed as follows:

The set of candidate user-defined operators provided by X for the operation operator op(x) isdetermined
using the rules of §7.2.5.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate operators
for the operation. Otherwise, the predefined unary operator op implementations become the set of
candidate operators for the operation. The predefined implementations of a given operator are specified in
the description of the operator (§7.5and §7.6).

The overload resolution rules of 8§7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x) , and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

102 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7.2.4 Binary operator overload resolution

An operation of the form x op y, where op is an overloadable binary operator, x is an expression of type X, and
y isan expression of type', is processed as follows:

The set of candidate user-defined operators provided by x and v for the operation operator op(x, y) is
determined. The set consists of the union of the candidate operators provided by X and the candidate
operators provided by Y, each determined using the rules of §7.2.5. If x and v are the same type, or if X and
Y are derived from a common base type, then shared candidate operators only occur in the combined set
once.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate operators
for the operation. Otherwise, the predefined binary operator op implementations become the set of
candidate operators for the operation. The predefined implementations of a given operator are specified in
the description of the operator (87.7 through §7.13).

The overload resolution rules of 8§7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

7.2.5 Candidate user-defined operators

Given atype T and an operation operator op(A), where op is an overloadable operator and A is an argument
list, the set of candidate user-defined operators provided by T for operator op(A) isdetermined as follows:

For all operator op declarationsin T, if at least one operator is applicable (87.4.2.1) with respect to the
argument list A, then the set of candidate operators consists of al applicable operator op declarationsin T.

Otherwise, if T isobject, the set of candidate operators is empty.

Otherwise, the set of candidate operators provided by T isthe set of candidate operators provided by the
direct base class of T.

7.2.6 Numeric promotions

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather an
effect of applying overload resolution to the predefined operators. Numeric promotion specifically does not
affect evaluation of user-defined operators, although user-defined operators can be implemented to exhibit
similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);

uint operator *(uint x, uint y);

Tong operator *(long x, long y);

ulong operator *(ulong x, ulong y);

float operator *(float x, float y);
doubTle operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (87.4.2) are applied to this set of operators, the effect is to select the first of the
operators for which implicit conversions exist from the operand types. For example, for the operation b * s,
whereb isabyte and s isashort, overload resolution selects operator *(int, int) asthe best operator.
Thus, the effect isthat b and s are converted to int, and the type of the result isint. Likewisg, for the
operation i * d, where i isan int and d isa doubTe, overload resolution selects operator *(double,
double) asthe best operator.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 103

C#LANGUAGE SPECIFICATION

7.2.6.1 Unary numeric promotions

Unary numeric promotion occurs for the operands of the predefined +, -, and ~ unary operators. Unary numeric
promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char totypeint.
Additionaly, for the unary - operator, unary numeric promotion converts operands of type uint to type Tong.

7.2.6.2 Binary numeric promotions

Binary numeric promotion occurs for the operands of the predefined +, -, *, /,%, &, |, A, ==, !=,>, <, >=, and
<= binary operators. Binary numeric promotion implicitly converts both operands to a common type which, in
case of the non-relational operators, also becomes the result type of the operation. Binary numeric promotion
consists of applying the following rules, in the order they appear here:

If either operand is of type decimal, the other operand is converted to type decimal, or an error occurs if
the other operand is of type f1oat or double.

Otherwisg, if either operand is of type doubTe, the other operand is converted to type double.
Otherwise, if either operand is of type f1oat, the other operand is converted to type float.

Otherwise, if either operand is of type uTong, the other operand is converted to type ulong, or an error
occurs if the other operand is of type sbyte, short, int, or Tong.

Otherwisg, if either operand is of type Tong, the other operand is converted to type Tong.

Otherwiseg, if either operand is of type uint and the other operand is of type sbyte, short, or int, both
operands are converted to type 1ong.

Otherwise, if either operand is of type uint, the other operand is converted to type uint.
Otherwise, both operands are converted to type int.

Note that the first rule disallows any operations that mix the decimal type with the double and f1oat types.
The rule follows from the fact that there are no implicit conversions between the decimal type and the double
and float types.

Also note that it is not possible for an operand to be of type ulong when the other operand is of asigned
integral type. The reason is that no integral type exists that can represent the full range of ulong aswell asthe
signed integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to atype that is
compatible with the other operand.

In the example

decimal Addpercent(decimal x, double percent) {
return x * (1.0 + percent / 100.0);
}

a compile-time error occurs because a decimal cannot be multiplied by a double. The error is resolved by
explicitly converting the second operand to decimal:

decimal AddpPercent(decimal x, double percent) {
return x * (decimal) (1.0 + percent / 100.0);

7.3 Member lookup

A member lookup is the process whereby the meaning of a name in the context of atype is determined. A
member lookup may occur as part of evaluating a simple-name (87.5.2) or a member-access (87.5.4) inan
expression.

104 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

A member lookup of anameN in atype T is processed as follows:

First, the set of all accessible (83.5) members named N declared in T and the base types (87.3.1) of T is
constructed. Declarations that include an override modifier are excluded from the set. If no members
named N exist and are accessible, then the lookup produces no match, and the following steps are not
evaluated.

Next, members that are hidden by other members are removed from the set. For every member s .M in the
set, where s in the type in which the member M is declared, the following rules are applied:

o If misacongant, field, property, event, type, or enumeration member, then al members declared in a
base type of s are removed from the st.

o If misamethod, then all non-method members declared in a base type of s are removed from the s,
and all methods with the same signature asm declared in a base type of s are removed from the set.

Finaly, having removed hidden members, the result of the lookup is determined:
o If the set consists of a single non-method member, then this member is the result of the lookup.
o Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.

o Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur for a
member lookup in an interface that has multiple direct base interfaces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single-
inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the effect of the
lookup rulesis simply that derived members hide base members with the same name or signature. Such single-
inheritance lookups are never ambiguous. The ambiguities that can possibly arise from member lookupsin
multiple-inheritance interfaces are described in 813.2.5.

7.3.1 Base types
For purposes of member lookup, atype T is considered to have the following base types:

If Tisobject, then T has no base type.

If T isavaluetype, the base type of T isthe classtype object.

If T isaclass-type, the base types of T are the base classes of T, including the classtype object.
If Tisan interface-type, the base types of T are the base interfaces of T and the classtype object.
If Tisanarray-type, the base types of T are the classtypes System.Array and object.

If T is adelegate-type, the base types of T arethe classtypes System.Delegate and object.

7.4 Function members

Function members are membersthat contain executable statements. Function members are always members of
types and cannot be members of namespaces. C# defines the following five categories of function members:

Constructors
Methods
Properties
Indexers

User-defined operators

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 105

C#LANGUAGE SPECIFICATION

The statements contained in function members are executed through function member invocations. The actual
syntax for writing a function member invocation depends on the particular function member category. However,
all function member invocations are expressions, allow arguments to be passed to the function member, and
alow the function member to compute and return a resullt.

The argument list (87.4.1) of afunction member invocation provides actua values or variable references for the
parameters of the function member.

Invocations of constructors, methods, indexers, and operators employ overload resolution to determine which of
a candidate set of function membersto invoke. This processis described in §87.4.2.

Once a particular function member has been identified at compile-time, possibly through overload resolution,
the actual run-time process of invoking the function member is described in §7.4.3.

The following table summarizes the processing that takes place in constructs involving the five categories of
function members. In thetable, e, x, y, and value indicate expressions classified as variables or values, T
indicates an expression classified as atype, F isthe smple name of amethod, and P is the smple name of a

property.

Construct Example Description

Constructor new T(x, y) Overload resolution is applied to select the best constructor in

invocation the class or struct T. The constructor is invoked with the
argument list (x, y).

Method F(X, y) Overload resolution is applied to select the best method F in the

invocation containing class or struct. The method is invoked with the

argument list (x, y). If the method is not stati c, the instance
expression is this.

T.F(X, y) Overload resolution is applied to select the best method F in the
class or struct T. An error occurs if the method isnot static.
The method is invoked with the argument list (x, y).

e.F(x, y) Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type of e. An error occurs
if the method is static. The method is invoked with the
instance expression e and the argument list (x, y).

Property P The get accessor of the property p in the containing class or
access struct isinvoked. An error occursif p iswrite-only. If P isnot

static, theinstance expressionis this.

P =value The set accessor of the property p in the containing class or
struct is invoked with the argument list (value). An error
occursif pisread-only. If Pisnot static, the instance
expression is this.

T.P The get accessor of the property p inthe classor struct T is
invoked. An error occursif P isnot static orif P iswrite-
only.

T.P=value The set accessor of the property P in the class or struct T is

invoked with the argument list (value). An error occurs if p
isnot static orif pisreadonly.

106 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

Construct Example Description

e.P The get accessor of the property p in the class, struct, or
interface given by the type of e isinvoked with the instance
expression e. An error occursif pisstatic orif p iswrite-
only.

e.P=value The set accessor of the property p in the class, struct, or
interface given by the type of e isinvoked with the instance
expression e and the argument list (value). An error occurs if
Pisstatic orif P isread-only.

I ndexer e[x, yl Overload resolution is applied to select the best indexer in the
access class, struct, or interface given by the type of e. The get
accessor of the indexer isinvoked with the instance expression
e and the argument list (x, y). An error occurs if the indexer
iswrite-only.

e[x, y] =value | Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer isinvoked with the instance expression
e and the argument list (x, y, value). An error occursif the
indexer is read-only.

Operator -X Overload resolution is applied to select the best unary operator
invocation in the class or struct given by the type of x. The selected
operator isinvoked with the argument list (x).

X+y Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x andy. The
selected operator isinvoked with the argument list (x, y).

7.4.1 Argument lists

Every function member invocation includes an argument list which provides actual values or variable references
for the parameters of the function member. The syntax for specifying the argument list of a function member
invocation depends on the function member category:

For congtructors, methods, and delegates, the arguments are specified as an argument-list, as described
below.

For properties, the argument list is empty when invoking the get accessor, and consists of the expression
specified as the right operand of the assignment operator when invoking the set accessor.

For indexers, the argument list consists of the expressions specified between the square brackets in the
indexer access. When invoking the set accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator.

For user-defined operators, the argument list consists of the single operand of the unary operator or the two
operands of the binary operator.

The arguments of properties, indexers, and user-defined operators are aways passed as value parameters
(810.5.1.1). Reference and output parameters are not supported for these categories of function members.

The arguments of a constructor, method, or delegate invocation are specified as an argument-list:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 107

C#LANGUAGE SPECIFICATION

argument-list:
argument
argument-list , argument

argument:
expression
ref variable-reference
out variable-reference

An argument-list consists of zero or more arguments, separated by commas. Each argument can take one of the
following forms:

An expression, indicating that the argument is passed as a value parameter (810.5.1.1).

The keyword ref followed by a variable-reference (85.4), indicating that the argument is passed as a
reference parameter (810.5.1.2). A variable must be definitely assigned (85.3) before it can be passed as a
reference parameter.

The keyword out followed by avariable-reference (85.4), indicating that the argument is passed as an
output parameter (810.5.1.3). A variableis considered definitely assigned (85.3) following afunction
member invocation in which the variable is passed as an output parameter.

During the run-time processing of a function member invocation (87.4.3), the expressions or variable references
of an argument list are evaluated in order, from left to right, as follows:

For a value parameter, the argument expression is evaluated and an implicit conversion (86.1) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

For areference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as a reference or output parameter is an array element of a reference-type, arun-
time check is performed to ensure that element type of the array isidentical to the type of the parameter. If
this check fails, an ArrayTypeMismatchException isthrown.

Methods, indexers, and constructors may declare their last parameter to be a parameter array (810.5.1.4). Such
function members are invoked either in their normal form or in their expanded form depending on which is
applicable (87.4.2.2):

When a function member with a parameter array isinvoked in its normal form, the argument given for the
parameter array must be a single expression of atype that isimplicitly convertible (86.1) to the parameter
array type. In this case, the parameter array acts precisely like a value parameter.

When afunction member with a parameter array is invoked in its expanded form, the invocation must
specify zero or more arguments for the parameter array, where each argument is an expression of atype that
isimplicitly convertible (86.1) to the element type of the parameter array. In this case, the invocation creates
an instance of the parameter array type with alength corresponding to the number of arguments, initializes
the elements of the array instance with the given argument values, and uses the newly created array instance
asthe actua argument.

The expressions of an argument list are dways evaluated in the order they are written. Thus, the example
class Test

static void F(int x, int y, int z) {
console.writeLine("x = {0}, vy = {1}, z = {2}", x, y, 2);

108 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

static void Main() {
int 1 = 0;
FCitt, i++, i+4);

}
produces the output
x=0,y=1, z =2

The array co-variance rules (812.5) permit avalue of an array type A[] to be areference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, when an
array element of areference-typeis passed as areference or output parameter, a run-time check is required to
ensure that the actual element type of the array isidentical to that of the parameter. In the example

class Test

{
static void F(ref object x) {..}

static void Main() {

object[] a = new object[10];

object[] b = new string[10];

F(ref al[0]); // ok

F(ref b[1]1); // ArrayTypeMismatchException

}

the second invocation of F causes an ArrayTypeMismatchException to be thrown because the actua
element type of b isstring and not object.

When afunction member with a parameter array isinvoked in its expanded form, the invocation is processed
exactly asif an array creation expression with an array initializer (87.5.10.2) was inserted around the expanded
parameters. For example, given the declaration

void F(int x, int y, params object[] args);
the following invocations of the expanded form of the method

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to
F(10, 20, new object[] {});

F(10, 20, new object[] {30, 403});
F(10, 20, new object[] {1, "hello", 3.0});

Note in particular that an empty array is created when there are zero arguments given for the parameter array.

7.4.2 Overload resolution

Overload resolution is a mechanism for selecting the best function member to invoke given an argument list and
a set of candidate function members. Overload resolution selects the function member to invoke in the following
distinct contexts within C#:

Invocation of a method named in an invocation-expression (87.5.5).

Invocation of a constructor named in an object-creation-expression (87.5.10.1).

Invocation of an indexer accessor through an element-access (87.5.6).

Invocation of a predefined or user-defined operator referenced in an expression (87.2.3and §7.2.4).

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 109

C#LANGUAGE SPECIFICATION

Each of these contexts defines the set of candidate function members and the list of arguments in its own unique
way. However, once the candidate function members and the argument list have been identified, the selection of
the best function member isthe samein all cases:

First, the set of candidate function members s reduced to those function members that are applicable with
respect to the given argument list (87.4.2.1). If this reduced set is empty, an error occurs.

Then, given the set of applicable candidate function members, the best function member in that set is
located. If the set contains only one function member, then that function member is the best function
member. Otherwise, the best function member is the one function member that is better than all other
function members with respect to the given argument list, provided that each function member is compared
to al other function members using the rulesin 87.4.2.2. If there is not exactly one function member that is
better than all other function members, then the function member invocation is ambiguous and an error
OCCUrs.

The following sections define the exact meanings of the terms applicable function member and better function
member.

7.4

.2.1 Applicable function member

A function member is said to be an applicable function member with respect to an argument list A when al of
the following are true:

For

The number of argumentsin A isidentical to the number of parameters in the function member declaration.

For each argument in A, the parameter passing mode of the argument isidentical to the parameter passing
mode of the corresponding parameter, and

o for avalue parameter or a parameter array, an implicit conversion (86.1) exists from the type of the
argument to the type of the corresponding parameter, or

o foraref or out parameter, the type of the argument isidentical to the type of the corresponding
parameter.

afunction member that includes a parameter array, if the function member is applicable by the above rules,

it issaid to be applicable in its normal form. If afunction member that includes a parameter array is not
gpplicable in its normal form, the function member may instead be applicable in its expanded form:

110

The expanded form is constructed by replacing the parameter array in the function member declaration with
zero or more value parameters of the e ement type of the parameter array such that the number of arguments
in the argument list A matches the total number of parameters. If A has fewer arguments than the number of
fixed parameters in the function member declaration, the expanded form of the function member cannot be
constructed and is thus not applicable.

If the class, struct, or interface in which the function member is declared aready contains another function
member with the same signature as the expanded form, the expanded form is not applicable.

Otherwise, the expanded form is applicable if for each argument in A the parameter passing mode of the
argument is identical to the parameter passing mode of the corresponding parameter, and

o for afixed value parameter or a value parameter created by the expansion, an implicit conversion (86.1)
exists from the type of the argument to the type of the corresponding parameter, or

o foraref or out parameter, the type of the argument is identical to the type of the corresponding
parameter.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7.4.2.2 Better function member

Given an argument list A with a set of argument types Az, Az, ..., Ay and two applicable function members Mp and
Mq With parameter types Py, P, ..., Py and Qu, Q, ..., Qn, Mp iS defined to be a better function member than Mg if

for each argument, the implicit conversion from Ax to Px is not worse than the implicit conversion from Ax to
Qx, and

for at least one argument, the conversion from Ax to Px is better than the conversion from Ax to Qx.
When performing this evauation, if Mp Or Mq is applicable in its expanded form, then px or Qx refersto a
parameter in the expanded form of the parameter list.

7.4.2.3 Better conversion

Given an implicit conversion C: that converts from atype s to atype T1, and an implicit conversion C; that
converts from atype s to atype T2, the better conversion of the two conversions is determined as follows:

If T1 and T2 are the same type, neither conversion is better.
If s isTi1, C1isthe better conversion.
If s isT2, Czisthe better conversion.

If animplicit conversion from T1 to T, exists, and no implicit conversion from T to T1 exists, C1 isthe better
conversion.

If an implicit conversion from T, to T1 exists, and no implicit conversion from T1 to T2 exists, Cz isthe better
conversion.

If T1issbyte and T2 isbyte, ushort, uint, or ulong, C1 isthe better conversion.
If T2issbyte and T1isbyte, ushort, uint, or ulong, Cz is the better conversion.
If Trisshort and T2 isushort, uint, or ulong, C1 isthe better conversion.
If T2isshort and T1isushort, uint, or ulong, Cz isthe better conversion.
If T1isint and T2 isuint, or ulong, C1 isthe better conversion.
If T2isint and T1isuint, or ulong, C; isthe better conversion.
If T1isTong and T2 isuTong, Ci1 isthe better conversion.
If T2isTong and T1isuTong, C; isthe better conversion.
Otherwise, neither conversion is better.
If animplicit conversion C: is defined by these rules to be a better conversion than an implicit conversion ¢,
then it is also the case that C2 isaworse conversion than Ci.

7.4.3 Function member invocation

This section describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has aready determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

Static function members. These are static methods, constructors, static property accessors, and user-defined
operators. Static function members are always non-virtud.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 111

C#LANGUAGE SPECIFICATION

Instance function members. These are instance methods, instance property accessors, and indexer accessors.
Instance function members are either non-virtual or virtual, and are aways invoked on a particular instance.
The instance is computed by an instance expression, and it becomes accessible within the function member
as this (87.5.7).

The run-time processing of afunction member invocation consists of the following steps, wheremis the
function member and, if M is an instance member, E isthe instance expression:

If M is astatic function member:

0 Theargument list is evaluated as described in §7.4.1.

0 Misinvoked.

If M is an instance function member declared in a value-type:

0 Eisevauated. If thisevaluation causes an exception, then no further steps are executed.

o If Eisnot classfied as avariable, then atemporary loca variable of E’stypeis created and the value of
E isassigned to that variable. E is then reclassified as a reference to that temporary local variable. The
temporary variable is accessible as thi s within M, but not in any other way. Thus, only when E isatrue
variableisit possible for the caller to observe the changes that M makesto this.

0 Theargument list is evaluated as described in §7.4.1.

0 Misinvoked. The variable referenced by E becomes the variable referenced by this.

If M is an instance function member declared in areference-type:

0 Eisevauated. If thisevauation causes an exception, then no further steps are executed.
0 Theargument list is evaluated as described in §7.4.1.

o If thetype of E isa value-type, a boxing conversion (84.3.1) is performed to convert E to type object,
and E is considered to be of type object in the following steps.

0 Thevaueof E ischecked to bevdid. If thevalue of E isnu11, aNul1ReferenceException is
thrown and no further steps are executed.

0 Thefunction member implementation to invoke is determined: If M is a non-virtual function member,
then M is the function member implementation to invoke. Otherwise, M isavirtua function member and
the function member implementation to invoke is determined through virtual function member lookup
(87.4.4) or interface function member lookup (87.4.5).

0 The function member implementation determined in the step above isinvoked. The object referenced by
E becomes the object referenced by this.

7.4.3.1 Invocations on boxed instances

A function member implemented in a value-type can be invoked through a boxed instance of that value-typein
the following situations:

When the function member isan override of amethod inherited from type object and isinvoked
through an instance expression of type object.

When the function member is an implementation of an interface function member and is invoked through an
instance expression of an interface-type.

When the function member is invoked through a del egate.

112 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by this within the function member invocation. Thisin particular means that
when a function member is invoked on a boxed instance, it is possible for the function member to modify the
value contained in the boxed instance.

7.4.4 Virtual function member lookup

Issue

We need to write this section.

7.4.5 Interface function member lookup

| ssue

We need to write this section.

7.5 Primary expressions

| ssue

We need to write this section.

primary-expression:

literal
simple-name
par enthesi zed-expression

member -access
invocation-expression
element-access
this-access

base-access
post-increment-expression
post-decrement-expression
new-expression
typeof-expression
Sizeof-expression
checked-expression
unchecked-expression

7.5.1 Literals
A primary-expression that consists of aliteral (82.4.4) is classified asavalue.

7.5.2 Simple names
A smple-name consists of asingle identifier.

simple-name:
identifier
A simple-name is evauated and classified as follows:

If the smple-name appears within ablock and if the block contains alocal variable or parameter with the
given name, then the ssimple-name refersto that local variable or parameter and is classified asavariable.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 113

C#LANGUAGE SPECIFICATION

Otherwise, for each type T, sarting with the immediately enclosing class, struct, or enumeration declaration
and continuing with each enclosing outer class or struct declaration (if any), if a member lookup of the
simple-name in T produces a match:

o

If T isthe immediately enclosing class or struct type and the lookup identifies one or more methods, the
result is a method group with an associated instance expression of this.

If T istheimmediately enclosing class or struct type, if the lookup identifies an instance member, and if
the reference occurs within the block of a constructor, an instance method, or an instance accessor, the
result is exactly the same as a member access (87.5.4) of theform this. E, where E is the simple-name.

Otherwise, the result is exactly the same as a member access (87.5.4) of theform 7., where E isthe
simple-name. In this casg, it is an error for the smple-name to refer to an instance member.

Otherwise, starting with the namespace declaration in which the simple-name occurs (if any), continuing
with each enclosing namespace declaration (if any), and ending with the global namespace, the following
steps are evaluated until an entity is located:

o

If the namespace contains a namespace member with the given name, then the simple-name refersto
that member and, depending on the member, is classified as a namespace or atype.

Otherwise, if the namespace declaration contains a using-alias-directive that associates the given name
with an imported namespace or type, then the smple-name refers to that namespace or type.

Otherwisg, if the namespaces imported by the using-namespace-directives of the namespace declaration
contain exactly one type with the given name, then the simple-name refersto that type.

Otherwise, if the namespaces imported by the using-namespace-directives of the namespace declaration
contain more than one type with the given name, then the ssimple-name is ambiguous and an error

Ooccurs.

Otherwise, the name given by the simple-name is undefined and an error occurs.

7.5.2.1 Invariant meaning in blocks

For each occurrence of agiven identifier as a smple-name in an expression, every other occurrence of the same
identifier as asmple-name in an expression within the immediately enclosing block (88.2) or switch-block
(88.7.2) must refer to the same entity. This rule ensures that the meaning of an name in the context of an
expression is always the same within a block.

The example

class Test

double x;

void F(bool b) {
x = 1.0;
if (b) {
int x = 1;
}

}
}

isin error because x refers to different entities within the outer block (the extent of which includes the nested
block inthe i f statement). In contrast, the example

114

class Test

double x;

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

void F(bool b) {
if (b) {
x = 1.0;

else {
int x = 1;

}
}

is permitted because the name x is never used in the outer block.

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid for the same identifier
to have one meaning as a smple name and another meaning as right operand of a member access (87.5.4). For
example:

struct Point

o
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = vy;
ks

The example above illustrates a common pattern of using the names of fields as parameter namesin a
constructor. In the example, the smple names x and y refer to the parameters, but that does not prevent the
member access expressions this. x and this.y from accessing the fields.

7.5.3 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.
par enthesi zed-expression:
(expresson)

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the expression
within the parentheses denotes a namespace, type, or method group, an error occurs. Otherwise, the result of the
parenthesi zed-expression is the result of the evaluation of the contained expression.

7.5.4 Member access
A member-access consists of aprimary-expression or a predefined-type, followed by a“.” token, followed by
an identifier.
member-access:
primary-expression . identifier
predefined-type . identifier
predefined-type: one of

bool byte char decimal double float int Tong
object sbyte short string uint ulong ushort

A member-accessof theform E. I, where E isa primary-expression or apredefined-type and 1 isan identifier,
is evaluated and classified as follows:

If E isanamespace and T isthe name of an accessible member of that namespace, then the result is that
member and, depending on the member, is classified as a namespace or atype.

If E isapredefined-type or aprimary-expression classified as a type, and a member lookup (87.3) of T inE
produces a match, then E. I isevaluated and classified as follows:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 115

C#LANGUAGE SPECIFICATION

116

o If 1 identifies atype, then the result isthat type.

o If 1 identifies one or more methods, then the result is a method group with no associated instance
expression.

o |If 1 identifiesastatic property, then the result is a property access with no associated instance
expression.

o If I identifiesastaticfidd:

If the fidld is readon1y and the reference occurs outside the static constructor of the class or struct
in which the field is declared, then the result is a vaue, namely the value of the static field T in E.

Otherwise, the result is avariable, namely the static field T in E.
0 If I identifiesastatic event:

If the reference occurs within the class or struct in which the event isdeclared, then E. T is
processed exactly asif T was a tatic field or property.

Otherwise, the result is an event access with no associated instance expression.
o If 1 identifies a constant, then the result is a value, namely the value of that constant.

o If 1 identifies an enumeration member, then the result is a value, namely the value of that enumeration
member.

o0 Otherwise, E. I isaninvaid member reference, and an error occurs.

If E isaproperty access, indexer access, variable, or value, the type of which is T, and a member lookup
(87.3) of 1 in T produces amatch, then E. I isevauated and classified as follows:

o Firg, if E isaproperty or indexer access, then the value of the property or indexer access is obtained
(87.1.1) and E isreclassified asavaue.

o If 1 identifies one or more methods, then the result is a method group with an associated instance
expression of E.

o If 1 identifies an instance property, then the result is a property access with an associated instance
expression of E.

o0 If Tisaclasstype and 1 identifies an instance field of that class-type:
If thevalueof E isnull, thenaNulTReferenceException isthrown.

Otherwisg, if thefield is readon1y and the reference occurs outside an instance constructor of the
classin which the fidld is declared, then the result is a value, namely the value of thefield 1 in the
object referenced by E.

Otherwise, the result is avariable, namely the field 1 in the object referenced by E.
o If Tisastruct-typeand I identifies an instance field of that struct-type:

If Eisavaue, orif thefidd is readonly and the reference occurs outside an instance constructor
of the struct in which the field is declared, then the result is a value, namely the value of thefield 1
in the struct instance given by E.

Otherwise, the result is avariable, namely the field 1 in the struct instance given by E.
0 If I identifiesan instance event:

If the reference occurs within the class or struct in which the event is declared, then E. I is
processed exactly asif I was an instance field or property.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

Otherwise, the result is an event access with an associated instance expression of E.

Otherwise, E. I isaninvalid member reference, and an error occurs.

7.5.4.1 |dentical simple names and type names

In amember access of theform E. 1, if E isasingle identifier, and if the meaning of E as a Smple-name (87.5.2)
is aconstant, field, property, loca variable, or parameter with the same type as the meaning of E as a type-name
(83.8), then both possible meanings of E are permitted. The two possible meanings of E. I are never ambiguous,
since I must necessarily be a member of the type E in both cases. In other words, the rule ssmply permits access
to the static members of E where an error would have otherwise occurred. For example:

struct color

new Color(..);

public static readonly Color white
new Colord(..);

public static readonly Color Black
public Color Complement() {..}

class A
public Color Color; // Field color of type cColor
void FO {
Color = Color.Black; // References color.Black static member
color = color.Complement(); // Invokes Complement() on Color field

static void GQ) {
Color c = Color.white; // References Color.white static member

}

Within the A class, those occurrences of the Color identifier that reference the Color type are underlined, and
those that reference the color fidd are not underlined.

7.5.5 Invocation expressions
An invocation-expression is used to invoke a method.
invocation-expression:
primary-expression (argument-listy,)

The primary-expression of an invocation-expression must be a method group or a value of adelegate-type. If the
primary-expression is amethod group, the invocation-expression is a method invocation (87.5.5.1). If the
primary-expression is avaue of adelegate-type, the invocation-expression is a delegate invocation (87.5.5.2). If
the primary-expression is neither a method group nor a vaue of a delegate-type, an error occurs.

The optional argument-list (87.4.1) provides values or variable references for the parameters of the method.
The result of evaluating an invocation-expression s classified as follows:

If the invocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of a statement-expression (88.6).

Otherwise, the result is a value of the type returned by the method or delegate.
7.5.5.1 Method invocations

For a method invocation, the primary-expression of the invocation-expression must be amethod group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose a

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 117

C#LANGUAGE SPECIFICATION

specific method to invoke. In the latter case, determination of the specific method to invoke is based on the
context provided by the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form M(A), whereM isamethod group and A isan
optiona argument-list, consists of the following steps:

The set of candidate methods for the method invocation is constructed. Starting with the set of methods
associated with m, which were found by a previous member lookup (87.3), the set is reduced to those
methods that are applicable with respect to the argument list A. The set reduction consists of applying the
following rulesto each method T.N in the set, where T isthe type in which the method N is declared:

o If Nisnot applicable with respect to A (87.4.2.1), then N is removed from the set.

o If N isapplicable with respect to A (87.4.2.1), then al methods declared in a base type of T are removed
from the set.

If the resulting set of candidate methods is empty, then no applicable methods exist, and an error occurs. If
the candidate methods are not al declared in the same type, the method invocation is ambiguous, and an
error occurs (this latter situation can only occur for an invocation of a method in an interface that has
multiple direct base interfaces, as described in §13.2.5).

The best method of the set of candidate methods is identified using the overload resolution rules of §7.4.2. If
asingle best method cannot be identified, the method invocation is ambiguous, and an error occurs.

Given abest method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted from a simple-name or a member-
access through atype. If the best method is an instance method, the method group must have resulted from a
simple-name, a member-access through a variable or value, or a base-access. If neither of these
requirements are true, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actua run-time
invocation is processed according to the rules of function member invocation described in §7.4.3.

The intuitive effect of the resolution rules described above is as follows: To locate the particular method
invoked by a method invocation, start with the type indicated by the method invocation and proceed up the
inheritance chain until at least one applicable, accessible, non-override method declaration is found. Then
perform overload resolution on the set of applicable, accessible, non-override methods declared in that type and
invoke the method thus sel ected.

7.5.5.2 Delegate invocations

For a delegate invocation, the primary-expression of the invocation-expression must be avalue of a delegate-
type. Furthermore, considering the del egate-type to be a function member with the same parameter list as the
del egate-type, the del egate-type must be applicable (87.4.2.1) with respect to theargument-list of the
invocati on-expression.

The run-time processing of a delegate invocation of the form b (A), where D isa primary-expression of a
delegate-type and A isan optional argument-list, consists of the following steps:

D isevauated. If this evaluation causes an exception, no further steps are executed.

The vaue of D is checked to be valid. If thevalue of D isnu11, aNulTReferenceException isthrown
and no further steps are executed.

Otherwise, D is reference to a delegate instance. A function member invocation (87.4.3) is performed on the
method referenced by the delegate. If the method is an instance method, the instance of the invocation
becomes the instance referenced by the delegate.

118 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7.5.6 Element access

An element-access congists of a primary-expression, followed by a“[* token, followed by an expression-list,
followed by a“]” token. The expression-list consists of one or more expressions, separated by commeas.

element-access:
primary-expression [expression-lis]

expression-list:
expression
expression-list , expression
If the primary-expression of an element-access isavalue of an array-type, the element-accessis an array access
(87.5.6.1). Otherwise, the primary-expression must be a variable or value of a class, struct, or interface type that
has one or more indexer members, and the element-access is then an indexer access (87.5.6.2).

7.5.6.1 Array access

For an array access, the primary-expression of the element-access must be a value of an array-type. The number
of expressions in the expression-list must be the same as the rank of thearray-type, and each expression must be
of typeint, uint, Tong, ulong, or of atype that can be implicitly converted to one or more of these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array element
selected by the value(s) of the expression(s) in the expression-list.

The run-time processing of an array access of theform P[A], where P isa primary-expression of an array-type
and A isan expression-list, consists of the following steps:

P isevauated. If this evaluation causes an exception, no further steps are executed.

The index expressions of the expression-list are evaluated in order, from left to right. Following evaluation
of each index expression, an implicit conversion (86.1) to one of the following typesis performed: int,
uint, Tong, ulong. Thefirg typeinthislist for which an implicit conversion exists is chosen. For
instance, if the index expression is of type short then an implicit conversion to int is performed, since
implicit conversionsfrom short to int and from short to Tong are possible. If evaluation of an index
expression or the subsequent implicit conversion causes an exception, then no further index expressions are
evaluated and no further steps are executed.

The vaue of p is checked to be valid. If thevaueof Pisnul1, aNulTReferenceException isthrown
and no further steps are executed.

The vaue of each expression in the expression-list is checked against the actual bounds of each dimension
of the array instance referenced by p. If one or more values are out of range, an
IndexoutofRangeException isthrown and no further steps are executed.

The location of the array element given by the index expression(s) is computed, and this location becomes
the result of the array access.

7.5.6.2 Indexer access

For an indexer access, the primary-expression of the element-access must be a variable or value of aclass,
struct, or interface type, and this type must implement one or more indexers that are applicable with respect to
the expression-list of the element-access.

The compile-time processing of an indexer access of theform P[A], where P isaprimary-expression of aclass,
struct, or interface type T, and A isan expression-list, consists of the following steps:

The set of indexers provided by T is constructed. The set consists of all indexers declared in T or a base type
of T that are not override declarations and are accessible in the current context (83.5).

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 119

C#LANGUAGE SPECIFICATION

The set is reduced to those indexers that are applicable and not hidden by other indexers. The following
rules are applied to each indexer s. I in the set, where s is the type in which the indexer I is declared:

o If I isnot applicable with respect to A (87.4.2.1), then 1 isremoved from the set.

o If 1 isapplicable with respect to A (87.4.2.1), then al indexers declared in a base type of s areremoved
from the set.

If the resulting set of candidate indexers is empty, then no applicable indexers exist, and an error occurs. If
the candidate indexers are not al declared in the same type, the indexer access is ambiguous, and an error
occurs (this latter situation can only occur for an indexer access on an instance of an interface that has
multiple direct base interfaces).

The best indexer of the set of candidate indexersisidentified using the overload resolution rules of 8§7.4.2. If
asingle best indexer cannot be identified, the indexer access is ambiguous, and an error occurs.

The result of processing the indexer access is an expression classified as an indexer access. The indexer
access expression references the indexer determined in the step above, and has an associated instance
expression of p and an associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor or
the set-accessor of the indexer. If the indexer access is the target of an assignment, the set-accessor isinvoked
to assign anew vaue (87.13.1). In al other cases, the get-accessor isinvoked to obtain the current value
(87.1.1.

7.5.6.3 String indexing

The string classimplements an indexer that allows the individual characters of a string to be accessed. The
indexer of the string class has the following declaration:

public char this[int index] { get; }

In other words, aread-only indexer that takes a single argument of type int and returns an element of type
char. Values passed for the index argument must be greater than or equal to zero and less than the length of
the string.

7.5.7 This access
A this-access consists of the reserved word this.

this-access:
this
A this-accessis permitted only in the block of a constructor, an instance method, or an instance accessor. It has
one of the following meanings:

When this isused in a primary-expression within a constructor of aclass, it is classified asavaue. The
type of the value is the class within which the reference occurs, and the value is a reference to the object
being constructed.

When this isused in a primary-expression within an instance method or instance accessor of aclass, it is
classified as avalue. The type of the vaue is the class within which the reference occurs, and the valueisa
reference to the object for which the method or accessor was invoked.

When this isused in a primary-expression within a constructor of a struct, it is classified as avariable. The
type of the variable is the struct within which the reference occurs, and the variable represents the struct
being constructed. The this variable of a constructor of a struct behaves exactly the same asan out
parameter of the struct type—this in particular means that the variable must be definitely assigned in every
execution path of the constructor.

120 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

When thi s isused in a primary-expression within an instance method or instance accessor of a dtruct, it is
classified asavariable. The type of the variable is the struct within which the reference occurs, and the
variable represents the struct for which the method or accessor was invoked. The this variable of an
instance method of a struct behaves exactly the same asa ref parameter of the struct type.

Useof this inaprimary-expression in a context other than the ones listed above is an error. In particular, it is
not possible to refer to this in astatic method, a static property accessor, or in avariable-initializer of afield
declaration.

7.5.8 Base access

A base-access consists of the reserved word base followed by either a“.” token and an identifier or an
expression-list enclosed in square brackets:

base-access:
base . identifier
base [expresson-list]

A base-access is used to access base class members that are hidden by similarly named membersin the current
classor struct. A base-access is permitted only in the block of a constructor, an instance method, or an instance
accessor. When base. I occursin aclassor struct, I must denote a member of the base class of that class or
struct. Likewise, when base[E] occursin aclass, an applicable indexer must exist in the base class.

At compile-time, base-access expressions of theform base. I and base[E] are evauated exactly asif they
werewritten ((B)this) .1 and ((B)this) [E], where B isthe base class of the class or struct in which the
construct occurs. Thus, base. I and base[E] correspond to this.I and this[E], except this isviewed as
an instance of the base class.

When abase-access references a function member (a method, property, or indexer), the function member is
considered non-virtual for purposes of function member invocation (87.4.3). Thus, within an override of a
virtual function member, a base-access can be used to invoke the inherited implementation of the function
member. If the function member referenced by abase-access is abstract, an error occurs.

7.5.9 Postfix increment and decrement operators
post-increment-expression:
primary-expression ++
post-decrement-expression:
primary-expression --
The operand of a postfix increment or decrement operation must be an expression classified asavariable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or
indexer must have both aget and aset accessor. If thisis not the case, a compile-time error occurs.

Unary operator overload resolution (87.2.3) is applied to select a specific operator implementation. Predefined
++ and - - operators exist for the following types. sbyte, byte, short, ushort, int, uint, Tong, ulong,
char, float, double, decimal, and any enum type. The predefined ++ operators return the value produced
by adding 1 to the operand, and the predefined - - operators return the vaue produced by subtracting 1 from the
operand.

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of the
following steps:

If x isclassified as a variable:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 121

C#LANGUAGE SPECIFICATION

0 x isevauated to produce the variable.

0 Thevaueof x is saved.

0 The selected operator isinvoked with the saved value of x asits argument.

0 Thevauereturned by the operator is stored in the location given by the evaluation of x.
0 The saved vaue of x becomes the result of the operation.

If x is classified as a property or indexer access.

0 Theinstance expression (if x isnot stat1ic) and the argument list (if x isan indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

0 Theget accessor of x isinvoked and the returned value is saved.

0 The selected operator is invoked with the saved value of x asits argument.

0 Theset accessor of x isinvoked with the value returned by the operator asits value argument.
0 The saved vaue of x becomes the result of the operation.

The ++ and -- operators also support prefix notation, as described in 87.6.7. The result of x++ or x-- isthe
vaue of x before the operation, whereas the result of ++x or --x isthe value of x after the operation. In either
case, x itself has the same vaue after the operation.

Anoperator ++ Or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.5.10 new operator
The new operator is used to create new instances of types.

new-expression:
obj ect-creation-expression
array-creation-expression
del egate-creation-expression

There are three forms of new expressions:
Object creation expressions are used to create a new instances of class types and value types.
Array creation expressions are used to create new instances of array types.
Delegate creation expressions are used to create new instances of delegate types.

The new operator implies creation of an instance of atype, but does not necessarily imply dynamic alocation of
memory. In particular, instances of value types require no additional memory beyond the variables in which they
reside, and no dynamic alocations occur when new is used to create instances of value types.

7.5.10.1 Object creation expressions
An object-creation-expression is used to create a new instance of a class-type or avalue-type.

obj ect-creation-expression:
new type (argument-lis,)

The type of an object-creation-expression must be aclass-type or a value-type. The typecannot be an abstract
class-type

The optiona argument-list (87.4.1) is permitted only if the type isa classtype or astruct-type.

122 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

The compile-time processing of an object-creation-expression of the form new T(A), where T is aclass-typeor
a value-type and A isan optional argument-list, consists of the following steps:

If T isavaluetypeand A is not present:

0 The object-creation-expression is a default constructor invocation. The result of the object-creation-
expressionisavaue of type T, namely the default value for T as defined in 84.1.1.

Otherwise, if T isaclass-type or astruct-type:
o If Tisan abstract class-type, an error occurs.

o The congtructor to invoke is determined using the overload resolution rules of §7.4.2. The set of
candidate constructors consists of all accessible constructors declared in T. If the set of candidate
constructors is empty, or if asingle best constructor cannot be idertified, an error occurs.

0 Theresult of the object-creation-expressionis avaue of type T, namely the value produced by invoking
the congtructor determined in the step above.

Otherwise, the object-creation-expression isinvalid, and an error occurs.

The run-time processing of an obj ect-creation-expression of the form new T(A), where T is class-typeor a
struct-typeand A isan optiona argument-list, consists of the following steps.

If T isaclass-type:

0 A new instance of class T isalocated. If there is not enough memory available to alocate the new
instance, an outofMemoryException isthrown and no further steps are executed.

o All fields of the new instance are initialized to their default values (85.2).

0 The congtructor isinvoked according to the rules of function member invocation (87.4.3). A referenceto
the newly alocated instance is automatically passed to the constructor and the instance can be accessed
from within the constructor as this.

If T isastruct-type:

0 Aninstance of type T is created by allocating atemporary local variable. Since a constructor of a struct-
type is required to definitely assign a value to each field of the instance being created, no initialization
of the temporary variable is necessary.

0 Theconstructor isinvoked according to the rules of function member invocation (87.4.3). A referenceto
the newly alocated instance is automatically passed to the constructor and the instance can be accessed
from within the constructor as this.

7.5.10.2 Array creation expressions
An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
new non-array-type [expresson-list] rank-specifiers, array-initializer oy
new array-type array-initializer

An array creation expression of first form allocates an array instance of the type that results from deleting each
of the individual expressions from the expression list. For example, the array creation expresson new int[10,
20] produces an array instance of typeint[,], and the array creation expression new int[10] [,] produces
an array of typeint[][,]. Each expression in the expression list must be of type int, uint, Tong, or ulong,
or of atype that can be implicitly converted to one or more of these types. The vaue of each expression
determines the length of the corresponding dimension in the newly allocated array instance.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 123

C#LANGUAGE SPECIFICATION

If an array creation expression of the first form includes an array initializer, each expression in the expression
list must be a constant and the rank and dimension lengths specified by the expression list must match those of
the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of the
array initializer. The individual dimension lengths are inferred from the number of elements in each of the
corresponding nesting levels of the array initiaizer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}};
exactly correspondsto

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}};
Array initiaizers are further described in 812.6.

The result of evaluating an array creation expression is classified as a value, namely areference to the newly
allocated array instance. The run-time processing of an array creation expression consists of the following steps:

The dimension length expressions of the expression-list are evaluated in order, from left to right. Following
evaluation of each expression, an implicit conversion (86.1) to type int is performed. If evaluation of an
expression or the subsequent implicit conversion causes an exception, then no further expressions are
evaluated and no further steps are executed.

The computed values for the dimension lengths are validated. If one or more of the values are less than zero,
an IndexoutofRangeException isthrown and no further steps are executed.

An array instance with the given dimension lengths is allocated. If there is not enough memory available to
allocate the new instance, an outofMemoryException isthrown and no further steps are executed.

All elements of the new array instance are initialized to their default values (85.2).

If the array creation expression contains an array initializer, then each expression in the array initidizer is
evauated and assigned to its corresponding array element. The evaluations and assignments are performed
in the order the expressions are written in the array initializer—in other words, elements are initialized in
increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or
the subsequent assignment to the corresponding array element causes an exception, then no further elements
areinitiaized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the elements of
such an array must be manually initialized. For example, the statement

int[][] a = new int[100][];

creates asingle-dimensiona array with 100 elements of type int[]. Theinitia value of each elementisnull.
It is not possible for the same array creation expression to also instantiate the sub-arrays, and the statement

int[][] a = new int[100][5]; // Error
isan error. Instantiation of the sub-arrays must instead be performed manualy, asin

int[J[] a = new int[100][];
for (int i = 0; i < 1005 1++) a[il = new int[5];

When an array of arrays has a“rectangular” shape, that is when the sub-arrays are al of the same length, it is
more efficient to use a multi-dimensiond array. In the example above, instantiation of the array of arrays creates
101 objects—one outer array and 100 sub-arrays. In contrast,

int[,] = new int[100, 5];
creates only a single object, atwo-dimensiona array, and accomplishes the alocation in a single statement.

124 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7.5.10.3 Delegate creation expressions
A delegate-creation-expression is used to create a new instance of adelegate-type.

del egate-creation-expression:
new delegate-type (expression)

The argument of a delegate creation expression must be a method group or a value of a delegate-type If the
argument is a method group, it identifies the method and, for an instance method, the dbject for which to create
adelegate. If the argument is a value of adelegate-type, it identifies a delegate instance of which to create a

The compile-time processing of a delegate-creation-expression of the form new D(E), where D isa delegate-
type and E isan expression, consists of the following steps:

If E isamethod group:

0]
0]

If the method group resulted from a base-access, an error occurs.

The sat of methods identified by E must include exactly one method with precisely the same signature
and return type as those of D, and this becomes the method to which the newly created delegate refers. If
no matching method exists, or if more than one matching methods exists, an error occurs. If the selected
method is an instance method, the instance expression associated with E determines the target object of
the delegate.

Asin amethod invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted from a simple-name or a
member-access through atype. If the method is an instance method, the method group must have
resulted from a simple-name or a member -access through a variable or value. If the selected method
does not match the context of the method group, an error occurs.

The result is avaue of type b, namely a newly created delegate that refers to the selected method and
target object.

Otherwise, if E isavalue of adelegate-type:

o

The delegate-type of E must have the exact same signature and return type as D, or otherwise an error
occurs.

The result isavaue of type b, namely anewly created delegate that refers to the same method and
target object as E.

Otherwise, the delegate creation expression isinvalid, and an error occurs.

The run-time processing of a delegate-creation-expression of the form new D(E), where D is adeegate-type
and E isan expression, consists of the following steps:

If E isamethod group:

o

If the method selected at compile-time is a static method, the target object of the delegateisnu11.
Otherwise, the selected method is an instance method, and the target object of the delegate is determined
from the instance expression associated with E:

The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

If the instance expression is of areference-type, the value computed by the instance expression
becomes the target object. If the target object isnu11, aNul1ReferenceException isthrown
and no further steps are executed.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 125

C#LANGUAGE SPECIFICATION

If the instance expression is of avalue-type, a boxing operation (84.3.1) is performed to convert the
value to an object, and this object becomes the target object.

0 A new instance of the delegate type D is allocated. If there is not enough memory available to alocate
the new instance, an outofMemoryException isthrown and no further steps are executed.

0 Thenew delegate instance isinitialized with a reference to the method that was determined at compile-
time and a reference to the target object computed above.

If E isavaue of a delegate-type:
0 E isevauated. If this evaluation causes an exception, no further steps are executed.
o Ifthevalueof Eisnull, aNullReferenceException isthrown and no further steps are executed.

0 A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, an outofMemoryException isthrown and no further steps are executed.

0 Thenew delegate instance is initialized with references to the same method and object as the delegate
instance given by E.

The method and object to which a delegate refers are determined when the delegate is instantiated and then
remain constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
method or object of a delegate once it has been created.

It is not possible to create a delegate that refers to a constructor, property, indexer, or user-defined operator.

As described above, when a delegate is created from a method group, the signature and return type of the
delegate determine which of the overloaded methods to select. In the example

deTegate double DoubleFunc(double x);
class A

DoubleFunc f = new DoubleFunc(Square);

static float Square(float x) {
return x * x;
}

static double square(double x) {
return x * x;
}

}

the A. f fidd isinitialized with a delegate that refers to the second square method because that method exactly
matches the signature and return type of boubTeFunc. Had the second square method not been present, a
compile-time error would have occurred.

7.5.11 typeof operator
The typeof operator is used to obtain the system. Type object for atype.

typeof-expression:
typeof (type)
The result of atypeof-expression isthe system. Type object for the indicated type.

The example

126 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

class Test

static void Main() {

Type[]l t = {
typeof(int),
typeof(System.Int32),
typeof(string),
typeof(double[])

s

for (int i = 0; i < t.Length; i++) {
console.wWriteLine(t[i].Name);

}

}
}

produces the following output:

Int32
Int32
String
Double[]

Notethat int and Ssystem.Int32 arethe same type.

7.5.12 checked and unchecked operators

The checked and unchecked operators are used to control the overflow checking contextfor integral-type
arithmetic operations and conversions.

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the unchecked operator
evaluates the contained expression in an unchecked context. A checked-expression or unchecked-expression
corresponds exactly to a parenthesized-expression (87.5.3), except that the contained expression is evaluated in
the given overflow checking context.

The overflow checking context can aso be controlled through the checked and unchecked statements (88.11).

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

The predefined ++ and - - unary operators (87.5.9 and 87.6.7), when the operand is of an integra type.
The predefined - unary operator (87.6.2), when the operand is of an integral type.

The predefined +, -, *, and / binary operators (87.7), when both operands are of integral types.
Explicit numeric conversions (86.2.1) from one integral type to another integral type.

When one of the above operations produce a result that is too large to represent in the destination type, the
context in which the operation is performed controls the resulting behavior:

In achecked context, if the operation is a constant expression (87.15), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, an overflowException isthrown.

Inan unchecked context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 127

C#LANGUAGE SPECIFICATION

When a non-constant expression (an expression that is evaluated at run-time) is not enclosed by any checked or
unchecked operators or statements, the effect of an overflow during the run-time evaluation of the expression
depends on external factors (such as compiler switches and execution environment configuration). The effect is
however guaranteed to be either that of a checked evauation or that of an unchecked evauation.

For constant expressions (expressions that can be fully evaluated at compile-time), the default overflow
checking context is always checked. Unless a constant expression is explicitly placed in an unchecked
context, overflows that occur during the compile-time evaluation of the expression always cause compile-time
errors.

In the example
class Test

static int x 1000000;
static int y 1000000;

static int FO {
return checked(x * y); // Throws overflowException
}

static int GO {
return unchecked(x * y); // Returns -727379968

}
static int HO {

return x * y; // Depends on default
}

}

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At run-
time, the F() method throws an overflowException, and the G() method returns —727379968 (the lower 32
bits of the out-of -range result). The behavior of the H() method depends on the default overflow checking
context for the compilation, but it is either the same as F() or thesameasG ().

In the example

class Test

const int x 1000000;
const int y = 1000000;

static int FO {
return checked(x * y); // Compile error, overflow
}

static int GO {
return unchecked(x * y); // Returns -727379968

}
static int HO {

return x * y; // Compile error, overflow
}

}

the overflows that occur when eval uating the constant expressionsin F() and H() cause compile-time errorsto
be reported because the expressions are evaluated in a checked context. An overflow also occurs when
evaluating the constant expression in G (), but since the evaluation takes place in an unchecked context, the
overflow is not reported.

The checked and unchecked operators only affect the overflow checking context for those operations that are
textually contained within the“(” and “)” tokens. The operators have no effect on function membersthat ae
invoked as a result of evauating the contained expression. In the example

128 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

class Test

static int Multiply(int x, int y) {
return x * y;

static int FO {
return checked(Multiply (1000000, 1000000));

}

the use of checked in F() does not affect the evaluation of x * y inMultiply (), and x * y istherefore
evauated in the default overflow checking context.

The unchecked operator is convenient when writing constants of the signed integral types in hexadecimal
notation. For example:

class Test

unchecked ((int) OXFFFFFFFF) ;
unchecked ((int)0x80000000) ;

public const int AllBits

pubTic const int HighBit

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int range,
without the unchecked operator, the caststo int would produce compile-time errors.

7.6 Unary expressions

| ssue

We need to write this section.

unary-expression:;
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
* unary-expression
& unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

7.6.1 Unary plus operator

For an operation of the form +x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined unary plus operators are;

int operator +(int x);

uint operator +(uint x);

Tong operator +(long x);

ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is smply the value of the operand.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 129

C#LANGUAGE SPECIFICATION

7.6.2 Unary minus operator

For an operation of the form -x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined negation operators are:

Integer negation:

int operator -(int x);
Tong operator -(long x);

The result is computed by subtracting x from zero. In a checked context, if the value of x isthe maximum
negative int or Tong, an overflowException isthrown. In an unchecked context, if the value of x is
the maximum negative int or Tong, the result is that same value and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type 1ong, and the type of the
result is Tong. An exception is the rule that permits the int value -2147483648 (-2") to be written as a
decimal integer literal (82.4.4.2).

If the operand of the negation operator is of type ulong, an error occurs. An exception is the rule that
permits the Tong value -9223372036854775808 (- 2°°) to be written as decimal integer literal (§2.4.4.2).

Floating-point negation:

float operator -(float x);
double operator -(double x);

The result isthe value of x with its sign inverted. If x isNaN, the result isaso NaN.
Decimal negation:

decimal operator -(decimal x);
The result is computed by subtracting x from zero.

7.6.3 Logical negation operator

For an operation of the form ! x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. Only one predefined logical negation operator exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operand is true, the result is false. If the
operand is false, theresult is true.

7.6.4 Bitwise complement operator

For an operation of the form ~x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined bitwise complement operators are:

int operator ~(int x);
uint operator ~(uint x);
Tong operator ~(long x);
ulong operator ~(ulong Xx);

For each of these operators, the result of the operation is the bitwise complement of x.
Every enumeration type E implicitly provides the following bitwise complement operator:

E operator ~(E x);

130 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

The result of evaluating ~x, where x is an expression of an enumeration type E with an underlying type u, is
exactly the same as evaluating (E) (~ (U) x).

7.6.5 Indirection operator

7.6.6 Address operator

7.6.7 Prefix increment and decrement operators

pr e-increment-expression:
++ Unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or
indexer must have both aget and aset accessor. If thisis not the case, a compile-time error occurs.

Unary operator overload resolution (87.2.3) is applied to select a specific operator implementation. Predefined
++ and - - operators exist for the following types. sbyte, byte, short, ushort, int, uint, Tong, ulong,
char, float, double, decimal, and any enum type. The predefined ++ operators return the value produced
by adding 1 to the operand, and the predefined - - operators return the value produced by subtracting 1 from the
operand.

The run-time processing of a prefix increment or decrement operation of the form ++x or --x consists of the
following steps:

If x isclassified as avariable:

0 x isevauated to produce the variable.

0 The selected operator isinvoked with the value of x as its argument.

0 Thevauereturned by the operator is stored in the location given by the evaluation of x.
o Thevauereturned by the operator becomes the result of the operation.

If x is classified as a property or indexer access.

0 Theinstance expression (if x isnot stat1ic) and the argument list (if x isan indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

0 Theget accessor of x isinvoked.

0 The selected operator is invoked with the value returned by the get accessor asits argument.

0 Theset accessor of x isinvoked with the value returned by the operator asits value argument.
0 Thevauereturned by the operator becomes the result of the operation.

The ++ and -- operators a so support postfix notation, as described in 87.5.9. The result of x++ or x-- isthe
vaue of x before the operation, whereas the result of ++x or --x isthe value of x after the operation. In either
case, x itsdlf has the same value after the operation.

Anoperator ++ Or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 131

C#LANGUAGE SPECIFICATION

7.6.8 Cast expressions
A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of theform (T)E, where T isatypeand E is aunary-expression, performs an explicit
conversion (86.2) of the value of E to type T. If no explicit conversion exists from the type of E to T, an error
occurs. Otherwise, the result is the value produced by the explicit conversion. The result is aways classified as a
value, even if E denotes avariable.

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the expression (x) -y
could either be interpreted as a cast-expression (a cast of -y to type x) or as an additive-expression combined
with a parenthesized-expression (which computesthe value x - y).

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (82.4)
enclosed in parentheses is considered the start of a cast-expression only if at least one of the following are true:

The sequence of tokensis correct grammar for a type, but not for an expression.

The sequence of tokens is correct grammar for a type, and the token immediately following the closing
parentheses is the token “~”, the token “!”, the token “ (", an identifier (82.4.2), aliteral (82.4.4), or any
keyword (82.4.3) except is.

The above rules mean that only if the construct is unambiguously a cast-expression isit considered a cast-
expression.

The term “ correct grammar” above means only that the sequence of tokens must conform to the particular
grammatical production. It specifically does not consider the actual meaning of any congtituent identifiers. For
example, if x and y areidentifiers, then x.y is correct grammar for atype, even if x.y doesn't actually denote a

type.

From the disambiguation rulesit follows that, if x and y areidentifiers, (x)y, (x) (y),and (x) (-y) arecast-
expressions, but (x) -y isnot, even if x identifies atype. However, if x is akeyword that identifies a predefined
type (such as int), then al four forms are cast-expressions (because such a keyword could not possibly be an
expression by itself).

7.7 Arithmetic operators
The *, /,%, +, and — operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

7.7.1 Multiplication operator

For an operation of theform x * y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

132 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

The predefined multiplication operators are listed below. The operators all compute the product of x and y.

Integer multiplication:

int operator *(int x, int y);

uint operator *(uint x, uint y);

Tong operator *(long x, long y);

ulong operator *(ulong x, ulong y);
In achecked context, if the product is outside the range of the result type, an overflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

Floating-point multiplication:

float operator *(float x, float y);

double operator *(double x, double y);
The product is computed according to the rules of |IEEE 754 arithmetic. The following table lists the results
of al possible combinations of nonzero finite values, zeros, infinities, and NaN'’s. In the table, x and y are
positive finite values. z isthe result of x * y. If the result istoo large for the destination type, z isinfinity. If
the result istoo small for the destination type, z is zero.

+y -y +0 -0 +8 -8 NaN
+X z -z +0 -0 +8 -8 NaN
-X -z z -0 +0 -8 +8 NaN
+0 +0 -0 +0 -0 NaN NaN NaN
-0 -0 +0 -0 +0 NaN NaN NaN
+8 +8 -8 NaN NaN +8 -8 NaN
-8 -8 +8 NaN NaN -8 +8 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Decimal multiplication:
decimal operator *(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, an overflowException isthrown.
If the result value istoo small to represent in the decimal format, the result is zero.

7.7.2 Division operator

For an operation of the formx / y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined division operators are listed below. The operators al compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);

Tong operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, abivideByzZeroException isthrown.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 133

C#LANGUAGE SPECIFICATION

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive
when the two operands have the same sign and zero or negative when the two operands have opposite signs.

If the left operand is the maximum negative int or Tong and the right operand is -1, an overflow occurs. In
a checked context, this causes an overflowException to bethrown. In an unchecked context, the
overflow is not reported and the result isinstead the value of the left operand.

Floating-point division:

float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of al possible combinations of nonzero finite values, zeros, infinities, and NaN'’s. In the table, x and y are
positive finite values. z istheresult of x / y. If theresult istoo large for the destination type, z is infinity. If
the result istoo small for the destination type, z is zero.

+y -y +0 -0 +8 -8 NaN
+X z -z +8 -8 +0 -0 NaN
-X -z z -8 +8 -0 +0 NaN
+0 +0 -0 NaN NaN +0 -0 NaN
-0 -0 +0 NaN NaN -0 +0 NaN
+8 +8 -8 +8 -8 NaN NaN NaN
-8 -8 +8 -8 +8 NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Decimal division:
decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, abivideByzZeroexception isthrown. If the resulting valueis
too large to represent in the decimal format, an overflowException isthrown. If the result value istoo
small to represent in the decimal format, the result is zero.

7.7.3 Remainder operator

For an operation of theform x % y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the division
between x and y.

Integer remainder:

int operator %(int x, int y);

uint operator %(uint x, uint y);
Tong operator %(long x, long y);
ulong operator %(ulong x, ulong y);

Theresult of x % y isthevalue produced by x - (x / y) * y. If y iszero, aDivideByzeroException is
thrown. The remainder operator never causes an overflow.

Floating-point remainder:

134 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of nonzero finite values, zeros, infinities,
and NaN’s. In the table, x and y are positive finite values. z istheresult of x % y and iscomputed as x — n *
y, where n isthe largest possible integer that is less than or equal to x / y. This method of computing the
remainder is analogous to that used for integer operands, but differs from the IEEE 754 definition (in which
n istheinteger closest to x / y).

+y -y +0 -0 +8 -8 NaN
+X z z NaN NaN X X NaN
-X -Z -Z NaN NaN —-X =X NaN
+0 +0 +0 NaN NaN +0 +0 NaN
-0 -0 -0 NaN NaN -0 -0 NaN
+8 NaN NaN NaN NaN NaN NaN NaN
-8 NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Decimal remainder:
decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, abivideByzeroException isthrown. If the resulting valueis
too large to represent in the decimal format, an overflowException isthrown. If the result value istoo
small to represent in the decimal format, the result is zero.

7.7.4 Addition operator

For an operation of the form x + y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined addition
operators compute the sum of the two operands. When one or both operands are of type string, the predefined
addition operators concatenate the string representation of the operands.

Integer addition:

int operator +(int x, int y);

uint operator +(uint x, uint y);
Tong operator +(long x, long y);
ulong operator +(ulong x, ulong y);

In achecked context, if the sum is outside the range of the result type, an overflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

Floating-point addition:

float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of
all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. Inthe table, x and y are
nonzero finite values, and z isthe result of x + y. If x and y have the same magnitude but opposite signs, z

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 135

C#LANGUAGE SPECIFICATION

is positive zero. If x + y istoo large to represent in the destination type, z is an infinity with the same sign as
x +y.If x + yistoo smal to represent in the destination type, z isazero with the samesignasx +vy.

y +0 -0 +8 -8 NaN
X z X X +8 -8 NaN
+0 y +0 +0 +8 -8 NaN
-0 y +0 -0 +8 -8 NaN
+8 +8 +8 +8 +8 NaN NaN
-8 -8 -8 -8 NaN -8 NaN
NaN NaN NaN NaN NaN NaN NaN

Decimal addition:

decimal operator +(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, an overflowException isthrown.
If the result value is too small to represent in the decimal format, the result is zero.

Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
where E is the enum type, and u is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

The operators are evaluated exactly as (E) ((U)x + (V) y).

String concatenation:

string operator +(string x, string y);

string operator +(string x, object y);

string operator +(object x, string y);
The binary + operator performs string concatenation when one or both operands are of type string. If an
operand of string concatenation isnu11, an empty string is substituted. Otherwise, any non-string argument
is converted to its string representation by invoking the virtual Tostring() method inherited from type
object. If Tostring() returnsnul1, an empty string is substituted.

The result of the string concatenation operator is a string that consists of the characters of the left operand
followed by the characters of the right operand. The string concatenation operator never returnsa null
value. An outofMemoryException may bethrown if there is not enough memory available to alocate the
resulting string.

Deegate combination. Every delegate type implicitly provides the following predefined operator, where D is
the delegate type:

D operator +(D x, D y);

The binary + operator performs delegate combination when one or both operands are of a delegate typeD. If
the first operand isnu11, then the result of the operation is the vaue of the second operand. Otherwisg, if
the second operand is nu11, then the result of the operation is the value of the first operand. Otherwise, if D
is a combinable delegate type (815.1.1) then the result of the operation is a new delegate instance that, when
invoked, invokes the first operand and then invokes the second operand. Otherwise, D is not a combinable
delegate type, and aMulticastNotSupportedException isthrown.

136 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7.7.5 Subtraction operator

For an operation of the form x - y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y from x.
Integer subtraction:

int operator -(int x, int y);

uint operator -(uint x, uint y);

Tong operator -(long x, long y);

ulong operator -(ulong x, ulong y);
In achecked context, if the difference is outside the range of the result type, an overflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

Floating-point subtraction:

float operator -(float x, float y);
double operator -(double x, double y);

The difference is computed according to the rules of IEEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN'’s. In the table, x and
y are nonzero finite values, and z istheresult of x - y. If xand y areequal, z is positive zero. If x - y istoo
large to represent in the destination type, z is an infinity with the samesignasx - y. If x - y istoo smdl to
represent in the destination type, z is a zero with the samesignasx - y.

+0 -0 +8 -8 NaN
X z X X -8 +8 NaN
+0 -y +0 +0 -8 +8 NaN
-0 -y -0 +0 -8 +8 NaN
+8 +8 +8 +8 NaN +8 NaN
-8 -8 -8 -8 -8 NaN NaN
NaN NaN NaN NaN NaN NaN NaN

Decimal subtraction:

decimal operator -(decimal x, decimal y);
If the resulting value istoo large to represent in the decimal format, an overflowException isthrown.
If the result value is too small to represent in the decimal format, the result is zero.
Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,
where E isthe enum type, and U is the underlying type of E:

U operator -(E x, E y);

This operator is evaluated exactly as (U) ((U)x - (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of the
enumeration.

E operator -(E x, U y);

This operator is evaluated exactly as (E) ((U)x - y). In other words, the operator subtracts a value from
the underlying type of the enumeration, yielding a vaue of the enumeration.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 137

C#LANGUAGE SPECIFICATION

Delegate removal. Every delegate type implicitly provides the following predefined operator, where b isthe
delegate type:

D operator -(D x, D y);
The binary - operator performs delegate remova when one or both operands are of a delegate type D.

| ssue

We need to describe the semantics of the subtraction operator for delegates.

7.8 Shift operators
The << and >> operators are used to perform bit shifting operations.
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expresson >> additive-expression

For an operation of the form x << count or x >> count, binary operator overload resolution (87.2.4) is applied
to select a specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must ways be the class or struct
containing the operator declaration, and the type of the second operand must always be int.

The predefined shift operators are listed below.
Shift left:

int operator <<(int x, 1int count);
uint operator <<(uint x, int count);
Tong operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits of x are discarded, the remaining bits are shifted |eft, and the low-order empty bit
positions are set to zero.

Shift right:

int operator >>(int x, int count);
uint operator >>(uint x, int count);
Tong operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

When x isof type int or Tong, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero if x is non-negative and set to oneif x is negative.

When x isof typeuint or uTlong, thelow-order bits of x are discarded, the remaining bits are shiftedright,
and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

When the type of x isint or uint, the shift count is given by the low-order five bits of count. In other
words, the shift count is computed from count & Ox1F.

When the type of x is Tong or ulong, the shift count is given by the low-order six bits of count. In other
words, the shift count is computed from count & 0x3F.

138 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

If the resulting shift count is zero, the shift operators smply return the value of x.
Shift operations never cause overflows and produce the same results in checked and unchecked contexts.

When the left operand of the >> operator is of asigned integral type, the operator performs an arithmetic shift
right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the high-order
empty bit positions. When the left operand of the >> operator is of an unsigned integral type, the operator
performs alogical shift right wherein high-order empty bit positions are always set to zero. To perform the
opposite operation of that inferred from the operand type, explicit casts can be used. For example, if x isa
variable of type int, the operation (int) ((uint)x >> y) performsalogica shift right of x.

7.9 Relational operators
The==, !=, <,>, <=, >=,1is and as operators are called the relational operators.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression

equality-expresson == relational-expression
equality-expression != relational-expression
The is operator is described in 87.9.9 and the as operator is described in §7.9.10.
The ==, !=, <, >, <= and >= operators are comparison operators. For an operation of the form x op y, whereop

is a comparison operator, overload resolution (87.2.4) is applied to select a specific operator implementation.
The operands are converted to the parameter types of the selected operator, and the type of the result is the
return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison
operators return aresult of type boo1, as described in the following table.

Operation | Result

X==Yy true if x isequa to y, false otherwise

Xl=y true if x isnot equal to y, false otherwise

X<y true if x islessthan y, false otherwise

X>y true if x isgreater than y, false otherwise

X <=y true if x islessthan or equal to y, false otherwise

X>=y true if x isgreater than or equa to y, false otherwise

7.9.1 Integer comparison operators
The predefined integer comparison operators are:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 139

C#LANGUAGE SPECIFICATION

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

operator
operator
operator
operator

operator
operator
operator
operator

operator
operator
operator
operator

operator
operator
operator
operator

operator
operator
operator
operator

operator
operator
operator
operator

==(int x, int y);
==(uint x, uint y);
==(long x, Tong y);
==(ulong x, ulong y);

I=(int x, int y);
I=Cuint x, uint y);
!=(long x, long y);
I=Culong x, ulong y);

<(int x, int y);
<(uint x, uint y);
<(Tong x, Tong y);
<(ulong x, ulong y);

>(int x, int y);
>(uint x, uint y);
>(Tong x, Tong y);
>(ulong x, ulong y);

<=(int x, int y);
<=(uint x, uint y);
<=(long x, long y);
<=(ulong x, ulong y);

>=(int x, int y);
>=(uint x, uint y);
>=(long x, long y);
>=(ulong x, ulong y);

Each of these operators compare the numeric vaues of the two integer operands and return aboo1 value that
indicates whether the particular relation is true or false.

7.9.2 Floating-point comparison operators
The predefined floating-point comparison operators are:

bool
bool

bool
bool

bool
bool

bool
bool

bool
bool

bool
bool

operator
operator

operator
operator

operator
operator

operator
operator

operator
operator

operator
operator

==(float x, float y);
==(double x, double y);

I=(float x, float y);
I=(double x, double y);

<(float x, float y);
<(doubTe x, double y);

>(float x, float y);
>(double x, double y);

<=(float x, float y);
<=(double x, double y);

>=(float x, float y);
>=(double x, double y);

The operators compare the operands according to the rules of the IEEE 754 standard:

If either operand isNaN, theresult is false for al operators except !=, and true for the ! = operator. For
any two operands, x !=y aways produces the sameresult as ! (x == y) . However, when one or both
operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logical negation of
the opposite operator. For example, if either of x and y isNaN, then x <y isfalse, but ! (x >=y) istrue.

When neither operand is NaN, the operators compare the values of the two floating-point operands with

respect to the ordering

-8 < —max < ..

140

< -min < -0.0 == +40.0 < 4+min < .. < +4max < +8

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

where min and max are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

0 Negative and positive zero are considered equal.
0 A negative infinity is considered less than all other values, but equal to another negative infinity.
0 A postiveinfinity is considered greater than all other values, but equa to another positive infinity.

7.9.3 Decimal comparison operators

The predefined decima comparison operators are:
bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compare the numeric values of the two decimal operands and return a boo1 vaue that
indicates whether the particular relation is true or false.

7.9.4 Boolean equality operators
The predefined boolean equality operators are:
bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);
Theresult of == istrue if both x and y are true or if both x and y are false. Otherwise, theresult is false.

Theresult of !=isfalse if both x and y are true or if both x and y are false. Otherwise, the result is true.
When the operands are of type booT, the ! = operator produces the same result as the A operator.

7.9.5 Enumeration comparison operators
Every enumeration type implicitly provides the following predefined comparison operators.
bool operator ==(E x, E y);
bool operator !=(E x, E y);
bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

Theresult of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op is one of the comparison operators, is exactly the same as evaluating ((u)x) op ((Vy). Inother
words, the enumeration type comparison operators simply compare the underlying integral values of the two
operands.

7.9.6 Reference type equality operators
The predefined reference type equality operators are:

bool operator ==(object x, object y);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 141

C#LANGUAGE SPECIFICATION

bool operator !=(object x, object y);
The operators return the result of comparing the two references for equality or non-equality.

Since the predefined reference type equality operators accept operands of type object, they apply to dl types
that do not declare applicable operator == and operator != members. Conversely, any applicable user-
defined equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require the operands to be reference-type values or the vaue
nul1, and furthermore require that an implicit conversion exists from the type of either operand to the type of
the other operand. Unless both of these conditions are true, a compile-time error occurs. Notable implications of
these rules are;

It is an error to use the predefined reference type equality operators to compare two references that are
known to be different at compile-time. For example, if the compile-time types of the operands are two class
types A and B, and if neither A nor B derives from the other, then it would be impossible for the two
operands to reference the same object. Thus, the operation is considered a compile-time error.

The predefined reference type equdity operators do not permit value type operands to be compared.
Therefore, unless a struct type declares its own equality operators, it is not possible to compare vaues of
that struct type.

The predefined reference type equality operators never cause boxing operations to occur for their operands.
It would be meaningless to perform such boxing operations, since references to the newly alocated boxed
instances would necessarily differ from al other references.

For an operation of theform x ==y or x !=y, if any applicable operator == or operator != exigts, the
operator overload resolution (87.2.4) rules will select that operator instead of the predefined reference type
equality operator. However, it is always possible to select the reference type equality operator by explicitly
casting one or both of the operands to type object. The example

class Test

static void Main() {

string s = "Test";
string t = string.Copy(s);
Console.writeLine(s == t);
console.writeLine((object)s == t);
console.WriteLine(s == (object)t);
console.WriteLine((object)s == (object)t);
}
ks
produces the output

True

False

False

False

The s and t variables refer to two distinct str1ing instances containing the same characters. The first
comparison outputs True because the predefined string equality operator (87.9.7) is selected when both
operands are of type string. The remaining comparisons all output False because the predefined reference
type equality operator is selected when one or both of the operands are of type object.

Note that the above technique is not meaningful for value types. The example

142 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

class Test

static void Main() {

int i = 123;
int j = 123;
console.writeLine((object)i == (object)j);

}
outputs False because the casts create references to two separate instances of boxed int values.

7.9.7 String equality operators
The predefined string equality operators are:
bool operator ==(string x, string y);
bool operator !=(string x, string y);
Two string vaues are considered equal when one of the following is true:

Both valuesare nul1.

Both values are non-null references to string instances that have identical lengths and identical charactersin
each character position.

The string equality operators compare string valuesrather than string references. When two separate string
instances contain the exact same sequence of characters, the values of the strings are equal, but the references
are different. As described in 87.9.6, the reference type equality operators can be used to compare string
references instead of string values.

7.9.8 Delegate equality operators
Every delegate type D implicitly provides the following predefined comparison operators:
bool operator ==(System.Delegate x, D y);
bool operator ==(D x, System.Delegate y);
bool operator !=(System.Delegate x, D y);
bool operator !=(D x, System.Delegate y);
Two delegate instances are considered equal as follows:

If either of the delegate instancesis nu11, they are equd if and only if both are nu11.

If either of the delegate instances was instantiated with another delegate, they are equd if and only if both
were instantiated on the same delegate instance. Otherwise,

If either of the delegate instances is a non-multicast delegate, the are equal if and only if both are non-
multicast delegates, and either:

both refer to the same static method, or
both refer to the same non-static method on the same target object.

If either of the delegate instances is a multi-cast delegate, they are equal if and only if their invocation lists
are the same length, and each delegate in one’ sinvocation list is equal to the corresponding delegate, in
order, in the other’s invocation list.

Note that delegates of different types can be considered equal by the above definition, as long as they have the
same return type and parameter types.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 143

C#LANGUAGE SPECIFICATION

7.9.9 The is operator

The is operator is used to dynamically check if the run-time type of an object is compatible with a given type.
The result of the operation e is T, where e isan expression and T isatype, is a boolean value indicating
whether e can successfully be converted to type T by a reference conversion, a boxing conversion, or an
unboxing conversion. The operation is evaluated as follows:

If the compile-time type of e isthesame as T, or if an implicit reference conversion (86.1.4) or boxing
conversion (86.1.5) exists from the compile-time type of e to T:

0 Since e isknown to aways be of the given type, the compiler may issue awarning to this effect.
o If e isof areference type, the result of the operation is equivalent to evaluating e !'= nul1.
o If eisof avauetype, the result of the operation is true.

Otherwise, if an explicit reference conversion (86.2.3) or unboxing conversion (86.2.4) exists from the
compile-time type of e to T, adynamic type check is performed:

o Ifthevalueof eisnull,theresultisfalse.

0 Otherwise, let R be the run-time type of the instance referenced by e. If R and T are the same type, if R is
areference type and an implicit reference conversion from R to T exigts, or if R isavauetypeand T is
an interface type that isimplemented by R, the result is true.

0 Otherwise, theresultis false.

Otherwise, no reference or boxing conversion of e to type T is possible:

o0 Since e isknown to never be of the given type, the compiler may issue awarning to this effect.
0 Theresult of the operation is false.

Note that the i s operator only considers reference conversions, boxing conversions, and unboxing conversions.
Other conversions, such as user defined conversions, are not considered by the i's operator.

7.9.10 The as operator

The as operator is used to explicitly convert a value to a given reference type using a reference conversion or a
boxing conversion. Unlike a cast expression (87.6.8), the as operator never throws an exception. Instead, if the
indicated conversion is not possible, the resulting value isnu11.

In an operation of theform e as T, e must be an expression and T must be a reference type. The type of the
result is T, and the result is dways classified as a value. The operation is evaluated as follows:

If the compile-time type of e isthesame as T, the result is Ssmply the value of e.

Otherwise, if an implicit reference conversion (86.1.4) or boxing conversion (86.1.5) exists from the
compile-time type of eto T, this conversion is performed and becomes the result of the operation.

Otherwise, if an explicit reference conversion (86.2.3) exigts from the compile-timetypeof eto T, a
dynamic type check is performed:

o If thevalueof eisnul1, the result isthe value nu11 with the compile-time type T.

0 Otherwise, let R be the run-time type of the instance referenced by e. If R and T are the same type, if R is
areference type and an implicit reference conversion from R to T exists, or if R isavauetypeand T is
an interface type that isimplemented by R, the result is the reference given by e with the compile-time

typeT.
0 Otherwise, the result is the value nu11 with the compile-time type T.

144 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

Otherwise, the indicated conversion is never possible, and a compile-time error occurs.

Note that the as operator only performs reference conversions and boxing conversions. Other conversions, such
as user defined conversions, are not possible with the as operator and should instead be performed using cast
expressions.

7.10 Logical operators
The &, A, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or -expression:
and-expression
exclusive-or-expression A and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

For an operation of the form x op y, where op is one of the logical operators, overload resolution (87.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of the
selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

7.10.1 Integer logical operators
The predefined integer logical operators are;

int operator &(int x, int y);

uint operator &(uint x, uint y);
Tong operator &(long x, Tlong y);
ulong operator &(ulong x, ulong y);
int operator |(int x, int y);

uint operator |(uint x, uint y);
Tong operator |(long x, Tong y);
ulong operator |(ulong x, ulong y);

int operator A(int x, int y);

uint operator ACuint x, uint y);

Tong operator A(long x, Tlong y);

ulong operator A(ulong x, ulong y);
The & operator computes the bitwise logical AND of the two operands, the | operator computes the bitwise
logical or of the two operands, and the A operator computes the bitwise logical exclusive or of the two
operands. No overflows are possible from these operations.

7.10.2 Enumeration logical operators
Every enumeration type E implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator A(E x, E y);

The result of evauating x op y, where x and y are expressions of an enumeration type E with an underlying type
u, and op is one of the logical operators, is exactly the same as evauating (E) ((U) x) op ((V)y). In other

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 145

C#LANGUAGE SPECIFICATION

words, the enumeration type logical operators smply perform the logical operation on the underlying type of the
two operands.

7.10.3 Boolean logical operators
The predefined boolean logical operators are:
bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator A(bool x, bool y);
Theresault of x & y istrue if both x and y are true. Otherwise, theresult is false.

Theresault of x | y istrue if either x or y istrue. Otherwise, the result is false.

Theresult of x Ay istrue if x istrue andy isfalse, or x isfalse and y istrue. Otherwise, the result is
false. When the operands are of type boo1, the A operator computes the same result asthe ! = operator.

7.11 Conditional logical operators
The&& and | | operators are called the conditional logical operators. They are at times also called the “ short-
circuiting” logical operators.
conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression
conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression
The&& and | | operators are conditional versions of the & and | operators:
The operation x && y corresponds to the operation x & y, except that y is evauated only if x is true.
The operation x | | y corresponds to the operation x | y, except that y is evaluated only if x is false.

An operation of theform x &y or x | | y isprocessed by applying overload resolution (87.2.4) asif the
operation was written x & y or x | y. Then,

If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators, an error occurs.

Otherwise, if the selected operator is one of the predefined boolean logical operators (87.10.2), the operation
is processed as described in §7.11.1.

Otherwise, the selected operator is a user-defined operator, and the operation is processed as described in
§7.11.2

It is not possible to directly overload the conditiona logical operators. However, because the conditional logical
operators are evaluated in terms of the regular logical operators, overloads of the regular logical operators are,
with certain restrictions, also considered overloads of the conditional logical operators. Thisis described further
in8§7.11.2

7.11.1 Boolean conditional logical operators

When the operands of && or | | are of type boo1, or when the operands are of types that do not define an
applicable operator & or operator |, but do define implicit conversionsto boo1, the operation is processed
asfollows:

146 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

The operation x && y isevaluated as x? y: false. In other words, x isfirst evaluated and converted to type
bool. Then, if x istrue, y is evaluated and converted to type boo1, and this becomes the result of the
operation. Otherwise, the result of the operation is false.

The operation x | | y isevaluated as x? true:y. In other words, x isfirst evaluated and converted to type
bool. Then, if x istrue, the result of the operation is true. Otherwise, y is evaluated and converted to
type boo1, and this becomes the result of the operation.

7.11.2 User-defined conditional logical operators

When the operands of && or | | are of typesthat declare an applicable user-defined operator & or operator
|, both of the following must be true, where T is the type in which the selected operator is declared:

The return type and the type of each parameter of the selected operator must be T. In other words, the
operator must compute the logical AND or thelogical oR of two operands of type T, and must return a result
of typeT.

T must contain declarations of operator true and operator false.

A compile-time error occurs if either of these requirements is not satisfied. Otherwise, the && or | | operation is
evaluated by combining the user-defined operator true or operator false with the selected user-defined
operator:

The operation x && y isevaluated asT.false(x)? x: T.&(x, y), whereT.false(x) isan invocation of
the operator false declaredin T, and T.&(x, y) isaninvocation of the selected operator & In other
words, x isfirst evaluated and operator false isinvoked on the result to determine if x is definitely
fase. Then, if x is definitely false, the result of the operation is the value previoudly computed for x.
Otherwise, y is evauated, and the selected operator & isinvoked on the value previously computed for x
and the value computed for y to produce the result of the operation.

Theoperation x | | y isevaluated asT.true(x)? x: T.| (x, y), where T. true(x) isan invocation of
the operator true declaredin T,and 7. | (x, y) isaninvocation of the sdlected operator |. In other
words, x isfirst evaluated and operator true isinvoked on the result to determineif x is definitely true.
Then, if x is definitely true, the result of the operation is the value previously computed for x. Otherwise, y
is evauated, and the selected operator | isinvoked on the value previoudy computed for x and the value
computed for y to produce the result of the operation.

In either of these operations, the expression given by x is only evaluated once, and the expression given by y is
either not evaluated or evaluated exactly once.

For an example of atype that implements operator true and operator false, see 811.4.2

7.12 Conditional operator
The ?: operator is called the conditional operator. It is at times aso called the ternary operator.
conditional-expression:
conditional-or-expression
conditional-or-expression ? expression : expression

A conditional expression of theform b? x: y first evauates the condition b. Then, if b is true, x isevaluated
and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of the operation. A
conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left. For
example, an expression of theform a? b: c? d: eisevauatedasa? b: (c? d: e).

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 147

C#LANGUAGE SPECIFICATION

Thefirst operand of the ?: operator must be an expression of atype that can be implicitly converted to booT, or
an expression of atype that implements operator true. If neither of these requirements are satisfied, a
compile-time error occurs.

The second and third operands of the ?: operator control the type of the conditional expression. Let X and Y be
the types of the second and third operands. Then,

If X and Y are the same type, then thisisthe type of the conditional expression.

Otherwise, if an implicit conversion (86.1) exists from x to v, but not from Y to X, then v is the type of the
conditional expression.

Otherwise, if an implicit conversion (86.1) existsfrom Y to X, but not from X to v, then X is the type of the
conditional expression.

Otherwise, no expression type can be determined, and a compile-time error occurs.
The run-time processing of a conditional expression of the form b? x: y consists of the following steps:
Firgt, b isevauated, and the boo1 value of b is determined:

o If animplicit conversion from the type of b to boo1 exists, then thisimplicit conversion is performed to
produce abool vaue.

0 Otherwise, the operator true defined by the type of b isinvoked to produce abool vaue.

If the booT vaue produced by the step aboveis true, then x is evaluated and converted to the type of the
conditional expression, and this becomes the result of the conditional expression.

Otherwise, y is evauated and converted to the type of the conditional expression, and this becomes the
result of the conditional expression.

7.13 Assignment operators
The assignment operators assign anew value to a variable, a property, or an indexer element.
assignment:
unary-expression assignment-operator expression
assignment-operator: one of
= += - *: /: %: &: |= A= <<L= >>=
The left operand of an assignment must be an expression classified as a variable, a property access, or an
indexer access.

The = operator is called the ssimple assignment operator. It assigns the value of the right operand to the variable,
property, or indexer element given by the left operand. The simple assignment operator is described in 87.13.1

The operators formed by prefixing a binary operator with an = character are called the compound assignment
operators. These operators perform the indicated operation on the two operands, and then assign the resulting
value to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in 87.13.2

The assignment operators are right-associative, meaning that operations are grouped from right to left. For
example, an expression of theforma =b = cisevauatedasa = (b= c).

148 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

7.13.1 Simple assignment

The = operator is called the smple assignment operator. In a simple assignment, the right operand must be an
expression of atype that isimplicitly convertible to the type of the left operand. The operation assigns the value
of the right operand to the variable, property, or indexer element given by the left operand.

The result of a smple assignment expression is the value assigned to the left operand. The result has the same
type as the left operand and is aways classified as avaue.

If the left operand is a property or indexer access, the property or indexer must have a set accessor. If thisis not
the case, a compile-time error occurs.

The run-time processing of a simple assgnment of the form x = y consists of the following steps:
If x isclassified as a variable:
0 x isevauated to produce the variable.
0 vy isevauated and, if required, converted to the type of x through an implicit conversion (86.1).

o If thevariable given by x isan array element of a reference-type, arun-time check is performed to
ensure that the value computed for y is compatible with the array instance of which x is an element. The
check succeedsif y isnu11, or if an implicit reference conversion (86.1.4) exists from the actua type of
the instance referenced by y to the actual e ement type of the array instance containing x. Otherwise, an
ArrayTypeMismatchException isthrown.

0 Thevaue resulting from the evaluation and conversion of y is stored into the location given by the
evauation of x.

If x is classified as a property or indexer access.

0 Theinstance expression (if x isnot stat1ic) and the argument list (if x isan indexer access) associated
with x are evaluated, and the results are used in the subsequent set accessor invocation.

0 vy isevauated and, if required, converted to the type of x through an implicit conversion (86.1).
0 Theset accessor of x isinvoked with the value computed for y asits value argument.

The array co-variance rules (812.5) permit avalue of an array type A[] to be areference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, assignment
to an array element of areference-type requires a run-time check to ensure that the value being assigned is
compatible with the array instance. In the example

string[] sa = new string[10];

object[] oa sa;

oa[0] = null; // ok

oa[l] = "Hello"; // 0ok

oa[2] = new ArrayList(Q); // ArrayTypeMismatchException

the last assignment causes an ArrayTypeMismatchException to be thrown because an instance of
ArrayList cannot be stored in an element of astring[].

When a property or indexer declared in a struct-type is the target of an assignment, the instance expression
associated with the property or indexer access must be classified as avariable. If the instance expression is
classfied as avaue, a compile-time error occurs.

Given the declarations;
struct Point

int x, y;

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 149

C#LANGUAGE SPECIFICATION

public Point(int x, int y) {
this.x X;
this.y = vy;

pubTic int X {
get { return x; }
set { x = value; }

}

pubTic int Y {
get { return y; }
set { y = value; }

}
ks
struct Rectangle
{
Point a, b;
pubTlic Rectangle(Point a, Point b) {
this.a = a;
this.b = b;
pubTlic Point A {
get { return a; }
set { a = value;
}
public Point B {
get { return b; }
set { b = value; }
}
in the example
Point p = new Point();
p.X = 100;
p.Y = 100;

Rectangle r = new Rectangle();
r.A new Point(10, 10);
r.B p;

theassignmentsto p.X,p.Y, r.A,and r.B are permitted because p and r are variables. However, in the
example

Rectangle r = new Rectangle();

r.A.X = 10;
r.A.Y = 10;
r.B.x = 100;
r.B.y = 100;

the assignments are all invalid, since r. A and r. B are not variables.

7.13.2 Compound assignment

An operation of the form x op=y is processed by applying binary operator overload resolution (87.2.4) asif the
operation was written x op y. Then,

If the return type of the selected operator isimplicitly convertible to the type of x, the operation is evaluated
asx =xopy, except that x is evaluated only once.

150 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is
explicitly convertible to the type of x, and if y isinmplicitly convertible to the type of x, then the operation is
evaluated as x = (T) (x opy), where T isthe type of x, except that x is evauated only once.

Otherwise, the compound assignment is invalid, and a compile-time error occurs.

The term “evauated only once’” means that in the evaluation of x op y, the results of any congtituent expressions
of x are temporarily saved and then reused when performing the assignment to x. For example, in the
assgnment AQ [BQ)] += c(), where A isamethod returning int[], and B and C are methods returning int,
the methods are invoked only once, in the order A, B, C.

When the left operand of a compound assignment is a property access or indexer access, the property or indexer
must have both a get accessor and a set accessor. If thisis not the case, a compile-time error occurs.

The second rule above permits x op=y to be evaluated as x = (T) (x 0p y) in certain contexts. The rule exists
such that the predefined operators can be used as compound operators when the left operand is of type sbyte,
byte, short, ushort, or char. Even when both arguments are of one of those types, the predefined operators
produce aresult of type int, as described in 87.2.6.2. Thus, without a cast it would not be possible to assign the
result to the left operand.

The intuitive effect of the rule for predefined operatorsis simply that x op=y is permitted if both of x op y and
X =y are permitted. In the example

byte b = 0;

char ch = '"\0';

int i = 0;

b += 1; // ok

b += 1000; // Error, b = 1000 not permitted
b += 1; // Error, b = i not permitted

b += (byte)i; // 0k

ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // ok

the intuitive reason for each error is that a corresponding simple assignment would also have been an error.

7.13.3 Event assignment

| ssue

We need to write this section.

7.14 Expression
An expression is either aconditional-expression or an assignment.

expression:
conditional-expression
assignment

7.15 Constant expressions
A constant-expression is an expression that can be fully evaluated a compile-time.

constant-expression:
expression

The type of a constant expression can be one of the following: sbyte, byte, short, ushort, int, uint,
Tong, ulong, char, float, double, decimal, bool, string, any enumeration type, or the null type. The
following constructs are permitted in constant expressions.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 151

C#LANGUAGE SPECIFICATION

Literas (including the nu11 litera).

Referencesto const members of class and struct types.

References to members of enumeration types.

Parenthesi zed sub-expressions.

Cast expressions, provided the target type is one of the types listed above.
The predefined +, -, !, and ~ unary operators.

The predefined +, -, *, /, %, <<,>>, &, |, A, &&, | |, ==, !=, <, >, <=, and => binary operators, provided
each operand is of atype listed above.

The ?: conditiona operator.

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the
expression is evaluated at compile-time. Thisistrue even if the expression is a sub-expression of alarger
expression that contains nor-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-constant
expressions, except that where run-time evaluation would have thrown an exception, compile-time evaluation
causes acompile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in integrak-type
arithmetic operations and conversions during the compile-time evaluation of the expression aways cause
compile-time errors (87.5.12).

Constant expressions occur in the contexts listed below. In these contexts, an error occurs if an expression
cannot be fully evaluated at compile-time.

Constant declarations (810.3).

Enumeration member declarations (80).

case labelsof aswitch statement (88.7.2).

goto case Statements (88.9.3).

Dimension lengths in an array creation expression (87.5.10.2) that includes an initidizer.
Attributes (817).

An implicit constant expression conversion (86.1.6) permits a constant expression of type int to be converted
to sbyte, byte, short,ushort, uint, or ulong, provided the value of the constant expression is within the
range of the destination type.

7.16 Boolean expressions
A boolean-expression is an expression that yields aresult of type boo1.
boolean-expression:
expression
The controlling conditional expression of an if-statement (88.7.1), while-statement (88.8.1), do-statement
(88.8.2), or for-statement (88.8.3) is a boolean-expression. The controlling conditiona expression of the 7:

operator (87.12) follows the same rules as a bool ean-expression, but for reasons of operator precedenceis
classified as a conditional-or-expression.

152 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 7 Expressions

A boolean-expression is required to be of atype that can be implicitly converted to boo1 or of atype that
implements operator true. If neither of these requirements are satisfied, a compile-time error occurs.

When a boolean expression is of atype that cannot be implicitly converted to boo1 but does implement
operator true, then following evaluation of the expression, the operator true implementation provided by
the type isinvoked to produce aboo1 vaue.

The DBBoo1 struct type in §11.4.2 provides an example of atype that implements operator true.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 153

Chapter 8 Statements

8. Statements

C# provides a variety of statements. Most of these statements will be familiar to developers who have
programmed in C and C++.

statement:
|abel ed-statement
declar ation-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
sel ection-statement
iter ation-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather than statement excludes the use of declaration statements and labeled statementsin
these contexts. For example, the code

void F(bool b) {

if (b)
int i = 44;

}
isin error because an 1 f statement requires an embedded-statement rather than astatement for itsif branch. If
this code were permitted, then the variable i would be declared, but it could never be used.

8.1 End points and reachability

Every statement has an end point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an embedded
statement. For example, when control reaches the end point of a statement in a block, control is transferred to
the next statement in the block.

If astatement can possibly be reached by execution, the statement is said to be reachable. Conversdly, if there is
no possibility that a statement will be executed, the statement is said to be unreachable.

In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 155

C#LANGUAGE SPECIFICATION

void FQO {
console.WriteLine("reachable");
goto Label;
console.writeLine("unreachable");
Label:
console.writeLine("reachable");

}
the second Console.writeLine invocation is unreachable because there is no possibility that the statement
will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an error
for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis
according to the reachability rules defined for each statement. The flow analysis takes into account the values of
constant expressions (87.15) that control the behavior of statements, but the possible values of non-constant
expressions are not considered. In other words, for purposes of control flow analysis, a non-constant expression
of agiven typeis considered to have any possible value of that type.

In the example
void F() {
const int i = 1;
if (i == 2) cConsole.writeLine("unreachable");

the boolean expression of the i f statement is a constant expression because both operands of the == operator are
constants. The constant expression is evaluated at compile-time, producing the value false, and the
Console.writeLine invocation is therefore considered unreachable. However, if i ischanged to be alocal
vaiable

void FQ {

int i = 1;

if (i == 2) Console.writeLine("reachable");
}

the Console.writeLine invocation is considered reachable, even though it will in redlity never be executed.

The block of afunction member is aways considered reachable. By successively evaluating the reachability
rules of each statement in a block, the reachability of any given statement can be determined.

In the example
void F(int x) {

Console.writeLine("start");]
if (x < 0) Cconsole.writeLine("negative");

}
the reachability of the second Console.writeLine isdetermined as follows:

First, because the block of the F method is reachable, the first Console.writeLine statement is reachable.
Next, because thefirst Console.writeLine statement is reachable, its end point is reachable.

Next, because the end point of the first Console.writeL1ine statement isreachable, the i f statement is
reachable.

Finally, because the boolean expression of the i f statement does not have the constant value false, the
second Console.WriteLine statement is reachable.

There are two Situations in which it is an error for the end point of a statement to be reachable:

156 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

Because the swi tch statement does not permit a switch section to “fall through” to the next switch section,
it isan error for the end point of the statement list of a switch section to be reachable. If this error occurs, it
istypicaly an indication that abreak statement is missing.

It isan error for the end point of the block of afunction member that computes a value to be reachable. If
this error occurs, it istypicaly an indication that a return statement is missing.

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
{ statement-listo 3}

A block congists of an optiond statement-list (88.2.1), enclosed in braces. If the statement list is omitted, the
block is said to be empty.

A block may contain declaration statements (88.5). The scope of alocd variable or constant declared in a block
extends from the declaration to the end of the block.

Within a block, the meaning of a name used in an expression context must always be the same (87.5.2.1).
A block is executed as follows:
If the block is empty, control is transferred to the end point of the block.

If the block is not empty, control istransferred to the statement list. When and if control reaches the end
point of the statement list, control is transferred to the end point of the block.

The statement list of ablock is reachable if the block itself is reachable.
The end point of ablock is reachable if the block is empty or if the end point of the statement list is reachable.

8.2.1 Statement lists

A statement list consists of one or more statements written in sequence. Statement lists occur in blocks (88.2)
and in switch-blocks (88.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end
point of a statement, control is transferred to the next statement. When and if control reaches the end point of the
last statement, control is transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:
The statement is the first statement and the statement list itself is reachable.
The end point of the preceding statement is reachable.

The statement is alabeled statement and the label is referenced by areachable goto statement.
The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

8.3 The empty statement
An empty-statement does nothing.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 157

C#LANGUAGE SPECIFICATION

empty-statement:

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement smply transfers control to the end point of the statement. Thus, the end point
of an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing awh1iTe statement with a null body:

bool ProcessMessage() {..}

void ProcessMessages() {
while (ProcessMessage())

}
Also, an empty statement can be used to declare alabel just before the closing “}” of a block:
void FQO {

if (done) goto exit;

exit: ;

8.4 Labeled statements

A labeled-statement permits a statement to be prefixed by alabel. Labeled statements are permitted blocks, but
are not permitted as embedded statements.

|abel ed-statement:
identifier : statement

A labeled statement declares alabel with the name given by the identifier. The scope of alabel isthe block in
which the labdl is declared, including any nested blocks. It is an error for two labels with the same name to have
overlapping scopes.

A label can be referenced from goto statements (88.9.3) within the scope of the label. This meansthat goto
statements can transfer control inside blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example

int F(int x) {
if (x >= 0) goto x;
X = -X;
X: return Xx;

isvalid and uses the name x as both a parameter and alabdl.

Execution of alabeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, alabeled statement is reachable if the label is
referenced by areachable goto statement.

8.5 Declaration statements

A declaration-statement declares alocal variable or constant. Declaration statements are permitted in blocks, but
are not permitted as embedded statements.

158 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

declar ation-statement:
|ocal-variable-declaration ;
|ocal-constant-declaration ;

8.5.1 Local variable declarations
A local-variable-declaration declares one or more loca variables.

|ocal-variable-declaration:
type variable-declarators

variable-declarators;
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer
variable-initializer:
expression
array-initializer
The type of alocal-variable-declaration specifies the type of the variables introduced by the declaration. The
typeisfollowed by alist of variable-declarators, each of which introduces a new variable. A variable-
declarator consists of an identifier that names the variable, optionaly followed by an “=" token and avariable-
initializer that gives theinitia value of the variable.

The vdue of aloca variable is obtained in an expression using a simple-name (87.5.2), and the value of aloca
variable is modified using an assignment (87.13). A local variable must be definitely assigned (85.3) at each
location where its value is obtained.

The scope of aloca variable starts immediately after its identifier in the declaration and extends to the end of
the block containing the declaration. Within the scope of alocal variable, it is an error to declare another local
variable or constant with the same name.

A locdl variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variable initializer in aloca variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

The example

void FQ {

int x 1, vy, z = x * 2;

corresponds exactly to

void FQO {
int x; x = 1;
int y;
int z; z =

|
X

< 2
}

8.5.2 Local constant declarations
A local-constant-declar ation declares one or more local constants.

| ocal-constant-declaration:
const type constant-declarators

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 159

C#LANGUAGE SPECIFICATION

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

The type of alocal-constant-declaration specifies the type of the constants introduced by the declaration. The
typeisfollowed by alist of constant-declarators, each of which introduces a new constant. A constant-
declarator consists of an identifier that names the constant, followed by an “=" token, followed by a constant-
expression (87.15) that gives the value of the constant.

The type and constant-expression of alocal constant declaration must follow the same rules as those of a
constant member declaration (§10.3).

The vdue of alocal congtant is obtained in an expression using a simple-name (87.5.2).

The scope of alocal constant extends from its declaration to the end of the block containing the declaration. The
scope of alocal constant does not include the constant-expression that provides its value. Within the scope of a
local constant, it is an error to declare another loca variable or constant with the same name.

8.6 Expression statements

An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expressi on-statement:
statement-expression ;

statement-expression:
invocation-expression
obj ect-creation-expression
assignment
post-increment-expression
post-decr ement-expression
pre-increment-expression
pre-decrement-expression

Not al expressions are permitted as statements. In particular, expressions such as x + y and x == 1 that have no
sde-effects, but merely compute a vaue (which will be discarded), are not permitted as statements.

| ssue

Define "side effect”.

Execution of an expression statement evaluates the contained expression and then transfers control to the end
point of the expression statement.

8.7 Selection statements
Selection statements select one of a number of possible statements for execution based on the value of a
controlling expression.

selection-statement:
if-statement
switch-statement

160 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

8.7.1 The if statement
The i f statement selects a statement for execution based on the value of a boolean expression.
if-statement:

if (boolean-expresson) embedded statement
if (boolean-expresson) embedded-statement else embedded-statement

bool ean-expression:
expression
An else part isassociated with the nearest preceding i f statement that does not already have an else part.
Thus, an i f statement of the form
if (xX) if (y) FQ; else GQ;
isequivaent to
if) {
if (y)
FO
}
else {
GO

{

}
An if statement is executed as follows:
The boolean-expression (87.16) is evaluated.

If the boolean expression yidlds true, control is transferred to the first embedded statement. When and if
control reaches the end point of that statement, control is transferred to the end point of the i f statement.

If the boolean expression yields false and if an else part is present, control is transferred to the second
embedded statement. When and if control reaches the end point of that statement, control is transferred to
the end point of the i f statement.

If the boolean expression yields false and if an e1se part is not present, control is transferred to the end
point of the i f statement.

The first embedded statement of an 1 f statement is reachable if the i f statement is reachable and the boolean
expression does not have the constant value false.

The second embedded statement of an i f statement, if present, isreachable if the i f statement is reachable and
the boolean expression does not have the constant value true.

The end point of an i f statement is reachable if the end point of at least one of its embedded statements is
reachable. In addition, the end point of an i f statement with no else part isreachable if the i f statement is
reachable and the boolean expression does not have the constant value true.

8.7.2 The switch statement
The switch statement executes the statements that are associated with the value of the controlling expression.

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sections,: }

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 161

C#LANGUAGE SPECIFICATION

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label
switch-label:
case constant-expression
default

A switch-statement consists of the keyword swi tch, followed by a parenthesized expression (called the switch
expression), followed by a switch-block. The switch-block consists of zero or more switch-sections, enclosed in
braces. Each switch-section consists of one or more switch-labels followed by a statement-list (88.2.1).

The governing typeof a switch statement is established by the switch expression. If the type of the switch
expression is sbyte, byte, short, ushort, int, uint, Tong, ulong, char, string, or an enum-type, then
that is the governing type of the swi tch statement. Otherwise, exactly one user-defined implicit conversion
(86.4) must exist from the type of the switch expression to one of the following possible governing types:
sbyte, byte, short, ushort, int, uint, Tong, ulong, char, string. If no such implicit conversion exists,
or if more that one such implicit conversion exists, a compile-time error occurs.

The constant expression of each case label must denote a vaue of atype that isimplicitly convertible (86.1) to
the governing type of the swi tch statement. A compile-time error occurs if two or more case labdsin the
same swi tch statement specify the same constant value.

There can be at most one default label in aswitch statement.
A switch statement is executed as follows:
The switch expression is evaluated and converted to the governing type.

If one of the constants specified in a case label is equd to the value of the switch expression, control is
transferred to the statement list following the matched case labd.

If no constant matches the value of the switch expression and if adefault labe is present, control is
transferred to the statement list following the default labd.

If no constant matches the value of the switch expression and if no default label is present, control is
transferred to the end point of the switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. Thisis known
asthe “no fdl through” rule. The example

switch (i) {

case O:
Casezero();
break;

case 1:
Caseone();
break;

default:
CaseOthers();
break;

}

162 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

isvalid because no switch section has a reachable end point. Unlike C and C++, execution of a switch section is
not permitted to “fall through” to the next switch section, and the example

switch (i) {
case O:
casezero();
case 1:
Casezeroorone();
default:
CaseAny();

is in error. When execution of a switch section isto be followed by execution of another switch section, an
explicit goto case or goto default statement must be used:

switch (i) {
case O:
Casezero();
goto case 1;
case 1:
Casezeroorone();
goto default;
default:
CaseAny();
break;

Multiple labels are permitted in a switch-section. The example

switch (i) {
case O:
casezero();
break;
case 1:
Caseone();
break;
case 2:
default:
CaseTwo();
break;

islegd. The example does not violate the “no fall through” rule because the labels case 2: and default: are
part of the same switch-section.

The “no fal through” rule prevents a common class of bugs that occur in C and C++ when break statements
are accidentally omitted. Also, because of this rule, the switch sections of a swi tch statement can be arbitrarily
rearranged without affecting the behavior of the statement. For example, the sections of the swi tch statement
above can be reversed without affecting the behavior of the statement:

switch (i) {
default:
CaseAny();
break;
case 1:
Casezeroorone();
goto default;
case O:
Casezero();
goto case 1;

The statement list of a switch section typically endsin abreak, goto case, or goto default statement, but
any construct that renders the end point of the statement list unreachable is permitted. For example, awhile

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 163

C#LANGUAGE SPECIFICATION

statement controlled by the boolean expression true is known to never reach its end point. Likewise, a throw
or return statement aways transfer control elsewhere and never reachesits end point. Thus, the following
exampleisvalid:
switch (i) {
case O:
while (true) FQ;
case 1:
throw new ArgumentException();
case 2:
return;

The governing type of a switch statement may be the type string. For example:

void DoCommand(string command) {
switch (command.ToLower()) {
case "run":
DoRun();
break;
case "save":
DoSave();
break;
case "quit":
DoQuit(Q);
break;
default:
InvalidCommand(command) ;
break;

}
}

Like the string equality operators (87.9.7), the swi tch statement is case sensitive and will execute a given
switch section only if the switch expression string exactly matches a case label constant. Asillustrated by the
example above, a switch statement can be made case insensitive by converting the switch expression string to
lower case and writing all case label constants in lower case.

When the governing type of a switch statement isstring, thevaluenul1 is permitted as a case label
constant.

A switch-block may contain declaration statements (88.5). The scope of aloca variable or constant declared in a
switch block extends from the declaration to the end of the switch block.

Within a switch block, the meaning of a name used in an expression context must aways be the same (87.5.2.1).

The statement list of a given switch section is reachable if the switch statement is reachable and at |east one of
thefollowing is true:

The switch expression is a non-constant value.
The switch expression is a constant value that matches a case labd in the switch section.

The switch expression is a constant value that doesn’t match any case label, and the switch section contains
the default labd.

A switch label of the switch section is referenced by areachable goto case or goto default statement.
The end point of a switch statement is reachable if a least one of the following is true:
The switch statement contains areachable break statement that exits the swi tch statement.

The switch gtatement is reachable, the switch expression is a non-constant value, and no default labd is
present.

164 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

The swi tch statement is reachable, the switch expression is a constant vaue that doesn’t match any case
label, and no default label is present.

8.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iter ation-statement:
while-statement
do-statement
for-statement
foreach-statement

8.8.1 The while statement
Thewh1i e statement conditionally executes an embedded statement zero or more times.

while-statement:
while (booleanexpresson) embedded-statement

A while statement is executed as follows:
The boolean-expression (87.16) is evaluated.

If the boolean expression yields true, control is transferred to the embedded statement. When and if control
reaches the end point of the embedded statement (possibly from execution of a continue statement),
control is transferred to the beginning of thewhi1e statement.

If the boolean expression yields false, control is transferred to the end point of thewhi e statement.

Within the embedded statement of awhi1le statement, a break statement (88.9.1) may be used to transfer
control to the end point of thewhi1e statement (thus ending iteration of the embedded statement), and a
continue statement (88.9.2) may be used to transfer control to the end point of the embedded statement (thus
performing another iteration of thewhi1e statement).

The embedded statement of a whi1e statement is reachable if thewhi1e statement is reachable and the boolean
expression does not have the constant value false.

The end point of awhile statement is reachable if at least one of the following is true:
Thewh1ile statement contains areachable break statement that exitsthewhiTe statement.

Thewhile statement is reachable and the boolean expression does not have the constant value true.

8.8.2 The do statement
The do statement conditionally executes an embedded statement one or more times.

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows;
Control istransferred to the embedded statement.

When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean-expression (87.16) is evaluated. If the boolean expression yields true,
control is transferred to the beginning of the do statement. Otherwise, controal is transferred to the end point
of the do statement.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 165

C#LANGUAGE SPECIFICATION

Within the embedded statement of ado statement, a break statement (88.9.1) may be used to transfer control to
the end point of the do statement (thus ending iteration of the embedded statement), and a continue statement
(88.9.2) may be used to transfer control to the end point of the embedded statement (thus performing another
iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.
The end point of ado statement is reachable if at least one of the following is true:
The do statement contains areachable break statement that exits the do statement.

The end point of the embedded statement is reachable and the boolean expression does not have the constant
value true.

8.8.3 The for statement

The for statement evaluates a sequence of initialization expressions and then, while a condition is true,
repestedly executes an embedded statement and eval uates a sequence of iteration expressions.

for-statement:

for (for-initializero,y ; for-condition,, ; for-iterator,y) embedded-statement
for-initializer:

local-variable-declaration

statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-lis , statement-expression
The for-initializer, if present, consists of either alocal-variable-declaration (88.5.1) or alist of statement-
expressions (88.6) separated by commas. The scope of alocal variable declared by afor-initializer starts at the
variable-declarator for the variable and extends to the end of the embedded statement. The scope includes the
for-condition and the for-iterator.

The for-condition, if present, must be aboolean-expression (§87.16).
The for-iterator, if present, conssts of alist of statement-expressions (88.6) separated by commeas.
A for statement is executed as follows:

If afor-initializer is present, the variable initializers or statement expressions are executed in the order they
are written. This step is only performed once.

If afor-condition is present, it is evaluated.

If the for-condition is not present or if the evaluation yields true, control istransferred to the embedded
statement. When and if control reaches the end point of the embedded statement (possibly from execution of
acontinue statement), the expressions of the for-iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation of the for-condition in the step above.

If the for-condition is present and the evaluation yields false, control is transferred to the end point of the
for statement.

166 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

Within the embedded statement of a for statement, abreak statement (88.9.1) may be used to transfer control
to the end point of the for statement (thus ending iteration of the embedded statement), and a continue
statement (88.9.2) may be used to transfer control to the end point of the embedded statement (thus executing
another iteration of the for statement).

The embedded statement of a for statement is reachable if one of the following is true:

The for statement is reachable and no for-condition is present.

The for statement is reachable and afor-condition is present and does not have the constant value false.
The end point of a for statement is reachable if a least one of the following is true:

The for statement contains areachable break statement that exits the for statement.

The for statement is reachable and afor-condition is present and does not have the constant value true.

8.8.4 The foreach statement

The foreach statement enumerates the elements of a collection, executing an embedded statement for each
element of the collection.

foreach-statement:
foreach (type identifier in expression) embedded-statement

The typeand identifier of a foreach statement declare the iteration variable of the statement. The iteration
variable corresponds to aread-only local variable with a scope that extends over the embedded statement.
During execution of a foreach statement, the iteration variable represents the collection e ement for which an
iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to assign
to the iteration variable or pass the iteration variable asa ref or out parameter.

The type of theexpression of a foreach statement must be a collection type (as defined below), and an explicit
conversion (86.2) must exist from the element type of the collection to the type of the iteration variable.

A type c issaid to be a collection type if al of the following are true:

C contains a pub 11 c instance method with the signature GetEnumerator () that returns a struct-type,
class-type, or interface-type, in the following called E.

E contains a pub11 c instance method with the signature MoveNext () and the return type boo1.

E contains a pub 11 c instance property named Current that permits reading. The type of this property is
said to be the element type of the collection type.

The system.Array type (812.1.1) isacollection type, and since al array types derive from system.Array,
any array type expression is permitted in a foreach statement. For single-dimensiona arrays, the foreach
statement enumerates the array elements in increasing index order, starting with index 0 and ending with index
Length - 1. For multi-dimensional arrays, the indices of the rightmost dimension are increased first.

A foreach statement is executed as follows:

The collection expression is evaluated to produce an instance of the collection type. This instance is referred
to as c in thefollowing. If c isof areference-type and hasthevaluenu11, aNul1ReferenceException
is thrown.

An enumerator instance is obtained by evaluating the method invocation c.GeteEnumerator(). The
returned enumerator is stored in atemporary local variable, in the following referred to as e. It is not
possible for the embedded statement to access this temporary variable. If e isof a reference-type and hasthe
valuenul1, aNul1ReferenceException isthrown.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 167

C#LANGUAGE SPECIFICATION

The enumerator is advanced to the next element by evaluating the method invocation e .MoveNext ().
If the value returned by e .MoveNext () is true, the following steps are performed:

0 Thecurrent enumerator value is obtained by evaluating the property accesse. current, and the value
is converted to the type of the iteration variable by an explicit conversion (86.2). The resulting value is
stored in the iteration variable such that it can be accessed in the embedded statement.

o Control istransferred to the embedded statement. When and if control reaches the end point of the
embedded statement (possibly from execution of a continue statement), another foreach iteration is
performed, starting with the step above that advances the enumerator.

If the value returned by e .MoveNext () isfalse, control istransferred to the end point of the foreach
statement.

Within the embedded statement of a foreach statement, abreak statement (88.9.1) may be used to transfer
control to the end point of the foreach statement (thus ending iteration of the embedded statement), and a
continue statement (88.9.2) may be used to transfer control to the end point of the embedded statement (thus
executing another iteration of the foreach statemert).

The embedded statement of a foreach statement is reachable if the foreach statement isreachable. Likewise,
the end point of a foreach statement is reachable if the foreach statement is reachable.

8.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
conti nue-statement
goto-statement
return-statement
throwstatement

The location to which ajump statement transfers control is called the target of the jump statement.

When ajump statement occurs within a block, and when the target of the jump statement is outside that block,
the jump statement is said to exit the block. While ajump statement may transfer control out of a block, it can
never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the absence of
such try statements, a jump statement unconditionally transfers control from the jJump statement to its target. In
the presence of such intervening try statements, execution is more complex. If the jump statement exits one or
more try blocks with associated final1y blocks, control isinitially transferred to the final1y block of the
innermost try statement. When and if control reaches the end point of a final1y block, control istransferred
tothe finally block of the next enclosing try statement. This processis repeated until the final1y blocks of
al intervening try statements have been executed.

In the example

168 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

static void FQ) {
while (true) {

try {
try {
console.WriteLine("Before break");

break;

3
finally {
console.wWriteLine("Innermost finally block");

}
finally {
console.writeLine("outermost finally block");

console.WriteLine("After break");

the finally blocks associated with two try statements are executed before control is transferred to the target of the
jump statement.

8.9.1 The break statement
The break statement exits the nearest enclosing switch,while, do, for, or foreach statement.
break-statement:
break ;

The target of abreak statement isthe end point of the nearest enclosing switch,while, do, for, or foreach
statement. If abreak statement is not enclosed by a switch,while, do, for, or foreach statement, a
compile-time error occurs.

When multiple switch,while, do, for, or foreach statements are nested within each other, abreak
statement applies only to the innermost statement. To transfer control across multiple nesting levels, agoto
statement (88.9.3) must be used.

A break statement cannot exit a finally block (88.10). When a break statement occurswithinafinally
block, the target of the break statement must be within the same final1y block, or otherwise a compile-time
error Occurs.

A break statement is executed as follows:

If the break statement exits one or more try blocks with associated finally blocks, contral isinitialy
transferred to the finally block of the innermost try statement. When and if control reaches the end point
of afinally block, control is transferred to the final1y block of the next enclosing try statement. This
process is repeated until the finally blocks of al intervening try statements have been executed.

Control is transferred to the target of the break statement.
Because abreak statement unconditionally transfers control elsewhere, the end point of abreak statement is
never reachable.

8.9.2 The continue statement
The continue statement starts a new iteration of the nearest enclosing while, do, for, or foreach statement.

continue-statement:
continue ;

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 169

C#LANGUAGE SPECIFICATION

The target of a continue statement is the end point of the embedded statement of the nearest enclosing while,
do, for, or foreach statement. If a continue statement is not enclosed by awhile, do, for, or foreach
statement, a compile-time error occurs.

When multiplewhile, do, for, or foreach statements are nested within each other, a continue statement
applies only to the innermost statement. To transfer control across multiple nesting levels, agoto statement
(88.9.3) must be used.

A continue statement cannot exit a finally block (88.10). When a continue statement occurs within a
finally block, the target of the continue statement must be within the same final1y block, or otherwise a
compile-time error occurs.

A continue statement is executed as follows;

If the continue statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control reachesthe
end point of afinally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the final1y blocks of all intervening try statements have been
executed.

Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end point of acontinue
statement is never reachable.

8.9.3 The goto statement
The goto statement transfers control to a statement that is marked by alabel.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

The target of agoto identifier statement isthe labeled statement with the given label. If alabel with the given
name does not exist in the current function member, or if the goto statement is not within the scope of the labdl,
a compile-time error occurs. This rule permits the use of a goto statement to transfer control out of a nested
scope, but not into a nested scope. In the example

class Test

static void Main(string[] args) {
int i = 0;
while (true) {
console.WriteLine(i++);
if (i == 10)
goto done;

done:))
console.writeLine("Done");

}
agoto statement is used to transfer control out of a nested scope.

The target of agoto case statement is the statement list of the switch section in the nearest enclosing switch
statement that contains a case label with the given constant value. If the goto case statement is not enclosed
by a switch statement, if the constant-expression is not implicitly convertible (86.1) to the governing type of

170 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

the nearest enclosing swi tch statement, or if the nearest enclosing switch statement does not contain a case
label with the given congtant value, a compile-time error occurs.

The target of agoto default statement is the statement list of the switch section in the nearest enclosing
switch statement (88.7.2) that containsadefault label. If the goto default statement isnot enclosed by a
switch statement, or if the nearest enclosing swi tch statement does not contain adefault labe, acompile-
time error occurs.

A goto statement cannot exit a finally block (88.10). When agoto statement occurswithinafinally
block, the target of the goto statement must be within the same final1y block, or otherwise a compile-time
error occurs.

A goto statement is executed as follows:

If the goto statement exits one or more try blocks with associated finally blocks, control isinitialy
transferred to the finally block of the innermost try statement. When and if control reaches the end point
of afinally block, control istransferred to the final1y block of the next enclosing try statement. This
process is repeated until the finally blocks of dl intervening try statements have been executed.

Control istransferred to the target of the goto statement.

Because agoto statement unconditionally transfers control elsewhere, the end point of agoto statement is
never reachable.

8.9.4 The return state ment
The return statement returns control to the caller of the function member in which the return statement
appears.

retur n-statement:
return expresSiong ;

A return statement with no expression can be used only in afunction member that does not compute avalue,
that is, a method with the return type void, the set accessor of a property or indexer, a constructor, or a
destructor.

A return statement with an expression can only be used only in afunction member that computes a value, that
is, amethod with anon-void return type, the get accessor of a property or indexer, or a user-defined operator.
Animplicit conversion (86.1) must exist from the type of the expression to the return type of the containing
function member.

Itisan error for areturn statement to appear ina finally block (88.10).
A return statement is executed as follows:

If the return statement specifies an expression, the expression is evauated and the resulting value is
converted to the return type of the containing function member by an implicit conversion. The result of the
conversion becomes the value returned to the caller.

If the return statement is enclosed by one or more try blocks with associated finally blocks, contral is
initialy transferred to the finally block of the innermost try statement. When and if control reaches the
end point of afinally block, control is transferred to the finally block of the next enclosing try
statement. This processiis repeated until the finally blocksof al enclosing try statements have been
executed.

Control is returned to the caller of the containing function member.

Because a return statement unconditionally transfers control elsewhere, the end point of a return statement
is never reachable.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 171

C#LANGUAGE SPECIFICATION

8.9.5 The throw statement
The throw statement throws an exception.

thr ow-statement:
throw expressiong ;

A throw statement with an expression throws the exception produced by evaluating the expression. The
expression must denote a value of the class type System.Exception or of aclasstype that derivesfrom
System.Exception. If evauation of the expression produces nul1, aNul1ReferenceException isthrown
instead.

A throw statement with no expression can be used only in a catch block. It re-throws the exception that is
currently being handled by the catch block.

Because a throw statement unconditionaly transfers control elsewhere, the end point of a throw statement is
never reachable.

When an exception is thrown, control is transferred to the first catch clausein a try statement that can handle
the exception. The process that takes place from the point of the exception being thrown to the point of
transferring control to a suitable exception handler is known as exception propagation. Propagation of an
exception consists of repeatedly evaluating the following steps until a catch clause that matches the exception
is found. In the descriptions, the throw point isinitialy the location at which the exception is thrown.

In the current function member, each try statement that encloses the throw point is examined. For each
statement s, starting with the innermost try statement and ending with the outermost try statement, the
following steps are evaluated:

o If the try block of s encloses the throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The first
catch clause that specifies the exception type or a base type of the exception type is considered a
match. A genera catch clauseis considered amatch for any exception type. If amatching catch
clause is located, the exception propagation is completed by transferring control to the block of that
catch clause.

0 Otherwise, if the try block or acatch block of s encloses the throw point and if s hasa finally
block, control is transferred to the final1y block. If the final1y block throws another exception,
processing of the current exception is terminated. Otherwise, when control reaches the end point of the
finally block, processing of the current exception is continued.

If an exception handler was not located in the current function member invocation, the function member
invocation is terminated. The steps above are then repeated for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

If the exception processing ends up terminating all function member invocations in the current thread or
process, indicating that the thread or process has no handler for the exception, then the thread or processis
itself terminated in an implementation-defined fashion.

8.10 The try statement

The try statement provides a mechanism for catching exceptions that occur during execution of a block. The
try statement furthermore provides the ability to specify ablock of code that is aways executed when control
leaves the try statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

172 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

catch-clauses:
specific-catch-clauses general-catch-clauseyy
specific-catch-clauses,, general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (classtype identifier,,) block

gener al-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:
A try block followed by one or more catch blocks.
A try block followed by afinally block.
A try block followed by one or more catch blocks followed by a final1y block.

When a catch clause specifies a classtype, the type must be system.Exception or atypethat derives from
System.Exception.

When a catch clause specifies both a class-typeand an identifier, an exception variable of the given name and
type is declared. The exception variable corresponds to alocal variable with a scope that extends over the
catch block. During execution of the catch block, the exception variable represents the exception currently
being handled. For purposes of definite assignment checking, the exception variable is considered definitely
assigned in its entire scope.

Unless a catch clause includes an exception variable name, it isimpossible to access the exception object in the
catch block.

A catch clause that specifies neither an exception type nor an exception variable name is caled a genera
catch clause. A try statement can only have one general catch clause, and if oneis present it must be the last
catch clause.

Though the throw statement is restricted to throwing exceptions of type System. Exception or atype that
derivesfrom system.Exception, other languages are not bound by this rule, and so may throw exceptions of
other types. A genera catch clause can be used to catch such exceptions, and a throw statement with no
expression can be used to re-throw them.

An error occursif a catch clause specifies atype that is the same as or derived from atype that was specified in
an earlier catch clause. Because catch clauses are examined in order of appearance to locate a handler for an
exception, without this restriction it would be possible to write unreachable catch clauses.

Within a catch block, a throw statement (88.9.5) with no expression can be used to rethrow the exception that
was caught by the catch block. Assignments to an exception variable do not ater the exception that is re-
thrown.

In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 173

C#LANGUAGE SPECIFICATION

class Test

static void FO {
try {
GQO;

catch (Exception e) {
console.WriteLine("Exception in F:
e = new Exception("F");
throw; // re-throw

+ e.Message);

}

static void GO {
throw new Exception("G");

}

static void Main() {
try {
FO;

catch (Exception e) {
console.writeLine("Exception in Main:

+ e.Message);

}
}

the method F catches an exception, writes some diagnostic information to the console, alters the exception
variable, and re-throws the exception. The exception that is re-thrown is the origina exception, so the output of
the program is:

Exception in F: G
Exception in Main: G

Itisan error for abreak, continue, or goto statement to transfer control out of a finally block. When a
break, continue, or goto statement occursin afinally block, the target of the statement must be within
the same finally block, or otherwise a compile-time error occurs.

It isan error for a return statement to occur inafinally block.
A try statement is executed as follows:
Control is transferred to the try block.
When and if control reaches the end point of the try block:
o If the try statement hasa finally block, the finalTy block is executed.
o Control istransferred to the end point of the try statement.
If an exception is propagated to the try statement during execution of the try block:

0 Thecatch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. Thefirst catch clause that specifies the exception type or a base type of the exception type
is considered amatch. A generad catch clauseis considered a match for any exception type. If a
matching catch clause islocated:

If the matching catch clause declares an exception variable, the exception object is assigned to the
exception variable.

Control is transferred to the matching catch block.
When and if control reaches the end point of the catch block:
o If thetry statement hasa finally block, the finally block is executed.

174 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

o Control istransferred to the end point of the try statement.
If an exception is propagated to the try statement during execution of the catch block:
o If thetry statement hasafinally block, the finally block is executed.
0 Theexception is propagated to the next enclosing try statement.
o If the try statement hasno catch clausesor if no catch clause matches the exception:
If the try statement hasafinally block, the finally block is executed.
The exception is propagated to the next enclosing try statement.

The statements of a finally block are always executed when control leavesa try statement. Thisistrue
whether the control transfer occurs as aresult of normal execution, as aresult of executing abreak, continue,
goto, Or return statement, or as aresult of propagating an exception out of the try statement.

If an exception is thrown during execution of a final1y block, the exception is propagated to the next
enclosing try statement. If another exception was in the process of being propagated, that exception is lost. The
process of propagating an exception is further discussed in the description of the throw statement (88.9.5).

The try block of atry statement isreachable if the try statement is reachable.

A catch block of atry statement is reachable if the try statement is reachable.

The finally block of atry statement isreachable if the try statement is reachable.

The end point of a try statement is reachable if both of the following are true:
The end point of the try block is reachable or the end point of at least one catch block is reachable.
If afinally block is present, the end point of the final1y block is reachable.

8.11 The checked and unchecked statements
The checked and unchecked statements are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes al expressionsin the block to be evaluated in a checked context, and the
unchecked statement causes al expressions in the block to be evaluated in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and unchecked operators
(87.5.12), except that they operate on blocks instead of expressions.

8.12 The lock statement
The Tock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.
lock-statement:
Tock (expresson) embedded-statement

The expression of a Tock statement must denote a value of a reference-type. An implicit boxing conversion
(86.1.5) is never performed for the expression of a Tock statement, and thus it is an error for the expression to
denote a value of a value-type

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 175

C#LANGUAGE SPECIFICATION

A Tock statement of the form
Tock (x) ..
where x is an expression of areference-type, is precisely equivaent to

System.Threading.Monitor.Enter(x);
try {

3
finally {
System.Threading.Monitor.Exit(x);

except that x is only evaluated once. The exact behavior of the Enter and Exit methods of the
System.Threading.Monitor classisimplementation-defined.

The system. Type object of a class can conveniently be used as the mutual-exclusion lock for static methods of
the class. For example:

class Cache

pubTlic static void Add(object x) {
Tock (typeof(cache)) {

}
}

pubTlic static void Remove(object x) {
Tock (typeof(cache)) {

}
}
}

8.13 The using statement
The using statement obtains one or more resources, executes a statement, and then disposes of the resource.

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

A resource isaclass or struct that implements System. IDisposabTle, which includes a single parameterless
method named D1 spose. Code that is using aresource can cal Dispose to indicate that the resource is no
longer needed. If Dispose isnot cdled, then automatic disposal eventually occurs as a consequence of garbage
collection.

If the form of resource-acquisitionislocal-variable-declaration then the type of the local-variable-declaration
must be System. IDisposable or atypethat can beimplicitly converted to System.IDisposable. If the
form of resource-acquisitionis expression then this expresson must be system. IDisposable or atype that
can be implicitly converted to System.IDisposable.

Local variables declared in aresource-acquisition are read-only, and must include an initiaizer.

A using statement is trandated into three parts: acquisition, usage, and disposal. Usage of the resource is
enclosed in a try statement that includesa finally clause. This finally clause disposes of the resource. If a
null resourceis acquired, then no call to bispose is made, and no exception is thrown.

For example, ausing statement of the form

176 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 8 Statements

using (R rl = new R () {
rl.rQ;

is precisaly equivalent to

R rl = new RQ);
try {
rl.rQ;

3
finally {
if (rl !'= null) ((IDisposable)rl).Dispose();

A resource-acquisition may acquire multiple resources of agiven type. Thisis equivaent to nested using
statements. For example, a using statement of the form

using (R rl = new R(), r2 = new R()) {
rl.FQ;
r2.rQ;

is precisely equivalent to:

using (R rl = new R())
using (R r2 = new RQ) {
rl.rQ;
r2.FQ;

which is, by expansion, precisdly equivaent to:

R rl = new RQ);
try {
R r2 = new RQ;
try {
ril.rQ;
r2.rQ;

3
finally {

if (r2 !'= null) ((IDisposable)r2).Dispose();
3

3
finally {
if (rl !'= null) ((IDisposable)rl).Dispose();

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

177

Chapter 9 Namespaces

9. Namespaces

C# programs are organized using namespaces. Namespaces are used both as an “internal” organization system
for aprogram, and as an “externa” organization system—away of presenting program elements that are
exposed to other programs.

Using directives are provided to facilitate the use of namespaces.

9.1 Compilation units
A compilation-unit defines the overall structure of a source file. A compilation unit consists of zero or more
using-directives followed by zero or more namespace-member-declarations
compilation-unit:
using-directives,,; attributes,; namespace-member-declarations,y

A C# program consists of one or more compilation units, each contained in a separate source file. When a C#
program is compiled, al of the compilation units are processed together. Thus, compilation units can depend on
each other, possibly in a circular fashion.

The using-directives of acompilation unit affect the attributes and namespace-member-declarations of that
compilation unit, but have no effect on other compilation units.

The attributes of a compilation unit permit the specification of attributes for the target assembly and module.
Assemblies and modules act as physical containers for types. An assembly may consist of several physically
separate modules.

The namespace-member-declarations of each compilation unit of a program contribute membersto asingle
declaration space called the global namespace. For example:

Filea.cs:
class A {}

FileB.cs:
class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with the
fully qualified names A and B. Because the two compilation units contribute to the same declaration space, it
would have been an error if each contained a declaration of a member with the same name.

9.2 Namespace declarations
A namespace-declaration consists of the keyword namespace, followed by a namespace name and body,
optionaly followed by a semicolon.
namespace-declaration:
namespace qualified-identifier namespace-body ;qp
qualified-identifier:
identifier
qualified-identifier . identifier

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 179

C#LANGUAGE SPECIFICATION

namespace-body:
{ using-directives,; namespace-member-declarationsy; }

A namespace-declaration may occur as atop-level declaration in a compilation-unit or as a member declaration
within another namespace-declaration. When anamespace-declaration occurs as a top-level declaration in a
compilation-unit, the namespace becomes a member of the globa namespace. When anamespace-declaration
occurs within another namespace-declaration, the inner namespace becomes a member of the outer namespace.
In either case, the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly pub1ic and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optiona using-directivesimport the names of other namespaces and types,
alowing them to be referenced directly instead of through qualified names. The optional namespace-member -
declarations contribute members to the declaration space of the namespace. Note that all using-directives must
appear before any member declarations.

The qualified-identifier of anamespace-declaration may be single identifier or a sequence of identifiers
separated by “.” tokens. The latter form permits a program to define a nested namespace without lexically
nesting several namespace declarations. For example,

namespace N1.N2

class A {}
class B {}

is semanticaly equivalent to
namespace N1

namespace N2

class A {}

class B {}

}

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to
the same declaration space (83.3). In the example

namespace N1.N2

class A {}

namespace N1.N2

class B {}

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified namesN1.N2.A and N1.N2 . B. Because the two declarations contribute to the
same declaration space, it would have been an error if each contained a declaration of a member with the same
name.

9.3 Using directives

Using directivesfacilitate the use of namespaces and types defined in other namespaces. Using directives impact
the name resol ution process of namespace-or -type-names (83.8) and simple-names (87.5.2), but unlike

180 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 9 Namespaces

declarations, using directives do not contribute new members to the underlying declaration spaces of the
compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive
A using-alias-directive (89.3.1) introduces an dias for a namespace or type.
A using-namespace-directive (89.3.2) imports the type members of a namespace.

The scope of ausing-directive extends over the namespace-member -declarations of itsimmediately containing
compilation unit or namespace body. The scope of ausing-directive specifically does not include its peer using-
directives. Thus, peer using-directives do not affect each other, and the order in which they are written is
insignificant.
9.3.1 Using alias directives
A using-alias-directiveintroduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:

using identifier = namespace-or-type-name ;

Within member declarations in a compilation unit or namespace body that contains a usng-alias-directive, the
identifier introduced by the using-alias-directive can be used to reference the given namespace or type. For
example:

namespace N1.N2

class A {}

namespace N3

using A = N1.N2.A;
class B: A {}

Here, within member declarations in the N3 namespace, A isan diasfor N1.N2. A, and thus classN3 . B derives
from classN1.N2.A. The same effect can be obtained by creating an alias R for N1.N2 and then referencing
R.A:

namespace N3

using R = N1.N2;
class B: R.A {}

The identifier of ausing-alias-directive must be unique within the declaration space of the compilation unit or
namespace that immediately contains the using-alias-directive. For example:

namespace N3

class A {}

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 181

C#LANGUAGE SPECIFICATION

namespace N3

using A = N1.N2.A; // Error, A already exists

Here, N3 aready contains amember A, so it isan error for ausing-alias-directive to use that identifier. It is
likewise an error for two or more using-alias-directives in the same compilation unit or namespace body to
declare diases by the same name.

A using-alias-directive makes an alias available within a particular compilation unit or namespace body, but it
does not contribute any new members to the underlying declaration space. In other words, a using-alias
directive is not transitive but rather affects only the compilation unit or namespace body in which it occurs. In
the example

namespace N3

{
using R = N1.N2;

namespace N3

class B: R.A {} // Error, R unknown
ks

the scope of the using-alias-directive that introduces R only extends to member declarations in the namespace
body in which it is contained, and R is thus unknown in the second namespace declaration. However, placing the
using-alias-directive in the containing compilation unit causes the dias to become available within both
namespace declarations:

using R = N1.N2;
namespace N3

class B: R.A {}

namespace N3

{
class C: R.A {}

Just like regular members, names introduced by using-alias-directives are hidden by similarly named members
in nested scopes. In the example

using R = N1.N2;
namespace N3
class R {}
class B: R.A {} // Error, R has no member A

the referenceto R. A in the declaration of B causes an error because R refersto N3.R, NOt N1.N2.

The order in which using-alias-directives are written has no significance, and resolution of the namespace-or -
type-name referenced by ausing-alias-directive is neither affected by the using-alias-directive itself nor by other
using-directives in the immediately containing compilation unit or namespace body. In other words, the
namespace-or -type-name of ausing-alias-directive is resolved asif the immediately containing compilation unit
or namespace body had no using-directives. In the example

namespace N1.N2 {}

namespace N3

using Rl = N1; // OK

182 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 9 Namespaces

using R2 N1.N2; // OK

using R3 R1.N2; // Error, R1 unknown

the last using-alias-directive isin error because it is not affected by the first using-alias-directive.

A using-alias-directive can create an alias for any namespace or type, including the namespace within which it
appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an aias yields exactly the same result as accessing the namespace or
type through its declared name. In other words, given

namespace N1.N2

class A {}

namespace N3

using R1 = NI1;

using R2 = N1.N2;

class B
N1.N2.A a; // refers to N1.N2.A
R1.N2.A b; // refers to N1.N2.A
R2.A c; // refers to N1.N2.A

}

}

thenamesN1.N2.A,R1.N2.A, and R2.A are completely equivalent and all refer to the class whose fully
quaified nameiSN1.N2.A.

9.3.2 Using namespace directives

A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-dir ective:
using hamespace-name ;

Within member declarations in compilation unit or namespace body that contains a using-namespace-directive,
the types contained in the given namespace can be referenced directly. For example:

namespace N1.N2

class A {}

namespace N3

using N1.N2;
class B: A {}

Here, within member declarationsin the N3 namespace, the type members of N1.N2 are directly available, and
thus classN3.B derives from classN1.N2.A.

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 183

C#LANGUAGE SPECIFICATION

namespace N1.N2

class A {}

namespace N3

{

using N1;

class B: N2.A {} // Error, N2 unknown
}

the using-namespace-directiveimports the types contained in N1, but not the namespaces nested in N1. Thus, the
referenceto N2. A in the declaration of B isin error because no members named N2 are in scope.

Unlike a using-alias-directive, ausing-namespace-directive may import types whose identifiers are aready
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or namespace
body. For example:

namespace N1.N2

class A {}
class B {}

namespace N3

using N1.N2;
class A {}

Here, within member declarations in the N3 namespace, A refersto N3. A rather than N1.N2 . A.

When more than one namespace imported by using-namespace-directives in the same compilation unit or
namespace body contain types by the same name, references to that name are considered ambiguous. In the
example

namespace N1

class A {}

namespace N2

class A {}

namespace N3
using N1;
using N2;
class B: A {} // Error, A is ambiguous

both N1 and N2 contain amember A, and because N3 imports both, referencing A in N3 is an error. In this
situation, the conflict can be resolved either through qualification of referencesto A, or by introducing a using-
alias-directivethat picks a particular A. For example:

namespace N3

{ .
using N1;

using N2;

184 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 9 Namespaces

using A = N1.A;

class B: A {} // A means N1.A
}

Like ausing-alias-directive, ausing-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but rather affects only the compilation unit
or namespace body in which it appears.

The namespace-name referenced by ausing-namespace-directive is resolved in the same way as the namespace-
or-type-name referenced by ausing-alias-directive. Thus, using-namespace-directives in the same compilation
unit or namespace body do not affect each other and can be written in any order.

9.4 Namespace members
A namespace-member-declaration is either anamespace-declaration (89.2) or atype-declaration (89.5).

namespace-member -declarations:
namespace-member -declaration
namespace-member -declarations namespace-member-declaration

namespace-member -declaration:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such declarations
contribute new members to the underlying declaration space of the containing compilation unit or namespace

bodly.

9.5 Type declarations

A type-declaration is either aclass-declaration (810.1), a struct-declaration (811), an interface-declaration
(813.1), an enum-declaration (814.1), or adelegate-declaration (815.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as atop-level declaration in a compilation unit or as a member declaration within a
namespace, class, or struct.

When atype declaration for atype T occurs as atop-level declaration in a compilation unit, the fully qualified
name of the newly declared type issmply T. When a type declaration for atype T occurs within a namespace,
class, or struct, the fully qualified name of the newly declared typeisN. T, where N is the fully qualif ied name of
the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (§10.2.6).

The permitted access modifiers and the default access for a type declaration depend on the context in which the
declaration takes place (83.5.1):

Types declared in compilation units or namespaces can have pub1ic or internal access. The default is
internal access.

Types declared in classes can have public, protected internal, protected, internal, or private
access. The default isprivate access.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 185

C#LANGUAGE SPECIFICATION

Types declared in structs can have pub1ic, internal, or private access. The default isprivate access.

186 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

10. Classes

A classis a data structure that may contain data members (constants, fields, and events), function members
(methods, properties, indexers, operators, constructors, and destructors), and nested types. Class types support
inheritance, a mechanism whereby a derived class can extend and specialize a base class.

10.1 Class declarations
A classdeclaration isatype-declaration (89.5) that declares anew class.

class-declaration:
attributes,: classmodifiers,, class identifier class-base,, classbody ;op

A class-declaration consists of an optional set of attributes (817), followed by an optional set of class-modifiers
(810.1.1), followed by the keyword c1ass and an identifier that names the class, followed by an optional class-
base specification (810.1.2), followed by a class-body (810.1.3), optionaly followed by a semicolon.

10.1.1 Class modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed

It is an error for the same modifier to appear multiple times in a class declaration.

The new modifier is only permitted on nested classes. It specifies that the class hides an inherited member by the
same name, as described in §10.2.2.

The public, protected, internal, and private modifiers control the accessibility of the class. Depending
on the context in which the class declaration occurs, some of these modifiers may not be permitted (83.5.1).

The abstract and sealed modifiers are discussed in the following sections.

10.1.1.1 Abstract classes

The abstract modifier is used to indicate that a class isincomplete and intended only to be a base class of
other classes. An abstract class differs from a non-abstract class is the following ways.

An abstract class cannot be instantiated directly, and it is an error to use the new operator on an abstract
class. Whileit is possible to have variables and values whose compile-time types are abstract, such variables
and values will necessarily either be nu11 or contain references to instances of non-abstract classes derived
from the abstract types.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 187

C#LANGUAGE SPECIFICATION

An abstract class is permitted (but not required) to contain abstract members.

An abstract class cannot be sedled.

When a non-abstract class is derived from an abstract class, the non-abstract class must include actual
implementations of al inherited abstract members. Such implementations are provided by overriding the
abstract members. In the example

abstract class A

public abstract void FQ);

abstract class B: A

public void GO {}

class C: B

pubTlic override void F() {
// actual implementation of F

}
the abstract class A introduces an abstract method F. Class B introduces an additional method G, but doesn't
provide an implementation of F. B must therefore also be declared abstract. Class € overrides F and provides an
actual implementation. Snce there are no outstanding abstract membersin ¢, c is permitted (but not required) to
be non-abstract.

10.1.1.2 Sealed classes
The sealed modifier is used to prevent derivation from a class. An error occurs if a sedled classis specified as
the base class of another class.

A sealed class cannot aso be an abstract class.

The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain run-time
optimizations. In particular, because a sealed class is known to never have any derived classes, it is possible to
transform virtual function member invocations on sealed class instances into non-virtua invocations.

10.1.2 Class base specification

A class declaration may include a class-base specification which defines the direct base class of the classand
the interfaces implemented by the class.

class-base:
class-type
interface-type-list
class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interfacetype

10.1.2.1 Base classes

When aclass-typeis included in the class-base, it specifies the direct base class of the class being declared. If a
class declaration has no class-base, or if the class-base lists only interface types, the direct base class is assumed
to beobject. A classinherits members from its direct base class, as described in §10.2.1

188 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

In the example
class A {}
class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not explicitly
specify adirect base class, its direct base classisimplicitly object.

The direct base class of a class type must be at least as accessible as the class type itself (83.5.4). For example, it
isan error for apubl1ic classto derive fromaprivate or internal class.

The direct base class of a class type must not be any of the following types. System.Array,
System.Delegate, System.Enum, Of System.valueType.

The base classes of a class are the direct base class and its base classes. In other words, the set of base classesis
the transitive closure of the direct base class relationship. Referring to the example above, the base classes of B
areAand object.

Except for class object, every class has exactly one direct base class. The object class has no direct base
class and is the ultimate base class of al other classes.

When aclass B derivesfrom aclass A, it is an error for A to depend on B. A classdirectly dependson its direct
base class (if any) and directly depends on the class within which it isimmediately nested (if any). Given this
definition, the complete set of classes upon which a class depends is the transitive closure of the directly
dependson reationship.

The example
class A: B {}

class B: C {}
class Cc: A {}

isin error because the classes circularly depend on themselves. Likewise, the example
class A: B.C {}
class B: A

public class C {}

isin error because A dependson B. C (itsdirect base class), which depends on B (itsimmediately enclosing
class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example

class A

class B: A {}
}

B depends on A (because A is both its direct base class and its immediately enclosing class), but A does not
depend on B (since B is neither a base class nor an enclosing class of A). Thus, the exampleisvalid.

It is not possible to derive from asealed class. In the example

sealed class A {}

class B: A {} // Error, cannot derive from a sealed class
class B isin error because it attempts to derive from the sealed class A.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 189

C#LANGUAGE SPECIFICATION

10.1.2.2 Interface implementations

A class-base specification may include alist of interface types, in which case the class is said to implement the
given interface types. Interface implementations are discussed further in 813.4.

10.1.3 Class body
The class-body of a class defines the members of the class.

class-body:
{ class-member-declarations,: }

10.2 Class members
The members of a class consist of the members introduced by its class-member -declarations and the members
inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member -declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator -declaration
constructor-declaration
destructor -declaration
static-constructor -declaration
type-declaration

The members of aclass are divided into the following categories:
Constants, which represent constant val ues associated with the class (810.3).
Fields, which are the variables of the class (§10.4).
Methods, which implement the computations and actions that can be performed by the class (§10.5).

Properties, which define named attributes and the actions associated with reading and writing those
attributes (810.6).

Events, which define notifications that are generated by the class (§10.7).

Indexers, which permit instances of the class to be indexed in the same way as arrays (810.8).
Operators, which define the expression operators that can be applied to instances of the class (810.9).
Instance constructors, which implement the actions required to initialize instances of the class (§10.10)

Destructors, which implement the actions to perform before instances of the class are permanently discarded
(810.12).

Static constructors, which implement the actions required to initialize the class itself (810.11).
Types, which represent the types that are local to the class (§89.5).

190 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

Members that contain executable code are collectively known as the function members of the class. The function
members of a class are the methods, properties, indexers, operators, constructors, and destructors of the class.

A class-declaration creates a new declaration space (83.3), and the class-member -declarationsimmediately
contained by the class-declaration introduce new members into this declaration space. The following rules
apply to class-member-declarations:

Constructors and destructors must have the same name as the immediately enclosing class. All other
members must have names that differ from the name of the immediately enclosing class.

The name of a constant, field, property, event, or type must differ from the names of all other members
declared in the same class.

The name of a method must differ from the names of al other non-methods declared in the same class. In
addition, the signature (83.6) of a method must differ from the signatures of all other methods declared in
the same class.

The signature of an constructor must differ from the signatures of al other constructors declared in the same
class.

The signature of an indexer mugt differ from the signatures of al other indexers declared in the same class.
The signature of an operator must differ from the signatures of al other operators declared in the same class.

The inherited members of a class (810.2.1) are specifically not part of the declaration space of aclass. Thus, a
derived classis alowed to declare a member with the same name or signature as an inherited member (which in
effect hides the inherited member).

10.2.1 Inheritance

A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the constructors and destructors of the base class. Some important
aspects of inheritance are:

Inheritance is trangitive. If € isderived from B, and B is derived from A, then ¢ inherits the members
declared in B as well as the members declared in A.

A derived class extends its direct base class. A derived class can add new members to those it inherits, but it
cannot remove the definition of an inherited member.

Constructors and destructors are not inherited, but al other members are, regardless of their declared
accessibility (83.5). However, depending on their declared accessibility, inherited members may not be
accessible in aderived class.

A derived class can hide (83.7.1.2) inherited members by declaring new members with the same name or
signature. Note however that hiding an inherited member does not remove the member—it merely makes
the member inaccessible in the derived class.

An instance of a class contains a copy of al instance fields declared in the class and its base classes, and an
implicit conversion (86.1.4) exists from a derived class typeto any of its base class types. Thus, areference
to aderived class instance can be treated as a reference to a base class instance.

A class can declare virtual methods, properties, and indexers, and derived classes can override the
implementation of these function members. This enables classes to exhibit polymorphic behavior wherein
the actions performed by a function member invocation varies depending on the run-time type of the
instance through which the function member is invoked.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 191

C#LANGUAGE SPECIFICATION

10.2.2 The new modifier

A classmember-declaration is permitted to declare a member with the same name or signature as an inherited
member. When this occurs, the derived class member is said to hide the base class member. Hiding an inherited
member is not considered an error, but it does cause the compiler to issue awarning. To suppress the warning,
the declaration of the derived class member can include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in 83.7.1.2.

If anew modifier isincluded in adeclaration that doesn’'t hide an inherited member, awarning is issued to that
effect. Thiswarning is suppressed by removing the new modifier.

It isan error to use the new and override modifiersin the same declaration.

10.2.3 Access modifiers

A classmember-declaration can have any one of the five possible types of declared accessibility (83.5.1):
public, protected internal, protected, internal, or private. Except for the protected internal
combination, it is an error to specify more than one access modifier. When a class-member-declaration does not
include any access modifiers, the declaration defaultsto private declared accessihility.

10.2.4 Constituent types

Types that are referenced in the declaration of a member are called the constituent types of the member. Possible
constituent types are the type of a constant, field, property, event, or indexer, the return type of a method or
operator, and the parameter types of a method, indexer, operator, or constructor. The constituent types of a
member must be at least as accessible as the member itself (83.5.4).

10.2.5 Static and instance members

Members of a class are either static members or instance members. Generally speaking, it is useful to think of
static members as belonging to classes and instance members as belonging to objects (instances of classes).

When afield, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member. Static
members have the following characteristics:

When a static member is referenced in a member-access (87.5.4) of the form E. M, E must denote atype. It is
an error for E to denote an instance.

A satic field identifies exactly one storage location. No matter how many instances of a class are created,
thereis only ever one copy of a static field.

A static function member (method, property, indexer, operator, or constructor) does not operate on a specific
instance, and it is an error to refer to this in astatic function member.

When afield, method, property, event, indexer, constructor, or destructor declaration does not include astatic
modifier, it declares an instance member. An instance member is sometimes called a non-static member.
Instance members have the following characteristics:

When an instance member is referenced in a member -access (87.5.4) of the form E. M, E must denote an
instance. It is an error for E to denote atype.

Every instance of a class contains a separate copy of al instance fields of the class.

An instance function member (method, property accessor, indexer accessor, constructor, or destructor)
operates on a given instance of the class, and this instance can be accessed as this (87.5.7).

The following example illustrates the rules for accessing static and instance members:

192 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

class Test

}

int x;
static int y;
void FQO {
X =1; // Ok, same as this.x =1
! y = 1; // Ok, same as Test.y = 1
static void GO {
X = 1; // Error, cannot access this.x
y = 1; // Ok, same as Test.y =1
3

static void Main() {
Test t = new Test();

Chapter 10 Classes

t.x = 1; // ok

t.y = 1; // Error, cannot access static member through instance
Test.x = 1; // Error, cannot access instance member through type
Test.y = 1; // ok

}

The F method shows that in an instance function member, a simple-name (87.5.2) can be used to access both
instance members and static members. The G method shows that in a static function member, it is an error to
access an instance member through a smple-name. The Main method shows that in a member-access (§87.5.4),
instance members must be accessed through instances, and static members must be accessed through types.

10.2.6 Nested types

| ssue

We need to write this section.

10.3 Constants
A congtant is a class member that represents aconstant value: a value that can be computed at compile-time. A

constant-declaration introduces one or more constants of a given type.

constant-declaration:

attributes,,, constant-modifiersy: const type constant-declarators ;

constant-modifiers:

constant-modifier
constant-modifiers constant-modifier

constant-modifier:

new
public
protected
internal
private

constant-declarators:

constant-declarator
constant-declarators , constant-declarator

constant-declarator:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

identifier = constant-expresson

193

C#LANGUAGE SPECIFICATION

A constant-declaration may include a set of attributes (817), a new modifier (810.2.2), and a valid combination
of the four access modifiers (810.2.3). The attributes and modifiers apply to al of the members declared by the
constant-declaration. Even though constants are considered static members, aconstant-declaration neither
requires nor alows astatic modifier.

The type of aconstant-declaration specifies the type of the members introduced by the declaration. The typeis
followed by alist of constant-declarator s, each of which introduces a new member. A constant-declarator
consists of an identifier that names the member, followed by an “=" token, followed by a constant-expression
(87.15) that gives the value of the member.

The type specified in a constant declaration must be sbyte, byte, short, ushort, int, uint, Tong, ulong,
char, float, double, decimal, bool, string, an enumtype, or a reference-type. Each constant-expression
must yield avaue of the target type or of atype that can be converted to the target type by an implicit
conversion (86.1).

The type of aconstant must be at least as accessible as the constant itself (83.5.4).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct that
requires a constant-expression. Examples of such constructsinclude case labels, goto case statements, enum
member declarations, attributes, and other constant declarations.

Asdescribed in §7.15, a constant-expression is an expression that can be fully evaluated at compile-time. Since
the only way to create a non-null value of a reference-type other than string isto apply the new operator, and
since the new operator is not permitted in a constant-expression, the only possible value for constants of
reference-types other than string isnull.

When a symbolic name for a constant value is desired, but when the type of the value is not permitted in a
constant declaration or when the value cannot be computed at compile-time by a constant-expression, a
readonly field (810.4.2) may be used instead.

A constant declaration that declares multiple constants is equivaent to multiple declarations of single constants
with the same attributes, modifiers, and type. For example

class A
public const double X = 1.0, Y = 2.0, Zz = 3.0;
ks
isequivaent to
class A
public const double X = 1.0;
public const double Y = 2.0;
public const double z = 3.0;

Constants are permitted to depend on other constants within the same program as long as the dependencies are
not of acircular nature. The compiler automatically arranges to evaluate the constant declarations in the
appropriate order. In the example

class A
public const int X = B.Z + 1;
public const int Y = 10;

}

class B
public const int Z = A.Y + 1;

194 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

the compiler first evaluates v, then evaluates z, and finally evaluates x, producing the values 10, 11, and 12.
Constant declarations may depend on constants from other programs, but such dependencies are only possible in
one direction. Referring to the example above, if A and B were declared in separate programs, it would be
possible for A. X to depend on B. z, but B.. z could then not smultaneoudly depend on A. Y.

10.4 Fields

A fidd isamember that represents a variable associated with an object or class. A field-declaration introduces
one or more fields of a given type.

field-declaration:
attributes,, field-modifiers,,; type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer
variable-initializer:
expression
array-initializer
A field-declaration may include a set of attributes (817), a new modifier (810.2.2), avdid combination of the
four access modifiers (810.2.3), astatic modifier (810.4.1), and a readon1y modifier (810.4.2). The
attributes and modifiers apply to al of the members declared by thefield-declaration.

The type of afield-declaration specifies the type of the members introduced by the declaration. The typeis
followed by alist of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names the member, optionally followed by an “=" token and avariable-initializer
(810.4.4) that givesthe initia value of the member.

The type of afield must be at least as accessible as the field itself (83.5.4).

The value of afied is obtained in an expression using a smple-name (87.5.2) or a member-access (87.5.4). The
vaue of afield is modified using an assignment (87.13). The value of afield can be both obtained and modified
using postfix increment and decrement operators (87.5.9) and prefix increment and decrement operators
(87.6.7).

A field declaration that declares multiple fields is equivaent to multiple declarations of single fields with the
same attributes, modifiers, and type. For example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 195

C#LANGUAGE SPECIFICATION

class A

X
Il

pubTlic static int 1, v, z = 100;

isequivalent to
class A
public static int X
public static int Y;
pubTlic static int z

100;

10.4.1 Static and instance fields

When afield-declaration includes a static modifier, the fields introduced by the declaration are static fields.
When no static modifier is present, the fields introduced by the declaration are instancefields. Static fields
and instance fields are two of the severa kinds of variables (85) supported by C#, and are at times referred to as
static variablesand instance variables.

A satic field identifies exactly one storage location. No matter how many instances of a class are created, there
isonly ever one copy of adtatic field. A static field comes into existence when the type in which it is declared is
loaded, and ceases to exist when the type in which it is declared is unloaded.

Every instance of a class contains a separate copy of al instance fields of the class. An instance field comesinto
existence when a new instance of its class is created, and ceases to exist when there are no references to that
instance and the destructor of the instance has executed.

When afidld is referenced in a member-access (87.5.4) of theform E.m, if M isa gatic field, E must denote a
type, and if M is an instance field, E must denote an instance.

The differences between static and instance members are further discussed in 810.2.5.

10.4.2 Readonly fields

When afield-declarationincludes a readon1y modifier, assignments to the fields introduced by the declaration
can only occur as part of the declaration or in a constructor in the same class. Specifically, assgnmentsto a
readonly field are permitted only in the following contexts:

In the variable-declarator that introduces the field (by including a variable-initializer in the declaration).

For an ingtance field, in the instance constructors of the class that contains the field declaration, or for a
gatic field, in the static constructor of the class the that contains the field declaration. These are also the
only contexts in which it isvalid to passa readonly field asan out or ref parameter.

Attempting to assignto areadonly field or passit asan out or ref parameter in any other context is an error.

10.4.2.1 Using static readonly fields for constants

A static readonly field isuseful when a symbolic name for a constant value is desired, but when the type of
the value is not permitted in a const declaration or when the value cannot be computed a compile-time. In the
example

public class color

public static readonly Color Black = new Color(0, 0, 0);
public static readonly Color white = new Color(255, 255, 255);
public static readonly Color Red = new Color(255, 0, 0);
public static readonly Color Green = new Color(0, 255, 0);
public static readonly Color Blue = new Color(0, 0, 255);

196 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

private byte red, green, blue;

pubTlic color(byte r, byte g, byte b) {
red = r;
green = ¢;
blue = b;
}
}
the Black, white, Red, Green, and BTue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring the members as static readonly fields has

much the same effect.

10.4.2.2 Versioning of constants and static readonly fields

Constants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a readonly
field, the value of the field is not obtained until run-time. Consider an application that consists of two separate
programs.

namespace Programl
public class Utils

public static readonly int X = 1;
}

namespace Program2

class Test

{
static void Main() {]
console.writeLine(Programl.Utils.X);

}
}
}

The programl and Program2 namespaces denote two programs that are compiled separately. Because
Programl.utils.X isdeclared as a static readonly field, the value output by the Console.writeLine
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of X is changed and
Programl isrecompiled, the Console.writeLine statement will output the new value even if Program?2
isn't recompiled. However, had x been a constant, the value of X would have been obtained at the time
Program2 was compiled, and would remain unaffected by changesin programl until Program? is
recompiled.

10.4.3 Field initialization

Theinitial value of afield isthe default value (85.2) of the field s type. When aclassis |loaded, al static fields
areinitialized to their default values, and when an instance of aclassis created, al instance fields are initialized
to their default values. It is not possible to observe the value of afield before this default initialization has
occurred, and afield is thus never “uninitialized”. The example

class Test

static bool b;
int i;

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 197

C#LANGUAGE SPECIFICATION

static void Main() {
Test t = new Test();
console.writeLine("b = {0}, i = {1}", b, t.i);

}
produces the output
b = False, i =0

because b is automatically initialized to its default value when the classisloaded and i isautomatically
initialized to its default value when an instance of the classis created.

10.4.4 Variable initializers

Field declarations may include variable-initializers. For static fields, variable initiaizers correspond to
assignment statements that are executed when the classis loaded. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the classis created.

The example
class Test

static double x = Math.sqrt(2.0);
int i = 100;
string s = "Hello";

static void Main() {

Test a = new Test();
Console.writeLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s);
}
b
produces the output

x = 1.414213562373095, i = 100, s = Hello

because an assignment to x occurs when the class isloaded and assignmentsto i and s occur when an new
instance of the classis created.

The default value initialization described in 810.4.3 occurs for dl fields, including fields that have variable
initializers. Thus, when aclassisloaded, dl static fields are first initialized to their default values, and then the
datic field initializers are executed in textual order. Likewise, when aninstance of aclassis created, all instance
fields are first initialized to their default values, and then the instance field initializers are executed in textual
order.

It ispossible for static fields with variable initializers to be observed in their default value state, though thisis
strongly discouraged as a matter of style. The example

class Test

{

static int a = b + 1;

static int b = a + 1;

static void Main() {

console.wWriteLine("a = {0}, b = {1}", a, b);
}
exhibits this behavior. Despite the circular definitions of aand b, the program is legd. It produces the output

a=1, b =2

198 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

because the static fields a and b areinitialized to 0 (the default value for int) before their initializers are
executed. When the initializer for a runs, the value of b is zero, and so a isinitialized to 1. When the initializer
for b runs, the value of a isaready 1, and so b isinitiaized to 2.

10.4.4.1 Static field initialization

The static field variable initializers of a class correspond to a sequence of assignmernts that are executed
immediately upon entry to the static constructor of the class. The variable initializers are executed in the textual
order they appear in the class declaration. The class loading and initiaization process is described further in
§10.11.

10.4.4.2 Instance field initialization

The instance field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to one of the instance constructors of the class. The variable initializers are executed in
the textual order they appear in the class declaration. The class instance creation and initialization processis
described further in 810.10.

A variableinitidizer for an instance field cannot reference the instance being created. Thus, it isan error to
reference this inavariable initializer, asisit an error for avariable initializer to reference any instance
member through a simple-name. In the example

class A
int x = 1;
inty =x + 1; // Error, reference to instance member of this

the variable initiaizer for y isin error because it references a member of the instance being created.

10.5 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods are declared using method-declarations:

method-declaration:
method-header method-body

method-header:
attributes,,, method-modifiers,,: return-type member-name (formal-parameter-list,,)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 199

C#LANGUAGE SPECIFICATION

return-type:
type
void
member-name:
identifier
interface-type . identifier
method-body:
block
A method-declaration may include a set of attributes (817), anew modifier (810.2.2), an extern modifier
(810.5.7), avalid combination of the four access modifiers (810.2.3), and a valid combination of the static
(810.5.2), virtual (810.5.3), override (810.5.4), and abstract (80) modifiers. In addition, a method that
includes the override modifier may aso include the sealed modifier (810.5.5).

The static, virtual,override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract method can override a virtua one.

The return-type of a method declaration specifies the type of the value computed and returned by the method.
The return-type isvoid if the method does not return a value.

The member-name specifies the name of the method. Unless the method is an explicit interface member
implementation, the member-name is smply an identifier. For an explicit interface member implementation
(813.4.1) , the member-name consists of an interface-type followed by a“.” and an identifier.

The optional for mal-parameter -list specifies the parameters of the method (810.5.1).

The return-type and each of the types referenced in the for mal-parameter-list of a method must be at least as
accessible as the method itself (8§3.5.4).

For abstract and extern methods, the method-body consists smply of a semicolon. For al other methods,
the method-body consists of ablock which specifies the statements to execute when the method is invoked.

The name and the formal parameter list of a method defines the signature (83.6) of the method. Specificaly, the
signature of a method consists of its name and the number, modifiers, and types of its formal parameters. The
return typeis not part of a method's signature, nor are the names of the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of all other methods declared in the same
class.

10.5.1 Method parameters
The parameters of a method, if any, are declared by the method’ sformal-parameter -list.

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributes,,, parameter-modifier,, type identifier

200 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

parameter-modifier:
ref
out

parameter-array:
attributes,y params array-type identifier

The formal parameter list consists of one or more fixed-parameter s optionaly followed by a single parameter-
array, all separated by commeas.

A fixed-parameter consists of an optional set of attributes(817), an optiona ref or out modifier, atype, and an
identifier. Each fixed-parameter declares a parameter of the given type with the given name.

A parameter -array consists of an optional set of attributes (817), a params modifier, an array-type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The array-
type of aparameter array must be asingle-dimensional array type (812.1). In amethod invocation, a parameter
array permits either a single argument of the given array type to be specified, or it permits zero or more
arguments of the array element type to be specified. Parameter arrays are further described in 810.5.1.4.

A method declaration creates a separate declaration space for parameters and local variables. Names are
introduced into this declaration space by the formal parameter list of the method and by local variable
declarations in the block of the method. All names in the declaration space of a method must be unique. Thus, it
isan error for a parameter or local variable to have the same name as another parameter or local variable.

A method invocation (87.5.5.1) creates a copy, specific to that invocation, of the formal parameters and local
variables of the method, and the argument list of the invocation assigns values or variable references to the
newly created formal parameters. Within the block of a method, formal parameters can be referenced by their
identifiersin simple-name expressions (87.5.2).

There are four kinds of formal parameters:
Vaue parameters, which are declared without any modifiers.
Reference parameters, which are declared with the ref modifier.
Output parameters, which are declared with the out modifier.
Parameter arrays, which are declared with the params modifier.

Asdescribed in 83.6, the ref and out modifiers are part of amethod’ s signature, but the params modifier is
not.

10.5.1.1 Value parameters
A parameter declared with no modifiersis avaue parameter. A value parameter corresponds to alocal variable
that getsitsinitial value from the corresponding argument supplied in the method invocation.

When aformal parameter is a value parameter, the corresponding argument in a method invocation must be an
expression of atype that isimplicitly convertible (86.1) to the formal parameter type.

A method is permitted to assign new vaues to a value parameter. Such assignments only affect the local storage
location represented by the value parameter—they have no effect on the actua argument given in the method
invocation.

10.5.1.2 Reference parameters

A parameter declared with a ref modifier is areference parameter. Unlike a value parameter, areference
parameter does not create a new storage location. Instead, a reference parameter represents the same storage
location as the variable given as the argument in the method invocation.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 201

C#LANGUAGE SPECIFICATION

When aformal parameter is a reference parameter, the corresponding argument in a method invocation must
consst of the keyword ref followed by a variable-reference (85.4) of the same type as the formal parameter. A
variable must be definitely assigned before it can be passed as a reference parameter.

Within amethod, a reference parameter is always considered definitely assigned.

The example
class Test
{
static void Swap(ref int x, ref int y) {
int temp = X;
X =Y;
y = temp;
}
static void Main() {
inti=1, j = 2;
swap(ref 1, ref j);
console.writeLine("i = {0}, j = {1}", i, 1);
}
produces the output
i=2, j=1

For the invocation of swap inMain, x represents i and y represents j. Thus, the invocation has the effect of
swapping the values of i and j.

In amethod that takes reference parametersiit is possible for multiple names to represent the same storage
location. In the example

class A

{

string s;

void F(ref string a, ref string b) {
s

a
b

Two";
"Three";

ks
void GO {

F(ref s, ref s);
ks

}

the invocation of F in G passes areferenceto s for both a and b. Thus, for that invocation, the names s, a, and b
all refer to the same storage location, and the three assgnments al modify the instance field s.

10.5.1.3 Output parameters

A parameter declared with an out modifier is an output parameter. Similar to a reference parameter, an output
parameter does not create a new storage location. Instead, an output parameter represents the same storage
location as the variable given as the argument in the method invocation.

When aformal parameter is an output parameter, the corresponding argument in a method invocation must
consst of the keyword out followed by a variable-reference (85.4) of the same type as the formal parameter. A
variable need not be definitely assigned before it can be passed as an output parameter, but following an
invocation where a variable was passed as an output parameter, the variable is considered definitely assigned.

Within a method, just like alocdl variable, an output parameter is initially considered unassigned and must be
definitely assigned before its value is used.

202 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

Every output parameter of a method must be definitely assigned before the method returns.

Output parameters are typically used in methods that produce multiple return vaues. For example:
class Test

static void sSplitPath(string path, out string dir, out string name) {
int i = path.Length;
while (i > 0) {
char ch = path[i - 1];
if (ch == "\\" [| ch =="/" || ch == ":") break;
1-=3
}
dir = path.substring(0, 1i);
name = path.Substring(i);

static void Main() {
string dir, name;
SplitPath("c:\\windows\\System\\hello.txt", out dir, out name);
console.writeLine(dir);
console.writeLine(name);

}
The example produces the outpuit:

c:\Windows\System\
heTlo.txt

Note that the d1i r and name variables can be unassigned before they are passed to Sp1i tPath, and that they are
considered definitely assigned following the call.

10.5.1.4 Parameter arrays

A parameter declared with a params modifier is a parameter array. If aforma parameter list includes a
parameter array, it must be the last parameter in the list and it must be of a single-dimensiona array type. For
example, thetypesstring[] and string[][] can be used asthe type of a parameter array, but the type
string[,] cannot. It isnot possible to combine the params modifier with the ref and out modifiers.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

The argument given for a parameter array can be a single expression of atype that isimplicitly convertible
(86.1) to the parameter array type. In this case, the parameter array acts precisaly like a value parameter.

Alternatively, the invocation can specify zero or more arguments for the parameter array, where each
argument is an expression of atype that isimplicitly convertible (86.1) to the element type of the parameter
array. In this case, the invocation creates an instance of the parameter array type with alength corresponding
to the number of arguments, initializes the elements of the array instance with the given argument values,
and uses the newly created array instance as the actual argument.

Except for alowing a variable number of argumentsin an invocation, a parameter array is precisely equivaent
to avalue parameter (810.5.1.1) of the same type.

The example

class Test
{
static void F(params int[] args) {
console.writeLine("Array contains {0} elements:", args.Length);
foreach (int i in args) Console.write(" {0}", 1i);
Console.writeLine();

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 203

C#LANGUAGE SPECIFICATION

static void Main() {
int[] a = {1, 2, 3};

F(a);
F(10, 20, 30, 40);
FO;
}
}
produces the output

Array contains 3 elements: 1 2 3

Array contains 4 elements: 10 20 30 40

Array contains 0 elements:
The first invocation of F smply passes the array a as avalue parameter. The second invocation of F
automatically creates afour-element int[] with the given lement values and passes that array instance as a
value parameter. Likewise, the third invocation of F creates a zero-element int[] and passes that instance as a
value parameter. The second and third invocations are precisely equivalent to writing:

F(new int[] {10, 20, 30, 40});

F(Cnew int[] {});
When performing overload resolution, a method with a parameter array may be applicable either in its normal
form or in its expanded form (87.4.2.1). The expanded form of amethod is available only if the normal form of
the method is not applicable and only if a method with the same signature as the expanded form is not already
declared in the same type.

The example
class Test

static void F(params object[] a) {
Console.writeLine("F(object[])");

static void FQO {
console.writeLine("FQO)");

static void F(object a0, object al) {
console.writeLine("F(object,object)");

static void Main() {

F(1, 2, 3);
F(1, 2, 3, 4);
}
}

produces the output

FOj;

F(object[1);

F(object,object);

F(object[]);

F(object[]);
In the example, two of the possible expanded forms of the method with a parameter array are aready included in
the class as regular methods. These expanded forms are therefore not considered when performing overload
resolution, and the first and third method invocations thus select the regular methods. When a class declares a
method with a parameter array, it is not uncommon to also include some of the expanded forms as regular

204 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

methods. By doing so it is possible to avoid the alocation of an array instance that occurs when an expanded
form of a method with a parameter array is invoked.

When the type of a parameter array isobject[], apotential ambiguity arises between the normal form of the
method and the expended form for asingle object parameter. The reason for the ambiguity is that an
object[] isitsef implicitly convertible to type object. The ambiguity presents no problem, however, since it
can be resolved by inserting a cast if needed.

The example
class Test

static void F(params object[] args) {
foreach (object o in a) {
console.Write(o.GetType().FullName);
Console.write(" ");

console.writeLine();

}

static void Main() {
object[] a = {1, "Hello", 123.456};
object o = a;

F(a);
F((object)a);
F(o);
) F((object[])o);
}
produces the output

System.Int32 System.String System.Double

System.Object[]

System.Object[]

System.Int32 System.String System.Double
In the first and last invocations of F, the normal form of F is applicable because an implicit conversion exists
from the argument type to the parameter type (both are of type object[]). Thus, overload resolution selects the
normal form of F, and the argument is passed as a regular value parameter. In the second and third invocations,
the normal form of F is not applicable because no implicit conversion exists from the argument type to the
parameter type (type object cannot be implicitly converted to type object[]). However, the expanded form
of F isapplicable, and it is therefore selected by overload resolution. As aresult, a one-element object[] is
created by the invocation, and the single element of the array isinitiaized with the given argument value (which
itself is areferenceto an object[]).

10.5.2 Static and instance methods

When amethod declaration includes a static modifier, the method is said to be a static method. When no
static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is an error to refer to this in agatic method. It is
furthermore an error to include avirtual, abstract, or override modifier on a static method.

An instance method operates on a given instance of a class, and this instance can be accessed as this (87.5.7).
The differences between static and instance members are further discussed in §10.2.5.

10.5.3 Virtual methods

When an instance method declaration includes avi rtual modifier, the method is said to be a virtual method.
When no virtual modifier is present, the method is said to be a non-virtual method.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 205

C#LANGUAGE SPECIFICATION

It isan error for amethod declaration that includes the vi rtual modifier to also include any one of the
static, abstract, or override modifiers.

The implementation of anon-virtual method is invariant: The implementation is the same whether the method is
invoked on an instance of the classin which it is declared or an instance of aderived class. In contrast, the
implementation of avirtual method can be changed by derived classes. The process of changing the
implementation of an inherited virtual method is known as overriding the method (810.5.4).

In avirtual method invocation, the run-time type of the instance for which the invocation takes place determines
the actual method implementation to invoke. In a non-virtual method invocation, the compile-time type of the
instance is the determining factor. In precise terms, when a method named N is invoked with an argument list A
on an instance with a compile-time type ¢ and a run-time type R (where R is either C or a class derived from C),
the invocation is processed as follows:

First, overload resolution is applied to C, N, and A, to select a specific method M from the set of methods
declared in and inherited by c. Thisisdescribed in §7.5.5.1

Then, if M isanon-virtual method, M is invoked.
Otherwise, M is a virtua method, and the most derived implementation of M with respect to R isinvoked.

For every virtual method declared in or inherited by a class, there exists amost derived implementation of the
method with respect to that class. The most derived implementation of a virtual method m with respect to aclass
R is determined as follows:

If R contains the introducing vi rtual declaration of M, then this is the most derived implementation of m.
Otherwise, if R containsan override of M, then thisis the most derived implementation of m.
Otherwise, the most derived implementation of M is the same as that of the direct base class of Rr.

The following example illustrates the differences between virtua and non-virtual methods:

class A

pubTic void F() { console.writeLine("A.F"); }
public virtual void G() { Console.writeLine("A.G"); }

}

class B: A

new public void F() { Console.writeLine("B.F"); }
pubTic override void G() { console.writeLine("B.G"); }

class Test

static void Main() {
B

A a
a.F
b.F
a.G
b.G

}
}

In the example, A introduces a non-virtual method F and a virtual method G. The class B introduces anew non-
virtual method F, thus hiding theinherited F, and also overridesthe inherited method G. The example produces
the output:

206 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

WwWww>
[a X2 Nzl

Notice that the statement a.G() invokesB.G, not A. G. Thisis because the run-time type of the instance (which
isB), not the compile-time type of the instance (which is A), determines the actual method implementation to
invoke.

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most derived
method are hidden. In the example

class A

public virtual void FQ) { console.writeLine("A.F"); }
}

class B: A

public override void F() { Console.writeLine("B.F"); }

class C: B

new public virtual void F() { Console.writeLine("C.F"); }

class D: C

public override void F() { Console.writeLine("D.F"); }

class Test

static void Main() {
Dd=new DO;
A a=d;
Bb=d;
Cc=d;
a.FQ);
b.FQ);
c.FQ;
d.FQ;
}

}

the € and D classes contain two virtual methods with the same signature: The one introduced by A and the one
introduced by c. The method introduced by ¢ hides the method inherited from A. Thus, the override declaration
in D overrides the method introduced by ¢, and it is not possible for D to override the method introduced by A.
The example produces the outpuit:

Note that it is possible to invoke the hidden virtual method by accessing an instance of D through a less derived
type in which the method is not hidden.

10.5.4 Override methods

When an ingtance method declaration includes an override modifier, the method is said to be an override
method. An override method overrides an inherited virtual method with the same signature. Whereas a virtual

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 207

C#LANGUAGE SPECIFICATION

method declaration introduces a new method, an override method declaration specializes an existing inherited
virtual method by providing a new implementation of the method.

It isan error for an override method declaration to include any one of the new, static, or virtual modifiers.
An override method declaration may include the abstract modifier. This enables a virtua method to be
overridden by an abstract method.

The method overridden by an override declaration is known as the overridden base method. For an override
method M declared in a class ¢, the overridden base method is determined by examining each base class of ¢,
starting with the direct base class of ¢ and continuing with each successive direct base class, until an accessible
method with the same signature as M is located. For purposes of locating the overridden base method, a method
is considered accessibleif itispublic, if itisprotected, if itisprotected internal, orifitis
internal and declared in the same program as C.

A compile-time error occurs unless al of the following are true for an override declaration:
An overridden base method can be located as described above.

The overridden base method is a virtual, abstract, or override method. In other words, the overridden base
method cannot be static or non-virtual.

The overridden base method is not a seal ed method.

The override declaration and the overridden base method have the same declared accessibility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method using a base-access (87.5.8). In the example
class A
int x;

pubTlic virtual void Pr1ntF1e1ds() {
Console.writeLine("x {0}",

}
class B: A
int y;

public override void PrintFields() {
base.PrintFields();
Console.writeLine("y = {0}", y);

}

thebase.PrintFields () invocationin B invokesthe PrintFields method declared in A. A base-access
disables the virtua invocation mechanism and simply treats the base method as a non-virtual method. Had the
invocation in B been written ((A)this).PrintFields(), it would recursively invoke the PrintFields
method declared in B, not the one declared in A.

Only by including an override modifier can a method override another method. In al other cases, a method
with the same signature as an inherited method simply hides the inherited method. In the example

class A

pubTlic virtual void FQ {}

class B: A

public virtual void FO) {} // warning, hiding inherited FQ

208 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

the F method in B does not include an override modifier and therefore does not override the F method in A.
Rather, the F method in B hides the method in A, and awarning is reported because the declaration does not
include a new modifier.

In the example

class A

public virtual void FQ {}

class B: A

new private void F() {} // Hides A.F within B

class C: B

public override void FO {} // ok, overrides A.F

the F method in B hides the virtua F method inherited from A. Since the new F in B has private access, its scope
only includes the class body of B and does not extend to . The declaration of F in C is therefore permitted to
override the F inherited from A.

10.5.5 Sealed methods

When an instance method declaration includes a sealed modifier, the method is said to be a sealed method. A
sealed method overrides an inherited virtual method with the same signature. Whereas a virtua method
declaration introduces a new method, an override method declaration specializes an existing inherited virtua
method by providing a new implementation of the method.

An override method can aso be marked with the sealed modifier. Use of this modifier prevents a derived class
from further overriding the method. The sealed modifier can only be used in combination with the override
modifier.

The example

class A

public virtual void F(Q) {
console.writeLine("A.F");

public virtual void G
console.writeLine(

) {
"A.G");

}

class B: A

sealed override public void FQ) {
Console.writeLine("B.F");

override public void GQ) {
Console.writeLine("B.G");

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 209

C#LANGUAGE SPECIFICATION

class C: B

override public void G() {
console.writeLine("C.G");

}

the class B provides two override methods: an F method that has the sealed modifier and a G method that does
not. B's use of the sealed modi fier prevents c from further overriding F.

10.5.6 Abstract methods

When an instance method declaration includes an abstract modifier, the method is said to be an abstract
method. An abstract method isimplicitly also a virtua method.

An abstract method declaration introduces a new virtual method but does not provide an implementation of the
method. Instead, non-abstract derived classes are required to provide their own implementation by overriding
the method. Because an abstract method provides no actua implementation, the method-body of an abstract
method smply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§10.1.1.1).
It isan error for an abstract method declaration to include either the static or virtual modifiers.
In the example

public abstract class Shape

public abstract void Paint(Graphics g, Rectangle r);

public class Ellipse: Shape

public override void Paint(Graphics g, Rectangle r) {
g.drawellipse(r);

}

public class Box: Shape

public override void Paint(Graphics g, Rectangle r) {
g.drawrect(r);

}

the shape class defines the abstract notion of a geometrical shape object that can paint itself. The Paint
method is abstract because there is no meaningful default implementation. The E111 pse and Box classes are
concrete shape implementations. Because theses classes are non-abstract, they are required to override the
Paint method and provide an actua implementation.

Itisan error for abase-access (87.5.8) to reference an abstract method. In the example

class A

public abstract void FQ);

class B: A

pubTlic override void F() {
base.F(Q); // Error, base.F is abstract
b
}

an error is reported for the base . F() invocation because it references an abstract method.

210 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

An abstract method declaration is permitted to override a virtual method. This alows an abstract class to force
re-implementation of the method in derived classes, and makes the origina implementation of the method
unavailable. In the example

class A

pubTlic virtual void FQ {
console.writeLine("A.F");

}

abstract class B: A

pubTlic abstract override void FQ);

class C: B

public override void FQ) {
Console.writeLine("C.F");

}

the class A declares a virtua method, the class B override this method with an abstract method, and the class ¢
overrides to provide its own implementation.

10.5.7 External methods

When amethod declaration includes an extern modifier, the method is said to be an external method. Externa
methods are implemented externally, using a language other than C#. Because an external method declaration
provides no actua implementation, the method-body of an external method simply consists of a semicolon.

The extern modifier istypically used in conjunction with ap11Import attribute (8B.8), alowing externa
methods to be implemented by DLLs (Dynamic Link Libraries). The execution environment may support other
mechanisms whereby implementations of external methods can be provided.

It isan error for an external method declaration to also include the abstract modifier. When an external
method includes ap111Import attribute, the method declaration must also include a static modifier.

This example demonstrates use of the extern modifier and thed11Import attribute:
class Path

{
[D11Import("kernel32", setLastError=true)]])
static extern bool CreateDirectory(string name, SecurityAttributes sa);

[D11Import("kernel32", setLastError=true)]
static extern bool RemoveDirectory(string name);

[DTTImport("kernel32", setLastError=true)]
static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

[D11Import("kernel32", setLastError=true)]
static extern bool SetCurrentDirectory(string name);

}

10.5.8 Method body
The method-body of a method declaration consists either of ablock or a semicolon.

Abstract and external method declarations do not provide a method implementation, and the method body of an
abstract or external method simply consists of a semicolon. For al other methods, the method body is a block
(88.2) that contains the statements to execute when the method is invoked.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 211

C#LANGUAGE SPECIFICATION

When the return type of amethod isvoid, return statements (88.9.4) in the method body are not permitted to
specify an expression. If execution of the method body of a void method completes normally (that is, if control
flows off the end of the method body), the method ssimply returns to the caller.

When the return type of amethod is not void, each return statement in the method body must specify an
expression of atype that isimplicitly convertible to the return type. Execution of the method body of a value-
returning method is required to terminate in a return statement that specifies an expression, or in a throw
statement that throws an exception. It is an error if execution of the method body can complete normally. In
other words, in a vaue-returning method, control is not permitted to flow off the end of the method body.

In the example

class A

public int FQO {} // Error, return value required

public int GO {
return 1;

public int H(bool b) {
if (b) {

return 1;

else {
return 0;
ks

}
}
the value-returning F method is in error because control can flow off the end of the method body. The G and H
methods are correct because al possible execution paths end in a return statement that specifies a return value.

10.5.9 Method overloading
The method overload resolution rules are described in 87.4.2.

10.6 Properties

A property isamember that provides access to an attribute of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields—both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to execute in order to read or write their values.
Properties thus provide a mechanism for associating actions with the reading and writing of an object’s
attributes, and they furthermore permit such attributes to be computed.

Properties are declared using property-declarations:

property-declaration:

attributes,, property-modifiers,: type member-name { accessor-declarations }
property-modifiers:

property-modifier

property-modifiers property-modifier

212 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

property-modifier:
new
pubTic
protected
internal
private
static
virtual
sealed
override
abstract

member-name:
identifier
interface-type . identifier
A property-declaration may include a set of attributes (817), a new modifier (810.2.2), avalid combination of
the four access modifiers (810.2.3), and a valid combination of the static (810.5.2), virtual (810.5.3),
override (810.5.4), and abstract (80) modifiers. In addition, a property that includes the override
modifier may also include the sealed modifier (810.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract property can override avirtua
one.

The type of a property declaration specifies the type of the property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, the member-name is smply an identifier. For an explicit interface member implementation
(813.4.1) , the member-name consists of an interface-type followed by a“.” and an identifier.

The type of a property must be at least as accessible as the property itself (83.5.4).

The accessor-declarations, which must be enclosed in “{” and “}” tokens, declare the accessors (810.6.2) of the
property. The accessors specify the executable statements associated with reading and writing the property.

Even though the syntax for accessing a property is the same as that for afield, a property is not classified asa
variable. Thus, it is not possible to pass a property asa ref or out parameter.

10.6.1 Static properties
When a property declaration includes a stat1ic modifier, the property is said to be a static property. When no
static modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is an error to refer to this in the accessors of a
static property. It is furthermore an error to include avirtual, abstract, or override modifier on a static

property.
An instance property is associated with a given instance of a class, and this instance can be accessed as this
(87.5.7) in the accessors of the property.

When a property is referenced in a member-access (87.5.4) of theform E. M, if M isa dtatic property, E must
denote atype, and if M is an instance property, E must denote an instance.

The differences between static and instance members are further discussed in §10.2.5.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 213

C#LANGUAGE SPECIFICATION

10.6.2 Accessors

The accessor-declarations of a property specify the executable statements associated with reading and writing
the property.

accessor -declarations:
get-accessor-declaration set-accessor -declarationyy
set-accessor-declaration get-accessor -declarationyy,

get-accessor-declaration:
attributes,y get accessor-body

set-accessor-declar ation:
attributes,y set accessor-body

accessor -body:
block
The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of the token get or set followed by an accessor-body. For abstract properties,
the accessor-body for each accessor specified is ssimply a semicolon. For al other accessors, the accessor-body
is ablock which specifies the statements to execute when the accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as the
target of an assignment, when a property is referenced in an expression, the get accessor of the property is
invoked to compute the value of the property (87.1.1). The body of a get accessor must conform to the rules for
vaue-returning methods described in 810.5.8. In particular, all return statementsin the body of aget accessor
must specify an expression that isimplicitly convertible to the property type. Furthermore, aget accessor is
required to terminate in a return statement or a throw statement, and control is not permitted to flow off the
end of the get accessor’s body.

A set accessor corresponds to a method with a single value parameter of the property type and a void return
type. The implicit parameter of a set accessor is aways named value. When a property is referenced as the
target of an assignment, the set accessor is invoked with an argument that provides the new value (87.13.1).
The body of aset accessor must conform to the rules for void methods described in §10.5.8. In particular,
return statementsin the set accessor body are not permitted to specify an expression. Since a set accessor
implicitly has a parameter named value, it isan error for alocal variable declaration in a set accessor to use
that name.

Based on the presence or absence of the get and set accessors, aproperty is classified as follows:
A property that includes both a get accessor and a set accessor is said to be aread-write property.

A property that has only aget accessor is said to be aread-only property. It isan error for aread-only
property to be the target of an assignment.

A property that has only a set accessor is said to be awrite-only property. Except as the target of an
assignment, it is an error to reference awrite-only property in an expression.

Implementation note
In the Microsoft .NET runtime, when a class declares a property X of type T, it isan error for the same classto also declare
a method with one of the following signatures:

T get_XQ;
void set_X(T value);

214 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

The Microsoft .NET runtime reserves these signatures for compatibility with programming languages that do not support
properties. Note that this restriction does not imply that a C# program can use method syntax to access properties or
property syntax to access methods. It merely means that properties and methods that follow this pattern are mutually
exclusive within the same class.

In the example

public class Button: Control

private string caption;

public string Caption {
get {
return caption;

set {
if (caption != value) {
caption = value;
Repaint();
}

}

pubTlic override void Paint(Graphics g, Rectangle r) {
// Painting code goes here

}

the Button control declares apublic Caption property. The get accessor of the Caption property returnsthe
string stored in the private caption field. The set accessor checks if the new value is different from the
current value, and if o, it stores the new value and repaints the control. Properties often follow the pattern
shown above: The get accessor smply returns a value stored in a private field, and the set accessor modifies
the private field and then performs any additional actions required to fully update the state of the object.

Given the Button class above, the following is an example of use of the Caption property:

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor isinvoked by assigning a value to the property, and the get accessor isinvoked by
referencing the property in an expression.

The get and set accessors of a property are not distinct members, and it is not possible to declare the accessors
of aproperty separately. The example

class A
private string name;
public string Name { // Error, duplicate member name
get { return name;

public string Name { // Error, duplicate member name
set { name = value; }

}

does not declare a single read-write property. Rather, it declares two properties with the same name, one read-
only and one write-only. Since two members declared in the same class cannot have the same name, the
example causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the derived property hides
the inherited property with respect to both reading and writing. In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 215

C#LANGUAGE SPECIFICATION

class A

pubTic int P {
set {..}

}

class B: A

new pubTlic int P {
get {..}

}
the P property in B hides the p property in A with respect to both reading and writing. Thus, in the statements

B b =new BQ;
b.p = 1; // Error, B.P 1is read-only
((AMb).p =1; // ok, reference to A.P

the assignment to b . P causes an error to be reported, since the read-only p property in B hides the write-only p
property in A. Note, however, that a cast can be used to access the hidden P property.

Unlike public fields, properties provide a separation between an object’ s internal state and its public interface.
Consider the example:

class Label

{
private int x, y;
private string caption;
public Label(int x, int y, string caption) {
this.x = x;
this.y = vy;
this.caption = caption;
pubTic int X {
get { return x; }
pubTic int Y {
get { return y; }
pubTlic Point Location {
get { return new Point(x, y); }
public string Caption {
get { return caption; }
}

Here, the Labe classusestwo int fields, x and y, to store its location. The location is publicly exposed both
asan X and aY property and asaLocation property of type point. If, in afuture version of LabeT, it
becomes more convenient to store the location as a Point internaly, the change can be made without affecting
the public interface of the class:

class Label

private Point location;
private string caption;

pubTic Label(int x, int y, string caption) {
this.location = new Point(x, y);
this.caption = caption;

}

216 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

public int X {
get { return location.x; }

public int Y {
get { return location.y; }

public Point Location {
get { return location; }

pubTlic string Caption {
get { return caption; }

}

Had x and y instead been pub1ic readonly fields, it would have been impossible to make such a change to
the Labe1 class.

Exposing state through properties is not necessarily any less efficient than exposing fields directly. In particular,
when a property is non-virtual and contains only a small amount of code, the execution environment may
replace calls to accessors with the actual code of the accessors. This process is known asinlining, and it makes
property access as efficient as field access, yet preserves the increased flexibility of properties.

Since invoking aget accessor is conceptually equivalent to reading the value of afield, it is considered bad
programming style for get accessors to have observable side-effects. In the example

class Counter

{
private int next;
pubTic int Next {
get { return next++; }
}

the value of the Next property depends on the number of times the property has previoudy been accessed. Thus,
accessing the property produces an observable side-effect, and the property should instead be implemented as a
method.

The “no side-effects’ convention for get accessors doesn’'t mean that get accessors should always be written to
simply return values stored in fields. Indeed, get accessors often compute the value of a property by accessing
multiple fields or invoking methods. However, a properly designed get accessor performs no actions that cause
observable changes in the state of the object.

Properties can be used to delay initiaization of aresource until the moment it isfirst referenced. For example:

using System.IO;
public class Console

private static TextReader reader;
private static TextwWriter writer;
private static Textwriter error;

public static TextReader In {
get {
if (reader == null) {
reader = new StreamReader(File.OpenStandardinput());

return reader;

}
}

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 217

C#LANGUAGE SPECIFICATION

public static Textwriter out {
get {
if (writer == null) {
writer = new Streamwriter(File.OpenStandardoutput());

return writer;

}
pubTlic static TextWriter Error {
get {
it (error == null) {
error = new Streamwriter(File.OpenStandardError());
return error;
}
ks

}

The console class contains three properties, In, out, and Error, that represent the standard input, output, and
error devices, respectively. By exposing these members as properties, the Console class can delay their
initialization until they are actually used. For example, upon first referencing the out property, asin

console.out.writeLine("hello, world");

the underlying Textwri ter for the output deviceis created. But if the application makes no reference to the In
and Error properties, then no objects are created for those devices.

10.6.3 Virtual, sealed, override, and abstract accessors

A property declaration may include a valid combination of the static, virtual, override, and abstract
modifiers. A property that includes the override modifier may aso include the sealed modifier (810.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract property can override a virtua
one. A virtual property declaration specifies that the accessors of the property are virtua. The virtual
modifier applies to both accessors of a reag-write property—it is not possible for only one accessor of aread
write property to be virtual.

An abstract property declaration specifies that the accessors of the property are virtual, but does not provide
an actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their
own implementation for the accessors by overriding the property. Because an accessor for an abstract property
declaration provides no actual implementation, its accessor -body smply consists of a semicolon.

A property declaration that includes both the abstract and override modifiers specifies that the property is
abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (810.1.1.1). The accessors of an inherited
virtual property can be overridden in aderived class by including a property declaration that specifies an
override directive. Thisis known as an overriding property declaration. An overriding property declaration
does not declare a new property. Instead, it Smply specializes the implementations of the accessors of an
existing virtua property.

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as the
inherited property. If the inherited property has only a single accessor (i.e. if the inherited property is read-only
or write-only), the overriding property can and must include only that accessor. If the inherited property includes
both accessors (i.e. if the inherited property is read-write), the overriding property can include either asingle
accessor or both accessors.

218 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

An overriding property declaration may include the sealed modifier. Use of this modifier prevents a derived
class from further overriding the property. The accessors of a sealed property are also seadled. It isan error for an
overriding property declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like a virtual, sealed, override and abstract methods. Specifically, the rules described in 810.5.3,
810.5.4, 810.5.5, and 80 apply as if accessors were methods of a corresponding form:

A get accessor corresponds to a parameterless method with a return value of the property type and the same
modifiers as the containing property.

A set accessor corresponds to a method with a single value parameter of the property type, avoid return
type, and the same modifiers as the containing property.

In the example

abstract class A
int y;

pubTic virtual int X {
get { return 0; }

pubTic virtual int Y {
get { return y; }
set { y = value; }

}

) pubTic abstract int z { get; set; }

X isavirtua read-only property, Y isavirtual read-write property, and z is an abstract read-write property.
Because z is abstract, the containing class A must also be declared abstract.

A class that derives from A is show below:
class B: A

{

int z;

public override int X {
get { return base.X + 1; }

public override int Y {
set { base.Y = value < 0?7 0: value; }

public override int z {
get { return z; }
) set { z = value; }
}

Here, the declarations of X, Y, and z are overriding property declarations. Each property declaration exactly
matches the accessibility modifiers, type, and name of the corresponding inherited property. The get accessor
of X and the set accessor of Y use the base keyword to access the inherited accessors. The declaration of z
overrides both abstract accessors—thus, there are no outstanding abstract function membersin B, and B is
permitted to be a non-abstract class.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 219

C#LANGUAGE SPECIFICATION

10.7 Events

An event is amember that enables an object or class to provide natifications. Clients can attach executable code
for events by supplying event handlers.

Events are declared using event-declarations:

event-declaration:
attributes,; event-modifiers,; event type variable-declarators ;
attributes,y event-modifiers,x event type member-name { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new
pubTic
protected
internal
private
static
virtual
sealed
override
abstract

event-accessor-declarations:
add-accessor -declaration remove-accessor-declaration
remove-accessor -declaration add-accessor-declaration

add-accessor -declaration:
attributes,y add block

remove-accessor -declaration:
attributes,y remove block

An event-declaration may include a set of attributes (817), a new modifier (810.2.2), , avalid combination of
the four access modifiers (810.2.3), and a valid combination of the static (810.5.2), virtual (810.5.3),
override (810.5.4), and abstract (80) modifiers. In addition, an event that includes the override modifier
may aso include the sealed modifier (810.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract event can override avirtual one.

An event declaration may include event-accessor-declarations, or may rely on the compiler to supply such
accessors automatically.

An event declaration that omits event-accesor -decl ar ations defines one or more events—one for each of the
variable-declarators. The attributes and modifiers apply to al of the members declared by such an event-
declaration.

An abstract event is declared with an event-declaration that omits event-accessor-declarations. It is an error for
an event-declaration to include both the abstract modifier and event-accessor-declarations.

The type of an event declaration must be a delegate-type (84.2), and that del egate-type must be at least as
accessible as the event itself (83.5.4).

220 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

An event can be used as the left hand operand of the += and -= operators (§7.13.3). These operators are used to
attach or remove event handlers to or from an event, and the access modifiers of the event control the contextsin
which the operations are permitted.

Since += and -= are the only operations that are permitted on an event outside the type that declares the event,
external code can add and remove handlers for an event, but cannot in any other way obtain or modify the
underlying list of event handlers.

Within the program text of the class or struct that contains the declaration of an event, certain events can be used
like fields. To be used in this way, an event must not be abstract, and must not explicitly include event-accessor-
declarations. Such an event can be used in any context that permits a field.

In the example

pubTic delegate void EventHandler(object sender, EventArgs e);
public class Button: Control

public event EventHandler Click;

protected void onClick(EventArgs e) {
if (Click !'= null) click(this, e);
}

pubTlic void Reset() {
Click = null;
}

}

Click isused asafield within the Button class. Asthe example demonstrates, the field can be examined,
modified, and used in delegate invocation expressions. The onc11ck method in the Button class “raises’ the
C11ck event. The notion of raising an event is precisely equivalent to invoking the delegate represented by the
event—thus, there are no specia language constructs for raising events. Note that the delegate invocation is
preceded by a check that ensures the delegate is non-null.

Outside the declaration of the Button class, the c14 ck member can only be used on the left hand side of the +=
and -= operators, asin

b.Click += new EventHandler(...);

which appends a delegate to the invocation list of the c11 ck event, and
b.Click -= new EventHandler(...);

which removes a delegate from the invocation list of the c11 ck event.

In an operation of theform x +=y or x -= y, when x is an event and the reference takes place outside the type
that contains the declaration of x, the result of the operation is void (as opposed to the value of x after the
assignment). This rule prohibits external code from indirectly examining the underlying delegate of an event.

The following example shows how event handlers are attached to instances of the Button classabove:
public class LoginDialog: Form

{
Button OkButton;
Button CancelButton;

public LoginDialog() {
okButton = new Button(...);
okButton.Click += new EventHandler(okButtoncClick);
CancelButton = new Button(...);
CancelButton.Click += new EventHandler(CancelButtonClick);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 221

C#LANGUAGE SPECIFICATION

void OkButtonClick(object sender, EventArgs e) {
// Handle okButton.Click event

void CancelButtonClick(object sender, EventArgs e) {
// Handle CancelButton.Click event

}

Here, the LoginDialog constructor creates two Button instances and attaches event handlersto the c14ck
events.

10.7.1 Event accessors

Event declarations typically omit event-accessor -declarations, asin the Button example above. In cases where
the storage cost of one field per event is not acceptable, a class can include event-accessor-declarations and use
a private mechanism for storing the list of event handlers.

The event-accessor-declarations of an event specify the executable statements associated with adding and
removing event handlers.

The accessor declarations consist of an add-accessor -declaration and aremove-accessor-declaration. Each
accessor declaration consists of the token add or remove followed by ablock. The block associated with an
add-accessor -declar ation specifies the statements to execute when an event handler is added, and the block
associated with a remove-accessor -declaration specifies the statements to execute when an event handler is
added.

An event accessor, whether an add-accessor-declaration or a remove-accessor -declaration, correspondsto a
method with a single value parameter of the event type and avoid return type. The implicit parameter of an
event accessor is aways named value. When an event is used in an event assignment, the appropriate event
accessor is used. If the assignment operator is += then the add accessor is used, and if the assignment operator is
-= then the remove accessor is used. In either case, the right hand side of the assignment operator is used as the
argument to the event accessor. The block of an add-accessor-declaration or a remove-accessor -declaration
must conform to the rules for void methods described in §10.5.8. In particular, return statementsin such a
block are not permitted to specify an expression.

Since an event accessor implicitly has a parameter named value, it isan error for aloca variable declaration in
an event accessor to use that name.

In the example

class Control: Component

// Unique keys for events)
static readonly object mouseDownEventkKey = new object();
static readonly object mouseUpEventKey = new object();

// Return event handler associated with key
protected Delegate GetEventHandler(object key) {...}

// Add event handler associated with key
protected void AddEventHandler(object key, Delegate handler) {...}

// Remove event handler associated with key
protected void RemoveEventHandler(object key, Delegate handler) {...}

// MouseDown event

public event MouseEventHandler MouseDown {
add { AddeventHandler(mouseDownEventKey, value); }
remove { AddEventHandler(mouseDownEventKey, value); }

222 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

// MouseUp event

public event MouseEventHandler MouseUp {
add { AddeventHandler(mouseUpEventKey, value); }
remove { AddEventHandler(mouseUpEventKey, value)

;1
}

the Control classimplements an interna storage mechanism for events. The AddeventHand1er method
associates a delegate value with akey, the GetEventHand1er method returns the delegate currently associated
with akey, and the RemoveEventHand1er method removes a delegate as an event handler for the specified
event. Presumably the underlying storage mechanism is designed such that there is no cost for associating a
null delegate value with akey, and thus unhandled events consume no storage.

Implementation note

In the Microsoft .NET runtime, when a class declares an event X of a delegate type T, it isan error for the same classto
also declare a method with one of the following signatures:

void add_X(T handler);
void remove_X(T handler);

The Microsoft .NET runtime reserves these signatures for compatibility with programming languages that do not provide
operatorsor other language constructs for attaching and removing event handlers. Note that this restriction does not imply
that a C# program can use method syntax to attach or remove event handlers. It merely means that events and methods that
follow this pattern are mutually exclusive within the same class.

When a class declares an event, the C# compiler automatically generates the add_X and remove_X methods mentioned
above. For example, the declaration

class Button

public event EventHandler Click;

can be thought of as
class Button
private EventHandler Click;
public void add_cClick(EventHandler handler) {
Click += handler;

public void remove_cClick(EventHandler handler) {
Click -= handler;

}

The compiler furthermore generates an event that referencesthe add_x and remove_x methods. From the point of view of
a C# program, these mechanics are purely implementation details, and they have no observable effects other than the
add_x and remove_X signatures being reserved.

10.7.2 Static events

When an event declaration includes a static modifier, the event is said to be a static event. When no static
modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is an error to refer to this in the accessors of a
static event. It is furthermore an error to include avirtual, abstract, or override modifier on a static
event.

An ingtance event is associated with a given instance of a class, and this instance can be accessed as this
(87.5.7) in the accessors of the event.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 223

C#LANGUAGE SPECIFICATION

When an event is referenced in a member -access (87.5.4) of theform E. M, if M isa static event, E must denote a
type, and if M is an instance event, E must dencte an instance.

The differences between static and instance members are further discussed in 810.2.5.

10.7.3 Virtual, sealed, override, and abstract accessors

An event declaration may include avalid combination of the static, sealed, virtual, override, and
abstract modifiers. An event that includes the override modifier may aso include the sealed modifier
(810.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract event can override a virtual one.

A virtual event declaration specifies that the accessors of the event are virtual. The vi rtual modifier applies
to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but does not provide an
actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their own
implementation for the accessors by overriding the event. Because an accessor for an abstract event declaration
provides no actual implementation, its accessor-body simply consists of a semicolon.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base property. The accessors of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (810.1.1.1).

The accessors of an inherited virtual event can be overriddenin aderived class by including an event declaration
that specifiesan override directive. Thisis known as an overriding event declaration. An overriding event
declaration does not declare a new event. Instead, it smply specializes the implementations of the accessors of
an existing virtua event.

An overriding event declaration must specify the exact same accessibility modifiers, type, and name as the
inherited event.

An overriding event declaration may include the sealed modifier. Use of this modifier prevents a derived class
from further overriding the event. The accessors of a sealed event are also sealed.

It isan error for an overriding event declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, override, and abstract accessors behave
exactly like avirtual, sedled, override and abstract methods. Specifically, the rules described in §10.5.3, §10.5.4,
810.5.5, and 80 apply as if accessors were methods of a corresponding form. Each accessor correspondsto a
method with a single value parameter of the event type, avo1id return type, and the same modifiers as the
containing event.

10.8 Indexers
An indexer isamember that enables an object to be indexed in the same way as an array. Indexers are declared
using indexer -declarations:

indexer-declaration:
attributes,, indexer-modifiers,: indexer-declarator { accessor-declarations }

indexer-modifiers;
indexer-modifier
indexer-modifiers indexer-modifier

224 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

indexer-modifier:
new
pubTic
protected
internal
private
virtual
sealed
override
abstract

indexer-declarator:
type this [formal-parameter-ligt]
type interfacetype . this [formal-parameter-list]

An indexer-declaration may include a set of attributes (817), a new modifier (810.2.2), avaid combination of
the four access modifiers (810.2.3), and avalid combination of the vi rtual (810.5.3), override (810.5.4),
and abstract (80) modifiers. In addition, an indexer that includes the override modifier may aso include
the sealed modifier (810.5.5).

The static, virtual,override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract indexer can override a virtual one.

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the typeis followed by the keyword thiis.
For an explicit interface member implementation, the type is followed by an interface-type, a“.”, and the
keyword this. Unlike other members, indexers do not have user-defined names.

The formal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (810.5.1), except that at least one parameter must be specified, and that the ref
and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-parameter-list must be at least as
accessible as the indexer itself (83.5.4).

The accessor-declarations, which must be enclosed in “{” and “}” tokens, declare the accessors of the indexer.
The accessors specify the executable statements associated with reading and writing indexer elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer
element is not classified asavariable. Thus, it is not possible to pass an indexer element asa ref or out
parameter.

The formal parameter list of an indexer defines the signature (83.6) of the indexer. Specificaly, the signature of
an indexer consists of the number and types of its formal parameters. The element type is not part of an
indexer’ s signature, nor are the names of the formal parameters.

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.
Indexers and properties are very similar in concept, but differ in the following ways:
A property isidentified by its name, whereas an indexer is identified by its signature.

A property is accessed through a simple-name (87.5.2) or a member-access (87.5.4), whereas an indexer
element is accessed through an element-access (87.5.6.2).

A property can be a static member, whereas an indexer is always an instance member.

A get accessor of aproperty corresponds to a method with no parameters, whereas a get accessor of an
indexer corresponds to a method with the same formal parameter list as the indexer.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 225

C#LANGUAGE SPECIFICATION

A set accessor of a property corresponds to a method with a single parameter named value, whereas a
set accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus
an additional parameter named value.

It isan error for an indexer accessor to declare alocal variable with the same name as an indexer parameter.

In an overriding property declaration, the inherited property is accessed using the syntax base. P, where P
is the property name. In an overriding indexer declaration, the inherited indexer is accessed using the syntax
base[E], where E is acomma separated list of expressions.

With these differences in mind, all rules defined in 810.6.2 and §10.6.3 apply to indexer accessors as well as
property accessors.

Implementation note

In the Microsoft .NET runtime, when a class declares an indexer of type T with a formal parameter list P, itisan error for
the same class to also declare a method with one of the following signatures:

T get_Ttem(P);
void set_Item(P, T value);

The Microsoft .NET runtime reserves these signatures for compatibility with programming languages that do not support
indexers. Note that this restriction does not imply that a C# program can use method syntax to access indexers or indexer

syntax to access methods. It merely means that indexers and methods that follow this pattern are mutually exclusive within
the same class.

The example below declares a BitArray class that implements an indexer for accessing the individua bitsin
the bit array.

class BitArray

int[] bits;
int length;

pubTlic BitArray(int length) {
if (length < 0) throw new ArgumentException();
bits = new int[((length - 1) >> 5) + 1];
this.length = Tength;

pubTlic int Length {
get { return Tength; }

public bool this[int index] {
get {
if (index < 0 || index >= length) {
throw new IndexoutOfRangeException();

return (bits[index >> 5] & 1 << index) != 0;
set {
if (index < 0 || index >= length) {
throw new IndexoutOfRangeException();

}
if (value) {
bits[index >> 5] |= 1 << index;

else {
bits[index >> 5] &= ~(1 << index);

226 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

An instance of the Bi tArray class consumes substantially less memory than a corresponding boo1[] (each
value occupies only one hit instead of one byte), but it permits the same operationsasabool[].

Thefollowing CountPrimes classuses aBitArray and the classical “sieve’ agorithm to compute the number
of primes between 1 and a given maximum:

class CountPrimes

{
static int Count(int max) {
BitArray flags = new BitArray(max + 1);
int count = 1;
for (int i = 2; i <= max; i++) {
if (!flags[i]) {
for (int j =1 * 2; j <= max; j += i) flags[j] = true;
count++;
ks
return count;
static void Main(string[] args) {
int max = int.Parse(args[0]);
int count = Count(max);
console.writeLine("Found {0} primes between 1 and {1}", count, max);
}

Note that the syntax for accessing el ements of the BitArray is precisely the sameasfor abool1[].

10.8.1 Indexer overloading
The indexer overload resolution rules aredescribed in 87.4.2.

10.9 Operators

An operator isamember that defines the meaning of an expression operator that can be applied to instances of
the class. Operators are declared using operator-declarations:

operator -declaration:
attributes,,, operator-modifiers operator-declarator block

operator -modifiers:
public static
static public

operator -declarator:
unary-oper ator -declarator
binary-operator-declarator
conversion-oper ator-declarator

unary-operator -declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ 4+ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of
+ - * / % & | A << >> == = > < >= <=

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 227

C#LANGUAGE SPECIFICATION

conver sion-oper ator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)

There are three categories of operators. Unary operators (810.9.1), binary operators (810.9.2), and conversion
operators (810.9.3).

The following rules apply to all operator declarations:

An operator declaration must include both apub1ic and a static modifier, and is not permitted to include
any other modifiers.

The parameter(s) of an operator must be value parameters. It is an error to for an operator declaration to
specify ref or out parameters.

The signature of an operator must differ from the signatures of al other operators declared in the same class.
All types referenced in an operator declaration must be at least as accessible as the operator itself (83.5.4).
Each operator category imposes additional restrictions, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations aways require the class or struct in which the operator is declared to participate in the signature of
the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a base
class. Thus, the new modifier is never required, and therefore never permitted, in an operator declaration.

For al operators, the operator declaration includes ablock which specifies the statements to execute when the
operator isinvoked. The block of an operator must conform to the rules for vaue-returning methods described in
810.5.8

Additional information on unary and binary operators can be found in 8§7.2.
Additional information on conversion operators can be found in 86.4.

10.9.1 Unary operators

The following rules apply to unary operator declarations, where T denotes the class or struct type that contains
the operator declaration:

A unary +, -, !, or ~ operator must take a single parameter of type T and can return any type.
A unary ++ or -- operator must take a single parameter of type T and must return type T.
A unary true or false operator must take a single parameter of type T and must return type boo1.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, -—, true, or false) and the
type of the single formal parameter. The return type is not part of a unary operator’s signature, nor is the name
of the formal parameter.

The true and false unary operators require pair-wise declaration. An error occurs if a class declares one of
these operators without also declaring the other. The true and false operators are further described in §7.16.

10.9.2 Binary operators

A binary operator must take two parameters, at least one of which must be of the class or struct type in which
the operator is declared. A binary operator can return any type.

The signature of abinary operator consists of the operator token (+, -, *, /,%, &, |, A, <<, >>, ==, |=,>, <, >=,
or <=) and the types of the two formal parameters. The return type is not part of a binary operator’s signature,
nor are the names of the formal parameters.

228 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair, there
must be a matching declaration of the other operator of the pair. Two operator declarations match when they
have the same return type and the same type for each parameter. The following operators require pair-wise
declaration:

operator == and operator !=
operator > and operator <

operator >= and operator <=

10.9.3 Conversion operators

A conversion operator declaration introduces a user-defined conversion (86.4) which augments the pre-defined
implicit and explicit conversions.

A conversion operator declaration that includes the imp11 cit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a variety of situations, including function member invocations,
cast expressions, and assignments. This is described further in 86.1.

A conversion operator declaration that includes the exp11 cit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in 86.2.

A conversion operator converts from a source type, indicated by the parameter type of the conversion operator,
to atarget type, indicated by the return type of the conversion operator. A class or struct is permitted to declare a
conversion from a source type s to atarget type T provided al of the following are true:

s and T are different types.

Either s or T isthe class or struct type in which the operator declaration takes place.
Neither s nor T isobject or an interfacetype.

Tisnotabaseclassof s,and s isnot abase classof T.

From the second rule it follows that a conversion operator must either convert to or from the class or struct type
in which the operator is declared. For example, it is possible for a class or struct type ¢ to define aconversion
from c to int and from int to ¢, but not from int to boo1.

It is not possible to redefine a pre-defined conversion. Thus, conversion operators are not alowed to convert
from or to object because implicit and explicit conversions already exist between object and al other types.
Likewise, neither of the source and target types of a conversion can be a base type of the other, since a
conversion would then already exi<t.

User-defined conversions are not alowed to convert from or to interface-types. This restriction in particular
ensures that no user-defined transformations occur when converting to an interface-type, and that a conversion
to an interface-type succeeds only if the object being converted actually implements the specified interface-type

The signature of a conversion operator consists of the source type and the target type. (Note that thisis the only
form of member for which the return type participates in the signature.) The implicit or explicit
classfication of aconversion operator is not part of the operator’s signature. Thus, a class or struct cannot
declare both an imp1icit and an explicit conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose
information. If a user-defined conversion can give rise to exceptions (for example because the source argument
is out of range) or loss of information (such as discarding high-order bits), then that conversion should be
defined as an explicit conversion.

In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 229

C#LANGUAGE SPECIFICATION

pubTic struct Digit

}

byte value;

public Di%it(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

pubTic static implicit operator byte(Digit d) {
return d.value;

pubTic static explicit operator Digit(byte b) {
return new Digit(b);

the conversion from Dig1it to byte isimplicit because it never throws exceptions or loses information, but the
conversion from byte to bigit isexplicit since Digit can only represent a subset of the possible values of a

byte.

10.10 Instance constructors

An instance constructor is amember that implements the actions required to initialize an instance of a class.
Constructors are declared using constructor-declarations:

constructor-declaration:

attributes,, constructor-modifiers,, constructor-declarator block

constructor-modifiers:;

constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:

public
protected
internal
private

constructor-declarator:

identifier (formal-parameter-list,,y) constructor-initializer oy

constructor-initializer:

base (argumentlisty:)
this (argument-listy:)

A constructor-declaration may include a set of attributes (817) and a valid combination of the four access
modifiers (§10.2.3).

The identifier of a constructor-declarator must name the class in which the constructor is declared. If any other
name is specified, an error occurs.

The optional formal-parameter -list of a constructor is subject to the same rules as the for mal-parameter-list of a
method (810.5). The forma parameter list defines the signature (83.6) of a constructor and governs the process
whereby overload resolution (87.4.2) sdlects a particular constructor in an invocation.

Each of the types referenced in the formal-parameter-list of a constructor must be at least as accessible as the
constructor itself (83.5.4).

The optional constructor-initializer specifies another constructor to invoke before executing the statements
given in the block of this constructor. Thisis described further in §10.10.1

230

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

The block of a constructor declaration specifies the statements to execute in order to initialize a new instance of
the class. This corresponds exactly to the block of an instance method with avoid return type (810.5.8).

Constructors are not inherited. Thus, a class has no other constructors than those that are actually declared in the
class. If aclass contains no constructor declarations, a default constructor is automatically provided (810.10.4).

Congtructors are invoked by object-creation-expressions (87.5.10.1) and through constructor -initializer s.

10.10.1 Constructor initializers

All constructors (except for the constructors of class object) implicitly include an invocation of another
constructor immediately before the first statement in the block of the constructor. The constructor to implicitly
invoke is determined by the constructor -initializer :

A constructor initidlizer of the form base(..) causes aconstructor from the direct base class to be invoked.
The constructor is selected using the overload resolution rules of §7.4.2. The set of candidate constructors
consists of all accessible constructors declared in the direct base class. If the set of candidate constructorsis
empty, or if asingle best constructor cannot be identified, an error occurs.

A congtructor initializer of the form th1is(..) causes aconstructor from the classitself to be invoked. The
constructor is selected using the overload resolution rules of §7.4.2. The set of candidate constructors
consists of al accessible constructors declared in the class itself. If the set of candidate constructorsis
empty, or if asingle best constructor cannot be identified, an error occurs. If a constructor declaration
includes a constructor initiaizer that invokes the constructor itself, an error occurs.

If a constructor has no constructor initializer, a constructor initializer of the form base () isimplicitly provided.
Thus, a constructor declaration of the form

cC.) {.}
is exactly equivaent to
c(.): base() {.}

The scope of the parameters given by the for mal-parameter -list of a constructor declaration includes the
constructor initializer of that declaration. Thus, a constructor initializer is permitted to access the parameters of
the constructor. For example:

class A

pubTic A(int x, int y) {}

class B: A

public B(int x, int y): base(x + vy, x - y) {}

A constructor initializer cannot access the instance being created. It is therefore an error to reference this inan
argument expression of the constructor initializer, asit is an error for an argument expression to reference any
instance member through a simple-name.

10.10.2 Instance variable initializers

When a constructor has no constructor initializer or a constructor initializer of the form base(..), the
congtructor implicitly performs the initializations specified by the variable-initializers of the instance fields
declared in the class. This corresponds to a sequence of assignments that are executed immediately upon entry to
the constructor and before the implicit invocation of the direct base class constructor. The variable initiaizers
are executed in the textual order they appear in the class declaration.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 231

C#LANGUAGE SPECIFICATION

10.10.3 Constructor execution

It isuseful to think of instance variable initializers and constructor initializers as statements that are
automatically inserted before the first statement in the block of a constructor. The example

using System.Collections;

class A
{
int x =1, y = -1, count;
pubTic AQ {
count = 0;

pubTic A(int n) {
count = n;

}

class B: A

double sqrt2 = Math.sqrt(2.0);

ArrayList items = new ArrayList(100);

int max;

public B(): this(100) {
items.Add("default");

pubTic B(int n): base(n - 1) {
max = n;

}

contains several variable initializers and aso contains constructor initializers of both forms (base and this).
The example corresponds to the code shown below, where each comment indicates an automatically inserted
statement (the syntax used for the automatically inserted constructor invocationsisn't valid, but merely servesto
illustrate the mechanism).

using System.Collections;
class A

{

int x, y, count;
pubTic AQ {
x = 1;

=1; // variable initializer
y = -1; // variable initializer
object(); // Invoke object() constructor

count = 0;

pubTic A(int n) {

x =1; // variable initializer

y = -1; // Vvariable initializer
object(); // Invoke object() constructor
count = n;

}

class B: A
double sqrt2;

ArrayList items;
int max;

232 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

pubTic B(): this(100) {
B(100); // Invoke B(int) constructor
items.Add("default");

pubTic B(int n): base(n - 1) {

sqrt2 = Math.sqrt(2.0); // variable initializer
items = new ArrayList(100); // variable initializer

A(n - 1); // Invoke A(int) constructor
max = n;

}
}

Note that variable initializers are transformed into assignment statements, and that these assignment statements
are executed befor e the invocation of the base class constructor. This ordering ensures that all instance fields are
initialized by their variable initializers before any statements that have access to the instance are executed. For
example:

class A

public AQ {
PrintFields();

public virtual void PrintFields() {}

class B: A

.
int x = 1;
int y;
public BQO {
y = -1
public override void PrintFields() {
console.writeLine("x = {0}, y = {1}", x, y);
}
When new B () isused to create an instance of B, the following output is produced:
x=1, y=20

The vaue of x is1 because the variable initidlizer is executed before the base class constructor is invoked.
However, the value of y is 0 (the default value of an int) because the assignment to y is not executed until after
the base class constructor returns.

10.10.4 Default constructors

If aclass contains no constructor declarations, a default constructor is automatically provided. The default
constructor simply invokes the parameterless constructor of the direct base class. If the direct base class does not
have an accessible parameterless constructor, an error occurs. If the class is abstract then the declared

access bility for the default constructor is protected. Otherwise, the declared accessibility for the defauit
constructor is public. Thus, the default constructor is always of the form

protected Cc(): base() {}

public cQ: base() {}
where ¢ is the name of the class.
In the example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 233

C#LANGUAGE SPECIFICATION

class Message

object sender;
string text;

adefault constructor is provided because the class contains no constructor declarations. Thus, the exampleis
precisely equivaent to
class Message

{
object sender;
string text;

public Message(): base() {}

10.10.5 Private constructors

When aclass declares only private constructors it is not possible for other classes to derive from the class or
create instances of the class (an exception being classes nested within the class). Private constructors are
commonly used in classes that contain only static members. For example:

pubTic class Trig

private Trig(Q) {} // Prevent instantiation
public const double PI = 3.14159265358979323846;

pubTlic static double Sin(double x) {.}
pubTlic static double Cos(double x) {.}
public static double Tan(double x) {..}

}

The Tr1ig class provides a grouping of related methods and constants, but is not intended to be instantiated. It
therefore declares a single private constructor. At least one private constructor must be declared to suppress the
automatic generation of a default constructor.

10.10.6 Optional constructor parameters

The this(..) form of constructor initializer is commonly used in conjunction with overloading to implement
optional constructor parameters. In the example

class Text

pubTic Text(): this(0, 0, null) {}
public Text(int x, int y): this(x, y, null) {}

public Text(int x, int y, string s) {
// Actual constructor implementation

}
}
the first two constructors merely provide the default values for the missing arguments. Both usea this(...)
constructor initializer to invoke the third constructor, which actually does the work of initializing the new
instance. The effect isthat of optional constructor parameters:

Text tl = new Text(); // Same as Text(0, 0, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

234 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

10.11 Static constructors
A static constructor isamember that implements the actions required to initialize a class. Static constructors are
declared using static-constructor-declarations:

static-constructor -declaration:
attributes,y static identifier () block

A static-constructor-declaration may include a set of attributes (817).

The identifier of a static-constructor -declaration must name the class in which the static constructor is declared.
If any other name is specified, an error occurs.

The block of a static constructor declaration specifies the statements to execute in order to initiaize the class.
This corresponds exactly to the block of a static method with avoid return type (§10.5.8).

Static constructors are not inherited.
o]

Classloading isthe process by which a classis prepared for use in the runtime environment. The loading
process is mostly implementation-dependent, though several guarantees are provided:

A class is loaded before any instance of the classis created.

A classisloaded before any of its static members are referenced.

A classisloaded before any types that derive from it are loaded.

A class cannot be loaded more than once during a single execution of a program.

If aclass has a static constructor then it is automatically called when the class isloaded. Static constructors
cannot be invoked explicitly.

The example

class Test

static void Main() {
A.FQO;
B.FQ);
ks
ks

class A

static AQ) { |]]
console.WriteLine("Init A");

}

public static void F() {
console.writeLine("A.F");
ks
ks

class B

static BQ) { |])
console.wWriteLine("Init B");

}

public static void F() {
console.writeLine("B.F");
s
ks

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 235

C#LANGUAGE SPECIFICATION

could produce either the output:
Init A

or the output:

Init B
Init A
A.F
B.F

because the exact ordering of loading and therefore of static constructor execution is not defined.
The example

class Test

static void Main() {
Cconsole.writeLine("1");
B.GQO;
console.writeLine("2");

}
class A
static AQ {
console.writeLine("Init A");
}

class B: A

static B {
console.writeLine("Init B");

pubTlic static void GO {
console.writeLine("B.G");

}
is guaranteed to produce the output:
Init A
Init B
B.G

because the static constructor for the class A must execute before the static constructor of the class B, which
derives from it.

It is possible to construct circular dependencies that alow static fields with variable initializers to be observed in
their default value state.

The example

class A

public static int X = B.Y + 1;

class B

public static int Y = A.X + 1;

236 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 10 Classes

static void Main() {
console.WriteLine("X = {0}, Y = {1}", A.X, B.Y);
3
3

produces the output
X=1, Y=2

To execute the Main method, the system first loads class B. The static constructor of B proceeds to compute the
initial value of v, which recursively causes A to be |oaded because the value of A. X is referenced. The static
constructor of A in turn proceeds to compute the initia value of X, and in doing so fetches the default value of v,
which is zero. A. x isthusinitialized to 1. The process of loading A then completes, returning to the calculation
of theinitial value of v, the result of which becomes 2.

Had the Main method instead been located in class A, the example would have produced the output
X=2,Y=1

Circular references in static field initiaizers should be avoided since it is generaly not possible to determine the
order in which classes containing such references are loaded.

10.12 Destructors

A destructor isamember that implements the actions required to destruct an instance of a class. Destructors are
declared using destructor-declarations:

destructor -declaration:
attributes,y ~ identifier () block

A destructor-declaration may include a set of attributes (817).

The identifier of adestructor-declarator must name the class in which the destructor is declared. If any other
name is specified, an error occurs.

The block of a destructor declaration specifies the statements to execute in order to destruct an instance of the
class. This corresponds exactly to the block of an instance method with avoid return type (810.5.8).

Destructors are not inherited. Thus, a class has no other destructors than those that are actually declared in the
class.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
destruction when it is no longer possible for any code to use the instance. Execution of the destructor for the
instance may occur at any time after the instance becomes eligible for destruction. When an instance is
destructed, the destructors in an inheritance chain are called in order, from most derived to least derived.

| ssue

Describe what happens when an exception is thrown from a destructor.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 237

Chapter 11 Structs

11. Structs

Structs are similar to classes in that they represent data structures that can contain data members and function
members. But unlike classes, structs are value types and do not require heap allocation. A variable of a struct
type directly contains the data of the struct, whereas a variable of a class type contains a reference to the data,
the latter known as an object.

Structs are particularly useful for small data structures that have value semantics. Complex numbers, pointsin a
coordinate system, or key-value pairsin adictionary are al good examples of structs. Key to these data
structures is that they have few data members, that they do not require use of inheritance or referentia identity,
and that they can be conveniently implemented using value semantics where assignment copies the value instead
of the reference.

Asdescribed in 84.1.3, the simple types provided by C#, such asint, double, and boo1, arein fact all struct
types. Just as these predefined types are structs, so it is possible to use structs and operator overloading to
implement new “primitive’ types in the C# language. Two examples of such types are given in §11.4 at the end
of this chapter.

11.1 Struct declarations
A struct-declaration is a type-declaration (89.5) that declares a new struct:

struct-declaration:
attributes,, struct-modifiers,x struct identifier struct-interfaces,, struct-body ;o

A struct-declaration consists of an optiona set of attributes (817), followed by an optional set of struct-
modifiers (811.1.1), followed by the keyword struct and an identifier that names the struct, followed by an
optional struct-interfaces specification (811.1.2), followed by a struct-body (811.1.3), optionally followed by a
semicolon.

11.1.1 Struct modifiers
A struct-declaration may optionaly include a sequence of struct modifiers:

struct-modifiers;
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
pubTic
protected
internal
private

It is an error for the same modifier to appear multiple times in a struct declaration.

The modifiers of a struct declaration have the same meaning as those of a class declaration (810.1.1). Note,
however, that the abstract and sealed modifiers are not permitted in a struct declaration. Structs cannot be
abstract, and because structs do not permit derivation, they are implicitly sealed.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 239

C#LANGUAGE SPECIFICATION

11.1.2 Struct interfaces

A struct declaration may include a struct-interfaces specification, in which case the struct is said to implement
the given interface types.

struct-interfaces:
interface-type-list

Interface implementations are discussed further in 813.4.

11.1.3 Struct body
The struct-body of a struct defines the members of the struct.

struct-body:
{ struct-member-declarations,: }

11.2 Struct members

The members of a struct consist of the members introduced by its struct-member-declarations and the members
inherited from the object type.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member -declar ation

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator -declaration
constructor-declaration
static-constr uctor -declaration
type-declaration

Except for the differences noted in 811.3, the descriptions of class members provided in 810.2 through 810.11
apply to struct members as well.

11.3 Class and struct differences

11.3.1 Value semantics

Structs are value types (84.1) and are said to have value semantics. Classes, on the other hand, are reference
types (84.2) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains a
reference to the data, the latter known as an object.

With classes, it is possible for two variables to reference the same object, and thus possible for operations on
one variable to affect the object referenced by the other variable. With structs, the variables each have their own
copy of the data, and it is not possible for operations on one to affect the other. Furthermore, because structs are
not reference types, it is not possible for values of a struct type to be nul11.

Given the declaration

240 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 11 Structs

struct Point

pubTlic int x, y;
public Point(int x, int y) {

this.x = x;
this.y = vy;
}
the code fragment
Point a = new Point(10, 10);
Point b = a;
a.x = 100;

console.writeLine(b.x);

outputs the value 10. The assignment of a to b creates a copy of the value, and b is thus unaffected by the
assgnment to a. x. Had Point instead been declared as a class, the output would be 100 because a and b
would reference the same object.

11.3.2 Inheritance

All struct types implicitly inherit from class object. A struct declaration may specify alist of implemented
interfaces, but it is not possible for a struct declaration to specify a base class.

Struct types are never abstract and are aways implicitly sealed. The abstract and sealed modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn't supported for structs, the declared accessibility of a struct member cannot be protected
or protected internal.

Function members in a struct cannot be abstract or virtual, and the override modifier isalowed only to
override methods inherited from the object type.

11.3.3 Assignment

Assignment to a variable of a struct type creates acopy of the value being assigned. This differs from
assignment to a variable of a class type, which copies the reference but not the object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a function
member, a copy of the struct is created. A struct may be passed by reference to a function member using aref
or out parameter.

When a property or indexer of a struct is the target of an assignment, the instance expression associated with the
property or indexer access must be classified as a variable. If the instance expression is classified asavalue, a
compile-time error occurs. Thisis described in further detail in §7.13.1

11.3.4 Default values

Asdescribed in 85.2, several kinds of variables are automatically initialized to their default value when they are
created. For variables of class types and other reference types, this default valueis nu11. However, since structs
are value types that cannot be nu11, the default value of a struct is instead the value produced by “zeroing out”
the fields of the struct.

Referring to the Point struct declared above, the example
Point[] a = new Point[100];
initializes each Point in the array to the vaue produced by setting the x and y fieldsto zero.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 241

C#LANGUAGE SPECIFICATION

The default value of a struct corresponds to the value returned by the default constructor of the struct (84.1.1).
Unlike a class, a gtruct is not permitted to declare a parameterless constructor. Instead, every struct implicitly
has a parameterless constructor, and this constructor always returns the value that results from “zeroing out” the
fields of the struct.

Structs must be designed to consider the default initialization state avalid state. In the example

struct KeyvaluePair

{
string key;
string value;
pubTlic KeyvaluePair(string key, string value) {
if (key == null || value == null) throw new ArgumentException();
this.key = key;
) this.value = value;
}

the user-defined constructor protects against null values only whereit is explicitly called. In caseswhere a
KeyvaluePair variableis subject to default value initidization, the key and vaTlue filds will be null, and the
struct must be prepared to handle this State.

11.3.5 Boxing and unboxing

A value of aclasstype can be converted to type object or to an interface type that isimplemented by the class
simply by treating the reference as another type at compile-time. Likewise, avalue of type object or avalue of
an interface type can be converted back to a class type without changing the reference (but of course arun-time
type check isrequired in this case).

Since structs are not reference types, these operations are implemented differently for struct types. When avalue
of astruct type is converted to type object or to an interface type that isimplemented by the struct, a boxing
operation takes place. Likewise, when avalue of type object or avaue of an interface type is converted back
to a struct type, an unboxing operation takes place. A key difference from the same operations on classtypesis
that boxing and unboxing copies the struct value either into or out of the boxed instance. Thus, following a
boxing or unboxing operation, changes made to the unboxed struct are not reflected in the boxed struct.

For further details on boxing and unboxing, see 84.3.

11.3.6 Meaning of this

Within a constructor or instance function member of aclass, this isclassfied asavaue. Thus, while this can
be used to refer to the instance for which the function member was invoked, it is not possible to assign to this
in a function member of aclass.

Within a constructor of astruct, this correspondsto an out parameter of the struct type, and within an instance
function member of astruct, this correspondsto a ref parameter of the struct type. In both cases, this is
classified asavariable, and it is possible to modify the entire struct for which the function member was invoked
by assigning to this or by passing thisasa ref or out parameter.

11.3.7 Field initializers

As described in §11.3.4, the default value of a struct consists of the value that results from “zeroing out” the
fields of the struct. For this reason, a struct does not permit instance field declarations to include variable
initializers, and the following example isinvalid:

242 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 11 Structs

struct Point

pubTlic int x

ic i 1; // Error, initializer not permitted
public int y

1; // Error, initializer not permitted

This restriction applies only to instance fields. Static fields of a struct are permitted to include variable
initializers.
11.3.8 Constructors

Unlike aclass, astruct is not permitted to declare a parameterless constructor. Instead, every struct implicitly
has a parameterless constructor, and this constructor aways returns the value that results from “zeroing out” the
fields of the struct (84.1.1).

A struct constructor is not permitted to include a constructor initializer of the form base(...).

The this variable of astruct constructor corresponds to an out parameter of the struct type, and similar to an
out parameter, this must be definitely assigned (85.3) at every location where the constructor returns.

11.3.9 Destructors
A struct is not permitted to declare a destructor.

11.4 Struct examples

11.4.1 Database integer type

The bBInt struct below implements an integer type that can represent the complete set of values of the int
type, plus an additional state that indicates an unknown value. A type with these characteristics is commonly
used in databases.

public struct DBInt

// The Null member represents an unknown DBInt value.
public static readonly DBInt Null = new DBInt();

// When the defined field is true, this DBInt represents a known value
// which is stored in the value field. when the defined field is false,
// this DBInt represents an unknown value, and the value field 1is O.

int value;
bool defined;

// Private constructor. Creates a DBInt with a known value.

DBInt(int value) {
this.value = value;
this.defined = true;

// The IsNull property is true if this DBInt represents an unknown value.
pubTic bool IsNull { get { return !defined; } }

// The value property is the known value of this DBInt, or 0 if this
// DBInt represents an unknown value.

pubTlic int value { get { return value; } }
// Implicit conversion from int to DBInt.

pubTic static implicit operator DBInt(int x) {
return new DBInt(x);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 243

C#LANGUAGE SPECIFICATION

// Explicit conversion from DBInt to int. Throws an exception if the
// given DBInt represents an unknown value.

public static explicit operator int(DBInt x) {)
if (!x.defined) throw new InvalidOperationException();
return x.value;

}

public static DBInt operator +(DBInt x) {
return Xx;

}

public static DBInt operator -(DBInt x) {
return x.defined? -x.value: Null;
3

public static DBInt operator +(DBInt x, DBInt y) {
return x.defined && y.defined? x.value + y.value: Null;
}

public static DBInt operator -(DBInt x, DBInt y) {
return x.defined && y.defined? x.value - y.value: Null;
}

public static DBInt operator *(DBInt x, DBInt y) {
return x.defined && y.defined? x.value * y.value: Null;
}

public static DBInt operator /(DBInt x, DBInt y) {
return x.defined && y.defined? x.value / y.value: Null;
3

public static DBInt operator %(DBInt x, DBInt y) {
return x.defined && y.defined? x.value % y.value: Null;

}
public static DBBool operator ==(DBInt x, DBInt y) {

return x.defined && y.defined? x.value == y.value: DBBool.Null;
}
public static DBBool operator !=(DBInt x, DBInt y) {

return x.defined & & y.defined? x.value != y.value: DBBool.Null;
}

public static DBBool operator >(DBInt x, DBInt y) {
return x.defined && y.defined? x.value > y.value: DBBool.Null;
}

public static DBBool operator <(DBInt x, DBInt y) {
return x.defined && y.defined? x.value < y.value: DBBool.Null;
}

public static DBBool operator >=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value >= y.value: DBBool.Null;
}

public static DBBool operator <=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value <= y.value: DBBool.Null;
}

}

11.4.2 Database boolean type

The bBBoO1 struct below implements a three-valued logical type. The possible values of this type are
DBBoo1.True, DBBoo1.False, and DBBoo1.Nul1, where the Nu11 member indicates an unknown value.
Such three-vaued logical types are commonly used in databases.

244 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 11 Structs

public struct DBBool

// The three possible DBBool values.

public static readonly DBBool Null = new DBB0ooT(0);
public static readonly DBBool False = new DBBool(-1);
public static readonly DBBool True = new DBBool(1);

// Private field that stores -1, 0, 1 for False, Null, True.
sbyte value;
// Private constructor. The value parameter must be -1, 0, or 1.

DBBool1(int value) {
this.value = (sbyte)value;
3

// Properties to examine the value of a DBBool. Return true if this
// DBBool has the given value, false otherwise.

pubTic bool IsNull { get { return value == 0; } }
pubTic bool IsFalse { get { return value < 0; } }
pubTic bool IsTrue { get { return value > 0; } }

// Implicit conversion from bool to DBBool. Maps true to DBBool.True and
// false to DBBool.False.

pubTic static implicit operator DBBool(bool x) {
return x? True: False;

// Explicit conversion from DBBool to bool. Throws an exception if the
// given DBBool is Null, otherwise returns true or false.

public static explicit operator bool(DBBool x) {
if (x.value == 0) throw new InvalidOperationException();
return x.value > 0;

// Equality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator ==(DBBool x, DBBool y) {
if (x.value == || y.value == 0) return Null;
return x.value == y.value? True: False;

// Inequality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator !=(DBBool x, DBBool y) {
if (x.value == || y.value == 0) return Null;
return x.value != y.value? True: False;

// Logical negation operator. Returns True if the operand is False, Null
// if the operand is Null, or False if the operand is True.

public static DBBool operator !(DBBool x) {
return new DBBool(-x.value);
}

// Logical AND operator. Returns False if_either operand is False,
// otherwise Null if either operand is Null, otherwise True.

pubTlic static DBBool operator &(DBBool x, DBBool y) {
return new DBBool(x.value < y.value? x.value: y.value);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 245

C#LANGUAGE SPECIFICATION

246

}

// Logicg] OR operator. Returns True if either operand is True, otherwise
// Null if either operand is Null, otherwise False.

pubTlic static DBBool operator |(DBBool x, DBBool y) {
return new DBBool(x.value > y.value? x.value: y.value);

// Definitely true operator. Returns true if the operand is True, false
// otherwise.

pubTic static bool operator true(bBBool x) {
return x.value > 0;

// Definitely false operator. Returns true if the operand is False, false
// otherwise.

pubTic static bool operator false(DBBool x) {
return x.value < 0;
}

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 12 Arrays

12. Arrays

An array is a data structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, aso caled the e ements of the array, are dl of the same type, and this type
is called the dement type of the array.

An array has arank which determines the number of indices associated with each array element. The rank of an
array isaso referred to as the dimensions of the array. An array with arank of oneis called a single-dimensional
array, and an array with arank greater than oneis called a multi-dimensional array.

Each dimension of an array has an associated length which is an integral number greater than or equa to zero.
The dimension lengths are not part of the type of the array, but rather are established when an instance of the
array typeis created at run-time. The length of a dimension determines the valid range of indices for that
dimension: For adimension of length N, indices can range from 0 to N - 1 inclusive. The total number of
elementsin an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have alength of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array types
An array type is written as anon-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank -specifier:
[dimseparators 1

dim-separators:

élimseparators ,
A non-array-type isany typethat is not itself an array-type.

The rank of an array typeis given by the leftmost rank-specifier in the array-type: A rank-specifier indicates
that the array is an array with arank of one plus the number of “,” tokens in the rank-specifier.

The element type of an array type is the type that results from deleting the leftmost rank-specifier:
An array type of theform T[R] isan array with rank R and anon-array element typeT.
An array type of theform T[R] [R1]..[Rx] isan array with rank R and an element type T[R1]...[Rn].

In effect, the rank-specifiers are read from I€eft to right before the final non-array element type. For example, the
typeint[1[,,]1[,] isasngle-dimensiona array of three-dimensional arrays of two-dimensiond arrays of
int.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 247

C#LANGUAGE SPECIFICATION

Arrayswith arank of one are called single-dimensional arrays. Arrays with arank greater than one are called
multi-dimensional arrays, and are also referred to as two-dimensional arrays, three-dimensional arrays, and so
on.

At run-time, avaue of an array type can be nu11 or areference to an instance of that array type.

12.1.1 The system.Array type
The system.Array typeis the abstract base type of all array types. An implicit reference conversion (86.1.4)
exists from any array typeto System.Array, and an explicit reference conversion (86.2.3) exists from

System.Array to any array type. Note that System.Array isitsef not an array-type Rather, it is aclass-type
from which all array-types are derived.

At run-time, avalue of type System.Array canbe nul1 or areference to an instance of any array type.

12.2 Array creation

Array instances are created by array-creation-expressions (87.5.10.2) or by field or local variable declarations
that include an array-initializer (812.6).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing
array instance, nor isit possible to resize its dimensions.

An array instance created by an array-creation-expression is always of an array type. The System.Array type
is an abstract type that cannot be instantiated.

Elements of arrays created by array-creation-expressions are aways initialized to their default value (85.2).

12.3 Array element access

Array elements are accessed using element-access expressions (87.5.6.1) of theform A[I1, Iz, .., In], Where
A isan expression of an array type and each Ixisan expression of typeint, uint, Tong, ulong, or of atype
that can be implicitly converted to one or more of these types.. The result of an array element accessisa
variable, namely the array element selected by the indices.

The elements of an array can be enumerated using a foreach statement (88.8.4).

12.4 Array members
Every array type inherits the members declared by the Ssystem.Array type.

12.5 Array covariance

For any two reference-types A and B, if an implicit reference conversion (86.1.4) or explicit reference conversion
(86.2.3) existsfrom A to B, then the same reference conversion aso exists from the array type A[R] to the array
type B[R], where R isany given rank-specifier (but the same for both array types). This relationship is known as
array covariance. Array covariance in particular meansthat avalue of an array type A[R] may actualy be a
reference to an instance of an array type B[R], provided an implicit reference conversion exists from B to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check which
ensures that the value being assigned to the array element is actually of a permitted type (87.13.1). For example:

class Test

{
static void Fill(object[] array, int index, int count, object value) {
for (int i = index; i < index + count; i++) array[i] = value;
}

248 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 12 Arrays

static void Main() {
string[] strings = new string[100];
Fill(strings, 0, 100, "uUndefined");
Fill(strings, 0, 10, null);
Fill(strings, 90, 10, 0);
}
}
Theassignment to array[i] inthe Fi11 method implicitly includes a run-time check which ensures that the
object referenced by value isether nul11 or an instance of atype that is compatible with the actua element
type of array. In Mmain, the first two invocations of Fi11 succeed, but the third invocation causes an
ArrayTypeMismatchException to bethrown upon executing the first assignment to array[i]. The

exception occurs because aboxed int cannot be stored inastring aray.

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists that
permitsan int[] to betreated asan object[].

12.6 Array initializers

Array initializers may be specified in field declarations (810.4), loca variable declarations (88.5.1), and array
creation expressions (87.5.10.2):

array-initializer:
{ variable-initializer-list,,: }
{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-lis , variable-initializer
variable-initializer:
expression
array-initializer
An array initiglizer consists of a sequence of variable initializers, enclosed by “{"and “}” tokens and separated
by “,” tokens. Each variable initiaizer is an expression or, in the case of a multi-dimensiona array, a nested
array initializer.
The context in which an array initiaizer is used determines the type of the array being initialized. In an array
creation expression, the array type immediately precedes the initidizer. In afield or variable declaration, the

array typeisthe type of the field or variable being declared. When an array initidlizer isused in afield or
variable declaration, such as;

int[] a = {0, 2, 4, 6, 8};
it isssmply shorthand for an equivalent array creation expression:
int[] a = new int[] {0, 2, 4, 6, 8}

For asingle-dimensional array, the array initializer must consist of a sequence of expressions that are
assignment compatible with the element type of the array. The expressionsinitiaize array elementsin increasing
order, starting with the element at index zero. The number of expressions in the array initidizer determines the
length of the array instance being created. For example, the array initializer above createsan int[] instance of
length 5 and then initializes the instance with the following values:

a[0] = 0; a[l] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

For amulti-dimensiona array, the array initiaizer must have as many levels of nesting as there are dimensions
in the array. The outermost nesting level corresponds to the leftmost dimension and the innermost nesting level
corresponds to the rightmost dimension. The length of each dimension of the array is determined by the number

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 249

C#LANGUAGE SPECIFICATION

of elements at the corresponding nesting level in the array initializer. For each nested array initidizer, the
number of elements must be the same as the other array initializers at the same level. The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

creates atwo-dimensiona array with alength of five for the leftmost dimension and a length of two for the
rightmost dimension:

int[,] b = new int[5, 2];
and then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 25 b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

When an array creation expression includes both explicit dimension lengths and an array initializer, the lengths
must be constant expressions and the number of elements at each nesting level must match the corresponding
dimension length. Some examples:

int i = 3;

int[] x = new int[3] {0, 1, 2}; // OK

int[] y = new int[i] {0, 1, 2}; // Error, i not a constant

int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, the initializer for y isin error because the dimension length expression is not a constant, and the initializer
for z isin error because the length and the number of elementsin the initializer do not agree.

250 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

13. Interfaces

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide
implementations for the members that it defines. The interface merely specifies the members that must be
supplied by classes or interfaces that implement the interface.

13.1 Interface declarations
An interface-declaration is a type-declaration (89.5) that declares a new interface type.

interface-declaration:
attributes,, interface-modifiers,,, interface identifier interface-base,, interface-body ;o

An interface-declaration consists of an optional set of attributes (817), followed by an optional set of interface-
modifiers (813.1.1), followed by the keyword interface and an identifier that names the interface, optionaly
followed by an optiona interface-base specification (813.1.2), followed by a interface-body (813.1.3),
optionally followed by a semicolon.

13.1.1 Interface modifiers
An interface-declaration may optionaly include a sequence of interface modifiers.

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
pubTic
protected
internal
private

It isan error for the same modifier to appear multiple times in an interface declaration.

The new modifier is only permitted on nested interfaces. It specifies that the interface hides an inherited member
by the same name, as described in §10.2.2

The public, protected, internal, and private modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (83.5.1).

13.1.2 Base interfaces

An interface can inherit from zero or more interfaces, which are called the explicit base interfaces of the
interface. When an interface has more than zero explicit base interfaces then in the declaration of the interface,
the interface identifier is followed by a colon and a comma-separated list of base interface identifiers.

interface-base:
interface-type-list

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 251

C#LANGUAGE SPECIFICATION

The explicit base interfaces of an interface must be at least as accessible as the interface itself (83.5.4). For
example, it is an error to specify aprivate or internal interface in the interface-base of a pub1i c interface.

Itisan error for an interface to directly or indirectly inherit from itself.

The base interfacesof an interface are the explicit base interfaces and their base interfaces. In other words, the
set of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on. In the example

interface IControl

void Paint();

interface ITextBox: IControl

void SetText(string text);
}

interface IListBox: IControl

void SetItems(string[] items);

interface IComboBox: ITextBox, IListBox {}
the base interfaces of I1ComboBox are IControl, ITextBox, and IListBox.

An interface inherits all members of its base interfaces. In other words, the IcomboBox interface above inherits
members setText and SetItems aswell aspPaint.

A class or struct that implements an interface also implicitly implements al of the interface’ s base interfaces.

13.1.3 Interface body
The interface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarations,: }

13.2 Interface members

The members of an interface are the members inherited from the base interfaces and the members declared by
the interface itself.

interface-member -declarations:
interface-member -declaration
interface-member -declarations interface-member-declaration

interface-member -declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, constructors, destructors,
static constructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is an error for interface member declarations to include
any modifiers. In particular, interface members cannot be declared with the abstract, public, protected,
internal, private, virtual, override, or static modifiers.

252 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

The example
pubTic delegate void StringListEvent(IStringList sender);
pubTlic interface IStringList

{ void Add(string s);
int Count { get; }
event StringListEvent Changed;
) string this[int index] { get; set; }

declares an interface that contains one each of the possible kinds of members: A method, a property, an event,
and an indexer.

An interface-declaration creates a new declaration space (83.3), and the interface-member -declarations
immediately contained by the interface-declaration introduce new members into this declaration space. The
following rules apply to interface-member-declarations:

The name of a method must differ from the names of all properties and events declared in the same
interface. In addition, the signature (83.6) of a method must differ from the signatures of al other methods
declared in the same interface.

The name of a property or event must differ from the names of al other members declared in the same
interface.

The signature of an indexer must differ from the signatures of al other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface. Thus, an
interface is alowed to declare a member with the same name or signature as an inherited member. When this
occurs, the derived interface member is said to hide the base interface member. Hiding an inherited member is
not considered an error, but it does cause the compiler to issue awarning. To suppress the warning, the
declaration of the derived interface member must include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in 83.7.1.2.

If anew modifier isincluded in a declaration that doesn’t hide an inherited member, awarning is issued to that
effect. Thiswarning is suppressed by removing the new modifier.

13.2.1 Interface methods
Interface methods are declared using interface-method-declarations:

interface-method-declaration:
attributes,y newgy return-type identifier (formal-parameter-listyy)

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have the
same meaning as those of a method declaration in aclass (810.5). An interface method declaration is not
permitted to specify a method body, and the declaration therefore always ends with a semicolon.

13.2.2 Interface properties
Interface properties are declared using interface-property-declarations:

interface-property-declaration:
attributes,: newoy type identifier { interface-accessors }

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 253

C#LANGUAGE SPECIFICATION

interface-accessors:
attributes,y get ;
attributes,, set ;
attributes,x get ; attributes, set ;
attributes,x set ; attributes, get ;

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a
property declaration in a class (810.6).

The accessors of an interface property declaration correspond to the accessors of a class property declaration
(810.6.2), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate
whether the property is read-write, read-only, or write-only.

13.2.3 Interface events
Interface events are declared using interface-event-declarations:

interface-event-declaration:
attributes,y newoy event type identifier ;

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an event
declaration in a class (810.7).

13.2.4 Interface indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributes,: newg type this [formal-parameter-list 1 { interface-accessors }

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning as
those of an indexer declaration in aclass (§10.8).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration
(810.8), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate whether
the indexer is read-write, read-only, or write-only.

13.2.5 Interface member access

Interface members are accessed through member access (87.5.4) and indexer access (87.5.6.2) expressions of
theform 1.mand 1[A], where I isan ingtance of an interface type, M is a method, property, or event of that
interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one
direct base interface), the effects of the member lookup (87.3), method invocation (87.5.5.1), and indexer access
(87.5.6.2) rules are exactly the same as for classes and structs: More derived members hide less derived
members with the same name or signature. However, for multiple-inheritance interfaces, ambiguities can occur
when two or more unrelated base interfaces declare members with the same name or signature. This section
shows several examples of such situations. In all cases, explicit casts can be included in the program code to
resolve the ambiguities.

In the example

interface IList

{

int Count { get; set; }
}

254 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

interface ICounter

void Count(int i);
interface IListCounter: IList, ICounter {}
class C

void Test(IListCounter x) {

X.Count(1); // Error, Count is ambiguous
x.Count = 1; // Error, Count is ambiguous
((IList)x).Count = 1; // Ok, invokes IList.Count.set
((Icounter)x).Count(1l); // 0Ok, invokes ICounter.Count

}

the first two statements cause compile-time errors because the member lookup (87.3) of Count in
IListCounter isambiguous. Asillustrated by the example, the ambiguity is resolved by casting x to the
appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the instance
as aless derived type a compile-time.

In the example

interface IInteger

void Add(int i);

interface IDouble

void Add(double d);

interface INumber: IInteger, IDouble {}

class C
void Test(INumber n) {
n.Add(1); // Error, both Add methods are applicable
n.Add(1.0); // Ok, only IDouble.Add is applicable
((IInteger)n).Add(1); // 0Ok, only IInteger.Add is a candidate
((1bouble)n) .Add(1); // 0k, only IDouble.Add is a candidate

}

theinvocation n.Add (1) isambiguous because a method invocation (87.5.5.1) requires al overloaded
candidate methods to be declared in the same type. However, the invocation n. Add (1. 0) is permitted because
only IDoubTe.Add is applicable. When explicit casts are inserted, there is only one candidate method, and thus
no ambiguity.

In the example

interface IBase

void F(int 1);

interface ILeft: IBase

new void F(int 1i);

}
interface IRight: IBase

void GQ);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 255

C#LANGUAGE SPECIFICATION

interface IDerived: ILeft, IRight {}
class A

void Test(IDerived d) {

d.F(1D); // Invokes ILeft.F
((1Base)d) .F(1); // Invokes IBase.F
((TLeft)d).F(1); // Invokes ILeft.F
((IRight)d) .F(1); // Invokes IBase.F

}

the IBase. F member is hidden by the ILeft.F member. Theinvocation d. F(1) thus selects ILeft.F, even
though IBase. F appears to not be hidden in the access path that leads through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is smply this: If a member is hidden in any access
path, it is hidden in al access paths. Because the access path from IDerived to ILeft to IBase hides
IBase.F, the member is also hidden in the access path from IDerived to IRight to IBase.

13.3 Fully qualified interface member names

An interface member is sometimes referred to by its fully qualified name The fully quaified name of an
interface member consists of the name of the interface in which the member is declared, followed by a dot,
followed by the name of the member. For example, given the declarations

interface IControl

void Paint();

}

interface ITextBox: IControl

void SetText(string text);

the fully qualified name of Paint isTControl.Paint and the fully qualified name of setText is
ITextBox.SetText.

Note that the fully qualified name of a member references the interface in which the member is declared. Thus,
in the example above, it is not possible to refer to Paint as ITextBox.Paint.

When an interface is part of a namespace, the fully qualified name of an interface member includes the
namespace name. For example

namespace System
public interface ICloneable

object Clone();

}
Here, the fully qualified name of the C1one method isSystem.ICloneable.Clone.

13.4 Interface implementations

Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an interface,
the interface identifier isincluded in the base class list of the class or struct.

interface ICloneable

object Clone();

256 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

interface IComparable

int CompareTo(object other);

class ListEntry: ICloneable, IComparable

pubTic object Clone() {..}

pubTlic int CompareTo(object other) {.}
}

A class or struct that implements an interface also implicitly implements al of the interface’ s base interfaces.
Thisistrue even if the class or struct doesn't explicitly list al base interfaces in the base class list.

interface IControl

void Paint();
}

interface ITextBox: IControl

void SetText(string text);

class TextBox: ITextBox

public void Paint() {..}
pubTlic void SetText(string text) {..}

Here, class TextBox implements both IControl and ITextBox.

13.4.1 Explicit interface member implementations

For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a fully qualified interface member name. For example

interface ICloneable

object Clone();

interface IComparable

int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable

object ICloneable.Clone() {..}
int IComparable.CompareTo(object other) {..}

Here, 1CToneable.Clone and I1Comparable.CompareTo are explicit interface member implementations.

It is not possible to access an explicit interface member implementation through its fully qualified namein a
method invocation, property access, or indexer access. An explicit interface member implementation can only
be accessed through an interface instance, and is in that case referenced smply by its member name.

It isan error for an explicit interface member implementation to include access modifiers, asisit an error to
include the abstract, virtual, override, or static modifiers.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 257

C#LANGUAGE SPECIFICATION

Explicit interface member implementations have different accessibility characteristics than other members.
Because explicit interface member implementations are never accessible through their fully qualified namein a
method invocation or a property access, they are in a sense private. However, since they can be accessed
through an interface instance, they arein a sense aso public.

Explicit interface member implementations serve two primary purposes:

Because explicit interface member implementations are not accessible through class or struct instances, they
alow interface implementations to be excluded from the public interface of aclass or struct. Thisis
particularly useful when a class or struct implements an interna interface that is of no interest to a consumer
of the class or struct.

Explicit interface member implementations allow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or struct to
have different implementations of interface members with the same signature and return type, as would it be
impossible for a class or struct to have any implementation at al of interface members with the same
signature but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interface in its
base class list that contains a member whose fully qualified name, type, and parameter types exactly match those
of the explicit interface member implementation. Thus, in the following class

class Shape: ICloneable

object ICloneable.Clone() {.}
int IComparable.CompareTo(object other) {.}

the declaration of TComparable.CompareTo isinvaid because IComparable isnot listed in the base class
ligt of shape and isnot abase interface of 1Cloneable. Likewisg, in the declarations

class Shape: ICloneable

object ICloneable.Clone() {..}

%1ass Ellipse: Shape

object ICloneable.Clone() {.}
}

the declaration of ICloneable.Clone in E111ipse isin error because ICloneable isnot explicitly listed in
the base class list of E114pse.

The fully qualified name of an interface member must reference the interface in which the member was
declared. Thus, in the declarations

interface IControl

void Paint(Q);

interface ITextBox: IControl

void SetText(string text);
s

class TextBox: ITextBox

void IControl.Paint() {..}
void ITextBox.SetText(string text) {..}

258 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

the explicit interface member implementation of Paint must be written as1Control.Paint.

13.4.2 Interface mapping

A class or struct must provide implementations of al members of the interfaces that are listed in the base class

list of the class or struct. The process of locating implementations of interface members in an implementing
class or struct is known as interface mapping.

Interface mapping for a class or struct ¢ locates an implementation for each member of each interface specified
in the base class list of ¢. The implementation of a particular interface member 1.M, where 1 istheinterfacein
which the member ™ is declared, is determined by examining each class or struct s, starting with ¢ and repeating
for each successive base class of ¢, until amatch islocated:

If s contains a declaration of an explicit interface member implementation that matches 1 and m, then this
member is the implementation of .M.

Otherwisg, if s contains a declaration of a non-static public member that matches M, then this member is the
implementation of I.m.

An error occurs if implementations cannot be located for all members of al interfaces specified in the base class
list of . Note that the members of an interface include those members that are inherited from base interfaces.

For purposes of interface mapping, a class member A matches an interface member B when:
A and B are methods, and the name, type, and formal parameter lists of A and B areidentical.

A and B are properties, the name and type of A and B areidentical, and A has the same accessorsas B (A IS
permitted to have additional accessorsif it is not an explicit interface member implementation).

A and B are events, and the name and type of A and B are identical.

A and B are indexers, the type and formal parameter lists of A and B areidentical, and A has the same
accessors as B (A is permitted to have additional accessorsif it is not an explicit interface member
implementation).

Notable implications of the interface mapping algorithm are:

Explicit interface member implementations take precedence over other membersin the same class or struct
when determining the class or struct member that implements an interface member.

Private, protected, and static members do not participate in interface mapping.
In the example

interface ICloneable

object Clone();

class C: ICloneable

object ICloneable.Clone() {..}
public object Clone() {..}

the 1Cloneable.Clone member of C becomes the implementation of Clone in ICloneable because explicit
interface member implementations take precedence over other members.

If aclass or struct implements two or more interfaces containing a member with the same name, type, and

parameter types, it is possible to map each of those interface members onto a single class or struct member. For
example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 259

C#LANGUAGE SPECIFICATION

interface IControl

void Paint();

interface IForm

void Paint();

class Page: IControl, IForm

pubTic void Paint() {..}

Here, the Paint methods of both TControl and TForm are mapped onto the Paint method in Page. It is of
course also possible to have separate explicit interface member implementations for the two methods.

If aclassor struct implements an interface that contains hidden members, then some members must necessarily
be implemented through explicit interface member implementations. For example

interface IBase

int P { get; }

interface IDerived: IBase

new int PQ);

}

An implementation of this interface would require at least one explicit interface member implementation, and
would take one of the following forms

class C: IDerived

int IBase.P { get {.} }
int IDerived.P() {..}

class C: IDerived

pubTlic int P { get {.} }
int IDerived.P() {..}

class C: IDerived

int IBase.P { get {.} }
pubTlic int PQ) {.}

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. In the example

interface IControl

void Paint();
}

interface ITextBox: IControl

void SetText(string text);

260 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

interface IListBox: IControl

void SetItems(string[] items);

class ComboBox: IControl, ITextBox, IListBox

void IControl.Paint() {..}
void ITextBox.SetText(string text) {..}
void IListBox.SetItems(string[] items) {.}

it is not possible to have separate implementations for the 1Contro1 named in the base class list, the IControl
inherited by 1TextBox, and the IControl inherited by 1L1stBox. Indeed, there is no notion of a separate
identity for these interfaces. Rather, the implementations of ITextBox and IListBox share the same
implementation of IControl, and ComboBox is simply considered to implement three interfaces, 1Control,
ITextBox, and IListBox.

The members of abase class participate in interface mapping. In the example

interface Interfacel

void FQ);

class Classl

pubTlic void FQ {}
pubTic void GO {}

class Class2: Classl, Interfacel

new public void Q) {}
themethod FinCclass1 isused in Class2's implementation of Interfacel.

13.4.3 Interface implementation inheritance
A classinherits al interface implementations provided by its base classes.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface mappings
it inherits from its base classes. For example, in the declarations

interface IControl

void Paint(Q);

class Control: IControl

pubTic void Paint() {..}

class TextBox: Control

new public void Paint() {..}

the paint method in TextBox hidesthe paint method in Control, but it does not ater the mapping of
Control.Paint onto IControl.Paint, and calsto pPaint through class instances and interface instances
will have the following effects

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 261

C#LANGUAGE SPECIFICATION

control c = new control();

TextBox t = new TextBox();

IControl ic = c;

IControl it = t;

c.Paint(); // invokes control.Paint();
t.Paint(Q); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes control.Paint();

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived classes
to override the virtual method and ater the implementation of the interface. For example, rewriting the
declarations above to

interface IControl

void Paint();

class Control: IControl

pubTic virtual void Paint() {..}

class TextBox: cControl

pubTlic override void Paint() {..}

the following effects will now be observed

control c = new Control(Q);
TextBox t = new TextBox();

IControl ic = c;
IControl it = t;
c.Paint(Q); // invokes cControl.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes cControl.Paint();
it.Paint(Q); // invokes TextBox.Paint();

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an
explicit interface member implementation. It is however perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to alow derived classes to
override it. For example

interface IControl

{

void Paint(Q);

class Control: IControl

void IControl.Paint() { PaintControl(); }
protected virtual void PaintControl() {..}

class TextBox: Control

{

protected override void PaintControl() {..}

Here, classes derived from Control can specidize the implementation of IControl.Paint by overriding the
PaintControl method.

262 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 13 Interfaces

13.4.4 Interface re-implementation

A class that inherits an interface implementation is permitted to re-implement the interface by including it in the
base classlist.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the interface
mapping established for the re-implementation of the interface. For example, in the declarations

interface IControl

void Paint();
}

class Control: IControl

void IControl.Paint() {..}

class MycControl: Control, IControl

public void Paint() {3}

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn't affect there-
implementation in MyControl, whichmaps IControl.Paint onto MyControl.Paint.

Inherited public member declarations and inherited explicit interface member declarations participate in the
interface mapping process for re-implemented interfaces. For example

interface IMethods

void FQ);
void GQ);
void HQO;
! void 1Q);

class Base: IMethods

{
void IMethods.F()
void IMethods.G()
pubTic void HO {}
) public void 1) {}

class Derived: Base, IMethods

public void FQ {}
) void IMethods.H() {}

Here, the implementation of IMethods in Der1ived maps the interface methods onto berived.F,
Base.IMethods.G,Derived.IMethods.H,and Base.I

When a class implements an interface, it implicitly aso implements al of the interface’ s base interfaces.
Likewise, a re-implementation of an interface is dso implicitly a re-implementation of al of the interface’ s base
interfaces. For example

interface IBase

void FQ);

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 263

C#LANGUAGE SPECIFICATION

interface IDerived: IBase

void GQO);

class C: IDerived

void IBase.F() {..}

void IDerived.G() {..}
}

class D: C, IDerived

pubTic void FQ {..}
public void GQ) {..}

Here, the re-implementation of IDer1ived also re-implements IBase, mapping IBase.F ONtO D. F.

13.4.5 Abstract classes and interfaces

Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces that
are listed in the base class list of the class. However, an abstract classis permitted to map interface methods onto
abstract methods. For example

interface IMethods

void F(Q);
void G(Q);

?bstract class C: IMethods
public abstract void FQ);
public abstract void GQ);

Here, the implementation of IMethods maps F and G onto abstract methods, which must be overridden in non-
abstract classes that derive from c.

Note that explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. For example

interface IMethods

void FQ);
void GQ);
abstract class C: IMethods
{
void IMethods.F() { FFQ; }
void IMethods.G() { GG(Q); }
protected abstract void FF(Q);
) protected abstract void GG(Q);

Here, non-abstract classes that derive from ¢ would be required to override FF and GG, thus providing the actual
implementation of IMethods.

264 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 14 Enums

14. Enums

An enum type is adistinct type with named constants. Enum declarations may appear in the same places that
class declarations can occur.

The example
enum Color

Red,
Green,
Blue

}
declares an enum type named Color with membersRed, Green, and Blue.

14.1 Enum declarations

An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum-declaration:
attributes,,, enumrmodifiersy, enum identifier enumbase,,; enum-body ;o

enum-base:
integral-type

enum-body:
{ enummember-declarationsy; }
{ enummember-declarations , }

Each enum type has a corresponding integral type called the underlying type of the enum type. This underlying
type must be able to represent all the enumerator values defined in the enumeration. An enum declaration may
explicitly declare an underlying type of byte, sbyte, short, ushort, int, uint, long or ulong. Note that
char cannot be used as an underlying type. An enum declaration that does not explicitly declare an underlying
type has an underlying type of int.

The example

enum Color: long

Red,
Green,
Blue

}

declares an enum with an underlying type of Tong. A developer might choose to use an underlying type of
Tong, asin the example, to enable the use of valuesthat arein the range of Tong but not in the range of int, or
to preserve this option for the future.

14.2 Enum modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 265

C#LANGUAGE SPECIFICATION

enumrmodifiers;
enummodifier
enumrmodifiers enum-modifier

enuntrmodifier:
new
public
protected
internal
private

It is an error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (§10.1.1). Note,
however, that the abstract and sealed modifiers are not permitted in an enum declaration. Enums cannot be
abstract and do not permit derivation.

14.3 Enum members

The body of an enum type declaration defines zero or more enum members, which are the named constants of
the enum type. No two enum members can have the same name.

enum-member -declar ations;
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributes,, identifier
attributes, identifier = constant-expression

Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member must be in the range of the underlying type for the
enum. The example

enum Color: uint

{
Red = -1,
Green = -2,
Blue = -3

isin error because the constant values -1, -2, and -3 are not in the range of the underlying integra typeuint.
Multiple enum members may share the same associated value. The example
enum Color

Red,
Green,
Blue,

Max = Blue

}
shows an enum that has two enum members—BTue and Max—that have the same associated value.

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initializer, the value of that constant expression, implicitly converted to
the underlying type of the enum, is the associated value of the enum member. If the declaration of the enum
member has no initializer, its associated value is set implicitly, as follows:

266 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 14 Enums

If the enum member is the first enum member declared in the enum type, its associated value is zero.

Otherwise, the associated vaue of the enum member is obtained by increasing the associated value of the
previous enum member by one. Thisincreased value must be within the range of values that can be
represented by the underlying type.

The example
using System;
enum Color

Red,
Green = 10,
Blue

class Test

static void Main() {
console.WriteLine(StringFromColor(Color.Red));
console.wWriteLine(StringFromColor(Color.Green));
Console.WriteLine(StringFromColor(Color.Blue));

}

static string StringFromColor(Color c) {
switch (c) {
case Color.Red:
return String.Format("Red = {0}", (int) C);

case Color.Green:
return String.Format("Green = {0}", (int) o);

case Color.Blue: _
return String.Format("Blue = {0}", (int) c);

default:
return "Invalid color";
}

}
}

prints out the enum member names and their associated values. The output is:

Red = 0
Blue = 11
Green = 10

for the following reasons.

the enum member Red is automatically assigned the value zero (since it has no initidizer and is the first
enum membey);

the enum member Green is explicitly given the value 10;

and the enum member B1ue is automatically assigned the value one greater than the member that textually
precedesit.

The associated value of an enum member may not, directly or indirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initidizers may fredly refer to other enum
member initidizers, regardless of their textual position. Within an enum member initializer, values of other
enum members are always treated as having the type of their underlying type, so that casts are not necessary
when referring to other enum members.

The example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 267

C#LANGUAGE SPECIFICATION

enum Circular

isinvalid because the declarations of A and B are circular. A depends on B explicitly, and B dependson A
implicitly.

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of an
enum member is the body of its containing enum type. Within that scope, enum members can be referred to by
their smple name. From all other code, the name of an enum member must be qualified with the name of its
enum type. Enum members do not have any declared accessibility—an enum member is accessible if its
containing enum type is accessible.

14.4 Enum values and operations

Each enum type defines a distinct type; an explicit enumeration conversion (86.2.2) is required to convert
between an enum type and an integral type, or between two enum types. The set of values that an enum type can
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be
cast to the enum type, and isa distinct vaid vaue of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers: see
80). The value of an enum member declared in enum type E with associated value v is (E) v.

The following operators can be used on values of enum types. ==, !=, <, >, <=, >= (8§7.9.5), + (8§7.7.4),
- (§7.7.5), A, &, | (§7.10.2), ~ (§7.6.4), ++, -- (§7.5.9, §7.6.7), sizeof (8A.5.4).

Every enum type automatically derives from the class system. Enum. Thus, inherited methods and properties of
this class can be used on values of an enum type.

268 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 15 Delegates

15. Delegates

Delegates enable scenarios that other languages—C++, Pascal, Modula, and others—have addressed with
function pointers. Unlike C++ function pointers, delegates are fully object oriented; unlike C++ pointers to
member functions, delegates encapsulate both an object instance and a method.

A delegate declaration defines a class that extends the class System.Delegate. A delegate instance
encapsulates a method—a callable entity. For instance methods, a callable entity consists of an instance and a
method on the instance. For static methods, a callable entity consists of just a method. If you have a delegate
instance and an appropriate set of arguments, you can invoke the delegate with the arguments.

An interesting and useful property of a delegate is that it does not know or care about the class of the object that
it references. Any object will do; all that mettersis that the method’ s signature matches the delegate’s. This
makes del egates perfectly suited for “anonymous’ invocation.

15.1 Delegate declarations
A delegate-declaration is a type-declaration (89.5) that declares anew delegate type.

delegate-declaration:
attributes,y delegate-modifiers,: delegate result-type identifier (formal-parameter-listy
)
delegate-modifiers:
del egate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
pubTic
protected
internal
private

It isan error for the same modifier to appear multiple times in a del egate declaration.

The new modifier is only permitted on delegates declared within another type. It specifies that the delegate hides
an inherited member by the same name, as described in §10.2.2

Thepublic, protected, internal, and private modifiers control the accessibility of the delegate type.
Depending on the context in which the delegate declaration occurs, some of these modifiers may not be
permitted (83.5.1).

The formal-parameter-list identifies the signature of the delegate, and the result-type indicates the return type of
the delegate. The signature and return type of the delegate must exactly match the signature and return type of

any method that the delegate type encapsulates. Delegate types in C# are name equivalent, not structurally
equivaent. Two different delegates types that have the same signature and return type are considered different

delegate types.

A delegate typeisaclass type that is derived from System.Delegate. Delegate typesareimplicitly sealed:
it is not permissible to derive any type from a delegate type. It is also not permissible to derive a non-delegate

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 269

C#LANGUAGE SPECIFICATION

classtype from system.Delegate. Note that System.Delegate isnot itself a delegate type, it isaclasstype
that all delegate types derive from.

C# provides specia syntax for delegate instantiation and invocation. Except for instantiation, any operation that
can be applied to a class or class instance can aso be applied to a delegate class or instance. In particular, it is
possible to access members of the System.Delegate type viathe usual member access syntax.

15.1.1 Combinable delegate types
Delegate types are classified into two kinds: combinable and non-combinable. A combinable delegate type
must satisfy the following conditions:

The declared return type of the delegate must be void.

None of the parameters of the del egate type can be declared as output parameters (810.5.1.3).

A run-time exception occurs if an attempt is made to combine (87.7.4) two instances of a non-combinable
delegate types unless one or the other isnu11T.

15.2 Delegate instantiation

Although delegates behave in most ways like other classes, C# provides specia syntax for instantiating a
delegate instance. A del egate-creation-expression (87.5.10.3) is used to create a new instance of a delegate. The
newly created delegate instance then refersto either:

The static method referenced in the del egate-creation-expression, or

The target object (which cannot be nu11) and instance method referenced in the delegate-creation-
expression, or

Another delegate
Once instantiated, delegate instances always refer to the same target object and method.

15.3 Multi-cast delegates

Delegates can be combined using the addition operator (87.7.4), and one delegate can be removed from another
using the subtraction operator (87.7.5). A delegate instance created by combining two or more (non-nul1)
delegate instances is called a multicast delegate instance. For any delegate instance, the invocation list of the
delegate is defined as the ordered list of non-multicast delegates that would be invoked if the del egate instance
were invoked. More precisely:

For anon-multicast delegate instance, the invocation list consists of the delegate instance itself.

For a multi-cast delegate instance that was created by combining two delegates, the invocation list is the
formed by concatenating the invocation lists of the two operands of the addition operation that formed the
multi-cast delegate.

15.4 Delegate invocation

C# provides specia syntax for invoking a delegate. When anon-multicast delegate is invoked, it invokes the
method that the delegate refers to with the same arguments, and returns the same value that the referred to
method returns. See §87.5.5.2 for detailed information on delegate invocation. If an exception occurs during the
invocation of a delegate, and the exception is not caught within the method that was invoked, the search for an
exception catch clause continues in the method that called the delegate, as if that method had directly called the
method that the delegate referred to.

270 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 15 Delegates

Invocation of a multi-cast delegate proceeds by invocation each of the delegates on the invocation list, in order.
Each call is passed the same set of arguments. If the delegate includes reference parameters (810.5.1.2), each
method invocation will occur with areference to the same variable; changes to that variable by one method in
the invocation list will be “seen” by any later methods in the invocation list.

If an exception occurs during processing of the invocation of a multicast delegate, and the exception is not
caught within the method that was invoked, the search for an exception catch clause continues in the method
that called the delegate, and any methods later in the invocation list are not invoked.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 271

Chapter 16 Exceptions

16. Exceptions

Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and application
level error conditions. The exception mechanism is C# is quite similar to that of C++, with a few important
differences:

In C#, all exceptions must be represented by an instance of a class type derived from System.Exception.
In C++, any value of any type can be used to represent an exception.

In C#, afinally block (88.10) can be used to write termination code that executes in both normal execution
and exceptiona conditions. Such code is difficult to write in C++ without duplicating code.

In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences have well defined
exception classes and are on a par with application-level error conditions.

16.1 Causes of exceptions
Exception can be thrown in two different ways.

A throw statement (88.9.5) throws an exception immediately and unconditionally. Control never reaches
the statement immediately following the throw.

Certain exceptional conditions that arise during the processing of C# statements and expression cause an
exception in certain circumstances when the operation cannot be completed normally. For example, an
integer division operation (87.7.2) throwsa System.DivideByZeroException if the denominator is
zero. See 816.4for alist of the various exceptions that can occur in this way.

16.2 The system.Exception class

The system.Exception classisthe base type of all exceptions. This class has afew notable properties that all
exceptions share:

Message isaread-only property that contains a humanreadable description of the reason for the exception.

InnerException isaread-only property that contains the “inner exception” for this exception. If thisis
not nu11, thisindicates that the current exception was thrown in response to another exception. The
exception that caused the current exception is available in the Innerexception property.

The value of these properties can be specified in the constructor for System.Exception.

16.3 How exceptions are handled
Exception are handled by a try statement (88.10).

When an exception occurs, the system searches for the nearest catch clause than can handle the exception, as
determined by the run-time type of the exception. First, the current method is searched for alexically enclosing
try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the
method that called try statement and the current method is searched for alexically enclosing try statement
that encloses the point of the call to the current method. This search continues until a catch clauseis found that
can handle the current exception, by naming an exception class that is of the same class, or a base class, of the
run-time type of the exception being thrown. A catch clause that doesn’t name an exception class can handle
any exception.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 273

C#LANGUAGE SPECIFICATION

Once a matching catch clause is found, the system transfers control to the first statement of the catch clause.
Before execution of the catch clause begins, the system first executesin order any finally clausesthat were
associated with try statements more nested that than the one that caught the exception.

If no matching catch clausesis no found, one of two things occurs:

If the search for a matching catch clause reaches a static constructor (810.11) or static field initializer, then a
System.TypeInitializationException isthrown at the point that triggered the invocation of the
static constructor. The inner exception of the TypeInitializationException containsthe exception
that was originally thrown.

If the search for matching catch clauses reaches the code that initialy started the thread or program, then
execution of the thread or program is terminated.

16.4 Common Exception Classes
The following exceptions are thrown by certain C# operations.

274 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 16 Exceptions

System.OutOfMemoryException Thrown when an attempt to allocate memory (via
new) fails.
System.SstackoverflowException Thrown when the execution stack is exhausted by
having too many pending method calls; typicaly
indicative of very deep or unbounded recursion.
System.NullReferenceException Thrown when anul1 referenceis used in away
that causes the referenced object to be required.
System.TypeInitializationException Thrown when a static constructor throws an

exception, and no catch clauses exists to catch in.

System.InvalidCastException Thrown when an explicit conversion from a base
type or interface to a derived typesfails at run
time.

System.ArrayTypeMismatchException Thrown when a store into an array fails because the

actual type of the stored element isincompatible
with the actua type of the array.

System.IndexOutOfRangeException Thrown when an attempt to index an array viaan
index that is less than zero or outside the bounds of
the array.

System.MulticastNotSupportedException | Thrown when an attempt to combine two non-

null delegates fails, because the delegate type
does not have avoiid return type.

System.

ArithmeticException

A base class for exceptions that occur during
arithmetic operations, such as
DivideByZeroException and
overflowException.

System.

DivideByzeroException

Thrown when an attempt to divide an integral
value by zero occurs.

System.

overflowException

Thrown when an arithmetic operation in a
checked context overflows.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

275

Chapter 17 Attributes

17. Attributes

Much of the C# language enables the programmer to specify declarative information about the entities defined
in the program. For example, the accessibility of a method in a classis specified by decorating it with the
method-modifierspublic, protected, internal, and private.

C# enables programmers to invent new kinds of declarative information, to specify declarative information for
various program entities, and to retrieve attribute information in a run-time environment. For instance, a
framework might define aHelpAttribute attribute that can be placed on program elements such as classes
and methods to provide a mapping from program elements to documentation for them.

New kinds of declarative information are defined through the declaration of attribute classes (§17.1), which may
have positional and named parameters (817.1.2). Declarative information is specified a C# program using
attributes (817.2), and can be retrieved at run-time as attribute instances (8§17.3).

17.1 Attribute classes

The declaration of an attribute class defines anew kind of attribute that can be placed on a declaration. A class
that derives from the abstract class System.Attribute, whether directly or indirectly, is an attribute class. By
convention, attribute classes are named with a suffix of Attribute. Uses of an attribute may either include or
omit this suffix.

17.1.1 The Attributeusage attribute
TheAttributeUsage attribute is used to describe how an attribute class can be used.

The Attributeusage attribute has a positional parameter named that enables an attribute class to specify the
kinds of declarations on which it can be used. The example

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute: System.Attribute

defines an attribute class named simpTleAttribute that can be placed on class-declarations and interface-
declarations. The example

[simple] class Classl {..}
[SimpTle] interface Interfacel {..}

shows several uses of the simp1e attribute. The attribute is defined with a class named simpleAttribute, but
uses of this attribute may omit the Attribute suffix, thus shortening the name to simp1e. The example above
is semanticaly equivaent to the example

[SimpTleAttribute] class Classl {..}
[SsimpleAttribute] interface Interfacel {..}

The AttributeUsage attribute hasan A11owMu1tipTe named parameter that specifies whether the indicated
attribute can be specified more than once for a given entity. If AT1TowmultipTe for an atributeistrue, then it is
a multi-use attribute class, and can be specified more than once on an entity. If ATTowMultiple for an
attribute is false or unspecified for an attribute, then it is a Single-use attribute class, and can be specified at
most once on an entity.

The example

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 277

C#LANGUAGE SPECIFICATION

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: System.Attribute {
pubTlic AuthorAttribute(string value);

public string value { get {.} }

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Classl {..}

shows a class declaration with two uses of the Author attribute.

The AttributeUsage attribute hasan Inherited named parameter that specifies whether the attribute, when
specified on a base class, is aso inherited by classes that derive from this base class. If the Inherited named
parameter is unspecified, then a default value of false is used.

17.1.2 Positional and named parameters

Attribute classes can have positional parameters and named parameters. Each public constructor for an
attribute class defines a valid sequence of positional parameters for the attribute class. Each non-gtatic public
read-write field and property for an attribute class defines a named parameter for the attribute class.

The example

[AttributeUsage(AttributeTargets.cClass)]
pubTic class HelpAttribute: System.Attribute

{
public HelpAttribute(string url) { // url is a positional parameter
, -
public string Topic { // Topic is a named parameter
get {.}
set {..}
public string url { get {.} }
}

defines an attribute class named HeTpAttribute that has one positiona parameter (string url) and one
named argument (string Topic). The read-only ur1 property does not define a named parameter. It is non-
static and public, but since it is read-only it does not define a named parameter.

The example

[HelpAttribute("http://www.mycompany.com/../Classl.htm")]
class Classl {

[HelpAttribute("http://www.mycompany.com/../Misc.htm", Topic ="Class2")]
class Class2 {

shows several uses of the attribute.

17.1.3 Attribute parameter types

By convention, the types of positional and named parameters for an attribute class are limited to the attribute
parameter types A typeis an attribute type if it is one of the following:

One of the following types: boo1, byte, char, double, float, int, Tong, short, string.
Thetype object.

278 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 17 Attributes

Thetype system.Type.

An enum type provided that it has public accessibility and that the types in which it is nested (if any) aso
have public accessibility.

17.2 Attribute specification

An attribute is a piece of additiona declarative information that is specified for a declaration. Attributes can be
specified at global scope (to specify attributes on the containing assembly or module) and for type-declarations,
class-member-declarations, interface-member -declarations, enum-member -declarations, property-accessor -
declarations, event-accessor-declarations, and formal-parameter declarations.

Attributes are specified in attribute sections. Each attribute section is surrounded in square brackets, with
multiple attributes specified in a comma-separated lists. The order in which attributes are specified and the
manner in which they are arranged in sectionsis not significant. For instance, the attribute specifications
[A1[B], [BI[Al, [A, B],and [B, A] areequivaent.

attributes:
attribute-sections

attribute-sections;
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifier,y, attribute-list]
[attribute-target-gpecifieryy attribute-list]

attribute-tar get-specifier:
attribute-target

attribute-target:
assembly
field
event
method
module
param
property
return
type

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-arguments,,«

attribute-name:
reserved-attribute-name
type-name
attribute-arguments:
(positional-argument-list)
(positional-argument-list , named-argument-list)
(named-argument-list)

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 279

C#LANGUAGE SPECIFICATION

positional-argument-list:
positional-argument
positional-argument-liss , positional-argument

positional-argument:
attribute-ar gument-expression

named-argument-list:
named-ar gument
named-argument-list , named-argument

named-ar gument:
identifier = attribute-argument-expression

attribute-ar gument-expression:
expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positional
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression.

The attribute-name identifies either areserved attribute or an attribute class. If the form of attribute-name is
type-name then this name must refer to an attribute class. Otherwise, a compile-time error occurs. The example

class Classl {}
[cTassl] class Cclass2 {} // Error
isin error because it attempts to use Class1, which is not an attribute class, as an attribute class.

Certain contexts permit the specification of an attribute on more than onetarget. A program can explicitly
specify the target by including an attribute-target-specifier. In al but one of these contexts, a reasonable default
can be employed. Thus, attribute-target-specifier s can typically be omitted. The potentially ambiguous contexts
areasfollows:

An attribute specified at global scope can apply either to the target assembly or the target module. No
default exists for this context, so an attribute-tar get-specifier is always required in this context.

An attribute specified on a delegate declaration can apply either to the delegate declaration itself or to the
return value of this declaration. In the absence of an attribute-tar get-specifier, such an attribute applies to
the delegate declaration.

An attribute specified on a method declaration can apply either to the method declaration itself or to the
return value of this declaration. In the absence of an attribute-target-specifier, such an attribute appliesto
the method declaration.

An attribute specified on an operator declaration can apply either to the operator declaration itself or to the
return value of this declaration. In the absence of an attribute-target-specifier, such an attribute appliesto
the operator declaration.

An attribute specified on non-abstract event declaration that omits event accessors can apply either to the
event declaration itself or to the field that is automatically associated with it. In the absence of an attribute-
target-specifier, such an attribute applies to the event declaration.

An attribute specified on a get accessor for a property can apply either to the associated method or to the
return value of this method. In the absence of an attribute-target-specifier, such an attribute applies to the
method.

280 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 17 Attributes

An attribute specified on a set accessor for a property can apply either to the associated method or to the
lone parameter of this method. In the absence of an attribute-target-specifier, such an attribute applies to the

method.

An attribute specified on an add or remove accessor for an event can apply either to the associated method
or to the lone parameter of this method. In the absence of an attribute-tar get-specifier, such an attribute
applies to the method.

By convention, attribute classes are named with a suffix of Attribute. An attribute-name of the form type-
name may either include or omit this suffix. An exact match between the attribute-name and the name of the
atribute classis preferred. The example

[Attributeusage(AttributeTargets.Al1)]
public class X: System.Attribute

{3

[Attributeusage(AttributeTargets.Al1)]
public class XAttribute: System.Attribute

{3}

[x] // refers to X

class Classl {}

[XAttribute] // refers to XAttribute

class Class?2 {}
shows two attribute classes named X and xattribute. The attribute [X] refersto the class named X, and the
atribute [Xattribute] refersto the attribute classnamed [XAttribute]. If the declaration for class X is
removed, then both attributes refer to the attribute class named XAttribute:

[AttributeUsage(AttributeTargets.Al1)]
?¥b1ic class XAttribute: System.Attribute

[x] // refers to XAttribute
class Classl {}
[XAttribute] // refers to XAttribute

class Class2 {}
It isan error to use a single-use attribute class more than once on the same entity. The example

[AttributeUsage(AttributeTargets.Class)])
public class HelpStringAttribute: System.Attribute

{

string value;

public HelpStringAttribute(string value) {
this.value = value;

pubTlic string value { get {..} }

[Helpstring("Description of Classl")]
[Helpstring("Another description of Classl")]
pubTic class Classl {}

isin error because it attempts to use HelpsString, which is a single-use attribute class, more than once on the
declaration of Class1.

An expression E isan attribute-argument-expression if al of the following statements are true:

The type of E is an attribute parameter type (§17.1.3).
At compile-time, the value of E can be resolved to one of the following:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 281

C#LANGUAGE SPECIFICATION

0 A constant value.
0 A system.Type oObject.
0 A one-dimensiona array of attribute-argument-expressions.

17.3 Attribute instances

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positiona arguments, and named arguments. An attribute instance is an instance of the attribute
class that isinitiaized with the positional and named arguments.

Retrievad of an attribute instance involves both compile-time and run-time processing, as described in the
following sections.

17.3.1 Compilation of an attribute

The compilation of an attribute with attribute class T, positional-argumentlist p and named-argument-list N,
consists of the following steps:

Follow the compile-time processing steps for compiling an obj ect-creation-expression of the form new
T(P). These steps either result in a compile-time error, or determine a constructor on T that can be invoked
at run-time. Call this constructor C.

If the constructor determined in the step above does not have public accessibility, then a compile-time error
OCCUrsS.

For each named-argument Arg in N:
0 Let Name betheidentifier of the named-argument Arg.

0 Name must identify anon-static read-write public field or property on T. If T has no such field or
property, then a compile-time error occurs.

Keep the following information for run-time instantiation of the attribute instance: the attribute class T, the
constructor € on T, the positional-argument-list P and the named-argument-list N.

17.3.2 Run-time retrieval of an attribute instance

Compilation of an attribute yields an attribute class T, constructor ¢ on T, positional-argument-list P and
named-argument-list N. Given this information, an attribute instance can be retrieved at run-time using the

following steps:

Follow the run-time processing steps for executing an object-creation-expression of the form T(P), usng
the constructor ¢ as determined a compile-time. These steps either result in an exception, or produce an
instance of T. Cal thisinstance o.

For each named-argument Arg in N, in order:

0 Let Name betheidentifier of the named-argument Arg. If Name does not identify a non-static public
read-write field or property on 0, then an exception is thrown.

Let value bethe result of evaluating the attribute-argument-expression of Arg.
If Name identifies afield on o, then set thisfield to the value value.
Otherwise, Name identifies a property on 0. Set this property to the value value.

o O O O

The result iso, an instance of the attribute class T that has been initialized with the positional-argument
list P and the named-argument-list N.

282 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 17 Attributes

17.4 Reserved attributes
A smal number of attributes affect the language in some way. These attributes include:

System.AttributeUsageAttribute, whichisused to describe the ways in which an attribute class can
be used.

System.ConditionalAttribute, which is used to define conditional methods.

System.ObsoTleteAttribute, whichisused to mark a member as obsol ete.

17.4.1 The Attributeusage attribute
TheAttributeUsage attribute is used to describe the manner in which the attribute class can be used.

A classthat is decorated with the AttributeUsage attribute must derive from System.Attribute, ether
directly or indirectly. Otherwise, a compile-time error occurs.

[AttributeUsage(AttributeTargets.Class)]]
?ub11c class AttributeUsageAttribute: System.Attribute

public AttributeUsageAttribute(AttributeTargets validon) {..}
public virtual bool Allowmultiple { get {.} set {.} }

public virtual bool Inherited { get {.} set {.} }

public virtual AttributeTargets validon { get {..} }

}

pubTic enum AttributeTargets

{
Assembly = 0x0001,
Module = 0x0002,
Class = 0x0004,
Struct = 0x0008,
Enum = 0x0010,
Cconstructor = 0x0020,
Method = 0x0040,
Property = 0x0080,
Field = 0x0100,
Event = 0x0200,
Interface = 0x0400,
Parameter = 0x0800,
Delegate = 0x1000,
Returnvalue = 0x2000,

ATl = Assembly | Module | Class | Struct | Enum | Constructor |
Method | Property | Field | Event | Interface | Parameter |
Delegate | Returnvalue,

ClassMembers = Class | struct | Enum | Constructor | Method |
Property | Field | Event | Delegate | Interface,

17.4.2 The conditional attribute

The conditional attribute enables the definition of conditional methods The conditional attribute
indicates a condition in the form of a pre-processing identifier. Calls to a conditional method are either included
or omitted depending on whether this symbol is defined at the point of the cal. If the symbol is defined, then the
method cal isincluded if the symbol is undefined, then the call is omitted.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 283

C#LANGUAGE SPECIFICATION

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
public class ConditionalAttribute: System.Attribute

pubTic ConditionalAttribute(string conditionalsymbol) {..}

public string Conditionalsymbol { get {..} }
}

A conditional method is subject to the following restrictions:

The conditional method must be a method in a class-declaration. A compile-time error occurs if the
Conditional attribute is specified on an interface method.

The conditional method must return have areturn type of void.

The conditiona method must not be marked with the override modifier. A conditional method may be
marked with the vi rtual modifier. Overrides of such a method are implicitly conditional, and must not be
explicitly marked with a conditional attribute.

The conditional method must not be an implementation of an interface method. Otherwise, a compile-time
error Occurs.

Also, acompile-time error occurs if a conditional method is used in a del egate-creation-expression. The
example
#define DEBUG
class Classl
[Conditional ("DEBUG")]
pubTlic static void M() {
console.writeLine("Executed Classl.M");
}
}
class Class?

public static void Test() {
Classl.MQ);
}

}

declares class1.M asaconditional method. Class2's Test method calls this method. Since the pre-processing
symbol DEBUG is defined, if Class2.Test iscaled, it will cal m. If the symbol DEBUG had not been defined,
then class2.Test would not cal classl.M.

It isimportant to note that the inclusion or exclusion of a call to a conditional method is controlled by the pre-
processing identifiers at the point of the cal. In the example

// Begin classl.cs
E]ass Classl
[Conditional ("DEBUG")]
public static void F() {
console.writeLine("Executed Classl.F");

}

}
// End classl.cs

// Begin class2.cs
#define DEBUG

284 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 17 Attributes

class Class?2

pubTic static void G {
Classl.FQ); // F is called

}
// End class2.cs

// Begin class3.cs
#undef DEBUG

class Class3

public static void H {
Classl.FQ); // F is not called

}
// End class3.cs

the classes c1ass2 and class3 each contain cals to the conditiona method class1.F, which is conditiona
based on the presence or absence of DEBUG. Since this symbol is defined in the context of class2 but not
Class3,thecdl to Fin Class2 isactualy made, while the call toFin class3 is omitted.

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional method
through base, of the form base .M, are subject to the normal conditional method call rules. In the example

// Begin classl.cs
class Classl

[Conditional ("DEBUG")]
pubTlic virtual void M) {
console.wWriteLine("Classl.M executed");

// End classl.cs

// Begin class2.cs
class Class2: Classl

pubTlic override void M() {
console.wWriteLine("Class2.M executed");
base.M(); // base.M is not called!

}
// End class2.cs

// Begin class3.cs
#define DEBUG

class Class3

public static void Test() {
Class2 c = new Class2();
c.MO; // M 1is called

}
// End class3.cs

Class?2 includesacall them defined in its base class. This call is omitted because the base method is
conditional based on the presence of the symbol DEBUG, which is undefined. Thus, the method writes to the
consoleonly “class2.M executed”. Judicious use of pp-declarations can eliminate such problems.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 285

C#LANGUAGE SPECIFICATION

17.4.3 The obsolete attribute
The obsoTlete attribute is used to mark program elements that should no longer be used.

[AttributeUsage(AttributeTargets.Al1)]]
pubTic class ObsoleteAttribute: System.Attribute

{
pubTic ObsoleteAttribute(string message) {..}
pubTic ObsoleteAttribute(string message, bool error) {.}
pubTlic string Message { get {.} }

) pubTlic bool IstError{ get {.} }

286 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

A. Unsafe code

The core C# language, as defined in the preceding chapters, differs notably from C and C++ in its omission of
pointers as a data type. C# instead provides references and the ability to create objects that are managed by a
garbage collector. This design, coupled with other features, makes C# a much safer language than C or C++. In
the core C# language it is ssimply not possible to have an uninitialized variable, a*“dangling” pointer, or an
expression that indexes an array beyond its bounds. Whole categories of bugs that routinely plague C and C++
programs are thus eliminated.

While practically every pointer type construct in C or C++ has a reference type counterpart in C#, there are
nonethel ess situations where access to pointer types becomes a necessity. For example, interfacing with the
underlying operating system, accessing a memory-mapped device, or implementing a time-critical agorithm
may not be possible or practical without access to pointers. To address this need, C# provides the ability to write
unsafe code.

In unsafe code it is possible to declare and operate on pointers, to perform conversions between pointers and
integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much like writing
C code within a C# program.

Unsafe codeisin fact a“safe” feature from the perspective of both developers and users. Unsafe code must be
clearly marked in the with the modifier unsafe, so developers can’t possibly use unsafe features accidentally,
and the compiler and the execution engine work together to ensure that unsafe code cannot be executed in an
untrusted environment.

A.1l Unsafe contexts

The unsafe features of C# are available only in unsafe contexts. An unsafe context is introduced by including an
unsafe modifier in the declaration of atype or a member:

A declaration of aclass, struct, interface, or delegate may include an unsafe modifier, in which case the
entire textual extent of that type declaration (including the body of the class, struct, or interface) is
considered an unsafe context.

A declaration of afield, method, property, event, indexer, operator, constructor, destructor, or static
constructor may include an unsafe modifier, in which case the entire textual extent of that member
declaration is considered an unsafe context.

In the example

pubTic unsafe struct Node

{
public int value;
pubTic Node* Left;
pubTic Node* Right;

the unsafe modifier specified in the struct declaration causes the entire textual extent of the struct declaration
to become an unsafe context. Thus, it is possible to declare the Left and Right fields to be of a pointer type.
The example above could also be written

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 287

C#LANGUAGE SPECIFICATION

public struct Node

pubTlic int value;
pubTic unsafe Node* Left;
pubTic unsafe Node* Right;

}
Here, the unsafe modifiersin the field declarations cause those declarations to be considered unsafe contexts.

Other than establishing an unsafe context, thus permitting use of pointer types, the unsafe modifier has no
effect on atype or amember. In the example

pubTic class A

pubTlic unsafe virtual void F(Q) {
char* p;

}
}

public class B: A

public override void F(Q) {
base.FQ;

}
}

the unsafe modifier on the F method in A ssimply causes the textual extent of F to become an unsafe context in
which the unsafe features of the language can be used. In the override of F in B, there is no need to re-specify the
unsafe modifier—unless, of course, the F method in B itself needs access to unsafe features.

The situation is dightly different when a pointer type is part of the method’ s signature
public unsafe class A

pubTlic virtual void F(char* p) {.}
ks

public class B: A

pubTlic unsafe override void F(char* p) {.}

Here, because F’s signature includes a pointer type, it can only be written in an unsafe context. However, the
unsafe context can be introduced by either making the entire class unsafe, asisthe casein A, or by including an
unsafe modifier in the method declaration, asisthe casein B.

A.2 Pointer types
In an unsafe context, a type (84) may be apointer -type as well as a value-type or areference-type
type:

value-type
reference-type

pointer -type
A pointer-type is written as an unmanaged-type or the keyword void followed by a * token:
pointer -type:
unmanaged-type *
void *

288 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

unmanaged-type:
type
The type specified before the * in a pointer type is called the referent type of the pointer type. It represents the
type of the variable to which a value of the pointer type points.

Unlike references (values of reference types), pointers are not tracked by the garbage collector—the garbage
collector has no knowledge of pointers and the data to which they point. For this reason a pointer is not
permitted to point to a reference or to a structure that contains references, and the referent type of a pointer must
be an unmanaged-type

An unmanaged-type is any type that isn’'t a reference-type and doesn’t contain reference-typefields at any level
of nesting. In other words, an unmanaged-type is one of the following:

sbyte, byte, short,ushort,int,uint, long, ulong, char, float, double, decimal, or bool.
Any enum-type.

Any pointer -type

Any user-defined struct-typethat contains fields of unmanaged-types only.

The intuitive rule for mixing of pointers and references is that referents of references (objects) are permitted to
contain pointers, but referents of pointers are not permitted to contain references.

Some examples of pointer types are given in the table below:

Example Description

byte* Pointer to byte

char* Pointer to char

int** Pointer to pointer to int

int*[] Single-dimensiond array of pointersto int
void* Pointer to unknown type

A value of a pointer type T* represents the address of a variable of type T. The pointer indirection operator *
may be used to access this variable. For example, given avariable p of type int*, the expression *P denotes the
int variable found at the address contained in p. Similar to an object reference, a pointer may be nul1.
Applying the indirection operator to anul11 pointer causesaNul1ReferenceException to be thrown.

The void* type represents a pointer to an unknown type. Because the referent type is unknown, the indirection
operator cannot be applied to a pointer of type void*. However, a pointer of type void* can be cast to any
other pointer type (and vice versa).

Pointer types are a separate category of types. Unlike reference types and value types, pointer types to not
inherit from object and no conversions exist between pointer types and object. In particular, boxing and
unboxing (84.3) is not supported for pointers. However, conversions are permitted between different pointer
types and between pointer types and the integral types. Thisis described in 8A.4.

In an unsafe context, severa congtructs are available for operating on pointers:
The * operator may be used to perform pointer indirection (8A.5.1).
The -> operator may be used to access a member of a struct through a pointer (8A.5.2).
The [] operator may be used to index a pointer (8A.5.3).

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 289

C#LANGUAGE SPECIFICATION

The & operator may be used to obtain the address of avariable (8A.5.4).

The ++ and -- operators may be used to increment and decrement pointers (8A.5.5).

The + and - operators may be used to perform pointer arithmetic (8A.5.6).

The ==, !=, <, >, <=, and => operators may be used to compare pointers (8A.5.7).

The stackalloc operator may be used to alocate memory from the call stack (8A.7).

The f1ixed statement may be used to temporarily fix avariable so its address can be obtained (8A.6).

A.3 Fixed and moveable variables

The address-of operator (8A.5.4) and the f1i xed statement (8A.6) divide variables into two categories. Fixed
variablesand moveablevariables.

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector. Examples of
fixed variables include local variables, value parameters, and variables created by dereferencing pointers.
Moveable variables on the other hand reside in storage locations that are subject to relocation or disposal by the
garbage collector. Examples of moveable variables include fields in objects and elements of arrays.

The & operator (8A.5.4) permits the address of a fixed variable to be obtained with no restrictions. However,
because a movesble variable is subject to relocation or disposal by the garbage collector, the address of a
movesable variable can only be obtained using a f1ixed statement (8A.6), and the address remains valid only for
the duration of that fixed statement.

In precise terms, afixed variable is one of the following:
A variable resulting from a smple-name (87.5.2) that refersto aloca variable or a value parameter.

A variable resulting from a member-access (87.5.4) of theform v. I, where v is afixed variable of a struct-
type.

A variable resulting from a pointer-indirection-expression (8A.5.1) of the form *Pp, a pointer-member-
access (8A.5.2) of the form p->1, or apointer-element-access (8A.5.3) of theform P[E].

All other variables are classified as moveable variables.

Note that a static field is classified as a moveable variable. Also note that a ref or out parameter is classified as
amoveable variable, even if the argument given for the parameter is a fixed variable. Finaly, note that a
variable produced by dereferencing a pointer is always classified as afixed variable.

A.4 Pointer conversions

In an unsafe context, the set of available implicit and explict conversions is extended to include pointer types as
described in this section.

Implicit pointer conversions can occur in avariety of situations within unsafe contexts, including function
member invocations (87.4.3), cast expressions (87.6.8), and assignments (87.13). The implicit pointer
conversions are:

From any pointer-type to the type void*.
From the null type to any pointer-type.

Explicit pointer conversions can occur only in cast expressions (87.6.8) within unsafe contexts. The explicit
pointer conversions are:

From any pointer-type to any other pointer-type.

290 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

Fromint, uint, Tong, or ulong to any pointer-type.
From any pointer-typeto int, uint, Tong, or ulong.
For further details on implicit and explicit conversions, see 86.1 and 86.2.

Conversions between two pointer types never change the actual pointer value. In other words, a conversion from
one pointer type to another has no effect on the underlying address given by the pointer.

M appings between pointers and integers are implementation dependent. However, on 32- and 64-bit CPU
architectures with alinear address space, conversions of pointersto or from integral types behave exactly asa
conversions of uint or ulong vauesto or from those integral types.

A.5 Pointers in expressions

In an unsafe context an expression may yield aresult of a pointer type, but outside an unsafe context it isan
error for an expression to be of a pointer type. In precise terms, outside an unsafe context an error occurs if any
simple-name (87.5.2), member-access (87.5.4), invocation-expression (87.5.5), or element-access (87.5.6) isof a
pointer type.

In an unsafe context, the primary-expression (87.5) and unary-expression (87.6) productions permit the
following additional constructs:

primary-expression:

pointer -member-access
poi nter -el ement-access
Sizeof-expression
stackalloc-expression

unary-expression:
pointer -indir ection-expression
addressof-expression
These constructs are described in the following sections.

A.5.1 Pointer indirection
A pointer-indirection-expression consists of an asterisk (*) followed by a unary-expression.
pointer -indirection-expression:
unary-expression

The unary * operator denotes pointer indirection and is used to obtain the variable to which a pointer points.
The result of evaluating *P, where P is an expression of a pointer type T+, isavariable of type T. It isan error to
apply the unary * operator to an expression of type void* or to an expression that isn’t of a pointer type.

The effect of applying the unary * operator to anul11 pointer isimplementation defined. In particular, thereis
no guarantee that this operation throws aNul11ReferenceException.

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form *p is
considered initially assigned (85.3.1).

A.5.2 Pointer member access
A pointer-member-access consists of aprimary-expression, followed by a*“->" token, followed by an identifier.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 291

C#LANGUAGE SPECIFICATION

pointer -member-access:
primary-expression -> identifier

In apointer member access of the form P->1, P must be an expression of a pointer type other than void*, and 1
must denote an accessible member of the type to which P points.

A pointer member access of the form P->I isevaluated exactly as (*P) . I. For adescription of the pointer
indirection operator (*), see 8A.5.1. For adescription of the member access operator (.), see 87.5.4.

In the example

struct Point

public int x;
public int y;

public override string ToString() {
r‘etur‘n Il(ll + X + Il,ll + y + II)II;
}
}
class Test
{
unsafe static void Main() {
Point point;
Point* p = &point;
p->x = 10;
p->y = 20;
) Console.writeLine(p->ToString());
}

the -> operator is used to access fields and invoke a method of a struct through a pointer. Because the operation
P->I isprecisaly equivaent to (*P) .1, themain method could equally well have been written:

class Test

{
unsafe static void Main() {
Point point;
Point* p = &point;
(¥*p).x = 10;
(¥p).y = 20;
) console.writeLine((*p).ToString());
b

A.5.3 Pointer element access
A pointer-element-access consists of a primary-expression followed by an expression enclosed in “[” and “]”.

pointer -el ement-access:
primary-expression [expression]

In a pointer element access of the form PLE], P must be an expression of a pointer type other than void*, and E
must be an expression of atype that can be implicitly converted to int, uint, Tong, or ulong.

A pointer element access of theform P[E] is evauated exactly as * (P + E). For adescription of the pointer
indirection operator (*), see 8A.5.1. For adescription of the pointer addition operator (+), see 8A.5.6.

In the example

292 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

class Test

unsafe static void Main() {
char* p = stackalloc char[256];
for (int i = 0; i < 256; i++) p[i] = (char)i;
}
}
apointer element accessis used to initialize the character buffer in a for loop. Because the operation P[E] is
precisely equivalent to * (P + E), the example could equally well have been written:

class Test

unsafe static void Main() {
char* p = stackalloc char[256];
for (int i = 0; i < 256; i++) *(p + i) = (char)i;
}
}
Asin C and C++, the pointer element access operator does not check for out-of -bounds errors and the effects of

accessing an out-of -bounds element are undefined.

A.5.4 The address-of operator
An addressof-expression consists of an ampersand (&) followed by a unary-expression.

addressof-expression:
& unary-expression

Given an expression E which is of atype T and is classified as a fixed variable (8A.3), the construct &E
computes the address of the variable given by E. The type of the result isT* and is classified as avalue. An error
occursif E isnot classified as avariable or if E denotes a moveable variable. In the latter case, afixed statement
(8A.6) can be used to temporarily “fix” the variable before obtaining its address.

The & operator does not require its argument to be definitely assigned, but following an & operation, the variable
to which the operator is applied is considered definitely assigned in the execution path in which the operation
occurs. It isthe responsibility of the programmer to ensure that correct initiaization of the variable actually does
take place in this situation.

In the example
unsafe class Test

static void Main() {
int i;
int* p = &i;
*p = 123;
console.writeLine(i);

}
i is considered definitely assigned following the &1 operation used to initialize p. The assignment to *p in
effect initializes 1, but the inclusion of thisinitiaization is the responsibility of the programmer, and no
compile-time error would occur if the assignment was removed.

The rules of definite assignment for the & operator exist such that redundant initialization of local variables can
be avoided. For example, many external APIs take a pointer to a structure which isfilled in by the API. Cdlsto
such APIstypically pass the address of aloca struct variable, and without the rule, redundant initialization of
the struct variable would be required.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 293

C#LANGUAGE SPECIFICATION

A.5.5 Pointer increment and decrement
In an unsafe context, the ++ and -- operators (87.5.9 and §7.6.7) can be applied to pointer variables of all types
except void*. Thus, for every pointer type T*, the following operators are implicitly defined:
T* operator ++(T* x);
T* operator --(T* x);
The operators produce the same results as adding or subtracting the integral value 1 from the pointer argument.

In other words, for a pointer variable of type T*, the ++ operator adds sizeof (T) to the address contained in
the variable, and the -- operator subtracts sizeof (T) from the address contained in the variable.

If a pointer increment or decrement operation overflows the address range of the underlying CPU architecture,
the result is truncated in an implementation dependent fashion, but no exceptions are produced.

A.5.6 Pointer arithmetic

In an unsafe context, the + and - operators (87.7.4and 87.7.5) can be applied to values of al pointer types
except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

* operator +(T* x, int y);

* operator +(T* x, uint y);

* operator +(T* x, long y);
operator +(T* x, ulong y);

*

operator +(int x, T* y);

operator +(uint x, T* y);
operator +(long x, T* y);
operator +(ulong x, T* y);

*

operator -(T* x, int y);

operator -(T* x, uint y);
operator -(T* x, long y);
operator -(T* x, ulong y);
long operator —(T* x, T* y);

Given an expression P of a pointer type T* and an expression N of type int, uint, Tong, or ulong, the
expressions P + N and N + P compute the pointer value of type T* that results from adding N * sizeof (T) to
the address given by p. Likewise, the expression P - N computes the pointer value of type T* that results from
subtracting N * sizeof (T) from the address given by p.

LSk sk

e e R M e e e e R e

Given two expressions, P and Q, of a pointer type T*, the expression P - Q computes the difference between the
addresses given by p and Q and then divides the difference by sizeof (T). The type of the result is aways
Tong. Ineffect, P - Qiscomputed as ((Tong) (P) - (Tong) (Q)) / sizeof(T).

If a pointer arithmetic operation overflows the address range of the underlying CPU architecture, the result is
truncated in an implementation dependent fashion, but no exceptions are produced.

A.5.7 Pointer comparison

In an unsafe context, the ==, ! =, <, >, <=, and => operators (87.9) can be applied to values of al pointer types.
The pointer comparison operators are:

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);
bool operator <(void* x, void* y);
bool operator >(void* x, void* y);
bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);

294 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

Because an implicit conversion exists from any pointer type to the void* type, operands of any pointer type can
be compared using these operators. The comparison operators compare the addresses given by the two operands
asif they were unsigned integers.

A.5.8 The sizeof operator
The sizeof operator returns the number of bytes occupied by a variable of a given type. The type specified as
an argument to sizeof must be an unmanaged-type (8A.2).
Sizeof-expression:
sizeof (unmanaged-type)

The result of the sizeof operator isavaue of type int. For certain predefined types, the sizeof operator
yields a constant value as shown in the table below.

Expression Result

sizeof(sbhyte)

sizeof (byte)

sizeof(short)

sizeof(ushort)

sizeof(int)

sizeof(uint)

sizeof(Tong)

sizeof(ulong)

sizeof(char)
sizeof(float)
sizeof(double)
sizeof(bool)

Rlo| | N|w|o|] n|N[N R R

For all other types, the result of the sizeof operator isimplementation dependent and is classified as avalue,
not a constant.

A.6 The fixed statement

The fixed statement is used to “fix” a moveable variable such that its address remains constant for the duration
of the statement.

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = & variable-reference
identifier expression

Each fixed-pointer-declarator declares aloca variable of the given pointer -type and initializes the local variable
with the address computed by the corresponding fixed-pointer-initializer. A locd variable declared in a fixed
statement is accessible in any fixed-pointer -initializers occurring to the left of the declaration, and in the

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 295

C#LANGUAGE SPECIFICATION

embedded-statement of the f1ixed statement. A local variable declared by a fi xed statement is considered
read-only and cannot be assigned to or passed asa ref or out parameter.

A fixed-pointer-initializer can be one of the following:

The token “&” followed by a variable-reference (85.4) to amoveable variable (8A.3) of an unmanaged type
T, provided the type T* isimplicitly convertible to the pointer type given in the fi xed statement. In this
case, the initializer computes the address of the given variable, and the variable is guaranteed to remain at a
fixed address for the duration of the f1ixed statement.

An expression of an array-type with elements of an unmanaged type T, provided the type T* isimplicitly
convertible to the pointer type given in the fixed statement. In this case, the initializer computes the
address of the first element in the array, and the entire array is guaranteed to remain at a fixed address for
the duration of the fixed statement. A Nul1ReferenceException isthrown if the array expression is
null.

An expression of type string, provided the type char* isimplicitly convertible to the pointer type given
in the fixed statement. In this case, the initializer computes the address of the first character in the string,
and the entire string is guaranteed to remain at a fixed address for the duration of the fixed statement. A
NulTReferenceexception isthrown if the string expressionisnull.

For each address computed by afixed-pointer-initializer the fixed statement ensures that the variable
referenced by the address is not subject to relocation or disposal by the garbage collector for the duration of the
fixed statement. For example, if the address computed by a fixed-pointer -initializer referencesafield of an
object or an element of an array instance, the f1ixed statement guarantees that the containing object instanceis
not relocated or disposed of during the lifetime of the statement.

It is the programmers responsibility to ensure that pointers created by fixed statements do not survive beyond
execution of those statements. This for example means that when pointers created by fixed statements are
passed to externa APIs, it is the programmers responsibility to ensure that the APIs retain no memory of these
pointers.

The fixed statement is typically implemented by generating tables that describe to the garbage collector which
objects are to remain fixed in which regions of executable code. Thus, aslong as a garbage collection process
doesn’'t actually occur during execution of a f1ixed statement, there is very little cost associated with the
statement. However, when a garbage collection process does occur, fixed objects may cause fragmentation of
the heap (because they can’t be moved). For that reason, objects should be fixed only when absolutely necessary
and then only for the shortest amount of time possible.

The example

unsafe class Test

static int x;

int y;
static void F(int* p) {
*p = 1;

static void Main() {
Test t = new Test();
int[] a = new int[10];

fixed (int* p = &) F(p);
fixed (int* p = &t.y) F(p);
fixed (int* p = &a[0]) F(p);
fixed (int* p = a) F(p);

296 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

demonstrates several uses of the fixed statement. The first statement fixes and obtains the address of a static
field, the second statement fixes and obtains the address of an instance field, and the third statement fixes and
obtains the address of an array element. In each case it would have been an error to use the regular & operator
since the variables are all classified as moveable variables.

The third and fourth fixed statements in the example above produce identical results. In general, for an array
instance a, specifying &a[0] in a fixed statement is the same as smply specifying a.

Within a fixed statement that obtains pointer p to an array instance a, the pointer values ranging from p to p +
a.Length - 1 represent addresses of the elementsin the array. Likewise, the variables ranging from p[0] to
pl[a.Length - 1] represent the actua array elements.

In the example
unsafe class Test

static void Fill(int* p, int count, int value) {
for (; count != 0; count--) *p++ = value;

static void Main() {
int[] a = new int[100];
fixed (int* p = a) Fill(p, 100, -1);

}
a fixed statement is used to fix an array o its address can be passed to a method that takes a pointer.

A char* value produced by fixing a string instance aways points to a null-terminated string. Within a fixed
statement that obtains a pointer p to a string instance s, the pointer vauesranging fromptop + s.Length - 1
represent addresses of the charactersin the string, and the pointer value p + s. Length aways pointsto anull
character (the character value '\0"').

Because strings are immutable, it is the programmers responsibility to ensure that the characters referenced by a
pointer to afixed string are not modified.

The automatic null-termination of stringsis particularly convenient when calling external APIs that expect “C-
style” strings. Note, however, that a string instance is permitted to contain null characters. If such null characters
are present, the string will appear truncated when treated as a null-terminated char*.

A.7 Stack allocation

In an unsafe context, alocal variable declaration (88.5.1) may include a stack allocation initializer which
alocates memory from the call stack.

variable-initializer:
expression
array-initializer
stackalloc-initializer
stackalloc-initializer:
stackalloc unmanaged-type [expression]

A stack dlocation initializer of the form stackalloc T[E] requires T to be an unmanaged type (8A.2) and E to
be an expression of type int. The construct allocates E * sizeof (T) bytesfrom the call stack and produces a
pointer, of type T*, to the newly alocated block. If there is not enough memory available to alocate a block of
the given size, astackoverflowException isthrown.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 297

C#LANGUAGE SPECIFICATION

Thereisno way to explicitly free memory alocated using stackalloc. Instead, al stack allocated memory
blocks created during execution of afunction member are automatically discarded when the function member
returns. This corresponds to the al11oca function provided in C and C++.

In the example
class Test
{
unsafe static string IntToString(int value) {
char* buffer = stackalloc char[16];
char* p = buffer + 16;
int n = value >= 0?7 value: -value;
do {
*—-p = (char)(n % 10 + '0");
n /= 10;
} while (n !'= 0);
if (value < 0) *--p = '-";
) return new string(p, (int)Cbuffer + 16 - p));
static void Main() {
Console.wWriteLine(IntToString(12345));
console.WriteLine(IntToString(-999));
ks
ks

astackalloc initidizer isused in the IntToString method to alocate a buffer of 16 characters on the stack.
The buffer is automatically discarded when the method returns.

A.8 Dynamic memory allocation

Except for the stackalloc operator, C# provides no predefined constructs for managing non-garbage collected
memory. Such services are typically provided by supporting class libraries or imported directly from the
underlying operating system. For example, the Memory class below illustrates how the Heap Functions of the
Windows API can be accessed from C#:

using System;])
using System.Runtime.InteropServices;

public unsafe class Memory

// Handle for the process heap. This handle is used in all calls to the
// HeapXXX APIs in the methods below.

static int ph = GetProcessHeap();
// Private constructor to prevent instantiation.
private Memory() {}

// Allocates a memory block of the given size. The allocated memory is
// automatically initialized to zero.

public static void* Alloc(int size) {
void* result = HeapAlloc(ph, HEAP_ZERO_MEMORY, size);
if (result == null) throw new OutOfMemoryException();
return result;

// Copies count bytes from src to dst. The source and destination
// blocks are permitted to overlap.

298 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix A Unsafe code

public static void Copy(void* src, void* dst, int count) {
byte* ps = (byte*)src;
byte* pd = (byte*)dst;
if (ps > pd) {

for (; count != 0; count--) *pd++ = *ps++;
3
else if (ps < pd) {
for (ps += count, pd += count; count != 0; count--) *--pd = *--ps;

}

// Frees a memory block.

pubTlic static void Free(void* block) {
if (!HeapFree(ph, 0, block)) throw new InvalidOperationException();

// Re-allocates a memory block. If the reallocation request is for a
// larger_size, the additional region of memory is automatically
// initialized to zero.

pubTic static void* ReAlloc(void* block, int size) {
void* result = HeapReAlloc(ph, HEAP_ZERO_MEMORY, block, size);
if (result == null) throw new oOutOfMemoryException();
return result;

// Returns the size of a memory block.

pubTlic static int Sizeof(void* block) {
int result = HeapSize(ph, 0, block);
if (result == -1) throw new InvalidOperationException();
return result;

// Heap API flags
const int HEAP_ZERO_MEMORY = 0x00000008;
// Heap API functions

[D11Import("kernel132")]
static extern int GetProcessHeap();

[DT1TImport("kernel32")]
static extern void* HeapAlloc(int hHeap, int flags, int size);

[D11Import("kernel132")]
static extern bool HeapFree(int hHeap, int flags, void* block);

[D11Import("kernel132")]
static extern void* HeapReAlloc(int hHeap, int flags,
void* block, int size);

[D11Import("kernel132")]
static extern int HeapSize(int hHeap, int flags, void* block);

3
An example that uses the Memory classis given below:

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 299

C#LANGUAGE SPECIFICATION

class Test

unsafe static void Main() {
byte* buffer = (byte*)Memory.ATloc(256);
for (int i = 0; i < 256; i++) buffer[i] = (byte)i;
byte[] array = new byte[256];
fixed (byte* p = array) Memory.Copy(buffer, p, 256);
Memory.Free(buffer);
) for (int i = 0; i < 256; i++) Console.writeLine(array[i]);
}

The example alocates 256 bytes of memory through Memory . Al1oc and initializes the memory block with
values increasing from 0 to 255. It then allocates a 256 element byte array and uses Memory . Copy to copy the
contents of the memory block into the byte array. Finaly, the memory block is freed using Memory . Free and
the contents of the byte array are output on the console.

300 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix B Interoperability

B. Interoperability

The attributes described in this chapter are used for creating programs that interoperate with COM programs.

B.1 The comaliasName attribute
namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Parameter |
] AttributeTargets.Returnvalue)]
public class ComATiasName: System.Attribute

pubTic ComATiasNameAttribute(string value) {.}
public string value { get {.} }

}

B.2 The comimport attribute

When placed on a class, the comImport attribute marks the class as an externally implemented com class. Such
a class declaration enables the use of a C# nameto refer to a COM class.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Class)]]
pubTic class ComImportAttribute: System.Attribute

public ComImportAttribute() {..}
}
A classthat is decorated with the comImport attribute is subject to the following restrictions:

It must also be decorated with the Guid attribute, which specifies the CLSID for the COM class being
imported. A compile-time error occurs if a class declaration includes the ComImport attribute but failsto
include the Guid attribute.

It must not have any members. (A public constructor with no parameters is automatically provided.)

It must not derive from a class other than object.

The example

using System.Runtime.InteropServices;

[ComImport, Guid("00020810-0000-0000-Cc000-000000000046")]
class worksheet {}

class Test

static void Main() {
worksheet w = new Worksheet(); // Creates an Excel worksheet

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 301

C#LANGUAGE SPECIFICATION

declares a class Worksheet as a class imported from COM that has a CLSID of “00020810-0000-0000-
C000-000000000046". Instantiating aworksheet instance causes a corresponding COM instantiation.

B.3 The comregisterFunction attribute

The presence of the ComRegisterFunction atribute on a method indicates that the method should be called
during the COM registration process.

namespace System.Runtime.InteropServices

[Attributeusage(AttributeTargets.Method)])
public class ComRegisterFunctionAttribute: System.Attribute

public ComRegisterFunctionAttribute() {.}

}
}

B.4 The comsourceInterfaces attribute
The comsourceInterfaces attributeis used to list the source interfaces on the imported coclass.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Class)]
pubTic class ComSourceInterfacesAttribute: System.Attribute

public ComSourceInterfacesAttribute(string value) {.}
pubTlic string value { get {.} }

}

B.5 The comunregisterFunction attribute

The presence of the ComunregisterFunction attribute on amethod indicates that the method should be
called when the assembly is unregistered for use in COM.

nhamespace System.Runtime.InteropServices

[Attributeusage(AttributeTargets.Method)]]
pubTic class ComUnregisterFunctionAttribute: System.Attribute

pubTic ComuUnregisterFunctionAttribute() {..}

}
}

B.6 The comvisible attribute
The comvisibTe atribute is used to specify whether or not aclass or interface is visiblein COM.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Class |
AttributeTargets.Interface |
AttributeTargets.Method)]

public class ComvisibleAttribute: System.Attribute

pubTic ComvisibleAttribute(bool value) {.}
pubTic bool value { get {.} }

302 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix B Interoperability

B.7 The pisp1d attribute

The Disp1d attribute is used to specify an OLE Automation DISPID. A DISPID is an integral value that
identifies a member in adispinterface.

nhamespace System.Runtime.InteropServices

{
[AttributeUsage(AttributeTargets.Method | AttributeTargets.Field |
AttributeTargets.Property)]
public class DispIdAttribute: System.Attribute

public DispIdAttribute(int value) {..}
public int value { get {.} }

}

B.8 The p11import attribute

Theb11Import atribute is used to specify the dll location that contains the implementation of an extern
method.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Method)])
pubTlic class DlTImportAttribute: System.Attribute
{

public DlTImportAttribute(string dl1Name) {..}
pubTic callingConvention cCallingConvention;
public CharSet CharSet;

public string EntryPoint;

pubTic bool ExactSpelling;

pubTlic bool PreserveSig;

public bool SetLastError;

pubTlic string value { get {.} }

}
}

Specificaly, the b11Import attribute has the following behaviors:
It can only be placed on method declarations.

It has asingle positional parameter: ad11Name parameter that specifies name of the dil in which the
imported method can be found.

It has five named parameters:

0 ThecallingConvention parameter indicates the calling convention for the entry point. If no
callingConvention is specified, adefault of callingConvention.winapi is used.

0 Thecharset parameter indicates the character set used in the entry point. If no charset is specified, a
default of charset.Auto is used.

0 TheEntryPoint parameter gives the name of the entry point inthedll. If no EntryPoint is
specified, then the name of the method itself is used.

0 TheExactspelling parameter indicates whether EntrypPoint must exactly match the spelling of the
indicated entry point. If no ExactspelTing is specified, a default of false isused.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 303

C#LANGUAGE SPECIFICATION

0 ThepPreservesig parameter indicates whether the signature of the method should be preserved or
transformed. When a signature is transformed, it is transformed to one having an HRESULT return
value and an additional out parameter named retval for thereturn value. If no Preservesig vaueis
specified, a default of true isused.

0 ThesetLastError parameter indicates whether the method preserves the Win32 “last error”. If no
SetLastError isspecified, adefault of false isused.

It isa single-use attribute class.
In addition, a method that is decorated with the b11Import attribute must have the extern modifier.

B.9 The Fieldoffset attribute
The Fieldoffset attribute is used to specify the layout of fields for the struct.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Field)])
pubTlic class FieldoffsetAttribute: System.Attribute

public FieldoffsetAttribute(int value) {.}

pubTlic int value { get {.} }
ks
ks

The Fieldoffset attribute may not be placed on afield declarations that is a member of aclass.

B.10 The Guid attribute

The Gu1id attribute is used to specify a globally unique identifier (GUID) for aclass or an interface. This
information is primarily useful for interoperability with COM.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Assembly
| AttributeTargets.Class
| AttributeTargets.Interface
| AttributeTargets.Enum
| AttributeTargets.Delegate
| AttributeTargets.Struct)]
?ub11c class GuidAttribute: System.Attribute

public GuidAttribute(string value) {..}
pubTlic string value { get {..} }

}

The format of the positiona string argument is verified at compile-time. It is an error to specify a string
argument that is not a syntacticaly valid GUID.

B.11 The HasDefaultInterface attribute
If present, the HasDefauTltInterface attribute indicates that a class has a default interface.

304 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix B Interoperability

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.C1a§s)])
pubTic class HasbDefaultInterfaceAttribute: System.Attribute

pubTic HasDefaultInterfaceAttribute() {..}
}

B.12 The 1mportedFromTypeLib attribute
The ImportedFromTypeLib attribute is used to specify that an assembly was imported from a COM type
library.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Assembly)]
public class ImportedFromTypeLib: System.Attribute

pubTic ImportedFromTypeLib(string value) {..}
public string value { get {..} }

}
}

B.13 The 1n and out attributes

The In and out attributes are used to provide custom marshalling information for parameters. All combinations
of these marshalling attributes are permitted.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Parameter)]
pubTic class InAttribute: System.Attribute

public InAttribute() {..}

[AttributeUsage(AttributeTargets.Parameter)]
public class OutAttribute: System.Attribute

public outAttribute() {..}

}

If aparameter is not decorated with either marshalling attribute, then it is marshalled based on the its parameter -
modifiers, asfollows. If the parameter has no modifiers thenthe marshaling is [In]. If the parameter has the
ref modifier then the marshalling is [In, out]. If the parameter has the out modifier then the marshalling is

[out].
Note that out isakeyword, and out is an attribute. The example
class Classl

void M([out] out int i) {

}
}

shows that the use of out as a parameter -modifier and the use of out in an attribute.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 305

C#LANGUAGE SPECIFICATION

B.14 The 1IndexerName attribute

Indexers are implemented in some systems using indexed properties. If no IndexerName attribute is present for
an indexer, then the name Ttem is used by default. The I1ndexerName attribute enables a developer to override
this default and specify a different name.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Property)])
public class IndexerNameAttribute: System.Attribute

pubTic IndexerNameAttribute(string indexerName) {..}

pubTlic string value { get {...} }

}
}

B.15 The 1nterfaceType attribute

When placed on an interface, the InterfaceType attribute specifies the manner in which the interface is
treated in COM.

namespace System.Runtime.InteropServices

[Attributeusage(AttributeTargets.Interface)])
pubTic class InterfaceTypeAttribute: System.Attribute

public InterfaceTypeAttribute(ComInterfaceType value) {..}

public ComInterfaceType value { get {.} }

}
}

B.16 The marshalas attribute
ThemarshalAs atribute is used to describe the marshalling format for afield, method, or parameter.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Method |
AttributeTargets.Parameter |
AttributeTargets.Field)]

pubTic class MarshalAsAttribute: System.Attribute

{
pubTic MarshalAsAttribute(UnmanagedType unmanagedType) {..}

pubTic UnmanagedType ArraySubType;
pubTlic string MarshalcCookie;
pubTlic string MarshalType;

public vareEnum SafeArraySubType;
public int SizeConst;

public short SizepParamIndex;
pubTlic int SizeParamMultiplier;

}
}

B.17 The NoIDispatch attribute

The presence of the NoID1i spatch attribute indicates that the class or interface should derive from Tunknown
rather than 1D1 spatch when exported to COM.

306 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix B Interoperability

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class NoIDispatchAttribute: System.Attribute

pubTlic NoIDispatchAttribute() {..}
}

B.18 The preservesig attribute

The preservesig attribute is used to indicate that the HRESULT/retval signature transformation that
normally takes place during interoperability calls should be suppressed.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Property)]
public class PreserveSigAttribute: System.Attribute

pubTlic PreserveSigAttribute(bool value) {.}
public bool value { get {.} }

}

B.19 The structLayout attribute
The structLayout attribute is used to specify the layout of fields for the struct.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class StructLayoutAttribute: System.Attribute

pubTic StructLayoutAttribute(LayoutKind value) {..}
public CharSet CharsSet;

public bool CheckFastMarshal;

pubTlic int Pack;

) pubTic LayoutKind value { get {.} }
}

If LayoutKind.Exp1icit isspecified, then every field in the struct must have the structoffset attribute.
If LayoutKind.Exp1icit isnot specified, then use of the structoffset attribute is prohibited.

B.20 The TypeLibFunc attribute
The TypeLibFunc attribute is used to specify typelib flags, for interoperability with COM.
namespace System.Runtime.InteropServices

[Attributeusage(AttributeTargets.Method)])
public class TypeLibFuncAttribute: System.Attribute

public TypeLibFuncAttribute(TypeLibFuncFlags value) {..}
public TypeLibFuncFlags value { get {.} }

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 307

C#LANGUAGE SPECIFICATION

B.21 The TypeLibType attribute
The TypeLibType attribute is used to specify typelib flags, for interoperability with COM.

nhamespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class TypeLibTypeAttribute: System.Attribute

public TypeLibTypeAttribute(TypeLibTypeFlags value) {..}
public TypeLibTyperlags value { get {.} }

}

B.22 The TypeLibvar attribute
The TypeLibvar atribute is used to specify typelib flags, for interoperability with COM.

namespace System.Runtime.InteropServices

[AttributeUsage(AttributeTargets.Field)]]
pubTic class TypeLibvarAttribute: System.Attribute
{

public TypeLibvarAttribute(TypeLibvarFlags value) {..}
public TypeLibvarFlags value { get {.} }

}
B.23 Supporting enums
namespace System.Runtime.InteropServices

pubTic enum cCallingConvention

Stdcall = 3
Thiscall
Fastcall

}

pubTic enum Charset

None,
Auto,
Ansi,
Unicode

}
public enum ComInterfaceType
InterfaceIsbual = 0,

InterfaceIsIUnknown = 1,
InterfaceIsIDispatch = 2,

}
public enum LayoutKind
Sequential,

Union,
Explicit,

308 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix B Interoperability

pubTic enum TypeLibFuncFlags

FRestricted = 1,
FSource = 2,
FBindable = 4
FRequestEdit
FDisplayBind
FDefaultBind
FHidden = 64,
FUsesGetLastError = 128,
FDefaultCollelem = 256,
FUiDefault = 512,
FNonBrowsable = 1024,
FReplaceable = 2048,
FImmediateBind = 4096

nmian-
W = o
N O

3

pubTic enum TypeLibTypeFlags

{
FAppObject = 1,
FCanCreate = 2,
FLicensed = 4,
FPreDeclId = 8,
FHidden = 16,
FControl = 32,
FDual = 64,
FNonExtensible = 128,
FOleAutomation = 256,
FRestricted = 512,
FAggregatable = 1024,
FRepTlaceable = 2048,
FDispatchable = 4096,
FReverseBind = 8192

3

pubTic enum TypeLibvarFlags

FReadonly = 1,
FSource = 2,
FBindable = 4

FRequestEdit - 8,
FDisplayBind = 16,
FDefaultBind = 32,

FHidden = 64,
FRestricted = 128,
FDefaultCollelem = 256,
FUiDefault = 512,
FNonBrowsable = 1024,
FReplaceable = 2048,
FImmediateBind = 4096

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 309

C#LANGUAGE SPECIFICATION

pubTic enum UnmanagedType

BooT = 0x2,
Il = 0x3,
ul = 0x4,
12 = 0x5,
u2 = 0x6,
I4 = 0x7,
u4 = 0x8,
I8 = 0x9,
us8 = Oxa,
R4 = Oxb,
R8 = 0Oxc,
BStr = 0x13,
LPStr = 0x14,
LPWStr = 0x15,
LPTStr = 0x16,
ByvalTstr = 0x17,
Struct = 0x1b,
Interface = Oxlc,
SafeArray = 0x1d,
ByvalArray = Oxle,
SysInt = 0Ox1f,
SysUInt = 0x20,
VBByRefStr = 0x22,
AnsiBStr = 0x23,
TBStr = 0x24,
variantBool = 0x25,
FunctionPtr = 0x26,
LPvoid = 0x27,
ASAny = 0x28,
RPrecise = 0x29,
LPArray = 0x2a,
LPStruct = 0x2b,

CustomMarshaler = 0Ox2c,

310 Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix C References

C. References

Unicode Consortium. The Unicode Sandard, Version 3.0. Addison-Wesley, Reading, Massachusetts, 2000,
ISBN 0-201-616335-5.

|IEEEE. |[EEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. Available from
http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

Confidential Material—Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. 311

