
this print for content only—size & color not accurate spine = 1.3681" 728 page count

Books for professionals by professionals®

Illustrated C# 2008
Dear Reader,

This book presents the C# language in a uniquely succinct and visual format.
Often in programming books, the information can be well presented, but is
hidden in a vast sea of words. As a programmer who has over the years used
a dozen programming languages, I sometimes find it difficult to slog through
another 1,000-page book of dense text to learn a new language. I’m sure there
are many other programmers who feel the same way. To address this situation,
in this book I explain C# using figures; short, focused code samples; and clear,
concise explanations.

Figures are of prime importance in this book. When I was teaching program-
ming seminars, I found that I could almost watch the lightbulbs going on over
the students’ heads as I drew the figures on the whiteboard. In this text, I have
distilled each important concept into simple but accurate illustrations. The visual
nature of the content will give you an understanding of C# that’s not possible with
text alone.

For something as intricate and precise as a programming language, however,
there must be text as well as figures. But rather than long, wordy explanations, I
have used short, concise descriptions and bulleted lists to make each important
piece of information visually distinct.

By the end of this book, you’ll have a thorough working knowledge of all
aspects of the C# language, whether you’re a novice programmer or a seasoned
veteran of other languages. If you want a long, leisurely, verbose explanation of
the language,⎯this is probably not the book for you. But if you want a concise,
thorough, visual presentation of C#, this is just what you’re looking for.

Take care,

Dan Solis, MCSE

US $44.99

Shelve in
Programming/.NET

User level:
Beginner–Intermediate

Solis
Illustrated C# 2008

The EXPERT’s VOIce® in .NET

Illustrated

C# 2008

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Daniel Solis

Companion
eBook Available

THE APRESS ROADMAP

Beginning C# 2008:
From Novice to Professional

Beginning C# 2008 Databases:
From Novice to Professional

Illustrated C# 2008

Pro C# 2008 and
the .NET 3.5 Platform,

Fourth Edition

Pro ASP.NET 3.5 in
C# 2008, Second Edition

Pro WPF in C# 2008: Windows
Presentation Foundation

with .NET 3.5, Second Edition

Pro LINQ: Language Integrated
Query in C# 2008

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-954-9
ISBN-10: 1-59059-954-3

9 781590 599549

54499

C# presented clearly, concisely, and visually

Illustrated C# 2008

■ ■ ■

Daniel Solis

9543.book Page i Wednesday, January 16, 2008 3:13 PM

Illustrated C# 2008

Copyright © 2008 by Daniel Solis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-954-9

ISBN-10 (pbk): 1-59059-954-3

ISBN-13 (electronic): 978-1-4302-0574-6

ISBN-10 (electronic): 1-4302-0574-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matthew Moodie
Technical Reviewer: Christophe Nasarre
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Damon Larson
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Pat Christenson
Proofreader: Linda Seifert
Indexer: John Collin
Artist: Daniel Solis
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9543.book Page ii Wednesday, January 16, 2008 3:13 PM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

I would like to dedicate this book to
my parents—Sal and Amy,

and to Sian, and to Sue.

9543.book Page iii Wednesday, January 16, 2008 3:13 PM

iv

Contents at a Glance

About the Author . xxiii

About the Technical Reviewer .xxv

Acknowledgments .xxvii

Introduction . xxix

■CHAPTER 1 C# and the .NET Framework . 1

■CHAPTER 2 Overview of C# Programming . 15

■CHAPTER 3 Types, Storage, and Variables . 31

■CHAPTER 4 Classes: The Basics . 45

■CHAPTER 5 Methods. 65

■CHAPTER 6 More About Classes . 101

■CHAPTER 7 Classes and Inheritance . 155

■CHAPTER 8 Expressions and Operators . 193

■CHAPTER 9 Statements . 229

■CHAPTER 10 Namespaces and Assemblies . 259

■CHAPTER 11 Exceptions . 285

■CHAPTER 12 Structs . 303

■CHAPTER 13 Enumerations . 313

■CHAPTER 14 Arrays . 327

■CHAPTER 15 Delegates . 355

■CHAPTER 16 Events . 379

■CHAPTER 17 Interfaces . 397

■CHAPTER 18 Conversions . 423

■CHAPTER 19 Generics . 453

■CHAPTER 20 Enumerators and Iterators . 483

■CHAPTER 21 Introduction to LINQ . 515

■CHAPTER 22 Introduction to Asynchronous Programming 573

■CHAPTER 23 Preprocessor Directives . 593

9543.book Page iv Wednesday, January 16, 2008 3:13 PM

v

■CHAPTER 24 Reflection and Attributes . 605

■CHAPTER 25 Other Topics . 631

■INDEX . 657

9543.book Page v Wednesday, January 16, 2008 3:13 PM

9543.book Page vi Wednesday, January 16, 2008 3:13 PM

vii

Contents

About the Author . xxiii

About the Technical Reviewer. xxv

Acknowledgments. xxvii

Introduction . xxix

■CHAPTER 1 C# and the .NET Framework . 1

Before .NET . 2

Windows Programming in the Late 1990s . 2

Goals for the Next-Generation Platform . 2

Enter Microsoft .NET . 2

Components of the .NET Framework. 3

An Improved Programming Environment . 4

Compiling to the Common Intermediate Language (CIL) 7

Compiling to Native Code and Execution . 8

Overview of Compilation and Execution . 9

The Common Language Runtime (CLR) . 10

The Common Language Infrastructure (CLI) . 11

Important Parts of the CLI . 12

Review of the Acronyms . 13

■CHAPTER 2 Overview of C# Programming . 15

A Simple C# Program. 16

More About SimpleProgram . 17

Identifiers and Keywords . 18

Naming Conventions . 19

Keywords . 20

Main: The Starting Point of a Program . 21

Whitespace . 21

Statements. 22

Simple Statements . 22

Blocks . 22

Text Output from a Program . 24

Write . 24

9543.book Page vii Wednesday, January 16, 2008 3:13 PM

viii ■C O N T E N T S

WriteLine . 25

The Format String. 26

Multiple Markers and Values . 27

Comments: Annotating the Code . 28

More About Comments . 29

Documentation Comments . 29

Summary of Comment Types . 30

■CHAPTER 3 Types, Storage, and Variables . 31

A C# Program Is a Set of Type Declarations . 32

A Type Is a Template . 33

Instantiating a Type . 33

Data Members and Function Members. 34

Types of Members . 34

Predefined Types . 35

More About the Predefined Types . 36

User-Defined Types . 37

The Stack and the Heap . 38

The Stack . 38

The Heap. 39

Value Types and Reference Types. 40

Storing Members of a Reference Type Object 40

Categorizing the C# Types. 41

Variables. 42

Variable Declarations . 42

Multiple-Variable Declarations . 44

Using the Value of a Variable. 44

■CHAPTER 4 Classes: The Basics . 45

Overview of Classes . 46

A Class Is an Active Data Structure . 46

Programs and Classes: A Quick Example. 47

Declaring a Class . 48

Class Members . 49

Fields. 49

Methods . 51

9543.book Page viii Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S ix

Creating Variables and Instances of a Class . 52

Allocating Memory for the Data . 53

Combining the Steps . 54

Instance Members . 55

Access Modifiers. 56

Private and Public Access . 56

Accessing Members from Inside the Class . 59

Accessing Members from Outside the Class . 60

Putting It All Together . 62

■CHAPTER 5 Methods . 65

The Structure of a Method . 66

Code Execution in the Method Body . 67

Local Variables . 68

Type Inference and the var Keyword . 69

Local Variables Inside Nested Blocks . 70

Local Constants. 71

Flow of Control. 72

Method Invocations . 73

Return Values . 74

The Return Statement and Void Methods . 76

Parameters . 78

Formal Parameters . 78

Actual Parameters. 79

Value Parameters . 81

Reference Parameters . 84

Output Parameters . 87

Parameter Arrays . 90

Method Invocation. 91

Arrays As Actual Parameters. 94

Summary of Parameter Types . 94

Stack Frames . 95

Recursion . 97

Method Overloading . 99

9543.book Page ix Wednesday, January 16, 2008 3:13 PM

9e988f8cad8346c15a480f538a629ab3

x ■C O N T E N T S

■CHAPTER 6 More About Classes . 101

Class Members . 102

Order of Member Modifiers . 102

Instance Class Members . 104

Static Fields . 105

Accessing Static Members from Outside the Class 106

Example of a Static Field . 106

Lifetimes of Static Members . 107

Static Function Members . 108

Other Static Class Member Types . 109

Member Constants . 110

Constants Are Like Statics. 111

Properties. 113

Property Declarations and Accessors . 114

A Property Example. 115

Using a Property . 116

Properties and Associated Fields . 117

Performing Other Calculations . 119

Read-Only and Write-Only Properties . 120

An Example of a Computed, Read-Only Property 121

Example of Properties and Databases. 122

Automatically Implemented Properties . 123

Static Properties . 125

Instance Constructors . 126

Constructors with Parameters . 127

Default Constructors . 128

Static Constructors . 129

Example of a Static Constructor . 130

Accessibility of Constructors . 130

Object Initializers . 131

Destructors . 133

Calling the Destructor. 134

The Standard Dispose Pattern . 136

Comparing Constructors and Destructors . 137

The readonly Modifier . 138

The this Keyword . 140

9543.book Page x Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S xi

Indexers . 141

What Is an Indexer? . 142

Indexers and Properties . 142

Declaring an Indexer. 143

The set Accessor . 144

The get Accessor. 145

More About Indexers. 146

Declaring the Indexer for the Employee Example 146

Another Indexer Example. 148

Indexer Overloading . 149

Access Modifiers on Accessors . 150

Partial Classes and Partial Types . 151

Partial Methods . 153

■CHAPTER 7 Classes and Inheritance. 155

Class Inheritance . 156

Accessing the Inherited Members . 157

All Classes Are Derived from Class object . 158

Hiding Members of a Base Class . 159

Base Access . 161

Using References to a Base Class . 162

Virtual and Override Methods . 164

Overriding a Method Marked override . 166

Constructor Execution . 169

Constructor Initializers . 171

Class Access Modifiers . 173

Inheritance Between Assemblies . 174

Member Access Modifiers. 176

Regions Accessing a Member. 177

Public Member Accessibility . 178

Private Member Accessibility . 178

Protected Member Accessibility . 179

Internal Member Accessibility . 179

Protected Internal Member Accessibility. 180

Summary of Member Access Modifiers . 181

Abstract Members . 182

9543.book Page xi Wednesday, January 16, 2008 3:13 PM

xii ■C O N T E N T S

Abstract Classes . 183

Example of an Abstract Class and an Abstract Method 184

Sealed Classes . 185

Static Classes . 186

Extension Methods . 187

External Methods . 191

■CHAPTER 8 Expressions and Operators . 193

Expressions . 194

Literals . 195

Integer Literals . 196

Real Literals . 197

Character Literals . 198

String Literals . 199

Order of Evaluation . 201

Precedence . 201

Associativity . 202

Simple Arithmetic Operators. 203

The Remainder Operator . 204

Relational and Equality Comparison Operators . 205

Comparison and Equality Operations. 206

Increment and Decrement Operators . 207

Conditional Logical Operators. 209

Logical Operators . 211

Shift Operators . 213

Assignment Operators . 215

Compound Assignment . 216

The Conditional Operator. 217

Unary Arithmetic Operators. 219

User-Defined Type Conversions. 220

Explicit Conversion and the Cast Operator . 222

Operator Overloading . 223

Restrictions on Operator Overloading . 224

Example of Operator Overloading. 225

The typeof Operator . 226

■CHAPTER 9 Statements . 229

What Are Statements? . 230

Expression Statements . 231

9543.book Page xii Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S xiii

Flow-of-Control Statements . 232

The if Statement . 233

The if . . . else Statement . 234

The switch Statement . 235

A Switch Example . 237

More on the switch Statement . 238

Switch Labels. 239

The while Loop . 240

The do Loop. 241

The for Loop . 243

The Scope of Variables in a for Statement . 245

Multiple Expressions in the Initializer and Iteration Expression. . . 246

Jump Statements . 247

The break Statement . 247

The continue Statement . 248

Labeled Statements . 249

Labels . 249

The Scope of Labeled Statements . 250

The goto Statement . 251

The goto Statement Inside a switch Statement 251

The using Statement . 252

Packaging Use of the Resource . 253

Example of the using Statement. 254

Multiple Resources and Nesting . 255

Another Form of the using Statement . 256

Other Statements . 257

■CHAPTER 10 Namespaces and Assemblies . 259

Referencing Other Assemblies . 260

The mscorlib Library. 263

Namespaces . 265

Namespace Names. 267

More About Namespaces. 268

Namespaces Spread Across Files . 269

Nesting Namespaces . 270

The using Directives. 271

The using Namespace Directive . 271

The using Alias Directive . 272

The Structure of an Assembly . 273

The Identity of an Assembly . 275

9543.book Page xiii Wednesday, January 16, 2008 3:13 PM

xiv ■C O N T E N T S

Strongly Named Assemblies . 277

Creating a Strongly Named Assembly . 278

Private Deployment of an Assembly . 279

Shared Assemblies and the GAC . 280

Installing Assemblies into the GAC. 280

Side-by-Side Execution in the GAC . 281

Configuration Files . 282

Delayed Signing . 283

■CHAPTER 11 Exceptions . 285

What Are Exceptions? . 286

The try Statement . 287

Handling the Exception. 288

The Exception Classes . 289

The catch Clause . 290

Examples Using Specific catch Clauses . 291

The catch Clauses Section . 292

The finally Block . 293

Finding a Handler for an Exception . 294

Searching Further . 295

General Algorithm . 296

Example of Searching Down the Call Stack 297

Throwing Exceptions . 299

Throwing Without an Exception Object . 300

■CHAPTER 12 Structs. 303

What Are Structs?. 304

Structs Are Value Types. 305

Assigning to a Struct . 306

Constructors and Destructors. 307

Instance Constructors. 307

Static Constructors . 309

Summary of Constructors and Destructors 309

Field Initializers Are Not Allowed . 310

Structs Are Sealed . 310

Boxing and Unboxing . 310

Structs As Return Values and Parameters . 311

Additional Information About Structs. 311

9543.book Page xiv Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S xv

■CHAPTER 13 Enumerations . 313

Enumerations . 314

Setting the Underlying Type and Explicit Values 316

Implicit Member Numbering . 317

Bit Flags . 318

The Flags Attribute . 320

Example Using Bit Flags. 322

More About Enums . 324

■CHAPTER 14 Arrays . 327

Arrays . 328

Definitions. 328

Important Details . 328

Types of Arrays . 329

An Array As an Object . 330

One-Dimensional and Rectangular Arrays . 331

Declaring a One-Dimensional Array or a Rectangular Array 331

Instantiating a One-Dimensional or Rectangular Array 332

Accessing Array Elements. 333

Initializing an Array . 334

Explicit Initialization of One-Dimensional Arrays 334

Explicit Initialization of Rectangular Arrays. 335

Syntax Points for Initializing Rectangular Arrays 335

Shortcut Syntax . 336

Implicitly Typed Arrays . 337

Putting It All Together . 338

Jagged Arrays . 339

Declaring a Jagged Array . 340

Shortcut Instantiation . 340

Instantiating a Jagged Array . 341

Sub-Arrays in Jagged Arrays . 342

Comparing Rectangular and Jagged Arrays. 343

The foreach Statement . 344

The Iteration Variable Is Read-Only . 346

The foreach Statement with Multidimensional Arrays 347

Array Covariance. 349

Useful Inherited Array Members. 350

The Clone Method . 352

Comparing Array Types . 354

9543.book Page xv Wednesday, January 16, 2008 3:13 PM

xvi ■C O N T E N T S

■CHAPTER 15 Delegates . 355

What Is a Delegate? . 356

Methods in the Invocation List . 356

Declaring the Delegate Type. 357

Creating the Delegate Object . 358

Assigning Delegates. 360

Combining Delegates . 361

Adding Methods to Delegates. 362

Removing Methods from a Delegate . 363

Invoking a Delegate . 364

Delegate Example. 364

Invoking Delegates with Return Values. 366

Invoking Delegates with Reference Parameters . 368

Anonymous Methods . 370

Using Anonymous Methods . 370

Syntax of Anonymous Methods . 371

Scope of Variables and Parameters . 373

Lambda Expressions . 375

■CHAPTER 16 Events . 379

Events Are Like Delegates. 380

An Event Has a Private Delegate . 381

Overview of Source Code Components. 382

Declaring an Event . 383

An Event Is a Member . 384

The Delegate Type and EventHandler . 384

Raising an Event . 385

Subscribing to an Event. 386

Removing Event Handlers . 388

Standard Event Usage . 389

Using the EventArgs Class . 389

Passing Data by Extending EventArgs . 390

Using the Custom Delegate . 391

The MyTimerClass Code . 394

Event Accessors . 396

9543.book Page xvi Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S xvii

■CHAPTER 17 Interfaces . 397

What Is an Interface? . 398

Example Using the IComparable Interface . 399

Declaring an Interface . 402

Implementing an Interface . 404

Example with a Simple Interface . 405

An Interface Is a Reference Type . 406

Using the as Operator with Interfaces. 408

Implementing Multiple Interfaces . 409

Implementing Interfaces with Duplicate Members 410

References to Multiple Interfaces . 412

An Inherited Member As an Implementation . 414

Explicit Interface Member Implementations. 415

Accessing Explicit Interface Member Implementations 418

Interfaces Can Inherit Interfaces . 419

Example of Different Classes Implementing an Interface 420

■CHAPTER 18 Conversions . 423

What Are Conversions? . 424

Implicit Conversions . 425

Explicit Conversions and Casting . 426

Casting . 427

Types of Conversions. 428

Numeric Conversions . 428

Implicit Numeric Conversions . 429

Overflow Checking Context . 430

Explicit Numeric Conversions . 432

Reference Conversions . 436

Implicit Reference Conversions . 437

Explicit Reference Conversions. 439

Valid Explicit Reference Conversions. 440

Boxing Conversions . 442

Boxing Creates a Copy . 443

Unboxing Conversions . 444

The Unboxing Conversions . 445

9543.book Page xvii Wednesday, January 16, 2008 3:13 PM

xviii ■C O N T E N T S

User-Defined Conversions. 446

Constraints on User-Defined Conversions . 446

Example of a User-Defined Conversion. 447

Evaluating User-Defined Conversions . 449

Example of a Multi-Step User-Defined Conversion 449

The is Operator . 451

The as Operator . 452

■CHAPTER 19 Generics . 453

What Are Generics? . 454

A Stack Example . 454

Generics in C#. 456

Continuing with the Stack Example . 457

Generic Classes . 458

Declaring a Generic Class . 459

Creating a Constructed Type . 460

Creating Variables and Instances. 461

The Stack Example Using Generics . 463

Comparing the Generic and Non-Generic Stack 465

Constraints on Type Parameters . 466

Where Clauses. 467

Constraint Types and Order. 468

Generic Structs . 469

Generic Interfaces. 470

An Example Using Generic Interfaces . 471

Generic Interface Implementations Must Be Unique. 472

Generic Delegates . 473

Another Generic Delegate Example . 475

Generic Methods. 476

Declaring a Generic Method . 477

Invoking a Generic Method . 478

Example of a Generic Method . 480

Extension Methods with Generic Classes. 481

9543.book Page xviii Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S xix

■CHAPTER 20 Enumerators and Iterators . 483

Enumerators and Enumerable Types . 484

Using the foreach Statement. 484

Types of Enumerators . 485

Using the IEnumerator Interface. 486

Declaring an IEnumerator Enumerator . 489

The IEnumerable Interface . 491

Example Using IEnumerable and IEnumerator 492

The Non-Interface Enumerator. 494

The Generic Enumeration Interfaces . 496

The IEnumerator<T> Interface. 497

The IEnumerable<T> Interface . 500

Iterators . 502

Iterator Blocks . 503

Using an Iterator to Create an Enumerator . 504

Using an Iterator to Create an Enumerable. 505

Common Iterator Patterns . 507

Producing Enumerables and Enumerators . 508

Producing Multiple Enumerables . 509

Producing Multiple Enumerators . 511

Behind the Scenes with Iterators . 513

■CHAPTER 21 Introduction to LINQ . 515

What Is LINQ? . 516

LINQ Providers. 517

Anonymous Types. 518

Query Syntax and Method Syntax . 520

Query Variables . 522

The Structure of Query Expressions . 524

The from Clause . 525

The join Clause . 527

What Is a Join? . 528

The from . . . let . . . where Section in the Query Body. 531

The orderby Clause. 535

The select . . . group Clause . 536

Anonymous Types in Queries . 538

The group Clause . 539

Query Continuation . 541

9543.book Page xix Wednesday, January 16, 2008 3:13 PM

xx ■C O N T E N T S

The Standard Query Operators. 542

Query Expressions and the Standard Query Operators. 544

Signatures of the Standard Query Operators 545

Delegates As Parameters. 547

The LINQ Predefined Delegate Types . 549

Example Using a Delegate Parameter . 550

Example Using a Lambda Expression Parameter 551

LINQ to XML. 553

Markup Languages . 553

XML Basics. 554

The XML Classes. 556

Using Values from the XML Tree . 559

Working with XML Attributes. 564

Other Types of Nodes . 568

Using LINQ Queries with LINQ to XML . 570

■CHAPTER 22 Introduction to Asynchronous Programming 573

Processes, Threads, and Asynchronous Programming 574

Multithreading Considerations . 575

The Complexity of Multithreading. 576

Asynchronous Programming Patterns. 577

BeginInvoke and EndInvoke . 578

The Wait-Until-Done Pattern . 580

The AsyncResult Class . 582

The Polling Pattern . 583

The Callback Pattern. 585

Timers. 589

■CHAPTER 23 Preprocessor Directives . 593

What Are Preprocessor Directives? . 594

General Rules . 594

The #define and #undef Directives . 596

Conditional Compilation. 597

The Conditional Compilation Constructs. 598

Diagnostic Directives . 601

Line Number Directives . 602

Region Directives . 603

The #pragma warning Directive. 604

9543.book Page xx Wednesday, January 16, 2008 3:13 PM

■C O N T E N T S xxi

■CHAPTER 24 Reflection and Attributes . 605

Metadata and Reflection . 606

The Type Class . 606

Getting a Type Object. 608

What Is an Attribute? . 611

Applying an Attribute . 612

Predefined, Reserved Attributes. 613

The Obsolete Attribute . 613

The Conditional Attribute . 614

Predefined Attributes . 616

More About Applying Attributes . 617

Multiple Attributes. 617

Other Types of Targets. 618

Global Attributes . 619

Custom Attributes . 620

Declaring a Custom Attribute . 620

Using Attribute Constructors . 621

Specifying the Constructor . 621

Using the Constructor. 622

Positional and Named Parameters in Constructors. 623

Restricting the Usage of an Attribute . 625

Suggested Practices for Custom Attributes 627

Accessing an Attribute. 628

Using the IsDefined Method . 628

Using the GetCustomAttributes Method . 629

■CHAPTER 25 Other Topics . 631

Overview . 632

Strings . 632

Using Class StringBuilder. 633

Formatting Numeric Strings . 634

Parsing Strings to Data Values . 639

Nullable Types. 640

Creating a Nullable Type . 640

Assigning to a Nullable Type . 643

Using Nullable User-Defined Types . 645

Method Main . 647

Accessibility of Main . 648

9543.book Page xxi Wednesday, January 16, 2008 3:13 PM

xxii ■C O N T E N T S

Documentation Comments . 649

Inserting Documentation Comments . 650

Using Other XML Tags . 651

Nested Types. 652

Example of a Nested Class . 653

Visibility and Nested Types . 654

■INDEX . 657

9543.book Page xxii Wednesday, January 16, 2008 3:13 PM

xxiii

About the Author

■DAN SOLIS holds a Bachelor of Arts in biology and English, and initially
worked in research on the structure of metal crystals, until he found
that he enjoyed programming much more than working in a lab. He
also holds a Master of Science in computer science from the University
of California at Santa Barbara, where he concentrated on program-
ming languages and compiler design.

Dan has been programming professionally for more than 20 years,
with more than half that time working as a consultant and contract

programmer, including several projects for Microsoft Consulting Services. His consulting
projects have ranged from programs for mutual fund analysis and supply chain management to
systems for missile tracking. He has also taught courses on various programming languages,
Windows programming, UNIX internals, and a number of other topics, in both the United
States and Europe.

Dan’s first programming language was C, but he soon became intrigued by the journal arti-
cles about a new language called “C with Classes.” Eventually that language was renamed C++
and released to the world. He began using C++ as soon as he could get access to a compiler, and
eventually started teaching training seminars on the language as well.

With the advent of C# and .NET, he has moved on to enjoying the myriad advantages of the
new language and platform, and has been working with them enthusiastically ever since.

9543.book Page xxiii Wednesday, January 16, 2008 3:13 PM

9543.book Page xxiv Wednesday, January 16, 2008 3:13 PM

xxv

About the Technical Reviewer

■CHRISTOPHE NASARRE is a software architect and development lead
for Business Objects, a multinational software company focused on
business intelligence solutions. During his spare time, Christophe
writes articles for MSDN Magazine, MSDN, and ASPToday. Since 1996,
he has also worked as a technical editor on numerous books on Win32,
COM, MFC, .NET, and WPF. In 2007, he wrote his first book, Windows
via C/C++ (Microsoft Press, 2007).

9543.book Page xxv Wednesday, January 16, 2008 3:13 PM

9543.book Page xxvi Wednesday, January 16, 2008 3:13 PM

xxvii

Acknowledgments

I want to thank Sian for supporting and encouraging me on a daily basis, and I also want to
thank my parents and brothers and sisters for their continued love and support.

I also want to express my sincere gratitude to the people at Apress who have worked with
me to bring this book to fruition. I really appreciate that they understood and appreciated what
I was trying to do, and worked with me to achieve it. Thanks to all of you.

9543.book Page xxvii Wednesday, January 16, 2008 3:13 PM

9543.book Page xxviii Wednesday, January 16, 2008 3:13 PM

xxix

Introduction

The purpose of this book is to teach you the fundamentals and mechanics of the C# program-
ming language. Most books teach programming primarily using text. That’s great for novels,
but many of the important concepts of programming languages can best be understood
through a combination of words, figures, and tables.

Many of us think visually, and figures and tables can help clarify and crystallize our under-
standing of a concept. In several years of teaching programming languages, I have found that
the pictures I drew on the whiteboards were the things that most quickly helped the students
understand the concepts I was trying to convey.

Illustrations alone, however, are not sufficient to explain a programming language and
platform. The goal of this book is to find the best combination of words and illustrations to give
you a thorough understanding of the language, and to allow the book to serve as a reference
resource as well.

This book is written for anyone who wants an introduction to the C# programming
language—from the novice to the seasoned programmer. For those just getting started in
programming, I have included the basics. For seasoned programmers, the content is laid out
succinctly, and in a form that will allow you to go directly to the information required without
having to wade through oceans of words. For both sets of programmers, the content itself is
presented graphically, in a form that should make the language easy to learn.

Enjoy!

9543.book Page xxix Wednesday, January 16, 2008 3:13 PM

9543.book Page xxx Wednesday, January 16, 2008 3:13 PM

1

■ ■ ■

C H A P T E R 1

C# and the .NET Framework

Before .NET
Enter Microsoft .NET
Compiling to the Common Intermediate Language (CIL)
Compiling to Native Code and Execution
The Common Language Runtime (CLR)
The Common Language Infrastructure (CLI)
Review of the Acronyms

9543.book Page 1 Monday, December 3, 2007 6:07 PM

2 C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K

Before .NET
The C# programming language was designed for developing programs for Microsoft’s .NET
Framework. This chapter will take a brief look at where .NET came from, and its basic architec-
ture. Just to make sure you’re starting on the right foot, let me take this opportunity to remind
you of what is hopefully the obvious: C# sharp is pronounced see sharp.1

Windows Programming in the Late 1990s
In the late 1990s, Windows programming using the Microsoft platform had fractured into a
number of branches. Most programmers were using Visual Basic (VB), C, or C++. Some C and
C++ programmers were using the raw Win32 API, but most were using the Microsoft Founda-
tion Classes (MFC). Others had moved to the Component Object Model (COM).

All these technologies had their own problems. The raw Win32 API was not object-oriented,
and using it required a lot more work than MFC. MFC was object-oriented, but was inconsistent
and getting old. COM, although conceptually simple, was complex in its actual coding, and
required lots of ugly, inelegant plumbing.

Another shortcoming of all these programming technologies was that they were aimed
primarily at developing code for the desktop rather than the Internet. At the time, program-
ming for the Web was an afterthought and seemed very different from coding for the desktop.

Goals for the Next-Generation Platform
What we really needed was a new start—an integrated, object-oriented development frame-
work that would bring consistency and elegance back to programming. To meet this need,
Microsoft set out to develop a code execution environment and a code development environ-
ment that met these goals, which are listed in Figure 1-1.

Figure 1-1. Goals for the next-generation platform

Enter Microsoft .NET
In 2002, Microsoft released the .NET Framework, which promised to address the old problems
and meet the goals for the next-generation system. The .NET Framework is a much more

1. I was once interviewing for a contract C# programming position when the human resources inter-
viewer asked me how much experience I’d had programming in “see pound” (instead of “see sharp”)! It
took me a moment to realize what he was talking about.

9543.book Page 2 Monday, December 3, 2007 6:07 PM

C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K 3

consistent and object-oriented environment than either the MFC or COM programming tech-
nologies. Some of its features include the following:

• Multiple platforms: The system runs on a broad range of computers, from servers and
desktop machines to PDAs and cell phones.

• Industry standards: The system uses industry standard communication protocols, such
as XML, HTTP, SOAP, and WSDL.

• Security: The system can provide a much safer execution environment, even in the pres-
ence of code obtained from suspect sources.

Components of the .NET Framework
The .NET Framework is made up of three components, as shown in Figure 1-2. The execution
environment is called the Common Language Runtime (CLR). The CLR manages program exe-
cution at run time, including the following:

• Memory management

• Code safety verification

• Code execution

• Garbage collection

The programming tools include everything you need for coding and debugging, including
the following:

• The Visual Studio integrated development environment

• .NET-compliant compilers (e.g., C#, VB, JScript, and managed C++)

• Debuggers

• Server-side improvements, such as ASP.NET

The Base Class Library (BCL) is a large class library used by the .NET Framework and avail-
able for you to use in your programs as well.

Figure 1-2. Components of the .NET Framework

9543.book Page 3 Monday, December 3, 2007 6:07 PM

4 C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K

An Improved Programming Environment
The .NET Framework offers programmers considerable improvements over previous Windows
programming environments. A brief overview of its features and their benefits is given in the
following sections.

Object-Oriented Development Environment

The CLR, the BCL, and C# are designed to be thoroughly object-oriented and act as a well-
integrated environment.

The system provides a consistent, object-oriented model of programming for both local
programs and distributed systems. It also provides a software development interface for desk-
top application programming, mobile application programming, and web development,
consistent across a broad range of targets, from servers to cell phones.

Automatic Garbage Collection

The CLR has a service called the Garbage Collector (GC), which automatically manages mem-
ory for you.

• The GC automatically deletes objects from memory that your program will no longer
access.

• The GC relieves the programmer of tasks that he or she has traditionally had to perform,
such as deallocating memory and hunting for memory leaks. This is no small feature,
since hunting for memory leaks can be difficult and time-consuming.

9543.book Page 4 Monday, December 3, 2007 6:07 PM

C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K 5

Interoperability

The .NET Framework was designed for interoperability between different .NET languages, the
operating system or Win32 DLLs, and COM.

• .NET language interoperability allows software modules written using different .NET
languages to interact seamlessly.

– A program written in one .NET language can use and even inherit from a class
written in another .NET language, as long as certain rules are followed.

– Because of its ability to easily integrate modules produced in different programming
languages, the .NET Framework is sometimes described as language agnostic.

• .NET provides a feature called platform invoke (P/Invoke), which allows code written
for .NET to call and use code not written for .NET but exported as raw C functions by
standard Win32 DLLs, such as the Windows APIs.

• The .NET Framework also allows interoperability with COM. .NET software components
can call COM components and COM components can call .NET components as if they
were COM components themselves.

No COM Required

The .NET Framework frees the programmer from the COM legacy. As a C# programmer, you do
not need to use COM, and therefore do not need any of the following:

• The IUnknown interface: In COM, all objects must implement interface IUnknown. In con-
trast, all .NET objects derive from a single class called object. Interface programming is
still an important part of .NET, but it is no longer the central theme.

• Type libraries: In COM, type information is kept in type libraries as .tlb files, which
are separate from the executable code. In .NET, a program’s type information is kept
together with the code in the program file.

• Reference counting: In COM, the programmer must keep track of the number of refer-
ences to an object to make sure it is not deleted at the wrong time. In .NET, the GC keeps
track of references and deletes objects only when appropriate.

• HRESULT: COM uses the HRESULT data type to return runtime error codes. .NET does not
use HRESULTs. Instead, all unexpected runtime errors produce exceptions.

• The registry: COM applications must be registered in the system registry, which holds
information about the configurations of the operating system and applications. .NET
applications do not use the registry—simplifying the installation and removal of pro-
grams. (Although there is something similar called the Global Assembly Cache, which I’ll
cover in Chapter 10.)

9543.book Page 5 Monday, December 3, 2007 6:07 PM

6 C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K

Simplified Deployment

Deploying programs written for the .NET Framework can be much easier than it was before, for
the following reasons:

• The fact that .NET programs don’t need to be registered with the registry means that
in the simplest case, a program just needs to be copied to the target machine and it’s
ready to run.

• .NET offers a feature called side-by-side execution, which allows different versions of a
DLL to exist on the same machine. This means that every executable can have access to
the version of the DLL for which it was built.

Type Safety

The CLR checks and ensures the type safety of parameters and other data objects—even
between components written in different programming languages.

The Base Class Library

The .NET Framework supplies an extensive base class library, called, not surprisingly, the Base
Class Library (BCL). (It is also sometimes called the Framework Class Library—FCL). You can
use this extensive set of available code when writing your own programs. Some of the catego-
ries are the following:

• General base classes: Classes that provide you with an extremely powerful set of tools
for a wide range of programming tasks, such as string manipulation, security, and
encryption

• Collection classes: Classes that implement lists, dictionaries, hash tables, and bit arrays

• Threading and synchronization classes: Classes for building multithreaded programs

• XML classes: Classes for creating, reading, and manipulating XML documents

9543.book Page 6 Monday, December 3, 2007 6:07 PM

C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K 7

Compiling to the Common Intermediate
Language (CIL)
The compiler for a .NET language takes a source code file and produces an output file called an
assembly. An assembly is either an executable or a DLL. The process is illustrated in Figure 1-3.

• The code in an assembly is not native machine code, but an intermediate language
called the Common Intermediate Language (CIL).

• An assembly, among other things, contains the following items:

– The program’s CIL

– Metadata about the types used in the program

– Metadata about references to other assemblies

Figure 1-3. The compilation process

The acronym for the intermediate language has changed over time, and different refer-
ences use different terms. Two other terms for the CIL that you might encounter are IL
(Intermediate Language) and MSIL (Microsoft Intermediate Language), which was used
during initial development and early documentation.

9543.book Page 7 Monday, December 3, 2007 6:07 PM

8 C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K

Compiling to Native Code and Execution
The program’s CIL is not compiled to native machine code until it is called to run. At run time,
the CLR performs the following steps (as shown in Figure 1-4):

• It checks the assembly’s security characteristics.

• It allocates space in memory.

• It sends the assembly’s executable code to the Just-in-Time (JIT) compiler, which com-
piles portions of it to native code.

The executable code in the assembly is compiled by the JIT compiler as it is needed. It is
then cached in case it is needed for execution again later in the program. Using this process
means that code that isn’t called isn’t compiled to native code, and code that is called is only
compiled once.

Figure 1-4. Compilation to native code occurs at run time

Once the CIL is compiled to native code, the CLR manages it as it runs, performing such
tasks as releasing orphaned memory, checking array bounds, checking parameter types, and
managing exceptions. This brings up two important terms:

• Managed code: Code written for the .NET Framework is called managed code, and needs
the CLR.

• Unmanaged code: Code that does not run under the control of the CLR, such as Win32
C/C++ DLLs, is called unmanaged code.

Microsoft also supplies a tool called the Native Image Generator, or Ngen, which takes an
assembly and produces native code for the current processor. Code that has been run through
Ngen avoids the JIT compilation process at run time.

9543.book Page 8 Monday, December 3, 2007 6:07 PM

C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K 9

Overview of Compilation and Execution
The same compilation and execution process is followed regardless of the language of the orig-
inal source files. Figure 1-5 illustrates the entire compilation and runtime processes for three
programs written in different languages.

Figure 1-5. Overview of the compile-time and runtime processes

9543.book Page 9 Monday, December 3, 2007 6:07 PM

10 C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K

The Common Language Runtime (CLR)
The core component of the .NET Framework is the CLR, which sits on top of the operating
system and manages program execution, as shown in Figure 1-6. The CLR also provides the fol-
lowing services:

• Automatic garbage collection

• Security and authentication

• Extensive programming functionality through access to the BCL—including functional-
ity such as web services and data services

Figure 1-6. Overview of the CLR

9543.book Page 10 Monday, December 3, 2007 6:07 PM

C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K 11

The Common Language Infrastructure (CLI)
Every programming language has a set of intrinsic types representing such objects as integers,
floating point numbers, characters, and so on. Historically, the characteristics of these types
have varied from one programming language to another and from platform to platform. For
example, the number of bits constituting an integer has varied widely depending on the lan-
guage and platform.

This lack of uniformity, however, makes it difficult if we want programs to play well with
other programs and libraries written in different languages. To have order and cooperation,
there must be a set of standards.

The Common Language Infrastructure (CLI) is a set of standards that ties all the compo-
nents of the .NET Framework into a cohesive, consistent system. It lays out the concepts and
architecture of the system, and specifies the rules and conventions to which all the software
must adhere. The components of the CLI are illustrated in Figure 1-7.

Figure 1-7. Components of the CLI

Both the CLI and C# have been approved as open international standard specifications by
Ecma International. (The name “Ecma” used to be an acronym for the European Computer
Manufacturers Association, but it’s now just a word in itself.) Ecma members include Microsoft,
IBM, Hewlett-Packard, Adobe, and many other corporations associated with computers and
consumer electronics.

9543.book Page 11 Monday, December 3, 2007 6:07 PM

12 C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K

Important Parts of the CLI
Although most programmers don’t need to know the details of the CLI specifications, you
should at least be familiar with the meaning and purpose of the Common Type System and the
Common Language Specification.

Common Type System (CTS)

The Common Type System (CTS) defines the characteristics of the types that must be used in
managed code. Some important aspects of the CTS are the following:

• The CTS defines a rich set of intrinsic types, with fixed, specific characteristics for each type.

• The types provided by a .NET-compliant programming language generally map to some
specific subset of this defined set of intrinsic types.

• One of the most important characteristics of the CTS is that all types are derived from a
common base class—called object.

Common Language Specification (CLS)

The Common Language Specification (CLS) specifies the rules, properties, and behaviors of a
.NET-compliant programming language.

The topics include data types, class construction, and parameter passing.

9543.book Page 12 Monday, December 3, 2007 6:07 PM

C H A P T E R 1 ■ C # A N D T H E . N E T F R A M E W O R K 13

Review of the Acronyms
This chapter has covered a lot of .NET acronyms, so Figure 1-8 is included to help you keep
them straight.

Figure 1-8. The .NET acronyms

9543.book Page 13 Monday, December 3, 2007 6:07 PM

9543.book Page 14 Monday, December 3, 2007 6:07 PM

15

■ ■ ■

C H A P T E R 2

Overview of C# Programming

A Simple C# Program
Identifiers and Keywords
Main: The Starting Point of a Program
Whitespace
Statements
Text Output from a Program
Comments: Annotating the Code

9543.book Page 15 Monday, December 3, 2007 6:07 PM

16 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

A Simple C# Program
This chapter will lay the groundwork for studying C#. Since I will use code samples extensively
throughout the text, I first need to show you what a C# program looks like and what its various
parts mean.

I’ll start by demonstrating a simple program and explaining its components one by one.
This will introduce a range of topics, from the structure of a C# program to the method of pro-
ducing program output to the screen.

With these source code preliminaries under your belt, I can then use code samples freely
throughout the rest of the text. So, unlike the following chapters, where one or two topics will be
covered in detail, this chapter will touch on many topics with only a minimum of explanation.

Let’s start by looking at a simple C# program. The complete program source is shown
in the top shaded area in Figure 2-1. As shown, the code is contained in a text file called
SimpleProgram.cs. As you read through it, don’t worry about understanding all the details.
Table 2-1 gives a line-by-line description of the code.

• When the code is compiled and executed, it displays the string “Hi there!” in a window
on the screen.

• One line contains two contiguous slash characters. These characters—and everything
following them on the line—are ignored by the compiler. This is called a single-line
comment.

Figure 2-1. The SimpleProgram program

9543.book Page 16 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 17

Table 2-1. The SimpleProgram Program, Line by Line

More About SimpleProgram
A C# program consists of one or more type declarations. Much of this book is spent explaining
the different types that you can create and use in your programs. The types in a program can
be declared in any order. In the SimpleProgram example, only the class type is declared.

A namespace is a set of type declarations associated with a name. SimpleProgram uses two
namespaces. It creates a new namespace called Simple, and uses a predefined namespace
called System.

To compile the program, you can use Visual Studio or the command-line compiler. To use
the command-line compiler, in its simplest form, use the following command:

In this command, csc is the name of the command-line compiler and SimpleProgram.cs is
the name of the source file.

Line Number Description

Line 1 Tells the compiler that this program uses types from the System namespace.

Line 3 Declares a new namespace, called Simple.

• The new namespace starts at the open curly brace on line 4 and extends
through the matching curly brace on line 12.

• Any types declared within this section are members of the namespace.

Line 5 Declares a new class type, called Program.

• Any members declared between the matching curly braces on lines 6 and 11 are
members that make up this class.

Line 7 Declares a method called Main as a member of class Program.

• In this program, Main is the only member of the Program class.

• Main is a special function used by the compiler as the starting point of the
program.

Line 9 Contains only a single, simple statement; this line constitutes the body of Main.

• Simple statements are terminated by a semicolon.

• This statement uses a class called Console, in namespace System, to print out
the message to a window on the screen.

• Without the using statement in line 1, the compiler wouldn’t have known
where to look for class Console.

 csc SimpleProgram.cs

9543.book Page 17 Monday, December 3, 2007 6:07 PM

18 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

Identifiers and Keywords
Identifiers are character strings used to name things such as variables, methods, parameters,
and a host of other programming constructs that will be covered later.

You can create self-documenting identifiers by concatenating meaningful words into a
single descriptive name, using uppercase and lowercase letters (e.g., CardDeck, PlayersHand,
FirstName, SocSecurityNum). Certain characters are allowed or disallowed at certain positions
in an identifier. These rules are illustrated in Figure 2-2.

• The alphabetic and underscore characters (a through z, A through Z, and _) are allowed
at any position.

• Digits are not allowed in the first position, but are allowed everywhere else.

• The @ character is allowed in the first position of an identifier, but not anywhere else. The
use of the @ character, although allowed, is discouraged for general use.

Figure 2-2. Characters allowed in identifiers

Identifiers are case sensitive. For instance, the variable names myVar and MyVar are differ-
ent identifiers. It is generally a bad idea, however, to have identifiers that differ only in the case
of some of the letters.

As an example, in the following code snippet, the variable declarations are all valid and
declare different integer variables. But using such similar names will make coding more error-
prone and debugging more difficult. Those debugging your code at some later time will not be
pleased.

 // Valid syntactically, but don't do this!
 int totalCycleCount;
 int TotalCycleCount;
 int TotalcycleCount;

9543.book Page 18 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 19

Naming Conventions
The C# Language Specification suggests that certain casing conventions be used in creating
identifiers. The suggested guidelines for casing are described and summarized in Table 2-2.

For most identifiers, the Pascal casing style should be used. In this style, each of the words
combined to make an identifier is capitalized—for example, FirstName and LastName.

Table 2-2. Recommended Identifier Naming Styles

Although these are the suggested guidelines, many organizations use other conventions—
particularly in the naming of member fields, which will be introduced in the next chapter. Two
of the common conventions are the following:

• Begin a field name with an underscore: _HighTemp, _LowTemp.

• Begin a field name with m_: m_HighTemp, m_LowTemp.

Both of these methods have the advantage of showing you immediately that these identi-
fiers are field names. These forms also allow Visual Studio’s IntelliSense feature to group all the
fields together in the pop-ups.

Style Name Description Recommended Use Examples

Pascal casing Each word in the identi-
fier is capitalized.

Use for type names and
member names.

CardDeck, DealersHand

Camel casing Each word in the identi-
fier, except the first, is
capitalized.

Use for local variables
and method parameters.

totalCycleCount,
randomSeedParam

Uppercase The identifier is com-
posed of all uppercase
letters.

Use only for
abbreviations.

IO, DMA, XML

9543.book Page 19 Monday, December 3, 2007 6:07 PM

20 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

Keywords
Keywords are the character string tokens used to define the C# language. A complete list of the
C# keywords is given in Table 2-3.

Some important things to know about keywords are the following:

• Keywords cannot be used as variable names or any other form of identifier, unless pref-
aced with the @ character.

• All C# keywords consist entirely of lowercase letters. .NET type names, however, use
Pascal casing.

Table 2-3. The C# Keywords

Contextual keywords are identifiers that act as keywords only in certain language con-
structs. In those positions, they have particular meanings; but unlike keywords, which cannot
ever be used as identifiers, contextual keywords can be used as identifiers in other parts of the
code. The list of contextual keywords is shown in Table 2-4.

Table 2-4. The C# Contextual Keywords

abstract const extern int out short typeof

as continue false interface override sizeof uint

base decimal finally internal params stackalloc ulong

bool default fixed is private static unchecked

break delegate float lock protected string unsafe

byte do for long public struct ushort

case double foreach namespace readonly switch using

catch else goto new ref this virtual

char enum if null return throw void

checked event implicit object sbyte true volatile

class explicit in operator sealed try while

ascending by descending equals from get group

into join let on orderby partial select

set value where yield

9543.book Page 20 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 21

Main: The Starting Point of a Program
Every C# program must have one class with a method (function) called Main. In the
SimpleProgram program shown previously, it was declared in a class called Program.

• The starting point of execution of every C# program is at the first instruction in Main.

• The name Main must be capitalized.

• The simplest form of Main is the following:

Whitespace
Whitespace in a program refers to characters that do not have a visible output character.
Whitespace in source code is ignored by the compiler, but is used by the programmer to make
the code clearer and easier to read. Some of the whitespace characters include the following:

• Space

• Tab

• New line

• Carriage return

For example, the following code fragments are treated exactly the same by the compiler in
spite of their differences in appearance.

static void Main()
{
 Statements
}

 // Nicely formatted
 Main()
 {
 Console.WriteLine("Hi, there!");
 }

 // Just concatenated
 Main(){Console.WriteLine("Hi, there!");}

9543.book Page 21 Monday, December 3, 2007 6:07 PM

22 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

Statements
The statements in C# are very similar to those of C and C++. This section will introduce the gen-
eral form of statements; the specific statement forms will be covered in Chapter 9.

Simple Statements
A statement is a source code instruction describing a type or telling the program to perform an
action.

• A simple statement is terminated by a semicolon.

For example, the following code is a sequence of two simple statements. The first state-
ment defines a variable named var1 and initializes its value to 5. The second statement prints
the value of variable var1 to a window on the screen.

Blocks
A block is a sequence of zero or more statements enclosed by a matching set of curly braces; it
acts as a single syntactic statement.

You can create a block from the set of two statements in the preceding example by enclos-
ing the statements in matching curly braces, as shown in the following code:

 int var1 = 5;
 System.Console.WriteLine("The value of var1 is {0}", var1);

 {
 int var1 = 5;
 System.Console.WriteLine("The value of var1 is {0}", var1);
 }

9543.book Page 22 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 23

Some important things to know about blocks are the following:

• You can use a block whenever the syntax requires a statement but the action you need
requires more than one simple statement.

• Certain program constructs require blocks. In these constructs, you cannot substitute a
simple statement for the block.

• Although a simple statement is terminated by a semicolon, a block is not followed by a
semicolon. (Actually, the compiler will allow it—but it’s not good style.)

{ Terminating semicolon
 ↓ Terminating semicolon
 int var2 = 5; ↓
 System.Console.WriteLine("The value of var1 is {0}", var1);
}
 ↑ No terminating semicolon

9543.book Page 23 Monday, December 3, 2007 6:07 PM

24 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

Text Output from a Program
A console window is a simple command prompt window that allows a program to display text
and receive input from the keyboard. The BCL supplies a class called Console (in the System
namespace), which contains methods for inputting and outputting data to a console window.

Write
Write is a member of the Console class. It sends a text string to the program’s console window.
In its simplest form, Write sends a literal string of text to the window. The string must be
enclosed in quotation marks.

The following line of code shows an example of using the Write member:

This code produces the following output in the console window:

This is trivial text.

Another example is the following code, which sends three literal strings to the program’s
console window:

This code produces the output that follows. Notice that Write does not append a newline
character after the string, so the output of the three statements runs together on a single line.

This is text1. This is text2. This is text3.
 ↑ ↑ ↑
 First Second Third
 statement statement statement

 Console.Write("This is trivial text.");
 ↑
 Output string

 System.Console.Write ("This is text1.");
 System.Console.Write ("This is text2.");
 System.Console.Write ("This is text3.");

9543.book Page 24 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 25

WriteLine
WriteLine is another member of Console, which performs the same functions as Write, but
appends a newline character to the end of each output string.

For example, if you use the preceding code, substituting WriteLine for Write, the output is
on separate lines:

This code produces the following output in the console window:

This is text 1.
This is text 2.
This is text 3.

 System.Console.WriteLine("This is text 1.");
 System.Console.WriteLine("This is text 2.");
 System.Console.WriteLine("This is text 3.");

9543.book Page 25 Monday, December 3, 2007 6:07 PM

26 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

The Format String
The general form of the Write and WriteLine statements takes more than a single parameter.

• If there is more than a single parameter, the parameters are separated by commas.

• The first parameter must always be a string, and is called the format string.

• The format string can contain substitution markers. A substitution marker marks the
position in the format string where a value should be substituted in the output string.
It consists of an integer enclosed in a set of matching curly braces. The integer is the
numeric position of the substitution value to be used.

• The parameters following the format string are called substitution values. These substi-
tution values are numbered, starting at 0.

The syntax is as follows:

For example, the following statement has two substitution markers, numbered 0 and 1,
and two substitution values, whose values are 3 and 6, respectively.

This code produces the following output on the screen:

Two sample integers are 3 and 6.

 Console.WriteLine(FormatString, SubVal0, SubVal1, SubVal2, ...);

 Substitution markers
 ↓ ↓
 Console.WriteLine("Two sample integers are {0} and {1}.", 3, 6);
 ↑ ↑
 Format string Substitution values

9543.book Page 26 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 27

Multiple Markers and Values
In C#, you can use any number of markers and any number of values.

• The values can be used in any order.

• The values can be substituted any number of times in the format string.

For example, the following statement uses three markers and only two values. Notice that
value 1 is used before value 0, and that value 1 is used twice.

This code displays the following on the screen:

 Three integers are 6, 3 and 6.

A marker must not attempt to reference a value at a position beyond the length of the list
of substitution values. If it does, it will not produce a compile error but a runtime error (called
an exception).

For example, in the following statement there are two substitution values, with positions 0
and 1. The second marker, however, references position 2—which does not exist. This will pro-
duce a runtime error.

 Console.WriteLine("Three integers are {1}, {0} and {1}.", 3, 6);

 Position 0 Position 1
 ↓ ↓
 Console.WriteLine("Two integers are {0} and {2}.", 3, 6); // Error!
 ↑
 There is no position 2 value.

9543.book Page 27 Monday, December 3, 2007 6:07 PM

28 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

Comments: Annotating the Code
You have already seen single-line comments, so here I’ll discuss the second type of inline com-
ments—delimited comments—and mention a third type called documentation comments.

• Delimited comments have a start marker and an end marker.

• Text between the matching markers is ignored by the compiler.

• Delimited comments can span any number of lines.

For example, the following code shows a delimited comment spanning multiple lines.

A delimited comment can also span just part of a line. For example, the following state-
ment shows text commented out of the middle of a line. The result is the declaration of a single
variable, var2.

■Note Single-line and delimited comments behave in C# just as they do in C and C++.

 ↓ Beginning of comment spanning multiple lines
 /*
 This text is ignored by the compiler.
 Unlike single-line comments, delimited comments
 like this one can span several lines.
 */
 ↑ End of comment

 Beginning of comment
 ↓
 int /*var 1,*/ var2;
 ↑
 End of comment

9543.book Page 28 Monday, December 3, 2007 6:07 PM

C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G 29

More About Comments
There are several other important things you need to know about comments:

• Nested comments are not allowed. Only one comment can be in effect at a time.

• The comment that starts first is in effect until the end of its scope. The scope for partic-
ularly comment types is as follows:

– For single-line comments, the end of the current line

– For delimited comments, the first end delimiter encountered

The following attempts at comments are incorrect:

Documentation Comments
C# also provides a third type of comment: the documentation comment. Documentation com-
ments contain XML text that can be used to produce program documentation. Comments of
this type look like single-line comments, except that they have three contiguous slashes rather
than two. I will cover documentation comments in Chapter 25.

The following code shows the form of documentation comments:

 ↓ Opens the comment
 /* This is an attempt at a nested comment.
 /* ← Ignored because it is inside a comment
 Inner comment
 */ ← Closes the comment because it is the first end delimiter encountered
 */ ← Syntax error because it has no opening delimiter

 ↓ Opens the comment ↓ Ignored because it is inside a comment
 // Single-line comment /* Nested comment?
 */ ← Incorrect because it has no opening delimiter

 /// <summary>
 /// This class does...
 /// </summary>
 class Program
 {
 ...

9543.book Page 29 Monday, December 3, 2007 6:07 PM

30 C H A P T E R 2 ■ O V E R V I E W O F C # P R O G R A M M I N G

Summary of Comment Types
Inline comments are sections of text that are ignored by the compiler but are included in the
code to document it. Programmers insert comments into their code to explain and document
it. Table 2-5 gives a summary of the comment types.

Table 2-5. Comment Types

Type Start End Description

Single-line // The text from the beginning marker to the end of the current
line is ignored by the compiler.

Delimited /* */ The text between the start and end markers is ignored by the
compiler.

Documentation /// Comments of this type contain XML text that is meant to be
used by a tool to produce program documentation.

9543.book Page 30 Monday, December 3, 2007 6:07 PM

31

■ ■ ■

C H A P T E R 3

Types, Storage, and Variables

A C# Program Is a Set of Type Declarations
A Type Is a Template
Instantiating a Type
Data Members and Function Members
Predefined Types
User-Defined Types
The Stack and the Heap
Value Types and Reference Types
Variables

9543.book Page 31 Monday, December 3, 2007 6:07 PM

32 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

A C# Program Is a Set of Type Declarations
If you were to broadly characterize the source code of C and C++ programs, you might say that
a C program is a set of functions and data types, and that a C++ program is a set of functions
and classes. A C# program, however, is a set of type declarations.

• The source code of a C# program or DLL is a set of one or more type declarations.

• For an executable, one of the types declared must be a class that includes a method
called Main.

• A namespace is a way of grouping a related set of type declarations and giving the group
a name. Since your program is a related set of type declarations, you will generally
declare your program inside a namespace you create.

For example, the following code shows a program that consists of three type declarations.
The three types are declared inside a new namespace called MyProgram.

Namespaces will be covered in more detail in Chapter 10.

 namespace MyProgram // Create a new namespace.
 {
 DeclarationOfTypeA // Declare a type.

 DeclarationOfTypeB // Declare a type.

 class C // Declare a type.
 {
 static void Main()
 {
 ...
 }
 }
 }

9543.book Page 32 Monday, December 3, 2007 6:07 PM

C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S 33

A Type Is a Template
Since a C# program is just a set of type declarations, learning C# consists of learning how to cre-
ate and use types. So the first thing you need to do is to look at what a type is.

You can start by thinking of a type as a template for creating a data structure. It is not the
data structure itself, but it specifies the characteristics of objects constructed from the
template.

A type is defined by the following elements:

• A name

• A data structure to contain its data members

• Behaviors and constraints

For example, Figure 3-1 illustrates the components of two types: short and int.

Figure 3-1. A type is a template.

Instantiating a Type
Creating an actual object from the type’s template is called instantiating the type.

• The object created by instantiating a type is called either an object of the type or an
instance of the type. The terms are interchangeable.

• Every data item in a C# program is an instance of some type—either a type provided by
the language, provided by the BCL or another library, or defined by the programmer.

Figure 3-2 illustrates the instantiation of objects of two predefined types.

Figure 3-2. Instantiating a type creates an instance.

9543.book Page 33 Monday, December 3, 2007 6:07 PM

34 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

Data Members and Function Members
Some types, such as short, int, and long, are called simple types, and can only store a single
data item.

Other types can store multiple data items. An array, for example, is a type that can store
multiple items of the same type. The individual items are called elements, and are referenced
by a number, called an index. I will describe arrays in detail in Chapter 14.

Types of Members
Other types, however, can contain data items of many different types. The individual elements
in these types are called members, and, unlike arrays, in which each member is referred to by a
number, these members have distinct names.

There are two types of members: data members and function members.

• Data members store data that is relevant to the object of the class or to the class itself.

• Function members execute code. Function members define how the type can act.

For example, Figure 3-3 shows some of the data members and function members of type
XYZ. It contains two data members and two function members.

Figure 3-3. Types specify data members and function members.

9543.book Page 34 Monday, December 3, 2007 6:07 PM

C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S 35

Predefined Types
C# provides 15 predefined types, which are shown in Figure 3-4 and listed in Tables 3-1
and 3-2. They include 13 simple types and 2 non-simple types.

The names of all the predefined types consist of all lowercase characters. The predefined
simple types include the following:

• Eleven numeric types, including

– Various lengths of signed and unsigned integer types.

– Floating point types—float and double.

– A high-precision decimal type called decimal. Unlike float and double, type decimal
can represent decimal fractional numbers exactly. It is often used for monetary
calculations.

• A Unicode character type, called char.

• A Boolean type, called bool. Type bool represents Boolean values and must be one of two
values—either true or false.

■Note Unlike C and C++, numeric values do not have a Boolean interpretation in C#.

The two non-simple types are the following:

• Type string, which is an array of Unicode characters.

• Type object, which is the type on which all other types are based.

Figure 3-4. The predefined types

9543.book Page 35 Monday, December 3, 2007 6:07 PM

36 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

More About the Predefined Types
All the predefined types are mapped directly to underlying .NET types. The C# type names are
just aliases for the .NET types, so using the .NET names works fine syntactically, although this is
discouraged. Within a C# program, you should use the C# names rather than the .NET names.

The predefined simple types represent a single item of data. They are listed in Table 3-1, along
with the ranges of values they can represent and the underlying .NET types to which they map.

Table 3-1. The Predefined Simple Types

The non-simple predefined types are somewhat more complex. Values of type string con-
tain zero or more Unicode characters. The object type is the base class for all other types in the
system, including the predefined, simple types. These are shown in Table 3-2.

Table 3-2. The Predefined Non-Simple Types

Name Meaning Range
.NET
Framework Type

Default
Value

sbyte 8-bit unsigned integer -128–127 System.SByte 0

byte 8-bit unsigned integer 0–255 System.Byte 0

short 16-bit unsigned integer -32,768–32,767 System.Int16 0

ushort 16-bit unsigned integer 0–65,535 System.UInt16 0

int 32-bit signed integer -2,147,483,648–2,147,483,647 System.Int32 0

uint 32-bit unsigned integer 0–4,294,967,295 System.UInt32 0

long 64-bit signed integer -9,223,372,036,854,775,808–
9,223,372,036,854,775,807

System.Int64 0

ulong 64-bit unsigned integer 0–18,446,744,073,709,551,615 System.UInt64 0

float Single-precision float 1.5×10-45–3.4×1038 System.Single 0.0f

double Double-precision float 5×10-324–1.7×10308 System.Double 0.0d

bool Boolean true, false System.Boolean false

char Unicode character U+0000–U+ffff System.Char \x0000

decimal Decimal value with
28-significant-digit
precision

±1.0×1028–±7.9×1028 System.Decimal 0m

Name Meaning .NET Framework Type

object The base class from which all other types are derived. System.Object

string A sequence of Unicode characters. System.String

9543.book Page 36 Monday, December 3, 2007 6:07 PM

C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S 37

User-Defined Types
Besides the 15 predefined types provide by C#, you can also create your own user-defined
types. There are six kinds of types you can create. They are the following:

• class types

• struct types

• array types

• enum types

• delegate types

• interface types

Types are created using a type declaration, which includes the following information:

• The kind of type you are creating

• The name of the new type

• A declaration (name and specification) of each of the type’s members—except for array
and delegate types, which do not have named members

Once you have declared a type, you can create and use objects of the type just as if they
were predefined types. Figure 3-5 summarizes the use of predefined and user-defined types.
Using predefined types is a one-step process in which you simply instantiate the objects. Using
user-defined types is a two-step process. You first declare the type and then instantiate objects
of the type.

Figure 3-5. The predefined types require instantiation only. The user-defined types require two
steps: declaration and instantiation.

9543.book Page 37 Monday, December 3, 2007 6:07 PM

38 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

The Stack and the Heap
While a program is running, its data must be stored in memory. How much memory is required
for an item, and where and how it is stored, depends on its type.

A running program uses two regions of memory to store data: the stack and the heap.

The Stack
The system takes care of all stack manipulation. You, as the programmer, don’t need to do any-
thing with it explicitly. But understanding its basic functions will give you a better understanding
of what your program is doing when it is running, and allow you to better understand the C# doc-
umentation and literature.

The stack is an array of memory that acts as a last-in, first-out (LIFO) data structure. It
stores several types of data:

• The values of certain types of variables

• The program’s current execution environment

• Parameters passed to methods

Facts About Stacks

The general characteristics of stacks are the following:

• Data can only be added to and deleted from the top of the stack.

• Placing a data item at the top of the stack is called pushing the item onto the stack.

• Deleting an item from the top of the stack is called popping the item from the stack.

Figure 3-6 illustrates the functions and terminology of the stack.

Figure 3-6. Pushing and popping on the stack

9543.book Page 38 Monday, December 3, 2007 6:07 PM

C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S 39

The Heap
The heap is an area where chunks of memory can be allocated to store certain kinds of data.
Unlike the stack, memory can be stored and removed from the heap in any order. Figure 3-7
shows a program that has stored four items in the heap.

Figure 3-7. The memory heap

Although your program can store items in the heap, it cannot explicitly delete them.
Instead, the CLR’s Garbage Collector (GC) automatically cleans up orphaned heap objects
when it determines that your code will no longer access them. This frees you from what in
other programming languages can be an error-prone task. Figure 3-8 illustrates the garbage
collection process.

Figure 3-8. Automatic garbage collection in the heap

9543.book Page 39 Monday, December 3, 2007 6:07 PM

40 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

Value Types and Reference Types
The type of a data item defines how much memory is required to store it, the data members
that comprise it, and the functions that it is able to execute. The type also determines where an
object is stored in memory—the stack or the heap.

Types are divided into two categories: value types and reference types. Objects of these
types are stored differently in memory.

• Value types require only a single segment of memory—which stores the actual data.

• Reference types require two segments of memory:

– The first contains the actual data—and is always located in the heap.

– The second is a reference that points to where in the heap the data is stored.

Data that is not a member of another type is stored as shown in Figure 3-9. For value types,
data is stored on the stack. For reference types, the actual data is stored in the heap and the ref-
erence is stored on the stack.

Figure 3-9. Storing data that is not part of another type

Storing Members of a Reference Type Object
Figure 3-9 shows how data is stored when it is not a member of another type. When it is a mem-
ber of another type, data might be stored a little differently.

• The data portion of a reference type object is always stored in the heap, as shown in the
figure.

• A value type object, or the reference part of a reference type, can be stored in either the
stack or the heap, depending on the circumstances.

Suppose, for example, that you have an instance of a reference type, called MyType, that has
two members—a value type member and a reference type member. How is it stored? Is the
value type member stored on the stack and the reference type split between the stack and the
heap as shown in Figure 3-9? The answer is no.

9543.book Page 40 Monday, December 3, 2007 6:07 PM

C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S 41

Remember that for a reference type, the data of an instance is always stored in the heap.
Since both members are part of the object’s data, they are both stored in the heap, regardless
of whether they are value or reference types. Figure 3-10 illustrates the case of type MyType.

• Even though member A is a value type, it is part of the data of the instance of MyType, and
is therefore stored with the object’s data in the heap.

• Member B is a reference type, and therefore its data portion will always be stored in the
heap, as shown by the small box marked “Data.” What’s different is that its reference is
also stored in the heap, inside the data portion of the enclosing MyType object.

Figure 3-10. Storage of data as part of a reference type

■Note For any object of a reference type, all its data members are stored in the heap, regardless of
whether they are of value type or reference type.

Categorizing the C# Types
Table 3-3 shows all the types available in C# and what kinds of types they are—value types or
reference types. Each type will be covered later in the text.

Table 3-3. Value Types and Reference Types in C#

Value Types Reference Types

Predefined Types sbyte
short
int
long
bool

byte
ushort
uint
ulong

float
double
char
decimal

object
string

User-Defined Types struct
enum

class
interface
delegate
array

9543.book Page 41 Monday, December 3, 2007 6:07 PM

42 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

Variables
A general-purpose programming language must allow a program to store and retrieve data.

• A variable is a name that represents data stored in memory during program execution.

• C# provides four categories of variables, each of which will be discussed in detail. These
kinds are listed in Table 3-4.

Table 3-4. The four types of variables

Variable Declarations
A variable must be declared before it can be used. The variable declaration defines the variable,
and accomplishes two things:

• It gives the variable a name and associates a type with it.

• It allows the compiler to allocate memory for it.

A simple variable declaration requires at least a type and a name. The following declara-
tion defines a variable named var2, of type int:

For example, Figure 3-11 represents the declaration of four variables and their places on
the stack.

Figure 3-11. Value type and reference type variable declarations

Name Member of a Type Description

Local Variable No These hold temporary data within the scope of a method.

Field Yes These hold data associated with a type.

Parameter No These temporary variables are used to pass data from one
method to another method.

Array element Yes These are used to store temporary or type-associated data.

 Type
 ↓
 int var2;
 ↑
 Name

9543.book Page 42 Monday, December 3, 2007 6:07 PM

C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S 43

Variable Initializers

Besides declaring a variable’s name and type, a declaration can also initialize its memory to a
specific value.

A variable initializer consists of an equals sign followed by the initializing value, as shown here:

Local variables without initializers have an undefined value, and cannot be used until they
have been assigned a value. Attempting to use an undefined local variable causes the compiler
to produce an error message.

Figure 3-12 shows a number of local variable declarations on the left, and the resulting
stack configuration on the right. Some of the variables have initializers and others do not.

Figure 3-12. Variable initializers

Automatic Initialization

Some kinds of variables are automatically set to default values if they are declared without an
initializer, and others are not. Variables that are not automatically initialized to default values
contain undefined values until the program assigns them a value. Table 3-5 shows which types
of variables are automatically initialized and which are not. I will cover each of the five variable
types later in the text.

Table 3-5. Types of Variables

 Initializer
 ↓
 int var2 = 17;

Variable Type Stored In Auto-Initialized Use

Local variables Stack or stack and heap No Used for local computation inside
a function member

Class fields Heap Yes Members of a class

Struct fields Stack or heap Yes Members of a struct

Parameters Stack No Used for passing values into and
out of a method

Array elements Heap Yes Members of an array

9543.book Page 43 Monday, December 3, 2007 6:07 PM

44 C H A P T E R 3 ■ T Y P E S , S T O R A G E , A N D V A R I A B L E S

Multiple-Variable Declarations
You can declare multiple variables in a single declaration statement.

• The variables in a multiple-variable declaration must all be of the same type.

• The variable names must be separated with commas. Initializers can be included with
the variable names.

For example, the following code shows two valid declaration statements with multiple
variables. Notice that the initialized variables can be mixed with uninitialized variables as long
as they are separated by commas. The last declaration statement is invalid because it attempts
to declare different types of variables in a single statement.

Using the Value of a Variable
A variable name represents the value stored by the variable. You can use the value by using the
variable name.

For example, the value of var2 is retrieved from memory and placed at the position of the
variable name, like so:

 // Variable declarations--some with initializers, some without
 int var3 = 7, var4, var5 = 3;
 double var6, var7 = 6.52;

 Type Different type
 ↓ ↓
 int var8, float var9; // Error! Can't mix types (int & float)

 Console.WriteLine("{0}", var2);

9543.book Page 44 Monday, December 3, 2007 6:07 PM

45

■ ■ ■

C H A P T E R 4

Classes: The Basics

Overview of Classes
Programs and Classes: A Quick Example
Declaring a Class
Class Members
Creating Variables and Instances of a Class
Allocating Memory for the Data
Instance Members
Access Modifiers
Accessing Members from Inside the Class
Accessing Members from Outside the Class
Putting It All Together

9543.book Page 45 Monday, December 3, 2007 6:07 PM

46 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Overview of Classes
In the previous chapter, you saw that C# provides six user-defined types. The most important
of these, and the one I will cover first, is the class. Since the topic of classes in C# is a large one,
its discussion will be spread over the next several chapters.

A Class Is an Active Data Structure
Before the days of object-oriented analysis and design, programmers thought of a program as
just a sequence of instructions. The focus at that time was on structuring and optimizing those
instructions. With the advent of the object-oriented paradigm, the focus changed from opti-
mizing instructions to organizing a program’s data and functions into encapsulated sets of
logically related data items and functions, called classes.

A class is a data structure that can store data and execute code. It contains the following:

• Data members, which store data associated with the class or an instance of the class. Data
members generally model the attributes of the real-world object the class represents.

• Function members, which execute code. Function members generally model the func-
tions and actions of the real-world object the class represents.

A C# class can have any number of data and function members. The members can be any
combination of nine possible member types. These member types are shown in Table 4-1. The
ones I will cover in this chapter—fields and methods—are checked in the table.

Table 4-1. Types of Class Members

■Note Classes are encapsulated sets of logically related data items and functions that generally represent
objects in the real world or a conceptual world.

Data Members–Store Data Function Members–Execute Code

✔ Fields
❑ Constants

✔ Methods
❑ Properties
❑ Constructors
❑ Destructors

❏ Operators
❏ Indexers
❏ Events

9543.book Page 46 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 47

Programs and Classes: A Quick Example
A running C# program is a group of interacting type objects, most of which are instances of
classes. For example, suppose you have a program simulating a poker game. When it is run-
ning, it has an instance of a class called Dealer, whose job it is to run the game, and several
instances of a class called Player, which represent the players of the game.

The Dealer object stores such information as the current state of the card deck and the
number of players. Its actions include shuffling the deck and dealing the cards.

The Player class is very different. It stores such information as the player’s name and the
amount of money left to bet, and performs such actions as analyzing the player’s current hand
and placing bets. The running program is illustrated in Figure 4-1.

Figure 4-1. The objects in a running program

A real program would undoubtedly contain dozens of other classes besides Dealer and
Player. These would include classes such as Card and Deck. Each class models some thing that
is a component of the poker game.

■Note A running program is a set of objects interacting with each other.

9543.book Page 47 Monday, December 3, 2007 6:07 PM

48 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Declaring a Class
Although types int, double, and char are defined by C#, classes such as Dealer and Player,
as you can probably guess, are not defined by the language. If you want to use them in a pro-
gram, you will have to define them yourself. You do this by writing a class declaration.

A class declaration defines the characteristics and members of a new class. It does not cre-
ate an instance of the class, but creates the template from which class instances will be created.
The class declaration provides the following:

• The class name

• The members of the class

• The characteristics of the class

The following is an example of the minimum syntax for a class declaration. The curly
braces contain the member declarations that make up the class body. Class members can be
declared in any order inside the class body. This means that it is perfectly fine for the declara-
tion of a member to refer to another member that is not yet defined until further down in the
class declaration.

 For example, the following code shows the outlines of two class declarations:

■Note Since a class declaration “defines” a new class, you will often see a class declaration referred to as
a “class definition” both in the literature and in common usage among programmers.

 Keyword Class name
 ↓ ↓
 class MyExcellentClass
 {
 MemberDeclarations
 }

 class Dealer // Class declaration
 {
 ...
 }

 class Player // Class declaration
 {
 ...
 }

9543.book Page 48 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 49

Class Members
Fields and methods are the most important of the class member types. Fields are data mem-
bers and methods are function members.

Fields
A field is a variable that belongs to a class.

• It can be of any type, either predefined or user-defined.

• Like all variables, fields store data, and have the following characteristics:

– They can be written to.

– They can be read from.

The minimum syntax for declaring a field is the following:

For example, the following class contains the declaration of field MyField, which can store
an int value:

■Note Unlike C and C++, there are no global variables (i.e., variables or fields) declared outside of a type.
All fields belong to a type, and must be declared within the type declaration.

 Type
 ↓
 Type Identifier;
 ↑
 Field name

 class MyClass
 { Type
 ↓
 int MyField;
 ↑
 } Field name

9543.book Page 49 Monday, December 3, 2007 6:07 PM

50 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Explicit and Implicit Field Initialization

Since a field is a kind of variable, the syntax for a field initializer is the same as that of the vari-
able initializer in the previous chapter.

• A field initializer is part of the field declaration, and consists of an equals sign followed
by an expression that evaluates to a value.

• The initialization value must be determinable at compile time.

• If no initializer is used, the value of a field is set by the compiler to a default value, deter-
mined by the type of the field. The default values for the simple types are given in Table 3-1
(in Chapter 3). To summarize them, though, the default value for each type is 0, and false
for bool. The default for reference types is null.

For example, the following code declares four fields. The first two fields are initialized
implicitly. The second two fields are initialized explicitly with initializers.

Declarations with Multiple Fields

You can declare multiple fields of the same type in the same statement by separating the names
with commas. You cannot mix different types in a single declaration. For example, you can
combine the four preceding field declarations into two statements, with the exact same
semantic result:

class MyClass
{
 int F1 = 17;
} ↑
 Field initializer

 class MyClass
 {
 int F1; // Initialized to 0 - value type
 string F2; // Initialized to null - reference type

 int F3 = 25; // Initialized to 25
 string F4 = "abcd"; // Initialized to "abcd"
 }

 int F1, F3 = 25;
 string F2, F4 = "abcd";

9543.book Page 50 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 51

Methods
A method is a named block of executable code that can be executed from many different parts
of the program, and even from other programs. (There are also anonymous methods, which
aren’t named—but I’ll cover those in Chapter 15.)

When a method is called, or invoked, it executes its code, and then returns to the code that
called it. Some methods return a value to the position from which they were called. Methods
correspond to member functions in C++.

The minimum syntax for declaring a method includes the following components:

• Return type: This states the type of value the method returns. If a method does not return
a value, the return type is specified as void.

• Name: This is the name of the method.

• Parameter list: This consists of at least an empty set of matching parentheses. If there are
parameters (which I’ll cover in the next chapter), they are listed between the parentheses.

• Method body: This consists of a matching set of curly braces, containing the executable code.

For example, the following code declares a class with a simple method called PrintNums.
From the declaration, you can tell the following about PrintNums:

• It returns no value; hence, the return type is specified as void.

• It has an empty parameter list.

• It contains two lines of code in its method body.

■Note Unlike C and C++, there are no global functions (i.e., methods or functions) declared outside of a
type declaration.

class SimpleClass
{
Return type Parameter list
 ↓ ↓
 void PrintNums ()
 {
 Console.WriteLine("1");
 Console.WriteLine("2");
 }
}

9543.book Page 51 Monday, December 3, 2007 6:07 PM

52 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Creating Variables and Instances of a Class
The class declaration is just the blueprint from which instances of the class are created. Once a
class is declared, you can create instances of the class.

• Classes are reference types, which, as you will remember from the last chapter, means
that they require memory for both the reference to the data and for the actual data.

• The reference to the data is stored in a variable of the class type. So, to create an instance
of the class, you need to start by declaring a variable of the class type. If the variable is not
initialized, its value is undefined.

Figure 4-2 illustrates how to define the variable to hold the reference. At the top of the code
on the left is a declaration for class Dealer. Below that is a declaration for class Program, which
contains method Main. Main declares variable theDealer of type Dealer. Since the variable is
uninitialized, its value is undefined, as shown on the right in the figure.

Figure 4-2. Allocating memory for the reference of a class variable

9543.book Page 52 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 53

Allocating Memory for the Data
Declaring the variable of the class type allocates the memory to hold the reference, but not the
memory to hold the actual data of the class object. To allocate memory for the actual data, you
use the new operator.

• The new operator allocates and initializes memory for an instance of any specified type.
It allocates the memory from either the stack or the heap, depending on the type.

• Use the new operator to form an object-creation expression, which consists of the
following:

– The keyword new.

– The name of the type of the instance for which memory is to be allocated.

– Matching parentheses, which might or might not include parameters. I’ll discuss
more about the possible parameters later.

• If the memory allocated is for a reference type, the object-creation expression returns a
reference to the allocated and initialized instance of the object in the heap.

This is exactly what you need to allocate and initialize the memory to hold the class
instance data. Use the new operator to create an object-creation expression, and assign the
value returned by it to the class variable. Here’s an example:

The code on the left in Figure 4-3 shows the new operator used to allocate memory and cre-
ate an instance of class Dealer, which is then assigned to the class variable. The memory
structure is illustrated in the figure, to the right of the code.

Figure 4-3. Allocating memory for the data of a class variable

Keyword Parentheses are required.
 ↓ ↓
 new TypeName ()
 ↑
 Type

 Dealer theDealer; // Declare variable for the reference.
 theDealer = new Dealer(); // Allocate memory for the class object.
 ↑
 Object-creation expression

9543.book Page 53 Monday, December 3, 2007 6:07 PM

54 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Combining the Steps
The two steps can be combined by initializing the variable with the object-creation expression.

In the case of local variables, but not fields, you can simplify the syntax a bit more by hav-
ing the compiler infer the type in the declaration part on the left. But I’ll cover that in the
section on local variables in the next chapter.

 Declare variable.
 ↓
 Dealer theDealer = new Dealer(); // Declare and initialize.
 ↑
 Initialize with an object-creation expression.

9543.book Page 54 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 55

Instance Members
A class declaration acts as a blueprint from which you can create as many instances of the class
as you like.

• Instance members: Each instance of a class is a separate entity that has its own set of the
data members, distinct from the other instances of the same class. These are called
instance members since they are associated with an instance of the class.

• Static members: Instance members are the default, but you can also declare members
that are associated with the class, rather than the instance. These are called static mem-
bers, and they will be covered in Chapter 6.

As an example of instance members, the following code shows the poker program with
three instances of class Player. Figure 4-4 shows that each instance has a different value for the
Name field.

Figure 4-4. Instance members are distinct between class objects.

 class Dealer { ... } // Declare class
 class Player { // Declare class
 string Name; // Field
 ...
 }

 class Program {
 static void Main()
 {
 Dealer theDealer = new Dealer();
 Player player1 = new Player();
 Player player2 = new Player();
 Player player3 = new Player();
 ...
 }
 }

9543.book Page 55 Monday, December 3, 2007 6:07 PM

56 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Access Modifiers
From within a class, any function member can access any other member of the class simply by
using that member’s name.

The access modifier is an optional part of a member declaration that specifies what other
parts of the program have access to the member. The access modifier is placed before the sim-
ple declaration forms. The following is the syntax for fields and methods:

The five categories of member access are the following. I will describe the first two in this
chapter, and the others in Chapter 7.

• private

• public

• protected

• internal

• protected internal

Private and Public Access
Private members are only accessible from within the class in which they are declared—other
classes cannot see or access them.

• Private access is the default access level—so if a member is declared without an access
modifier, it is a private member.

• You can also use the private access modifier to explicitly declare a member private.

• There is no semantic difference between declaring a private member implicitly as
opposed to explicitly. The forms are equivalent.

For example, the following two declarations both specify private int members:

 Fields
 AccessModifier Type Identifier;

 Methods
 AccessModifier ReturnType MethodName ()
 {
 ...
 }

 int MyInt1; // Implicitly declared private
 private int MyInt2; // Explicitly declared private
 ↑
 Access modifier

9543.book Page 56 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 57

Public members are accessible to all other objects in the program. You must use the public
access modifier to specify public access.

Depicting Public and Private Access

The figures in this text represent classes as labeled boxes, as shown in Figure 4-5.

• The class members are represented as smaller labeled boxes inside the class boxes.

• Private members are represented enclosed entirely within their class box.

• Public members are represented sticking partially outside their class box.

Figure 4-5. Representing classes and members

 Access modifier
 ↓
 public int MyInt;

9543.book Page 57 Monday, December 3, 2007 6:07 PM

58 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Example of Member Access

Class C1 declares both public and private fields and methods. Figure 4-6 illustrates the visibility
of the members of class C1.

Figure 4-6. Private and public class members

 class C1
 {
 int F1; // Implicit private field
 private int F2; // Explicit private field
 public int F3; // Public field

 void DoCalc() // Implicit private method
 {
 ...
 }

 public int GetVal() // Public method
 {
 ...
 }
 }

9543.book Page 58 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 59

Accessing Members from Inside the Class
As mentioned before, members of a class can access the other class members by just using
their names.

For example, the following class declaration shows the methods of the class accessing the
fields and other methods. Even though the fields and two of the methods are declared private,
all the members of a class can be accessed by any method (or any function member) of the
class. The code is illustrated in Figure 4-7.

Figure 4-7. Members within a class can freely access each other.

 class DaysTemp
 {
 // Fields
 private int High = 75;
 private int Low = 45;

 // Methods
 private int GetHigh()
 {
 return High; // Access private field
 }

 private int GetLow()
 {
 return Low; // Access private field
 }

 public float Average ()
 {
 return (GetHigh() + GetLow()) / 2; // Access private methods
 } ↑ ↑
 } Accessing the private methods

9543.book Page 59 Monday, December 3, 2007 6:07 PM

60 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Accessing Members from Outside the Class
To access a public instance member from outside the class, you must include the variable
name and the member name, separated by a period (dot). This is called dot-syntax notation; it
will be discussed in more detail later.

For example, the second line of the following code shows an example of accessing a
method from outside the class:

As an example, the following code declares two classes: DaysTemp and Program.

• The two fields in DaysTemp are declared public, so they can be accessed from outside
the class.

• Method Main is a member of class Program. It creates a variable and object of class
DaysTemp, and assigns values to the fields of the object. It then reads the values of the
fields and prints them out.

 DaysTemp myDt = new DaysTemp(); // Create an object of the class.
 float fValue = myDt.Average(); // Access it from outside.
 ↑ ↑
 Variable name Member name

class DaysTemp // Declare class DaysTemp
{
 public int High = 75;
 public int Low = 45;
}

class Program // Declare class Program.
{
 static void Main()
 { Variable name
 ↓
 DaysTemp temp = new DaysTemp(); // Create the object.
 Variable name and field
 ↓
 temp.High = 85; // Assign to the fields.
 temp.Low = 60; Variable name and field
 ↓
 Console.WriteLine("High: {0}", temp.High); // Read from fields.
 Console.WriteLine("Low: {0}", temp.Low);
 }
}

9543.book Page 60 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 61

This code produces the following output:

High: 85
Low: 60

9543.book Page 61 Monday, December 3, 2007 6:07 PM

62 C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S

Putting It All Together
The following code creates two instances and stores their references in variables named t1 and
t2. Figure 4-8 illustrates t1 and t2 in memory. The code demonstrates the following three
actions discussed so far in the use of a class:

• Declaring a class

• Creating instances of the class

• Accessing the class members (i.e., writing to a field and reading from a field)

class DaysTemp // Declare the class.
{
 public int High, Low; // Declare the instance fields.
 public int Average() // Declare the instance method.
 {
 return (High + Low) / 2;
 }
}

 class Program
 {
 static void Main()
 {
 // Create two instances of DaysTemp.
 DaysTemp t1 = new DaysTemp();
 DaysTemp t2 = new DaysTemp();

 // Write to the fields of each instance.
 t1.High = 76; t1.Low = 57;
 t2.High = 75; t2.Low = 53;

 // Read from the fields of each instance and call a method of
 // each instance.
 Console.WriteLine("t1: {0}, {1}, {2}",
 t1.High, t1.Low, t1.Average());
 Console.WriteLine("t2: {0}, {1}, {2}",
 t2.High, t2.Low, t2.Average());
 ↑ ↑ ↑
 } Field Field Method
 }

9543.book Page 62 Monday, December 3, 2007 6:07 PM

C H A P T E R 4 ■ C L A S S E S : T H E B A S I C S 63

This code produces the following output:

t1: 76, 57, 66
t2: 75, 53, 64

Figure 4-8. Memory layout of instances t1 and t2

9543.book Page 63 Monday, December 3, 2007 6:07 PM

9543.book Page 64 Monday, December 3, 2007 6:07 PM

65

■ ■ ■

C H A P T E R 5

Methods

The Structure of a Method
Local Variables
Method Invocations
Return Values
Parameters
Value Parameters
Reference Parameters
Output Parameters
Parameter Arrays
Summary of Parameter Types
Stack Frames
Recursion
Method Overloading

9543.book Page 65 Monday, December 3, 2007 6:07 PM

66 C H A P T E R 5 ■ M E T H O D S

The Structure of a Method
Essentially, a method is a block of code with a name. You can execute the code by using the
method’s name. You can pass data into a method and receive data as output.

As you saw in the previous chapter, a method is a function member of a class. Methods
have two major sections, as shown in Figure 5-1—the method header and the method body.

• The method header specifies the method’s characteristics, including the following:

– Whether the method returns data, and if so, what type

– The name of the method

– What types of input can be passed to the method

• The method body contains the sequence of executable code statements. Execution starts
at the first statement in the method body and continues sequentially through the method.

Figure 5-1. The structure of a method

The following example shows the form of the method header. I will cover each part in the
following pages.

 int MyMethod (int intpar1, string strpar1)
 ↑ ↑ ↑
 Return Method Parameter
 type name list

9543.book Page 66 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 67

Methods can also be function members of another user-defined type called a struct, which
is covered in Chapter 12. Most of what this chapter covers about class methods will also be true
for struct methods.

For example, the following code shows a simple method called MyMethod, that, in turn, calls
the WriteLine method several times:

Code Execution in the Method Body
The method body is a block, which (as you will recall from Chapter 2) is a sequence of state-
ments between curly braces. A block can contain the following items:

• Local variables

• Flow-of-control constructs

• Method invocations

• Blocks nested within it

Figure 5-2 shows an example of a method body and some of its components.

Figure 5-2. Method body example

 void MyMethod()
 {
 Console.WriteLine("First");
 Console.WriteLine("Last");
 }

9543.book Page 67 Monday, December 3, 2007 6:07 PM

68 C H A P T E R 5 ■ M E T H O D S

Local Variables
Like fields, local variables store data. While fields usually store data about the state of the
object, local variables are usually created to store data for local, or transitory, computations.
Table 5-1 compares and contrasts local variables and instance fields.

The following line of code shows the syntax of local variable declarations. The optional ini-
tializer consists of the equals sign followed by a value to be used to initialize the variable.

• The existence of a local variable is limited to the block in which it is created and the
blocks nested within it.

– It comes into existence at the point at which it is declared.

– It goes out of existence when the block completes execution.

• You can declare local variables at any position in the method body.

The following example shows the declaration and use of two local variables. The first is of
type int, and the second is of type SomeClass.

Table 5-1. Instance Fields vs. Local Variables

 Variable name
 ↓
 Type Identifier = Value;
 ↑
 Optional initializer

 static void Main()
 {
 int myInt = 15;
 SomeClass sc = new SomeClass();
 ...
 }

Instance Field Local Variable

Lifetime Starts when the instance is cre-
ated.
Ends when the instance is no
longer accessible.

Starts at the point in the block
where it is declared.
Ends when the block completes
execution.

Implicit Initialization Initialized to a default value for
the type.

No implicit initialization. The
compiler produces an error
message if the variable is not
assigned to before use.

Storage Area All the fields of a class are stored
in the heap, regardless of whether
they are value types or reference
types.

Value type: Stored on the stack.
Reference type: Reference stored
on the stack, and data stored in
the heap.

9543.book Page 68 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 69

Type Inference and the var Keyword
If you look at the following code, you will see that when you supply the type name at the begin-
ning of the declaration, you are supplying information that the compiler should already be able
to infer from the right-hand side of the initialization.

• In the first variable declaration, the compiler can infer that 15 is an int.

• In the second declaration, the object-creation expression on the right-hand side returns
an object of type MyExcellentClass.

So in both cases, including the explicit type name at the beginning of the declaration is
redundant.

Starting with C# 3.0 you can now use the new keyword var in place of the explicit type
name at the beginning of the variable declaration, as follows:

The var keyword does not signal a special kind of variable. It is just syntactic shorthand
for whatever type can be inferred from the initialization on the right-hand side. In the first
declaration, it is shorthand for int. In the second, it is shorthand for MyExcellentClass. The
preceding code segment with the explicit type names and the code segment with the var key-
words are semantically equivalent.

Some important conditions on using the var keyword are the following:

• It can only be used with local variables—not with fields.

• It can only be used when the variable declaration includes an initialization.

• Once the compiler infers the type, it is fixed and unchangeable.

■Note The var keyword is not like the JavaScript var that can reference different types. It is shorthand for
the actual type inferred from the right side of the equals sign. The var keyword does not change the strongly
typed nature of C#.

 static void Main()
 {
 int total = 15;
 MyExcellentClass mec = new MyExcellentClass();
 ...
 }

 static void Main()
 { Keyword
 ↓
 var total = 15;
 var mec = new MyExcellentClass();
 ...
 }

9543.book Page 69 Monday, December 3, 2007 6:07 PM

70 C H A P T E R 5 ■ M E T H O D S

Local Variables Inside Nested Blocks
Method bodies can have other blocks nested inside them.

• There can be any number of blocks, and they can be sequential or nested further. Blocks
can be nested to any level.

• Local variables can be declared inside nested blocks, and like all local variables, their
lifetime is limited to the block in which they are declared and the blocks nested within it.

Figure 5-3 illustrates the lifetimes of two local variables, showing the code and the state of
the stack. The arrows indicate the line that has just been executed.

• Variable var1 is declared in the body of the method, before the nested block.

• Variable var2 is declared inside the nested block. It exists from the time it is declared,
until the end of the block in which it was declared.

• When control passes out of the nested block, its local variables are popped from the stack.

Figure 5-3. The lifetime of a local variable

■Note In C and C++ you can declare a local variable, and then within a nested block you can declare
another local variable with the same name. The inner name masks the outer name while within the inner
scope. In C#, however, you cannot declare another local variable with the same name within the scope of the
first name regardless of the level of nesting.

9543.book Page 70 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 71

Local Constants
A local constant is much like a local variable, except that once it’s initialized, its value can’t be
changed. Like a local variable, a local constant must be declared inside a block.

The two most important characteristics of a constant are the following:

• A constant must be initialized at its declaration.

• A constant cannot be changed after its declaration.

The core declaration for a constant is shown following. The syntax is the same as that of a
field or variable declaration, except for the following:

• The addition of the keyword const before the type.

• The mandatory initializer. The initializer value must be determinable at compile time,
and is usually one of the predefined simple types or an expression made up of them. It
can also be the null reference, but it cannot be a reference to an object, because refer-
ences to objects are determined at run time.

■Note The keyword const is not a modifier, but part of the core declaration. It must be placed immediately
before the type.

A local constant, like a local variable, is declared in a method body or code block, and goes
out of scope at the end of the block in which it is declared. For example, in the following code,
local constant PI goes out of scope at the end of method DisplayRadii.

 Keyword
 ↓
 const Type Identifier = Value;
 ↑
 Initializer required

 void DisplayRadii()
 {
 const double PI = 3.1416; // Declare local constant

 for (int radius = 1; radius <= 5; radius++)
 {
 double area = radius * radius * PI; // Read from local constant
 Console.WriteLine
 ("Radius: {0}, Area: {1}", radius, area);
 }
 }

9543.book Page 71 Monday, December 3, 2007 6:07 PM

72 C H A P T E R 5 ■ M E T H O D S

Flow of Control
Methods contain most of the code for the actions that comprise a program. The remainder is
in other function members, such as properties and operators—but the bulk is in methods.

The term flow of control refers to the flow of execution through your program. By default,
program execution moves sequentially from one statement to the next. The control statements
allow you to modify the order of execution.

In this section, I will just mention some of the available control statements you can use in
your code. Chapter 9 covers them in detail.

• Selection statements: These statements allow you to select which statement, or block of
statements, to execute.

– if: Conditional execution of a statement

– if...else: Conditional execution of one statement or another

– switch: Conditional execution of one statement from a set

• Iteration statements: These statements allow you to loop, or iterate, on a block of
statements.

– for: Loop—testing at the top

– while: Loop—testing at the top

– do: Loop—testing at the bottom

– foreach: Execute once for each member of a set

• Jump statements: These statements allow you to jump from one place in the block or
method to another.

– break: Exit the current loop.

– continue: Go to the bottom of the current loop.

– goto: Go to a named statement.

– return: Return execution to the calling method.

For example, the following method shows two of the flow-of-control statements. Don’t
worry about the details.

 void SomeMethod()
 {
 int intVal = 3;
 Equality comparison operator
 ↓
 if(intVal == 3) // if statement
 Console.WriteLine("Value is 3.");

 for(int i=0; i<5; i++) // for statement
 Console.WriteLine("Value of i: {0}", i);
 }

9543.book Page 72 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 73

Method Invocations
You can call other methods from inside a method body.

• The phrases call a method and invoke a method are synonymous.

• You call a method by using its name, along with the parameter list, which I will discuss
shortly.

For example, the following class declares a method called PrintDateAndTime, which is
called from inside method Main.

Figure 5-4 illustrates the sequence of actions when a method is called:

1. Execution of the current method suspends at that point of the invocation.

2. Control transfers to the beginning of the invoked method.

3. The invoked method executes until it completes.

4. Control returns to the calling method.

Figure 5-4. Flow of control when calling a method

 class MyClass
 {
 void PrintDateAndTime() // Declare the method.
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 Console.WriteLine("{0}", dt); // Write it out.
 }

 static void Main() // Declare the method.
 {
 MyClass mc = new MyClass();
 mc.PrintDateAndTime(); // Invoke the method.
 } ↑ ↑
 } Method name Empty parameter list

9543.book Page 73 Monday, December 3, 2007 6:07 PM

74 C H A P T E R 5 ■ M E T H O D S

Return Values
A method can return a value to the calling code. The returned value is inserted into the calling
code at the position in the expression where the invocation occurred.

• To return a value, the method must declare a return type before the method name.

• If a method does not return a value, it must declare a return type of void.

The following code shows two method declarations. The first returns a value of type int.
The second does not return a value.

A method that declares a return type must return a value from the method by using the fol-
lowing form of the return statement, which includes an expression after the keyword return.
Every path through the method must end with a return statement of this form.

For example, the following code shows a method called GetHour, which returns a value of
type int.

 Return type
 ↓
 int GetHour() { ... }
 void DisplayHour() { ... }
 ↑
 No value is returned.

 return Expression; // Return a value.
 ↑
 Evaluates to a value of the return type

 Return type
 ↓
 int GetHour()
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 int hour = dt.Hour; // Get the hour.

 return hour; // Return an int.
 } ↑
 Return statement

9543.book Page 74 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 75

You can also return objects of user-defined types. For example, the following code returns
an object of type MyClass.

As another example, in the following code, method GetHour is called in the WriteLine state-
ment in Main, and returns an int value to that position in the WriteLine statement.

 Return type -- MyClass
 ↓
 MyClass method3()
 {
 MyClass mc = new MyClass();
 ...
 return mc; // Return a MyClass object.
 }

 class MyClass
 { ↓ Return type
 public int GetHour()
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 int hour = dt.Hour; // Get the hour.

 return hour; // Return an int.
 } ↑
 } Return value

 class Program
 {
 static void Main()
 { Method invocation
 MyClass mc = new MyClass(); ↓
 Console.WriteLine("Hour: {0}", mc.GetHour());
 } ↑ ↑
 } Instance name Method name

9543.book Page 75 Monday, December 3, 2007 6:07 PM

76 C H A P T E R 5 ■ M E T H O D S

The Return Statement and Void Methods
In the previous section, you saw that methods that return a value must contain return state-
ments. Void methods do not require return statements. When the flow of control reaches the
closing curly brace of the method body, control returns to the calling code, and no value is
inserted back into the calling code.

Often, however, you can simplify your program logic by exiting the method early, when
certain conditions apply.

• You can exit from a method at any time by using the following form of the return state-
ment, with no parameters:

• This form of the return statement can be used only with methods declared void.

For example, the following code shows the declaration of a void method called SomeMethod,
which has three possible places it might return to the calling code. The first two places are in
branches called if statements, which are covered in Chapter 9. The last place is the end of the
method body.

 return;

 Void return type
 ↓
 void SomeMethod()
 {
 ...
 If (SomeCondition) // If ...
 return; // return to the calling code.
 ...

 If (OtherCondition) // If ...
 return; // return to the calling code.

 ...
 } // Return to the calling code.

9543.book Page 76 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 77

The following code shows an example of a void method with a return statement. The
method writes out a message only if the time is after noon. The process, illustrated in Figure 5-5,
is as follows:

• First the method gets the current date and time. (Don’t worry about understanding the
details of this right now.)

• If the hour is less than 12 (that is, before noon), the return statement is executed, and
control immediately returns to the calling method.

• If the hour is 12 or greater, the return statement is skipped, and the WriteLine statement
is executed.

Figure 5-5. Using a return statement with a void return type

class MyClass
{ ↓ Void return type
 void TimeUpdate() {
 DateTime dt = DateTime.Now; // Get the current date and time.
 if (dt.Hour < 12) // If the hour is less than 12,
 return; // then return.
 ↑
 Return to calling method.
 Console.WriteLine("It's afternoon!"); // Otherwise, print message.
 }

 static void Main() {
 MyClass mc = new MyClass(); // Create an instance of the class.
 mc.TimeUpdate(); // Invoke the method.
 }
}

9543.book Page 77 Monday, December 3, 2007 6:07 PM

78 C H A P T E R 5 ■ M E T H O D S

Parameters
So far, you have seen that methods are named units of code that can be called from many
places in a program, and can return a single value to the calling code. Returning a single value
is certainly valuable, but what if you need to return multiple values? Also, it would be useful to
be able to pass data into a method when it starts execution. Parameters are special variables
that allow you to do both these things.

Formal Parameters
Formal parameters are local variables that are declared in the method’s parameter list, rather
than in the body of the method.

The following method header shows the syntax of parameter declarations. It declares two
formal parameters—one of type int, and the other of type float.

• Because formal parameters are variables, they have a data type and a name, and can be
written to and read from.

• Unlike a method’s other local variables, the parameters are defined outside the method
body and initialized before the method starts, except for one type, which I will cover
shortly.

• The parameter list can have any number of formal parameter declarations, and the dec-
larations must be separated by commas.

The formal parameters are used throughout the method body, for the most part, just like
other local variables. For example, the following declaration of method PrintSum uses two for-
mal parameters, x and y, and a local variable, Sum, all of type int.

 public void PrintSum(int x, float y)
 { ... } ↑
 Formal parameter declarations

 public void PrintSum(int x, int y)
 {
 int Sum = x + y;
 Console.WriteLine("Newsflash: {0} + {1} is {2}", x, y, Sum);
 }

9543.book Page 78 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 79

Actual Parameters
When your code calls a method, the values of the formal parameters must be initialized before
the code in the method begins execution.

• The expressions or variables used to initialize the formal parameters are called the
actual parameters.

• The actual parameters are placed in the parameter list of the method invocation.

For example, the following code shows the invocation of method PrintSum, which has two
actual parameters of data type int.

When the method is called, the value of each actual parameter is used to initialize the cor-
responding formal parameter. The method body is then executed. Figure 5-6 illustrates the
relationship between the actual parameters and the formal parameters.

Figure 5-6. Actual parameters initialize the corresponding formal parameters.

When you call a method, the following must be true:

• The number of actual parameters must be the same as the number of formal parameters
(with one exception, which I will discuss later).

• Each actual parameter must match the type of the corresponding formal parameter.

 PrintSum(5, SomeInt);
 ↑ ↑
 Expression Variable of type int

9543.book Page 79 Monday, December 3, 2007 6:07 PM

80 C H A P T E R 5 ■ M E T H O D S

An Example of Methods with Input Parameters

In the following code, class MyClass declares two methods—one that takes two integers and
returns their sum, and another that takes two floats and returns their average.

This code produces the following output:

Newsflash: Sum: 5 and 6 is 11
Newsflash: Avg: 5 and 6 is 5.5

 class MyClass Formal parameters
 { ↓
 public int Sum(int x, int y) // Declare the method.
 {
 return x + y; // Return the sum.
 } Formal parameters
 ↓
 public float Avg(float Input1, float Input2) // Declare the method.
 {
 return (Input1 + Input2) / 2.0F; // Return the average.
 }
 }

 class Class1
 {
 static void Main()
 {
 MyClass MyT = new MyClass();
 int SomeInt = 6;

 Console.WriteLine
 ("Newsflash: Sum: {0} and {1} is {2}",
 5, SomeInt, MyT.Sum(5, SomeInt)); // Invoke the method.
 ↑
 Console.WriteLine Actual parameters
 ("Newsflash: Avg: {0} and {1} is {2}",
 5, SomeInt, MyT.Avg(5, SomeInt)); // Invoke the method.
 } ↑
 } Actual parameters

9543.book Page 80 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 81

Value Parameters
There are several kinds of parameters, which pass data to and from the method in slightly dif-
ferent ways. The kind you have been looking at so far is the default type and is called a value
parameter.

When you use value parameters, data is passed to the method by copying the value of
the actual parameter to the formal parameter. When a method is called, the system does the
following:

• Allocates space on the stack for the formal parameter

• Copies the actual parameter to the formal parameter

An actual parameter for a value parameter does not have to be a variable. It can be any
expression evaluating to the matching data type. For example, the following code shows two
method calls. In the first, the actual parameter is a variable of type float. In the second, it is an
expression that evaluates to float.

Variables must be assigned to, before being used as actual parameters (except in the case
of output parameters, which I will cover shortly). For reference types, the variable can be
assigned either a reference or null.

Chapter 3 covered value types, which, as you will remember, are types that contain their
own data. Don’t be confused that I’m now talking about value parameters. They are entirely
different. Remember that value parameters are parameters where the value of the actual
parameter is copied to the formal parameter.

 float func1(float Val) // Declare the method.
 { ... } ↑
 Float data type
 {
 float j = 2.6F;
 float k = 5.1F; float variable
 ↓
 float fValue1 = func1(k); // Method call
 float fValue2 = func1((k + j) / 3); // Method call
 ... ↑
 Expression that evaluates to a float

9543.book Page 81 Monday, December 3, 2007 6:07 PM

82 C H A P T E R 5 ■ M E T H O D S

For example, the following code shows a method called MyMethod, which takes two param-
eters—a variable of type MyClass and an int.

• The method adds 5 to both the field of the class and the int.

• You might also notice that MyMethod uses the modifier static, which hasn’t been
explained yet. You can ignore it for now. I’ll talk about static methods in Chapter 6.

class MyClass
{ public int Val = 20; } // Initialize the field to 20.

class Program Formal parameters
{ ↓
 static void MyMethod(MyClass f1, int f2)
 {
 f1.Val = f1.Val + 5; // Add 5 to field of f1 param.
 f2 = f2 + 5; // Add 5 to second param.
 }

 static void Main()
 {
 MyClass A1 = new MyClass();
 int A2 = 10;

 MyMethod(A1, A2); // Call the method.
 } ↑
} Actual parameters

9543.book Page 82 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 83

Figure 5-7 illustrates the following about the values of the actual and formal parameters at
various stages in the execution of the method:

• Before the method call, variables A1 and A2, which will be used as the actual parameters,
are already on the stack.

• By the beginning of the method, the system has allocated space on the stack for the for-
mal parameters and copied the values from the actual parameters.

– Since A1 is a reference type, the reference is copied, resulting in both the actual and
formal parameters referring to the same object in the heap.

– Since A2 is a value type, the value is copied, producing an independent data item.

• At the end of the method, both f2 and the field of object f1 have been incremented by 5.

• After method execution, the formal parameters are popped off the stack.

– The value of A2, the value type, is unaffected by the activity in the method.

– The value of A1, the reference type, however, has been changed by the activity in the
method.

Figure 5-7. Value parameters

9543.book Page 83 Monday, December 3, 2007 6:07 PM

84 C H A P T E R 5 ■ M E T H O D S

Reference Parameters
The second type of parameter is called a reference parameter.

• When using a reference parameter, you must use the ref modifier in both the declara-
tion and the invocation of the method.

• The actual parameter must be a variable, which must be assigned to before being used
as the actual parameter. If it is a reference type variable, it can be assigned either a refer-
ence or the value null.

For example, the following code illustrates the syntax of the declaration and invocation:

Remember that for value parameters, the system allocates memory on the stack for the
formal parameters. In contrast, reference parameters have the following characteristics:

• They do not allocate new memory on the stack for the formal parameters.

• Instead, a formal parameter name acts as an alias for the actual parameter variable,
referring to the same memory location.

Since the formal parameter name and the actual parameter name reference the same
memory location, clearly any changes made to the formal parameter during method execution
will be visible after the method is completed, through the actual parameter variable.

 Include the ref modifier.
 ↓
 void MyMethod(ref int val) // Method declaration
 { ... }

 int y = 1; // Variable for the actual parameter
 MyMethod (ref y); // Method call
 ↑
 Include the ref modifier.

 MyMethod (ref 3+5); // Error!
 ↑
 Must use a variable

9543.book Page 84 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 85

For example, the following code shows method MyMethod again, but this time the parame-
ters are reference parameters rather than value parameters.

 class MyClass
 { public int Val = 20; } // Initialize field to 20.

 class Program ref modifier ref modifier
 { ↓ ↓
 static void MyMethod(ref MyClass f1, ref int f2)
 {
 f1.Val = f1.Val + 5; // Add 5 to field of f1 param.
 f2 = f2 + 5; // Add 5 to second param.
 }

 static void Main()
 {
 MyClass A1 = new MyClass();
 int A2 = 10;

 MyMethod(ref A1, ref A2); // Call the method.
 } ↑ ↑
 } ref modifiers

9543.book Page 85 Monday, December 3, 2007 6:07 PM

86 C H A P T E R 5 ■ M E T H O D S

Figure 5-8 illustrates the following about the values of the actual and formal parameters at
various stages in the execution of the method:

• Before the method call, variables A1 and A2, which will be used as the actual parameters,
are already on the stack.

• By the beginning of the method, the names of the formal parameters have been set as
aliases for the actual parameters. Variables A1 and f1 refer to the same memory location,
and A2 and f2 refer to the same memory location.

• At the end of the method, both f2 and the field of the object of f1 have been incre-
mented by 5.

• After method execution, the names of the formal parameters are out of scope, but both
the value of A2, which is the value type, and the value of the object pointed at by A1,
which is the reference type, have been changed by the activity in the method.

Figure 5-8. Reference parameter

9543.book Page 86 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 87

Output Parameters
Output parameters are used to pass data from inside the method back out to the calling code.
They are very similar to reference parameters. Like reference parameters, output parameters
have the following requirements:

• You must use a modifier in both the method declaration and the invocation. With out-
put parameters, the modifier is out, rather than ref.

• The actual parameter must be a variable—it cannot be another type of expression.

For example, the following code declares a method called MyMethod, which takes a single
output parameter.

Like reference parameters, the formal parameters of output parameters act as aliases for
the actual parameters. Both the formal parameter and the actual parameter are names for the
same memory location. Clearly, any changes made to a formal parameter inside the method
will be visible through the actual parameter variable after the method.

Unlike reference parameters, output parameters require the following:

• Inside the method, an output parameter must be assigned to before it can be read from.
This means that the initial values of the parameters are irrelevant, and that you don’t
have to assign values to the actual parameters before the method call.

• Every output parameter must be assigned to, before the method exits.

 out modifier
 ↓
 void MyMethod(out int val) // Method declaration
 { ... }

 ...
 int y = 1; // Variable for the actual parameter
 MyMethod (out y); // Method call
 ↑
 out modifier

9543.book Page 87 Monday, December 3, 2007 6:07 PM

88 C H A P T E R 5 ■ M E T H O D S

Since the code inside the method must write to an output variable before it can read from
it, it is impossible to send data into a method by using output parameters. In fact, if there is any
execution path through the method that attempts to read the value of an output parameter
before the method has assigned it a value, the compiler produces an error message.

For example, the following code again shows method MyMethod, but this time using output
parameters.

 public void Add2(out int outValue)
 {
 int var1 = outValue + 2; // Error! Can't read from an output variable
 } // before it has been assigned to by the method.

 class MyClass
 { public int Val = 20; } // Initialize field to 20.

 class Program out modifier out modifier
 { ↓ ↓
 static void MyMethod(out MyClass f1, out int f2)
 {
 f1 = new MyClass(); // Create an object of the class.
 f1.Val = 25; // Assign to the class field.
 f2 = 15; // Assign to the int param.
 }

 static void Main()
 {
 MyClass A1 = null;
 int A2;

 MyMethod(out A1, out A2); // Call the method.
 } ↑ ↑
 } out modifiers

9543.book Page 88 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 89

Figure 5-9 illustrates the following about the values of the actual and formal parameters at
various stages in the execution of the method.

• Before the method call, variables A1 and A2, which will be used as the actual parameters,
are already on the stack.

• At the beginning of the method, the names of the formal parameters are set as aliases for
the actual parameters. Variables A1 and f1 refer to the same memory location, and A2
and f2 refer to the same memory location. The names A1 and A2 are out of scope and can-
not be accessed from inside MyMethod.

• Inside the method, the code creates an object of type MyClass and assigns it to f1. It then
assigns a value to f1’s field and also assigns a value to f2. The assignment to f1 and f2 are
both required, since they are output parameters.

• After method execution, the names of the formal parameters are out of scope, but the
values of both A1, the reference type, and A2, the value type, have been changed by the
activity in the method.

Figure 5-9. Output parameters

9543.book Page 89 Monday, December 3, 2007 6:07 PM

90 C H A P T E R 5 ■ M E T H O D S

Parameter Arrays
In the parameter types I’ve covered so far, there must be exactly one actual parameter for each
formal parameter. Parameter arrays are different in that they allow zero or more actual param-
eters for a particular formal parameter. Important points about parameter arrays are the
following:

• There can be only one parameter array in a parameter list.

• If there is one, it must be the last parameter in the list.

To declare a parameter array, you must do the following:

• Use the params modifier before the data type.

• Place a set of empty square brackets after the data type.

The following method header shows the syntax for the declaration of a parameter array
of type int. In this example, formal parameter inVals can represent zero or more actual int
parameters.

The empty set of square brackets after the type name specifies that the parameter will be
an array of ints. You don’t need to worry about the details of arrays here. They are covered in
detail in Chapter 14. For our purposes here, though, all you need to know is the following:

• An array is an ordered set of data items of the same type.

• An array is accessed by using a numerical index.

• An array is a reference type, and therefore stores all its data items in the heap.

 Array of ints
 ↓
 void ListInts(params int[] inVals)
 { ... ↑ ↑
 Modifier Parameter name

9543.book Page 90 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 91

Method Invocation
You can supply the actual parameters in two ways. The forms you can use are the following:

• A comma-separated list of elements of the data type. All the elements must be of the type
specified in the method declaration.

• A one-dimensional array of elements of the data type.

Notice in these examples that you do not use the params modifier in the invocation. The
use of the modifier in parameter arrays does not fit the pattern of the other parameter types.

• The other parameter types are consistent in that they either use a modifier or do not use
a modifier.

– Value parameters take no modifier in either the declaration or the invocation.

– Reference and output parameters require the modifier in both places.

• Parameter arrays, however

– Require the modifier in the declaration

– Do not allow it in the invocation

Expanded Form

The first form of method invocation, where you use separate actual parameters in the invoca-
tion, is sometimes called the expanded form.

For example, the declaration of method ListInts in the following code matches all the
method invocations below it, even though they have different numbers of actual parameters.

 ListInts(10, 20, 30); // Three ints

int[] intArray = {1, 2, 3};
ListInts(intArray); // An array variable

 void ListInts(params int[] inVals) { ... } // Method declaration

 ...
 ListInts(); // 0 actual parameters
 ListInts(1, 2, 3); // 3 actual parameters
 ListInts(4, 5, 6, 7); // 4 actual parameters
 ListInts(8, 9, 10, 11, 12); // 5 actual parameters

9543.book Page 91 Monday, December 3, 2007 6:07 PM

92 C H A P T E R 5 ■ M E T H O D S

When you use an invocation with separate actual parameters for a parameter array, the
compiler does the following:

• It takes the list of actual parameters and uses them to create and initialize an array in the
heap.

• It stores the reference to the array in the formal parameter on the stack.

• If there are no actual parameters at the position corresponding to the formal parameter
array, the compiler creates an array with zero elements and uses that.

For example, the following code declares a method called ListInts, which takes a param-
eter array. Main declares three ints and passes them to the array.

This code produces the following output:

50
60
70
5, 6, 7

 class MyClass Parameter array
 { ↓
 public void ListInts(params int[] inVals)
 {
 if ((inVals != null) && (inVals.Length != 0))
 for (int i = 0; i < inVals.Length; i++) // Process the array.
 {
 inVals[i] = inVals[i] * 10;
 Console.WriteLine("{0} ", inVals[i]); // Display new value.
 }
 }
 }

 class Program
 {
 static void Main()
 {
 int first = 5, second = 6, third = 7; // Declare three ints.

 MyClass mc = new MyClass();
 mc.ListInts(first, second, third); // Call the method.
 ↑
 Actual parameters
 Console.WriteLine("{0}, {1}, {2}", first, second, third);
 }
 }

9543.book Page 92 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 93

Figure 5-10 illustrates the following about the values of the actual and formal parameters
at various stages in the execution of the method:

• Before the method call, the three actual parameters are already on the stack.

• By the beginning of the method, the three actual parameters have been used to initialize
an array in the heap, and the reference to the array has been assigned to formal param-
eter inVals.

• Inside the method, the code first checks to make sure that the array reference is not null,
and then processes the array by multiplying each element in the array by 10, and storing
it back.

• After method execution, the formal parameter, inVals, is out of scope.

Figure 5-10. Parameter arrays

An important thing to remember about parameter arrays is that when an array is created
in the heap, the values of the actual parameters are copied to the array. In this way, they are like
value parameters.

• If the array parameter is a value type, the values are copied, and the actual parameters
cannot be affected inside the method.

• If the array parameter is a reference type, the references are copied, and the objects ref-
erenced by the actual parameters can be affected inside the method.

9543.book Page 93 Monday, December 3, 2007 6:07 PM

94 C H A P T E R 5 ■ M E T H O D S

Arrays As Actual Parameters
You can also create and populate an array before the method call, and pass the single array vari-
able as the actual parameter. In this case, the compiler uses your array, rather than creating one.

For example, the following code uses method ListInts, declared in the previous example.
In this code, Main creates an array and uses the array variable as the actual parameter, rather
than using separate integers.

This code produces the following output:

50
60
70

Summary of Parameter Types
Since there are four parameter types, it is sometimes difficult to remember their various char-
acteristics. Table 5-2 summarizes them, making it easier to compare and contrast them.

Table 5-2. Summary of Parameter Type Syntactic Usage

 static void Main()
 {
 int[] MyArr = new int[] { 5, 6, 7 }; // Create and initialize array.

 MyClass mc = new MyClass();
 mc.ListInts(MyArr); // Call method.

 foreach (int x in MyArr)
 Console.WriteLine("{0}", x); // Print out each element.
 }

Parameter
Type Modifier

Used at
Declaration?

Used at
Invocation? Implementation

Value None The system copies the actual parameter to
the formal parameter.

Reference ref Yes Yes The formal parameter aliases the actual
parameter.

Output out Yes Yes The formal parameter aliases the actual
parameter.

Array params Yes No This allows passing a variable number of
actual parameters to a method.

9543.book Page 94 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 95

Stack Frames
So far, you know that local variables and parameters are kept on the stack. Let’s look at that
organization a little further.

When a method is called, memory is allocated at the top of the stack to hold a number of
data items associated with the method. This chunk of memory is called the stack frame for the
method.

• The stack frame contains memory to hold the following:

– The return address—that is, where to resume execution when the method exits

– Those parameters that allocate memory—that is, the value parameters of the
method, and the parameter array if there is one

– Various other administrative data items relevant to the method call

• When a method is called, its entire stack frame is pushed onto the stack.

• When the method exits, its entire stack frame is popped from the stack. Popping a stack
frame is sometimes called unwinding the stack.

For example, the following code declares three methods. Main calls MethodA, which calls
MethodB, creating three stack frames. As the methods exit, the stack unwinds.

 class Program
 {
 static void MethodA(int par1, int par2)
 {
 Console.WriteLine("Enter MethodA: {0}, {1}", par1, par2);
 MethodB(11, 18); // Call MethodB.
 Console.WriteLine("Exit MethodA");
 }

 static void MethodB(int par1, int par2)
 {
 Console.WriteLine("Enter MethodB: {0}, {1}", par1, par2);
 Console.WriteLine("Exit MethodB");
 }

 static void Main()
 {
 Console.WriteLine("Enter Main");
 MethodA(15, 30); // Call MethodA.
 Console.WriteLine("Exit Main");
 }
 }

9543.book Page 95 Monday, December 3, 2007 6:07 PM

96 C H A P T E R 5 ■ M E T H O D S

This code produces the following output:

Enter Main
Enter MethodA: 15, 30
Enter MethodB: 11, 18
Exit MethodB
Exit MethodA
Exit Main

Figure 5-11 shows how the stack frames of each method are placed on the stack when the
method is called, and how the stack is unwound as the methods complete.

Figure 5-11. Stack frames in a simple program

9543.book Page 96 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 97

Recursion
Besides calling other methods, a method can also call itself. This is called recursion.

Recursion can produce some very elegant code, such as the following method for comput-
ing the factorial of a number. Notice that inside the method, the method calls itself, with an
actual parameter of one less than its input parameter.

The mechanics of a method calling itself are exactly the same as if it had called another,
different method. A new stack frame is pushed onto the stack for each call to the method.

For example, in the following code, method Count calls itself with one less than its input
parameter and then prints out its input parameter. As the recursion gets deeper, the stack gets
larger.

 int Factorial(int inValue)
 {
 if (inValue <= 1)
 return inValue;
 else
 return inValue * Factorial(inValue - 1); // Call Factorial again.
 } ↑
 Calls itself

 class Program
 {
 public void Count(int inVal)
 {
 if (inVal == 0)
 return;
 Count(inVal - 1); // Invoke this method again.
 ↑
 Calls itself
 Console.WriteLine("{0} ", inVal);
 }

 static void Main()
 {
 Program pr = new Program();
 pr.Count(3);
 }
 }

9543.book Page 97 Monday, December 3, 2007 6:07 PM

98 C H A P T E R 5 ■ M E T H O D S

This code produces the following output:

1
2
3

Figure 5-12 illustrates the code. Notice that with an input value of 3, there are four different,
independent stack frames for method Count. Each has its own value for input parameter inVal.

Figure 5-12. Example of recursion

9543.book Page 98 Monday, December 3, 2007 6:07 PM

C H A P T E R 5 ■ M E T H O D S 99

Method Overloading
A class can have more than one method with the same name. This is called method overload-
ing. Each method with the same name must have a different signature than the others.

• The signature of a method consists of the following information from the method
header of the method declaration:

– The name of the method

– The number of parameters

– The data types and order of the parameters

– The parameter modifiers

• The return type is not part of the signature—although it is a common mistake to believe
that it is.

• The names of the formal parameters are also not part of the signature.

For example, the following four methods are overloads of the method name AddValues:

The following code shows an illegal attempt at overloading the method name AddValues.
The two methods differ only on the return types and the names of the formal parameters. But
they still have the same signature, because they have the same method name; and the number,
types, and order of their parameters are the same. The compiler would produce an error mes-
sage for this code.

Not part of signature
 ↓
long AddValues(int a, out int b) { ... }
 ↑
 Signature

 class A
 {
 long AddValues(int a, int b) { return a + b; }
 long AddValues(int a, int b, int c) { return a + b + c; }
 long AddValues(float a, float b) { return a + b; }
 long AddValues(long a, long b) { return a + b; }
 }

 class B Signature
 { ↓
 long AddValues(long a, long b) { return a+b; }
 int AddValues(long c, long d) { return c+d; }
 } ↑
 Signature

9543.book Page 99 Monday, December 3, 2007 6:07 PM

9543.book Page 100 Monday, December 3, 2007 6:07 PM

101

■ ■ ■

C H A P T E R 6

More About Classes

Class Members
Instance Class Members
Static Fields
Static Function Members
Other Static Class Member Types
Constants
Properties
Instance Constructors
Static Constructors
Accessibility of Constructors
Destructors
Comparison of Constructors and Destructors
The readonly Modifier
The this Keyword
Indexers
Access Modifiers on Accessors
Partial Classes

9543.book Page 101 Friday, December 7, 2007 3:10 PM

102 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Class Members
The previous two chapters covered two of the nine types of class members: fields and methods.
In this chapter, I will introduce more types of class members, and discuss the lifetimes of class
members.

Table 6-1 shows a list of the class member types. Those that have already been introduced
are marked with diamonds. Those that will be covered in this chapter are marked with a check.
Those that will be covered later in the text are marked with empty check boxes.

Table 6-1. Types of Class Members

Order of Member Modifiers
Previously, you saw that the declarations of fields and methods can include modifiers such as
public and private. In this chapter, I will discuss a number of additional modifiers. Since many
of these modifiers can be used together, the question that arises is: what order do they need
to be in?

Class member declaration statements consist of the following: the core declaration, an
optional set of modifiers, and an optional set of attributes. The syntax used to describe this
structure is the following. The square brackets indicate that the enclosed set of components is
optional.

• The modifiers, if any, must be placed before the core declaration.

• The attributes, if any, must be placed before the modifiers and core declaration.

Data Members
(Store Data)

Function Members
(Execute Code)

◆ Fields
✔ Constants

◆ Methods
✔ Properties
✔ Constructors
✔ Finalizers

✔ Operators
✔ Indexers
❑ Events

 [attributes] [modifiers] CoreDeclaration

9543.book Page 102 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 103

When a declaration has multiple modifiers, they can be placed in any order before the core
declaration. So far, I’ve only discussed two modifiers: public and private. When there are mul-
tiple attributes, they can be placed in any order before the modifiers. I’ll cover attributes in
Chapter 24.

For example, public and static are both modifiers that can be used together to modify
certain declarations. Since they’re both modifiers, they can be placed in either order. The fol-
lowing two lines are semantically equivalent:

Figure 6-1 shows the order of the components as applied to the member types shown so
far: fields and methods. Notice that the type of the field and the return type of the method are
not modifiers—they are part of the core declaration.

Figure 6-1. The order of attributes, modifiers, and core declarations

 public static int MaxVal;

 static public int MaxVal;

9543.book Page 103 Friday, December 7, 2007 3:10 PM

104 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Instance Class Members
Class members can be associated with an instance or with the class as a whole. By default,
members are associated with an instance. You can think of each instance of a class as having its
own copy of each class member. These members are called instance members.

Changes to the value of one instance field do not affect the values of the members in any
other instance. So far, the fields and methods you’ve seen have all been instance fields and
instance methods.

For example, the following code declares a class D with a single integer field Mem1. Main cre-
ates two instances of the class. Each instance has its own copy of field Mem1. Changing the value
of one instance’s copy of the field does not affect the value of the other instance’s copy.
Figure 6-2 shows the two instances of class D.

This code produces the following output:

d1 = 10, d2 = 28

Figure 6-2. Two instances with instance data members

 class D
 {
 public int Mem1;
 }

 class Program
 {
 static void Main()
 {
 D d1 = new D();
 D d2 = new D();
 d1.Mem1 = 10; d2.Mem1 = 28;

 Console.WriteLine("d1 = {0}, d2 = {1}", d1.Mem1, d2.Mem1);
 }
 }

9543.book Page 104 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 105

Static Fields
Besides instance fields, classes can also have static fields.

• A static field is shared by all the instances of the class, and all the instances access the
same memory location. Hence, if the value of the memory location is changed by one
instance, the change is visible to all the instances.

• Use the static modifier to declare a field static, as follows:

For example, the code on the left in Figure 6-3 declares class D with static field Mem2 and
instance field Mem1. Main defines two instances of class D. The figure shows that static field Mem2 is
stored separately from the storage of any of the instances. The gray fields inside the instances
represent the fact that, from inside the instance, the static field looks like any other member field.

• Because Mem2 is static, both instances of class D share a single Mem2 field. If Mem2 is
changed in one instance, it is changed in the other as well.

• Member Mem1 is not declared static, so each instance has its own copy.

Figure 6-3. Static and non-static data members

 class D
 {
 int Mem1; // Instance field
 static int Mem2; // Static field
 ↑
 } Keyword

9543.book Page 105 Friday, December 7, 2007 3:10 PM

106 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Accessing Static Members from Outside the Class
In the previous chapter, you saw that dot-syntax notation is used to access instance members
from outside the class. Dot-syntax notation consists of listing the instance name, followed by a
dot, followed by the member name.

Static members, like instance members, are also accessed from outside the class using dot-
syntax notation. But since there is no instance, you must use the class name, as shown here:

Example of a Static Field
The following code expands the preceding class D by adding two methods:

• One method sets the values of the two data members.

• The other method displays the values of the two data members.

 Class name
 ↓
 D.Mem2 = 5; // Accessing the static class member
 ↑
 Member name

 class D {
 int Mem1;
 static int Mem2;

 public void SetVars(int v1, int v2) // Set the values
 { Mem1 = v1; Mem2 = v2; }
 ↑ Access as if it were an instance field

 public void Display(string str)
 { Console.WriteLine("{0}: Mem1= {1}, Mem2= {2}", str, Mem1, Mem2); }
 } ↑
 Access as if it were an instance field
 class Program {
 static void Main()
 {
 D d1 = new D(), d2 = new D(); // Create two instances.

 d1.SetVars(2, 4); // Set d1's values.
 d1.Display("d1");

 d2.SetVars(15, 17); // Set d2's values.
 d2.Display("d2");

 d1.Display("d1"); // Display d1 again and notice that the
 } // value of static member Mem2 has changed!
 }

9543.book Page 106 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 107

This code produces the following output:

d1: Mem1= 2, Mem2= 4
d2: Mem1= 15, Mem2= 17
d1: Mem1= 2, Mem2= 17

Lifetimes of Static Members
Instance members come into existence when the instance is created and go out of existence
when the instance is destroyed. Static members, however, exist and are accessible even if there
are no instances of the class.

Figure 6-4 illustrates a class D, with a static field, Mem2. Although Main does not define any
instances of the class, it assigns the value 5 to the static field and prints it out.

Figure 6-4. Static field with no class instances

The code in Figure 6-4 produces the following output:

Mem2 = 5

■Note Static members exist even if there are no instances of the class. If a static field has an initializer, the
field is initialized before the use of any of the class’s static fields, but not necessarily at the beginning of pro-
gram execution.

9543.book Page 107 Friday, December 7, 2007 3:10 PM

108 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Static Function Members
Besides static fields, there are also static function members.

• Static function members, like static fields, are independent of any class instance. Even
if there are no instances of a class, you can still call a static method.

• Static function members cannot access instance members. They can, however, access
other static members.

For example, the following class contains a static field and a static method. Notice that the
body of the static method accesses the static field.

The following code uses class X, defined in the preceding code. Figure 6-5 illustrates the code.

This code produces the following output:

Value of A: 10

Figure 6-5. Static methods of a class can be called even if there are no instances of the class.

 class X
 {
 static public int A; // Static field
 static public void PrintValA() // Static method
 {
 Console.WriteLine("Value of A: {0}", A);
 } ↑
 } Accessing the static field

 class Program
 {
 static void Main()
 {
 X.A = 10; // Use dot-syntax notation
 X.PrintValA(); // Use dot-syntax notation
 } ↑
 } Class name

9543.book Page 108 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 109

Other Static Class Member Types
The types of class members that can be declared static are shown checked in Table 6-2. The
other member types cannot be declared static.

Table 6-2. Class Member Types That Can Be Declared Static

■Note Unlike C and C++, in C# there are no global constants. Every constant must be declared within a type.

Data Members (Store Data) Function Members (Execute Code)

✔ Fields
✔ Constants

✔ Methods
✔ Properties
✔ Constructors
✔ Operators
✔ Indexers
✔ Events

9543.book Page 109 Friday, December 7, 2007 3:10 PM

110 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Member Constants
Member constants are like the local constants covered in the previous chapter, except that they
are declared in the class declaration, as in the following example:

Like local constants, the value used to initialize a member constant must be computable
at compile time, and is usually one of the predefined simple types or an expression composed
of them.

Like local constants, you cannot assign to a member constant after its declaration.

 class MyClass
 {
 const int IntVal = 100; // Defines a constant of type int
 ↑ ↑ // with a value of 100.
 } Type Initializer

 const double PI = 3.1416; // Error: cannot be declared outside a type
 // declaration

 class MyClass
 {
 const int IntVal1 = 100;
 const int IntVal2 = 2 * IntVal1; // Fine, since the value of IntVal1
 } // was set in the previous line.

 class MyClass
 {
 const int IntVal; // Error: initialization is required.
 IntVal = 100; // Error: assignment is not allowed.
 }

9543.book Page 110 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 111

Constants Are Like Statics
Member constants, however, are more interesting than local constants; they act like static val-
ues. They are “visible” to every instance of the class, and they are available even if there are no
instances of the class.

For example, the following code declares class X with constant field PI. Main does not cre-
ate any instances of X, and yet it can use field PI and print its value.

This code produces the following output:

pi = 3.1416

 class X
 {
 public const double PI = 3.1416;
 }

 class Program
 {
 static void Main()
 {
 Console.WriteLine("pi = {0}", X.PI); // Use static field PI
 }
 }

9543.book Page 111 Friday, December 7, 2007 3:10 PM

112 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Unlike actual statics, however, constants do not have their own storage locations, and are
substituted in by the compiler at compile time in a manner similar to #define values in C and
C++. This is shown in Figure 6-6, which illustrates the preceding code. Hence, although a con-
stant member acts like a static, you cannot declare a constant as static.

Figure 6-6. Constant fields act like static fields, but do not have a storage location in memory.

 static const double PI = 3.14;

 Error: can't declare a constant as static

9543.book Page 112 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 113

Properties
A property is a member that represents an item of data in a class instance or class.

Using a property appears very much like writing to, or reading from, a field. The syntax is
the same. For example, the following code shows the use of a class called MyClass that has both
a public field and a public property. From their usage, you cannot tell them apart.

A property, like a field, has the following characteristics:

• It is a named class member.

• It has a type.

• It can be assigned to and read from.

Unlike a field, however, a property is a function member.

• It does not allocate memory for data storage!

• It executes code.

A property is a named set of two matching methods called accessors.

• The set accessor is used for assigning a value to the property.

• The get accessor is used for retrieving a value from the property.

Figure 6-7 shows the representation of a property. The code on the left shows the syntax of
declaring a property named MyValue, of type int. The image on the right shows how properties
will be displayed visually in this text. Notice that the accessors are shown sticking out the back,
because, as you will soon see, they are not directly callable.

Figure 6-7. An example property of type int, named MyValue

 MyClass mc = new MyClass();

 mc.MyField = 5; // Assigning to a field
 mc.MyProperty = 10; // Assigning to a property

 WriteLine("{0} {1}", mc.MyField, mc.MyProperty); // Read field and property

9543.book Page 113 Friday, December 7, 2007 3:10 PM

114 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Property Declarations and Accessors
The set and get accessors have predefined syntax and semantics. You can think of the set
accessor as a method with a single parameter that “sets” the value of the property. The get
accessor has no parameters and returns a value from the property.

• The set accessor always has the following:

– A single, implicit value parameter named value, of the same type as the property

– A return type of void

• The get accessor always has the following:

– No parameters

– A return type of the same type as the property

The structure of a property declaration is shown in Figure 6-8. Notice in the figure that nei-
ther accessor declaration has explicit parameter or return type declarations. They don’t need
them, because they are implicit in the type of the property.

Figure 6-8. The syntax and structure of a property declaration

The implicit parameter value in the set accessor is a normal value parameter. Like other
value parameters, you can use it to send data into a method body—or in this case, the accessor
block. Once inside the block, you can use value like a normal variable, including assigning val-
ues to it.

Other important points about accessors are the following:

• All paths through the implementation of a get accessor must include a return statement
that returns a value of the property type.

• The set and get accessors can be declared in either order, and no methods other than
the two accessors are allowed on a property.

9543.book Page 114 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 115

A Property Example
The following code shows an example of the declaration of a class called C1 that contains a
property named MyValue.

• Notice that the property itself does not have any storage. Instead, the accessors deter-
mine what should be done with data sent in, and what data should be sent out. In this
case, the property uses a field called TheRealValue for storage.

• The set accessor takes its input parameter, value, and assigns that value to field
TheRealValue.

• The get accessor just returns the value of field TheRealValue.

Figure 6-9 illustrates the code.

Figure 6-9. Property accessors often use fields for storage

 class C1
 {
 private int TheRealValue; // Field: memory allocated

 public int MyValue // Property: no memory allocated
 {
 set
 {
 TheRealValue = value;
 }

 get
 {
 return TheRealValue;
 }
 }
 }

9543.book Page 115 Friday, December 7, 2007 3:10 PM

116 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Using a Property
You write to and read from a property in the same way you access a field. The accessors are
called implicitly.

• To write to a property, use the property’s name on the left side of an assignment
statement.

• To read from a property, use the property’s name in an expression.

For example, the following code contains an outline of the declaration of a property
named MyValue. You write to and read from the property using just the property name, as if it
were a field name.

The appropriate accessor is called implicitly depending on whether you are writing to or
reading from the property. You cannot explicitly call the accessors. Attempting to do so pro-
duces a compile error.

 int MyValue // Property declaration
 {
 set{ ... }
 get{ ... }
 }
 ...
 Property name
 ↓
 MyValue = 5; // Assignment: the set method is implicitly called
 z = MyValue; // Expression: the get method is implicitly called
 ↑
 Property name

 y = MyValue.get(); // Error! Can't explicitly call get accessor.
 MyValue.set(5); // Error! Can't explicitly call set accessor.

9543.book Page 116 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 117

Properties and Associated Fields
A property is often associated with a field, as shown in the previous two sections. A common
practice is to encapsulate a field in a class by declaring it private, and declaring a public prop-
erty to give controlled access to the field from outside the class. The field associated with a
property is often called the backing field or backing store.

For example, the following code uses the public property MyValue to give controlled access
to private field TheRealValue.

 class C1
 {
 private int TheRealValue = 10; // Backing Field: memory allocated
 public int MyValue // Property: no memory allocated
 {
 set{ TheRealValue = value; } // Sets the value of field TheRealValue
 get{ return TheRealValue; } // Gets the value of the field
 }
 }

 class Program
 {
 static void Main()
 {
 Read from the property as if it were a field
 C1 c = new C1(); ↓
 Console.WriteLine("MyValue: {0}", c.MyValue);

 c.MyValue = 20; ← Use assignment to set the value of a property
 Console.WriteLine("MyValue: {0}", c.MyValue);
 }
 }

9543.book Page 117 Friday, December 7, 2007 3:10 PM

118 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

There are several conventions for naming properties and their backing fields. One conven-
tion is to use the same string for both names, but use camel casing (in which the first letter is
lowercase) for the field and Pascal casing for the property. Although this violates the general
rule that it is bad practice to have different identifiers that differ only in casing, it has the
advantage of tying the two identifiers together in a meaningful way.

Another convention is to use Pascal casing for the property, and for the field, use the camel
case version of the same identifier, with an underscore in front.

The following code shows both conventions:

 private int firstField; // Camel casing
 public int FirstField // Pascal casing
 {
 get { return firstField; }
 set { firstField = value; }
 }

 private int _secondField; // Underscore and camel casing
 public int SecondField
 {
 get { return _secondField; }
 set { _secondField = value; }
 }

9543.book Page 118 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 119

Performing Other Calculations
Property accessors are not limited to just passing values back and forth from an associated
backing field; the get and set accessors can perform any, or no, computations. The only action
required is that the get accessor return a value of the property type.

For instance, the following example shows a valid (but probably useless) property that just
returns the value 5 when its get accessor is called. When the set accessor is called, it doesn’t do
anything. The value of implicit parameter value is ignored.

The following code shows a more realistic and useful property, where the set accessor per-
forms filtering before setting the associated field. The set accessor sets field TheRealValue to
the input value—unless the input value is greater than 100. In that case, it sets TheRealValue
to 100.

■Note In the preceding code sample, the syntax between the equals sign and the end of the statement
might look somewhat strange. That expression uses the conditional operator, which will be covered in greater
detail in Chapter 8. The conditional operator is a ternary operator that evaluates the expression before the
question mark, and, if the expression evaluates to true, returns the first expression after the question mark.
Otherwise, it returns the expression after the colon.

 public int Useless
 {
 set{ /* I'm not setting anything. */ }
 get{ /* I'm just returning the value 5. */
 return 5;
 }
 }

 int TheRealValue = 10; // The field
 int MyValue // The property
 {
 set { // Sets the value of the field
 TheRealValue = value > 100 // but makes sure it's not > 100
 ? 100
 : value;
 }
 get { // Gets the value of the field
 return TheRealValue;
 }
 }

9543.book Page 119 Friday, December 7, 2007 3:10 PM

120 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Read-Only and Write-Only Properties
You can leave one or the other of a property’s accessors undefined by omitting its declaration.

• A property with only a get accessor is called a read-only property. A read-only property
is a safe way of passing an item of data out from a class or class instance without allow-
ing too much access.

• A property with only a set accessor is called a write-only property. A write-only property
is a safe way of passing an item of data from outside of the class to the class without
allowing too much access.

• At least one of the two accessors must be defined or the compiler will produce an error
message.

Figure 6-10 illustrates read-only and write-only properties.

Figure 6-10. A property can have one or the other of its accessors undefined.

9543.book Page 120 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 121

An Example of a Computed, Read-Only Property
In most of the examples so far, the property has been associated with a field, and the get and
set accessors have referenced that field. However, a property does not have to be associated
with a field. In the following example, the get accessor computes the return value.

In the following example code, class RightTriangle represents, not surprisingly, a right
triangle.

• It has two public fields that represent the lengths of the two right-angle sides of the tri-
angle. These fields can be written to and read from.

• The third side is represented by property Hypotenuse, which is a read-only property whose
return value is based on the lengths of the other two sides. It is not stored in a field.
Instead, it computes the correct value, on demand, for the current values of A and B.

Figure 6-11 illustrates read-only property Hypotenuse.

Figure 6-11. Read-only property Hypotenuse

 class RightTriangle
 {
 public double A = 3;
 public double B = 4;
 public double Hypotenuse // Read-only property
 {
 get{ return Math.Sqrt((A*A)+(B*B)); } // Calculate return value
 }
 }

 class Program
 {
 static void Main()
 {
 RightTriangle c = new RightTriangle();
 Console.WriteLine("Hypotenuse: {0}", c.Hypotenuse);
 }
 }

9543.book Page 121 Friday, December 7, 2007 3:10 PM

122 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Example of Properties and Databases
Another example in which a property is not associated with a field is when the property is asso-
ciated with a value in a database. In that case, the get accessor makes the appropriate database
calls to get the value from the database. The set accessor makes the corresponding calls to the
database to set the new value in the database.

For example, the following property is associated with a particular value in some database.
The code assumes that there are two other methods in the class to handle the details of the
database transactions:

• SetValueInDatabase takes an integer parameter and uses it to set a particular field in a
record in some database.

• GetValueFromDatabase retrieves and returns a particular integer field value from a par-
ticular record in some database.

 int MyDatabaseValue
 {
 set // Sets integer value in the database
 {
 SetValueInDatabase(value);
 }
 get // Gets integer value from the database
 {
 return GetValueFromDatabase();
 }
 }

9543.book Page 122 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 123

Automatically Implemented Properties
Because properties are so often associated with backing fields, C# 3.0 has added automatically
implemented properties, or auto-implemented properties, which allow you to just declare the
property, without declaring a backing field.

The important points about auto-implemented properties are the following:

• You do not declare the backing field—the compiler allocates the storage for you, based
on the type of the property.

• You cannot supply the bodies of the accessors—they must be declared simply as semi-
colons. The get acts as a simple read of the memory, and the set as a simple write.

• You cannot access the backing field other than through the accessors. Since you can’t
access it any other way, it wouldn’t make sense to have read-only or write-only auto-
implemented properties—so they’re not allowed.

The following code shows an example of an automatically implemented property:

This code produces the following output:

MyValue: 0
MyValue: 20

 class C1
 { ← No declared backing field
 public int MyValue // Allocates memory
 {
 set; get;
 } ↑ ↑
 } The bodies of the accessors are declared as semicolons.

 class Program
 {
 static void Main()
 { Use auto-implemented properties as regular properties.
 C1 c = new C1(); ↓
 Console.WriteLine("MyValue: {0}", c.MyValue);

 c.MyValue = 20;
 Console.WriteLine("MyValue: {0}", c.MyValue);
 }
 }

9543.book Page 123 Friday, December 7, 2007 3:10 PM

124 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Besides being convenient, auto-implemented properties allow you to easily insert a prop-
erty where you might be tempted to declare a public field. Public fields are generally discouraged
because they don’t allow you to process the input and output the way you can with accessors.

You might, however, be tempted to release a version of the code with a public field, and
then in a later release change the field to a property. However, the semantics of a compiled
variable and a compiled property are different. If, in a later release, you were to switch from a
field to a property, any assemblies accessing that field in the first release would have to be
recompiled to use the property. If you use a property in the first place, the client doesn’t have
to be recompiled.

9543.book Page 124 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 125

Static Properties
Properties can also be declared static. Accessors of static properties, like all static members

• Cannot access instance members of a class—although they can be accessed by them

• Exist regardless of whether there are instances of the class

• Must be referenced by the class name, rather than an instance name, when being
accessed from outside the class

For example, the following code shows a class with a static property called MyValue that
is associated with a static field called myValue. In the first three lines of Main, the property is
accessed, even though there are no instances of the class. The last line of Main calls an instance
method that accesses the property from inside the class.

Init Value: 0
New Value : 10
Value from inside: 10

 class Trivial
 {
 static int myValue;
 public static int MyValue
 {
 set { myValue = value; }
 get { return myValue; }
 }

 public void PrintValue() Accessed from inside the class
 { ↓
 Console.WriteLine("Value from inside: {0}", MyValue);
 }
 }

 class Program
 {
 static void Main() Accessed from outside the class
 { ↓
 Console.WriteLine("Init Value: {0}", Trivial.MyValue);
 Trivial.MyValue = 10; ← Accessed from outside the class
 Console.WriteLine("New Value : {0}", Trivial.MyValue);

 Trivial tr = new Trivial();
 tr.PrintValue();
 }
 }

9543.book Page 125 Friday, December 7, 2007 3:10 PM

126 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Instance Constructors
An instance constructor is a special method that is executed whenever a new instance of a class
is created.

• A constructor is used to initialize the state of the class instance.

• If you want to be able to create instances of your class from outside the class, you need
to declare the constructor public.

Figure 6-12 shows the syntax of a constructor. A constructor looks like the other methods
in a class declaration, with the following exceptions:

• The name of the constructor is the same as the name of the class.

• A constructor cannot have a return value.

Figure 6-12. Constructor declaration

For example, the following class uses its constructor to initialize its fields. In this case, it
has a field called TimeOfInstantiation that is initialized with the current date and time.

■Note Having finished the section on static properties, take a closer look at the line that initializes
TimeOfInstantiation. The DateTime class is from the BCL, and Now is a static property of the DateTime
class. The Now property creates a new instance of the DateTime class, initializes it with the current date and
time from the system clock, and returns a reference to the new DateTime instance.

 class MyClass
 {
 DateTime TimeOfInstantiation; // Field
 ...
 public MyClass() // Constructor
 {
 TimeOfInstantiation = DateTime.Now; // Initialize field
 }
 ...
 }

9543.book Page 126 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 127

Constructors with Parameters
Constructors are like other methods in the following ways:

• A constructor can have parameters. The syntax for the parameters is exactly the same as
for other methods.

• A constructor can be overloaded.

When you use an object-creation expression to create a new instance of a class, you supply
the new operator followed by one of the class’s constructors. The new operator uses that con-
structor to create the instance of the class.

For example, in the following code, Class1 has three constructors: one that takes no
parameters, one that takes an int, and another that takes a string. Main creates an instance
using each one.

This code produces the following output:

Name Nemo, Id 28
Name Nemo, Id 7
Name Bill, Id 0

 class Class1
 {
 int Id;
 string Name;

 public Class1() { Id=28; Name="Nemo"; } // Constructor 0
 public Class1(int val) { Id=val; Name="Nemo"; } // Constructor 1
 public Class1(String name) { Name=name; } // Constructor 2

 public void SoundOff()
 { Console.WriteLine("Name {0}, Id {1}", Name, Id); }
 }

 class Program
 {
 static void Main()
 {
 Class1 a = new Class1(), // Call constructor 0.
 b = new Class1(7), // Call constructor 1.
 c = new Class1("Bill"); // Call constructor 2.

 a.SoundOff();
 b.SoundOff();
 c.SoundOff();
 }
 }

9543.book Page 127 Friday, December 7, 2007 3:10 PM

128 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Default Constructors
If no instance constructor is explicitly supplied in the class declaration, then the compiler sup-
plies an implicit, default constructor, which has the following characteristics:

• It takes no parameters.

• It has an empty body.

If the programmer defines one or more constructors, then the compiler will not define a
default constructors for the class.

For example, Class2 declares two constructors.

• Because there is at least one explicitly defined constructor, the compiler does not create
any additional constructors.

• In Main, there is an attempt to create a new instance using a constructor with no param-
eters. Since there is no constructor with zero parameters, the compiler will produce an
error message.

 class Class2
 {
 public Class2(int Value) { ... } // Constructor 0
 public Class2(String Value) { ... } // Constructor 1
 }

 class Program
 {
 static void Main()
 {
 Class2 a = new Class2(); // Error! No constructor with 0 parameters
 ...
 }
 }

9543.book Page 128 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 129

Static Constructors
Constructors can also be declared static. While an instance constructor initializes each new
instance of a class, a static constructor initializes items at the class level. Generally, static con-
structors initialize the static fields of the class.

• Class level items need to be initialized:

– Before any static member is referenced

– Before any instance of the class is created

• Static constructors are like instance constructors in the following ways:

– The name of the static constructor must be the same as the name of the class.

– The constructor cannot return a value.

• Static constructors are unlike instance constructors in the following ways:

– Static constructors use the static keyword in the declaration.

– There can only be a single static constructor for a class, and it cannot have
parameters.

– Static constructors cannot have accessibility modifiers.

The following is an example of a static constructor. Notice that its form is the same as that
of an instance constructor, but with the addition of the static keyword.

Other important things you should know about static constructors are the following:

• A class can have both a static constructor and instance constructors.

• Like static methods, a static constructor cannot access instance members of its class,
and therefore cannot use the this accessor.

• You cannot explicitly call static constructors from your program. They are called auto-
matically by the system

– Before any instance of the class is created

– Before any static member of the class is referenced

 class Class1
 {
 static Class1 ()
 {
 ... // Do all the static initializations.
 }
 ...

9543.book Page 129 Friday, December 7, 2007 3:10 PM

130 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Example of a Static Constructor
The following code uses a static constructor to initialize a private static field named RandomKey,
of type Random. Random is a class provided by the BCL to produce random numbers. It is in the
System namespace.

One execution of this code produced the following output:

Next Random #: 47857058
Next Random #: 1124842041

Accessibility of Constructors
You can assign access modifiers to instance constructors just as you can to other members.
Notice that in the examples, the constructors have been declared public so that you can create
instances from outside the class.

You can also create private constructors, which cannot be called from outside the class,
but can be used from within the class, as you will see in the next chapter.

 class RandomNumberClass
 {
 private static Random RandomKey; // Private static field

 static RandomNumberClass() // Static constructor
 {
 RandomKey = new Random(); // Initialize RandomKey
 }

 public int GetRandomNumber()
 {
 return RandomKey.Next();
 }
 }

 class Program
 {
 static void Main()
 {
 RandomNumberClass a = new RandomNumberClass();
 RandomNumberClass b = new RandomNumberClass();

 Console.WriteLine("Next Random #: {0}", a.GetRandomNumber());
 Console.WriteLine("Next Random #: {0}", b.GetRandomNumber());
 }
 }

9543.book Page 130 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 131

Object Initializers
An object initializer allows you to set the values of fields and properties when creating a new
instance of an object.

So far in the text, you’ve seen that an object-creation expression consists of the keyword
new followed by a class constructor. An object initializer extends that syntax by placing a list of
member initializations at the end of the expression. The syntax has two forms, as shown here.
One form includes the constructor’s argument list, and the other doesn’t.

For example, for a class named Point with two public integer fields X and Y, you could use
the following expression to create a new object:

Important things to know about object initializers are the following:

• The members being initialized must be accessible (e.g., public) to the code creating the
object.

• The initialization occurs after the constructor has finished execution.

 Object initializer
 ↓
 new TypeName(ArgList) { FieldOrProp = InitExpr, FieldOrProp = InitExpr, ...}
 new TypeName { FieldOrProp = InitExpr, FieldOrProp = InitExpr, ...}
 ↑ ↑
 Member initializer Member initializer

 new Point { X = 5, Y = 6 };
 ↑ ↑
 Init X Init Y

9543.book Page 131 Friday, December 7, 2007 3:10 PM

132 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

The following code shows an example of using an object initializer. In Main, pt1 calls just the
constructor, which sets the values of its two fields. For pt2, however, the constructor sets the
fields’ values to 1 and 2, and the initializer changes them to 5 and 6.

This code produces the following output:

pt1: 1, 2
pt2: 5, 6

 public class Point
 {
 public int X = 1;
 public int Y = 2;
 }

 static void Main()
 { Object initializer
 Point pt1 = new Point(); ↓
 Point pt2 = new Point { X = 5, Y = 6 };
 Console.WriteLine("pt1: {0}, {1}", pt1.X, pt1.Y);
 Console.WriteLine("pt2: {0}, {1}", pt2.X, pt2.Y);s
 }

9543.book Page 132 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 133

Destructors
Destructors perform actions required to clean up or release unmanaged resources before an
instance of a class is destroyed. The important things to know about destructors are the
following:

• You can only have a single destructor per class.

• A destructor cannot have parameters.

• A destructor cannot have accessibility modifiers.

• A destructor has the same name as the class, but is preceded by a tilde character (pro-
nounced TIL-duh).

• A destructor only acts on instances of classes; hence, there are no static destructors.

• You cannot call a destructor explicitly in your code. Instead, it is called during the gar-
bage collection process, when the garbage collector analyzes your code and determines
that there is no longer any path through your code that references the object.

For example, the following code illustrates the syntax for a destructor of a class called
Class1:

Some important guidelines for using destructors are the following:

• Don’t implement a destructor if you don’t need one. They can incur performance costs.

• A destructor should only release external resources that the object owns. It should not
access other objects because you can’t assume that these objects have not already been
collected.

■Note Although there has sometimes been a question as to whether destructors should be called
“destructors” or “finalizers,” the C# Language Specification, Version 3.0, released at the end of 2007,
calls this method a destructor.

 Class1
 {
 ~Class1() // The destructor
 {
 CleanupCode
 }
 ...
 }

9543.book Page 133 Friday, December 7, 2007 3:10 PM

134 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Calling the Destructor
Unlike a C++ destructor, a C# destructor is not called immediately when an instance goes out
of scope. In fact, there is no way of knowing when the destructor will be called. Furthermore, as
previously mentioned, you cannot explicitly call a destructor. If your code needs a destructor,
you must provide it for the system, which will call it at some point before the object is removed
from the managed heap.

If your code contains unmanaged resources that need to be released in a timely manner,
you should not leave that for the destructor, since there is no guarantee that the destructor will
run any time soon. Instead, you should adopt the standard pattern where your classes imple-
ment what is called the IDisposable interface. (I’ll cover interfaces in Chapter 17.) This consists
of encapsulating the cleanup code for these resources in a void, parameterless method, which
you should call Dispose.

When you’re done with the resources and want them released, you need to call Dispose.
Notice that it is you who needs to call Dispose—not the destructor. The system will not call it for
you automatically.

Some guidelines for your Dispose method are the following:

• Implement the code in Dispose in such a way that it is safe for the method to be called more
than once. If it has already been called, then on any subsequent invocations it should not
raise an exception or do any additional work. (Exceptions are covered in Chapter 11.)

• Write your Dispose method and destructor such that, if for some reason your code
doesn’t get to call Dispose, your destructor will call it and release the resources.

• Since Dispose is doing the cleanup rather than the destructor, it should call the
GC.SuppressFinalize method, which tells the CLR not to call this object’s destructor,
because it has already been taken care of.

The following code describes the safe disposal process. First, the class needs to declare a
Boolean disposed field to keep track of whether the cleanup has occurred or not. This is initial-
ized to false when the object is created.

Inside the Dispose method, do the following:

• Check the flag to see whether the resources have already been released. If not, then do
the following:

– Call the Dispose methods on any managed resources that require it.

– Release any unmanaged resources held by the object.

• Now that the disposal has occurred, set the disposed flag to true.

• Finally, call the garbage collector’s SuppressFinalize method to tell the garbage collec-
tor not to call the class’s destructor.

9543.book Page 134 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 135

The process in the destructor is similar to but shorter than that in the Dispose method. Just
check to see whether the object has already been cleaned up, and if not, then release the
unmanaged resources. Notice that in this case you do not call the Dispose methods of any
managed resources, because the garbage collector might have already deleted those objects.

 class MyClass
 {
 bool disposed = false; // Flag indicating disposal status

 //
 public void Dispose() // Public Dispose
 {
 if (disposed == false) // Check the flag.
 {
 // Call Dispose on managed resources.
 ...

 // Release any unmanaged resources.
 ...
 }
 disposed = true; // Set the flag to show disposal.
 GC.SuppressFinalize(this); // Tell GC not to call Finalize.
 }

 //
 ~MyClass() // Destructor
 {
 if (disposed == false) // Check the flag.
 {
 // Release any unmanaged resources.
 ...
 }
 }

 ...
 }

9543.book Page 135 Friday, December 7, 2007 3:10 PM

136 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

The Standard Dispose Pattern
In the previous section, you saw that the destructor code is essentially a subset of the Dispose
code. The standard pattern factors out most of the common code of these two methods into
another method called Dispose, which I’ll call the factored Dispose. It takes a single Boolean
parameter that is used to indicate whether the method is being called from the public Dispose
method (true) or from the destructor (false).

This standard dispose pattern is shown following, and illustrated in Figure 6-13. I’ll cover
the protected and virtual modifiers in the next chapter.

 class MyClass
 {
 bool disposed = false; // Disposal status

 public void Dispose()
 {
 Dispose(true); Public Dispose
 GC.SuppressFinalize(this);
 }

 ~MyClass()
 { Destructor
 Dispose(false);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed == false)
 {
 if (disposing == true)
 {
 // Dispose the managed resources. Factored Dispose
 ...
 }

 // Dispose the unmanaged resources.
 ...
 }
 disposed = true;
 }

 }

9543.book Page 136 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 137

Figure 6-13. The standard dispose pattern

Comparing Constructors and Destructors
Table 6-3 provides a summary of when constructors and destructors are called.

Table 6-3. Constructors and Destructors

When and How Often Called

Instance Constructor Called once on the creation of each new instance of the class.

Destructor Called for each instance of the class, at some point after the program
flow can no longer access the instance.

Static Constructor Called only once—either before the first access of any static member
of the class, or before any instances of the class are created—which-
ever is first.

Destructor Does not exist—destructors only work on instances.

9543.book Page 137 Friday, December 7, 2007 3:10 PM

138 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

The readonly Modifier
A field can be declared with the readonly modifier. The effect is similar to declaring a field as
const, in that once the value is set, it cannot be changed.

• While a const field can only be initialized in the field’s declaration statement, a readonly
field can have its value set in any of the following places:

– The field declaration statement—like a const.

– Any of the class constructors. If it’s a static field, then it must be done in the static
constructor.

• While the value of a const field must be determinable at compile time, the value of a
readonly field can be determined at run time. This additional freedom allows you to set
different values in different constructors!

• Unlike a const, which always acts like a static, the following is true of a readonly field:

– It can be either an instance field or a static field.

– It has a storage location in memory.

9543.book Page 138 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 139

For example, the following code declares a class called Shape, with two readonly fields.

• Field PI is initialized in its declaration.

• Field NumberOfSides is set to either 3 or 4, depending on which constructor is called.

 class Shape
 { Keyword Initialized
 ↓ ↓
 readonly double PI = 3.1416;
 readonly int NumberOfSides;
 ↑ ↑
 Keyword Not initialized

 public Shape(double side1, double side2) // Constructor
 {
 // Shape is a rectangle
 NumberOfSides = 4;
 ↑
 ... Set in constructor
 }

 public Shape(double side1, double side2, double side3) // Constructor
 {
 // Shape is a triangle
 NumberOfSides = 3;
 ↑
 ... Set in constructor
 }
 }

9543.book Page 139 Friday, December 7, 2007 3:10 PM

140 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

The this Keyword
The this keyword, used in a class, is a reference to the current instance. It can only be used in
the blocks of the following class members:

• Instance constructors.

• Instance methods.

• Instance accessors of properties and indexers. (Indexers are covered in the next
section.)

Clearly, since static members are not part of an instance, you cannot use the this keyword
inside the code of any static function member. Rather, it is used for the following:

• To distinguish between class members and local variables or parameters

• As an actual parameter when calling a method

For example, the following code declares class MyClass, with an int field and a method that
takes a single int parameter. The method compares the values of the parameter and the field,
and returns the greater value. The only complicating factor is that the names of the field and
the formal parameter are the same: Var1. The two names are distinguished inside the method
by using the this access keyword to reference the field. Note that it is not recommended to use
the same name for a parameter and a type field.

 class MyClass
 {
 int Var1 = 10;
 ↑ Both are called "Var1" ↓
 public int ReturnMaxSum(int Var1)
 { Parameter Field
 ↓ ↓
 return Var1 > this.Var1
 ? Var1 // Parameter
 : this.Var1; // Field
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 Console.WriteLine("Max: {0}", mc.ReturnMaxSum(30));
 Console.WriteLine("Max: {0}", mc.ReturnMaxSum(5));
 }
 }

9543.book Page 140 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 141

Indexers
If you were to define class Employee, with three fields of type string (as shown in Figure 6-14),
you could access the fields using their names, as shown in the code in Main.

Figure 6-14. Simple class without indexers

There are times, however, when it would be convenient to be able to access them with an
index, as if the instance were an array of fields. This is exactly what indexers allow you to do.
If you were to write an indexer for class Employee, method Main might look like the code in
Figure 6-15. Notice that instead of using dot-syntax notation, indexers use index notation,
which consists of an index between square brackets.

Figure 6-15. Using indexed fields

9543.book Page 141 Friday, December 7, 2007 3:10 PM

142 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

What Is an Indexer?
An indexer is a set of get and set accessors, similar to those of properties. Figure 6-16 shows
representations of an indexer for a class that can get and set values of type string.

Figure 6-16. Representations of an indexer

Indexers and Properties
Indexers and properties are similar in many ways.

• Like a property, an indexer does not allocate memory for storage.

• Both indexers and properties are used primarily for giving access to other data members
with which they are associated, and for which they provide set and get access.

– A property is usually accessing a single data member.

– An indexer is usually accessing multiple data members.

■Note You can think of an indexer as a property that gives get and set access to multiple data members of
the class. You select which of the many possible data members by supplying an index, which itself can be
of any type—not just numeric.

Some additional points to be aware of when working with indexers are the following:

• An indexer can have either one or both of the accessors.

• Indexers are always instance members; hence, an indexer cannot be declared static.

• Like properties, the code implementing the get and set accessors does not have to be
associated with any fields or properties. The code can do anything, or nothing, as long
as the get accessor returns some value of the specified type.

9543.book Page 142 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 143

Declaring an Indexer
The syntax for declaring an indexer is shown following. Notice the following about indexers:

• An indexer does not have a name. In place of the name is the keyword this.

• The parameter list is between square brackets.

• There must be at least one parameter declaration in the parameter list.

Declaring an indexer is similar to declaring a property. Figure 6-17 shows the syntactic
similarities and differences.

Figure 6-17. Comparing an indexer declaration to a property declaration

 Keyword Parameter list
 ↓ ↓
 ReturnType this [Type param1, ...]
 { ↑ ↑
 get Square brackets
 {
 ...
 }
 set
 {
 ...
 }
 }

9543.book Page 143 Friday, December 7, 2007 3:10 PM

144 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

The set Accessor
When the indexer is the target of an assignment, the set accessor is called, and receives two
items of data, as follows:

• An implicit parameter, named value, where value holds the data to be stored

• One or more index parameters that represent where it should be stored

Your code in the set accessor must examine the index parameters, determine where the
data should be stored, and then store it.

The syntax and meaning of the set accessor are shown in Figure 6-18. The left side of the
figure shows the actual syntax of the accessor declaration. The right side shows the semantics
of the accessor if it were written using the syntax of a normal method. The figure on the right
shows that the set accessor has the following semantics:

• It has a void return type.

• It uses the same parameter list as that in the indexer declaration.

• It has an implicit value parameter named value, of the same type as the indexer.

Figure 6-18. The syntax and meaning of the set accessor declaration

 emp[0] = "Doe";
 ↑ ↑
 Index Value
 Parameter

9543.book Page 144 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 145

The get Accessor
When the indexer is used to retrieve a value, the get accessor is called with one or more index
parameters. The index parameters represent which value to retrieve.

The code in the get accessor body must examine the index parameters, determine which
field they represent, and return the value of that field.

The syntax and meaning of the get accessor are shown in Figure 6-19. The left side of the
figure shows the actual syntax of the accessor declaration. The right side shows the semantics
of the accessor if it were written using the syntax of a normal method. The semantics of the get
accessor are as follows:

• It has the same parameter list as in the indexer declaration.

• It returns a value of the same type as the indexer.

Figure 6-19. The syntax and meaning of the get accessor declaration

 string s = emp[0];
 ↑
 Index parameter

9543.book Page 145 Friday, December 7, 2007 3:10 PM

146 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

More About Indexers
As with properties, the get and set accessors cannot be called explicitly. Instead, the get acces-
sor is called automatically when the indexer is used in an expression for a value. The set
accessor is called automatically when the indexer is assigned a value with the assignment
statement.

When an indexer is “called,” the parameters are supplied between the square brackets.

Declaring the Indexer for the Employee Example
The following code declares an indexer for the earlier example: class Employee.

• The indexer must read and write values of type string—so string must be declared as the
indexer’s type. It must be declared public so that it can be accessed from outside the class.

• The three fields have been arbitrarily indexed as integers 0 through 2, so the formal
parameter between the square brackets, named index in this case, must be of type int.

• In the body of the set accessor, the code determines which field the index refers to and
assigns value to it. In the body of the get accessor, the code determines which field the
index refers to and returns that field’s value.

 Index Value
 ↓ ↓
 emp1[0] = "Doe"; // Calls set accessor
 string NewName = emp[0]; // Calls get accessor
 ↑
 Index

9543.book Page 146 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 147

 class Employee
 {
 public string LastName; // Call this field 0.
 public string FirstName; // Call this field 1.
 public string CityOfBirth; // Call this field 2.

 public string this[int index] // Indexer declaration
 {
 set // Set accessor declaration
 {
 switch (index)
 {
 case 0: LastName = value;
 break;
 case 1: FirstName = value;
 break;
 case 2: CityOfBirth = value;
 break;
 default: // (Exceptions in Ch. 11)
 throw new ArgumentOutOfRangeException("index");
 break;
 }
 }

 get // Get accessor declaration
 {
 switch (index)
 {
 case 0: return LastName;
 case 1: return FirstName;
 case 2: return CityOfBirth;
 default: // (Exceptions in Ch. 11)
 throw new ArgumentOutOfRangeException("index");
 break;
 }
 }
 }
 }

9543.book Page 147 Friday, December 7, 2007 3:10 PM

148 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Another Indexer Example
The following is an additional example that indexes the two int fields of class Class1.

This code produces the following output:

Values -- T0: 0, T1: 0
Values -- T0: 15, T1: 20

 class Class1
 {
 int Temp0; // Private field
 int Temp1; // Private field
 public int this [int index] // The indexer
 {
 get
 {
 return (0 == index) // Return value of either Temp0 or Temp1
 ? Temp0
 : Temp1;
 }

 set
 {
 if(0 == index)
 Temp0 = value; // Note the implicit variable "value".
 else
 Temp1 = value; // Note the implicit variable "value".
 }
 }
 }

 class Example
 {
 static void Main()
 {
 Class1 a = new Class1();
 Console.WriteLine("Values -- T0: {0}, T1: {1}", a[0], a[1]);
 a[0] = 15;
 a[1] = 20;
 Console.WriteLine("Values -- T0: {0}, T1: {1}", a[0], a[1]);
 }
 }

9543.book Page 148 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 149

Indexer Overloading
A class can have more than one indexer, as long as the parameter lists are different; it isn’t suf-
ficient for the indexer type to be different. This is called indexer overloading, because all the
indexers have the same “name”—the this access reference.

For example, the following class has three indexers: two of type string, and one of type
int. Of the two indexers of type string, one has a single int parameter and the other has
two int parameters.

■Note Remember that the overloaded indexers of a class must have different parameter lists.

 class MyClass
 {
 public string this [int index]
 {
 get { ... }
 set { ... }
 }

 public string this [int index1, int index2]
 {
 get { ... }
 set { ... }
 }

 public int this [float index1]
 {
 get { ... }
 set { ... }
 }

 ...
 }

9543.book Page 149 Friday, December 7, 2007 3:10 PM

150 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

Access Modifiers on Accessors
In this chapter, you’ve seen two types of function members that have get and set accessors:
properties and indexers. By default, both a member’s accessors have the same access level as
the member itself. That is, if a property has an access level of public, then both its accessors
have that same access level. The same is true of indexers.

The accessors of a member can, under certain conditions, have different access levels. For
example, in the following code, property Name has an access level of public, but the set accessor
has an access level of protected.

There are several restrictions on the access modifiers of accessors. The most important
ones are the following:

• An accessor can have an access modifier only if the member (property or indexer) has
both a get accessor and a set accessor.

• Although both accessors must be present, only one of them can have an access
modifier.

• The access modifier of the accessor must be strictly more restrictive than the access level
of the member.

Figure 6-20 shows the hierarchy of access levels. The access level of an accessor must be
strictly lower in the chart than the access level of the member.

For example, if a property has an access level of public, you can give any of the four lower
access levels on the chart to one of the accessors. But if the property has an access level of
protected, the only access modifier you can use on one of the accessors is private.

Figure 6-20. Hierarchy of strictly restrictive accessor levels

 class MyClass
 {
 private string _Name = "John Doe";
 public string Name
 {
 get { return _Name; }
 protected set { _Name = value; }
 }
 }

9543.book Page 150 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 151

Partial Classes and Partial Types
The declaration of a class can be partitioned among several partial class declarations.

• Each of the partial class declarations contains the declarations of some of the class
members.

• The partial class declarations of a class can be in the same file or in different files.

Each partial declaration must be labeled as partial class, in contrast to the single key-
word class. The declaration of a partial class looks the same as the declaration of a normal
class, other than the addition of the type modifier partial.

■Note The type modifier partial is not a keyword, so in other contexts you can use it as an identifier in
your program. But when used immediately before the keywords class, struct, or interface, it signals the
use of a partial type.

 Type modifier

 partial class MyPartClass // Same class name as following
 {
 member1 declaration
 member2 declaration
 ...
 }
 Type modifier

 partial class MyPartClass // Same class name as preceding
 {
 member3 declaration
 member4 declaration
 ...
 }

9543.book Page 151 Friday, December 7, 2007 3:10 PM

152 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

For example, the box on the left of Figure 6-21 represents a file with a class declaration.
The boxes on the right of the figure represent that same class declaration split into two files.

Figure 6-21. Class split using partial types

All the partial class declarations comprising a class must be compiled together. A class
using partial class declarations has the same meaning as if all the class members were declared
within a single class declaration body.

Besides classes, you can also create two other partial types:

• Partial structs. (Structs are covered in Chapter 12.)

• Partial interfaces. (Interfaces are covered in Chapter 17.)

9543.book Page 152 Friday, December 7, 2007 3:10 PM

C H A P T E R 6 ■ M O R E A B O U T C L A S S E S 153

Partial Methods
Partial methods are methods that are declared in two parts in a partial class. The two parts of
the partial class can be declared in different parts of the partial class, or in the same part. The
two parts of the partial method are the following:

• The defining partial method declaration gives the signature and return type, and the
implementation part of the declaration consists of only a semicolon.

• The implementing partial method declaration gives the signature, return type, and also
the implementation in the normal format of a statement block.

The important things to know about partial methods are the following:

• Both the defining and implementing declaration must match in signature and return
type. The signature and return type have the following characteristics:

– The contextual keyword partial must be included in both the defining and
implementing declarations immediately before the keyword void.

– The signature cannot include access modifiers⎯making partial methods implicitly
private.

– The return type must be void.

– The parameter list cannot contain out parameters.

• You can have a defining partial method without an implementing partial method. In
this case, the compiler removes the declaration and any calls to the method made inside
the class. If, however, the class has an implementing partial method, it must also have a
defining partial method.

9543.book Page 153 Friday, December 7, 2007 3:10 PM

154 C H A P T E R 6 ■ M O R E A B O U T C L A S S E S

The following code shows an example of a partial method called PrintSum.

• PrintSum is declared in different parts of partial class Myclass: the defining declaration
in the first part, and the implementing declaration in the second part. The implementa-
tion prints out the sum of its two integer parameters.

• Since partial methods are implicitly private, PrintSum cannot be called from outside the
class. Method Add is a public method that calls PrintSum.

• Main creates an object of class MyClass, and calls public method Add, which calls method
PrintSum, which prints out the sum of the input parameters.

This code produces the following output:

Sum is 11

partial class MyClass
{ Must be void
 ↓
 partial void PrintSum(int x, int y); // Defining partial method
 ↑ ↑
 Contextual keyword No implementation
 public void Add(int x, int y)
 {
 PrintSum(x, y);
 }
}

partial class MyClass
{
 partial void PrintSum(int x, int y) // Implementing partial method
 {
 Console.WriteLine("Sum is {0}", x + y); ← Implementation
 }
}

class Program
{
 static void Main()
 {
 var mc = new MyClass();
 mc.Add(5, 6);
 }
}

9543.book Page 154 Friday, December 7, 2007 3:10 PM

155

■ ■ ■

C H A P T E R 7

Classes and Inheritance

Class Inheritance
Accessing the Inherited Members
Hiding Members of a Base Class
Base Access
Using References to a Base Class
Constructor Execution
Inheritance Between Assemblies
Member Access Modifiers
Abstract Members
Abstract Classes
Sealed Classes
External Methods

9543ch07.fm Page 155 Tuesday, December 4, 2007 10:29 AM

156 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Class Inheritance
Inheritance allows you to define a new class that incorporates and extends an already
declared class.

• You can use an existing class, called the base class, as the basis for a new class, called the
derived class. The members of the derived class consist of the following:

– The members in its own declaration

– The members of the base class

• To declare a derived class, you add a class-base specification after the class name. The
class-base specification consists of a colon, followed by the name of the class to be used
as the base class. The derived class is said to directly inherit from the base class listed.

• A derived class is said to extend its base class, because it includes the members of the
base class plus any additional functionality provided in its own declaration.

• A derived class cannot delete any of the members it has inherited.

For example, the following shows the declaration of a class called OtherClass, which is
derived from a class called SomeClass:

Figure 7-1 shows an instance of each of the classes. Class SomeClass, on the left, has one
field and one method. Class OtherClass, on the right, is derived from SomeClass and contains
an additional field and an additional method.

Figure 7-1. Base class and derived class

 Class-base specification
 ↓
 class OtherClass : SomeClass
 { ↑ ↑
 ... Colon Base class
 }

9543ch07.fm Page 156 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 157

Accessing the Inherited Members
Inherited members are accessed just as if they had been declared in the derived class itself.
(Inherited constructors are a bit different—I’ll cover them later in the chapter.) For example,
the following code declares classes SomeClass and OtherClass, which were shown in Figure 7-1.
The code shows that all four members of OtherClass can be seamlessly accessed, regardless of
whether they are declared in the base class or the derived class.

• Main creates an object of derived class OtherClass.

• The next two lines in Main call Method1 in the base class, using Field1 from the base class,
and then Field2 from the derived class.

• The subsequent two lines in Main call Method2 in the derived class, again using Field1
from the base class and then Field2 from the derived class.

This code produces the following output:

Base class -- Method1: base class field
Base class -- Method1: derived class field
Derived class -- Method2: base class field
Derived class -- Method2: derived class field

class SomeClass { // Base class
 public string Field1 = "base class field";
 public void Method1(string value) {
 Console.WriteLine("Base class -- Method1: {0}", value);
 }
}

class OtherClass: SomeClass { // Derived class
 public string Field2 = "derived class field";
 public void Method2(string value) {
 Console.WriteLine("Derived class -- Method2: {0}", value);
 }
}

class Program {
 static void Main() {
 OtherClass oc = new OtherClass();

 oc.Method1(oc.Field1); // Base method with base field
 oc.Method1(oc.Field2); // Base method with derived field
 oc.Method2(oc.Field1); // Derived method with base field
 oc.Method2(oc.Field2); // Derived method with derived field
 }
 }

9543ch07.fm Page 157 Tuesday, December 4, 2007 10:29 AM

158 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

All Classes Are Derived from Class object
All classes, except special class object, are derived classes, even if they don’t have a class-base
specification. Class object is the only one that is not derived, since it is the base of the inherit-
ance hierarchy.

Classes without a class-base specification are implicitly derived directly from class object.
Leaving off the class-base specification is just shorthand for specifying that object is the base
class. The two forms are semantically equivalent.

Figure 7-2 shows both forms of declaration for the same class.

Figure 7-2. Direct inheritance from object

Other important facts about class derivation are the following:

• A class declaration can have only a single class listed in its class-base specification. This
is called single inheritance.

• Although a class can directly inherit from only a single base class, there is no limit to the
level of derivation. That is, the class listed as the base class might be derived from
another class, which is derived from another class, and so forth, until you eventually
reach object.

Base class and derived class are relative terms. All classes are derived classes, either from
object or from another class—so generally when we call a class a derived class, we mean that it
is immediately derived from some class other than object. Figure 7-3 shows a simple class
hierarchy. After this, I will not show object in the figures, since all classes are ultimately derived
from it.

Figure 7-3. A class hierarchy

9543ch07.fm Page 158 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 159

Hiding Members of a Base Class
Although a derived class cannot delete any of the members it has inherited, it can hide them.

• To hide an inherited data member, declare a new member of the same type and with the
same name.

• You can hide, or mask, an inherited function member by declaring in the derived class a
new function member with the same signature. Remember that the signature consists
of the name and parameter list, but does not include the return type.

• To let the compiler know that you are purposely hiding an inherited member, use the
new modifier. Without it, the program will compile successfully, but the compiler will
warn you that you are hiding an inherited member.

• You can also hide static members.

The following code declares a base class and a derived class, each with a string member
called Field1. The keyword new is used to explicitly tell the compiler to mask the base class
member. Figure 7-4 illustrates an instance of each class.

Figure 7-4. Hiding a member of a base class

 class SomeClass // Base class
 {
 string Field1;
 ...
 }

 class OtherClass : SomeClass // Derived class
 {
 new string Field1; // Mask base member with same name
 ↑
 Keyword

9543ch07.fm Page 159 Tuesday, December 4, 2007 10:29 AM

160 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

In the following code, OtherClass derives from SomeClass but hides both its inherited
members. Note the use of the new modifier. The code is illustrated in Figure 7-5.

Figure 7-5. Hiding a field and a method of the base class

 class SomeClass // Base class
 {
 public string Field1 = "SomeClass Field1";
 public void Method1(string value)
 { Console.WriteLine("SomeClass.Method1: {0}", value); }
 }

 class OtherClass : SomeClass // Derived class
 { Keyword
 ↓
 new public string Field1 = "OtherClass Field1"; // Mask the base member.
 new public void Method1(string value) // Mask the base member.
 ↑ { Console.WriteLine("OtherClass.Method1: {0}", value); }
 } Keyword

 class Program
 {
 static void Main()
 {
 OtherClass oc = new OtherClass(); // Use the masking member.
 oc.Method1(oc.Field1); // Use the masking member.
 }
 }

9543ch07.fm Page 160 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 161

Base Access
Sometimes, your derived class might need to access a hidden inherited member. You can access
a hidden base class member by using a base access expression. This expression consists of the
keyword base, followed immediately by a period and the name of the member, as shown here:

For example, in the following code, derived class OtherClass hides Field1 in its base class
but accesses it by using a base access expression.

This code produces the following output:

Field1 -- In the derived class
Field1 -- In the base class

 Console.WriteLine("{0}", base.Field1);
 ↑
 Base access

 class SomeClass { // Base class
 public string Field1 = "Field1 -- In the base class";
 }

 class OtherClass : SomeClass { // Derived class

 new public string Field1 = "Field1 -- In the derived class";
 ↑ ↑
 Hides the field in the base class
 public void PrintField1()
 {
 Console.WriteLine(Field1); // Access the derived class.
 Console.WriteLine(base.Field1); // Access the base class.
 } ↑
 } Base access

 class Program {
 static void Main()
 {
 OtherClass oc = new OtherClass();
 oc.PrintField1();
 }
 }

9543ch07.fm Page 161 Tuesday, December 4, 2007 10:29 AM

162 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Using References to a Base Class
An instance of a derived class consists of an instance of the base class, plus the additional
members of the derived class. A reference to the derived class points to the whole class object,
including the base class part.

If you have a reference to a derived class object, you can get a reference to the base class
part of the object by casting the reference to the type of the base class by using the cast opera-
tor. The cast operator is placed in front of the object reference, and consists of a set of
parentheses containing the name of the class being cast to. Casting is covered in detail in
Chapter 18.

The next few sections will cover accessing an object by using a reference to the base class
part of the object. We’ll start by looking at the two lines of code that follow, which declare ref-
erences to objects. Figure 7-6 illustrates the code and shows the parts of the object seen by the
different variables.

• The first line declares and initializes variable derived, which then contains a reference
to an object of type MyDerivedClass.

• The second line declares a variable of the base class type, MyBaseClass, and casts the ref-
erence in derived to that type, giving a reference to the base class part of the object.

– The reference to the base class part is stored in variable mybc, on the left side of the
assignment operator.

– The reference to the base class part cannot “see” the rest of the derived class object,
because it is “looking” at it through a reference to the base type.

Figure 7-6. Reference derived can see the entire MyDerivedClass object, while mybc can only see
the MyBaseClass part of the object.

 MyDerivedClass derived = new MyDerivedClass(); // Create an object.
 MyBaseClass mybc = (MyBaseClass) derived; // Cast the reference.

9543ch07.fm Page 162 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 163

The following code shows the declaration and use of these two classes. Figure 7-7 illus-
trates the object and references in memory.

Main creates an object of type MyDerivedClass and stores its reference in variable derived.
Main also creates a variable of type MyBaseClass and uses it to store a reference to the base class
portion of the object. When the Print method is called on each reference, the call invokes the
implementation of the method that that reference can see, producing different output strings.

This code produces the following output:

This is the derived class.
This is the base class.

Figure 7-7. A reference to the derived class and the base class

 class MyBaseClass {
 public void Print() {
 Console.WriteLine("This is the base class.");
 }
 }

 class MyDerivedClass : MyBaseClass {
 new public void Print() {
 Console.WriteLine("This is the derived class.");
 }
 }

 class Program {
 static void Main() {
 MyDerivedClass derived = new MyDerivedClass();
 MyBaseClass mybc = (MyBaseClass)derived;
 ↑
 Cast to base class
 derived.Print(); // Call Print from derived portion.
 mybc.Print(); // Call Print from base portion.
 }
 }

9543ch07.fm Page 163 Tuesday, December 4, 2007 10:29 AM

164 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Virtual and Override Methods
In the previous section, you saw that when you access an object of a derived class by using a
reference to the base class, you get the members from the base class. Virtual methods allow a
reference to the base class, to access “up into” the derived class.

You can use a reference to a base class to call a method in the derived class, if the following
are true:

• The method in the derived class and the method in the base class each have the same
signature and return type.

• The method in the base class is labeled virtual.

• The method in the derived class is labeled override.

For example, the following code shows the virtual and override modifiers on the meth-
ods in the base class and derived class.

Figure 7-8 illustrates this set of virtual and override methods. Notice how the behavior
differs from the previous case, where I used new to hide the base class members.

• When the Print method is called by using the reference to the base class (mybc), the
method call is passed up to the derived class and executed, because

– The method in the base class is marked as virtual.

– There is a matching override method in the derived class.

• Figure 7-8 illustrates this by showing the arrow coming out the back of the virtual Print
method and pointing at the override Print method.

Figure 7-8. A virtual method and an override method

 class MyBaseClass // Base class
 {
 virtual public void Print()
 ↑
 ...
 class MyDerivedClass : MyBaseClass // Derived class
 {
 override public void Print()
 ↑

9543ch07.fm Page 164 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 165

The following code is the same as in the previous section, but this time, the methods are
labeled virtual and override. This produces a result that is very different from that of the pre-
vious example. In this version, calling the method through the base class invokes the method
in the derived class.

This code produces the following output:

This is the derived class.
This is the derived class.

Other important information about the virtual and override modifiers is the following:

• The overriding and overridden methods must have the same accessibility. In other
words, the overridden method cannot be, for example, private, and the overriding
method public.

• You cannot override a method that is static or is non-virtual.

• Methods, properties, and indexers (which I covered in the preceding chapter), and
another member type, called events (which I will cover later in the text), can all be
declared virtual and override.

 class MyBaseClass {
 virtual public void Print()
 {
 Console.WriteLine("This is the base class.");
 }
 }

 class MyDerivedClass : MyBaseClass {
 override public void Print()
 {
 Console.WriteLine("This is the derived class.");
 }
 }

 class Program {
 static void Main()
 {
 MyDerivedClass derived = new MyDerivedClass();
 MyBaseClass mybc = (MyBaseClass)derived;
 ↑
 derived.Print(); Cast to base class
 mybc.Print();
 }
 }

9543ch07.fm Page 165 Tuesday, December 4, 2007 10:29 AM

166 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Overriding a Method Marked override
Overriding methods can occur between any levels of inheritance.

• When you use a reference to the base class part of an object to call an overridden
method, the method call is passed up the derivation hierarchy for execution, to the
most-derived version of the method marked as override.

• If there are other declarations of the method at higher levels of derivation, which are not
marked as override—they are not invoked.

For example, the following code shows three classes that form an inheritance hierarchy:
MyBaseClass, MyDerivedClass, and SecondDerived. All three classes contain a method named
Print, with the same signature. In MyBaseClass, Print is labeled virtual. In MyDerivedClass, it
is labeled override. In class SecondDerived, you can declare method Print with either override
or new. Let’s look at what happens in each case.

Case 1: Declaring Print with override

If you declare the Print method of SecondDerived as override, then it will override both the less-
derived versions of the method, as shown in Figure 7-9. If a reference to the base class is used to
call Print, it gets passed all the way up the chain to the implementation in class SecondDerived.

 class MyBaseClass // Base class
 {
 virtual public void Print()
 { Console.WriteLine("This is the base class."); }
 }

 class MyDerivedClass : MyBaseClass // Derived class
 {
 override public void Print()
 { Console.WriteLine("This is the derived class."); }
 }

 class SecondDerived : MyDerivedClass // Most-derived class
 {
 ... // Given in the following pages
 }

9543ch07.fm Page 166 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 167

The following code implements this case. Notice the code in the last two lines of method Main.

• The first of the two statements calls the Print method by using a reference to the most-
derived class—SecondDerived. This is not calling through a reference to the base class
portion, so it will call the method implemented in SecondDerived.

• The second statement, however, calls the Print method by using a reference to the base
class—MyBaseClass.

The result is that regardless of whether Print is called through the derived class or the base
class, the method in the most-derived class is called. When called through the base class, it is
passed up the inheritance hierarchy. This code produces the following output:

This is the second derived class.
This is the second derived class.

Figure 7-9. Execution is passed to the top of the chain of multiple levels of override.

 class SecondDerived : MyDerivedClass {
 override public void Print() {
 ↑ Console.WriteLine("This is the second derived class.");
 }
 }

 class Program {
 static void Main()
 {
 SecondDerived derived = new SecondDerived(); // Use SecondDerived.
 MyBaseClass mybc = (MyBaseClass)derived; // Use MyBaseClass.

 derived.Print();
 mybc.Print();
 }
 }

9543ch07.fm Page 167 Tuesday, December 4, 2007 10:29 AM

168 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Case 2: Declaring Print with new

If instead you declare the Print method of SecondDerived as new, the result is as shown in
Figure 7-10. Main is the same as in the previous case.

The result is that when method Print is called through the reference to SecondDerived,
the method in SecondDerived is executed, as you would expect. When the method is called
through a reference to MyBaseClass, however, the method call is passed up only one level, to
class MyDerived, where it is executed. The only difference between the two cases is whether the
method in SecondDerived is declared with modifier override or modifier new.

This code produces the following output:

This is the second derived class.
This is the derived class.

Figure 7-10. Hiding the overridden methods

 class SecondDerived : MyDerivedClass {
 new public void Print() {
 Console.WriteLine("This is the second derived class.");
 }
 }

 class Program {
 static void Main() // Main
 {
 SecondDerived derived = new SecondDerived(); // Use SecondDerived.
 MyBaseClass mybc = (MyBaseClass)derived; // Use MyBaseClass.

 derived.Print();
 mybc.Print();
 }
 }

9543ch07.fm Page 168 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 169

Constructor Execution
In the preceding chapter, you saw that a constructor executes code that prepares a class for
use. This includes initializing both the static and instance members of the class. In this chapter,
you saw that part of a derived class object is an object of the base class.

• To create the base class part of an object, a constructor for the base class is called as part
of the process of creating the instance.

• Each class in the inheritance hierarchy chain executes its base class constructor before
it executes its own constructor body.

For example, the following code shows a declaration of class MyDerivedClass and its con-
structor. When the constructor is called, it calls the parameterless constructor MyBaseClass()
before executing its own body.

The order of construction is shown in Figure 7-11. When an instance is being created, one
of the first things that is done is the initialization of all the instance members of the object. After
that, the base class constructor is called. Only then is the body of the constructor of the class
itself executed.

Figure 7-11. Order of object construction

 class MyDerivedClass : MyBaseClass
 {
 MyDerivedClass() // Constructor uses base constructor MyBaseClass().
 {
 ...
 }

9543ch07.fm Page 169 Tuesday, December 4, 2007 10:29 AM

170 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

For example, in the following code, the values of MyField1 and MyField2 would be set to 5
and 0, respectively, before the base class constructor is called.

■Caution Calling a virtual method in a constructor is strongly discouraged. The virtual method in the base
class would call the override method in the derived class while the base class constructor is being executed.
But that would be before the derived constructor’s body is executed. It would, therefore, be calling up into the
derived class before the class is completely initialized.

 class MyDerivedClass : MyBaseClass
 {
 int MyField1 = 5; // 1. Member initialized
 int MyField2; // Member initialized

 public MyDerivedClass() // 3. Body of constructor executed
 {
 ...
 }
 }

 class MyBaseClass
 {
 public MyBaseClass() // 2. Base class constructor called
 {
 ...
 }
 }

9543ch07.fm Page 170 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 171

Constructor Initializers
By default, the parameterless constructor of the base class is called when an object is being
constructed. But constructors can be overloaded, so a base class might have more than one. If
you want your derived class to use a specific base class constructor other than the parameter-
less constructor, you must specify it in a constructor initializer.

There are two forms of constructor initializer:

• The first form uses the keyword base and specifies which base class constructor to use.

• The second form uses the keyword this and specifies which other constructor from this
class should be used.

A base class constructor initializer is placed after a colon following the parameter list in a
class’s constructor declaration. The constructor initializer consists of the keyword base, and
the parameter list of the base constructor to call.

For example, the following code shows a constructor for class MyDerivedClass.

• The constructor initializer specifies that the base class constructor to use is the one that
has two parameters; the first parameter is a string, and the second parameter is an int.

• The parameters in the base parameter list must match the intended base constructor’s
parameter list, in type and order.

 Constructor initializer
 ↓
public MyDerivedClass(int x, string s) : base(s, x)
{ ↑
 ... Keyword

9543ch07.fm Page 171 Tuesday, December 4, 2007 10:29 AM

172 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

When you declare a constructor without a constructor initializer, it is a shortcut for the
form with a constructor initializer consisting of base(), as illustrated in Figure 7-12. The two
forms are semantically equivalent.

Figure 7-12. Equivalent forms of a constructor

Another form of constructor initializer instructs the constructor to use a different con-
structor in the same class. For example, the following shows a constructor for class MyClass,
which uses the constructor from the same class, but with two parameters, supplying a default
parameter as the second one.

 Constructor initializer
 ↓
 public MyClass(int x): this(x, "Using Default String")
 { ↑
 ... Keyword
 }

9543ch07.fm Page 172 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 173

Class Access Modifiers
A class can be seen and accessed by other classes in the system. This section covers the acces-
sibility of classes. Although I will use classes in the explanations and examples since that is
what we’ve covered so far in the text, the accessibility rules also apply to the other types I will
cover later.

The term visible is sometimes used for the term accessible. They can be used interchange-
ably. There are two levels of class accessibility: public and internal.

• A class marked public can be accessed by code from any assembly in the system. To
make a class visible to other assemblies, use the public access modifier, as shown here:

• A class marked internal can only be seen by classes within its own assembly.

– This is the default accessibility level, so unless you explicitly specify the modifier
public in the class declaration, code outside the assembly cannot access the class.

– You can explicitly declare a class as internal by using the internal access modifier.

Figure 7-13 illustrates the accessibility of internal and public classes from outside the
assembly. Class MyClass is not visible to the classes in the assembly on the left, because it is
marked internal. Class OtherClass, however, is visible to the classes on the left, because it
is marked public.

Figure 7-13. Classes from other assemblies can access public classes but cannot access internal
classes.

 Keyword
 ↓
 public class MyBaseClass
 { ...

 Keyword
 ↓
 internal class MyBaseClass
 { ...

9543ch07.fm Page 173 Tuesday, December 4, 2007 10:29 AM

174 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Inheritance Between Assemblies
So far, I have been declaring derived classes in the same assembly where the base class is
declared. But C# also allows you to derive a class from a base class defined in a different assem-
bly. To do this, the following must be true:

• The base class must be declared public, so that it can be accessed from outside its assembly.

• You must include a reference in your Visual Studio project to the assembly containing
the base class.

To make it easier to refer to the classes and types in the other assembly, without using their
fully qualified names, place a using directive at the top of the source file, with the namespace
containing the classes or types you want to access.

■Note Adding a reference to the other assembly and adding a using directive are two separate things.
Adding the reference to the other assembly tells the compiler where the required types are defined. Adding
the using directive allows you to reference other classes without having to use their fully qualified names.
Chapter 10 covers this in detail.

For example, the following two code segments, from different assemblies, show how easy
it is to inherit a class from another assembly. The first code listing creates an assembly that
contains the declaration of a class called MyBaseClass, which has the following characteristics:

• It is declared in a source file called Assembly1.cs, and inside a namespace declared as
BaseClassNS.

• It is declared public, so that it can be accessed from other assemblies.

• It contains a single member, a method called PrintMe, that just writes out a simple mes-
sage identifying the class.

 // Source file name Assembly1.cs
 using System;
 Namespace containing declaration of base class
 ↓
 namespace BaseClassNS
 {
 Declare the class public so it can be seen outside the assembly.
 ↓
 public class MyBaseClass {
 public void PrintMe() {
 Console.WriteLine("I am MyBaseClass");
 }
 }
 }

9543ch07.fm Page 174 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 175

The second assembly contains the declaration of a class called DerivedClass, which inher-
its from MyBaseClass, declared in the first assembly. The source file is named Assembly2.cs.
Figure 7-14 illustrates the two assemblies.

• DerivedClass has an empty body but inherits method PrintMe from MyBaseClass.

• Main creates an object of type DerivedClass and calls its inherited method PrintMe.

This code produces the following output:

I am MyBaseClass

Figure 7-14. Inheriting across assemblies

 // Source file name Assembly2.cs
 using System;
 using BaseClassNS;
 ↑
 Namespace containing declaration of base class
 namespace UsesBaseClass
 { Base class in other assembly
 ↓
 class DerivedClass: MyBaseClass {
 // Empty body
 }

 class Program {
 static void Main()
 {
 DerivedClass mdc = new DerivedClass();
 mdc.PrintMe();
 }
 }
 }

9543ch07.fm Page 175 Tuesday, December 4, 2007 10:29 AM

176 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Member Access Modifiers
Class accessibility was covered earlier in the chapter. With class accessibility, there are only
two modifiers—internal and public. This section covers member accessibility. Class accessi-
bility describes the visibility of a class; member accessibility describes the visibility of class
members.

Each member declared in a class is visible to various parts of the system, depending on the
access modifier assigned to it in the class declaration. You’ve seen that private members are
visible only to other members of the same class, while public members can be visible to classes
outside the assembly as well. In this section, we will look again at the public and private access
levels, as well as the three other levels of accessibility.

Before looking at the specifics of member accessibility, there are some general things we
need to cover first:

• All members explicitly declared in a class’s declaration are visible to each other, regard-
less of their accessibility specification.

• Inherited members are not explicitly declared in a class’s declaration, so, as you shall
see, inherited members might or might not be visible to members of a derived class.

• There are five member access levels:

– public

– private

– protected

– internal

– protected internal

• You must specify member access levels on a per-member basis. If you don’t specify an
access level for a member, its implicit access level is private.

• A member cannot be more accessible than its class. That is, if a class has an accessibility
level limiting it to the assembly, individual members of the class cannot be seen outside
the assembly, regardless of their access modifiers.

9543ch07.fm Page 176 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 177

Regions Accessing a Member
The member access modifiers in a class’s declaration specify which other types can and cannot
access which members of the class. For example, the following declaration shows members
declared with the five access levels.

The access levels are based on two characteristics with regard to the class being declared:

• Whether the class is derived from the class being declared

• Whether a class is in the same assembly as the class being declared

These two characteristics yield four groups, as illustrated in Figure 7-15. In relation to the
class being declared, another class can be any of the following:

• In the same assembly and derived from it (bottom right)

• In the same assembly but not derived from it (bottom left)

• In a different assembly and derived from it (top right)

• In a different assembly and not derived from it (top left)

These characteristics are used to define the five access levels.

Figure 7-15. Areas of accessibility

 public class MyClass
 {
 public int Member1;
 private int Member2;
 protected int Member3;
 internal int Member4;
 protected internal int Member5;
 ...

9543ch07.fm Page 177 Tuesday, December 4, 2007 10:29 AM

178 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Public Member Accessibility
The public access level is the least restrictive. All classes both inside and outside the assembly
have free access to the member. Figure 7-16 illustrates the accessibility of a public class mem-
ber of MyClass.

To declare a member public, use the public access modifier, as shown.

Figure 7-16. A public member of a public class is visible to all classes in the same assembly or other
assemblies.

Private Member Accessibility
The private access level is the most restrictive.

• A private class member can be accessed only by members of its own class. It cannot be
accessed by other classes, including classes that are derived from it.

• A private member can, however, be accessed by members of classes nested in its class.
Nested classes are covered in Chapter 25.

Figure 7-17 illustrates the accessibility of a private member.

Figure 7-17. A private member of any class is visible only to members of its own class (or nested
classes).

 Keyword
 ↓
 public int Member1;

9543ch07.fm Page 178 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 179

Protected Member Accessibility
The protected access level is like the private access level, except that it allows classes derived
from the class to access the member. Figure 7-18 illustrates protected accessibility. Notice that
even classes outside the assembly that are derived from the class have access to the member.

Figure 7-18. A protected member of a public class is visible to members of its own class or classes
derived from it. The derived classes can even be in other assemblies.

Internal Member Accessibility
Members marked internal are visible to all the classes in the assembly, but not to classes out-
side the assembly, as shown in Figure 7-19.

Figure 7-19. An internal member of a public class is visible to members of any class in the same
assembly, but not to classes outside the assembly.

9543ch07.fm Page 179 Tuesday, December 4, 2007 10:29 AM

180 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Protected Internal Member Accessibility
Members marked protected internal are visible to all the classes that inherit from the class,
and also to all classes inside the assembly, as shown in Figure 7-20. Notice that the set of classes
allowed access is the combined set of classes allowed by the protected modifier plus the set of
classes allowed by the internal modifier. Notice that this is the union of protected and
internal—not the intersection.

Figure 7-20. A protected internal member of a public class is visible to members of classes in the
same assembly or to members of classes derived from that class. It is not visible to classes in other
assemblies that are not derived from the class.

9543ch07.fm Page 180 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 181

Summary of Member Access Modifiers
The following two tables summarize the characteristics of the five member access levels.
Table 7-1 lists the modifiers and gives an intuitive summary of the effects of the modifier.

Table 7-1. Member Access Modifiers

Table 7-2 lists the access modifiers down the left side of the table, and the categories of
classes across the top. Derived refers to classes derived from the class declaring the member.
Non-derived means classes not derived from the class declaring the member. A check in a cell
means that that category of class can access members with the corresponding modifier.

Table 7-2. Summary of Member Accessibility

Modifier Meaning

private Accessible only within the class

internal Accessible to all classes within this assembly

protected Accessible to all classes derived from this class

protected internal Accessible to all classes that are either derived from this class or declared
within this assembly

public Accessible to any class

Classes in Same Assembly Classes in Different Assembly

Non-Derived Derived Non-Derived Derived

private

internal ✓ ✓

protected ✓ ✓

protected internal ✓ ✓ ✓

public ✓ ✓ ✓ ✓

9543ch07.fm Page 181 Tuesday, December 4, 2007 10:29 AM

182 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Abstract Members
An abstract member is a function member that is designed to be overridden. An abstract mem-
ber has the following characteristics:

• It is marked with the abstract modifier.

• It does not have an implementation code block. The code blocks of abstract members
are replaced with semicolons.

For example, the following code from inside a class definition declares two abstract mem-
bers: an abstract method called PrintStuff and an abstract property called MyProperty. Notice
the semicolons in place of the implementation blocks.

Other important facts about abstract members are the following:

• Abstract methods, although they must be overridden by a corresponding method in a
derived class, cannot use the virtual modifier in addition to the abstract modifier.

• As with virtual methods, the implementation of an abstract method in a derived class
must specify the override modifier.

• Abstract members can be declared only in abstract classes, which we will look at in the
next section.

Table 7-3 compares and contrasts virtual members and abstract members.

Table 7-3. Comparing Virtual and Abstract Members

 Keyword Semicolon in place of implementation
 ↓ ↓
 abstract public void PrintStuff(string s);

 abstract public int MyProperty
 {
 get; ← Semicolon in place of implementation
 set; ← Semicolon in place of implementation
 }

Virtual Member Abstract Member

Keyword virtual abstract

Implementation body Has an implementation body No implementation body—
semicolon instead

Overridden in a derived class Can be overridden—using
override

Must be overridden—using
override

Types of members Methods
Properties
Events
Indexers

Methods
Properties
Events
Indexers

9543ch07.fm Page 182 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 183

Abstract Classes
An abstract class can be used only as the base class of another class. Abstract classes are
designed to be inherited from.

• You cannot create instances of an abstract class.

• An abstract class is declared using the abstract modifier.

• An abstract class can contain abstract members, but that is not a requirement. The mem-
bers of an abstract class can be any combination of abstract members and normal
members with implementations.

• An abstract class can itself be derived from another abstract class. For example, the fol-
lowing code shows one abstract class derived from another.

• Any class derived from an abstract class must implement all the abstract members of
the class by using the override keyword, unless the derived class is itself abstract.

 Keyword
 ↓
 abstract class MyClass
 {
 ...
 }

 abstract class AbClass // Abstract class
 {
 ...
 }

 abstract class MyAbClass : AbClass // Abstract class derived from
 { // an abstract class
 ...
 }

9543ch07.fm Page 183 Tuesday, December 4, 2007 10:29 AM

184 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Example of an Abstract Class and an Abstract Method
The following code shows an abstract class called AbClass with two methods.

The first method is a normal method with an implementation that prints out the name of
the class. The second method is an abstract method that must be implemented in a derived
class. Class DerivedClass inherits from AbClass, and implements and overrides the abstract
method. Main creates an object of DerivedClass and calls its two methods.

This code produces the following output:

I am AbClass
I am DerivedClass

 Keyword
 ↓
 abstract class AbClass // Abstract class
 {
 public void IdentifyBase() // Normal method
 { Console.WriteLine("I am AbClass"); }
 Keyword
 ↓
 abstract public void IdentifyDerived(); // Abstract method
 }

 class DerivedClass : AbClass // Derived class
 { Keyword
 ↓
 override public void IdentifyDerived() // Implementation of
 { Console.WriteLine("I am DerivedClass"); } // abstract method
 }

 class Example
 {
 static void Main()
 {
 // AbClass a = new AbClass(); // Error. Cannot instantiate
 // a.IdentifyDerived(); // an abstract class.

 DerivedClass b = new DerivedClass(); // Instantiate the derived class.
 b.IdentifyBase(); // Call the inherited method.
 b.IdentifyDerived(); // Call the "abstract" method.
 }
 }

9543ch07.fm Page 184 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 185

Sealed Classes
In the previous section, you saw that an abstract class must be used as a base class—it cannot
be instantiated as a stand-alone class. The opposite is true of a sealed class.

• A sealed class can be used only as a stand-alone class—it cannot be used as a base class.

• A sealed class is labeled with the sealed modifier.

For example, the following class is a sealed class. Any attempt to use it as the base class of
another class will produce a compile error.

 Keyword
 ↓
 sealed class MyClass
 {
 ...
 }

9543ch07.fm Page 185 Tuesday, December 4, 2007 10:29 AM

186 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

Static Classes
A static class is a class where all the members are static. Static classes are used to group data
and functions that are not affected by instance data. A common use of a static class might be to
create a math library containing sets of mathematical methods.

The important things to know about static classes are the following:

• The class itself must be marked static.

• All the members of the class must be static.

• The class can have a static constructor, but not an instance constructor. You cannot cre-
ate an instance of the class.

• You cannot inherit from static classes—they’re sealed.

You access the members just as you would access any static member, by using the class
name and the member name.

The following code shows an example of a static class:

This code produces the following output:

3 is odd is True.
3 * 2 = 6.

 Class must be marked static
 ↓
 static public class MyMath
 {
 public static float PI = 3.14f;
 public static bool IsOdd(int x)
 ↑ { return x % 2 == 1; }
 Members must be static
 ↓
 public static int Times2(int x)
 { return 2 * x; }
 }

 class Program
 {
 static void Main()
 { Use class name and member name.
 int val = 3; ↓
 Console.WriteLine("{0} is odd is {1}.", val, MyMath.IsOdd(val));
 Console.WriteLine("{0} * 2 = {1}.", val, MyMath.Times2(val));
 }
 }

9543ch07.fm Page 186 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 187

Extension Methods
So far in this text, every method you’ve seen has been associated with the class in which it is
declared. The extension method feature of C# 3.0 extends that boundary, allowing you to write
methods associated with classes other than the class in which they are declared.

To see how you might use this feature, take a look at the following code. It contains class
MyData, which stores three values of type double, and contains a constructor and a method
called Sum, which returns the sum of the three stored values.

This is a pretty limited class, but suppose it would be more useful if it contained another
method, which returned the average of the three data points. With what you know so far about
classes, there are several ways you might implement the additional functionality:

• If you have the source code and can modify the class, you could, of course, just add the
new method to the class.

• If, however, you can’t modify the class⎯for example, if the class is in a third-party class
library⎯then, as long as it isn’t sealed, you could use it as a base class and implement
the additional method in a class derived from it.

If, however, you don’t have access to the code, or the class is sealed, or there is some other
design reason that neither of these solutions will work, then you will have to write a method in
another class that uses the publicly available members of the class.

 class MyData
 {
 private double D1; // Fields
 private double D2;
 private double D3;

 public MyData(double d1, double d2, double d3) // Constructor
 { D1 = d1; D2 = d2; D3 = d3; }

 public double Sum() // Method Sum
 {
 return D1 + D2 + D3;
 }
 }

9543ch07.fm Page 187 Tuesday, December 4, 2007 10:29 AM

188 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

For example, you might write a class like the one in the following code. It contains a static
class called ExtendMyData, which contains a static method called Average, which implements
the additional functionality. Notice that the method takes an instance of MyData as a parameter.

This code produces the following output:

Average: 4

Although this is a perfectly fine solution, it would be more elegant if you could call the
method on the class instance itself, rather than creating an instance of another class to act
on it. The following two lines of code illustrate the difference. The first uses the method just
shown⎯invoking a static method on an instance of another class. The second shows the form
we would like to use⎯invoking an instance method on the object itself. Extension methods
allow you to use the second form, even though the first form would be the normal way of writ-
ing the invocation.

 static class ExtendMyData Instance of MyData class
 { ↓
 public static double Average(MyData md)
 {
 return md.Sum() / 3;
 } ↑
 } Use the instance of MyData.

 class Program
 {
 static void Main()
 { Instance of MyData
 MyData md = new MyData(3, 4, 5); ↓
 Console.WriteLine("Average: {0}", ExtendMyData.Average(md));
 } ↑
 } Call the static method.

 ExtendMyData.Average(md) // Static invocation form
 md.Average(); // Instance invocation form

9543ch07.fm Page 188 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 189

By making a small change in the declaration of method Average, you can use the instance
invocation form. The change you need to make is to add the keyword this before the type name
in the parameter declaration as shown following. Adding the this keyword to the first parameter
of the static method of the static class changes it from a regular method of class ExtendMyData into
an extension method of class MyData. You can now use both invocation forms.

The important requirements for an extension method are the following:

• The extension method must be declared static.

• The class in which the extension method is declared must also be declared static.

• The extension method must contain as its first parameter type the keyword this, fol-
lowed by the name of the class it is extending.

Figure 7-21 illustrates the structure of an extension method.

Figure 7-21. The structure of an extension method

 Must be a static class
 ↓
 static class ExtendMyData
 { Must be public and static Keyword and type
 ↓ ↓
 public static double Average(this MyData md)
 {
 ...
)
 }

9543ch07.fm Page 189 Tuesday, December 4, 2007 10:29 AM

190 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

The following code shows a full program, including class MyData and extension method
Average declared in class ExtendMyData. Notice that method Average is invoked exactly as if it
were an instance member of MyData! Figure 7-21 illustrates the code. Classes MyData and
ExtendMyData together act like the desired class, with three methods.

This code produces the following output:

Sum: 12
Average: 4

 namespace ExtensionMethods
 {
 sealed class MyData
 {
 private double D1, D2, D3;
 public MyData(double d1, double d2, double d3)
 { D1 = d1; D2 = d2; D3 = d3; }

 public double Sum() { return D1 + D2 + D3; }
 }

 static class ExtendMyData Keyword and type
 { ↓
 public static double Average(this MyData md)
 { ↑
 Declared static
 return md.Sum() / 3;
 }
 }

 class Program
 {
 static void Main()
 {
 MyData md = new MyData(3, 4, 5);
 Console.WriteLine("Sum: {0}", md.Sum());
 Console.WriteLine("Average: {0}", md.Average());
 } ↑
 } Invoke as an instance member of the class
 }

9543ch07.fm Page 190 Tuesday, December 4, 2007 10:29 AM

C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E 191

External Methods
An external method is a method that does not have an implementation in the declaration.
Often the implementation is in a language other than C#.

• External methods are marked with the extern modifier and do not have an implemen-
tation in the class declaration. The implementation is replaced by a semicolon.

• Connecting the declaration with the implementation is implementation-dependent,
but is often done using the DllImport attribute. Attributes are covered in detail in
Chapter 24.

For example, the following code uses an external method, GetCurrentDirectory, whose
implementation is the Win32 system call for getting a string that contains the current directory.

Keyword
 ↓
public static extern int GetCurrentDirectory(int size, StringBuilder buf);
 ↑
 No implementation

 using System;
 using System.Text;
 using System.Runtime.InteropServices;

 namespace ExternalMethod
 {
 class MyClass
 {
 [DllImport("kernel32", SetLastError=true)]
 public static extern int GetCurrentDirectory(int a, StringBuilder b);
 }

 class Program
 {
 static void Main()
 {
 const int MaxDirLength = 250;
 StringBuilder sb = new StringBuilder();
 sb.Length = MaxDirLength;

 MyClass.GetCurrentDirectory(MaxDirLength, sb);
 Console.WriteLine(sb);
 }
 }
 }

9543ch07.fm Page 191 Tuesday, December 4, 2007 10:29 AM

192 C H A P T E R 7 ■ C L A S S E S A N D I N H E R I T A N C E

This code produces the following output:

C:\BookPrograms\ExternalMethod\ExternalMethod\bin\Debug

9543ch07.fm Page 192 Tuesday, December 4, 2007 10:29 AM

193

■ ■ ■

C H A P T E R 8

Expressions and Operators

Expressions
Literals
Order of Evaluation
Simple Arithmetic Operators
The Remainder Operator
Relational and Equality Comparison Operators
Increment and Decrement Operators
Conditional Logical Operators
Logical Operators
Shift Operators
Assignment Operators
The Conditional Operator
Unary Arithmetic Operators
User-Defined Type Conversions
Operator Overloading
The typeof Operator

9543.book Page 193 Friday, December 7, 2007 3:10 PM

194 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Expressions
This chapter defines expressions and describes the operators provided by C#. It also explains
how you can define the C# operators to work with your user-defined classes.

An expression is a string of operators and operands. Some of the constructs that can act as
operands are

• Literals

• Constants

• Variables

• Method calls

• Element accessors, such as array accessors and indexers

• Other expressions

The C# operators take one, two, or three operands. An operator

• Takes its operands as input

• Performs an action

• Returns a value, based on the action

Expressions can be combined, using operators, to create other expressions, as shown in
this expression, with three operators and four operands:

Evaluating an expression is the process of applying each operator to its operands, in the
proper sequence, to produce a value.

• The value is returned to the position at which the expression was evaluated. There, it
might in turn be an operand in an enclosing expression.

• Besides the value returned, some expressions also have side effects, such as setting a
value in memory.

9543.book Page 194 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 195

Literals
Literals are numbers or strings typed into the source code that represent a specific, set value of
a specific type.

For example, the following code shows literals of six types. Notice, for example, the differ-
ence between the double literal and the float literal.

The output of this code is the following:

1024
3.1416
3.1416
True
x
Hi there

Because literals are written into the source code, their values must be known at compile
time.

Several of the predefined types have their own forms of literal:

• Type bool has two literals: true and false.

• For reference type variables, literal null means that the variable is not set to a reference
in memory.

 static void Main() Literals
 {
 Console.WriteLine("{0}", 1024); // int literal
 Console.WriteLine("{0}", 3.1416); // double literal
 Console.WriteLine("{0}", 3.1416F); // float literal
 Console.WriteLine("{0}", true); // boolean literal
 Console.WriteLine("{0}", 'x'); // character literal
 Console.WriteLine("{0}", "Hi there"); // string literal
 }

9543.book Page 195 Friday, December 7, 2007 3:10 PM

196 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Integer Literals
Integer literals are the most commonly used literals. They are written as a sequence of decimal
digits, with

• No decimal point

• An optional suffix to specify the type of the integer

For example, the following lines show four literals for the integer 236. Each is interpreted
by the compiler as a different type of integer, depending on its suffix.

Integer type literals can also be written in hexadecimal (hex) form. The digits must be the hex
digits (0 through F), and the string must be prefaced with either 0x or 0X (numeral 0, letter x).

The forms of the integer literal formats are shown in Figure 8-1. Components with names
in square brackets are optional.

Figure 8-1. The integer literal formats

The integer literal suffixes are listed in Table 8-1. For a given suffix, the compiler will inter-
pret the string of digits as the smallest of the corresponding integer types that can represent the
value without losing data.

For example, take the literals 236 and 5000000000, neither of which has a suffix. Since 236
can be represented with 32 bits, it will be interpreted by the compiler as an int. The larger
number, however, will not fit into 32 bits, so the compiler will represent it as a long.

Table 8-1. Integer Literal Suffixes

 236 // int
 236L // long
 236U // unsigned
 236UL // unsigned long

Suffix Integer Type Notes

None int, uint, long, ulong

U, u uint, ulong

L, l long, ulong Using the lowercase letter l is not recommended, as it is
easily mistaken for the digit 1.

ul, uL, Ul, UL
lu, Lu, lU, LU

ulong Using the lowercase letter l is not recommended, as it is
easily mistaken for the digit 1.

9543.book Page 196 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 197

Real Literals
Literals for real numbers consist of the following:

• Decimal digits

• An optional decimal point

• An optional exponent part

• An optional suffix

For example, the following code shows various formats of literals of the real types:

The valid formats for real literals are shown in Figure 8-2. Components with names in
square brackets are optional. The real suffixes and their meanings are shown in Table 8-2.

Figure 8-2. The real literal formats

Table 8-2. Suffixes for the Real Literals

■Note Real literals without a suffix are of type double, not float!

 float f1 = 236F;
 double d1 = 236.714;
 double d2 = .35192;
 double d3 = 6.338e-26;

Suffix Real Type

None double

F, f float

D, d double

M, m decimal

9543.book Page 197 Friday, December 7, 2007 3:10 PM

198 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Character Literals
A character literal consists of a character representation between two single quote marks.
A character representation can be any of the following: a single character, a simple escape
sequence, a hex escape sequence, or a Unicode escape sequence.

• The type of a character literal is char.

• A simple escape sequence is a backslash followed by a single character.

• A hex escape sequence is a backslash, followed by an upper or lowercase x, followed by
up to four hex digits.

• A Unicode escape sequence is a backslash, followed by an upper or lowercase u, fol-
lowed by up to four hex digits.

For example, the following code shows various formats of character literals:

Some of the important special characters and their encodings are shown in Table 8-3.

Table 8-3. Important Special Characters

 char c1 = 'd'; // Single character
 char c2 = '\n'; // Simple escape sequence
 char c3 = '\x0061'; // Hex escape sequence
 char c4 = '\u005a'; // Unicode escape sequence

Name Escape Sequence Hex Encoding

Null \0 0x0000

Alert \a 0x0007

Backspace \b 0x0008

Horizontal tab \t 0x0009

New line \n 0x000A

Vertical tab \b 0x000B

Form feed \f 0x000C

Carriage return \r 0x000D

Double quote \" 0x0022

Single quote \' 0x0027

Backslash \\ 0x005C

9543.book Page 198 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 199

String Literals
String literals use double quote marks rather than the single quote marks used in character lit-
erals. There are two types of string literals:

• Regular string literals

• Verbatim string literals

A regular string literal consists of a sequence of characters between a set of double quotes.
A regular string literal can include the following:

• Characters

• Simple escape sequences

• Hex and Unicode escape sequences

Here’s an example:

A verbatim string literal is written like a regular string literal, but is prefaced with an @
character. The important characteristics of verbatim string literals are the following:

• Verbatim literals differ from regular string literals in that escape sequences are not eval-
uated. Everything between the set of double quotes—including what would normally be
considered escape sequences—is printed exactly as it is listed in the string.

• The only exception with verbatim literals is sets of contiguous double quotes, which are
interpreted as a single double quote character.

 string st1 = "Hi there!";
 string st2 = "Val1\t5, Val2\t10";
 string st3 = "Add\x000ASome\u0007Interest";

9543.book Page 199 Friday, December 7, 2007 3:10 PM

200 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

For example, the following code compares some regular and verbatim string literals:

Printing these strings produces the following output:

Hi there!
Hi there!

It started, "Four score and seven..."
It started, "Four score and seven..."

Value 1 5, Val2 10
Value 1 \t 5, Val2 \t 10

C:\Program Files\Microsoft\
C:\Program Files\Microsoft\

 Print
 Multiple
 Lines

 Print
 Multiple
 Lines

■Note The compiler saves memory by having identical string literals share the same memory location in
the heap.

 string rst1 = "Hi there!";
 string vst1 = @"Hi there!";

 string rst2 = "It started, \"Four score and seven...\"";
 string vst2 = @"It started, ""Four score and seven...""";

 string rst3 = "Value 1 \t 5, Val2 \t 10"; // Interprets tab esc sequence
 string vst3 = @"Value 1 \t 5, Val2 \t 10"; // Does not interpret tab

 string rst4 = "C:\\Program Files\\Microsoft\\";
 string vst4 = @"C:\Program Files\Microsoft\";

 string rst5 = " Print \x000A Multiple \u000A Lines";
 string vst5 = @" Print
 Multiple
 Lines";

9543.book Page 200 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 201

Order of Evaluation
An expression can be made up of many nested sub-expressions. The order in which the sub-
expressions are evaluated can make a difference in the final value of the expression.

For example, given the expression 3 * 5 + 2, there are two possible results depending on the
order in which the sub-expressions are evaluated, as shown in Figure 8-3.

• If the multiplication is performed first, the result is 17.

• If the 5 and the 2 are added together first, the result is 21.

Figure 8-3. Simple order of evaluation

Precedence
You know from your grade school days that in the preceding example, the multiplication must be
performed before the addition because multiplication has a higher precedence than addition.
But unlike grade school days, when you had four operators and two levels of precedence, things
are a bit more complex with C#, which has over 45 operators and 14 levels of precedence.

The complete list of operators and their precedences is given in Table 8-4. The table lists
the highest precedence operators at the top, and continues down to the lowest precedence
operators at the bottom.

Table 8-4. Operator Precedence: Highest to Lowest

Category Operators

Primary a.x, f(x), a[x], x++, x--, new, typeof, checked, unchecked

Unary +, -, !, ~, ++x, --x, (T)x

Multiplicative *, /, %

Additive +, -

Shift <<, >>

Relational and type <, >, <=, >=, is, as

Equality ==, !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

9543.book Page 201 Friday, December 7, 2007 3:10 PM

202 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Associativity
If all the operators in an expression have different levels of precedence, then evaluate each
sub-expression, starting at the one with the highest level, and work down the precedence scale.

But what if two sequential operators have the same level of precedence? For example,
given the expression 2 / 6 * 4, there are two possible evaluation sequences:

(2 / 6) * 4 = 4/3

or

2 / (6 * 4) = 1/12

When sequential operators have the same level of precedence, the order of evaluation is
determined by operator associativity. That is, given two operators of the same level of prece-
dence, one or the other will have precedence, depending on the operators’ associativity. Some
important characteristics of operator associativity are the following, and are summarized in
Table 8-5:

• Left-associative operators are evaluated from left to right.

• Right-associative operators are evaluated from right to left.

• Binary operators, except the assignment operators, are left-associative.

• The assignment operators and the conditional operator are right-associative.

Therefore, given these rules, the preceding example expression should be grouped left to
right, giving (2 / 6) * 4, which yields 4/3.

Table 8-5. Summary of Operator Associativity

You can explicitly set the order of evaluation of the sub-expressions of an expression by
using parentheses. Parenthesized sub-expressions

• Override the precedence and associativity rules

• Are evaluated in order from the innermost nested set to the outermost

Conditional ?:

Assignment =, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

Type of Operator Associativity

Assignment operators Right-associative

Other binary operators Left-associative

The conditional operator Right-associative

Category Operators

9543.book Page 202 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 203

Simple Arithmetic Operators
The simple arithmetic operators perform the four basic arithmetic operations, and are listed in
Table 8-6. These operators are binary and left-associative.

Table 8-6. The Simple Arithmetic Operators

The arithmetic operators perform the standard arithmetic operations on all the pre-
defined simple arithmetic types.

The following are examples of the simple arithmetic operators:

Operator Name Description

+ Addition Adds the two operands.

- Subtraction Subtracts the second operand from the first.

* Multiplication Multiplies the two operands.

/ Division Divides the first operand by the second. Integer division rounds the
result toward 0 to the nearest integer.

 int x1 = 5 + 6; double d1 = 5.0 + 6.0;
 int x2 = 12 - 3; double d2 = 12.0 - 3.0;
 int x3 = 3 * 4; double d3 = 3.0 * 4.0;
 int x4 = 10 / 3; double d4 = 10.0 / 3.0;

 byte b1 = 5 + 6;
 sbyte sb1 = 6 * 5;

9543.book Page 203 Friday, December 7, 2007 3:10 PM

204 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

The Remainder Operator
The remainder operator (%) divides the first operand by the second operand, ignores the quo-
tient, and returns the remainder. Its description is given in Table 8-7.

The remainder operator is binary and left-associative.

Table 8-7. The Remainder Operator

The following lines show examples of the integer remainder operator:

• 0 % 3 = 0, because 0 divided by 3 is 0 with a remainder of 0.

• 1 % 3 = 1, because 1 divided by 3 is 0 with a remainder of 1.

• 2 % 3 = 2, because 2 divided by 3 is 0 with a remainder of 2.

• 3 % 3 = 0, because 3 divided by 3 is 1 with a remainder of 0.

• 4 % 3 = 1, because 4 divided by 3 is 1 with a remainder of 1.

The remainder operator can also be used with real numbers to give real remainders.

This code produces the following output:

0.0f % 1.5f is 0 // 0.0 / 1.5 = 0 remainder 0
0.5f % 1.5f is 0.5 // 0.5 / 1.5 = 0 remainder .5
1.0f % 1.5f is 1 // 1.0 / 1.5 = 0 remainder 1
1.5f % 1.5f is 0 // 1.5 / 1.5 = 1 remainder 0
2.0f % 1.5f is 0.5 // 2.0 / 1.5 = 1 remainder .5
2.5f % 1.5f is 1 // 2.5 / 1.5 = 1 remainder 1

Operator Name Description

% Remainder Divides the first operand by the second operand and returns the
remainder

 Console.WriteLine("0.0f % 1.5f is {0}", 0.0f % 1.5f);
 Console.WriteLine("0.5f % 1.5f is {0}", 0.5f % 1.5f);
 Console.WriteLine("1.0f % 1.5f is {0}", 1.0f % 1.5f);
 Console.WriteLine("1.5f % 1.5f is {0}", 1.5f % 1.5f);
 Console.WriteLine("2.0f % 1.5f is {0}", 2.0f % 1.5f);
 Console.WriteLine("2.5f % 1.5f is {0}", 2.5f % 1.5f);

9543.book Page 204 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 205

Relational and Equality Comparison Operators
The relational and equality comparison operators are binary operators that compare their
operands and return a value of type bool. These operators are listed in Table 8-8.

The relational and equality operators are binary and left-associative.

Table 8-8. The Relational and Equality Comparison Operators

A binary expression with a relational or equality operator returns a value of type bool.

■Note Unlike C and C++, numbers in C# do not have a Boolean interpretation.

When printed, the Boolean values true and false are represented by the string output val-
ues True and False.

Operator Name Description

< Less than true if first operand is less than second operand; false
otherwise

> Greater than true if first operand is greater than second operand; false
otherwise

<= Less than or equal to true if first operand is less than or equal to second oper-
and; false otherwise

>= Greater than or equal to true if first operand is greater than or equal to second
operand; false otherwise

== Equal to true if first operand is equal to second operand; false
otherwise

!= Not equal to true if first operand is not equal to second operand; false
otherwise

 int x = 5;
 if(x) // Wrong. x is of type int, not type boolean.
 ...
 if(x == 5) // Fine, since expression returns a value of type boolean
 ...

 int x = 5, y = 4;
 Console.WriteLine("x == x is {0}", x == x);
 Console.WriteLine("x == y is {0}", x == y);

9543.book Page 205 Friday, December 7, 2007 3:10 PM

206 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

The output of this code is the following:

x == x is True
x == y is False

Comparison and Equality Operations
When comparing most reference types for equality, only the references are compared.

• If the references are equal—that is, if they point to the same object in memory—the
equality comparison is true; otherwise it is false, even if the two separate objects in
memory are exactly equivalent in every other respect.

• This is called a shallow comparison.

Figure 8-4 illustrates the comparison of reference types.

• On the left of the figure, the references of both a and b are the same, so a comparison
would return true.

• On the right of the figure, the references are not the same, so even if the contents of the
two AClass objects were exactly the same, the comparison would return false.

Figure 8-4. Comparing reference types for equality

Objects of type string are also reference types, but are compared differently. When strings
are compared for equality, they are compared in length and case-sensitive content.

• If two strings have the same length and the same case-sensitive content, the equality
comparison returns true, even if they occupy different areas of memory.

• This is called a deep comparison.

Delegates, which are covered in Chapter 15, are also reference types, and also use deep
comparison. When delegates are compared for equality, the comparison returns true if both
delegates are null, or if both have the same number of members in their invocation lists, and
the invocation lists match.

When comparing numeric expressions, the types and values are compared.
When comparing enum types, the comparisons are done on the underlying values of the

operands. Enums are covered in Chapter 13.

9543.book Page 206 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 207

Increment and Decrement Operators
The increment operator adds 1 to the operand. The decrement operator subtracts 1 from the
operand. The operators and their descriptions are listed in Table 8-9.

These operators are unary and have two forms, the pre- form and the post- form, which act
differently.

• In the pre-form, the operator is placed before the operand; for example, ++x and --y.

• In the post-form, the operator is placed after the operand; for example, x++ and y--.

Table 8-9. The Increment and Decrement Operators

In comparing the pre- and post-forms of the operators

• The final, stored value of the operand variable after the statement is executed is the
same regardless of whether the pre- or post-form of the operator is used.

• The only difference is the value returned by the operator to the expression.

An example summarizing the behavior is shown in Table 8-10.

Operator Name Description

++ Pre-increment ++Var Increment the value of the variable by one and save it.
Return the new value of the variable.

Post-increment Var++ Increment the value of the variable by one and save it.
Return the old value of the variable before it was
incremented.

-- Pre-decrement --Var Decrement the value of the variable by one and save it.
Return the new value of the variable.

Post-decrement Var-- Decrement the value of the variable by one and save it.
Return the old value of the variable before it was
decremented.

9543.book Page 207 Friday, December 7, 2007 3:10 PM

208 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Table 8-10. Behavior of Pre- and Post-Increment and Decrement Operators

For example, the following is a simple demonstration of the four different versions of the
operators. In order to show the different results on the same input, the value of the operand x
is reset to 5 before each assignment statement.

This code produces the following output:

y: 5, x: 6
y: 6, x: 6
y: 5, x: 4
y: 4, x: 4

Expression: x = 10
Value Returned to
the Expression

Value of Variable
After Evaluation

Pre-increment ++x 11 11

Post-increment x++ 10 11

Pre-decrement --x 9 9

Post-decrement x-- 10 9

 int x = 5, y;
 y = x++; // result: y: 5, x: 6
 Console.WriteLine("y: {0}, x: {1}", y, x);

 x = 5;
 y = ++x; // result: y: 6, x: 6
 Console.WriteLine("y: {0}, x: {1}", y, x);

 x = 5;
 y = x--; // result: y: 5, x: 4
 Console.WriteLine("y: {0}, x: {1}", y, x);

 x = 5;
 y = --x; // result: y: 4, x: 4
 Console.WriteLine("y: {0}, x: {1}", y, x);

9543.book Page 208 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 209

Conditional Logical Operators
The logical operators are used for comparing or negating the logical values of their operands
and returning the resulting logical value. The operators are listed in Table 8-11.

The logical AND and logical OR operators are binary and left-associative. The logical NOT
is unary.

Table 8-11. The Conditional Logical Operators

The syntax for these operators is the following, where Expr1 and Expr2 evaluate to Boolean
values:

Operator Name Description

&& Logical AND true if both operands are true; false otherwise

|| Logical OR true if at least one operand is true; false otherwise

! Logical NOT true if the operand is false; false otherwise

 Expr1 && Expr2
 Expr1 || Expr2
 !Expr

9543.book Page 209 Friday, December 7, 2007 3:10 PM

210 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

The following are some examples:

The conditional logical operators operate in “short circuit” mode, meaning that, if after
evaluating Expr1 the result can already be determined, then it skips the evaluation of Expr2.
The following code shows examples of expressions in which the value can be determined after
evaluating the first operand:

Because of the short circuit behavior, do not place expressions with side effects (such
as changing a value) in Expr2, since they might not be evaluated. In the following code, the
post-increment of variable iVal would not be executed, because after executing the first sub-
expression, it can be determined that the value of the entire expression is false.

 bool bVal;
 bVal = (1 == 1) && (2 == 2); // True, both operand expressions are true
 bVal = (1 == 1) && (1 == 2); // False, second operand expression is false

 bVal = (1 == 1) || (2 == 2); // True, both operand expressions are true
 bVal = (1 == 1) || (1 == 2); // True, first operand expression is true
 bVal = (1 == 2) || (2 == 3); // False, both operand expressions are false

 bVal = true; // Set bVal to true.
 bVal = !bVal; // bVal is now false.

 bool bVal;
 bVal = (1 == 2) && (2 == 2); // False, after evaluating first expression

 bVal = (1 == 1) || (1 == 2); // True, after evaluating first expression

 bool bVal; int iVal = 10;

 bVal = (1 == 2) && (9 == iVal++); // result: bVal = False, iVal = 10
 ↑ ↑
 False Never evaluated

9543.book Page 210 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 211

Logical Operators
The bitwise logical operators are often used to set the bit patterns for parameters to methods. The
bitwise logical operators are listed in Table 8-12.

These operators, except for bitwise negation, are binary and left-associative. The bitwise
negation operator is unary.

Table 8-12. The Logical Operators

The binary bitwise operators compare the corresponding bits at each position in each of
their two operands, and set the bit in the return value according to the logical operation.

Operator Name Description

& Bitwise AND Produces the bitwise AND of the two operands. The resulting bit
is 1 only if both operand bits are 1.

| Bitwise OR Produces the bitwise OR of the two operands. The resulting bit is
1 if either operand bit is 1.

^ Bitwise XOR Produces the bitwise XOR of the two operands. The resulting bit is
1 only if one, but not both, operand bits are 1.

~ Bitwise negation Each bit in the operand is switched to its opposite. This produces
the 1’s complement of the operand.

9543.book Page 211 Friday, December 7, 2007 3:10 PM

212 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Figure 8-5 shows four examples of the bitwise logical operations.

Figure 8-5. Examples of bitwise logical operators

The following code implements the preceding examples:

 const byte x = 12, y = 10;
 sbyte a;

 a = x & y; // a = 8
 a = x | y; // a = 14
 a = x ^ y; // a = 6
 a = ~x; // a = -13

9543.book Page 212 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 213

Shift Operators
The bitwise shift operators shift the bit pattern either right or left a specified number of posi-
tions, with the vacated bits filled with 0s. The shift operators are listed in Table 8-13.

The shift operators are binary and left-associative. The syntax of the bitwise shift operators
is shown here. The number of positions to shift is given by Count.

Table 8-13. The Shift Operators

For the vast majority of programming in C#, you don’t need to know anything about the
hardware underneath. If you’re doing bitwise manipulation of signed numbers, however, it
can be helpful to know about the numeric representation. The underlying hardware represents
signed binary numbers in a form called two’s complement. In two’s-complement representa-
tion, positive numbers have their normal binary form. To negate a number, you take the
bitwise negation of the number and add 1 to it. This process turns a positive number into its
negative representation and vice versa. In two’s complement, all negative numbers have a 1 in
the leftmost bit position. Figure 8-6 shows the negation of the number 12.

Figure 8-6. To get the negation of a two’s-complement number, take its bitwise negation and add 1.

The underlying representation is important when shifting signed numbers because the
result of shifting an integral value one bit to the left is the same as multiplying it by two. Shifting
it to the right is the same as dividing it by two.

If, however, you were to shift a negative number to the right, and the leftmost bit were to
be filled with a 0, it would produce the wrong result. The 0 in the leftmost position would indi-
cate a positive number. But this is incorrect, because dividing a negative number by 2 does not
produce a positive number.

 Operand << Count // Left shift
 Operand >> Count // Right shift

Operator Name Description

<< Left shift Shifts the bit pattern left by the given number of positions. The bits
shifted off the left end are lost. Bit positions opening up on the right are
filled with 0s.

>> Right shift Shifts the bit pattern right by the given number of positions. Bits shifted
off the right end are lost.

9543.book Page 213 Friday, December 7, 2007 3:10 PM

214 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

To fix this situation, when the operand is a signed integer, if the leftmost bit of the operand
is a 1 (indicating a negative number), bit positions opening up on the left are filled with 1s
rather than 0s. This maintains the correct two’s-complement representation. For positive or
unsigned numbers, bit positions opening up on the left are filled with 0s.

Figure 8-7 shows how the expression 14 << 3 would be evaluated in a byte. This operation
causes the following:

• Each of the bits in the operand (14) is shifted three places to the left.

• The three bit positions vacated on the right end are filled with 0s.

• The resulting value is 112.

Figure 8-7. Example of left shift of three bits

Figure 8-8 illustrates bitwise shift operations.

Figure 8-8. Bitwise shifts

The following code implements the preceding examples:

This code produces the following output:

14 << 3 = 112
14 >> 3 = 1

 int a, b, x = 14;

 a = x << 3; // Shift left
 b = x >> 3; // Shift right

 Console.WriteLine("{0} << 3 = {1}", x, a);
 Console.WriteLine("{0} >> 3 = {1}", x, b);

9543.book Page 214 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 215

Assignment Operators
The assignment operators evaluate the expression on the right side of the operator and use that
value to set the variable expression on the left side of the operator. The assignment operators
are listed in Table 8-14.

The assignment operators are binary and left-associative.

Table 8-14. The Assignment Operators

The syntax is as follows:

Operator Description

= Simple assignment; evaluate the expression on the right and assign the returned
value to the variable or expression on the left.

*= Compound assignment; var *= expr is equal to var = var * (expr).

/= Compound assignment; var /= expr is equal to var = var / (expr).

%= Compound assignment; var %= expr is equal to var = var % (expr).

+= Compound assignment; var += expr is equal to var = var + (expr).

-= Compound assignment; var -= expr is equal to var = var - (expr).

<<= Compound assignment; var <<= expr is equal to var = var << (expr).

>>= Compound assignment; var >>= expr is equal to var = var >> (expr).

&= Compound assignment; var &= expr is equal to var = var & (expr).

^= Compound assignment; var ^= expr is equal to var = var ^ (expr).

|= Compound assignment; var |= expr is equal to var = var | (expr).

 VariableExpression Operator Expression

9543.book Page 215 Friday, December 7, 2007 3:10 PM

216 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

For simple assignment, the expression to the right of the operator is evaluated and its
value is assigned to the variable on the left.

The types of objects that can be on the left side of an assignment operator are the follow-
ing. They will be discussed later in the text.

• Variables (local variables, fields, parameters)

• Properties

• Indexers

• Events

Compound Assignment
Frequently, you’ll want to evaluate an expression and add the results to the current value of a
variable, as shown here:

The compound assignment operators allow a shorthand method for avoiding the repeti-
tion of the left-side variable on the right side under certain common circumstances. For
example, the following two statements are semantically equivalent, but the second is shorter
and just as easy to understand.

The other compound assignment statements are analogous:

 int x;
 x = 5;
 x = y * z;

 x = x + expr;

 x = x + (y – z);
 x += y – z;

 Notice the parentheses.
 ↓ ↓
 x *= y – z; // Equivalent to x = x * (y – z)
 x /= y – z; // Equivalent to x = x / (y – z)
 ...

9543.book Page 216 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 217

The Conditional Operator
The conditional operator is a powerful and succinct way of returning one of two values, based
on the result of a condition. The operator is shown is Table 8-15.

The conditional operator is ternary.

Table 8-15. The Conditional Operator

The syntax for the conditional operator is shown following. It has a test expression and two
result expressions.

• Condition must return a value of type bool.

• If Condition evaluates to true, then Expression1 is evaluated and returned. Otherwise,
Expression2 is evaluated and returned.

The conditional operator can be compared with the if...else construct. For example, the
following if...else construct checks a condition, and if the condition is true, it assigns 5 to
variable intVar. Otherwise it assigns it the value 10.

The conditional operator can perform the same operation in a less verbose form, as shown
in the following statement:

Placing the condition and each return expression on separate lines, as in the following
code, makes the intent very easy to understand.

Operator Name Description

? : Conditional operator Evaluates an expression and returns one of two values,
depending on whether the expression returns true or false.

 Condition ? Expression1 : Expression2

 if (x < y) // if...else
 intVar = 5;
 else
 intVar = 10;

 intVar = x < y ? 5 : 10; // Conditional operator

 intVar = x < y
 ? 5
 : 10 ;

9543.book Page 217 Friday, December 7, 2007 3:10 PM

218 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Figure 8-9 compares the two forms shown in the example.

Figure 8-9. The conditional operator versus if...else

For example, the following code uses the conditional operator three times—once in each
of the WriteLine statements. In the first instance, it returns either the value of x or the value
of y. In the second two instances, it returns either the empty string or the string “ not”.

This code produces the following output:

highVal: 10

x is greater than y
x is not greater than y

■Note The if...else statement is a flow-of-control statement. It should be used for doing one or the
other of two actions. The conditional operator returns an expression. It should be used for returning one or
the other of two values.

 int x = 10, y = 9;
 int highVal = x > y // Condition
 ? x // Expression 1
 : y; // Expression 2
 Console.WriteLine("highVal: {0}\n", highVal);

 Console.WriteLine("x is{0} greater than y",
 x > y // Condition
 ? "" // Expression 1
 : " not"); // Expression 2
 y = 11;
 Console.WriteLine("x is{0} greater than y",
 x > y // Condition
 ? "" // Expression 1
 : " not"); // Expression 2

9543.book Page 218 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 219

Unary Arithmetic Operators
The unary operators set the sign of a numeric value. They are listed in Table 8-16.

• The unary positive operator simply returns the value of the operand.

• The unary negative operator returns the value of the operand subtracted from 0.

Table 8-16. The Unary Operators

For example, the following code shows the use and results of the operators:

Operator Name Description

+ Positive sign Returns the numeric value of the operand.

- Negative sign Returns the numeric value of the operand subtracted from 0.

 int x = 10; // x = 10
 int y = -x; // y = -10
 int z = -y; // z = 10

9543.book Page 219 Friday, December 7, 2007 3:10 PM

220 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

User-Defined Type Conversions
User-defined conversions are discussed in greater detail in Chapter 18, but I will mention them
here as well because they are operators.

• You can define both implicit and explicit conversions for your own classes and structs.
This allows you to convert an object of your user-defined type to some other type, and
vice versa.

• C# provides implicit and explicit conversions.

– With an implicit conversion, the compiler will automatically make the conversion, if
necessary, when it is resolving what types to use in a particular context.

– With an explicit conversion, the compiler will only make the conversion when an
explicit cast operator is used.

The syntax for declaring an implicit conversion is the following. The public and static
modifiers are required for all user-defined conversions.

The syntax for the explicit conversion is the same, except that explicit is substituted for
implicit.

The following code shows an example of declarations for conversion operators that will
convert an object of type LimitedInt to type int, and vice versa.

 Required Target Source
 ↓ ↓ ↓
 public static implicit operator TargetType (SourceType Identifier)
 {
 ...
 return ObjectOfTargetType;
 }

 class LimitedInt Target Source
 { ↓ ↓
 public static implicit operator int (LimitedInt li)
 {
 return li.TheValue;
 } Target Source
 ↓ ↓
 public static implicit operator LimitedInt (int x)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x;
 return li;
 }

 private int _TheValue = 0;
 public int TheValue{ ... }
 }

9543.book Page 220 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 221

For example, the following code reiterates and uses the two type conversion operators just
defined. In Main, an int literal is converted into a LimitedInt object, and in the next line, a
LimitedInt object is converted into an int.

 class LimitedInt
 {
 const int MaxValue = 100;
 const int MinValue = 0;

 public static implicit operator int(LimitedInt li) // Convert type
 {
 return li.TheValue;
 }

 public static implicit operator LimitedInt(int x) // Convert type
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x;
 return li;
 }

 private int _TheValue = 0;
 public int TheValue // Property
 {
 get { return _TheValue; }
 set
 {
 if (value < MinValue)
 _TheValue = 0;
 else
 _TheValue = value > MaxValue
 ? MaxValue
 : value;
 }
 }
 }

 class Program
 {
 static void Main() // Main
 {
 LimitedInt li = 5; // Convert 5 to LimitedInt
 int Five = li; // Convert LimitedInt to int

 Console.WriteLine("li: {0}, Five: {1}", li.TheValue, Five);
 }
 }

9543.book Page 221 Friday, December 7, 2007 3:10 PM

222 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Explicit Conversion and the Cast Operator
The preceding example code showed the implicit conversion of the int to a LimitedInt type
and the implicit conversion of a LimitedInt type to an int. If, however, you had declared the
two conversion operators as explicit, you would have had to explicitly use cast operators
when making the conversions.

A cast operator consists of the name of the type to which you want to convert the expres-
sion, inside a set of parentheses. For example, in the following code, method Main casts the
value 5 to a LimitedInt object.

For example, here is the relevant portion of the code, with the changes marked:

In both versions of the code, the output is the following:

 li: 5, Five: 5

There are two other operators that take a value of one type and return a value of a different,
specified type. These are the is operator and the as operator. These are covered at the end of
Chapter 18.

 Cast operator
 ↓
 LimitedInt li = (LimitedInt) 5;

 ↓
 public static explicit operator int(LimitedInt li)
 {
 return li.TheValue;
 }
 ↓
 public static explicit operator LimitedInt(int x)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x;
 return li;
 }

 static void Main()
 { ↓
 LimitedInt li = (LimitedInt) 5;
 int Five = (int) li;
 ↑
 Console.WriteLine(" li: {0}, Five: {1}", li.TheValue, Five);
 }

9543.book Page 222 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 223

Operator Overloading
The C# operators, as you’ve seen, are defined to work using the predefined types as operands.
If confronted with a user-defined type, an operator simply would not know how to process it.
Operator overloading allows you to define how the C# operators should operate on operands
of your user-defined types.

• Operator overloading is only available for classes and structs.

• You can overload an operator x for use with your class or struct by declaring a method
named operator x that implements the behavior (e.g., operator +, operator -, etc.).

– The overload methods for unary operators take a single parameter of the class or
struct type.

– The overload methods for binary operators take two parameters, at least one of
which must be of the class or struct type.

An operator overload method must be declared

• With both static and public modifiers

• As a member of the class or struct for which it is an operand

For example, the following code shows two of the overloaded operators of class
LimitedInt: the addition operator and the negation operator. You can tell that it is negation
and not subtraction because the operator overload method has only a single parameter, and is
therefore unary; whereas the subtraction operator is binary.

public static LimitedInt operator -(LimitedInt x) // Unary
public static LimitedInt operator +(LimitedInt x, double y) // Binary

 class LimitedInt Return
 { Required type Keyword Operator Operand
 ↓ ↓ ↓ ↓ ↓
 public static LimitedInt operator + (LimitedInt x, double y)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x.TheValue + (int)y;
 return li;
 }

 public static LimitedInt operator - (LimitedInt x)
 {
 // In this strange class, negating a value just sets its value to 0.
 LimitedInt li = new LimitedInt();
 li.TheValue = 0;
 return li;
 }
 ...
 }

9543.book Page 223 Friday, December 7, 2007 3:10 PM

224 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

Restrictions on Operator Overloading
Not all operators can be overloaded, and there are restrictions on the types of overloading that
can be done. The important things you should know about the restrictions on operator over-
loading are described later in the section.

Only the following operators can be overloaded. Prominently missing from the list is the
assignment operator.

Overloadable unary operators: +, -, !, ~, ++, --, true, false

Overloadable binary operators: +, -, *, /, %, &, |, ^, <<, >>, ==, !=, >, <, >=, <=

The increment and decrement operators are overloadable. But unlike the predefined ver-
sions, there is no distinction between the pre- and post- usage of the overloaded operator.

You cannot do the following things with operator overloading:

• Create a new operator

• Change the syntax of an operator

• Redefine how an operator works on the predefined types

• Change the precedence or associativity of an operator

■Note Your overloaded operators should conform to the intuitive meanings of the operators.

9543.book Page 224 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 225

Example of Operator Overloading
The following example shows the overloads of three operators for class LimitedInt: negation,
subtraction, and addition.

 class LimitedInt {
 const int MaxValue = 100;
 const int MinValue = 0;

 public static LimitedInt operator -(LimitedInt x)
 {
 // In this strange class, negating a value just sets its value to 0.
 LimitedInt li = new LimitedInt();
 li.TheValue = 0;
 return li;
 }

 public static LimitedInt operator -(LimitedInt x, LimitedInt y)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x.TheValue - y.TheValue;
 return li;
 }

 public static LimitedInt operator +(LimitedInt x, double y)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x.TheValue + (int)y;
 return li;
 }

 private int _TheValue = 0;
 public int TheValue
 {
 get { return _TheValue; }
 set
 {
 if (value < MinValue)
 _TheValue = 0;
 else
 _TheValue = value > MaxValue
 ? MaxValue
 : value;
 }
 }
 }

Continued

9543.book Page 225 Friday, December 7, 2007 3:10 PM

226 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

This code produces the following output:

 li1: 10, li2: 26
-10 = 0
 26 - 10 = 16
 10 - 26 = 0

The typeof Operator
The typeof operator returns the System.Type object of any type given as its parameter. From
this object, you can learn the characteristics of the type. (There is only one System.Type object
for any given type.) The operator’s characteristics are listed in Table 8-17.

The typeof operator is unary.

Table 8-17. The typeof Operator

 class Program {
 static void Main() {
 LimitedInt li1 = new LimitedInt();
 LimitedInt li2 = new LimitedInt();
 LimitedInt li3 = new LimitedInt();
 li1.TheValue = 10; li2.TheValue = 26;
 Console.WriteLine(" li1: {0}, li2: {1}", li1.TheValue, li2.TheValue);

 li3 = -li1;
 Console.WriteLine("-{0} = {1}", li1.TheValue, li3.TheValue);

 li3 = li2 - li1;
 Console.WriteLine(" {0} - {1} = {2}",
 li2.TheValue, li1.TheValue, li3.TheValue);

 li3 = li1 - li2;
 Console.WriteLine(" {0} - {1} = {2}",
 li1.TheValue, li2.TheValue, li3.TheValue);
 }
 }

Operator Description

typeof Returns the System.Type object of a given type.

9543.book Page 226 Friday, December 7, 2007 3:10 PM

C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S 227

The following is an example of the syntax of the typeof operator. Type is a class in the
System namespace.

You cannot overload the typeof operator, as that would defeat the .NET type-safety
mechanisms.

For example, the following code uses the typeof operator to get information on a class
called SomeClass, and print the names of its public fields and methods.

The output of this code is the following:

Field : Field1
Field : Field2
Method: Method1
Method: Method2
Method: GetType
Method: ToString
Method: Equals
Method: GetHashCode

 Type t = typeof (SomeClass)

 using System.Reflection;

 class SomeClass
 {
 public int Field1;
 public int Field2;

 public void Method1() { }
 public int Method2() { return 1; }
 }

 class Program
 {
 static void Main()
 {
 Type t = typeof(SomeClass);
 FieldInfo[] fi = t.GetFields();
 MethodInfo[] mi = t.GetMethods();

 foreach (FieldInfo f in fi)
 Console.WriteLine("Field : {0}", f.Name);
 foreach (MethodInfo m in mi)
 Console.WriteLine("Method: {0}", m.Name);
 }
 }

9543.book Page 227 Friday, December 7, 2007 3:10 PM

228 C H A P T E R 8 ■ E X P R E S S I O N S A N D O P E R A T O R S

The typeof operator is also called by the GetType method, which is available for every object
of every type. For example, the following code retrieves the name of the type of the object:

This code produces the following output:

 Type s: SomeClass

 class SomeClass
 {
 ...
 }

 class Program
 {
 static void Main()
 {
 SomeClass s = new SomeClass();

 Console.WriteLine("Type s: {0}", s.GetType().Name);
 }
 }

9543.book Page 228 Friday, December 7, 2007 3:10 PM

229

■ ■ ■

C H A P T E R 9

Statements

What Are Statements?
Expression Statements
Flow-of-Control Statements
The if Statement
The if . . . else Statement
The switch Statement
The while Loop
The do Loop
The for Loop
Jump Statements
The break Statement
The continue Statement
Labeled Statements
The goto Statement
The using Statement
Other Statements

9543.book Page 229 Wednesday, December 5, 2007 2:04 PM

230 C H A P T E R 9 ■ S T A T E M E N T S

What Are Statements?
The statements in C# are very similar to those of C and C++. This chapter covers the character-
istics of a C# statement, as well as the flow-of-control statements provided by the language.

• A statement is a source code instruction describing a type or telling the program to per-
form an action.

• There are three major categories of statements, as follows:

– Declaration statements: Statements that declare types or variables

– Embedded statements: Statements that perform actions or manage flow of control

– Labeled statements: Statements to which control can jump

Previous chapters have covered a number of different declaration statements, including
declarations of local variables, classes, and class members. This chapter will cover the embedded
statements, which do not declare types, variables, or instances. Instead, they use expressions and
flow-of-control constructs to work with the objects and variables that have been declared by the
declaration statements.

• A simple statement consists of an expression followed by a semicolon.

• A block is a sequence of statements enclosed by matching curly braces. The enclosed
statements can include the following:

– Declaration statements

– Embedded statements

– Labeled statements

– Nested blocks

The following code gives examples of each:

■Note A block counts syntactically as a single embedded statement. Anywhere that an embedded state-
ment is required syntactically, you can use a block.

 int x = 10; // Simple declaration
 int z; // Simple declaration

 { // Block
 int y = 20; // Simple declaration
 z = x + y; // Embedded statement
 top: y = 30; // Labeled statement
 ...
 { // Nested block
 ...
 }
 }

9543.book Page 230 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 231

An empty statement consists of just a semicolon. You can use an empty statement at any
position where the syntax of the language requires an embedded statement, but your program
logic does not require any action.

For example, the following code is an example of using the empty statement:

• The second line in the code is an empty statement. It is required because there must be
an embedded statement between the if part and the else part of the construct.

• The fourth line is a simple statement, as shown by the terminating semicolon.

Expression Statements
The last chapter looked at expressions. Expressions return values, but they can also have side
effects.

• A side effect is an action that affects the state of the program.

• Many expressions are evaluated only for their side effects.

You can create a statement from an expression by placing a statement terminator (semi-
colon) after it. Any value returned by the expression is discarded. For example, the following
code shows an expression statement. It consists of the assignment expression (an assignment
operator and two operands) followed by a semicolon. This does the following two things:

• The expression assigns the value on the right of the operator to the memory location ref-
erenced by variable x. Although this is probably the main reason for the statement, this
is considered the side effect.

• After setting the value of x, the expression returns with the new value of x. But there is
nothing to receive this return value, so it is ignored.

The whole reason for evaluating the expression is to achieve the side effect.

if(x < y)
 ; // Empty statement
else
 z = a + b; // Simple statement

x = 10;

9543.book Page 231 Wednesday, December 5, 2007 2:04 PM

232 C H A P T E R 9 ■ S T A T E M E N T S

Flow-of-Control Statements
C# provides the flow-of-control constructs common to modern programming languages.

• Conditional execution executes or skips a section of code depending on a condition. The
conditional execution statements are the following:

– if

– if...else

– switch

• Looping statements repeatedly execute a section of code. The looping statements are the
following:

– while

– do

– for

– foreach

• Jump statements change the flow of control from one section of code to a specific state-
ment in another section of code. The jump statements are the following:

– break

– continue

– return

– goto

– throw

Conditional execution and looping constructs (other than foreach) require a test expres-
sion, or condition, to determine where the program should continue execution.

■Note Unlike C and C++, test expressions must return a value of type bool. Numbers do not have a
Boolean interpretation in C#.

9543.book Page 232 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 233

The if Statement
The if statement implements conditional execution. The syntax for the if statement is shown
here, and is illustrated in Figure 9-1.

• TestExpr must evaluate to a value of type bool.

• If TestExpr evaluates to true, Statement is executed.

• If it evaluates to false, Statement is skipped.

Figure 9-1. The if statement

The following code shows examples of if statements:

if(TestExpr)
 Statement

 // With a simple statement
 if(x <= 10)
 z = x – 1; // Single statement, no curly braces needed

 // With a block
 if(x >= 20)
 {
 x = x – 5; // Block--braces needed
 y = x + z;
 }

 int x = 5;
 if(x) // Error: test expression must be a bool, not int
 {
 ...
 }

9543.book Page 233 Wednesday, December 5, 2007 2:04 PM

234 C H A P T E R 9 ■ S T A T E M E N T S

The if . . . else Statement
The if...else statement implements a two-way branch. The syntax for the if...else state-
ment is shown here, and is illustrated in Figure 9-2.

• If TestExpr evaluates to true, Statement1 is executed.

• If it evaluates to false, Statement2 is executed instead.

Figure 9-2. The if . . . else statement

The following is an example of the if...else statement:

If(TestExpr)
 Statement1
else
 Statement2

 If(x <= 10)
 z = x – 1; // Single statement
 else
 { // Multiple statements--block
 x = x – 5;
 y = x + z;
 }

9543.book Page 234 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 235

The switch Statement
The switch statement implements multi-way branching. The syntax and structure of the
switch statement are shown in Figure 9-3.

• The switch statement contains zero or more switch sections.

• Each switch section starts with one or more switch labels.

Figure 9-3. Structure of a switch statement

Switch labels have the following form:

The flow of control through the structure in Figure 9-3 is the following:

• The test expression, TestExpr, is evaluated at the top of the construct.

• If the value of TestExpr is equal to the value ConstExpr1, the constant expression in the
first switch label, then the statements in the statement list following the switch label are
executed, until the break statement is encountered.

• Each switch section must end with a break statement (or a goto statement, as discussed
later).

• The break statement branches execution to the end of the switch statement.

• The default section is optional, but must include a break statement, if included.

 case ConstantExpression :
 ↑ ↑
 Keyword Switch label terminator

9543.book Page 235 Wednesday, December 5, 2007 2:04 PM

236 C H A P T E R 9 ■ S T A T E M E N T S

The general flow of control through a switch statement is illustrated in Figure 9-4. You can
modify the flow through a switch statement with a goto statement or a return statement.

Figure 9-4. The flow of control through a switch statement

■Note Unlike C and C++, each switch section, including the optional default section, must end with a
break or return statement. In C#, there is no falling through from one switch section to the next.

9543.book Page 236 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 237

A Switch Example
The following code executes the switch statement five times, with the value of x ranging from
1 to 5. From the output, you can tell which case section was executed on each cycle through
the loop.

This code produces the following output:

x is 1 -- In Default case
x is 2 -- In Case 2
x is 3 -- In Default case
x is 4 -- In Default case
x is 5 -- In Case 5

 for(int x=1; x<6; x++)
 {
 switch(x) // Evaluate the value of variable x.
 {
 case 2: // If x equals 2
 Console.WriteLine
 ("x is {0} -- In Case 2", x);
 break; // Go to end of switch.

 case 5: // If x equals 5
 Console.WriteLine
 ("x is {0} -- In Case 5", x);
 break; // Go to end of switch.

 default:
 // If x is neither 2 nor 5
 Console.WriteLine
 ("x is {0} -- In Default case", x);
 break;
 // Go to end of switch.
 }
 }

9543.book Page 237 Wednesday, December 5, 2007 2:04 PM

238 C H A P T E R 9 ■ S T A T E M E N T S

More on the switch Statement
A switch statement can have any number of switch sections, including none (although with
none, you’ll get a compiler warning). The default section is not required, as shown in the fol-
lowing example. It is, however, generally considered good practice to include it, since it can
catch potential errors.

For example, the switch statement in the following code has no default section. The
switch statement is inside a for loop, which executes the statement five times, with the value
of x starting at 1 and ending at 5.

This code produces the following output:

x is 5 -- In Case 5

The following code has only the default section:

This code produces the following output:

x is 1 -- In Default case
x is 2 -- In Default case
x is 3 -- In Default case

 for(int x=1; x<6; x++)
 {
 switch(x)
 {
 case 5:
 Console.WriteLine("x is {0} -- In Case 5", x);
 break;
 }
 }

 for(int x=1; x<4; x++)
 {
 switch(x)
 {
 default:
 Console.WriteLine("x is {0} -- In Default case", x);
 break;
 }
 }

9543.book Page 238 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 239

Switch Labels
The expression following the keyword case in a switch label

• Must be a constant expression, and must therefore be completely evaluable by the com-
piler at compile time

• Must be of the same type as the test expression

For example, Figure 9-5 shows three sample switch statements.

Figure 9-5. Switch statements with different types of switch labels

Although C# does not allow falling through from one switch section to another

• You can attach multiple switch labels to any switch section.

• Following the statement list associated with a case, there must be a break or goto state-
ment before the next switch label, unless there are no intervening executable statements
between the switch labels.

For example, in the following code, since there are no executable statements between the
first three switch labels, it’s fine to have one follow the other. Cases 5 and 6, however, have an
executable statement between them, so there must be a break or goto statement before case 6.

 switch(x)
 {
 case 1: // Acceptable
 case 2:
 case 3:
 ... // Execute this code if x equals 1, 2, or 3.
 break;
 case 5:
 y = x + 1;
 case 6: // Not acceptable because there is no break
 ...

9543.book Page 239 Wednesday, December 5, 2007 2:04 PM

240 C H A P T E R 9 ■ S T A T E M E N T S

The while Loop
The while loop is a simple loop construct in which the test expression is performed at the top
of the loop. The syntax of the while loop is shown here, and is illustrated in Figure 9-6.

• First, TestExpr is evaluated.

• If TestExpr evaluates to false, then execution continues after the end of the while loop.

• Otherwise, when TestExpr evaluates to true, then Statement is executed, and TestExpr
is evaluated again. Each time TestExpr evaluates to true, Statement is executed another
time. The loop ends when TestExpr evaluates to false.

Figure 9-6. The while loop

The following code shows an example of the while loop, where the test expression variable
starts with a value of 3 and is decremented at each iteration. The loop exits when the value of
the variable becomes 0.

This code produces the following output:

x: 3
x: 2
x: 1
Out of loop

while(TestExpr)
 Statement

 int x = 3;
 while(x > 0)
 {
 Console.WriteLine("x: {0}", x);
 x--;
 }
 Console.WriteLine("Out of loop");

9543.book Page 240 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 241

The do Loop
The do loop is a simple loop construct in which the test expression is performed at the bottom
of the loop. The syntax for the do loop is shown here and illustrated in Figure 9-7.

• First, Statement is executed.

• Then, TestExpr is evaluated.

• If TestExpr returns true, then Statement is executed again.

• Each time TestExpr returns true, Statement is executed again.

• When TestExpr returns false, control passes to the statement following the end of the
loop construct.

Figure 9-7. The do loop

do
 Statement
while(TestExpr); // End of do loop

9543.book Page 241 Wednesday, December 5, 2007 2:04 PM

242 C H A P T E R 9 ■ S T A T E M E N T S

The do loop has several characteristics that set it apart from other flow-of-control con-
structs. They are the following:

• The body of the loop, Statement, will always be executed at least once, even if TestExpr
is initially false.

• The semicolon is required after the closing parenthesis of the test expression.

The following code shows an example of a do loop:

This code produces the following output:

x is 0
x is 1
x is 2

 int x = 0;
 do
 Console.WriteLine("x is {0}", x++);
 while (x<3);
 ↑
 Required

9543.book Page 242 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 243

The for Loop
The for loop construct executes the body of the loop as long as the test expression returns true
when it is evaluated at the top of the loop. The syntax of the for loop is shown here and illus-
trated in Figure 9-8.

• At the beginning of the for loop, Initializer is executed once.

• TestExpr is then evaluated.

• If it returns true, Statement is executed, followed by IterationExpr.

• Control then returns to the top of the loop, and TestExpr is evaluated again.

• As long as TestExpr returns true, Statement, followed by IterationExpr, will be
executed.

• As soon as TestExpr returns false, execution continues at the statement following
Statement.

Some parts of the statement are optional.

• Initializer, TestExpr, and IterationExpr are all optional. Their positions can be left
blank. If the TestExpr position is left blank, the test is assumed to return true. Therefore,
there must be some other method of exiting the statement if the program is to avoid
going into an infinite loop.

• The semicolons are required.

Figure 9-8. The for loop

 Separated by semicolons
 ↓ ↓
for(Initializer ; TestExpr ; IterationExpr)
 Statement

9543.book Page 243 Wednesday, December 5, 2007 2:04 PM

244 C H A P T E R 9 ■ S T A T E M E N T S

Figure 9-8 illustrates the flow of control through the for statement. You should also know
the following about its components:

• Initializer is executed only once, before any other part of the for construct. It is usu-
ally used to declare and initialize local values to be used in the loop.

• TestExpr is evaluated to determine whether Statement should be executed or skipped. It
must evaluate to a value of type bool.

• IterationExpr is executed immediately after Statement, and before returning to the top
of the loop to TestExpr.

For example, in the following code:

• Before anything else, the initializer (int i=0) defines a variable called i, and initializes
its value to 0.

• The condition (i<3) is then evaluated. If it is true, then the body of the loop is executed.

• At the bottom of the loop, after all the loop statements have been executed, the
IterationExpr statement is executed—in this case incrementing the value of i.

This code produces the following output:

Inside loop. i: 0
Inside loop. i: 1
Inside loop. i: 2
Out of Loop

// The body of this for loop is executed three times.
for(int i=0 ; i<3 ; i++)
 Console.WriteLine("Inside loop. i: {0}", i);

Console.WriteLine("Out of Loop");

9543.book Page 244 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 245

The Scope of Variables in a for Statement
Any variables declared in the initializer are visible only within the for statement.

• This is different from C and C++, where the declaration introduces the variable into the
enclosing block.

• The following code illustrates this point:

The local variables declared within the body of the loop are known only within the loop.

■Note Unlike C and C++, the scope of variables declared in the initializer lasts only for the length of the loop.

Type is needed here for declaration.
 ↓
for(int i=0; i<10; i++) // Variable i is in scope here, and also
 Statement; // here within the statement.
 // Here, after the statement, i no longer exists.

Type is needed here again because the previous variable i has gone out of existence.
 ↓
for(int i=0; i<10; i++) // We need to define a new variable i here, since
 Statement; // the previous one has gone out of existence.

9543.book Page 245 Wednesday, December 5, 2007 2:04 PM

246 C H A P T E R 9 ■ S T A T E M E N T S

Multiple Expressions in the Initializer and Iteration Expression
Both the initializer and the iteration expression can contain multiple expressions as long as
they are separated by commas.

For example, the following code has two variable declarations in the initializer and two
expressions in the iteration expression:

This code produces the following output:

0, 10
1, 20
2, 30
3, 40
4, 50

 static void Main()
 {
 const int MaxI = 5;
 Two declarations Two expressions
 ↓ ↓
 for (int i = 0, j = 10; i < MaxI; i++, j += 10)
 {
 Console.WriteLine("{0}, {1}", i, j);
 }
 }

9543.book Page 246 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 247

Jump Statements
When the flow of control reaches jump statements, program execution is unconditionally
transferred to another part of the program. The jump statements are the following:

• break

• continue

• return

• goto

• throw

This chapter covers the first four of these statements. The throw statement is discussed in
Chapter 11.

The break Statement
Earlier in this chapter you saw the break statement used in the switch statement. It can also be
used in the following statement types as well:

• for

• foreach

• while

• do

In the body of one of these statements, break causes execution to exit the innermost
enclosing statement.

For example, the following while loop would be an infinite loop if it relied only on its test
expression, which is always true. But instead, after three iterations of the loop, the break state-
ment is encountered and the loop is exited.

 int x = 0;
 while(true)
 {
 x++;
 if(x >= 3)
 break;
 }

9543.book Page 247 Wednesday, December 5, 2007 2:04 PM

248 C H A P T E R 9 ■ S T A T E M E N T S

The continue Statement
The continue statement causes program execution to go to the top of the innermost enclosing
loop of the following types:

• while

• do

• for

• foreach

For example, the following for loop is executed five times. In the first three iterations, it
encounters the continue statement and goes directly back to the top of the loop, missing the
WriteLine statement at the bottom of the loop. Execution only reaches the WriteLine state-
ment during the last two iterations.

This code produces the following output:

Value of x is 3
Value of x is 4

The following code shows an example of a continue statement in a while loop. This code
produces the same output as the preceding for loop example.

 for(int x=0; x<5; x++) // Execute loop five times
 {
 if(x < 3) // The first three times
 continue; // Go directly back to top of loop

 // This line is only reached when x is 3 or greater.
 Console.WriteLine("Value of x is {0}", x);
 }

 int x = 0;
 while(x < 5)
 {
 if(x < 3)
 {
 x++;
 continue; // Go back to top of loop
 }

 // This line is reached only when x is 3 or greater.
 Console.WriteLine("Value of x is {0}", x);
 x++;
 }

9543.book Page 248 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 249

Labeled Statements
A labeled statement consists of an identifier, followed by a colon, followed by a statement. It has
the following form:

A labeled statement is executed exactly as if the label were not there and consisted of just
the Statement part.

• Adding a label to a statement allows control to be transferred to the statement from
another part of the code.

• Labeled statements are only allowed inside blocks.

Labels
Labels have their own declaration space, so the identifier in a labeled statement can be any
valid identifier—including those that might be declared in an overlapping scope, such as local
variables or parameter names.

For example, the following code shows the valid use of a label with the same identifier as a
local variable:

There are restrictions, however. The identifier cannot be either

• The same as another label identifier with an overlapping scope

• A keyword

 Identifier: Statement

 {
 int xyz = 0; // Variable xyz
 ...
 xyz: Console.WriteLine("No problem."); // Label xyz
 }

9543.book Page 249 Wednesday, December 5, 2007 2:04 PM

250 C H A P T E R 9 ■ S T A T E M E N T S

The Scope of Labeled Statements
Labeled statements cannot be seen (or accessed) from outside the block in which they are
declared. The scope of a labeled statement is

• The block in which it is declared

• Any blocks nested inside that block

For example, the code on the left of Figure 9-9 contains several nested blocks, with
their scopes marked. There are two labeled statements declared in scope B of the program:
increment and end.

• The shaded portions on the right of the figure show the areas of the code in which the
labeled statements are in scope.

• Code in scope B, and all the nested blocks, can see and access the labeled statements.

• Code from any of the inner scopes can jump out to the labeled statements.

• Code from outside (scope A, in this case) cannot jump into a block with a labeled
statement.

Figure 9-9. The scope of labels includes nested blocks.

9543.book Page 250 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 251

The goto Statement
The goto statement unconditionally transfers control to a labeled statement. Its general form is
the following, where Identifier is the identifier of a labeled statement:

For example, the following code shows the simple use of a goto statement:

The goto statement must be within the scope of the labeled statement.

• A goto statement can jump to any labeled statement within its own block, or out to any
block in which it is nested.

• A goto statement cannot jump into any blocks nested within its own block.

■Caution Using the goto statement is strongly discouraged, as it can lead to code that is poorly struc-
tured, and difficult to debug and maintain. Edsger Dijkstra’s 1968 letter to the Communications of the ACM,
entitled “Go To Statement Considered Harmful,” was an important contribution to computer science; it was
one of the first published descriptions of the pitfalls of using the goto statement.

The goto Statement Inside a switch Statement
There are also two other forms of the goto statement, for use inside switch statements. These
goto statements transfer control to the correspondingly named switch label in the switch
statement.

 goto Identifier ;

 bool thingsAreFine;
 while (true)
 {
 thingsAreFine = MonitorNuclearReactor();

 if (thingsAreFine)
 Console.WriteLine("Things are fine.");
 else
 goto NotSoGood;
 }

 NotSoGood: Console.WriteLine("We have a problem.");

 goto case ConstantExpression;
 goto default;

9543.book Page 251 Wednesday, December 5, 2007 2:04 PM

252 C H A P T E R 9 ■ S T A T E M E N T S

The using Statement
Certain types of unmanaged objects are limited in number or expensive with system resources.
It is important that when your code is done with them they be released as soon as possible. The
using statement helps simplify the process and ensure that these resources are properly dis-
posed of.

A resource is a class or struct that implements the System.IDisposable interface. Interfaces
are covered in detail in Chapter 17—but in short, an interface is a collection of unimplemented
function members that classes and structs can choose to implement. The IDisposable inter-
face contains a single method named Dispose.

The phases of using a resource are shown in Figure 9-10, and consist of the following:

• Allocating the resource

• Using the resource

• Disposing of the resource

If an unexpected runtime error occurs during the portion of the code using the resource,
the code disposing of the resource might not get executed.

Figure 9-10. Components of using a resource

■Note The using statement is different than the using directives. The using directives are covered in
Chapter 10.

9543.book Page 252 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 253

Packaging Use of the Resource
The using statement helps reduce the potential problem of an unexpected runtime error by
neatly packaging the use of a resource.

There are two forms of the using statement. The first form is the following, and is illus-
trated in Figure 9-11.

• The code between the parentheses allocates the resource.

• Statement is the code that uses the resource.

• The using statement implicitly generates the code to dispose of the resource.

Unexpected runtime errors are called exceptions, and are covered in Chapter 11. The stan-
dard way of handling the possibility of exceptions is to place the code that might cause an
exception in a try block, and place any code that must be executed, whether or not there is
an exception, into a finally block.

This form of the using statement does exactly that. It performs the following:

• Allocates the resource

• Places Statement in a try block

• Creates a call to the resource’s Dispose method and places it in a finally block.

Figure 9-11. The effect of the using statement

using (ResourceType Identifier = Expression) Statement
 ↑ ↑
 Allocates resource Uses resource

9543.book Page 253 Wednesday, December 5, 2007 2:04 PM

254 C H A P T E R 9 ■ S T A T E M E N T S

Example of the using Statement
The following code uses the using statement twice—once with a class called TextWriter, and
once with a class called TextReader, both from the System.IO namespace. Both classes imple-
ment the IDisposable interface, as required by the using statement.

• The TextWriter resource opens a text file for writing and writes a line to the file.

• The TextReader resource then opens the same text file, and reads and displays the con-
tents, line by line.

• In both cases, the using statement makes sure that the objects’ Dispose methods are
called.

• Notice also the difference between the using statements in Main and the using directives
on the first two lines.

This code produces the following output:

Four score and seven years ago, ...

using System; // using DIRECTIVE; not using statement
using System.IO; // using DIRECTIVE; not using statement

namespace UsingStatement
{
 class Program
 {
 static void Main()
 {
 // using statement
 using (TextWriter tw = File.CreateText("Lincoln.txt"))
 {
 tw.WriteLine("Four score and seven years ago, ...");
 }

 // using statement
 using (TextReader tr = File.OpenText("Lincoln.txt"))
 {
 string InputString;
 while (null != (InputString = tr.ReadLine()))
 Console.WriteLine(InputString);
 }
 }
 }
}

9543.book Page 254 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 255

Multiple Resources and Nesting
The using statement can also be used with multiple resources of the same type, with the
resource declarations separated by commas. The syntax is the following:

For example, in the following code, each using statement allocates and uses two
resources.

The using statement can also be nested. In the following code, besides the nesting of the
using statements, also note that it is not necessary to use a block with the second using state-
ment because it consists of only a single, simple statement.

 Only one type Resource Resource
 ↓ ↓ ↓
 using (ResourceType Id1 = Expr1, Id2 = Expr2, ...) EmbeddedStatement

 static void Main()
 {
 using (TextWriter tw1 = File.CreateText("Lincoln.txt"),
 tw2 = File.CreateText("Franklin.txt"))
 {
 tw1.WriteLine("Four score and seven years ago, ...");
 tw2.WriteLine("Early to bed; Early to rise ...");
 }

 using (TextReader tr1 = File.OpenText("Lincoln.txt"),
 tr2 = File.OpenText("Franklin.txt"))
 {
 string InputString;
 while (null != (InputString = tr1.ReadLine()))
 Console.WriteLine(InputString);
 while (null != (InputString = tr2.ReadLine()))
 Console.WriteLine(InputString);
 }
 }

 using (TextWriter tw1 = File.CreateText("Lincoln.txt"))
 {
 tw1.WriteLine("Four score and seven years ago, ...");

 using (TextWriter tw2 = File.CreateText("Franklin.txt")) // Nested
 tw2.WriteLine("Early to bed; Early to rise ..."); // Single
 }

9543.book Page 255 Wednesday, December 5, 2007 2:04 PM

256 C H A P T E R 9 ■ S T A T E M E N T S

Another Form of the using Statement
Another form of the using statement is the following:

In this form, the resource is declared before the using statement.

Although this form still ensures that the Dispose method will always be called after you fin-
ish using the resource, it does not protect you from attempting to use the resource after the
using statement has released its unmanaged resources, leaving it in an inconsistent state. It
therefore gives less protection and is discouraged. This form is illustrated in Figure 9-12.

Figure 9-12. Resource declaration before the using statement

 Keyword Resource Uses resource
 ↓ ↓ ↓
 using (Expression) EmbeddedStatement

 TextWriter tw = File.CreateText("Lincoln.txt"); // Resource declared

 using (tw) // using statement
 tw.WriteLine("Four score and seven years ago, ...");

9543.book Page 256 Wednesday, December 5, 2007 2:04 PM

C H A P T E R 9 ■ S T A T E M E N T S 257

Other Statements
There are other statements that are associated with particular features of the language. These
statements are covered in the sections dealing with those features. The statements covered in
other chapters are shown in Table 9-1.

Table 9-1. Statements Covered in Other Chapters

Statement Description Relevant Chapter

checked, unchecked These statements control the overflow checking
context.

Chapter 18

foreach This statement iterates through each member of a
collection.

Chapters 14 and 20

try, throw, finally These statements are associated with exceptions. Chapter 11

return This statement returns control to the calling func-
tion member, and can also return a value.

Chapter 5

yield This statement is used with iterators. Chapter 20

9543.book Page 257 Wednesday, December 5, 2007 2:04 PM

9543.book Page 258 Wednesday, December 5, 2007 2:04 PM

259

■ ■ ■

C H A P T E R 1 0

Namespaces and Assemblies

Referencing Other Assemblies
Namespaces
The using Directives
The Structure of an Assembly
The Identity of an Assembly
Strongly Named Assemblies
Private Deployment of an Assembly
Shared Assemblies and the GAC
Configuration Files
Delayed Signing

9543.book Page 259 Thursday, January 10, 2008 6:55 PM

260 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Referencing Other Assemblies
In Chapter 1, we took a high-level look at the compilation process. You saw that the compiler
takes the source code file and produces an output file called an assembly. This chapter will take
a closer look at assemblies and how they are produced and deployed. You will also look at how
namespaces help organize types.

All the programs you’ve seen so far have, for the most part, declared and used their own
classes. In many projects, however, you will want to use classes or types from other assemblies.
These other assemblies might come from the BCL or a third-party vendor, or you might have
created them yourself. These are called class libraries, and the names of their assembly files
generally end with the .dll extension rather than the .exe extension.

For example, suppose that you want to create a class library that contains classes and
types that can be used by other assemblies. The source code for a simple library is shown in the
following example and is contained in a file called SuperLib.cs. The library contains a single
public class called SquareWidget. Figure 10-1 illustrates the production of the DLL.

Figure 10-1. The SuperLib source code and the resulting assembly

 public class SquareWidget
 {
 public double SideLength = 0;
 public double Area
 {
 get { return SideLength * SideLength; }
 }
 }

9543.book Page 260 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 261

Suppose also that you are writing a program called MyWidgets, and you want to use the
SquareWidget class. The code for the program is in a file called MyWidgets.cs and is shown in
the following example. The code simply creates an object of type SquareWidget and uses the
object’s members.

Notice that the code doesn’t declare class SquareWidget. Instead, you use the class defined
in SuperLib. When you compile the MyWidgets program, however, the compiler must be aware
that your code uses assembly SuperLib so it can get the information about class SquareWidget.
To do this, you need to give the compiler a reference to the assembly, by giving its name and
location.

In Visual Studio, you can add references to a project in the following way:

• Select the Solution Explorer and find the References folder underneath the project
name. The References folder contains a list of the assemblies used by the project.

• Right-click the References folder and select Add Reference. There are five tab pages
from which to choose, allowing you to find the class library in different ways.

• For our program, select the Browse tab, browse to the DLL file containing the
SquareWidget class definition, and select it.

• Click the OK button, and the reference will be added to the project.

 using System;

 class WidgetsProgram
 {
 static void Main()
 {
 SquareWidget sq = new SquareWidget(); // From class library
 ↑
 Not declared in this assembly
 sq.SideLength = 5.0; // Set the side length.
 Console.WriteLine(sq.Area); // Print out the area.
 } ↑
 } Not declared in this assembly

9543.book Page 261 Thursday, January 10, 2008 6:55 PM

262 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

After you’ve added the reference, you can compile MyWidgets. The full compilation process
is illustrated in Figure 10-2.

Figure 10-2. Referencing another assembly

9543.book Page 262 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 263

The mscorlib Library
There’s a class library that I’ve been using in almost every example in the book so far. It is the
one that contains the Console class. The Console class is defined in an assembly called mscorlib
in a file called mscorlib.dll. You won’t find this assembly listed in the References folder, how-
ever. Assembly mscorlib contains the definitions of the C# types, and the basic types for most
.NET languages. It must always be referenced when compiling a C# program, so Visual Studio
doesn’t show it in the References folder.

When you take into account mscorlib, the compilation process for MyWidgets looks more
like the representation shown in Figure 10-3. After this, I’ll assume the use of the mscorlib
assembly without representing it again.

Figure 10-3. Referencing class libraries

Now suppose that your program has been working fine with the SquareWidget class, but
you want to expand its capabilities to use a class called CircleWidget, which is defined in a dif-
ferent assembly called UltraLib. The MyWidgets source code now looks like the following. It
creates a SquareWidget object as defined in SuperLib, and a CircleWidget object as defined in
UltraLib.

 class WidgetsProgram
 {
 static void Main()
 {
 SquareWidget sq = new SquareWidget(); // From SuperLib
 ...

 CircleWidget circle = new CirclWidget(); // From UltraLib
 ...
 }
 }

9543.book Page 263 Thursday, January 10, 2008 6:55 PM

264 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

The source code for class library UltraLib is shown in the following example. Notice that
besides class CircleWidget, like library SuperLib, it also declares a class called SquareWidget.
You can compile UltraLib to a DLL and add it to the list of references in project MyWidgets.

Since both libraries contain a class called SquareWidget, when you attempt to compile pro-
gram MyWidgets, the compiler produces an error message because it doesn’t know which
version of class SquareWidget to use. This name clash is illustrated in Figure 10-4.

Figure 10-4. Since assemblies SuperLib and UltraLib both contain declarations for a class called
SquareWidget, the compiler doesn’t know which one to instantiate.

 public class SquareWidget
 {
 ...
 }

 public class CircleWidget
 {
 public double Radius = 0;
 public double Area
 {
 get { ... }
 }
 }

9543.book Page 264 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 265

Namespaces
In the MyWidgets example, since you have the source code, you can solve the name clash by just
changing the name of the SquareWidget class in either the SuperLib source code or the UltraLib
source code. But what if these libraries had been developed by separate companies, and
you didn’t have the source code? Suppose that SuperLib was produced by a company called
MyCorp, and UltraLib was produced by the ABCCorp company. In that case, you wouldn’t be
able to use them together if you used any classes or types where there was a clash.

As you can imagine, with your development machine containing assemblies produced by
dozens of different companies, there is likely to be a certain amount of duplication in the
names of classes. It would be a shame if you couldn’t use two assemblies in the same program
just because they happened to have type names in common. The namespace feature helps you
avoid this problem.

Namespaces group a set of types together and give them a name, called the namespace
name. The namespace name should be descriptive of the contents of the namespace and be
distinct from other namespace names.

The following shows the syntax for declaring a namespace. The names of all the classes
and other types declared between the curly braces are members of the namespace.

Now suppose that the programmers at MyCorp have modified the source code as shown
in the following example. It now has a namespace that surrounds the class declarations. Notice
two interesting things about the namespace name:

• Namespaces can contain periods.

• The company name is at the beginning of the namespace name.

 Keyword Namespace name
 ↓ ↓
 namespace SimpleNamespace
 {
 TypeDeclarations
 }

 Company name Period
 ↓ ↓
namespace MyCorp.SuperLib
{
 public class SquareWidget
 {
 public double SideLength = 0;
 public double Area
 {
 get { return SideLength * SideLength; }
 }
 }
}

9543.book Page 265 Thursday, January 10, 2008 6:55 PM

266 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

When the MyCorp company ships you the new updated assembly, you can use it by mod-
ifying your MyWidgets program as shown here. Notice that instead of just using the class name
(since it’s ambiguous between the two class libraries), you preface the namespace name to the
class name and separate the two with a period. The entire string, with the namespace name
and the class name, is called the fully qualified name.

Now that you have explicitly specified the SuperLib version of SquareWidget in your code,
the compiler will no longer have a problem distinguishing the classes. The fully qualified name
is a bit long to type, but at least you can now use both libraries. A little later in the chapter, we’ll
cover the using alias directive to solve the inconvenience of having to repeatedly type in the
fully qualified name.

If the UltraLib assembly is also updated with a namespace by the company that produces
it (ABCCorp), then the compile process would be as shown in Figure 10-5.

Figure 10-5. Class libraries with namespaces

 class WidgetsProgram
 {
 static void Main()
 { Fully qualified name Fully qualified name
 ↓ ↓
 MyCorp.SuperLib.SquareWidget sq = new MyCorp.SuperLib.SquareWidget();
 ↑ ↑
 Namespace name Class name

 CircleWidget circle = new CircleWidget();
 ...

9543.book Page 266 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 267

Namespace Names
As you saw, the name of a namespace can contain the name of the company that created the
assembly. Besides identifying the company, the name is also used to help programmers get a
quick idea of the kinds of types defined in the namespace.

Some important points about the names of namespaces are the following:

• A namespace name can be any valid identifier.

• A namespace name can include the period character, which is used to organize types
into hierarchies.

For example, Table 10-1 gives the names of some of the namespaces in the .NET BCL.

Table 10-1. Sample Namespaces from the BCL

Namespace naming guidelines suggest the following:

• Start namespace names with the company name.

• Follow the company name with the technology name.

• Do not name a namespace with the same name as a class or type.

For example, the software development department of the Acme Widget Company devel-
ops software in the following three namespaces, as shown in the following code:

• AcmeWidgets.SuperWidget

• AcmeWidgets.Media

• AcmeWidgets.Games

System System.IO

System.Data Microsoft.CSharp

System.Drawing Microsoft.VisualBasic

namespace AcmeWidgets.SuperWidget.SPDComponent
{
 class SPDBase ...
 ...
}

9543.book Page 267 Thursday, January 10, 2008 6:55 PM

268 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

More About Namespaces
There are several other important points you should know about namespaces:

• Every type name in a namespace must be different from all the others.

• The types in a namespace are called members of the namespace.

• A source file can contain any number of namespace declarations, either sequentially or
nested.

Figure 10-6 shows a source file on the left that declares two namespaces sequentially, with
several types in each one. Notice that even though the namespaces contain several class names
in common, they are differentiated by their namespace names, as shown in the assembly at the
right of the figure.

Figure 10-6. Multiple namespaces in a source file

The .NET Framework BCL offers thousands of defined classes and types to choose from
in building your programs. To help organize this array of available functionality, types with
related functionality are declared in the same namespace. The BCL uses more than 100
namespaces to organize its types.

9543.book Page 268 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 269

Namespaces Spread Across Files
A namespace is not closed. This means that you can add more type declarations to it by declar-
ing it again either later in the source file or in another source file.

For example, Figure 10-7 shows the declaration of three classes, all in the same name-
space, but declared in separate source files. The source files can be compiled into a single
assembly, as shown in Figure 10-7, or into separate assemblies, as shown in Figure 10-8.

Figure 10-7. A namespace can be spread across source files and compiled to a single assembly.

Figure 10-8. A namespace can be spread across source files and compiled to separate assemblies.

9543.book Page 269 Thursday, January 10, 2008 6:55 PM

270 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Nesting Namespaces
A namespace can be a member of another namespace. The member is called a nested name-
space. Nesting namespaces allows you to create a conceptual hierarchy of types.

Although the nested namespace is a member of the enclosing namespace, its members are
not members of the enclosing namespace. A common misconception people initially have about
nested namespaces is that since the nested namespace is inside the enclosing namespace, the
members of the nested namespace must be a subset of the enclosing namespace. This is not true;
the namespaces are separate.

There are two ways you can declare a nested namespace:

• Textual nesting: You can create a nested namespace by placing its declaration inside
the declaration body of the enclosing namespace. This is illustrated on the left in
Figure 10-9. In this example, namespace OtherNs is nested in namespace MyNamespace.

• Separate declaration: You can also create a separate declaration for the nested name-
space, but you must use its fully qualified name in the declaration. This is illustrated on
the right in Figure 10-9. Notice that in the declaration of nested namespace OtherNs, the
fully qualified name MyNamespace.OtherNS is used.

Figure 10-9. The two forms of declaring a nested namespace are equivalent.

Both forms of the nested namespace declarations shown in Figure 10-9 produce the
same assembly, as illustrated in Figure 10-10. The figure shows the two classes declared in
file SomeLib.cs, with their fully qualified names.

Figure 10-10. Nested namespace structure

9543.book Page 270 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 271

The using Directives
Fully qualified names can be quite long, and using them throughout your code can become
quite tedious. There are two compiler directives, however, that allow you to avoid having to use
fully qualified names—the using namespace directive and the using alias directive.

Two important points about the using directives are the following:

• They must be placed at the top of the source file, before any type declarations.

• They apply for all the namespaces in the current source file.

The using Namespace Directive
You saw in the MyWidgets example several sections back that you can specify a class by using
the fully qualified name. You can avoid having to use the long name by placing using name-
space directives at the top of the source file.

The using namespace directive instructs the compiler that you will be using types from
certain specific namespaces. You can then go ahead and use the simple class names without
having to fully qualify them.

When the compiler encounters a name that is not in the current namespace, it checks the
list of namespaces given in the using namespace directives and appends the unknown name to
the first namespace in the list. If the resulting fully qualified name matches a class in this
assembly or a referenced assembly, the compiler uses that class. If it does not match, it tries the
next namespace in the list.

The using namespace directive consists of the keyword using, followed by a namespace
identifier.

One method I have been using throughout the text is the WriteLine method, which is a
member of class Console, in the System namespace. Rather than use its fully qualified name
throughout the code, I simplified our work just a bit, by the use of the using namespace direc-
tive at the top of the code.

For example, the following code uses the using namespace directive in the first line to state
that the code uses classes or other types from the System namespace.

 Keyword
 ↓
 using System ;
 ↑
 Name of namespace

 using System; // using namespace directive
 ...
 System.Console.WriteLine("This is text 1"); // Use fully qualified name
 Console.WriteLine("This is text 2"); // Use directive

9543.book Page 271 Thursday, January 10, 2008 6:55 PM

272 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

The using Alias Directive
The using alias directive allows you to assign an alias for either of the following:

• A namespace

• A type in a namespace

For example, the following code shows the use of two using alias directives. The first direc-
tive instructs the compiler that identifier Syst is an alias for namespace System. The second
directive says that identifier SC is an alias for class System.Console.

The following code uses these aliases. All three lines of code in Main call the
System.Console.WriteLine method.

• The first statement in Main uses the alias for a namespace—System.

• The second statement uses the fully qualified name of the method.

• The third statement uses the alias for a class—Console.

 Keyword Alias Namespace
 ↓ ↓ ↓
 using Syst = System;
 using SC = System.Console;
 ↑ ↑ ↑
 Keyword Alias Class

using Syst = System; // using alias directive
using SC = System.Console; // using alias directive

namespace MyNamespace
{
 class SomeClass
 {
 static void Main()
 { Alias for namespace
 ↓
 Syst.Console.WriteLine ("Using the namespace alias.");
 System.Console.WriteLine("Using fully qualified name.");
 SC.WriteLine ("Using the type alias");
 ↑
 } Alias for class
 }
}

9543.book Page 272 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 273

The Structure of an Assembly
As you saw in Chapter 1, an assembly does not contain native machine code, but Common
Intermediate Language (CIL) code. It also contains everything needed by the Just-in-Time (JIT)
compiler to convert the CIL into native code at run time, including references to other assem-
blies it references. The file extension for an assembly is generally .exe or .dll.

Most assemblies are composed of a single file. Figure 10-11 illustrates the four main sec-
tions of an assembly.

• The assembly manifest contains the following:

– The identity of the assembly name

– A list of the files that make up the assembly

– A map of where things are in the assembly

– Information about other assemblies that are referenced

• The type metadata section contains the information about all the types defined in the
assembly. This information contains everything there is to know about each type.

• The CIL section contains all the intermediate code for the assembly.

• The resources section is optional, but can contain graphics or language resources.

Figure 10-11. The structure of a single-file assembly

9543.book Page 273 Thursday, January 10, 2008 6:55 PM

274 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Although most assemblies comprise a single file, some have more. For an assembly with
multiple modules, one file is the primary module and the others are secondary modules.

• The primary module contains the manifest of the assembly and references to the sec-
ondary modules.

• The filenames of secondary modules end with the extension .netmodule.

• Multiple-file assemblies are considered a single unit. They are deployed together and
versioned together.

Figure 10-12 illustrates a multi-file assembly with secondary modules.

Figure 10-12. A multi-file assembly

9543.book Page 274 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 275

The Identity of an Assembly
In the .NET Framework, the filenames of assemblies are not as important as in other operating
systems and environments. What is much more important is the identity of an assembly.

The identity of an assembly has four components that together should uniquely identify it.
These four components are the following:

• Simple name: This is just the filename without the file extension. Every assembly has a
simple name. It is also called the assembly name or the friendly name.

• Version number: This consists of a string of four period-separated integers, in the form
MajorVersion.MinorVersion.Build.Revision—for example, 2.0.35.9.

• Culture information: This is a string that consists of two to five characters representing
a language, or a language and a country or region. For example, the culture name for
English as used in the United States is en-US. For German as used in Germany, it is de-DE.

• Public key: This 128-byte string should be unique to the company producing the
assembly.

The public key is part of a public/private key pair, which is a set of two very large, specially
chosen numbers that can be used to create secure digital signatures. The public key, as its
name implies, can be made public. The private key must be guarded by the owner. The public
key is part of the assembly’s identity. We will look at the use of the private key later in the
chapter.

9543.book Page 275 Thursday, January 10, 2008 6:55 PM

276 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

The components of an assembly’s name are embedded in the assembly’s manifest.
Figure 10-13 illustrates this section of the manifest.

Figure 10-13. The components of an assembly identity in the manifest

Figure 10-14 shows some of the terms used in the .NET documentation and literature
regarding the identity of an assembly.

Figure 10-14. Terms for an assembly’s identity

9543.book Page 276 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 277

Strongly Named Assemblies
A strongly named assembly is one that has a unique digital signature attached to it. Strongly
named assemblies are much more secure than assemblies that do not have strong names, for
the following reasons:

• A strong name uniquely identifies an assembly. No one else can create an assembly with
the same strong name, so the user can be sure that the assembly came from the claimed
source.

• The contents of an assembly with a strong name cannot be altered without the security
components of the CLR catching the modification.

A weakly named assembly is one that is not strongly named. Since a weakly named assem-
bly does not have a digital signature, it is inherently insecure. Because a chain is only as strong
as its weakest link, by default, strongly named assemblies can only access other strongly
named assemblies. (There’s also a way to allow “partially trusted callers,” but I won’t be cover-
ing that topic.)

The programmer does not produce the strong name. The compiler produces it by taking
information about the assembly and hashing it to create a unique digital signature that it
attaches to the assembly. The pieces of information it uses in the hash process are the following:

• The sequence of bytes composing the assembly

• The simple name

• The version number

• The culture information

• The public/private key pair

■Note There is some diversity in the nomenclature surrounding strong names. What I’m calling “strongly
named” is often referred to as “strong-named.” What I’m calling “weakly named” is sometimes referred to
as “not strong-named” or “assembly with a simple name.”

9543.book Page 277 Thursday, January 10, 2008 6:55 PM

278 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Creating a Strongly Named Assembly
To strongly name an assembly using Visual Studio 2008, you must have a copy of the public/
private key pair file. If you don’t have a key file, you can have Visual Studio generate one for
you. You can then do the following:

• Open the properties of the project.

• Select the Signing tab.

• Select the Sign the Assembly check box and enter the location of the key file.

When you compile the code, the compiler will produce a strongly named assembly. The
inputs and output of the compiler are illustrated in Figure 10-15.

Figure 10-15. Creating a strongly named assembly

9543.book Page 278 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 279

Private Deployment of an Assembly
Deploying a program on a target machine can be as simple as creating a directory on the
machine and copying the application to it. If the application doesn’t need other assemblies
(such as DLLs), or if the required DLLs are in the same directory, the program should work just
fine where it is. Programs deployed this way are called private assemblies, and this method of
deployment is called xcopy deployment.

Private assemblies can be placed in almost any directory, and are self-sufficient as long as
all the files on which they depend are in the same directory or a subdirectory. In fact, you could
have several directories in various parts of the file system, each with the identical set of assem-
blies, and they would all work fine in their various locations.

Some important things to know about private assembly deployment are the following:

• The directory in which the private assemblies are placed is called the application
directory.

• A private assembly can be either strongly named or weakly named.

• There is no need to register components in the registry.

• To uninstall a private assembly, just delete it from the file system.

9543.book Page 279 Thursday, January 10, 2008 6:55 PM

280 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Shared Assemblies and the GAC
Private assemblies are very useful, but sometimes you will want to put a DLL in a central place
so that a single copy can be shared by other assemblies on the system. .NET has such a reposi-
tory, called the global assembly cache (GAC). An assembly placed into the GAC is called a shared
assembly.

Some important facts about the GAC are the following:

• Only strongly named assemblies can be added to the GAC.

• Although earlier versions of the GAC accepted only files with the .dll extension, you
can now add assemblies with the .exe extension as well.

• The GAC is located in a subdirectory named Assembly, of the Windows system directory.

Installing Assemblies into the GAC
When you attempt to install an assembly into the GAC, the security components of the CLR
must first verify that the digital signature on the assembly is valid. If there is no digital signa-
ture, or if it is invalid, the system will not install it into the GAC.

This is a one-time check, however. After an assembly is in the GAC, no further checks are
required when it is referenced by a running program.

The gacutil.exe command-line utility allows you to add and delete assemblies from the
GAC, and list the assemblies it contains. The three most useful flags are the following:

• /i: Inserts an assembly into the GAC

• /u: Uninstalls an assembly from the GAC

• /l: Lists the assemblies in the GAC

9543.book Page 280 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 281

Side-by-Side Execution in the GAC
After an assembly is deployed to the GAC, it can be used by other assemblies in the system.
Remember, however, that an assembly’s identity consists of all four parts of the fully qualified
name. So, if the version number of a library changes, or if it has a different public key, these dif-
ferences specify different assemblies.

The result is that there can be many different assemblies in the GAC that have the same
filename. Although they have the same filename, they are different assemblies and coexist per-
fectly fine together in the GAC. This makes it easy for different applications to use different
versions of the same DLL at the same time, since they are different assemblies with different
identities. This is called side-by-side execution.

Figure 10-16 illustrates four different DLLs in the GAC that all have the same filename—
MyLibrary.dll. Looking at the figure, you can see that the first three come from the same com-
pany, because they have the same public key, and the fourth comes from a different source,
since it has a different public key. These versions differ as follows:

• An English version 1.0.0.0, from company A

• An English version 2.0.0.0, from company A

• A German version 1.0.0.0, from company A

• An English version 1.0.0.0, from company B

Figure 10-16. Four different side-by-side DLLs in the GAC

9543.book Page 281 Thursday, January 10, 2008 6:55 PM

282 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Configuration Files
Configuration files contain information about the application, for use by the CLR at run time.
They can instruct the CLR to do such things as use a different version of a DLL, or to look in
additional directories when searching for a DLL referenced by the program.

Configuration files consist of XML code and don’t contain C# code. The details of writing
the XML code are beyond the scope of this text, but you should understand the purpose of con-
figuration files and how they are used. One way they are used is to update an application
assembly to use the new version of a DLL.

Suppose, for example, that you have an application that references a DLL in the GAC. The
identity of the reference in the application’s manifest must exactly match the identity of the
assembly in the GAC. If a new version of the DLL is released, it can be added to the GAC, where
it can happily coexist with the old version.

The application, however, still has embedded in its manifest the identity of the old version
of the DLL. Unless you recompile the application and make it reference the new version of the
DLL, it will continue to use the old version. That’s fine, if that’s what you want.

If, however, you do not want to recompile the application but want it to use the new DLL,
then you can create a configuration file telling the CLR to use the new version rather than the
old version. The configuration file is placed in the application directory.

Figure 10-17 illustrates objects in the runtime process. The MyProgram.exe application on
the left calls for version 1.0.0.0 of the MyLibrary.dll, as indicated by the dashed arrow. But the
application has a configuration file, which instructs the CLR to load version 2.0.0.0 instead.
Notice that the name of the configuration file consists of the full name of the executable file
including the extension, plus the additional extension .config.

Figure 10-17. Using a configuration file to bind to a new version

9543.book Page 282 Thursday, January 10, 2008 6:55 PM

C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S 283

Delayed Signing
It is important that companies carefully guard the private key of their official public/private
key pair. Otherwise, if untrustworthy people were to obtain it, they could publish code mas-
querading as the company’s code. To avoid this, companies clearly cannot allow free access to
the file containing their public/private key pair. In large companies, the final strong naming of
an assembly is often performed at the very end of the development process, by a special group
with access to the key pair.

This can cause problems, though, in the development and testing processes, for several
reasons. First, since the public key is one of the four components of an assembly’s identity, it
can’t be set until the public key is supplied. Also, a weakly named assembly cannot be deployed
to the GAC. Both the developers and testers need to be able to compile and test the code in the
way it will be deployed on release, including its identity and location in the GAC.

To allow for this, there is a modified form of assigning a strong name, called delayed sign-
ing, or partial signing, that overcomes these problems, but without releasing access to the
private key.

In delayed signing, the compiler uses only the public key of the public/private key pair.
The public key can then be placed in the manifest to complete the assembly’s identity. Delayed
signing also uses a block of 0s to reserve space for the digital signature.

To create a delay-signed assembly, you must do two things. First, create a copy of the key
file that has only the public key, rather than the public/private key pair. Next, add an additional
attribute called DelaySignAttribute to the assembly scope of the source code and set its value
to true.

9543.book Page 283 Thursday, January 10, 2008 6:55 PM

284 C H A P T E R 1 0 ■ N A M E S P A C E S A N D A S S E M B L I E S

Figure 10-18 shows the input and output for producing a delay-signed assembly. Notice
the following in the figure:

• In the input, the DelaySignAttribute is located in the source files, and the key file con-
tains only the public key.

• In the output, there is space reserved for the digital signature at the bottom of the
assembly.

Figure 10-18. Creating a delay-signed assembly

If you try to deploy the delay-signed assembly to the GAC, the CLR will not allow it,
because it’s not strongly named. To deploy it on this machine, you must first issue a command-
line command that disables the GAC’s signature verification on this machine, for this assembly
only, and allows it to be installed in the GAC. To do this, issue the following command from the
Visual Studio command prompt.

You’ve now looked at weakly named assemblies, delay-signed assemblies, and strongly
named assemblies. Figure 10-19 summarizes the differences in their structures.

Figure 10-19. The structures of different assembly signing stages

 sn –vr MyAssembly.dll

9543.book Page 284 Thursday, January 10, 2008 6:55 PM

285

■ ■ ■

C H A P T E R 1 1

Exceptions

What Are Exceptions?
The try Statement
The Exception Classes
The catch Clause
Examples Using Specific catch Clauses
The catch Clauses Section
The finally Block
Finding a Handler for an Exception
Searching Further
Throwing Exceptions
Throwing Without an Exception Object

9543.book Page 285 Monday, December 10, 2007 2:22 PM

286 C H A P T E R 1 1 ■ E X C E P T I O N S

What Are Exceptions?
An exception is a runtime error in a program that violates a system or application constraint, or
a condition that is not expected to occur during normal operation. Examples are when a pro-
gram tries to divide a number by 0 or tries to write to a read-only file. When these occur, the
system catches the error and raises an exception.

If the program has not provided code to handle the exception, the system will halt the
program.

For example, the following code raises an exception when it attempts to divide by 0:

When this code is run, the system displays the following error message:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.➥

 at Exceptions_1.Program.Main() in C:\Progs\Exceptions\Program.cs:line 12

 static void Main()
 {
 int x = 10, y = 0;
 x /= y; // Attempt to divide by zero--raises an exception
 }

9543.book Page 286 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 287

The try Statement
The try statement allows you to designate blocks of code to be guarded for exceptions, and
to supply code to handle them if they occur. The try statement consists of three sections, as
shown in Figure 11-1.

• The try block contains the code that is being guarded for exceptions.

• The catch clauses section contains one or more catch clauses. These are blocks of code
to handle the exceptions. They are also known as exception handlers.

• The finally block contains code to be executed under all circumstances, whether or not
an exception is raised.

Figure 11-1. Structure of the try statement

9543.book Page 287 Monday, December 10, 2007 2:22 PM

288 C H A P T E R 1 1 ■ E X C E P T I O N S

Handling the Exception
The previous example showed that attempting to divide by 0 causes an exception. You can
modify the program to handle that exception by placing the code inside a try block and sup-
plying a simple catch clause. When the exception is raised, it is caught and handled in the catch
block.

This code produces the following message. Notice that, other than the output message,
there is no indication that an exception has occurred.

Handling all exceptions - Keep on Running

 static void Main()
 {
 int x = 10;

 try
 {
 int y = 0;
 x /= y; // Raises an exception
 }
 catch
 {
 ... // Code to handle the exception

 Console.WriteLine("Handling all exceptions - Keep on Running");
 }
 }

9543.book Page 288 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 289

The Exception Classes
There are many different types of exceptions that can occur in a program. The BCL defines a
number of exception classes, each representing a specific type. When one occurs, the CLR

• Creates an exception object for the type

• Looks for an appropriate catch clause to handle it

All exception classes are ultimately derived from the System.Exception class. A portion of
the exception inheritance hierarchy is shown in Figure 11-2.

Figure 11-2. Structure of the exception hierarchy

An exception object contains read-only properties with information about the exception
that caused it. Some of these properties are shown in Table 11-1.

Table 11-1. Selected Properties of an Exception Object

Property Type Description

Message string This property contains an error message explaining the cause of
the exception.

StackTrace string This property contains information describing where the excep-
tion occurred.

InnerException Exception If the current exception was raised by another exception, this
property contains a reference to the previous exception.

HelpLink string This property can be set by application-defined exceptions to
give a URN or URL for information on the cause of the exception.

Source string If not set by an application-defined exception, this property
contains the name of the assembly where the exception
originated.

9543.book Page 289 Monday, December 10, 2007 2:22 PM

290 C H A P T E R 1 1 ■ E X C E P T I O N S

The catch Clause
The catch clause handles exceptions. There are three forms, allowing different levels of pro-
cessing. The forms are shown in Figure 11-3.

Figure 11-3. The three forms of the catch clause

The general catch clause can accept any exception, but can’t determine the type of excep-
tion that caused it. This allows only general processing and cleanup for whatever exception
might occur.

The specific catch clause form takes the name of an exception class as a parameter. It
matches exceptions of the specified class or exception classes derived from it.

The specific catch clause with object form gives you the most information about the excep-
tion. It matches exceptions of the specified class, or exception classes derived from it. It also
gives you an exception instance, called the exception variable, which is a reference to the
exception object created by the CLR. You can access the exception variable’s properties within
the block of the catch clause to get specific information about the exception raised.

For example, the following code handles exceptions of type IndexOutOfRangeException.
When one occurs, a reference to the actual exception object is passed into the code with
parameter name e. The three WriteLine statements each read a string field from the exception
object.

 Exception type Exception variable
 ↓ ↓
 catch (IndexOutOfRangeException e)
 { Accessing the exception variable
 ↓
 Console.WriteLine("Message: {0}", e.Message);
 Console.WriteLine("Source: {0}", e.Source);
 Console.WriteLine("Stack: {0}", e.StackTrace);

9543.book Page 290 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 291

Examples Using Specific catch Clauses
Going back to our divide-by-zero example, the following code modifies the previous catch
clause to specifically handle exceptions of the DivideByZeroException class. While in the previ-
ous example, the catch clause would handle any exception raised in the try block, the current
example will only handle those of the DivideByZeroException class.

You could further modify the catch clause to use an exception variable. This allows you to
access the exception object inside the catch block.

This code produces the following output:

Message: Attempted to divide by zero.
Source: Exceptions 1
Stack: at Exceptions_1.Program.Main() in C:\Progs\Exceptions 1\➥

Exceptions 1\Program.cs:line 14

 int x = 10;
 try
 {
 int y = 0;
 x /= y; // Raises an exception
 } Exception type
 ↓
 catch (DivideByZeroException)
 {
 ...
 Console.WriteLine("Handling an exception.");
 }

 int x = 10;
 try
 {
 int y = 0;
 x /= y; // Raises an exception
 } Exception type Exception variable
 ↓ ↓
 catch (DivideByZeroException e)
 { Accessing the exception variable
 ↓
 Console.WriteLine("Message: {0}", e.Message);
 Console.WriteLine("Source: {0}", e.Source);
 Console.WriteLine("Stack: {0}", e.StackTrace);
 }

9543.book Page 291 Monday, December 10, 2007 2:22 PM

292 C H A P T E R 1 1 ■ E X C E P T I O N S

The catch Clauses Section
The catch clauses section can contain multiple catch clauses. Figure 11-4 shows a summary
of the catch clauses section.

Figure 11-4. Structure of the catch clauses section of a try statement

When an exception is raised, the system searches the list of catch clauses in order, and the
first catch clause that matches the type of the exception object is executed. Because of this,
there are two important rules in ordering the catch clauses. They are the following:

• The specific catch clauses must be ordered with the most specific exception types first,
progressing to the most general. For example, if you declare an exception class derived
from NullReferenceException, the catch clause for your derived exception type should
be listed before the catch clause for NullReferenceException.

• If there is a general catch clause, it must be last, after all specific catch clauses. Using the
general catch clause is discouraged. You should use one of the specific catch clauses if
at all possible. The general catch clause hides bugs by allowing the program to continue
execution, and leaves the program in an unknown state.

9543.book Page 292 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 293

The finally Block
If a program’s flow of control enters a try statement that has a finally block, the finally block
is always executed. The flow of control is illustrated in Figure 11-5.

• If no exception occurs inside the try block, then at the end of the try block, control
skips over any catch clauses and goes to the finally block.

• If an exception occurs inside the try block, then any appropriate catch clauses in the
catch clauses section are executed, followed by execution of the finally block.

Figure 11-5. Execution of the finally block

Even if a try block has a return statement, the finally block will still always be executed
before returning to the calling code. For example, in the following code, there is a return state-
ment in the middle of the try block that is executed under certain conditions. This does not
allow it to bypass the finally statement.

This code produces the following output when variable inVal has the value 5:

First Branch - In finally statement

 try
 {
 if (inVal < 10) {
 Console.Write("First Branch - ");
 return;
 }
 else
 Console.Write("Second Branch - ");
 }
 finally
 { Console.WriteLine("In finally statement"); }

9543.book Page 293 Monday, December 10, 2007 2:22 PM

294 C H A P T E R 1 1 ■ E X C E P T I O N S

Finding a Handler for an Exception
When a program raises an exception, the system checks to see whether the program has pro-
vided a handler for it. The flow of control is illustrated in Figure 11-6.

• If the exception occurred inside a try block, the system will check to see whether any of
the catch clauses can handle the exception.

• If an appropriate catch clause is found

– The catch clause is executed.

– If there is a finally block, it is executed.

– Execution continues after the end of the try statement (i.e., after the finally block,
or after the last catch clause if there is no finally block).

Figure 11-6. Exception with handler in current try statement

9543.book Page 294 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 295

Searching Further
If the exception was raised in a section of code that was not guarded by a try statement, or if
the try statement does not have a matching exception handler, the system will have to look
further for a matching handler. It will do this by searching down the call stack, in sequence, to
see whether there is an enclosing try block with a matching handler.

Figure 11-7 illustrates the search process. On the left of the figure is the calling structure
of the code, and on the right is the call stack. The figure shows that Method2 is called from inside
the try block of Method1. If an exception occurs inside the try block in Method2, the system does
the following:

• First, it checks to see whether Method2 has exception handlers that can handle the
exception.

– If so, Method2 handles it, and program execution continues.

– If not, the system continues down the call stack to Method1, searching for an
appropriate handler.

• If Method1 has an appropriate catch clause, the system does the following:

– Goes back to the top of the call stack—which is Method2

– Executes Method2’s finally block, and pops Method2 off the stack

– Executes Method1’s catch clause and its finally block

• If Method1 doesn’t have an appropriate catch clause, the system continues searching
down the call stack.

Figure 11-7. Searching down the call stack

9543.book Page 295 Monday, December 10, 2007 2:22 PM

296 C H A P T E R 1 1 ■ E X C E P T I O N S

General Algorithm
Figure 11-8 shows the general algorithm for handling an exception.

Figure 11-8. The general algorithm for handling an exception

9543.book Page 296 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 297

Example of Searching Down the Call Stack
In the following code, Main starts execution and calls method A, which calls method B. A
description and diagram of the process are given after the code and in Figure 11-9.

 class Program
 {
 static void Main()
 {
 MyClass MCls = new MyClass();
 try
 { MCls.A(); }
 catch (DivideByZeroException e)
 { Console.WriteLine("catch clause in Main()"); }
 finally
 { Console.WriteLine("finally clause in Main()"); }
 Console.WriteLine("After try statement in Main.");
 Console.WriteLine(" -- Keep running.");
 }
 }

 class MyClass
 {
 public void A()
 {
 try
 { B(); }
 catch (System.NullReferenceException)
 { Console.WriteLine("catch clause in A()"); }
 finally
 { Console.WriteLine("finally clause in A()"); }
 }

 void B()
 {
 int x = 10, y = 0;
 try
 { x /= y; }
 catch (System.IndexOutOfRangeException)
 { Console.WriteLine("catch clause in B()"); }
 finally
 { Console.WriteLine("finally clause in B()"); }
 }
 }

9543.book Page 297 Monday, December 10, 2007 2:22 PM

298 C H A P T E R 1 1 ■ E X C E P T I O N S

This code produces the following output:

finally clause in B()
finally clause in A()
catch clause in Main()
finally clause in Main()
After try statement in Main.
 -- Keep running.

1. Main calls A, which calls B, which encounters a DivideByZeroException exception.

2. The system checks B’s catch section for a matching catch clause. Although it has one for
IndexOutOfRangeException, it does not have one for DivideByZeroException.

3. The system then moves down the call stack and checks A’s catch section, where it finds
that A also does not have a matching catch clause.

4. The system continues down the call stack, and checks Main’s catch clause section,
where it finds that Main does have a DivideByZeroException catch clause.

5. Although the matching catch clause has now been located, it is not executed yet.
Instead, the system goes back to the top of the stack, executes B’s finally clause,
and pops B from the call stack.

6. The system then moves to A, executes its finally clause, and pops A from the call stack.

7. Finally, Main’s matching catch clause is executed, followed by its finally clause. Execu-
tion then continues after the end of Main’s try statement.

Figure 11-9. Searching the stack for an exception handler

9543.book Page 298 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 299

Throwing Exceptions
You can make your code explicitly raise an exception by using the throw statement. The syntax
for the throw statement is the following:

For example, the following code defines a method called PrintArg, which takes a string
argument and prints it out. Inside the try block, it first checks to make sure that the argument
is not null. If it is, it creates an ArgumentNullException instance and throws it. The exception
instance is caught in the catch statement, and the error message is printed. Main calls the
method twice: once with a null argument, and then with a valid argument.

This code produces the following output:

Message: Value cannot be null.
Parameter name: arg
Hi there!

 throw ExceptionObject;

 class MyClass
 {
 public static void PrintArg(string arg)
 {
 try
 {
 if (arg == null) Supply name of null argument
 { ↓
 ArgumentNullException myEx = new ArgumentNullException("arg");
 throw myEx;
 }
 Console.WriteLine(arg);
 }
 catch (ArgumentNullException e)
 {
 Console.WriteLine("Message: {0}", e.Message);
 }
 }
 }
 class Program
 {
 static void Main()
 {
 string s = null;
 MyClass.PrintArg(s);
 MyClass.PrintArg("Hi there!");
 }
 }

9543.book Page 299 Monday, December 10, 2007 2:22 PM

300 C H A P T E R 1 1 ■ E X C E P T I O N S

Throwing Without an Exception Object
The throw statement can also be used without an exception object, inside a catch block.

• This form rethrows the current exception, and the system continues its search for addi-
tional handlers for it.

• This form can only be used inside a catch statement.

For example, the following code rethrows the exception from inside the first catch clause:

 class MyClass
 {
 public static void PrintArg(string arg)
 {
 try
 {
 try
 {
 if (arg == null) Supply name of null argument
 { ↓
 ArgumentNullException myEx = new ArgumentNullException("arg");
 throw myEx;
 }
 Console.WriteLine(arg);
 }
 catch (ArgumentNullException e)
 {
 Console.WriteLine("Inner Catch: {0}", e.Message);
 throw;
 } ↑
 } Rethrow the exception, with no additional parameters
 catch
 {
 Console.WriteLine("Outer Catch: Handling an Exception.");
 }
 }
 }

 class Program {
 static void Main() {
 string s = null;
 MyClass.PrintArg(s);
 }
 }

9543.book Page 300 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 1 ■ E X C E P T I O N S 301

This code produces the following output:

Inner Catch: Value cannot be null.
Parameter name: arg
Outer Catch: Handling an Exception.

9543.book Page 301 Monday, December 10, 2007 2:22 PM

9543.book Page 302 Monday, December 10, 2007 2:22 PM

303

■ ■ ■

C H A P T E R 1 2

Structs

What Are Structs?
Structs Are Value Types
Assigning to a Struct
Constructors and Destructors
Field Initializers Are Not Allowed
Structs Are Sealed
Boxing and Unboxing
Structs As Return Values and Parameters
Additional Information About Structs

9543.book Page 303 Monday, December 10, 2007 2:22 PM

304 C H A P T E R 1 2 ■ S T R U C T S

What Are Structs?
Structs are programmer-defined data types, very similar to classes. They have data members
and function members. Although similar to classes, there are a number of important differ-
ences. The most important ones are the following:

• Classes are reference types and structs are value types.

• Structs are implicitly sealed, which means that they cannot be derived from.

The syntax for declaring a struct is similar to that of declaring a class.

For example, the following code declares a struct named Point. It has two public fields,
named X and Y. In Main, three variables of struct type Point are declared, and their values are
assigned and printed out.

 Keyword
 ↓
 struct StructName
 {
 MemberDeclarations
 }

 struct Point
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 {
 Point first, second, third;

 first.X = 10; first.Y = 10;
 second.X = 20; second.Y = 20;
 third.X = first.X + second.X;
 third.Y = first.Y + second.Y;

 Console.WriteLine("first: {0}, {1}", first.X, first.Y);
 Console.WriteLine("second: {0}, {1}", second.X, second.Y);
 Console.WriteLine("third: {0}, {1}", third.X, third.Y);
 }
 }

9543.book Page 304 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 2 ■ S T R U C T S 305

Structs Are Value Types
As with all value types, a variable of a struct type contains its own data. Consequently

• A variable of a struct type cannot be null.

• Two structs variables cannot refer to the same object.

For example, the following code declares a class called CSimple, and a struct called Simple,
and a variable of each. Figure 12-1 shows how the two would be arranged in memory.

Figure 12-1. Memory arrangement of a class versus a struct

 class CSimple
 {
 public int X;
 public int Y;
 }

 struct Simple
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 {
 CSimple cs = new CSimple();
 Simple ss = new Simple();
 ...

9543.book Page 305 Monday, December 10, 2007 2:22 PM

306 C H A P T E R 1 2 ■ S T R U C T S

Assigning to a Struct
Assigning one struct to another copies the values from one to the other. This is quite different
from copying from a class variable, where only the reference is copied.

Figure 12-2 shows the difference between the assignment of a class variable and a struct
variable. Notice that after the class assignment, cs2 is pointing at the same object in the heap as
cs1. But after the struct assignment, the values of ss2’s members are the same as those of ss1.

Figure 12-2. Assigning a class variable and a struct variable

 class CSimple
 { public int X; public int Y; }

 struct Simple
 { public int X; public int Y; }

 class Program
 {
 static void Main()
 {
 CSimple cs1 = new CSimple(), cs2 = null; // Class instances
 Simple ss1 = new Simple(), ss2 = new Simple(); // Struct instances

 cs1.X = ss1.X = 5; // Assign 5 to ss1.X and cs1.X
 cs1.Y = ss1.Y = 10; // Assign 10 to ss1.Y and cs1.Y

 cs2 = cs1; // Assign class instance
 ss2 = ss1; // Assign struct instance
 }
 }

9543.book Page 306 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 2 ■ S T R U C T S 307

Constructors and Destructors
Structs can have instance and static constructors, but destructors are not allowed.

Instance Constructors
The language implicitly supplies a parameterless constructor for every struct. This constructor
sets each of the struct’s members to the default value for that type. Value members are set to
their default values. Reference members are set to null.

The predefined parameterless constructor exists for every struct—and you cannot delete
or redefine it. You can, however, create additional constructors, as long as they have parame-
ters. Notice that this is different from classes. For classes, the compiler will only supply an
implicit parameterless constructor if no other constructors are declared.

To call a constructor, including the implicit parameterless constructor, use the new operator.
Notice that the new operator is used even though the memory is not allocated from the heap.

For example, the following code declares a simple struct with a constructor that takes two
int parameters. Main creates two instances of the struct—one using the implicit parameterless
constructor, and the second with the declared two-parameter constructor.

 struct Simple
 {
 public int X;
 public int Y;

 public Simple(int a, int b) // Constructor with parameters
 {
 X = a;
 Y = b;
 }
 }

 class Program
 {
 static void Main()
 { Call implicit constructor
 ↓
 Simple s1 = new Simple();
 Simple s2 = new Simple(5, 10);
 ↑
 Call constructor
 Console.WriteLine("{0},{1}", s1.X, s1.Y);
 Console.WriteLine("{0},{1}", s2.X, s2.Y);
 }
 }

9543.book Page 307 Monday, December 10, 2007 2:22 PM

308 C H A P T E R 1 2 ■ S T R U C T S

You can also create an instance of a struct without using the new operator. If you do this,
however, there are some restrictions, which are the following:

• You cannot use the value of a data member until you have explicitly set it.

• You cannot call any function member until all the data members have been assigned.

For example, the following code shows two instances of struct Simple created without
using the new operator. When there is an attempt to access s1 without explicitly setting the data
member values, the compiler produces an error message. There are no problems reading from
s2 after assigning values to its members.

 struct Simple
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 { No constructor calls
 ↓ ↓
 Simple s1, s2;
 Console.WriteLine("{0},{1}", s1.X, s1.Y); // Compiler error
 ↑ ↑
 s2.X = 5; Not yet assigned
 s2.Y = 10;
 Console.WriteLine("{0},{1}", s2.X, s2.Y); // OK
 }
 }

9543.book Page 308 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 2 ■ S T R U C T S 309

Static Constructors
As with classes, the static constructors of structs create and initialize the static data members,
and cannot reference instance members. Static constructors for structs follow the same rules
as those for classes.

A static constructor is called before the first of either of the following two actions:

• A call to an explicitly declared constructor

• A reference to a static member of the struct

Summary of Constructors and Destructors
Table 12-1 summarizes the use of constructors and destructors with structs.

Table 12-1. Summary of Constructors and Destructors

Type Description

Instance constructor (parameterless) Cannot be declared in the program. An implicit con-
structor is supplied by the system for all structs. It
cannot be deleted or redefined by the program.

Instance constructor (with parameters) Can be declared in the program.

Static constructor Can be declared in the program.

Destructor Cannot be declared in the program. Destructors are
not allowed.

9543.book Page 309 Monday, December 10, 2007 2:22 PM

310 C H A P T E R 1 2 ■ S T R U C T S

Field Initializers Are Not Allowed
Field initializers are not allowed in structs.

Structs Are Sealed
Structs are always implicitly sealed, and hence, you cannot derive other structs from them.

Since structs do not support inheritance, the use of several of the class member modifiers
with struct members would not make sense; thus, they cannot be used in their declarations.
The modifiers that cannot be used with structs are the following:

• protected

• internal

• abstract

• virtual

Structs themselves are, under the covers, derived from System.ValueType, which is derived
from object.

The two inheritance-associated keywords you can use with struct members are the new
and override modifiers, when creating a member with the same name as a member of base
class System.ValueType, from which all structs are derived.

Boxing and Unboxing
As with other value type data, if you want to use a struct instance as a reference type object, you
must make a boxed copy. Boxing and unboxing are covered in detail in Chapter 18.

 struct Simple
 { Not allowed
 ↓
 public int x = 0; // Compile error
 public int y = 10; // Compile error
 } ↑
 Not allowed

9543.book Page 310 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 2 ■ S T R U C T S 311

Structs As Return Values and Parameters
Structs can be used as return values and parameters.

• Return value: When a struct is a return value, a copy is created and returned from the
function member.

• Value parameter: When a struct is used as a value parameter, a copy of the actual
parameter struct is created. The copy is used in the execution of the method.

• ref and out parameters: If you use a struct as a ref or out parameter, a reference to the
struct is passed into the method so that the data members can be changed.

Additional Information About Structs
Allocating structs requires less overhead than creating instances of a class, so using structs
instead of classes can sometimes improve performance—but beware of the high cost of boxing
and unboxing.

Finally, some last things you should know about structs are the following:

• The predefined simple types (int, short, long, etc.), although considered primitives in
.NET and C#, are all actually implemented under the covers in .NET as structs.

• You can declare partial structs in the same way as partial classes, as described in
Chapter 6.

• Structs, like classes, can implement interfaces, which will be covered in Chapter 17.

9543.book Page 311 Monday, December 10, 2007 2:22 PM

9543.book Page 312 Monday, December 10, 2007 2:22 PM

313

■ ■ ■

C H A P T E R 1 3

Enumerations

Enumerations
Bit Flags
More About Enums

9543.book Page 313 Monday, December 10, 2007 2:22 PM

314 C H A P T E R 1 3 ■ E N U M E R A T I O N S

Enumerations
An enumeration, or enum, is a programmer-defined type, like a class or a struct.

• Like structs, enums are value types, and therefore store their data directly, rather than
separately, with a reference and data.

• Enums have only one type of member: named constants with integral values.

The following code shows an example of the declaration of a new enum type called
TrafficLight, which contains three members. Notice that the list of member declarations
is a comma-separated list; there are no semicolons in an enum declaration.

Every enum type has an underlying integral type, which by default is int.

• Each enum member is assigned a constant value of the underlying type.

• The compiler assigns 0 to the first member, and assigns each subsequent member the
value one more than the previous member.

For example, in the TrafficLight type, the compiler assigns the int values 0, 1, and 2 to
members Green, Yellow, and Red, respectively. In the output of the following code, you can see
the underlying member values by casting them to type int. Their arrangement on the stack is
illustrated in Figure 13-1.

 Keyword Enum name
 ↓ ↓
 enum TrafficLight
 {
 Green, ← Comma separated—no semicolons
 Yellow, ← Comma separated—no semicolons
 Red
 }

 TrafficLight t1 = TrafficLight.Green;
 TrafficLight t2 = TrafficLight.Yellow;
 TrafficLight t3 = TrafficLight.Red;

 Console.WriteLine("{0},\t{1}", t1, (int) t1);
 Console.WriteLine("{0},\t{1}", t2, (int) t2);
 Console.WriteLine("{0},\t{1}\n", t3, (int) t3);
 ↑
 Cast to int

9543.book Page 314 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 3 ■ E N U M E R A T I O N S 315

This code produces the following output:

Green, 0
Yellow, 1
Red, 2

Figure 13-1. The member constants of an enum are represented by underlying integral values.

You can assign enum values to variables of the enum type. For example, the following code
shows the declaration of three variables of type TrafficLight. Notice that you can assign mem-
ber literals to variables, or you can copy the value from another variable of the same type.

This code produces the following output. Notice that the member names are printed as
strings.

Red
Green
Green

 class Program
 {
 static void Main()
 { Type Variable Member
 ↓ ↓ ↓
 TrafficLight t1 = TrafficLight.Red; // Assign from member
 TrafficLight t2 = TrafficLight.Green; // Assign from member
 TrafficLight t3 = t2; // Assign from variable

 Console.WriteLine(t1);
 Console.WriteLine(t2);
 Console.WriteLine(t3);
 }
 }

9543.book Page 315 Monday, December 10, 2007 2:22 PM

316 C H A P T E R 1 3 ■ E N U M E R A T I O N S

Setting the Underlying Type and Explicit Values
You can use an integral type other than int by placing a colon and the type name after the
enum name. The type can be any integral type except char. All the member constants are of the
enum’s underlying type.

The values of the member constants can be any values of the underlying type. To explicitly
set the value of a member, use an initializer after its name in the enum declaration. There can
be duplicate values, although not duplicate names, as shown here:

For example, the code in Figure 13-2 shows two equivalent declarations of enum
TrafficLight.

• The code on the left accepts the default type and numbering.

• The code on the right explicitly sets the underlying type to int and the members to val-
ues corresponding to the default values.

Figure 13-2. Equivalent enum declarations

 Colon
 ↓
 enum TrafficLight : ulong
 { ↑
 ... Underlying type

 enum TrafficLight
 {
 Green = 10,
 Yellow = 15, // Duplicate values
 Red = 15 // Duplicate values
 }

9543.book Page 316 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 3 ■ E N U M E R A T I O N S 317

Implicit Member Numbering
You can explicitly assign the values for any of the member constants. If you don’t initialize a
member constant, the compiler implicitly assigns it a value. The rules the compiler uses for
assigning those values are illustrated in Figure 13-3.

• The values associated with the member names do not need to be distinct.

Figure 13-3. The algorithm for assigning member values

For example, the following code declares two enumerations. CardSuit accepts the implicit
numbering of the members, as shown in the comments. FaceCards sets some members explic-
itly and accepts implicit numbering of the others.

 enum CardSuit
 {
 Hearts, // 0 - Since this is first
 Clubs, // 1 - One more than the previous one
 Diamonds, // 2 - One more than the previous one
 Spades, // 3 - One more than the previous one
 MaxSuits // 4 - A common way to assign a constant
 } // to the number of listed items.

 enum FaceCards
 {
 // Member // Value assigned
 Jack = 11, // 11 - Explicitly set
 Queen, // 12 - One more than the previous one
 King, // 13 - One more than the previous one
 Ace, // 14 - One more than the previous one
 NumberOfFaceCards = 4, // 4 - Explicitly set
 SomeOtherValue, // 5 - One more than the previous one
 HighestFaceCard = Ace // 14 - Ace is defined above
 }

9543.book Page 317 Monday, December 10, 2007 2:22 PM

318 C H A P T E R 1 3 ■ E N U M E R A T I O N S

Bit Flags
Programmers have long used the different bits in a single word as a compact way of represent-
ing a set of on/off flags. Enums offer a convenient way to implement this.

The general steps are the following:

1. Determine how many bit flags you need, and choose an unsigned integral type with
enough bits to hold them.

2. Determine what each bit position represents, and give it a name. Declare an enum of
the chosen integral type, with each member represented by a bit position.

3. Use the bitwise OR operator to set the appropriate bits in a word holding the bit flags.

4. Unpack the bit flags by using the bitwise AND operator.

For example, the following code shows the enum declaration representing the options for
a card deck in a card game. The underlying type, uint, is more than sufficient to hold the four
bit flags needed. Notice the following about the code:

• The members have names that represent binary options.

– Each option is represented by a particular bit position in the word. Bit positions hold
either a 0 or a 1.

– Since a bit flag represents a bit that is either on or off, you do not want to use 0 as a
member value. It already has a meaning—that all the bit flags are off.

• Hexadecimal representation is often used when working with bit patterns because there
is a more direct correlation between a bit pattern and its hexadecimal representation
than with its decimal representation.

• Decorating the enum with the Flags attribute is not actually necessary, but gives some
additional convenience, which I will discuss shortly. Attributes are covered in Chapter 24.

Figure 13-4 illustrates this enumeration.

[Flags]
enum CardDeckSettings : uint
{
 SingleDeck = 0x01, // Bit 0
 LargePictures = 0x02, // Bit 1
 FancyNumbers = 0x04, // Bit 2
 Animation = 0x08 // Bit 3
}

9543.book Page 318 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 3 ■ E N U M E R A T I O N S 319

Figure 13-4. Definition of the flag bits, and their individual representations

To create a word with the appropriate bit flags, declare a variable of the enum type, and
use the bitwise OR operator to set the required bits. For example, the following code sets three
of the four options:

To determine whether a particular bit is set, use the bitwise AND operator with the flag
word and the bit flag.

For example, the following code checks a value to see whether the FancyNumbers bit flag is
set. It does this by ANDing that value with the bit flag, and then comparing that result with the
bit flag. If the bit was set in the original value, then the result of the AND operation will have
the same bit pattern as the bit flag.

Figure 13-5 illustrates the process of creating the flag word and then checking whether a
particular bit is set.

Figure 13-5. Producing a flag word and checking it for a particular bit

 Enum type Flag word Bit flags ORed together
 ↓ ↓ ↓
 CardDeckSettings ops = CardDeckSettings.SingleDeck
 | CardDeckSettings.FancyNumbers
 | CardDeckSettings.Animation ;

 bool useFancyNumbers =
 (ops & CardDeckSettings.FancyNumbers) == CardDeckSettings.FancyNumbers;
 ↑ ↑
 Flag word Bit flag

9543.book Page 319 Monday, December 10, 2007 2:22 PM

320 C H A P T E R 1 3 ■ E N U M E R A T I O N S

The Flags Attribute
We’ll cover attributes in Chapter 24, but it’s worth mentioning the Flags attribute here. An
attribute appears as a string between square brackets placed on the line above a class declara-
tion. The attribute does not change the calculations at all. It does, however, provide several
convenient features.

First, it informs the compiler, object browsers, and other tools looking at the code that the
members of the enum are meant to be combined as bit flags, rather than used only as separate
values. This allows the browsers to interpret variables of the enum type more appropriately.

Second, it allows the ToString method of an enum to provide more appropriate formatting
for the values of bit flags. The ToString method takes an enum value and compares it to the val-
ues of the constant members of the enum. If it matches one of the members, ToString returns
the string name of the member.

Suppose, for example, that you have used the enum declaration for CardDeckSettings
(given in the preceding code), and have not used the Flags attribute. The first line of the follow-
ing code creates a variable (named ops) of the enum type, and sets the value of a single flag bit.
The second line uses ToString to get the string name of the member represented by that value.

This code produces the following output:

FancyNumbers

 CardDeckSettings ops = CardDeckSettings.FancyNumbers; // Set the bit flag.
 Console.WriteLine(ops.ToString()); // Print its name.

9543.book Page 320 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 3 ■ E N U M E R A T I O N S 321

That’s all well and good, but suppose you set two bit flags instead of one, as in the follow-
ing code:

The resulting value of ops is 12, where 4 is from the FancyNumbers flag, and 8 is from the
Animation flag. In the second line, when ToString attempts to look up the value in the list of
enum members, it finds that there is no member with the value 12—so it just returns the string
representing 12. The resulting output is the following:

12

If, however, you use the Flags attribute before the declaration of the enum, this tells the
ToString method that the bits can be considered separately. In looking up the value, it would find
that 12 corresponds to the two bit flag members FancyNumbers and Animation. It would then
return the string containing their names, separated by a comma and space, as shown here:

FancyNumbers, Animation

 // Set two bit flags.
 ops = CardDeckSettings.FancyNumbers | CardDeckSettings.Animation;
 Console.WriteLine(ops.ToString()); // Print what?

9543.book Page 321 Monday, December 10, 2007 2:22 PM

322 C H A P T E R 1 3 ■ E N U M E R A T I O N S

Example Using Bit Flags
The following code puts together all the pieces of using bit flags:

 [Flags]
 enum CardDeckSettings : uint
 {
 SingleDeck = 0x01, // Bit 0
 LargePictures = 0x02, // Bit 1
 FancyNumbers = 0x04, // Bit 2
 Animation = 0x08 // Bit 3
 }

 class MyClass
 {
 bool UseSingleDeck = false;
 bool UseBigPics = false;
 bool UseFancyNums = false;
 bool UseAnimation = false;

 public void SetOptions(CardDeckSettings ops)
 {
 UseSingleDeck = (ops & CardDeckSettings.SingleDeck)
 == CardDeckSettings.SingleDeck;
 UseBigPics = (ops & CardDeckSettings.LargePictures)
 == CardDeckSettings.LargePictures;
 UseFancyNums = (ops & CardDeckSettings.FancyNumbers)
 == CardDeckSettings.FancyNumbers;
 UseAnimation = (ops & CardDeckSettings.Animation)
 == CardDeckSettings.Animation;
 }

 public void PrintOptions()
 {
 Console.WriteLine("Option settings:");
 Console.WriteLine(" Use Single Deck - {0}", UseSingleDeck);
 Console.WriteLine(" Use Large Pictures - {0}", UseBigPics);
 Console.WriteLine(" Use Fancy Numbers - {0}", UseFancyNums);
 Console.WriteLine(" Show Animation - {0}", UseAnimation);
 }
 }

Continued

9543.book Page 322 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 3 ■ E N U M E R A T I O N S 323

This code produces the following output:

Option settings:
 Use Single Deck - True
 Use Large Pictures - False
 Use Fancy Numbers - True
 Show Animation - True

 class Program
 {
 static void Main() {
 MyClass mc = new MyClass();
 CardDeckSettings ops = CardDeckSettings.SingleDeck
 | CardDeckSettings.FancyNumbers
 | CardDeckSettings.Animation;
 mc.SetOptions(ops);
 mc.PrintOptions();
 }
 }

9543.book Page 323 Monday, December 10, 2007 2:22 PM

324 C H A P T E R 1 3 ■ E N U M E R A T I O N S

More About Enums
Enums only have a single member type: the declared member constants.

• You cannot use modifiers with the members. They all implicitly have the same accessi-
bility as the enum.

• Since the members are constants, they are accessible even if there are no variables of
the enum type. Use the enum type name, followed by a dot and the member name.

For example, the following code does not create any variables of the enum TrafficLight
type, but the members are accessible, and can be printed using WriteLine.

 static void Main()
 {
 Console.WriteLine("{0}", TrafficLight.Green);
 Console.WriteLine("{0}", TrafficLight.Yellow);
 Console.WriteLine("{0}", TrafficLight.Red);
 } ↑ ↑
 Enum name Member name

9543.book Page 324 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 3 ■ E N U M E R A T I O N S 325

An enum is a distinct type. Comparing enum members of different enum types results in a
compile-time error. For example, the following code declares two enum types.

• The first if statement is fine because it compares different members from the same
enum type.

• The second if statement produces an error because it compares members from differ-
ent enum types, even though their structures and member names are exactly the same.

enum FirstEnum // First enum type
{
 Mem1,
 Mem2
}

enum SecondEnum // Second enum type
{
 Mem1,
 Mem2
}

class Program
{
 static void Main()
 {
 if (FirstEnum.Mem1 < FirstEnum.Mem2) // OK--members of same enum type
 Console.WriteLine("True");

 if (FirstEnum.Mem1 < SecondEnum.Mem1) // Error--different enum types
 Console.WriteLine("True");
 }
}

9543.book Page 325 Monday, December 10, 2007 2:22 PM

9543.book Page 326 Monday, December 10, 2007 2:22 PM

327

■ ■ ■

C H A P T E R 1 4

Arrays

Arrays
Types of Arrays
An Array As an Object
One-Dimensional and Rectangular Arrays
Instantiating a One-Dimensional or Rectangular Array
Accessing Array Elements
Initializing an Array
Jagged Arrays
Comparing Rectangular and Jagged Arrays
The foreach Statement
Array Covariance
Useful Inherited Array Members
Comparing Array Types

9543.book Page 327 Monday, December 10, 2007 2:22 PM

328 C H A P T E R 1 4 ■ A R R A Y S

Arrays
An array is a set of uniform data elements, represented by a single variable name. The individ-
ual elements are accessed using the variable name together with one or more indexes between
square brackets, as shown here:

Definitions
Let’s start with some important definitions having to do with arrays in C#.

• Elements: The individual data items of an array are called elements. All elements of an
array must be of the same type, or derived from the same type.

• Rank/dimensions: Arrays can have any positive number of dimensions. The number of
dimensions an array has is called its rank.

• Dimension length: Each dimension of an array has a length, which is the number of
positions in that direction.

• Array length: The total number of elements contained in an array, in all dimensions, is
called the length of the array.

Important Details
The following are some important general facts about C# arrays:

• Once an array is created, its size is fixed. C# does not support dynamic arrays.

• Array indexes are 0-based. That is, if the length of a dimension is n, the index values
range from 0 to n – 1. For example, Figure 14-1 shows the dimensions and lengths of two
example arrays. Notice that for each dimension, the indexes range from 0 to length – 1.

Figure 14-1. Dimensions and sizes

 Array name Index
 ↓ ↓
 MyArray[4]

9543.book Page 328 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 329

Types of Arrays
C# provides two types of arrays:

• One-dimensional arrays can be thought of as a single line, or vector, of elements.

• Multidimensional arrays are composed such that each position in the primary vector is
itself an array, called a sub-array. Positions in the sub-array vectors can themselves be
sub-arrays.

Additionally, there are two types of multidimensional arrays, rectangular arrays and
jagged arrays, which have the following characteristics:

• Rectangular arrays

– Are multidimensional arrays where all the sub-arrays in a particular dimension have
the same length

– Always use a single set of square brackets, regardless of the number of dimensions

• Jagged arrays

– Are multidimensional arrays where each sub-array is an independent array

– Can have sub-arrays of different lengths

– Use a separate set of square brackets for each dimension of the array

Figure 14-2 shows the kinds of arrays available in C#.

Figure 14-2. One-dimensional, rectangular, and jagged arrays

int x = myArray2[4, 6, 1] // One set of square brackets

 jagArray1[2][7][4] // Three sets of square brackets

9543.book Page 329 Monday, December 10, 2007 2:22 PM

330 C H A P T E R 1 4 ■ A R R A Y S

An Array As an Object
An array instance is an object whose type derives from class System.Array. Since arrays are
derived from this BCL base class, they inherit a number of useful members from it, such as

• Rank: A property that returns the number of dimensions of the array

• Length: A property that returns the length of the array (the total number of elements in
the array)

Arrays are reference types, and as with all reference types, have both a reference to the
data and the data object itself. The reference is in either the stack or the heap, and the data
object itself will always be in the heap. Figure 14-3 shows the memory configuration and com-
ponents of an array.

Figure 14-3. Structure of an array

Although an array is always a reference type, the elements of the array can be either value
types or reference types.

• An array is called a value type array if the elements stored are value types.

• An array is called a reference type array if the elements stored in the array are references
of reference type objects.

Figure 14-4 shows a value type array and a reference type array.

Figure 14-4. Elements can be values or references.

9543.book Page 330 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 331

One-Dimensional and Rectangular Arrays
Syntactically, one-dimensional arrays and rectangular arrays are very similar, so I’ll treat them
together. I’ll then treat jagged arrays separately.

Declaring a One-Dimensional Array or a Rectangular Array
To declare a one-dimensional or rectangular array, use a single set of square brackets between
the type and the variable name.

The rank specifiers are commas between the brackets. They specify the number of dimen-
sions the array will have. The rank is the number of commas, plus one. For example, no
commas indicates a one-dimensional array, one comma indicates a two-dimensional array,
and so forth.

The base type, together with the rank specifiers, is the type of the array. For example,
the following line of code declares a one-dimensional array of longs. The type of the array is
long[], which is read as “an array of longs.”

The following code shows examples of declarations of rectangular arrays. Notice that

• You can have as many rank specifiers as you need.

• You cannot place array dimension lengths in the array type section. The rank is part of
the array’s type, but the lengths of the dimensions are not part of the type.

• When an array is declared, the number of dimensions is fixed. The length of the dimen-
sions, however, is not determined until the array is instantiated.

■Note Unlike C/C++, the brackets follow the base type, not the variable name.

 Rank specifiers = 1
 ↓
 long[] secondArray;
 ↑
 Array type

 Rank specifiers
 ↓
 int[,,] firstArray; // Array type: 3-D array of int
 int[,] arr1; // Array type: 2-D array of int
 long[,,] arr3; // Array type: 3-D array of long
 ↑
 Array type

 long[3,2,6] SecondArray; // Wrong! Compile error
 ↑ ↑ ↑
Dimension lengths not allowed!

9543.book Page 331 Monday, December 10, 2007 2:22 PM

332 C H A P T E R 1 4 ■ A R R A Y S

Instantiating a One-Dimensional or Rectangular
Array
To instantiate an array, you use an array-creation expression. An array-creation expression
consists of the new operator, followed by the base type, followed by a pair of square brackets.
The length of each dimension is placed in a comma-separated list between the brackets.

The following are examples of one-dimensional array declarations:

• Array arr2 is a one-dimensional array of four ints.

• Array mcArr is a one-dimensional array of four MyClass references.

• Their layouts in memory are shown in Figure 14-5.

The following is an example of a rectangular array. Array arr3 is a three-dimensional array.

• The length of the array is 3 * 6 * 2 = 36.

• Its layout in memory is shown in Figure 14-5.

Figure 14-5. Declaring and instantiating arrays

■Note Unlike object-creation expressions, array-creation expressions do not contain parentheses—even
for reference type arrays.

 Four elements
 ↓
 int[] arr2 = new int[4];
 MyClass[] mcArr = new MyClass[4];
 ↑
 Array-creation expression

 Lengths of the dimensions
 ↓
int[,,] arr3 = new int[3,6,2] ;

9543.book Page 332 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 333

Accessing Array Elements
An array element is accessed using an integer value as an index into the array.

• Each dimension uses 0-based indexing.

• The index is placed between square brackets following the array name.

The following code shows examples of declaring, writing to, and reading from a one-
dimensional and a two-dimensional array:

The following code shows the full process of creating and accessing a one-dimensional array:

This code produces the following output:

Value of element 0 is 0
Value of element 1 is 10
Value of element 2 is 20
Value of element 3 is 30

 int[] intArr1 = new int[15]; // Declare 1-D array.
 intArr1[2] = 10; // Write to element 2 of the array.
 int var1 = intArr1[2]; // Read from element 2 of the array.

 int[,] intArr2 = new int[5,10]; // Declare 2-D array.
 intArr2[2,3] = 7; // Write to the array.
 int var2 = intArr2[2,3]; // Read from the array.

 int[] myIntArray; // Declare the array.

 myIntArray = new int[4]; // Instantiate the array.

 for(int i=0; i<4; i++) // Set the values.
 myIntArray[i] = i*10;

 // Read and display the values of each element.
 for(int i=0; i<4; i++)
 Console.WriteLine("Value of element {0} = {1}", i, myIntArray[i]);

9543.book Page 333 Monday, December 10, 2007 2:22 PM

334 C H A P T E R 1 4 ■ A R R A Y S

Initializing an Array
Whenever an array is created, each of the elements is automatically initialized to the default
value for the type. The default values for the predefined types are 0 for integer types, 0.0 for
floating point types, false for Booleans, and null for reference types.

For example, the following code creates an array and initializes its four elements to the
value 0. Figure 14-6 illustrates the layout in memory.

Figure 14-6. Automatic initialization of a one-dimensional array

Explicit Initialization of One-Dimensional Arrays
For a one-dimensional array, you can set explicit initial values by including an initialization list
immediately after the array-creation expression of an array instantiation.

• The initialization values must be separated by commas and enclosed in a set of curly
braces.

• The dimension lengths are optional, since the compiler will infer the lengths from the
number of initializing values.

• Notice that nothing separates the array-creation expression and the initialization list.
That is, there is no equals sign or other connecting operator.

For example, the following code creates an array and initializes its four elements to the val-
ues between the curly braces. Figure 14-7 illustrates the layout in memory.

Figure 14-7. Explicit initialization of a one-dimensional array

 int[] intArr = new int[4];

 Initialization list
 ↓
 int[] intArr = new int[] { 10, 20, 30, 40 };
 ↑
 No connecting operator

9543.book Page 334 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 335

Explicit Initialization of Rectangular Arrays
To explicitly initialize a rectangular array:

• Each vector of initial values must be enclosed in curly braces.

• Each dimension must also be nested and enclosed in curly braces.

• In addition to the initial values, the initialization lists and components of each dimen-
sion must also be separated by commas.

For example, the following code shows the declaration of a two-dimensional array with an
initialization list. Figure 14-8 illustrates the layout in memory.

Figure 14-8. Initializing a rectangular array

Syntax Points for Initializing Rectangular Arrays
Rectangular arrays are initialized with nested, comma-separated initialization lists. The initial-
ization lists are nested in curly braces. This can sometimes be confusing, so to get the nesting,
grouping, and commas right, the following tips can be helpful:

• Commas are used as separators between all elements and groups.

• Commas are not placed between left curly braces.

• Commas are not placed before a right curly brace.

• Read the rank specifications from left to right, designating the last number as “ele-
ments” and all the others as “groups.”

 Initialization lists separated by commas
 ↓ ↓
 int[,] intArray2 = new int[,] { {10, 1}, {2, 10}, {11, 9} } ;

9543.book Page 335 Monday, December 10, 2007 2:22 PM

336 C H A P T E R 1 4 ■ A R R A Y S

For example, read the following declaration as “intArray has four groups of three groups
of two elements.”

Shortcut Syntax
When combining declaration, array creation, and initialization in a single statement, you
can omit the array-creation expression part of the syntax. This shortcut syntax is shown in
Figure 14-9.

Figure 14-9. Shortcut for array declaration, creation, and initialization

 Initialization lists, nested and separated by commas
 int[,,] intArray = new int[4,3,2] { ↓ ↓ ↓
 { {8, 6}, {5, 2}, {12, 9} },
 { {6, 4}, {13, 9}, {18, 4} },
 { {7, 2}, {1, 13}, {9, 3} },
 { {4, 6}, {3, 2}, {23, 8} }
 };

9543.book Page 336 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 337

Implicitly Typed Arrays
So far we’ve explicitly specified the array types at the beginnings of all our array declarations.
Starting with C# 3.0, however, like other local variables, your arrays can be implicitly typed.
What this means is the following:

• When initializing an array, you can let the compiler infer the array’s type from the type
of the initializers. This is allowed as long as all the initializers can be implicitly converted
to a single type.

• Just as with implicitly typed local variables, use the keyword var instead of the array type.

The following code shows explicit and implicit versions of three array declarations. The
first set is a one-dimensional array of ints. The second is a two-dimensional array of ints.
The third is an array of strings. Notice that in the declaration of implicitly typed intArr4 you
still need to include the rank specifier in the initialization.

 Explicit Explicit
 ↓ ↓
 int [] intArr1 = new int[] { 10, 20, 30, 40 };
 var intArr2 = new [] { 10, 20, 30, 40 };
 ↑ ↑
 Keyword Inferred
 int[,] intArr3 = new int[,] { { 10, 1 }, { 2, 10 }, { 11, 9 } };
 var intArr4 = new [,] { { 10, 1 }, { 2, 10 }, { 11, 9 } };
 ↑
 Rank specifier
 string[] sArr1 = new string[] { "life", "liberty", "pursuit of happiness" };
 var sArr2 = new [] { "life", "liberty", "pursuit of happiness" };

9543.book Page 337 Monday, December 10, 2007 2:22 PM

338 C H A P T E R 1 4 ■ A R R A Y S

Putting It All Together
The following code puts together all the pieces we’ve looked at so far. It creates, initializes, and
uses a rectangular array.

This code produces the following output:

Element [0,0] is 0
Element [0,1] is 1
Element [0,2] is 2
Element [1,0] is 10
Element [1,1] is 11
Element [1,2] is 12

 // Declare, create, and initialize an implicitly typed array.
 var arr = new int[,] {{0, 1, 2}, {10, 11, 12}};

 // Print the values.
 for(int i=0; i<2; i++)
 for(int j=0; j<3; j++)
 Console.WriteLine("Element [{0},{1}] is {2}", i, j, arr[i,j]);

9543.book Page 338 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 339

Jagged Arrays
A jagged array is an array of arrays. Unlike rectangular arrays, the sub-arrays of a jagged array
can have different numbers of elements.

For example, the following code declares a two-dimensional jagged array. The array’s lay-
out in memory is shown in Figure 14-10.

• The length of the first dimension is 3.

• The declaration can be read as “jagArr is an array of three arrays of ints.”

• Notice that the figure shows four array objects—one for the top-level array, and three
for the sub-arrays.

Figure 14-10. A jagged array is an array of arrays.

int[][] jagArr = new int[3][]; // Declare and create top-level array.
 ... // Declare and create sub-arrays.

9543.book Page 339 Monday, December 10, 2007 2:22 PM

340 C H A P T E R 1 4 ■ A R R A Y S

Declaring a Jagged Array
The declaration syntax for jagged arrays requires a separate set of square brackets for each
dimension. The number of sets of square brackets in the declaration of the array variable deter-
mines the rank of the array.

• A jagged array can be of any number of dimensions greater than one.

• As with rectangular arrays, dimension lengths cannot be included in the array type sec-
tion of the declaration.

Shortcut Instantiation
You can combine the jagged array declaration with the creation of the first-level array using an
array-creation expression, such as in the following declaration. The result is shown in Figure 14-11.

Figure 14-11. Shortcut first-level instantiation

You cannot instantiate more than the first-level array in the declaration statement.

Rank specifiers
 ↓
int[][] SomeArr; // Rank = 2
int[][][] OtherArr; // Rank = 3
 ↑ ↑
Array type Array name

 Three sub-arrays
 ↓
 int[][] jagArr = new int[3][];

 Allowed
 ↓
 int[][] jagArr = new int[3][4]; // Wrong! Compile error
 ↑
 Not allowed

9543.book Page 340 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 341

Instantiating a Jagged Array
Unlike other types of arrays, you cannot fully instantiate a jagged array in a single step. Since a
jagged array is an array of independent arrays—each array must be created separately. Instan-
tiating a full jagged array requires the following steps:

1. First, instantiate the top-level array.

2. Next, instantiate each sub-array separately, assigning the reference of the newly created
array to the appropriate element of its containing array.

For example, the following code shows the declaration, instantiation, and initialization
of a two-dimensional jagged array. Notice in the code that the reference to each sub-array is
assigned to an element in the top-level array. Steps 1 through 4 in the code correspond to the
numbered representations in Figure 14-12.

Figure 14-12. Creating a two-dimensional jagged array

 int[][] Arr = new int[3][]; // 1. Instantiate top level

 Arr[0] = new int[] {10, 20, 30}; // 2. Instantiate sub-array
 Arr[1] = new int[] {40, 50, 60, 70}; // 3. Instantiate sub-array
 Arr[2] = new int[] {80, 90, 100, 110, 120}; // 4. Instantiate sub-array

9543.book Page 341 Monday, December 10, 2007 2:22 PM

342 C H A P T E R 1 4 ■ A R R A Y S

Sub-Arrays in Jagged Arrays
Since the sub-arrays in a jagged array are themselves arrays, it is possible to have rectangular
arrays inside jagged arrays. For example, the following code creates a jagged array of three two-
dimensional rectangular arrays and initializes them with values. It then displays the values.

• The structure is illustrated in Figure 14-13.

• The code uses the GetLength(int n) method of arrays, inherited from System.Array, to
get the length of the specified dimension of the array.

Figure 14-13. Jagged array of three two-dimensional arrays

int[][,] Arr; // An array of 2-D arrays
Arr = new int[3][,]; // Instantiate an array of three 2-D arrays.

Arr[0] = new int[,] { { 10, 20 }, { 100, 200 } };
Arr[1] = new int[,] { { 30, 40, 50 }, { 300, 400, 500 } };
Arr[2] = new int[,] { { 60, 70, 80, 90 }, { 600, 700, 800, 900 } };

 ↓ Get length of dimension 0 of Arr
for (int i = 0; i < Arr.GetLength(0); i++)
{ ↓ Get length of dimension 0 of Arr[i]
 for (int j = 0; j < Arr[i].GetLength(0); j++)
 { Get length of dimension 1 of Arr[i] ↓
 for (int k = 0; k < Arr[i].GetLength(1); k++) {
 Console.WriteLine
 ("[{0}][{1},{2}] = {3}", i, j, k, Arr[i][j, k]);
 }
 Console.WriteLine("");
 }
 Console.WriteLine("");
}

9543.book Page 342 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 343

Comparing Rectangular and Jagged Arrays
The structure of rectangular and jagged arrays is significantly different. For example,
Figure 14-14 shows the structure of a rectangular three-by-three array, and a jagged array
of three one-dimensional arrays of length 3.

• Both arrays hold nine integers, but as you can see, their structures are quite different.

• The rectangular array has a single array object, while the jagged array has four array
objects.

Figure 14-14. Comparing the structure of rectangular and jagged arrays

One-dimensional arrays have specific instructions in the CIL that allow them to be
optimized for performance. Rectangular arrays do not have these instructions, and are not
optimized to the same level. Because of this, it can sometimes be more efficient to use jagged
arrays of one-dimensional arrays—which can be optimized—than rectangular arrays, which
cannot.

On the other hand, the programming complexity can be less for a rectangular array
because it can be treated as a single unit, rather than an array of arrays.

9543.book Page 343 Monday, December 10, 2007 2:22 PM

344 C H A P T E R 1 4 ■ A R R A Y S

The foreach Statement
The foreach statement allows you to sequentially access each element in an array. It’s actually
a more general construct in that it also works with other collection types as well—but this sec-
tion will only discuss its use with arrays. Chapter 20 covers its use with other collection types.

The important points of the foreach statement are the following:

• The iteration variable is a temporary, read-only variable of the same type as the ele-
ments of the array. The foreach statement uses the iteration variable to sequentially
represent each element in the array.

• The syntax of the foreach statement is shown here, where

– Type is the type of the elements of the array. You can explicitly supply its type or,
starting with C# 3.0, you can let it be implicitly typed and inferred by the compiler,
since the compiler knows the type of the array.

– Identifier is the name of the iteration variable.

– ArrayName is the name of the array to be processed.

– Statement is a simple statement or a block that is executed once for each element in
the array.

In the following text, I will sometimes use implicit typing and other times I will use explicit
typing so that you can see the exact type being used. But the forms are semantically equivalent.

 Explicitly typed iteration variable declaration
 ↓
foreach(Type Identifier in ArrayName)
 Statement
 Implicitly typed iteration variable declaration
 ↓
foreach(var Identifier in ArrayName)
 Statement

9543.book Page 344 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 345

The foreach statement works in the following way:

• It starts with the first element of the array and assigns that value to the iteration
variable.

• It then executes the body of the statement. Inside the body, you can use the iteration
variable as a read-only alias for the array element.

• After the body is executed, the foreach statement selects the next element in the array
and repeats the process.

In this way, it cycles through the array, allowing you to access each element one by one.
For example, the following code shows the use of a foreach statement with a one-dimensional
array of four integers:

• The WriteLine statement, which is the body of the foreach statement, is executed once
for each of the elements of the array.

• The first time through the loop, iteration variable item has the value of the first element
of the array. Each successive time, it has the value of the next element in the array.

int[] arr1 = {10, 11, 12, 13};
 Iteration variable declaration
 ↓ Iteration variable use
foreach(int item in arr1) ↓
 Console.WriteLine("Item Value: {0}", item);

9543.book Page 345 Monday, December 10, 2007 2:22 PM

346 C H A P T E R 1 4 ■ A R R A Y S

The Iteration Variable Is Read-Only
Since the value of the iteration variable is read-only, clearly, it cannot be changed. But this has
different effects on value type arrays and reference type arrays.

For value type arrays, this means that you cannot change the data of the array. For exam-
ple, in the following code, the attempt to change the data in the iteration variable produces a
compile-time error message:

For reference type arrays, you still cannot change the iteration variable, but the iteration
variable only holds the reference to the data, not the data itself. You can, therefore, change the
data through the iteration variable.

The following code creates an array of four MyClass objects and initializes them. In the first
foreach statement, the data in each of the objects is changed. In the second foreach statement,
the changed data is read from the objects.

This code produces the following output:

10
11
12
13

 int[] arr1 = {10, 11, 12, 13};

 foreach(int item in arr1)
 item++; // Compilation error. Changing variable value is not allowed.

 class MyClass
 {
 public int MyField = 0;
 }

 class Program {
 static void Main() {
 MyClass[] mcArray = new MyClass[4]; // Create array
 for (int i = 0; i < 4; i++)
 {
 mcArray[i] = new MyClass(); // Create class objects
 mcArray[i].MyField = i; // Set field
 }
 foreach (MyClass item in mcArray)
 item.MyField += 10; // Change the data.

 foreach (MyClass item in mcArray)
 Console.WriteLine("{0}", item.MyField); // Read the changed data.
 }
 }

9543.book Page 346 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 347

The foreach Statement with Multidimensional Arrays
In a multidimensional array, the elements are processed in the order in which the rightmost
index is incremented fastest. When the index has gone from 0 to length – 1, the next index to the
left is incremented, and the indexes to the right are reset to 0.

Example with a Rectangular Array

The following example shows the foreach statement used with a rectangular array:

The output is the following:

Element: 10, Current Total: 10
Element: 11, Current Total: 21
Element: 12, Current Total: 33
Element: 13, Current Total: 46

 class Program
 {
 static void Main()
 {
 int total = 0;
 int[,] arr1 = { {10, 11}, {12, 13} };

 foreach(var element in arr1)
 {
 total += element;
 Console.WriteLine
 ("Element: {0}, Current Total: {1}", element, total);
 }
 }
 }

9543.book Page 347 Monday, December 10, 2007 2:22 PM

348 C H A P T E R 1 4 ■ A R R A Y S

Example with a Jagged Array

Since jagged arrays are arrays of arrays, you must use separate foreach statements for each
dimension in the jagged array. The foreach statements must be nested properly to make sure
that each nested array is processed properly.

For example, in the following code, the first foreach statement cycles through the top-level
array—arr1—selecting the next sub-array to process. The inner foreach statement processes
the elements of that sub-array.

This code produces the following output:

Starting new array
 Item: 10, Current Total: 10
 Item: 11, Current Total: 21
Starting new array
 Item: 12, Current Total: 33
 Item: 13, Current Total: 46
 Item: 14, Current Total: 60

 class Program
 {
 static void Main()
 {
 int total = 0;
 int[][] arr1 = new int[2][];
 arr1[0] = new int[] { 10, 11 };
 arr1[1] = new int[] { 12, 13, 14 };

 foreach (int[] array in arr1) // Process the top level.
 {
 Console.WriteLine("Starting new array");
 foreach (int item in array) // Process the second level.
 {
 total += item;
 Console.WriteLine(" Item: {0}, Current Total: {1}", item, total);
 }
 }
 }
 }

9543.book Page 348 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 349

Array Covariance
Under certain conditions, you can assign an object to an array element even if the object is not
of the array’s base type. This property is called covariance. You can use covariance if

• The array is a reference type array.

• There is an implicit or explicit conversion between the type of the object you are assign-
ing and the array’s base type.

Since there is always an implicit conversion between a derived class and its base class, you
can always assign an object of a derived class to an array declared for the base class.

For example, the following code declares two classes, A and B, where class B derives from
class A. The last line shows covariance by assigning objects of type B to array elements of type A.
The memory layout for the code is shown in Figure 14-15.

Figure 14-15. Arrays showing covariance

■Note There is no covariance for value type arrays.

 class A { ... } // Base class
 class B : A { ... } // Derived class

 class Program {
 static void Main() {
 // Two arrays of type A[]
 A[] AArray1 = new A[3];
 A[] AArray2 = new A[3];

 // Normal--assigning objects of type A to an array of type A
 AArray1[0] = new A(); AArray1[1] = new A(); AArray1[2] = new A();

 // Covariant--assigning objects of type B to an array of type A
 AArray2[0] = new B(); AArray2[1] = new B(); AArray2[2] = new B();
 }
 }

9543.book Page 349 Monday, December 10, 2007 2:22 PM

350 C H A P T E R 1 4 ■ A R R A Y S

Useful Inherited Array Members
I mentioned earlier that C# arrays are derived from class System.Array. From that base class
they inherit a number of useful properties and methods. Some of the most useful ones are
listed in Table 14-1.

Table 14-1. Some Useful Members Inherited by Arrays

Member Type Lifetime Meaning

Rank Property Instance Gets the number of dimensions of the array

Length Property Instance Gets the total number of elements in all the dimen-
sions of the array

GetLength Method Instance Returns the length of a particular dimension of the array

Clear Method Static Sets a range of elements to 0 or null

Sort Method Static Sorts the elements in a one-dimensional array

BinarySearch Method Static Searches a one-dimensional array for a value, using
binary search

Clone Method Instance Performs a shallow copy of the array—copying only the ele-
ments, both for arrays of value types and reference types

IndexOf Method Static Returns the index of the first occurrence of a value in a
one-dimensional array

Reverse Method Static Reverses the order of the elements of a range of a one-
dimensional array

GetUpperBound Method Instance Gets the upper bound at the specified dimension

9543.book Page 350 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 351

For example, the following code uses some of these properties and methods:

This code produces the following output:

15 20 5 25 10
5 10 15 20 25
25 20 15 10 5

Rank = 1, Length = 5
GetLength(0) = 5
GetType() = System.Int32[]

 public static void PrintArray(int[] a)
 {
 foreach (var x in a)
 Console.Write("{0} ", x);
 Console.WriteLine("");
 }

 static void Main()
 {
 int[] arr = new int[] { 15, 20, 5, 25, 10 }; PrintArray(arr);
 Array.Sort(arr); PrintArray(arr);
 Array.Reverse(arr); PrintArray(arr);

 Console.WriteLine();
 Console.WriteLine("Rank = {0}, Length = {1}",arr.Rank, arr.Length);
 Console.WriteLine("GetLength(0) = {0}",arr.GetLength(0));
 Console.WriteLine("GetType() = {0}",arr.GetType());
 }

9543.book Page 351 Monday, December 10, 2007 2:22 PM

352 C H A P T E R 1 4 ■ A R R A Y S

The Clone Method
The Clone method performs a shallow copy of an array. This means that it only creates a clone
of the array itself. If it is a reference type array, it does not copy the objects referenced by the
elements. This has different results for value type arrays and reference type arrays.

• Cloning a value type array results in two independent arrays.

• Cloning a reference type array results in two arrays pointing at the same objects.

The Clone method returns a reference of type object, which must be cast to the array type.

For example, the following code shows an example of cloning a value type array, produc-
ing two independent arrays. Figure 14-16 illustrates the steps shown in the code.

Figure 14-16. Cloning a value type array produces two independent arrays.

 int[] intArr1 = { 1, 2, 3 };
 Array type Returns an object
 ↓ ↓
 int[] intArr2 = (int[]) intArr1.Clone();

 static void Main()
 {
 int[] intArr1 = { 1, 2, 3 }; // Step 1
 int[] intArr2 = (int[]) intArr1.Clone(); // Step 2

 intArr2[0] = 100; intArr2[1] = 200; intArr2[2] = 300; // Step 3
 }

9543.book Page 352 Monday, December 10, 2007 2:22 PM

C H A P T E R 1 4 ■ A R R A Y S 353

Cloning a reference type array results in two arrays pointing at the same objects. The fol-
lowing code shows an example. Figure 14-17 illustrates the steps shown in the code.

Figure 14-17. Cloning a reference type array produces two arrays referencing the same objects.

 class A
 {
 public int Value = 5;
 }

 class Program
 {
 static void Main()
 {
 A[] AArray1 = new A[3] { new A(), new A(), new A() }; // Step 1
 A[] AArray2 = (A[]) AArray1.Clone(); // Step 2

 AArray2[0].Value = 100;
 AArray2[1].Value = 200;
 AArray2[2].Value = 300; // Step 3
 }
 }

9543.book Page 353 Monday, December 10, 2007 2:22 PM

354 C H A P T E R 1 4 ■ A R R A Y S

Comparing Array Types
Table 14-2 summarizes some of the important similarities and differences between the three
types of arrays.

Table 14-2. Summary Comparing Array Types

Array Type
Array
Objects

Syntax

ShapeBrackets Commas

One-dimensional

• Has optimizing
instructions in CIL.

1 Single set No

Rectangular

• Multidimensional

• All sub-arrays in a
multidimensional
array must be the
same length.

1 Single set Yes

Jagged

• Multidimensional

• Sub-arrays can be of
different lengths.

Multiple Multiple
sets

No

9543.book Page 354 Monday, December 10, 2007 2:22 PM

355

■ ■ ■

C H A P T E R 1 5

Delegates

What Is a Delegate?
Declaring the Delegate Type
Creating the Delegate Object
Assigning Delegates
Combining Delegates
Adding Methods to Delegates
Removing Methods from a Delegate
Invoking a Delegate
Delegate Example
Invoking Delegates with Return Values
Invoking Delegates with Reference Parameters
Anonymous Methods
Lambda Expressions

9543.book Page 355 Wednesday, December 19, 2007 7:59 PM

356 C H A P T E R 1 5 ■ D E L E G A T E S

What Is a Delegate?
A delegate can be thought of as an object that contains an ordered list of methods with the same
signature and return type.

• The list of methods is called the invocation list.

• When a delegate is invoked, it calls each method in its invocation list.

Figure 15-1 represents a delegate with four methods in its invocation list.

Figure 15-1. A delegate as a list of methods

A delegate with a single method is similar to a function pointer in C++. Unlike function
pointers, however, delegates are object oriented and type-safe.

Methods in the Invocation List
Methods held by a delegate can be from any class or struct, as long as they match both the
delegate’s

• Return type

• Signature (including ref and out modifiers)

Methods in the invocation list can be either instance methods or static methods.

9543.book Page 356 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 357

Declaring the Delegate Type
Delegates are types, just as classes are types. And as with classes, a delegate type must be
declared before you can use it to create variables and objects of the type. The following exam-
ple code declares a delegate type.

• The delegate type declaration, as with all type declarations, does not need to be
declared inside a class.

The declaration of a delegate type looks much like the declaration of a method, in that it
has both a return type and a signature. The return type and signature specify the form of the
methods that the delegate will accept.

For example, the following code declares delegate type MyDel. The declaration specifies
that delegates of this type will accept only methods that return no value and have a single int
parameter. Figure 15-2 shows a representation of the delegate type on the left, and the delegate
object on the right.

Figure 15-2. Delegate type and object

The delegate type declaration differs from a method declaration in two ways. The delegate
type declaration

• Is prefaced with the keyword delegate

• Does not have a method body

Keyword Delegate type name
 ↓ ↓
delegate void MyDel (int x);

 Delegate type name
 ↓
 delegate void MyDel(int x);
 ↑ ↑
 Return type Signature

9543.book Page 357 Wednesday, December 19, 2007 7:59 PM

358 C H A P T E R 1 5 ■ D E L E G A T E S

Creating the Delegate Object
A delegate is a reference type, and therefore has both a reference and an object. After a delegate
type is declared, you can declare variables and create objects of the type. The following code
shows the declaration of a variable of a delegate type:

There are two ways you can create a delegate object. The first is to use an object-creation
expression with the new operator, as shown in the following code. The operand of the new oper-
ator consists of the following:

• The delegate type name.

• A set of parentheses containing the name of a method to use as the first member in the
invocation list. The method can be either an instance method or a static method.

You can also use the shortcut syntax, which consists of just the method specifier, as shown
in the following code. This code and the preceding code are equivalent. Using the shortcut syn-
tax works because there is an implicit conversion between a method name and a compatible
delegate type.

For example, the following code creates two delegate objects—one with an instance
method, and the other with a static method. Figure 15-3 shows the instantiations of the dele-
gates. This code assumes that there is a class object called myInstObj, which has a method
called MyM1 that returns no value and takes an int as a parameter. It also assumes that there is a
class called SClass, which has a static method OtherM2 with a return type and signature match-
ing those of delegate MyDel.

 Delegate type Variable
 ↓ ↓
 MyDel delVar;

 Instance method
 ↓
delVar = new MyDel(myInstObj.MyM1); // Create delegate and save ref.
dVar = new MyDel(SClass.OtherM2); // Create delegate and save ref.
 ↑
 Static method

 delVar = myInstObj.MyM1; // Create delegate and save reference.
 dVar = SClass.OtherM2; // Create delegate and save reference.

9543.book Page 358 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 359

Figure 15-3. Instantiating the delegates

Besides allocating the memory for the delegate, creating a delegate object also places the
first method in the delegate’s invocation list. You can also create the variable and instantiate
the object in the same statement, using the initializer syntax. For example, the following state-
ments also produce the same configuration shown in Figure 15-3.

The following statements use the shortcut syntax, but again produce the results shown in
Figure 15-3.

 delegate void MyDel(int x); // Declare delegate type.
 MyDel delVar, dVar; // Create two delegate variables.
 Instance method
 ↓
 delVar = new MyDel(myInstObj.MyM1); // Create delegate and save ref.
 dVar = new MyDel(SClass.OtherM2); // Create delegate and save ref.
 ↑
 Static method

 MyDel delVar = new MyDel(myInstObj.MyM1);
 MyDel dVar = new MyDel(SClass.OtherM2);

 MyDel delVar = myInstObj.MyM1;
 MyDel dVar = SClass.OtherM2;

9543.book Page 359 Wednesday, December 19, 2007 7:59 PM

360 C H A P T E R 1 5 ■ D E L E G A T E S

Assigning Delegates
Because delegates are reference types, you can change the reference contained in a delegate
variable by assigning to it. The old delegate object will be disposed of by the Garbage Collector
(GC) when it gets around to it.

For example, the following code sets and then changes the value of delVar. Figure 15-4
illustrates the code.

Figure 15-4. Assigning to a delegate variable

 MyDel delVar;
 delVar = myInstObj.MyM1; // Create and assign the delegate object.

 ...
 delVar = SClass.OtherM2; // Create and assign the new delegate object.

9543.book Page 360 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 361

Combining Delegates
All the delegates you’ve seen so far have had only a single method in their invocation lists. Del-
egates can be “combined” by using the addition operator. The result of the operation is the
creation of a new delegate, with an invocation list that is the concatenation of copies of the
invocation lists of the two operand delegates.

For example, the following code creates three delegates. The third delegate is created from
the combination of the first two.

Although the term combining delegates might give the impression that the operand dele-
gates are modified, they are not changed at all. In fact, delegates are immutable. After a delegate
object is created, it cannot be changed.

Figure 15-5 illustrates the results of the preceding code. Notice that the operand delegates
remain unchanged.

Figure 15-5. Combining delegates

 MyDel delA = myInstObj.MyM1;
 MyDel delB = SClass.OtherM2;

 MyDel delC = delA + delB; // Has combined invocation list

9543.book Page 361 Wednesday, December 19, 2007 7:59 PM

362 C H A P T E R 1 5 ■ D E L E G A T E S

Adding Methods to Delegates
Although you saw in the previous section that delegates are, in reality, immutable, C# provides
syntax for making it appear that you can add a method to a delegate—and it’s perfectly fine to
think of it that way. You can add a method, or another delegate, to a delegate by using the +=
operator.

For example, the following code “adds” two methods to the invocation list of the delegate.
The methods are added to the bottom of the invocation list. Figure 15-6 shows the result.

Figure 15-6. Result of adding methods to a delegate

What is actually happening, of course, is that when the += operator is used, a new delegate
is created, with an invocation list that is the combination of the delegate on the left plus the
method listed on the right.

 MyDel delVar = inst.MyM1; // Create and initialize.
 delVar += SCl.m3; // Add a method.
 delVar += X.Act; // Add a method.

9543.book Page 362 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 363

Removing Methods from a Delegate
You can also remove a method from a delegate, using the -= operator. The following code
shows the use of the operator. Figure 15-7 shows the result of this code when applied to the
delegate illustrated in Figure 15-6.

Figure 15-7. Result of removing a method from a delegate

As with adding a method to a delegate, the resulting delegate is actually a new delegate.
The new delegate is a copy of the old delegate—but without the reference to the method that
was removed.

The following are some things to remember when removing methods:

• If there are multiple entries for a method in the invocation list, the -= operator starts
searching at the end of the list and removes the first instance it finds of the matching
method.

• Attempting to delete a method that is not in the delegate has no effect.

• Attempting to invoke an empty delegate throws an exception.

• You can check whether a delegate’s invocation list is empty by comparing the delegate
to null. If the invocation list is empty, the delegate is null.

 delVar -= SCl.m3; // Remove the method from the delegate.

9543.book Page 363 Wednesday, December 19, 2007 7:59 PM

364 C H A P T E R 1 5 ■ D E L E G A T E S

Invoking a Delegate
You invoke a delegate by calling it, as if it were simply a method. The parameters used to invoke
the delegate are used to invoke each of the methods on the invocation list (unless one of the
parameters is an output parameter, which we’ll cover shortly).

For example, the delegate delVar, as shown in the following code, takes a single integer
input value. Invoking the delegate with a parameter causes it to invoke each of the members in
its invocation list with the same parameter value (55, in this case). The invocation is illustrated
in Figure 15-8.

Figure 15-8. When the delegate is invoked, it invokes each of the methods in its invocation list,
with the same parameters with which it was called.

A method can be in the invocation list more than once. If that is the case, then when the
delegate is invoked, the method will be called each time it is encountered in the list.

Delegate Example
The following code defines and uses a delegate with no parameters and no return value. Note
the following about the code:

• Class Test defines two print functions.

• Method Main creates an instance of the delegate and then adds three more methods.

• The program then invokes the delegate, which calls its methods. Before invoking the
delegate, however, it checks to make sure it’s not null.

 MyDel delVar = inst.MyM1;
 delVar += SCl.m3;
 delVar += X.Act;
 ...
 delVar(55); // Invoke the delegate.
 ...

9543.book Page 364 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 365

This code produces the following output:

Print1 -- instance
Print2 -- static
Print1 -- instance
Print2 -- static

// Define a delegate type with no return value and no parameters.
delegate void PrintFunction();

class Test
{
 public void Print1()
 { Console.WriteLine("Print1 -- instance"); }

 public static void Print2()
 { Console.WriteLine("Print2 -- static"); }
}

class Program
{
 static void Main()
 {
 Test t = new Test(); // Create a test class instance.
 PrintFunction pf; // Create a null delegate.

 pf = t.Print1; // Instantiate and initialize the delegate.

 // Add three more methods to the delegate.
 pf += Test.Print2;
 pf += t.Print1;
 pf += Test.Print2;
 // The delegate now contains four methods.

 if(null != pf) // Make sure the delegate has methods.
 pf(); // Invoke the delegate.
 else
 Console.WriteLine("Delegate is empty");
 }
}

9543.book Page 365 Wednesday, December 19, 2007 7:59 PM

366 C H A P T E R 1 5 ■ D E L E G A T E S

Invoking Delegates with Return Values
If a delegate has a return value and more than one method in its invocation list, the following
occurs:

• The value returned by the last method in the invocation list is the value returned from
the delegate invocation.

• The return values from all the other methods in the invocation list are ignored.

For example, the following code declares a delegate that returns an int value. Main creates an
object of the delegate and adds two additional methods. It then calls the delegate in the WriteLine
statement and prints its return value. Figure 15-9 shows a graphical representation of the code.

This code produces the following output:

Value: 12

 delegate int MyDel(); // Declare method with return value.
 class MyClass
 {
 int IntValue = 5;
 public int Add2() { IntValue += 2; return IntValue;}
 public int Add3() { IntValue += 3; return IntValue;}
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 MyDel mDel = mc.Add2; // Create and initialize the delegate.
 mDel += mc.Add3; // Add a method.
 mDel += mc.Add2; // Add a method.
 Console.WriteLine("Value: {0}", mDel ());
 } ↑
 } Invoke the delegate and use the return value.

9543.book Page 366 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 367

Figure 15-9. The return value of the last method executed is the value returned by the delegate.

9543.book Page 367 Wednesday, December 19, 2007 7:59 PM

368 C H A P T E R 1 5 ■ D E L E G A T E S

Invoking Delegates with Reference Parameters
If a delegate has a reference parameter, the value of the parameter can change upon return
from one or more of the methods in the invocation list.

• When calling the next method in the invocation list, the new value of the parameter—
not the initial value—is the one passed to the next method.

For example, the following code invokes a delegate with a reference parameter.
Figure 15-10 illustrates the code.

This code produces the following output:

Value: 12

 delegate void MyDel(ref int X);

 class MyClass
 {
 public void Add2(ref int x) { x += 2; }
 public void Add3(ref int x) { x += 3; }
 static void Main()
 {
 MyClass mc = new MyClass();

 MyDel mDel = mc.Add2;
 mDel += mc.Add3;
 mDel += mc.Add2;

 int x = 5;
 mDel(ref x);

 Console.WriteLine("Value: {0}", x);
 }
 }

9543.book Page 368 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 369

Figure 15-10. The value of a reference parameter can change between calls.

9543.book Page 369 Wednesday, December 19, 2007 7:59 PM

370 C H A P T E R 1 5 ■ D E L E G A T E S

Anonymous Methods
So far, you’ve seen that you can use either static methods or instance methods to instantiate a
delegate. In either case, the method itself can be called explicitly from other parts of the code,
and, of course, must be a member of some class or struct.

What if, however, the method is used only one time—to instantiate the delegate? In that case,
other than the syntactic requirement for creating the delegate, there is no real need for a separate,
named method. Anonymous methods allow you to dispense with the separate, named method.

• An anonymous method is a method that is declared inline, at the point of instantiating a
delegate.

For example, Figure 15-11 shows two versions of the same class. The version on the left
declares and uses a method named Add20. The version on the right uses an anonymous method
instead. The nonshaded code of both versions is identical.

Figure 15-11. Comparing a named method and an anonymous method

Both sets of code in Figure 15-11 produce the following output:

25
26

Using Anonymous Methods
You can use an anonymous method in the following places:

• As an initializer expression when declaring a delegate variable.

• On the right-hand side of an assignment statement when combining delegates.

• On the right-hand side of an assignment statement adding a delegate to an event.
Chapter 16 covers events.

9543.book Page 370 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 371

Syntax of Anonymous Methods
The syntax of an anonymous method expression includes the following components:

• The type keyword delegate

• The parameter list, which can be omitted if the statement block doesn’t use any
parameters

• The statement block, which contains the code of the anonymous method

Return Type

An anonymous method does not explicitly declare a return type. The behavior of the imple-
mentation code itself, however, must match the delegate’s return type by returning a value of
that type. If the delegate has a return type of void, then the anonymous method code cannot
return a value.

For example, in the following code, the delegate’s return type is int. The implementation
code of the anonymous method must therefore return an int on all pathways through the code.

 Parameter
 Keyword list Statement block
 ↓ ↓ ↓
delegate (Parameters) { ImplementationCode }

 Return type of delegate type
 ↓
 delegate int OtherDel(int InParam);

 static void Main()1
 {
 OtherDel del = delegate(int x)
 {
 return x + 20 ; // Returns an int
 };
 ...
 }

9543.book Page 371 Wednesday, December 19, 2007 7:59 PM

372 C H A P T E R 1 5 ■ D E L E G A T E S

Parameters

Except in the case of array parameters, the parameter list of an anonymous method must
match that of the delegate in the following three characteristics:

• Number of parameters

• Types of the parameters

• Modifiers

You can simplify the parameter list of an anonymous method by leaving the parentheses
empty or omitting them altogether, but only if both of the following are true:

• The delegate’s parameter list does not contain any out parameters.

• The anonymous method does not use any parameters.

For example, the following code declares a delegate that does not have any out parameters
and an anonymous method that does not use any parameters. Since both conditions are met,
you can omit the parameter list from the anonymous method.

params Parameters

If the delegate declaration’s parameter list contains a params parameter, then the params
keyword is omitted from the parameter list of the anonymous method. For example, in the
following code

• The delegate type declaration specifies the last parameter as a params type parameter.

• The anonymous method parameter list, however, must omit the params keyword.

 delegate void SomeDel (int X); // Declare the delegate type.

 SomeDel SDel = delegate // Parameter list omitted
 {
 PrintMessage();
 Cleanup();
 };

 params keyword used in delegate type declaration
 ↓
delegate void SomeDel(int X, params int[] Y);

 params keyword omitted in matching anonymous method
 ↓
SomeDel mDel = delegate (int X, int[] Y)
 {
 ...
 };

9543.book Page 372 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 373

Scope of Variables and Parameters
The scopes of parameters and local variables declared inside an anonymous method are lim-
ited to the body of the implementation code, as illustrated in Figure 15-12.

For example, the following anonymous method defines parameter y and local variable z.
After the close of the body of the anonymous method, y and z are no longer in scope. The last
line of the code would produce a compile error.

Figure 15-12. Scope of variables and parameters

Outer Variables

Unlike the named methods of a delegate, anonymous methods have access to the local vari-
ables and environment of the scope surrounding them.

• Variables from the surrounding scope are called outer variables.

• An outer variable used in the implementation code of an anonymous method is said to
be captured by the method.

For example, the code in Figure 15-13 shows variable x defined outside the anonymous
method. The code in the method, however, has access to x and can print its value.

Figure 15-13. Using an outer variable

9543.book Page 373 Wednesday, December 19, 2007 7:59 PM

374 C H A P T E R 1 5 ■ D E L E G A T E S

Extension of Captured Variable’s Lifetime

A captured outer variable remains alive as long as its capturing method is part of the delegate,
even if the variable would have normally gone out of scope.

For example, the code in Figure 15-14 illustrates the extension of a captured variable’s
lifetime.

• Local variable x is declared and initialized inside a block.

• Delegate mDel is then instantiated, using an anonymous method that captures outer
variable x.

• When the block is closed, x goes out of scope.

• If the WriteLine statement following the close of the block were to be uncommented, it
would cause a compile error, because it references x, which is now out of scope.

• The anonymous method inside delegate mDel, however, maintains x in its environment
and prints its value when mDel is invoked.

Figure 15-14. Variable captured in an anonymous method

The code in the figure produces the following output:

Value of x: 5

9543.book Page 374 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 375

Lambda Expressions
C# 2.0 introduced anonymous methods, which allowed you to include short bits of inline code
when creating or adding to delegates. The syntax for anonymous methods, however, is some-
what verbose and requires information that the compiler itself already knows. Rather than
requiring you to include this redundant information, C# 3.0 introduces lambda expressions,
which pare down the syntax of anonymous methods. You’ll probably want to use lambda
expressions instead of anonymous methods. In fact, if lambda expressions had been intro-
duced first, there never would have been anonymous methods.

In the anonymous method syntax, the delegate keyword is redundant because the com-
piler can already see that you’re assigning the method to a delegate. You can easily transform
an anonymous method into a lambda expression by doing the following:

• Deleting the delegate keyword.

• Placing the lambda operator, =>, between the parameter list and the body of the anony-
mous method. The lambda operator is read as “goes to.”

The following code shows this transformation. The first line shows an anonymous method
being assigned to variable del. The second line shows the same anonymous method after hav-
ing been transformed into a lambda expression, being assigned to variable le1.

■Note The term lambda expression comes from the lambda calculus, which was developed in the 1920s
and ’30s by mathematician Alonzo Church and others. The lambda calculus is a system for representing func-
tions and uses the Greek letter lambda (λ) to represent a nameless function. More recently, functional
programming languages such as Lisp and its dialects use the term to represent expressions that can be used
to directly describe the definition of a function, rather than using a name for it.

 MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method
 MyDel le1 = (int x) => { return x + 1; } ; // Lambda expression

9543.book Page 375 Wednesday, December 19, 2007 7:59 PM

376 C H A P T E R 1 5 ■ D E L E G A T E S

This simple transformation is less verbose and looks cleaner, but it only saves you six char-
acters. There’s more, however, that the compiler can infer, allowing you to simplify the lambda
expression further, as shown in the following code.

• From the delegate’s declaration, the compiler also knows the types of the delegate’s
parameters, and so the lambda expression allows you to leave out the parameter types,
as shown in the assignment to le2.

– Parameters listed with their types are called explicitly typed.

– Those listed without their types are called implicitly typed.

• If there’s only a single, implicitly typed parameter, you can leave off the parentheses
surrounding it, as shown in the assignment to le3.

• Finally, lambda expressions allow the body of the expression to be either a statement
block or an expression. If the statement block contains a single return statement, you
can replace the statement block with just the expression that follows the return key-
word, as shown in the assignment to le4.

The final form of the lambda expression has about one fourth the characters of the original
anonymous method, and is much cleaner and more understandable.

MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method
MyDel le1 = (int x) => { return x + 1; } ; // Lambda expression
MyDel le2 = (x) => { return x + 1; } ; // Lambda expression
MyDel le3 = x => { return x + 1; } ; // Lambda expression
MyDel le4 = x => x + 1 ; // Lambda expression

9543.book Page 376 Wednesday, December 19, 2007 7:59 PM

C H A P T E R 1 5 ■ D E L E G A T E S 377

The following code shows the full transformation. The first line of Main shows an anonymous
method being assigned to variable del. The second line shows the same anonymous method
after having been transformed into a lambda expression, being assigned to variable le1.

Some important points about lambda expression parameter lists are the following:

• The parameters in the parameter list of a lambda expression must match that of the del-
egate in number, type, and position.

• The parameters in the parameter list of an expression do not have to include the type
(i.e., implicitly typed) unless the delegate has either ref or out parameters—in which
case the types are required (i.e., explicitly typed).

• If there is only a single parameter, and it is implicitly typed, the surrounding parenthe-
ses can be omitted. Otherwise they are required.

• If there are no parameters, you must use an empty set of parentheses.

Figure 15-15 shows the syntax for lambda expressions.

Figure 15-15. The syntax for lambda expressions consists of the lambda operator with the
parameter section on the left and the lambda body on the right.

 delegate double MyDel(int par);

 static void Main()
 {
 MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method

 MyDel le1 = (int x) => { return x + 1; } ; // Lambda expression
 MyDel le2 = (x) => { return x + 1; } ;
 MyDel le3 = x => { return x + 1; } ;
 MyDel le4 = x => x + 1 ;

 Console.WriteLine("{0}", del (12));
 Console.WriteLine("{0}", le1 (12)); Console.WriteLine("{0}", le2 (12));
 Console.WriteLine("{0}", le3 (12)); Console.WriteLine("{0}", le4 (12));
 }

9543.book Page 377 Wednesday, December 19, 2007 7:59 PM

9543.book Page 378 Wednesday, December 19, 2007 7:59 PM

379

■ ■ ■

C H A P T E R 1 6

Events

Events Are Like Delegates
Overview of Source Code Components
Declaring an Event
Raising an Event
Subscribing to an Event
Standard Event Usage
The MyTimerClass Code
Event Accessors

9543.book Page 379 Thursday, December 27, 2007 8:34 PM

380 C H A P T E R 1 6 ■ E V E N T S

Events Are Like Delegates
The preceding chapter covered delegates. Many aspects of events are similar to those of
delegates. In fact, an event is like a simpler delegate that is specialized for a particular use.
Figure 16-1 illustrates that, like a delegate, an event has methods registered with it, and invokes
those methods when it is invoked.

The following are some important terms related to events:

• Raising an event: The term for invoking or firing an event. When an event is raised, all
the methods registered with it are invoked—in order.

• Publisher: A class or struct that makes an event available to other classes or structs for
their use.

• Subscriber: A class or struct that registers methods with a publisher.

• Event handler: A method that is registered with an event. It can be declared in the same
class or struct as the event, or in a different class or struct.

Figure 16-1. Publishers and subscribers

9543.book Page 380 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 381

An Event Has a Private Delegate
There’s good reason for the similarities in the behaviors of delegates and events. An event con-
tains a private delegate, as illustrated in Figure 16-2. The important things to know about an
event’s private delegate are the following:

• An event gives structured access to its privately controlled delegate.

• Unlike the many operations available with a delegate, with an event, you can only add,
remove, and invoke event handlers.

• When an event is raised, it invokes the delegate, which sequentially calls the methods in
the invocation list.

Notice in Figure 16-2 that only the += and -= operators are sticking out to the left of the
event. This is because they are the only operations allowed on an event.

Figure 16-2. An event as an encapsulated delegate

Figure 16-3 illustrates the runtime view of a publisher class with an event called Elapsed.
ClassA and ClassB, on the right, each have an event handler registered with Elapsed. Inside the
event you can see the delegate referencing the two event handlers. Besides the event, the pub-
lisher also contains the code that raises the event.

Figure 16-3. Structure and terminology of a class with a timer event

9543.book Page 381 Thursday, December 27, 2007 8:34 PM

382 C H A P T E R 1 6 ■ E V E N T S

Overview of Source Code Components
There are five components of code that need to be in place to use events. I will cover each of
them in the following sections, and they are illustrated in Figure 16-4. These components are
the following:

• Delegate type declaration: The event and the event handlers must have a common sig-
nature and return type, which is described by the delegate type declaration.

• Event handler declarations: These are the declarations in the subscriber classes of the
methods (event handlers) to be executed when the event is raised. These do not have to
be separate methods. They can be anonymous methods or lambda expressions.

• Event declaration: This is the declaration in the publisher class of the event that holds
and invokes the event handlers.

• Event registration: This is the code that connects the event handlers to the event.

• Code that raises the event: This is the code in the publisher that calls the event, causing
it to invoke its event handlers.

Figure 16-4. The five source code components of using an event

9543.book Page 382 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 383

Declaring an Event
The publisher must provide the event and the code to raise the event.

Creating an event is simple—it requires only a delegate type and a name. The syntax for
an event declaration is shown in the following code, which declares an event called Elapsed.
Notice the following about event Elapsed:

• It is declared inside a class called MyTimerClass.

• It accepts event handlers with the return type and signature matching the delegate type
EventHandler.

• It is declared public so that other classes and structs can register event handlers with it.

You can declare more than one event in a declaration statement by using a comma-
separated list. For example, the following statement declares three events.

You can also make events static, by including the static keyword, as shown in the follow-
ing declaration:

class MyTimerClass
{ Keyword Name of event
 ↓ ↓
 public event EventHandler Elapsed;
 ↑
 Delegate type

 public event EventHandler MyEvent1, MyEvent2, OtherEvent;
 ↑
 Three events

 public static event EventHandler Elapsed;
 ↑
 Keyword

9543.book Page 383 Thursday, December 27, 2007 8:34 PM

384 C H A P T E R 1 6 ■ E V E N T S

An Event Is a Member
A common error is to think of an event as a type, which it is not. An event is a member, and there
are several important ramifications to this:

• Because a member is not a type, you do not use an object-creation expression (a new
expression) to create its object.

• Because an event is a member

– It must be declared in a class or struct, with the other members.

– You cannot declare an event in a block of executable code.

• An event member is implicitly and automatically initialized to null with the other
members.

The Delegate Type and EventHandler
An event declaration requires the name of a delegate type. You can either declare one or use one
that already exists. If you declare a delegate type, it must specify the signature and return type
of the methods that will be stored by the event.

A better idea is to use the predefined delegate type used by the .NET BCL and designated
as the standard for use with events. You are strongly encouraged to use it. It is the EventHandler
delegate, and its declaration is shown in the following code. Delegate EventHandler is covered
in more detail later in this chapter.

 public delegate void EventHandler(object sender, EventArgs e);

9543.book Page 384 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 385

Raising an Event
The event member itself just holds the event handlers that need to be invoked. Nothing hap-
pens with them unless the event is raised. You need to make sure there is code to do just that,
at the appropriate times.

For example, the following code raises event Elapsed. Notice the following about the code:

• Before raising the event, it is compared to null, to see whether it contains any event
handlers. If the event is null, it is empty.

• Raising the event itself is like invoking a function.

– Use the name of the event, followed by the parameter list enclosed in parentheses.

– The parameter list must match the delegate type of the event.

Putting together the event declaration and the code to raise the event gives the following
class declaration for the publisher. The code contains two members: the event, and a method
called OnOneSecond, which raises the event.

For now, I’ll let method OnOneSecond be somehow, mysteriously, called once every second.
Later in the chapter I’ll show you how to make this happen. But for now, remember these
important points:

• The publisher class has an event as a member.

• The class contains the code to raise the event.

if (Elapsed != null) // Make sure there are methods to execute.
 Elapsed(source, args); // Raise the event.
 ↑ ↑
 Event name Parameter list

 public class MyTimerClass
 {
 public event EventHandler Elapsed; // Declare the event.

 private void OnOneSecond(object source, EventArgs args)
 {
 if (Elapsed != null) // Make sure there are methods to execute.
 Elapsed(source, args);
 } ↑
 Raise the event.

 // The following code makes sure that method OnOneSecond is called every
 // 1,000 milliseconds.
 ...
 }

9543.book Page 385 Thursday, December 27, 2007 8:34 PM

386 C H A P T E R 1 6 ■ E V E N T S

Subscribing to an Event
To add an event handler to an event, the handler must have the same return type and signature
as the event’s delegate.

• Use the += operator to add an event handler to an event, as shown in the following code.

• The method can be any of the following:

– An instance method

– A static method

– An anonymous method

– A lambda expression

For example, the following code adds three methods to event Elapsed. The first is an
instance method using the method form. The second is a static method using the method
form. The third is an instance method using the delegate form.

Just as with delegates, you can use anonymous methods and lambda expressions to add
event handlers. For example, the following code first uses a lambda expression and then an
anonymous method.

 Class Instance method
 ↓ ↓
 mc.Elapsed += ca.TimerHandlerA; // Method reference form
 mc.Elapsed += ClassB.TimerHandlerB; // Method reference form
 ↑ ↑
 Event member Static method
 mc.Elapsed += new EventHandler(cc.TimerHandlerC); // Delegate form

 mc.Elapsed += (source, args) => // Lambda expression
 {
 Console.WriteLine("Lambda expression.");
 };

 mc.Elapsed += delegate(object source, EventArgs args) // Anonymous method
 {
 Console.WriteLine("Anonymous method.");
 };

9543.book Page 386 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 387

The following program uses the MyTimerClass class declared in the previous section. The
code performs the following:

• It registers two event handlers from two different class instances.

• After registering the event handlers, it sleeps for 2 seconds. During that time, the timer
class raises the event two times, and both event handlers are executed each time.

When supplied with the code for MyTimerClass, this code produces the following output:

Class A handler called
Class B handler called
Class A handler called
Class B handler called

 public class MyTimerClass { ... }

 class ClassA
 {
 public void TimerHandlerA(object obj, EventArgs e) // Event handler
 {
 Console.WriteLine("Class A handler called");
 }
 }

 class ClassB
 {
 public static void TimerHandlerB(object obj, EventArgs e) // Static
 {
 Console.WriteLine("Class B handler called");
 }
 }

 class Program
 {
 static void Main()
 {
 ClassA ca = new ClassA(); // Create the class object.
 MyTimerClass mc = new MyTimerClass(); // Create the timer object.

 mc.Elapsed += ca.TimerHandlerA; // Add handler A -- instance.
 mc.Elapsed += ClassB.TimerHandlerB; // Add handler B -- static.

 Thread.Sleep(2250);
 }
 }

9543.book Page 387 Thursday, December 27, 2007 8:34 PM

388 C H A P T E R 1 6 ■ E V E N T S

Removing Event Handlers
You can remove an event handler from an event by using the -= operator, as shown here:

For example, the following code removes the event handler for ClassB after the first two
times the event is raised, and then lets the program run for another 2 seconds.

This code produces the following output. The first four lines are the result of both handlers
being called twice, in the first 2 seconds. After the handler for ClassB is removed, only the han-
dler for the instance of ClassA is called, during the last 2 seconds.

Class A handler called
Class B handler called
Class A handler called
Class B handler called
Class B event handler removed
Class A handler called
Class A handler called

 mc.Elapsed -= ca.TimerHandlerA; // Remove handler A.

 ...
 mc.Elapsed += ca.TimerHandlerA; // Add instance handler A.
 mc.Elapsed += ClassB.TimerHandlerB; // Add static handler B.

 Thread.Sleep(2250); // Sleep more than 2 seconds.

 mc.Elapsed -= ClassB.TimerHandlerB; // Remove static handler B.
 Console.WriteLine("Class B event handler removed");

 Thread.Sleep(2250); // Sleep more than 2 seconds.

9543.book Page 388 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 389

Standard Event Usage
GUI programming is event driven, which means that while the program is running, it can be
interrupted at any time by events such as button clicks, key presses, or system timers. When
this happens, the program needs to handle the event and then continue on its course.

Clearly, this asynchronous handling of program events is the perfect situation to use C#
events. Windows GUI programming uses events so extensively that there is a standard .NET
Framework pattern for using them, which you are strongly encouraged to follow.

The foundation of the standard pattern for event usage is the EventHandler delegate type,
which is declared in the System namespace. The declaration of the EventHandler delegate
type is shown in the following code.

• The first parameter is meant to hold a reference to the object that raised the event. It is
of type object and can, therefore, match any instance of any type.

• The second parameter is meant to hold state information of whatever type is appropri-
ate for the application.

• The return type is void.

Using the EventArgs Class
The second parameter in the EventHandler delegate type is an object of class EventArgs, which
is declared in the System namespace. You might be tempted to think that, since the second
parameter is meant for passing data, an EventArgs class object would be able to store data of
some sort. You would be wrong.

• The EventArgs class is designed to carry no data. It is used for event handlers that do not
need to pass data—and is generally ignored by them.

• If you want to pass data, you must declare a class derived from EventArgs, with the
appropriate fields to hold the data you want to pass.

Even though the EventArgs class does not actually pass data, it is an important part of the
pattern of using the EventHandler delegate. Class object and class EventArgs are the base classes
for whatever actual types are used as the parameters. This allows EventHandler to provide a sig-
nature that is the lowest common denominator for all events and event handlers, allowing them
to have exactly two parameters, rather than having different signatures for each case.

 public delegate void EventHandler(object sender, EventArgs e);

9543.book Page 389 Thursday, December 27, 2007 8:34 PM

390 C H A P T E R 1 6 ■ E V E N T S

Passing Data by Extending EventArgs
To pass data in the second parameter of your event handler and adhere to the standard con-
ventions, you need to declare a custom class derived from EventArgs that can store the data
you need passed. The name of the class should end in EventArgs. For example, the following
code declares a custom class that can store a string in a field called Message.

 Custom class name Base class
 ↓ ↓
 public class MyTCEventArgs: EventArgs
 {
 public string Message; // Stores a message
 public MyTCEventArgs(string s) // The constructor sets the message.
 {
 Message = s;
 }
 }s

9543.book Page 390 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 391

Using the Custom Delegate
Now that you have a custom class for passing data in the second parameter of your event
handlers, you need a delegate type that uses the new custom class. There are two ways you
can do this:

• The first way is to use a nongeneric delegate. To do this, do the following:

– Create a new custom delegate using your custom class type, as shown in the
following code.

– Use the new delegate name throughout the four other sections of the event code.

• The second way was introduced with C# 2.0, and uses the generic delegate EventHandler<>.
C# generics are covered in Chapter 19. To use the generic delegate, do the following, as
shown in the following code:

– Place the name of the custom class between the angle brackets.

– Use the entire string wherever you would have used the name of your custom
delegate type. For example, this is what the event declaration would look like:

Use the custom class and the custom delegate, either nongeneric or generic, in the other
four sections of code dealing with the event.

For example, the following code updates the MyTimerClass code to use a custom EventArgs
class called MyTCEventArgs and the generic EventHandler<> delegate.

 Custom delegate name Custom class
 ↓ ↓
public delegate void MyTCEventHandler(object sender, MyTCEventArgs e);

 Generic delegate using custom class
 ↓
public event EventHandler<MyTCEventArgs> Elapsed;
 ↑
 Event name

9543.book Page 391 Thursday, December 27, 2007 8:34 PM

392 C H A P T E R 1 6 ■ E V E N T S

 public class MyTCEventArgs: EventArgs
 {
 public string Message;
 Declaration of custom class
 public MyTCEventArgs(string s) {
 Message = s;
 }
 }

 public class MyTimerClass Generic delegate
 { ↓
 public event EventHandler<MyTCEventArgs> Elapsed; // Event declaration

 private void OnOneSecond(object obj, EventArgs e)
 {
 if (Elapsed != null)
 {
 MyTCEventArgs mtcea
 new MyTCEventArgs("Message from OnOneSecond"); Code to raise event
 Elapsed(obj, mtcea);
 }
 }
 ...
 }

 class ClassA
 {
 public void TimerHandlerA(object obj, MyTCEventArgs e)
 {
 Console.WriteLine("Class A Message: {0}", e.Message); Event handler
 }
 }

Continued

9543.book Page 392 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 393

This code produces the following output:

Class A Message: Message from OnOneSecond
Class A Message: Message from OnOneSecond
Class A Message: Message from OnOneSecond

 class Program
 {
 static void Main()
 {
 ClassA ca = new ClassA();
 MyTimerClass mc = new MyTimerClass();

 mc.Elapsed += // Register handler.
 new EventHandler<MyTCEventArgs>(ca.TimerHandlerA);

 Thread.Sleep(3250);
 }
 }

9543.book Page 393 Thursday, December 27, 2007 8:34 PM

394 C H A P T E R 1 6 ■ E V E N T S

The MyTimerClass Code
Now that you’ve seen all five components of code that need to be implemented to use an event,
I can show you the full MyTimerClass class that the code has been using.

Most things about the class have been pretty clear—it has an event called Elapsed that can
be subscribed to, and a method called OnOneSecond that is called every second and raises the
event. The one question remaining about it is, “What causes OnOneSecond to be called every
second?”

The answer is that OnOneSecond is itself an event handler that is subscribed to an event in a
class called Timer, in the System.Timers namespace. The event in Timer is raised every 1,000
milliseconds and calls event handler OnOneSecond, which in turn raises event Elapsed in class
MyTimerClass. Figure 16-5 shows the structure of the code.

Figure 16-5. The code structure of MyTimerClass

The Timer class is a useful tool, so I’ll mention a little more about it. First, it has a public
event called Elapsed. If that sounds familiar, it’s because I named the event in MyTimerClass
after it. The names have no other connection than that. I could have named the event anything.

One of the properties of Timer is Interval, which is of type double, and specifies the num-
ber of milliseconds between raising the event. The other property the code uses is Enabled,
which is of type bool, and starts and stops the timer.

9543.book Page 394 Thursday, December 27, 2007 8:34 PM

C H A P T E R 1 6 ■ E V E N T S 395

The actual code is the following. The only things I haven’t shown previously are the private
timer field, called MyPrivateTimer, and the constructor for the class. The constructor does the
work of setting up the internal timer and attaching it to event handler OnOneSecond.

 public class MyTimerClass
 {
 public event EventHandler Elapsed;

 private void OnOneSecond(object obj, EventArgs e)
 {
 if (Elapsed != null)
 Elapsed(obj, e);
 }

 //------------
 private System.Timers.Timer MyPrivateTimer; // Private timer

 public MyTimerClass() // Constructor
 {
 MyPrivateTimer = new System.Timers.Timer(); // Create the private timer.

 // The following statement sets our OnOneSecond method above as an event
 // handler to the Elapsed event of class Timer. It is completely
 // unrelated to our event Elapsed, declared above.
 MyPrivateTimer.Elapsed += OnOneSecond; // Attach our event handler.

 // Property Interval is of type double, and specifies the number of
 // milliseconds between when its event is raised.
 MyPrivateTimer.Interval = 1000; // 1 second interval.

 // Property Enabled is of type bool, and turns the timer on and off.
 MyPrivateTimer.Enabled = true; // Start the timer.
 }
 }

9543.book Page 395 Thursday, December 27, 2007 8:34 PM

396 C H A P T E R 1 6 ■ E V E N T S

Event Accessors
The last topic to cover in this chapter is event accessors. I mentioned earlier that the += and -=
operators were the only operators allowed for an event. These operators have the well-defined
behavior that you have seen so far in this chapter.

You can, however, change these operators’ behavior and have the event perform what-
ever custom code you like when they are used. You can do this by defining event accessors
for the event.

• There are two accessors: add and remove.

• The declaration of an event with accessors looks similar to the declaration of a property.

The following example shows the form of an event declaration with accessors. Both acces-
sors have an implicit value parameter called value, which takes a reference to either an
instance method or a static method.

When event accessors are declared, the event does not contain an embedded delegate
object. You must implement your own storage mechanism for storing and removing the meth-
ods registered with the event.

The event accessors act as void methods, meaning that they cannot use return statements
that return a value.

 public event EventHandler Elapsed
 {
 add
 {
 ... // Code to implement the =+ operator
 }
 remove
 {
 ... // Code to implement the -= operator
 }
 }

9543.book Page 396 Thursday, December 27, 2007 8:34 PM

397

■ ■ ■

C H A P T E R 1 7

Interfaces

What Is an Interface?
Declaring an Interface
Implementing an Interface
An Interface Is a Reference Type
Using the as Operator with Interfaces
Implementing Multiple Interfaces
Implementing Interfaces with Duplicate Members
References to Multiple Interfaces
An Inherited Member As an Implementation
Explicit Interface Member Implementations
Interfaces Can Inherit Interfaces

9543ch17.fm Page 397 Tuesday, December 18, 2007 6:37 PM

398 C H A P T E R 1 7 ■ I N T E R F A C E S

What Is an Interface?
An interface is a reference type that represents a set of function members, but does not imple-
ment them. Other types—classes or structs—can implement interfaces.

To get a feeling for interfaces, I’ll start by showing one that is already defined. The BCL
declares an interface called IComparable, the declaration of which is shown in the following
code. Notice that the interface body contains the declaration of a single method, CompareTo,
which takes a single parameter of type object. Although the method has a name, parameters,
and a return type, there is no implementation. Instead, the implementation is replaced by a
semicolon.

Figure 17-1 illustrates interface IComparable. The CompareTo method is shown in gray to
illustrate that it doesn’t contain an implementation.

Figure 17-1. Representation of interface IComparable

Although the interface declaration does not provide an implementation for method
CompareTo, the .NET documentation of interface IComparable describes what the method should
do, in case you create a class or struct that implements the interface. It says that when method
CompareTo is called, it should return one of the following values:

• A negative value, if the current object is less than the parameter object.

• A positive value, if the current object is greater than the parameter object.

• Zero, if the two objects are considered equal in the comparison.

 Keyword Interface name
 ↓ ↓
 public interface IComparable
 {
 int CompareTo(object obj);
 } ↑
 Semicolon in place of method implementation

9543ch17.fm Page 398 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 399

Example Using the IComparable Interface
To understand what this means and why it’s useful, let’s start by taking a look at the following
code, which takes an unsorted array of integers and sorts them in ascending order.

• The first line creates an array of five integers that are in no particular order.

• The second line uses the static Sort method of the Array class to sort the elements.

• The foreach loop prints them out, showing that the integers are now in ascending order.

This code produces the following output:

2 4 9 16 20

The Sort method works great on an array of ints, but what would happen if you were to try
to use it on one of your own classes, as shown here?

When you try to run this code, it raises an exception. So why did it work for an array of ints,
but not for an array of MyClass objects?

The reason Sort doesn’t work with the array of user-defined objects is that it doesn’t know
how to compare user-defined objects and how to rank their order. It has to rely on the objects
in the array to implement interface IComparable. When Sort is running, it compares one ele-
ment of the array to another by calling one element’s CompareTo method and passing in as a
parameter a reference to the other element.

The int type implements IComparable, but MyClass does not, so when Sort tries to call the
nonexistent CompareTo method of MyClass, it raises an exception.

var myInt = new [] { 20, 4, 16, 9, 2 }; // Create an array of ints.

Array.Sort(myInt); // Sort elements by magnitude.

foreach (var i in myInt) // Print them out.
 Console.Write("{0} ", i);

 class MyClass // Declare a simple class.
 {
 public int TheValue;
 }
 ...
 MyClass[] mc = new MyClass[5]; // Create an array of five elements.
 ... // Create and initialize the elements.

 Array.Sort(mc); // Try to use Sort--raises exception

9543ch17.fm Page 399 Tuesday, December 18, 2007 6:37 PM

400 C H A P T E R 1 7 ■ I N T E R F A C E S

You can make the Sort method work with objects of type MyClass by making the class
implement IComparable. To implement an interface, a class or struct must do two things:

• It must list the interface name in its base class list.

• It must provide an implementation for each of the interface’s members.

For example, the following code updates MyClass to implement interface IComparable.
Notice the following about the code:

• The name of the interface is listed in the base class list of the class declaration.

• The class implements a method called CompareTo, whose parameter type and return
type match those of the interface member.

• Method CompareTo is implemented following the definition given in the interface’s doc-
umentation. That is, it returns a negative 1, positive 1, or 0, depending on its value
compared to the object passed into the method.

Figure 17-2 illustrates the updated class. The arrow from the grayed interface method to
the class method indicates that the interface method does not contain code, but is imple-
mented by the class-level method.

Figure 17-2. Implementing IComparable in MyClass

 Interface name in base class list
 ↓
class MyClass : IComparable
{
 public int TheValue;

 public int CompareTo(object obj) // Implementation of interface method
 {
 MyClass mc = (MyClass)obj;
 if (this.TheValue < mc.TheValue) return -1;
 if (this.TheValue > mc.TheValue) return 1;
 return 0;
 }
}

9543ch17.fm Page 400 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 401

Now that MyClass implements IComparable, Sort will work on it as well. It would not, by the
way, have been sufficient to just declare the CompareTo method—it must be part of implement-
ing the interface, which means placing the interface name in the base class list.

The following shows the complete updated code, which can now use the Sort method to sort
an array of MyClass objects. Main creates and initializes an array of MyClass objects and then prints
them out. It then calls Sort and prints them out again to show that they have been sorted.

 class MyClass : IComparable // Class implements interface.
 {
 public int TheValue;
 public int CompareTo(object obj) // Implement the method.
 {
 MyClass mc = (MyClass)obj;
 if (this.TheValue < mc.TheValue) return -1;
 if (this.TheValue > mc.TheValue) return 1;
 return 0;
 }
 }

 class Program
 {
 static void PrintOut(string s, MyClass[] mc)
 {
 Console.Write(s);
 foreach (var m in mc)
 Console.Write("{0} ", m.TheValue);
 Console.WriteLine("");
 }

 static void Main()
 {
 var myInt = new [] { 20, 4, 16, 9, 2 };

 MyClass[] mcArr = new MyClass[5]; // Create array of MyClass objs.
 for (int i = 0; i < 5; i++) // Initialize the array.
 {
 mcArr[i] = new MyClass();
 mcArr[i].TheValue = myInt[i];
 }
 PrintOut("Initial Order: ", mcArr); // Print the initial array.
 Array.Sort(mcArr); // Sort the array.
 PrintOut("Sorted Order: ", mcArr); // Print the sorted array.
 }
 }

9543ch17.fm Page 401 Tuesday, December 18, 2007 6:37 PM

402 C H A P T E R 1 7 ■ I N T E R F A C E S

This code produces the following output:

Initial Order: 20 4 16 9 2
Sorted Order: 2 4 9 16 20

Declaring an Interface
The previous section used an interface that was already declared in the BCL. In this section,
we’ll look at how to declare interfaces.

The important things to know about declaring an interface are the following:

• An interface declaration cannot contain data members.

• An interface declaration can only contain declarations of the following kinds of non-
static function members:

– Methods

– Properties

– Events

– Indexers

• The declarations of these function members cannot contain any implementation code.
Instead, a semicolon must be used for the body of each member declaration.

• By convention, interface names begin with an uppercase I (e.g., ISaveable).

Like classes and structs, interface declarations can also be split into partial interface dec-
larations, as described in the “Partial Classes” section of Chapter 6.

9543ch17.fm Page 402 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 403

For example, the following code shows the declaration of an interface with two method
members:

There is an important difference between the accessibility of an interface and the accessi-
bility of interface members:

• An interface declaration can have any of the access modifiers public, protected,
internal, or private.

• Members of an interface, however, are implicitly public, and no access modifiers,
including public, are allowed.

 Keyword Interface name
 ↓ ↓
 interface IMyInterface1 Semicolon in place of body
 { ↓
 int DoStuff (int nVar1, long lVar2);
 double DoOtherStuff(string s, long x);
 } ↑
 Semicolon in place of body

Access modifiers are allowed on interfaces.
 ↓
public interface IMyInterface2
{
 private int Method1(int nVar1, long lVar2); // Error
} ↑
Access modifiers are NOT allowed on interface members.

9543ch17.fm Page 403 Tuesday, December 18, 2007 6:37 PM

404 C H A P T E R 1 7 ■ I N T E R F A C E S

Implementing an Interface
Only classes or structs can implement an interface. As shown in the Sort example, to imple-
ment an interface, a class or struct must

• Include the name of the interface in its base class list

• Supply implementations for each of the interface’s members

For example, the following code shows a new declaration for class MyClass, which imple-
ments interface IMyInterface1, declared in the previous section. Notice that the interface
name is listed in the base class list after the colon, and that the class provides the actual imple-
mentation code for the interface members.

Some important things to know about implementing interfaces are the following:

• If a class implements an interface, it must implement all the members of that interface.

• If a class is derived from a base class and also implements interfaces, the name of the
base class must be listed in the base class list before any interfaces, as shown here:

 Colon Interface name
 ↓ ↓
 class MyClass: IMyInterface1
 {
 int DoStuff (int nVar1, long lVar2)
 { ... } // Implementation code

 double DoOtherStuff(string s, long x)
 { ... } // Implementation code
 }

 Base class must be first Interface names
 ↓ ↓
class Derived : MyBaseClass, IIfc1, IEnumerable, IEnumerator
{
 ...
}

9543ch17.fm Page 404 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 405

Example with a Simple Interface
The following code declares an interface named IIfc1, which contains a single method named
PrintOut. Class MyClass implements interface IIfc1 by listing it in its base class list and supply-
ing a method named PrintOut that matches the signature and return type of the interface
member. Main creates an object of the class and calls the method from the object.

This code produces the following output:

Calling through: object.

 interface IIfc1 Semicolon in place of body // Declare interface
 { ↓
 void PrintOut(string s);
 }
 Implement interface
 ↓
 class MyClass : IIfc1 // Declare class
 {
 public void PrintOut(string s) // Implementation
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create instance
 mc.PrintOut("object."); // Call method
 }
 }

9543ch17.fm Page 405 Tuesday, December 18, 2007 6:37 PM

406 C H A P T E R 1 7 ■ I N T E R F A C E S

An Interface Is a Reference Type
An interface is more than just a list of members for a class or struct to implement. It is a refer-
ence type.

You cannot access an interface directly through the class object’s members. You can, how-
ever, get a reference to the interface by casting the class object reference to the type of the
interface. Once you have a reference to the interface, you can use dot-syntax notation with the
reference to call interface members.

For example, the following code shows an example of getting an interface reference from
a class object reference.

• In the first statement, variable mc is a reference to a class object that implements inter-
face IIfc1. The statement casts that reference to a reference to the interface and assigns
it to variable ifc.

• The second statement uses the reference to the interface to call the implementation
method.

For example, the following code declares an interface and a class that implements it. The
code in Main creates an object of the class, and calls the implementation method through the
class object. It also creates a variable of the interface type, casts the reference of the class object
to the interface type, and calls the implementation method through the reference to the inter-
face. Figure 17-3 illustrates the class and the reference to the interface.

Interface Cast to interface
 ↓ ↓
IIfc1 ifc = (IIfc1) mc; // Get ref to interface
 ↑ ↑
 Interface ref Class object ref

ifc.PrintOut ("interface"); // Use ref to interface to call member
 ↑
Use dot-syntax notation to call through the interface reference.

9543ch17.fm Page 406 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 407

This code produces the following output:

Calling through: object.
Calling through: interface.

Figure 17-3. A reference to the class object and a reference to the interface

 interface IIfc1
 {
 void PrintOut(string s);
 }

 class MyClass: IIfc1
 {
 public void PrintOut(string s)
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create class object
 mc.PrintOut("object."); // Call class object implementation method

 IIfc1 ifc = (IIfc1)mc; // Cast class object ref to interface ref
 ifc.PrintOut("interface."); // Call interface method
 }
 }

9543ch17.fm Page 407 Tuesday, December 18, 2007 6:37 PM

408 C H A P T E R 1 7 ■ I N T E R F A C E S

Using the as Operator with Interfaces
In the previous section, you saw that you can use the cast operator to get a reference to an
object’s interface. An even better idea is to use the as operator. The as operator will be covered
in detail in Chapter 18, but I’ll mention it here as well, since it’s a good choice to use with
interfaces.

If you attempt to cast a class object reference to a reference of an interface that it doesn’t
implement, the cast operation will raise an exception. You can avoid this problem by using the
as operator instead. It works as follows:

• If the class implements the interface, the expression returns a reference to the interface.

• If the class does not implement the interface, the expression returns null rather than
raising an exception.

The following code demonstrates the use of the as operator. The first line uses the as oper-
ator to obtain an interface reference from a class object. The result of the expression sets the
value of b either to null or to a reference to an ILiveBirth interface.

The second line checks the value of b, and if it is not null, executes the command that calls
the interface member method.

 Class object ref Interface name
 ↓ ↓
 ILiveBirth b = a as ILiveBirth; // Acts like cast: (ILiveBirth)a
 ↑ ↑
 Interface Operator
 ref
 if (b != null)
 Console.WriteLine("Baby is called: {0}", b.BabyCalled());

9543ch17.fm Page 408 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 409

Implementing Multiple Interfaces
In the examples shown so far, the classes have implemented a single interface.

• A class or struct can implement any number of interfaces.

• All the interfaces implemented must be listed in the base class list and separated by
commas (following the base class name, if there is one).

For example, the following code shows class MyData, which implements two interfaces:
IDataStore and IDataRetrieve. Figure 17-4 illustrates the implementation of the multiple
interfaces in class MyData.

This code produces the following output:

Value = 5

Figure 17-4. Class implementing multiple interfaces

 interface IDataRetrieve { int GetData(); } // Declare interface
 interface IDataStore { void SetData(int x); } // Declare interface
 Interface Interface
 ↓ ↓
 class MyData: IDataRetrieve, IDataStore // Declare class
 {
 int Mem1; // Declare field
 public int GetData() { return Mem1; }
 public void SetData(int x) { Mem1 = x; }
 }

 class Program
 {
 static void Main() // Main
 {
 MyData data = new MyData();
 data.SetData(5);
 Console.WriteLine("Value = {0}", data.GetData());
 }
 }

9543ch17.fm Page 409 Tuesday, December 18, 2007 6:37 PM

410 C H A P T E R 1 7 ■ I N T E R F A C E S

Implementing Interfaces with Duplicate Members
Since a class can implement any number of interfaces, it’s possible that two or more of the
interface members might have the same signature and return type. So how does the compiler
handle that situation?

For example, suppose you had two interfaces—IIfc1 and IIfc2—as shown following.
Each interface has a method named PrintOut, with the same signature and return type. If you
were to create a class that implemented both interfaces, how should you handle these dupli-
cate interface methods?

The answer is that if a class implements multiple interfaces, where several of the interfaces
have members with the same signature and return type, the class can implement a single
member that satisfies all the interfaces containing that duplicated member.

For example, the following code shows the declaration of class MyClass, which implements
both IIfc1 and IIfc2. Its implementation of method PrintOut satisfies the requirement for both
interfaces.

 interface IIfc1
 {
 void PrintOut(string s);
 }

 interface IIfc2
 {
 void PrintOut(string t);
 }

 class MyClass : IIfc1, IIfc2 // Implement both interfaces.
 {
 public void PrintOut(string s) // Single implementation for both
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 mc.PrintOut("object.");
 }
 }

9543ch17.fm Page 410 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 411

This code produces the following output:

Calling through: object.

Figure 17-5 illustrates the duplicate interface methods being implemented by a single
class-level method implementation.

Figure 17-5. Multiple interfaces implemented by the same class member

9543ch17.fm Page 411 Tuesday, December 18, 2007 6:37 PM

412 C H A P T E R 1 7 ■ I N T E R F A C E S

References to Multiple Interfaces
You saw previously that interfaces are reference types, and that you can get a reference to an
interface by casting an object reference to the interface type. If a class implements multiple
interfaces, you can get separate references for each one.

For example, the following class implements two interfaces with the single method
PrintOut. The code in Main calls method PrintOut in three ways:

• Through the class object

• Through a reference to the IIfc1 interface

• Through a reference to the IIfc2 interface

Figure 17-6 illustrates the class object and references to IIfc1 and IIfc2.

 interface IIfc1 { void PrintOut(string s); } // Declare interface
 interface IIfc2 { void PrintOut(string s); } // Declare interface

 class MyClass : IIfc1, IIfc2 { // Declare class
 public void PrintOut(string s)
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

Continued

9543ch17.fm Page 412 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 413

This code produces the following output:

Calling through: object.
Calling through: interface 1.
Calling through: interface 2.

Figure 17-6. Separate references to different interfaces in the class

 class Program {
 static void Main() {
 MyClass mc = new MyClass();
 IIfc1 ifc1 = (IIfc1) mc; // Get ref to IIfc1
 IIfc2 ifc2 = (IIfc2) mc; // Get ref to IIfc2

 mc.PrintOut("object."); // Call through class object
 ifc1.PrintOut("interface 1."); // Call through IIfc1
 ifc2.PrintOut("interface 2."); // Call through IIfc2
 }
 }

9543ch17.fm Page 413 Tuesday, December 18, 2007 6:37 PM

414 C H A P T E R 1 7 ■ I N T E R F A C E S

An Inherited Member As an Implementation
A class implementing an interface can inherit the code for an implementation from one of its
base classes. For example, the following code illustrates a class inheriting implementation
code from a base class.

• IIfc1 is an interface with a method member called PrintOut.

• MyBaseClass contains a method called PrintOut that matches IIfc1’s method.

• Class Derived has an empty declaration body, but derives from class MyBaseClass and
contains IIfc1 in its base class list.

• Even though Derived’s declaration body is empty, the code in the base class satisfies the
requirement to implement the interface method.

Figure 17-7 illustrates the preceding code. Notice that the arrow from IIfc1 goes down to
the code in the base class.

Figure 17-7. Implementation in the base class

 interface IIfc1 { void PrintOut(string s); }

 class MyBaseClass // Declare base class.
 {
 public void PrintOut(string s) // Declare the method.
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Derived : MyBaseClass, IIfc1 // Declare class.
 {
 }

 class Program {
 static void Main()
 {
 Derived d = new Derived(); // Create class object
 d.PrintOut("object."); // Call method
 }
 }

9543ch17.fm Page 414 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 415

Explicit Interface Member Implementations
You saw in a previous section that a single class can implement all the members required by
multiple interfaces, as illustrated in Figures 17-5 and 17-6.

But what if you want separate implementations for each interface? In this case, you can
create what are called explicit interface member implementations. An explicit interface mem-
ber implementation has the following characteristics:

• Like all interface implementations, it is placed in the class or struct implementing the
interface.

• It is declared using a qualified interface name, which consists of the interface name and
member name, separated by a dot.

The following code shows the syntax for declaring explicit interface member implementa-
tions. Each of the two interfaces implemented by MyClass implements its own version of
method PrintOut.

Figure 17-8 illustrates the class and interfaces. Notice that the boxes representing the
explicit interface member implementations are not shown in gray, since they now represent
actual code.

Figure 17-8. Explicit interface member implementations

 class MyClass : IIfc1, IIfc2
 { Qualified interface name
 ↓
 void IIfc1.PrintOut (string s) // Explicit implementation
 { ... }

 void IIfc2.PrintOut (string s) // Explicit implementation
 { ... }
 }

9543ch17.fm Page 415 Tuesday, December 18, 2007 6:37 PM

416 C H A P T E R 1 7 ■ I N T E R F A C E S

For example, in the following code, class MyClass declares explicit interface member
implementations for the members of the two interfaces. Notice that in this example there are
only explicit interface member implementations. There is no class-level implementation.

This code produces the following output:

IIfc1: interface 1.
IIfc2: interface 2.

 interface IIfc1 { void PrintOut(string s); } // Declare interface
 interface IIfc2 { void PrintOut(string t); } // Declare interface

 class MyClass : IIfc1, IIfc2
 { Qualified interface name
 ↓
 void IIfc1.PrintOut(string s) // Explicit interface member
 { // implementation
 Console.WriteLine("IIfc1: {0}", s);
 }
 Qualified interface name
 ↓
 void IIfc2.PrintOut(string s) // Explicit interface member
 { // implementation
 Console.WriteLine("IIfc2: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create class object

 IIfc1 ifc1 = (IIfc1) mc; // Get reference to IIfc1
 ifc1.PrintOut("interface 1."); // Call explicit implementation

 IIfc2 ifc2 = (IIfc2) mc; // Get reference to IIfc2
 ifc2.PrintOut("interface 2."); // Call explicit implementation
 }
 }

9543ch17.fm Page 416 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 417

Figure 17-9 illustrates the code. Notice in the figure that the interface methods are not
pointing at class-level implementations, but contain their own code.

Figure 17-9. References to interfaces with explicit interface member implementations

When there is an explicit interface member implementation, a class-level implementation
is allowed, but not required. The explicit implementation satisfies the requirement that the
class or struct must implement the method. You can therefore have any of the following three
implementation scenarios:

• A class-level implementation

• An explicit interface member implementation

• Both a class-level and an explicit interface member implementation

9543ch17.fm Page 417 Tuesday, December 18, 2007 6:37 PM

418 C H A P T E R 1 7 ■ I N T E R F A C E S

Accessing Explicit Interface Member Implementations
An explicit interface member implementation can only be accessed through a reference to the
interface. This means that even other class members can’t directly access them.

For example, the following code shows the declaration of class MyClass, which implements
interface IIfc1 with an explicit implementation. Notice that even Method1, which is also a
member of MyClass, can’t directly access the explicit implementation.

• The first two lines of Method1 produce compile errors because the method is trying to
access the implementation directly.

• Only the last line in Method1 will compile, because it casts the reference to the current
object (this) to a reference to the interface type, and uses that reference to the interface
to call the explicit interface implementation.

This restriction has an important ramification for inheritance. Since other fellow class
members can’t directly access explicit interface member implementations, members of classes
derived from the class clearly can’t directly access them either. They must always be accessed
through a reference to the interface.

class MyClass : IIfc1
{
 void IIfc1.PrintOut(string s) // Explicit interface implementation
 {
 Console.WriteLine("IIfc1");
 }

 public void Method1()
 {
 PrintOut("..."); // Compile error
 this.PrintOut("..."); // Compile error

 ((IIfc1)this).PrintOut("..."); // OK, call method
 } ↑
} Cast to a reference to the interface

9543ch17.fm Page 418 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 419

Interfaces Can Inherit Interfaces
You saw earlier that interface implementations can be inherited from base classes. But an
interface itself can inherit from one or more other interfaces.

• To specify that an interface inherits from other interfaces, place the names of the base
interfaces in a comma-separated list after a colon following the interface name in the
interface declaration, as shown here:

• Unlike a class, which can only have a single class name in its base class list, an interface
can have any number of interfaces in its base interface list.

– The interfaces in the list can themselves have inherited interfaces.

– The resulting interface contains all the members it declares, as well as all those of its
base interfaces.

The code in Figure 17-10 shows the declaration of three interfaces. Interface IDataIO
inherits from the first two. The figure on the right shows IDataIO encompassing the other two
interfaces.

Figure 17-10. Class with interface inheriting multiple interfaces

 Colon Base interface list
 ↓ ↓
interface IDataIO : IDataRetrieve, IDataStore
{ ...

9543ch17.fm Page 419 Tuesday, December 18, 2007 6:37 PM

420 C H A P T E R 1 7 ■ I N T E R F A C E S

Example of Different Classes Implementing an Interface
The following code illustrates several aspects of interfaces that have been covered. The pro-
gram declares a class called Animal, which is used as a base class for several other classes that
represent various types of animals. It also declares an interface named ILiveBirth.

Classes Cat, Dog, and Bird all derive from base class Animal. Cat and Dog both implement
the ILiveBirth interface, but class Bird does not.

In Main, the program creates an array of Animal objects and populates it with a class object
of each of the three types of animal classes. Finally, the program iterates through the array, and
using the as operator, retrieves references to the ILiveBirth interface of each object that has
one, and calls its BabyCalled method.

 interface ILiveBirth // Declare interface
 {
 string BabyCalled();
 }

 class Animal { } // Base class Animal

 class Cat : Animal, ILiveBirth // Declare class Cat
 {
 string ILiveBirth.BabyCalled()
 { return "kitten"; }
 }

 class Dog : Animal, ILiveBirth // Declare class Dog
 {
 string ILiveBirth.BabyCalled()
 { return "puppy"; }
 }

 class Bird : Animal // Declare class Bird
 {
 }

Continued

9543ch17.fm Page 420 Tuesday, December 18, 2007 6:37 PM

C H A P T E R 1 7 ■ I N T E R F A C E S 421

This code produces the following output:

Baby is called: kitten
Baby is called: puppy

Figure 17-11 illustrates the array and the objects in memory.

Figure 17-11. Different object types of base class Animal are interspersed in the array.olm

 class Program
 {
 static void Main()
 {
 Animal[] animalArray = new Animal[3]; // Create Animal array
 animalArray[0] = new Cat(); // Insert Cat class object
 animalArray[1] = new Bird(); // Insert Bird class object
 animalArray[2] = new Dog(); // Insert Dog class object
 foreach(Animal a in animalArray) // Cycle through array
 {
 ILiveBirth b = a as ILiveBirth; // if implements ILiveBirth...
 if (b != null)
 Console.WriteLine("Baby is called: {0}", b.BabyCalled());
 }
 }
 }

9543ch17.fm Page 421 Tuesday, December 18, 2007 6:37 PM

9543ch17.fm Page 422 Tuesday, December 18, 2007 6:37 PM

423

■ ■ ■

C H A P T E R 1 8

Conversions

What Are Conversions?
Implicit Conversions
Explicit Conversions and Casting
Types of Conversions
Numeric Conversions
Reference Conversions
Boxing Conversions
Unboxing Conversions
User-Defined Conversions
The is Operator
The as Operator

9543.book Page 423 Friday, December 21, 2007 8:20 PM

424 C H A P T E R 1 8 ■ C O N V E R S I O N S

What Are Conversions?
To get an understanding of what conversions are, let’s start by considering the simple case in
which you declare two variables of different types, and then assign the value of one (the source)
to the other (the target). Before the assignment can occur, the source value must be converted to
a value of the target type. Figure 18-1 illustrates type conversion.

• Conversion is the process of taking a value of one type and using it as the equivalent
value of another type.

• The value resulting from the conversion should be the same as the source value—but in
the target type.

Figure 18-1. Type conversion

For example, the code in Figure 18-2 shows the declaration of two variables of different types.

• var1 is of type short, a 16-bit signed integer that is initialized to 5. var2 is of type sbyte,
an 8-bit signed integer that is initialized to the value 10.

• The third line of the code assigns the value of var1 to var2. Since these are two different
types, the value of var1 must be converted to a value of the same type as var2 before the
assignment can be performed. This is performed using the cast expression, which you
will see shortly.

• Notice also that the value and type of var1 are unchanged. Although it is called a conver-
sion, this only means that the source value is used as the target type—not that the source
is changed into the target type.

Figure 18-2. Converting from a short to an sbyte

New page

9543.book Page 424 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 425

Implicit Conversions
For certain types of conversions, there is no possibility of loss of data or precision. For example,
it’s easy to stuff an 8-bit value into a 16-bit type with no loss of data.

• The language will do these conversions for you automatically. These are called implicit
conversions.

• When converting from a source type with fewer bits to a target type with more bits, the
extra bits in the target need to be filled with either 0s or 1s.

• When converting from a smaller unsigned type to a larger unsigned type, the extra, most
significant bits of the target are filled with 0s. This is called zero extension.

Figure 18-3 shows an example of the zero extension of an 8-bit value of 10 converted to a
16-bit value of 10.

Figure 18-3. Zero extension in unsigned conversions

For conversion between signed types, the extra most significant bits are filled with the sign
bit of the source expression.

• This maintains the correct sign and magnitude for the converted value.

• This is called sign extension, and is illustrated in Figure 18-4, first with 10, and then with –10.

Figure 18-4. Sign extension in signed conversions

New page

9543.book Page 425 Friday, December 21, 2007 8:20 PM

426 C H A P T E R 1 8 ■ C O N V E R S I O N S

Explicit Conversions and Casting
When converting from a shorter type to a longer type, it’s easy for the longer type to hold all
the bits of the shorter type. In other situations, however, the target type might not be able to
accommodate the source value without loss of data.

For example, suppose you want to convert a ushort value to a byte.

• A ushort can hold any value between 0 and 65,535.

• A byte can only hold a value between 0 and 255.

• As long as the ushort value you want to convert is less than 256, there won’t be any loss
of data. If it is greater, however, the most significant bits will be lost.

For example, Figure 18-5 shows an attempt to convert a ushort with a value of 1,365 to a
byte, resulting in a loss of data.

Figure 18-5. Attempting to convert a ushort to a byte

Clearly, only a relatively small number (0.4 percent) of the possible unsigned 16-bit ushort
values can be safely converted to an unsigned 8-bit byte type without loss of data. The rest
result in data overflow, yielding different values.
New page

9543.book Page 426 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 427

Casting
For the predefined types, C# will automatically convert from one data type to another—but
only between those types for which there is no possibility of data loss between the source type
and the target type. That is, the language does not provide automatic conversion between two
types if there is any value of the source type that would lose data if it were converted to the tar-
get type. If you want to make a conversion of this type, you must use an explicit conversion,
called a cast expression.

The following code shows an example of a cast expression. It converts the value of var1 to
type sbyte. A cast expression consists of

• A set of matching parentheses containing the name of the target type

• The source expression, following the parentheses

When you use a cast expression, you are explicitly taking responsibility for performing the
operation that might lose data. Essentially, you are saying, “In spite of the possibility of data
loss, I know what I’m doing, so make this conversion anyway.” (Make sure, however, that you
do know what you’re doing.)

For example, Figure 18-6 shows cast expressions converting two values of type ushort to
type byte. In the first case, there is no loss of data. In the second case, the most significant bits
are lost, giving a value of 85—which is clearly not equivalent to the source value, 1,365.

Figure 18-6. Casting a ushort to a byte

The output of the code in the figure is the following:

sb: 10 = 0xA
sb: 85 = 0x55

New page

Target type
 ↓
(sbyte) var1;
 ↑
 Source expression

9543.book Page 427 Friday, December 21, 2007 8:20 PM

428 C H A P T E R 1 8 ■ C O N V E R S I O N S

Types of Conversions
There are a number of standard, predefined conversions for the numeric and reference types.
The categories are illustrated in Figure 18-7.

• Beyond the standard conversions, you can also define both implicit and explicit conver-
sions for your user-defined types.

• There is also a predefined type of conversion called boxing, which converts any value
type to either

– Type object

– Type System.ValueType

• Unboxing converts a boxed value back to its original type.

Figure 18-7. Types of conversions

Numeric Conversions
Any numeric type can be converted into any other numeric type, as illustrated in Figure 18-8.
Some of the conversions are implicit conversions, and others must be explicit.

Figure 18-8. Numeric conversions

New page

9543.book Page 428 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 429

Implicit Numeric Conversions
The implicit numeric conversions are shown in Figure 18-9.

• There is an implicit conversion from the source type to the target type if there is a path,
following the arrows, from the source type to the target type.

• Any numeric conversion for which there is not a path following the arrows from the
source type to the target type must be an explicit conversion.

The figure demonstrates that, as you would expect, there is an implicit conversion
between numeric types that occupy fewer bits to those that occupy more bits.

Figure 18-9. The implicit numeric conversions

New page

9543.book Page 429 Friday, December 21, 2007 8:20 PM

430 C H A P T E R 1 8 ■ C O N V E R S I O N S

Overflow Checking Context
You’ve seen that explicit conversions have the possibility of losing data and not being able to
represent the source value equivalently in the target type. For integral types, C# provides you
with the ability to choose whether the runtime should check the result for overflow when mak-
ing these types of conversions. It does this through the checked operator and the checked
statement.

• Whether a segment of code is checked or not is called its overflow checking context.

– If you designate an expression or segment of code as checked, the CLR will raise an
OverflowException exception if the conversion produces an overflow.

– If the code is not checked, the conversion will proceed regardless of whether there is
an overflow.

• The default overflow checking context is not checked.

The checked and unchecked Operators

The checked and unchecked operators control the overflow checking context of an expression,
which is placed between a set of parentheses. The expression cannot be a method. The syntax
is the following:

For example, the following code executes the same conversion—first in a checked operator
and then in an unchecked operator.

• In the unchecked context, the overflow is ignored, resulting in the value 208.

• In the checked context, an OverflowException exception is raised.

New page

 checked (Expression)
 unchecked (Expression)

ushort sh = 2000;
byte sb;

sb = unchecked ((byte) sh); // Most significant bits lost
Console.WriteLine("sb: {0}", sb);

sb = checked ((byte) sh); // OverflowException raised
Console.WriteLine("sb: {0}", sb);

9543.book Page 430 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 431

This code produces the following output:

sb: 208

Unhandled Exception: System.OverflowException: Arithmetic operation resulted➥

 in an overflow. at Test1.Test.Main() in C:\Programs\Test1\Program.cs:line 21

The checked and unchecked Statements

The checked and unchecked operators act on the single expression between the parentheses. The
checked and unchecked statements perform the same function, but control all the conversions in
a block of code, rather than in a single expression.

The checked and unchecked statements can be nested to any level.
For example, the following code uses checked and unchecked statements and produces the

same results as the previous example, which uses checked and unchecked expressions. In this
case, however, blocks of code are affected, rather than just expressions.

New page

 byte sb;
 ushort sh = 2000;

 unchecked // Set unchecked
 {
 sb = (byte) sh;
 Console.WriteLine("sb: {0}", sb);

 checked // Set checked
 {
 sb = (byte) sh;
 Console.WriteLine("sb: {0}", sh);
 }
 }

9543.book Page 431 Friday, December 21, 2007 8:20 PM

432 C H A P T E R 1 8 ■ C O N V E R S I O N S

Explicit Numeric Conversions
You’ve seen that the implicit conversions automatically convert from the source expression to
the target type because there is no possible loss of data. With the explicit conversions, however,
there is the possibility of losing data—so it is important for you as the programmer to know
how a conversion will handle that loss if it occurs.

In this section, you will look at each of the various types of explicit numeric conversions.
Figure 18-10 shows the subset of explicit conversions shown in Figure 18-8.

Figure 18-10. The explicit numeric conversions

Integral to Integral

Figure 18-11 shows the behavior of the integral-to-integral explicit conversions. In the checked
case, if the conversion loses data, the operation raises an OverflowException exception. In the
unchecked case, any lost bits go unreported.

Figure 18-11. Integer type to integer type explicit conversions

New page

9543.book Page 432 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 433

float or double to Integral

When converting a floating point type to an integer type, the value is rounded toward 0 to the
nearest integer. Figure 18-12 illustrates the conversion conditions. If the rounded value is not
within the range of the target type, then

• The CLR raises an OverflowException exception if the overflow checking context is
checked.

• C# does not define what its value should be if the context is unchecked.

Figure 18-12. Converting a float or a double to an integral type

decimal to Integral

When converting from decimal to the integer types, the CLR raises an OverflowException
exception if the resulting value is not within the target type’s range. Figure 18-13 illustrates the
conversion conditions.

Figure 18-13. Converting a decimal to an integral

New page

9543.book Page 433 Friday, December 21, 2007 8:20 PM

434 C H A P T E R 1 8 ■ C O N V E R S I O N S

double to float

Values of type float occupy 32 bits, and values of type double occupy 64 bits. The double type
value is rounded to the nearest float type value. Figure 18-14 illustrates the conversion
conditions.

• If the value is too small to be represented by a float, the value is set to either positive or
negative 0.

• If the value is too large to be represented by a float, the value is set to either positive or
negative infinity.

Figure 18-14. Converting a double to a float

float or double to decimal

Figure 18-15 shows the conversion conditions for converting from floating point types to
decimal.

• If the value is too small to be represented by the decimal type, the result is set to 0.

• If the value is too large, the CLR raises an OverflowException exception.

Figure 18-15. Converting a float or double to a decimal

New page

9543.book Page 434 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 435

decimal to float or double

Conversions from decimal to the floating point types always succeed. There might, however, be
a loss of precision. Figure 18-16 shows the conversion conditions.

Figure 18-16. Converting a decimal to a float or double

New page

9543.book Page 435 Friday, December 21, 2007 8:20 PM

436 C H A P T E R 1 8 ■ C O N V E R S I O N S

Reference Conversions
As you well know by now, reference type objects comprise two parts in memory: the reference
and the data.

• Part of the information held by the reference is the type of the data it is pointing at.

• A reference conversion takes a source reference and returns a reference pointing at the
same place in the heap, but “labels” the reference as a different type.

For example, the following code shows two reference variables, myVar1 and myVar2, that
point to the same object in memory. The code is illustrated in Figure 18-17.

• To myVar1, the object it references looks like an object of type B—which it is.

• To myVar2, the same object looks like an object of type A.

– Even though it is actually pointing at an object of type B, it cannot see the parts of B
that extend A, and therefore cannot see Field2.

– The second WriteLine statement would therefore cause a compile error.

Notice that the “conversion” does not change myVar1.

New page

 class A { public int Field1; }

 class B: A { public int Field2; }

 class Program
 {
 static void Main()
 {
 B myVar1 = new B();
 Return the reference to myVar1 as a reference to a class A.
 ↓
 A myVar2 = (A) myVar1;

 Console.WriteLine("{0}", myVar2.Field1); // Fine
 Console.WriteLine("{0}", myVar2.Field2); // Compile error!
 } ↑
 } myVar2 can’t see Field2.

9543.book Page 436 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 437

Figure 18-17. A reference conversion returns a different type associated to the object.

Implicit Reference Conversions
Just as there are implicit numeric conversions that the language will automatically perform for
you, there are also implicit reference conversions. These are illustrated in Figure 18-18.

• All reference types can implicitly be converted to type object.

• Any interface can be implicitly converted to an interface from which it is derived.

• A class can be implicitly converted to

– Any class in the chain from which it is derived

– Any interface that it implements

Figure 18-18. Implicit conversions for classes and interfaces

New page

9543.book Page 437 Friday, December 21, 2007 8:20 PM

438 C H A P T E R 1 8 ■ C O N V E R S I O N S

A delegate can be implicitly converted to the .NET BCL classes and interfaces shown in
Figure 18-19.

An array, ArrayS, with elements of type Ts, can be implicitly converted to

• The .NET BCL class and interfaces shown in Figure 18-19.

• Another array, ArrayT, with elements of type Tt, if all of the following are true:

– Both arrays have the same number of dimensions.

– The element types, Ts and Tt, are reference types—not value types.

– There is an implicit conversion between types Ts and Tt.

Figure 18-19. Implicit conversions for delegates and arrays

New page

9543.book Page 438 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 439

Explicit Reference Conversions
Explicit reference conversions are reference conversions from a general type to a more special-
ized type.

• Explicit conversions include

– Conversions from an object to any reference type

– Conversions from a base class to a class derived from it

• The explicit reference conversions are illustrated by reversing each of the arrows in
Figures 18-18 and 18-19.

If this type of conversion were allowed without restriction, you could easily attempt to ref-
erence members of a class that are not actually in memory. The compiler, however, does allow
these types of conversions. But when the system encounters them at run time, it raises an
exception.

For example, the code in Figure 18-20 converts the reference of base class A to its derived
class B, and assigns it to variable myVar2.

• If myVar2 were to attempt to access Field2, it would be attempting to access a field in the
“B part” of the object, which is not in memory—causing a memory fault.

• The runtime will catch this inappropriate cast and raise an InvalidCastException
exception. Notice, however, that it does not cause a compile error.

Figure 18-20. Invalid casts raise runtime exceptions.

New page

9543.book Page 439 Friday, December 21, 2007 8:20 PM

440 C H A P T E R 1 8 ■ C O N V E R S I O N S

Valid Explicit Reference Conversions
There are three situations in which an explicit reference conversion will succeed at run time—
that is, not raise an InvalidCastException exception.

The first case is where the explicit conversion is unnecessary—that is, where the language
would have performed an implicit conversion for you anyway. For example, in the code that
follows, the explicit conversion is unnecessary because there is always an implicit conversion
from a derived class to one of its base classes.

The second case is where the source reference is null. For example, in the following code,
even though it would normally be unsafe to convert a reference of a base class to that of a
derived class, the conversion is allowed because the value of the source reference is null.

New page

 class A { }
 class B: A { }
 ...
 B myVar1 = new B();
 A myVar2 = (A) myVar1; // Cast is unnecessary; A is the base class of B.

 class A { }
 class B: A { }
 ...
 A myVar1 = null;
 B myVar2 = (B) myVar1; // Allowed because myVar1 is null

9543.book Page 440 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 441

The third case is where the actual data pointed to by the source reference could safely be con-
verted implicitly. The following code shows an example, and Figure 18-21 illustrates the code.

• The implicit conversion in the second line makes myVar2 “think” that it is pointing to
data of type A, while it is actually pointing to a data object of type B.

• The explicit conversion in the third line is casting a reference of a base class to a refer-
ence of one of its derived classes. Normally this would raise an exception. In this case,
however, the object being pointed to actually is a data item of type B.

Figure 18-21. Casting to a safe type

New page

B myVar1 = new B();
A myVar2 = myVar1; // Implicitly cast myVar1 to type A.
B myVar3 = (B)myVar2; // This cast is fine because the data is of type B.

9543.book Page 441 Friday, December 21, 2007 8:20 PM

442 C H A P T E R 1 8 ■ C O N V E R S I O N S

Boxing Conversions
All C# types, including the value types, are derived from type object. Value types, however, are
efficient, lightweight types that do not, by default, include their object component in the heap.
When the object component is needed, however, you can use boxing, which is an implicit con-
version that takes a value type value, creates from it a full reference type object in the heap, and
returns a reference to the object.

For example, Figure 18-22 shows three lines of code.

• The first two lines of code declare and initialize value type variable i and reference type
variable oi.

• In the third line of code, you want to assign the value of variable i to oi. But oi is a refer-
ence type variable, and must be assigned a reference to an object in the heap. Variable
i, however, is a value type, and does not have a reference to an object in the heap.

• The system therefore boxes the value of i by

– Creating an object of type int in the heap

– Copying the value of i to the int object

– Returning the reference of the int object to oi to store as its reference

Figure 18-22. Boxing creates a full reference type object from a value type.

New page

9543.book Page 442 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 443

Boxing Creates a Copy
A common misunderstanding about boxing is that it somehow acts upon the item being boxed.
It doesn’t. It returns a reference type copy of the value. After the boxing procedure, there are
two copies of the value—the value type original and the reference type copy—each of which
can be manipulated separately.

For example, the following code shows the separate manipulation of each copy of the
value. Figure 18-23 illustrates the code.

• The first line defines value type variable i and initializes its value to 10.

• The second line creates reference type variable oi and initializes it with the boxed copy
of variable i.

• The last three lines of code show i and oi being manipulated separately.

This code produces the following output:

i: 10, io: 10
i: 12, io: 15

Figure 18-23. Boxing creates a copy that can be manipulated separately.

New page

int i = 10; // Create and initialize value type
Box i and assign its reference to oi.
 ↓
object oi = i; // Create and initialize reference type
Console.WriteLine("i: {0}, io: {1}", i, oi);

i = 12;
oi = 15;
Console.WriteLine("i: {0}, io: {1}", i, oi);

9543.book Page 443 Friday, December 21, 2007 8:20 PM

444 C H A P T E R 1 8 ■ C O N V E R S I O N S

The Boxing Conversions

Figure 18-24 shows the boxing conversions. Any value type ValueTypeS can be implicitly con-
verted to any of types object, System.ValueType, or InterfaceT, if ValueTypeS implements
InterfaceT.

Figure 18-24. Boxing is the implicit conversion of value types to reference types.

Unboxing Conversions
Unboxing is the process of converting a boxed object back to its value type.

• Unboxing is an explicit conversion.

• The system performs the following steps when unboxing a value to ValueTypeT:

– It checks that the object being unboxed is actually a boxed value of type ValueTypeT.

– It copies the value of the object to the variable.

For example, the following code shows an example of unboxing a value.

• Value type variable i is boxed and assigned to reference type variable oi.

• Variable oi is then unboxed, and its value assigned to value type variable j.

New page

static void Main()
{
 int i = 10;
 Box i and assign its reference to oi.
 ↓
 object oi = i;
 Unbox oi and assign its value to j.
 ↓
 int j = (int) oi;
 Console.WriteLine("i: {0}, oi: {1}, j: {2}", i, oi, j);
}

9543.book Page 444 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 445

This code produces the following output:

i: 10, oi: 10, j: 10

Attempting to unbox a value to a type other than the original type raises an
InvalidCastException exception.

The Unboxing Conversions
Figure 18-25 shows the unboxing conversions.

Figure 18-25. The unboxing conversions

New page

9543.book Page 445 Friday, December 21, 2007 8:20 PM

446 C H A P T E R 1 8 ■ C O N V E R S I O N S

User-Defined Conversions
Besides the standard conversions, you can also define both implicit and explicit conversions
for your own classes and structs.

The syntax for user-defined conversions is shown following.

• The syntax is the same for both implicit and explicit conversion declarations, except for
the keywords implicit or explicit.

• The modifiers public and static are required.

For example, the following shows an example of the syntax of a conversion method that
converts an object of type Person to an int.

Constraints on User-Defined Conversions
There are some important constraints on user-defined conversions. The most important are
the following:

• You can only define user-defined conversions for classes and structs.

• You cannot redefine standard implicit or explicit conversions.

• The following is true for source type S and target type T:

– S and T must be different types.

– S and T cannot be related by inheritance. That is, S cannot be derived from T, and T
cannot be derived from S.

– Neither S nor T can be an interface type or the type object.

– The conversion operator must be a member of either S or T.

• You cannot declare two conversions, one implicit and the other explicit, with the same
source and target types.

New page

 Required Operator Target Source
 ↓ ↓ ↓ ↓
public static implicit operator TargetType (SourceType Identifier)
{ ↑
 Implicit or explicit
 ...
 return ObjectOfTargetType;
}

 public static implicit operator int(Person p)
 {
 return p.Age;
 }

9543.book Page 446 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 447

Example of a User-Defined Conversion
The following code defines a class called Person that contains a person’s name and age. The
class also defines two implicit conversions. The first converts a Person object to an int value.
The target int value is the age of the person. The second converts an int to a Person object.

New page

 class Person
 {
 public string Name;
 public int Age;
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }

 public static implicit operator int(Person p) // Convert Person to int.
 {
 return p.Age;
 }

 public static implicit operator Person(int i) // Convert int to Person.
 {
 return new Person("Nemo", i);
 }
 }

 class Program
 {
 static void Main()
 {
 Person bill = new Person("bill", 25);

 Convert a Person object to an int.
 ↓
 int age = bill;
 Console.WriteLine("Person Info: {0}, {1}", bill.Name, age);

 Convert an int to a Person object.
 ↓
 Person anon = 35;
 Console.WriteLine("Person Info: {0}, {1}", anon.Name, anon.Age);
 }
 }

9543.book Page 447 Friday, December 21, 2007 8:20 PM

448 C H A P T E R 1 8 ■ C O N V E R S I O N S

This code produces the following output:

Person Info: bill, 25
Person Info: Nemo, 35

If you had defined the same conversion operators as explicit rather than implicit, then
you would have needed to use cast expressions to perform the conversions, as shown here:

New page

 Explicit
 ... ↓
 public static explicit operator int(Person p)
 {
 return p.Age;
 }

 ...

 static void Main()
 {
 ... Requires cast expression
 ↓
 int age = (int) bill;
 ...

9543.book Page 448 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 449

Evaluating User-Defined Conversions
The user-defined conversions discussed so far have directly converted the source type to an
object of the target type in a single step, as shown in Figure 18-26.

Figure 18-26. Single-step user-defined conversion

But user-defined conversions can have up to three steps in the full conversion.
Figure 18-27 illustrates these stages, which include

• The preliminary standard conversion

• The user-defined conversion

• The following standard conversion

There is never more than a single user-defined conversion in the chain.

Figure 18-27. Multi-step user-defined conversion

Example of a Multi-Step User-Defined Conversion
The following code declares class Employee, which is derived from class Person.

• Several sections ago, the code sample declared a user-defined conversion from class
Person to int. So if there is a standard conversion from Employee to Person and one from
int to float, you can convert from Employee to float.

– There is a standard conversion from Employee to Person, since Employee is derived
from Person.

– There is a standard conversion from int to float, since that is an implicit numeric
conversion.

• Since all three parts of the chain exist, you can convert from Employee to float.
Figure 18-28 illustrates how the compiler performs the conversion.

9543.book Page 449 Friday, December 21, 2007 8:20 PM

450 C H A P T E R 1 8 ■ C O N V E R S I O N S

Figure 18-28. Conversion of Employee to float

New page

class Employee : Person { }

class Person
{
 public string Name;
 public int Age;

 // Convert a Person object to an int.
 public static implicit operator int(Person p)
 {
 return p.Age;
 }
}

class Program
{
 static void Main()
 {
 Employee bill = new Employee();
 bill.Name = "William"; bill.Age = 25;
 Convert an Employee to a float.
 ↓
 float fVar = bill;

 Console.WriteLine("Person Info: {0}, {1}", bill.Name, fVar);
 }
}

9543.book Page 450 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 8 ■ C O N V E R S I O N S 451

The is Operator
As shown previously, some conversion attempts are not successful, and raise an
InvalidCastException exception at run time. Instead of blindly attempting a conversion,
you can use the is operator to check whether a conversion would complete successfully.

The syntax of the is operator is the following, where Expr is the source expression:

The operator returns true if Expr can be successfully converted to the target type through
any of the following:

• A reference conversion

• A boxing conversion

• An unboxing conversion

For example, in the following code, you use the is operator to check whether variable bill
of type Employee can be converted to type Person, and then take the appropriate action.

The is operator can only be used for reference conversions and boxing and unboxing con-
versions. It cannot be used for user-defined conversions.
New page

 Returns a bool
 ↓
 Expr is TargetType

 class Employee : Person { }
 class Person
 {
 public string Name = "Anonymous";
 public int Age = 25;
 }

 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 Person p;

 // Check if variable bill can be converted to type Person
 if(bill is Person)
 {
 p = bill;
 Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
 }
 }
 }

9543.book Page 451 Friday, December 21, 2007 8:20 PM

452 C H A P T E R 1 8 ■ C O N V E R S I O N S

The as Operator
The as operator is like the cast operator, except that it does not raise an exception. If the con-
version fails, rather than raising an exception, it sets the target reference to null.

The syntax of the as operator is the following, where

• Expr is the source expression.

• TargetType is the target type, which must be a reference type.

Since the as operator returns a reference expression, it can be used as the source for an
assignment.

For example, variable bill of type Employee is converted to type Person, using the as oper-
ator, and assigned to variable p of type Person. You then check to see whether p is null before
using it.

The as operator can only be used for reference conversions and boxing conversions. It
cannot be used for user-defined conversions or conversions to a value type.

 Returns a reference
 ↓
Expr as TargetType

 class Employee : Person { }

 class Person
 {
 public string Name = "Anonymous";
 public int Age = 25;
 }

 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 Person p;

 p = bill as Person;
 if(p != null)
 {
 Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
 }
 }
 }

9543.book Page 452 Friday, December 21, 2007 8:20 PM

453

■ ■ ■

C H A P T E R 1 9

Generics

What Are Generics?
Generics in C#
Generic Classes
Declaring a Generic Class
Creating a Constructed Type
Creating Variables and Instances
Constraints on Type Parameters
Generic Structs
Generic Interfaces
Generic Delegates
Generic Methods
Extension Methods with Generic Classes
New page

9543.book Page 453 Friday, December 21, 2007 8:20 PM

454 C H A P T E R 1 9 ■ G E N E R I C S

What Are Generics?
With the language constructs you’ve learned so far, you can build powerful objects of many dif-
ferent types. You do this mostly by declaring classes that encapsulate the behavior you want,
and then creating instances of those classes.

All the types used in the class declarations so far have been specific types—either
programmer-defined, or supplied by the language or the BCL. There are times, however,
when a class would be more useful if you could “distill” or “refactor” out its actions and apply
them not just to the data types for which they are coded, but for other types as well.

Generics allow you to do just that. You can refactor your code and add an additional layer
of abstraction so that, for certain kinds of code, the data types are not hard-coded. This is par-
ticularly designed for cases in which there are multiple sections of code performing the same
instructions, but on different data types.

That might sound pretty abstract, so we’ll start with an example that should make things
clearer.

A Stack Example
Suppose first that you have created the following code, which declares a class called
MyIntStack, which implements a stack of ints. It allows you to push ints onto the stack
and pop them off.

New page

 class MyIntStack // Stack for ints
 {
 int StackPointer = 0;
 int[] StackArray; // Array of int
 ↑ Int
 Int ↓
 public void Push(int x) // Input type: int
 {
 ...
 } Int
 ↓
 public int Pop() // Return type: int
 {
 ...
 }

 ...
 }

9543.book Page 454 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 455

Suppose now that you would like the same functionality for values of type float. There are
several ways you could achieve this. One way is to perform the following steps to produce the
subsequent code:

• Cut and paste the code for class MyIntStack.

• Change the class name to MyFloatStack.

• Change the appropriate int declarations to float declarations throughout the class
declaration.

This method certainly works, but it’s error-prone, and has the following drawbacks:

• You need to inspect every part of the class carefully to determine which type declara-
tions need to be changed, and which should be left alone.

• You need to repeat the process for each new type of stack class you need (long, double,
string, etc.).

• After the process, you end up with multiple copies of nearly identical code, taking up
additional space.

• Debugging and maintaining the parallel implementations is inelegant and error-prone.

New page

class MyFloatStack // Stack for floats
{
 int StackPointer = 0;
 float [] StackArray; // Array of float
 ↑ float
 float ↓
 public void Push(float x) // Input type: float
 {
 ...
 }
 float
 ↓
 public float Pop() // Return type: float
 {
 ...
 }

 ...
}

9543.book Page 455 Friday, December 21, 2007 8:20 PM

456 C H A P T E R 1 9 ■ G E N E R I C S

Generics in C#
With C# 2.0, Microsoft introduced the generics features, which offer more elegant ways of using
a set of code with more than one type. Generics allow you to declare type-parameterized code,
which you can instantiate with different types. What this means is that you can write the code
with “placeholders for types,” and then supply the actual types when you create an instance of
the class.

By this point in the text, you should be very familiar with the concept that a type is not an
object, but a template for an object. In the same way, a generic type is not a type, but a template
for a type. Figure 19-1 illustrates this point.

Figure 19-1. Generic types are templates for types.

C# provides five kinds of generics: classes, structs, interfaces, delegates, and methods.
Notice that the first four are types, and methods are members.

Figure 19-2 shows how generic types fit in with the other types covered.

Figure 19-2. Generics and user-defined types

New page

9543.book Page 456 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 457

Continuing with the Stack Example
In the stack example, with classes MyIntStack and MyFloatStack, the bodies of the declarations of
the classes are identical except at the positions dealing with the type of the value held by the stack.

• In MyIntStack, these positions are occupied by type int.

• In MyFloatStack, they are occupied by float.

You can create a generic class from MyIntStack by doing the following:

• Take the MyIntStack class declaration, and instead of substituting float for int, substi-
tute the placeholder T.

• Change the class name to MyStack.

• Place the string <T> after the class name.

The result is the following generic class declaration. The string consisting of the angle
brackets with the T means that T is a placeholder for a type. (It doesn’t have to be the letter T—
it can be any identifier.) Everywhere throughout the body of the class declaration where T is
located, an actual type will need to be substituted by the compiler.

New page

 class MyStack <T>
 {
 int StackPointer = 0;
 T [] StackArray;
 ↑
 ↓
 public void Push(T x) {...}

 ↓
 public T Pop() {...}
 ...
 }

9543.book Page 457 Friday, December 21, 2007 8:20 PM

458 C H A P T E R 1 9 ■ G E N E R I C S

Generic Classes
Now that you’ve seen a generic class, let’s look at generic classes in more detail and see how
they are created and used.

When you are creating and using your own regular, non-generic classes, there are two
steps in the process: declaring the class and creating instances of the class. But generic classes
are not actual classes, but templates for classes—so you must first construct actual class types
from them. You can then create references and instances from these constructed class types.

Figure 19-3 illustrates the process at a high level. If it’s not all completely clear yet, don’t
worry—we’ll cover each part in the following sections.

1. Declare a class, using placeholders for some of the types.

2. Provide actual types to substitute in for the placeholders. This gives you an actual class
definition, with all the “blanks” filled in.

3. Create instances from the “filled-in” class definition.

Figure 19-3. Creating instances from a generic type

New page

9543.book Page 458 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 459

Declaring a Generic Class
Declaring a simple generic class is much like declaring a regular class, with the following
differences:

• Place a matching set of angle brackets after the class name.

• Between the angle brackets, place a comma-separated list of the placeholder strings
that represent the types, to be supplied on demand. These are called type parameters.

• Use the type parameters throughout the body of the declaration of the generic class to
represent the types that should be substituted in.

For example, the following code declares a generic class called SomeClass. The type parame-
ters are listed between the angle brackets, and then used throughout the body of the declaration
as if they were real types.

There is no special keyword that flags a generic class declaration. The presence of the type
parameter list, demarcated with angle brackets, distinguishes a generic class declaration from
a regular class declaration.
New page

 Type parameters
 ↓
 class SomeClass < T1, T2 >
 { Normally, types would be used in these positions.
 ↓ ↓
 public T1 SomeVar = new T1();
 public T2 OtherVar = new T2();
 } ↑ ↑
 Normally, types would be used in these positions.

9543.book Page 459 Friday, December 21, 2007 8:20 PM

460 C H A P T E R 1 9 ■ G E N E R I C S

Creating a Constructed Type
You cannot create class objects directly from a generic class. First, you need to tell the compiler
what actual types should be substituted for the placeholders (the type parameters). The com-
piler takes those actual types and creates a template from which it creates actual class objects.

To construct a class type from a generic class, list the class name and supply real types
between the angle brackets, in place of the type parameters. The real types being substituted
for the type parameters are called type arguments.

The compiler takes the type arguments and substitutes them for their corresponding type
parameters throughout the body of the generic class, producing the constructed type—from
which actual class instances are created.

Figure 19-4 shows the declaration of generic class SomeClass on the left. On the right, it
shows the constructed class created by using the type arguments short and int.

Figure 19-4. Supplying type arguments for all the type parameters of a generic class produces a
constructed class from which actual class objects can be created.

Figure 19-5 illustrates the difference between type parameters and type arguments.

• Generic class declarations have type parameters.

• Type arguments are the actual types you supply when creating a constructed type.

Figure 19-5. Type parameters versus type arguments

New page

 Type arguments
 ↓
 SomeClass< short, int >

9543.book Page 460 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 461

Creating Variables and Instances
A constructed class type is used just like a regular type in creating references and instances.

For example, the following code shows the creation of two class objects.

• The first line shows the creation of an object from a regular, non-generic class. This is a
form that you should be completely familiar with by now.

• The second line of code shows the creation of an object from generic class SomeClass,
instantiated with types short and int. The form is exactly analogous to the line above it,
with the constructed class forms in place of a regular class name.

• The third line is the same semantically as the second line, but rather than listing the
constructed type on both sides of the equals sign, it uses the var keyword to make the
compiler use type inference.

As with non-generic classes, the reference and the instance can be created separately, as
shown in Figure 19-6. The figure also shows that what is going on in memory is the same as for
a non-generic class.

• The first line below the generic class declaration allocates a reference in the stack for
variable myInst. Its value is null.

• The second line allocates an instance in the heap, and assigns its reference to the
variable.

Figure 19-6. Using a constructed type to create a reference and an instance

Many different class types can be constructed from the same generic class. Each one is a
separate class type, just as if it had its own separate non-generic class declaration.

MyNonGenClass myNGC = new MyNonGenClass ();
 Constructed class Constructed class
 ↓ ↓
SomeClass<short, int> mySc1 = new SomeClass<short, int>();
var mySc2 = new SomeClass<short, int>();

9543.book Page 461 Friday, December 21, 2007 8:20 PM

462 C H A P T E R 1 9 ■ G E N E R I C S

For example, the following code shows the creation of two types from generic class
SomeClass. The code is illustrated in Figure 19-7.

• One type is constructed with types short and int.

• The other is constructed with types int and long.

Figure 19-7. Two constructed classes created from a generic class

New page

class SomeClass< T1, T2 > // Generic class
{
 ...
}

class Program
{
 static void Main()
 {
 var first = new SomeClass<short, int >(); // Constructed type
 var second = new SomeClass<int, long>(); // Constructed type

 ...

9543.book Page 462 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 463

The Stack Example Using Generics
The following code shows the stack example implemented using generics. Method Main
defines two variables: stackInt and stackString. The two constructed types are created using
int and string as the type arguments.

 class MyStack<T>
 {
 T[] StackArray;
 int StackPointer = 0;

 public void Push(T x) {
 if (!IsStackFull)
 StackArray[StackPointer++] = x;
 }

 public T Pop() {
 return (!IsStackEmpty)
 ? StackArray[--StackPointer]
 : StackArray[0];
 }

 const int MaxStack = 10;
 bool IsStackFull { get{ return StackPointer >= MaxStack; } }
 bool IsStackEmpty { get{ return StackPointer <= 0; } }

 public MyStack() {
 StackArray = new T[MaxStack];
 }

 public void Print() {
 for (int i = StackPointer -1; i >= 0 ; i--)
 Console.WriteLine(" Value: {0}", StackArray[i]);
 }
 }

Continued

9543.book Page 463 Friday, December 21, 2007 8:20 PM

464 C H A P T E R 1 9 ■ G E N E R I C S

This code produces the following output:

 Value: 7
 Value: 5
 Value: 3
 Value: Hi there!
 Value: Generics are great!

New page

 class Program {
 static void Main() {
 var stackInt = new MyStack<int>();
 var stackString = new MyStack<string>();

 stackInt.Push(3); stackInt.Push(5); stackInt.Push(7);
 stackInt.Print();
 stackString.Push("Generics are great!");
 stackString.Push("Hi there! ");
 stackString.Print();
 }
 }

9543.book Page 464 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 465

Comparing the Generic and Non-Generic Stack
Table 19-1 summarizes some of the differences between the initial non-generic version of the
stack and the final generic version of the stack. Figure 19-8 illustrates some of these differences.

Table 19-1. Differences Between the Non-Generic and Generic Stacks

Figure 19-8. Non-generic stack versus generic stack

New page

Non-Generic Generic

Source Code Size Larger: You need a new imple-
mentation for each type.

Smaller: You only need one
implementation regardless of the
number of constructed types.

Executable Size The compiled version of each
stack will be present, regardless of
whether it is used.

Only types for which there is a
constructed type are present in
the executable.

Ease of Writing Easier to write. Harder to write.

Difficulty to Maintain More error-prone to maintain,
since all changes need to be
applied for each applicable type.

Easier to maintain, because mod-
ifications are only needed in
one place.

9543.book Page 465 Friday, December 21, 2007 8:20 PM

466 C H A P T E R 1 9 ■ G E N E R I C S

Constraints on Type Parameters
In the generic stack example, the stack did not do anything with the items it contained other
than store them and pop them. It did not try to add them, compare them, or do anything else
that would require using operations of the items themselves. There’s good reason for that.
Since the generic stack doesn’t know the type of the items it will be storing, it cannot know
what members these types implement.

All C# objects, however, are ultimately derived from class object, so the one thing the stack
can be sure of about the items it is storing is that they implement the members of class object.
These include methods ToString, Equals, and GetType. Other than that, it can’t know what
members are available.

As long as your code does not access the objects of the types it handles (or as long as it
sticks to the members of type object), your generic class can handle any type. Type parameters
that meet this constraint are called unbounded type parameters. If, however, your code tries to
use any other members, the compiler will produce an error message.

For example, the following code declares a class called Simple with a method called
LessThan that takes two generic type variables. LessThan attempts to return the result of using
the less-than operator. But not all classes implement the less-than operator, so the compiler
produces an error message.

To make generics more useful, you need to be able to supply additional information to the
compiler about what kinds of types are acceptable as arguments. These additional bits of infor-
mation are called constraints. Only arguments that meet the constraints can be substituted for
the type parameters.
New page

 class Simple<T>
 {
 static public bool LessThan(T i1, T i2)
 {
 return i1 < i2; // Error
 }
 ...
 }

9543.book Page 466 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 467

Where Clauses
Constraints are listed as where clauses.

• Each type parameter that has constraints has its own where clause.

• If a parameter has multiple constraints, they are listed in the where clause, separated by
commas.

The syntax of a where clause is the following:

The important points about where clauses are the following:

• They are listed after the closing angle bracket of the type parameter list.

• They are not separated by commas, or any other token.

• They can be listed in any order.

• The token where is a contextual keyword, so you can use it in other contexts.

For example, the following generic class has three type parameters. T1 is unbounded. For T2,
only classes of type Customer, or classes derived from Customer, can be used as type arguments.
For T3, only classes that implement interface IComparable can be used as type arguments.

New page

 Type parameter Constraint list
 ↓ ↓
 where TypeParam : constraint, constraint, ...
 ↑
 Colon

 Unbounded With constraints
 ↓ ↓ No separators
 class MyClass < T1, T2, T3 > ↓
 where T2: Customer // Constraint for T2
 where T3: IComparable // Constraint for T3
 { ↑
 ... No separators
 }

9543.book Page 467 Friday, December 21, 2007 8:20 PM

468 C H A P T E R 1 9 ■ G E N E R I C S

Constraint Types and Order
There are five types of constraints. These are listed in Table 19-2.

Table 19-2. Types of Constraints

The where clauses can be listed in any order. The constraints in a where clause, however,
must be placed in a particular order, as shown in Figure 19-9.

• There can be at most one primary constraint, and if there is one, it must be listed first.

• There can be any number of InterfaceName constraints.

• If the constructor constraint is present, it must be listed last.

Figure 19-9. If a type parameter has multiple constraints, they must be in this order.

The following declarations show examples of where clauses:

New page

Constraint Type Description

ClassName Only classes of this type, or classes derived from it, can be used as the type
argument.

class Any reference type, including classes, arrays, delegates, and interfaces, can be
used as the type argument.

struct Any value type can be used as the type argument.

InterfaceName Only this interface, or types that implement this interface, can be used as the
type argument.

new() Any type with a parameterless public constructor can be used as the type
argument. This is called the constructor constraint.

 class SortedList<S>
 where S: IComparable<S> { ... }

 class LinkedList<M,N>
 where M : IComparable<M>
 where N : ICloneable { ... }

 class MyDictionary<KeyType, ValueType>
 where KeyType : IEnumerable,
 new() { ... }

9543.book Page 468 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 469

Generic Structs
Like generic classes, generic structs can have type parameters and constraints. The rules and
conditions for generic structs are the same as those for generic classes.

For example, the following code declares a generic struct called PieceOfData, which stores
and retrieves a piece of data, the type of which is determined when the type is constructed.
Main creates objects of two constructed types—one using int and the other using string.

This code produces the following output:

intData = 10
stringData = Hi there.

New page

 struct PieceOfData<T> // Generic struct
 {
 public PieceOfData(T value) { _Data = value; }
 private T _Data;
 public T Data
 {
 get { return _Data; }
 set { _Data = value; }
 }
 }

 class Program
 {
 static void Main() Constructed type
 { ↓
 var intData = new PieceOfData<int>(10);
 var stringData = new PieceOfData<string>("Hi there.");
 ↑
 Constructed type
 Console.WriteLine("intData = {0}", intData.Data);
 Console.WriteLine("stringData = {0}", stringData.Data);
 }
 }

9543.book Page 469 Friday, December 21, 2007 8:20 PM

470 C H A P T E R 1 9 ■ G E N E R I C S

Generic Interfaces
Generic interfaces allow you to write interfaces where the parameters and return types of
interface members are generic type parameters. Generic interface declarations are similar to
non-generic interface declarations, but have the type parameter list in angle brackets after the
interface name.

For example, the following code declares a generic interface called IMyIfc.

• Generic class Simple implements the generic interface.

• Main instantiates two objects of the generic class: one with type int, and the other with
type string.

This code produces the following output:

5
Hi there.

New page

 Type parameter
 ↓
interface IMyIfc<T> // Generic interface
{
 T ReturnIt(T inValue);
}
 Type parameter Generic interface
 ↓ ↓
class Simple<S> : IMyIfc<S> // Generic class
{
 public S ReturnIt(S inValue) // Implement interface
 { return inValue; }
}

class Program
{
 static void Main()
 {
 var trivInt = new Simple<int>();
 var trivString = new Simple<string>();

 Console.WriteLine("{0}", trivInt.ReturnIt(5));
 Console.WriteLine("{0}", trivString.ReturnIt("Hi there."));
 }
}

9543.book Page 470 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 471

An Example Using Generic Interfaces
The following example illustrates two additional capabilities of generic interfaces:

• Like other generics, instances of a generic interface instantiated with different type
parameters are different interfaces.

• You can implement a generic interface in a non-generic type.

For example, the following code is similar to the last example, but in this case, Simple is a
non-generic class that implements a generic interface. In fact, it implements two instances of
IMyIfc. One instance is instantiated with type int, and the other with type string.

This code produces the following output:

5
Hi there.

New page

 interface IMyIfc<T> // Generic interface
 {
 T ReturnIt(T inValue);
 }
 Two different interfaces from the same generic interface
 ↓ ↓
 class Simple : IMyIfc<int>, IMyIfc<string> // Non-generic class
 {
 public int ReturnIt(int inValue) // Implement int interface
 { return inValue; }

 public string ReturnIt(string inValue) // Implement string interface
 { return inValue; }
 }

 class Program
 {
 static void Main()
 {
 Simple trivInt = new Simple();
 Simple trivString = new Simple();

 Console.WriteLine("{0}", trivInt.ReturnIt(5));
 Console.WriteLine("{0}", trivString.ReturnIt("Hi there."));
 }
 }

9543.book Page 471 Friday, December 21, 2007 8:20 PM

472 C H A P T E R 1 9 ■ G E N E R I C S

Generic Interface Implementations Must Be Unique
When implementing an interface in a generic type, there must be no possible combination of
type arguments that would create a duplicate interface in the type.

For example, in the following code, class Simple uses two instantiations of interface
IMyIfc.

• The first one is a constructed type, instantiated with type int.

• The second one has a type parameter rather than an argument.

This causes a conflict because if int is used as the type argument to replace S in the second
interface, then Simple would have two interfaces of the same type—which is not allowed.

■Note The names of generic interfaces do not clash with non-generic interfaces. For example, in the pre-
ceding code, we could have also declared a non-generic interface named IMyIfc.

New page

 interface IMyIfc<T>
 {
 T ReturnIt(T inValue);
 }
 Two interfaces
 ↓ ↓
 class Simple<S> : IMyIfc<int>, IMyIfc<S> // Error!
 {
 public int ReturnIt(int inValue) // Implement first interface.
 {
 return inValue;
 }

 public S ReturnIt(S inValue) // Implement second interface,
 { // but if it's int, it would be
 return inValue; // the same as the one above.
 }
 }

9543.book Page 472 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 473

Generic Delegates
Generic delegates are very much like non-generic delegates, except that the type parameters
determine the characteristics of what methods will be accepted.

• To declare a generic delegate, place the type parameter list in angle brackets after the
delegate name, and before the delegate parameter list.

• Notice that there are two parameter lists: the delegate formal parameter list and the
type parameter list.

• The scope of the type parameters includes

– The return type

– The formal parameter list

– The constraint clauses

New page

 Type parameters
 ↓
delegate R MyDelegate<T, R>(T value);
 ↑ ↑
 Return type Delegate formal parameter

9543.book Page 473 Friday, December 21, 2007 8:20 PM

474 C H A P T E R 1 9 ■ G E N E R I C S

The following code shows an example of a generic delegate. In Main, generic delegate
MyDelegate is instantiated with an argument of type string and initialized with method
PrintString.

This code produces the following output:

Hi There.
HI THERE.

New page

 delegate void MyDelegate<T>(T value); // Generic delegate

 class Simple
 {
 static public void PrintString(string s) // Method matches delegate
 {
 Console.WriteLine(s);
 }

 static public void PrintUpperString(string s) // Method matches delegate
 {
 Console.WriteLine("{0}", s.ToUpper());
 }
 }

 class Program
 {
 static void Main()
 {
 var myDel = // Create inst of delegate
 new MyDelegate<string>(Simple.PrintString);
 myDel += Simple.PrintUpperString; // Add a method.

 myDel("Hi There."); // Call delegate
 }
 }

9543.book Page 474 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 475

Another Generic Delegate Example
Since the LINQ feature of C# 3.0 uses generic delegates extensively, I think it’s worth showing
another example before we get there. I’ll cover LINQ itself, and more about its generic dele-
gates, in Chapter 21.

The following code declares a generic delegate named Func, which takes methods with two
parameters and that return a value. The method return type is represented as TR, and the
method parameter types are represented as T0 and T1. Notice that the delegate return type is
last in the generic parameter list.

This code produces the following output:

Total: 28

New page

 Delegate parameter type
 ↓ ↓ ↓ ↓
 public delegate TR Func<T1, T2, TR>(T1 p1, T2 p2); // Generic delegate
 ↑ ↑
 class Simple Delegate return type
 {
 static public string PrintString(int p1, int p2) // Method matches delegate
 {
 int total = p1 + p2;
 return total.ToString();
 }
 }

 class Program
 {
 static void Main()
 {
 var myDel = // Create inst of delegate
 new Func<int, int, string>(Simple.PrintString);

 Console.WriteLine("Total: {0}", myDel(15, 13)); // Call delegate
 }
 }

9543.book Page 475 Friday, December 21, 2007 8:20 PM

476 C H A P T E R 1 9 ■ G E N E R I C S

Generic Methods
Unlike the other generics, a method is a member, not a type.

Generic methods can be declared in both generic and non-generic classes, and in structs
and interfaces, as shown in Figure 19-10.

Figure 19-10. Generic methods can be declared in generic and non-generic types.

New page

9543.book Page 476 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 477

Declaring a Generic Method
Generic methods, like the other generics, have a type parameter list and optional constraints.

• Generic methods, like generic delegates, have two parameter lists:

– The method parameter list, enclosed in parentheses

– The type parameter list, enclosed in angle brackets

• To declare a generic method, do the following:

– Place the type parameter list immediately after the method name and before the
method parameter list.

– Place the optional constraint clauses after the method parameter list.

■Note Remember that the type parameter list goes after the method name and before the method param-
eter list.

New page

 Type parameter list Constraint clauses
 ↓ ↓
public void PrintData<S, T> (S p) where S: Person
{ ↑
 ... Method parameter list
}

9543.book Page 477 Friday, December 21, 2007 8:20 PM

478 C H A P T E R 1 9 ■ G E N E R I C S

Invoking a Generic Method
To invoke a generic method, supply type arguments with the method invocation, as shown here:

Figure 19-11 shows the declaration of a generic method called DoStuff, which takes two
type parameters. Below it are two invocations of the method, with different sets of type
parameters. Each invocation produces a different version of the method, as shown on the
right of the figure.

Figure 19-11. A generic method with two instantiations

New page

 Type parameters
 ↓
 MyMethod<short, int>();
 MyMethod<int, long >();

9543.book Page 478 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 479

Inferring Types

If you are passing parameters into a method, the compiler can sometimes infer from the types
of the method parameters the types that should be used as the type parameters of the generic
method. This can make the method calls simpler and easier to read.

For example, the following code declares MyMethod, which takes a method parameter of the
same type as the type parameter.

If you invoke MyMethod with a variable of type int, as shown in the following code, the
information in the type parameter of the method invocation is redundant, since the compiler
can see from the method parameter that it is an int.

Since the compiler can infer the type parameter from the method parameter, you can omit
the type parameter and its angle brackets from the invocation, as shown here:

 MyMethod(MyInt);

New page

 public void MyMethod <T> (T myVal) { ... }
 ↑ ↑
 Both are of type T

 int MyInt = 5;
 MyMethod <int> (MyInt);
 ↑ ↑
 Both are ints

9543.book Page 479 Friday, December 21, 2007 8:20 PM

480 C H A P T E R 1 9 ■ G E N E R I C S

Example of a Generic Method
The following code declares a generic method called ReverseAndPrint in a non-generic class
called Simple. The method takes as its parameter an array of any type. Main declares three differ-
ent array types. It then calls the method twice with each array. The first time it calls the method
with a particular array, it explicitly uses the type parameter. The second time, the type is inferred.

This code produces the following output:

11 9 7 5 3
3 5 7 9 11
third second first
first second third
2.345 7.891 3.567
3.567 7.891 2.345

 class Simple // Non-generic class
 {
 static public void ReverseAndPrint<T>(T[] arr) // Generic method
 {
 Array.Reverse(arr);
 foreach (T item in arr) // Use type argument T.
 Console.Write("{0}, ", item.ToString());
 Console.WriteLine("");
 }
 }

 class Program
 {
 static void Main()
 {
 // Create arrays of various types.
 var intArray = new int[] { 3, 5, 7, 9, 11 };
 var stringArray = new string[] { "first", "second", "third" };
 var doubleArray = new double[] { 3.567, 7.891, 2.345 };

 Simple.ReverseAndPrint<int>(intArray); // Invoke method
 Simple.ReverseAndPrint(intArray); // Infer type and invoke

 Simple.ReverseAndPrint<string>(stringArray); // Invoke method
 Simple.ReverseAndPrint(stringArray); // Infer type and invoke

 Simple.ReverseAndPrint<double>(doubleArray); // Invoke method
 Simple.ReverseAndPrint(doubleArray); // Infer type and invoke
 }
 }

9543.book Page 480 Friday, December 21, 2007 8:20 PM

C H A P T E R 1 9 ■ G E N E R I C S 481

Extension Methods with Generic Classes
Extension methods are described in detail in Chapter 7 and work just as well with generic classes.
They allow you to associate a static method in one class with a different generic class, and to
invoke the method as if it were an instance method on a constructed instance of the class.

As with non-generic classes, an extension method for a generic class

• Must be declared static

• Must be the member of a static class

• Must contain as its first parameter type the keyword this, followed by the name of the
generic class it extends

The following code shows an example of an extension method called Print on a generic
class called Holder<T>:

 static class ExtendHolder
 {
 public static void Print<T>(this Holder<T> h)
 {
 T[] vals = h.GetValues();
 Console.WriteLine("{0},\t{1},\t{2}", vals[0], vals[1], vals[2]);
 }
 }

 class Holder<T>
 {
 T[] Vals = new T[3];

 public Holder(T v0, T v1, T v2)
 { Vals[0] = v0; Vals[1] = v1; Vals[2] = v2; }

 public T[] GetValues() { return Vals; }
 }

 class Program
 {
 static void Main(string[] args) {
 var intHolder = new Holder<int>(3, 5, 7);
 var stringHolder = new Holder<string>("a1", "b2", "c3");
 intHolder.Print();
 stringHolder.Print();
 }
 }

9543.book Page 481 Friday, December 21, 2007 8:20 PM

482 C H A P T E R 1 9 ■ G E N E R I C S

This code produces the following output:

3, 5, 7
a1, b2, c3

9543.book Page 482 Friday, December 21, 2007 8:20 PM

483

■ ■ ■

C H A P T E R 2 0

Enumerators and Iterators

Enumerators and Enumerable Types
Using the IEnumerator Interface
The IEnumerable Interface
The Non-Interface Enumerator
The Generic Enumeration Interfaces
The IEnumerator<T> Interface
The IEnumerable<T> Interface
Iterators
Common Iterator Patterns
Producing Enumerables and Enumerators
Producing Multiple Enumerables
Producing Multiple Enumerators
Behind the Scenes with Iterators
New page

9543.book Page 483 Thursday, December 27, 2007 8:34 PM

484 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Enumerators and Enumerable Types
In Chapter 14, you saw that you can use a foreach statement to cycle through the elements of
an array. In this chapter, you’ll take a closer look at arrays and see why they can be processed
by foreach statements. You’ll also look at how you can add this capability to your own user-
defined classes. Later in the chapter, I’ll discuss the use of iterators.

Using the foreach Statement
When you use the foreach statement with an array, the statement presents you with each ele-
ment in the array, one by one, allowing you to read its value.

For example, the following code declares an array with four elements, and then uses a
foreach loop to print out the values of the items:

This code produces the following output:

Item value: 10
Item value: 11
Item value: 12
Item value: 13

Why does this work, apparently magically, with arrays? The reason is that an array can pro-
duce, upon request, an object called an enumerator. The enumerator can return the elements
of the array, one by one, in order, as they are requested. The enumerator “knows” the order of
the items, and keeps track of where it is in the sequence. It then returns the current item when
it is requested.

For types that have enumerators, there must be a way of retrieving them. The standard
way of retrieving an object’s enumerator in .NET is to call the object’s GetEnumerator method.
Types that implement a GetEnumerator method are called enumerable types, or just enumera-
bles. Arrays are enumerables.

Figure 20-1 illustrates the relationship between enumerables and enumerators.
New page

 int[] arr1 = { 10, 11, 12, 13 }; // Define the array.

 foreach (int item in arr1) // Enumerate the elements.
 Console.WriteLine("Item value: {0}", item);

9543.book Page 484 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 485

Figure 20-1. Overview of enumerators and enumerables

The foreach construct is designed to work with enumerables. As long as the object it is
given to iterate over is an enumerable type, such as an array, it will perform the following
actions:

• Getting the object’s enumerator by calling the GetEnumerator method

• Requesting each item from the enumerator and making it available to your code as the
iteration variable, which your code can read, but not change

Types of Enumerators
There are three variations on enumerators. They all work essentially the same way, with only
slight differences. I will discuss all three types. You can implement enumerators using

• The IEnumerator/IEnumerable interfaces—called the non-generic interface form

• The IEnumerator<T>/IEnumerable<T> interfaces—called the generic interface form

• The form that uses no interfaces

New page

 Must be enumerable
 ↓
foreach(Type VarName in EnumerableObject)
{
 ...
}

9543.book Page 485 Thursday, December 27, 2007 8:34 PM

486 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Using the IEnumerator Interface
This section will start by looking at the first in the preceding list: the non-generic interface
form. This form of enumerator is a class that implements the IEnumerator interface. It is called
non-generic because it does not use C# generics.

The IEnumerator interface contains three function members: Current, MoveNext, and Reset.

• Current is a property that returns the item at the current position in the sequence.

– It is a read-only property.

– It returns a reference of type object, so an object of any type can be returned.

• MoveNext is a method that advances the enumerator’s position to the next item in the
collection. It also returns a Boolean value, indicating whether the new position is a valid
position or is beyond the end of the sequence.

– If the new position is valid, the method returns true.

– If the new position is not valid (i.e., it’s at the end), the method returns false.

– The initial position of the enumerator is before the first item in the sequence.
MoveNext must be called before the first access of Current, or the CLR will raise an
InvalidOperationException exception.

• Reset is a method that resets the position to the initial state.

Figure 20-2 illustrates a collection of three items, which is shown on the left of the figure,
and its enumerator, which is shown on the right. In the figure, the enumerator is an instance of
a class called ArrEnumerator.

Figure 20-2. The enumerator for a small collection

New page

9543.book Page 486 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 487

The enumerator class is usually declared as a nested class of the class for which it is an
enumerator. A nested class is one that is declared inside the declaration of another class.
Nested classes are described in detail in Chapter 25.

The way the enumerator keeps track of the current item in the sequence is entirely
implementation-dependent. It might be implemented as a reference to an object, an index
value, or something else entirely. In the case of an array, it is simply the index of the item.

Figure 20-3 illustrates the states of an enumerator for a collection of three items. The states
are labeled 1 through 5.

• Notice that in state 1, the initial position of the enumerator is -1 (i.e., before the first ele-
ment of the collection).

• Each transition between states is caused by a call to MoveNext, which advances the posi-
tion in the sequence. Each call to MoveNext between states 1 and 4 returns true. In the
transition between states 4 and 5, however, the position ends up beyond the last item in
the collection, so the method returns false.

• In the final state, any further calls to MoveNext return false.

Figure 20-3. The states of an enumerator

New page

9543.book Page 487 Thursday, December 27, 2007 8:34 PM

488 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Given a collection’s enumerator, you should be able to simulate a foreach loop by cycling
through the items in the collection using the MoveNext and Current members. For example, you
know that arrays are enumerable, so the following code does manually what the foreach state-
ment does automatically. The output is the same as if it were in a foreach loop.

This code produces the following output:

10
11
12
13

New page

 static void Main()
 {
 int[] MyArray = { 10, 11, 12, 13 }; // Create an array.

 IEnumerator ie = MyArray.GetEnumerator(); // Get its enumerator.
 while (ie.MoveNext()) // Move to the next item.
 {
 int i = (int) ie.Current; // Get the current item.
 Console.WriteLine("{0}", i); // Write it out.
 }
 }

9543.book Page 488 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 489

Declaring an IEnumerator Enumerator
To create a non-generic interface enumerator class, you must declare a class that implements
the IEnumerator interface. The IEnumerator interface has the following characteristics:

• It is a member of the System.Collections namespace.

• It contains the three members Current, MoveNext, and Reset.

The following code shows the outline of a non-generic enumerator class. It does not show
how the position is maintained. Notice that Current returns a reference to an object.

New page

 using System.Collections; // Include the namespace.

 class MyEnumerator: IEnumerator
 { Returns a reference to an object
 ↓
 public object Current { get; } // Current

 public bool MoveNext() { ... } // MoveNext

 public void Reset() { ... } // Reset
 ...
 }

9543.book Page 489 Thursday, December 27, 2007 8:34 PM

490 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

For example, the following code implements an enumerator class that lists an array of
color names:

New page

 using System.Collections;

 class ColorEnumerator: IEnumerator
 { ↑
 string[] Colors; Implements IEnumerator
 int Position = -1;

 public object Current // Current
 {
 get { return Colors[Position]; }
 }

 public bool MoveNext() // MoveNext
 {
 if (Position < Colors.Length - 1)
 {
 Position++;
 return true;
 }
 else
 return false;
 }

 public void Reset() // Reset
 {
 Position = -1;
 }

 public ColorEnumerator(string[] theColors) // Constructor
 {
 Colors = new string[theColors.Length];
 for (int i = 0; i < theColors.Length; i++)
 Colors[i] = theColors[i];
 }
 }

9543.book Page 490 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 491

The IEnumerable Interface
The IEnumerable interface has only a single member, method GetEnumerator, which returns an
enumerator for the object.

Figure 20-4 shows class MyClass, which has three items to enumerate, and implements the
IEnumerable interface by implementing the GetEnumerator method.

Figure 20-4. The GetEnumerator method returns an enumerator object for the class.

The following code shows the form for the declaration of an enumerable class:

The following code gives an example of an enumerable class that uses enumerator class
ColorEnumerator from the previous example. Remember that ColorEnumerator implements
IEnumerator.

New page

 using System.Collections;
 Implements the IEnumerable interface
 ↓
 class MyClass : IEnumerable
 {
 public IEnumerator GetEnumerator { ... }
 ... ↑
 } Returns an object of type IEnumerator

 using System.Collections;

 class MyColors: IEnumerable
 {
 string[] Colors = { "Red", "Yellow", "Blue" };

 public IEnumerator GetEnumerator()
 {
 return new ColorEnumerator(Colors);
 } ↑
 } An instance of the enumerator class

9543.book Page 491 Thursday, December 27, 2007 8:34 PM

492 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Example Using IEnumerable and IEnumerator
Putting the MyColors and ColorEnumerator examples together, you can add a class called
Program with a Main method that creates an instance of MyColors and uses it in a foreach loop.

 using System;
 using System.Collections;

 namespace ColorCollectionEnumerator
 {
 class ColorEnumerator: IEnumerator
 {
 string[] Colors;
 int Position = -1;

 public ColorEnumerator(string[] theColors) // Constructor
 {
 Colors = new string[theColors.Length];
 for (int i = 0; i < theColors.Length; i++)
 Colors[i] = theColors[i];
 }

 public object Current // Current
 {
 get { return Colors[Position]; }
 }

 public bool MoveNext() // MoveNext
 {
 if (Position < Colors.Length - 1)
 {
 Position++;
 return true;
 }
 else
 return false;
 }

 public void Reset() // Reset
 { Position = -1; }
 }

Continued

9543.book Page 492 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 493

This code produces the following output:

Red
Yellow
Blue

New page

 class MyColors: IEnumerable
 {
 string[] Colors = { "Red", "Yellow", "Blue" };

 public IEnumerator GetEnumerator()
 {
 return new ColorEnumerator(Colors);
 }
 }

 class Program
 {
 static void Main()
 {
 MyColors mc = new MyColors();
 foreach (string color in mc)
 Console.WriteLine("{0}", color);
 }
 }
 }

9543.book Page 493 Thursday, December 27, 2007 8:34 PM

494 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

The Non-Interface Enumerator
You’ve just seen how to use the IEnumerable and IEnumerator interfaces to create useful enu-
merables and enumerators. But there are several drawbacks to this method.

First, remember that the object returned by Current is of type object. For value types, this
means that before they are returned by Current, they must be boxed to turn them into objects.
They must then be unboxed again after they have been received from Current. This can exact a
substantial performance penalty if it needs to be done on large amounts of data.

Another drawback of the non-generic interface method is that you’ve lost type safety. The
values being enumerated are being handled as objects, and so can be of any type. This elimi-
nates the safety of compile-time type checking.

You can solve these problems by making the following changes to the enumerator/
enumerable class declarations.

• For the enumerator class

– Do not derive the class from IEnumerator.

– Implement MoveNext just as before.

– Implement Current just as before, but have as its return type the type of the items
being enumerated.

– You do not have to implement Reset.

• For the enumerable class

– Do not derive the class from IEnumerable.

– Implement GetEnumerator as before, but have its return type be the type of the
enumerator class.

9543.book Page 494 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 495

Figure 20-5 shows the differences. The non-generic interface code is on the left, and the
non-interface code is on the right. With these changes, the foreach statement will be perfectly
happy to process your collection, but without the drawbacks just listed.

Figure 20-5. Comparing interface-based and non-interface-based enumerators

One possible problem with the non-interface enumerator implementation is that types
from other assemblies might expect enumeration to be implemented using the interface
method. If these objects attempt to get an enumeration of your class objects using the interface
conventions, they will not be able to find them.

To solve this problem, you can implement both forms in the same classes. That is, you can
create implementations for Current, MoveNext, Reset, and GetEnumerator at the class level, and
also create explicit interface implementations for them. With both sets of implementations, the
type-safe, more efficient implementation will be called by foreach and other constructs that
can use the non-interface implementations, while the other constructs will call the explicit
interface implementations.
New page

9543.book Page 495 Thursday, December 27, 2007 8:34 PM

496 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

The Generic Enumeration Interfaces
The third form of enumerator uses the generic interfaces IEnumerable<T> and IEnumerator<T>.
They are called generic because they use C# generics. Using them is very similar to using the
non-generic forms. Essentially, the differences between the two are the following:

• With the non-generic interface form

– The GetEnumerator method of interface IEnumerable returns an enumerator class
instance that implements IEnumerator.

– The class implementing IEnumerator implements property Current, which returns a
reference of type object, which you must then cast to the actual type of the object.

• With the generic interface form

– The GetEnumerator method of interface IEnumerable<T> returns an enumerator class
instance that implements IEnumerator<T>.

– The class implementing IEnumerator<T> implements property Current, which
returns an object of the actual type, rather than a reference to the base class object.

An important point to notice is that the non-generic interface implementations are not
type-safe. They return references to type object, which must then be cast to the actual types.
With the generic interfaces, however, the enumerator is type-safe, returning references to the
actual types.
New page

9543.book Page 496 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 497

The IEnumerator<T> Interface
The IEnumerator<T> interface uses generics to return an actual derived type, rather than an
object of type object.

The IEnumerator<T> interface derives from two other interfaces: the non-generic
IEnumerator interface and the IDisposable interface. It must therefore implement their
members.

• You have already seen the non-generic IEnumerator interface and its three members.

• The IDisposable interface has a single, void, parameterless method called Dispose,
which can be used to free unmanaged resources being held by the class. (The Dispose
method was described in Chapter 6.)

• The IEnumerator<T> interface itself has a single method, Current, which returns an item
of a derived type—not an item of type object.

• Since both IEnumerator<T> and IEnumerator have a member named Current, you should
explicitly implement the IEnumerator version, and implement the generic version in the
class itself, as shown in Figure 20-6.

Figure 20-6 illustrates the implementation of the interface.

Figure 20-6. Implementing the IEnumerator<T> interface

New page

9543.book Page 497 Thursday, December 27, 2007 8:34 PM

498 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

The declaration of the class implementing the interface should look something like the
pattern in the following code, where T is the type returned by the enumerator:

New page

 using System.Collections;
 using System.Collections.Generic;

 class MyGenEnumerator: IEnumerator< T >
 {
 public T Current { get; } // IEnumerator<T>--Current
 Explicit implementation
 ↓
 object IEnumerator.Current { get { ... } } // IEnumerator--Current

 public bool MoveNext() { ... } // IEnumerator--MoveNext

 public void Reset() { ... } // IEnumerator--Reset

 public void Dispose() { ... } // IDisposable--Dispose
 ...
 }

9543.book Page 498 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 499

For example, the following code implements the ColorEnumerator example using the
generic enumerator interface:

New page

 using System.Collections;
 using System.Collections.Generic; Substitute type for T

 class ColorEnumerator : IEnumerator<string>
 {
 string[] Colors; int Position = -1;
 Returns a derived type
 ↓
 public string Current // Current--generic
 {
 get { return Colors[Position]; }
 }
 Explicit implementation
 ↓
 object IEnumerator.Current // Current--non-generic
 {
 get { return Colors[Position]; }
 }

 public bool MoveNext() // MoveNext
 {
 if (Position < Colors.Length - 1)
 {
 Position++;
 return true;
 }
 else
 return false;
 }

 public void Reset() // Reset
 { Position = -1; }

 public void Dispose() { }

 public ColorEnumerator(string[] colors) // Constructor
 {
 Colors = new string[colors.Length];
 for (int i = 0; i < colors.Length; i++)
 Colors[i] = colors[i];
 }
 }

9543.book Page 499 Thursday, December 27, 2007 8:34 PM

500 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

The IEnumerable<T> Interface
The generic IEnumerable<T> interface is very similar to the non-generic version, IEnumerable. The
generic version derives from IEnumerable, so it must also implement the IEnumerable interface.

• Like IEnumerable, the generic version also contains a single member, a method called
GetEnumerator. This version of GetEnumerator, however, returns a class object imple-
menting the generic IEnumerator<T> interface.

• Since the class must implement two GetEnumerator methods, you should explicitly
implement the non-generic version, and implement the generic version in the class
itself, as shown in Figure 20-7.

Figure 20-7 illustrates the implementation of the interface.

Figure 20-7. Implementing the IEnumerable<T> interface

New page

9543.book Page 500 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 501

The following code shows a pattern for implementing the generic interface. T is the type
returned by the enumerator.

For example, the following code shows the use of the generic enumerable interface:

New page

 using System.Collections;
 using System.Collections.Generic;

 class MyGenEnumerable: IEnumerable<T>
 {
 public IEnumerator<T> GetEnumerator() { ... } // IEnumerable<T> version
 Explicit implementation
 ↓
 IEnumerator IEnumerable.GetEnumerator() { ... } // IEnumerable version
 ...
 }

 using System.Collections;
 using System.Collections.Generic;
 Substitute actual type for T
 ↓
 class MyColors : IEnumerable<string>
 {
 string[] Colors = { "Red", "Yellow", "Blue" };
 Substitute actual type for T
 ↓
 public IEnumerator<string> GetEnumerator() // IEnumerable<T> version
 {
 return new ColorEnumerator(Colors);
 }
 Explicit implementation
 ↓
 IEnumerator IEnumerable.GetEnumerator() // IEnumerable version
 {
 return new ColorEnumerator(Colors);
 }
 }

9543.book Page 501 Thursday, December 27, 2007 8:34 PM

502 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Iterators
Enumerable classes and enumerators are used extensively in the .NET collection classes, so it’s
important that you know how they work. But now that you know how to create your own enu-
merable classes and enumerators, you might be pleased to learn that, starting with C# 2.0, the
language got a much simpler way of creating enumerators and enumerables. In fact, the com-
piler will create them for you. The construct that produces them is called an iterator. You can
use the enumerators and enumerables generated by iterators wherever you would use manu-
ally coded enumerators or enumerables.

Before I explain the details, let’s take a look at two examples. The following method decla-
ration implements an iterator that produces and returns an enumerator.

• The iterator returns a generic enumerator that returns three items of type string.

• The yield return statements declare that this is the next item in the enumeration.

The following method declaration is another version that produces the same result:

I haven’t explained the yield return statement yet, but on inspecting these code seg-
ments, you might have the feeling that something is different about this code. It doesn’t seem
quite right. What exactly does the yield return statement do?

For example, in the first version, if the method returns on the first yield return statement,
then the last two statements can never be reached. If it doesn’t return on the first statement,
but continues through to the end of the method, then what happens to the values? And in the
second version, if the yield return statement in the body of the loop returns on the first itera-
tion, then the loop will never get to any subsequent iterations.

And besides all that, an enumerator doesn’t just return all the elements in one shot—it
returns a new value with each access of the Current property. So how does this give you an enu-
merator? Clearly this code is different than anything shown before.

 Return a generic enumerator.
 ↓
public IEnumerator<string> BlackAndWhite() // Version 1
{
 yield return "black"; // yield return
 yield return "gray"; // yield return
 yield return "white"; // yield return
}

 Return a generic enumerator.
 ↓
 public IEnumerator<string> BlackAndWhite() // Version 2
 {
 string[] TheColors = { "black", "gray", "white" };

 for (int i = 0; i < TheColors.Length; i++)
 yield return TheColors[i]; // yield return
 }

9543.book Page 502 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 503

Iterator Blocks
An iterator block is a code block with one or more yield statements. Any of the following three
types of code blocks can be iterator blocks:

• A method body

• An accessor body

• An operator body

Iterator blocks are treated differently than other blocks. Other blocks contain sequences of
statements that are treated imperatively. That is, the first statement in the block is executed,
followed by the subsequent statements, and eventually control leaves the block.

An iterator block, on the other hand, is not a sequence of imperative commands to be
executed at one time. Instead, it describes the behavior of an enumerator class that you want
the compiler to build for you. The code in the iterator block describes how to enumerate the
elements.

Iterator blocks have two special statements:

• The yield return statement specifies the next item in the sequence to return.

• The yield break statement specifies that there are no more items in the sequence.

The compiler takes this description of how to enumerate the items and uses it to build the
enumerator class, including all the required method and property implementations. The
resulting class is nested inside the class where the iterator is declared. Figure 20-8 shows the
code on the left and the resulting objects on the right. Notice how much is built for you auto-
matically by the compiler.

Figure 20-8. An iterator that produces an enumerator

New page

9543.book Page 503 Thursday, December 27, 2007 8:34 PM

504 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Using an Iterator to Create an Enumerator
The following code illustrates how to use an iterator to create an enumerable class.

• MyClass, illustrated in Figure 20-8, uses iterator method BlackAndWhite to produce an
enumerator for the class.

• MyClass also implements method GetEnumerator, which in turn calls BlackAndWhite, and
returns the enumerator that BlackAndWhite returns to it.

• Notice that in Main, you can use an instance of the class directly in the foreach statement
since the class is enumerable.

This code produces the following output:

black
gray
white

New page

 class MyClass
 {
 public IEnumerator<string> GetEnumerator()
 {
 return BlackAndWhite(); // Returns the enumerator.
 }
 Returns an enumerator
 ↓
 public IEnumerator<string> BlackAndWhite() // Iterator
 {
 yield return "black";
 yield return "gray";
 yield return "white";
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 Use the instance of MyClass.
 ↓
 foreach (string shade in mc)
 Console.WriteLine(shade);
 }
 }

9543.book Page 504 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 505

Using an Iterator to Create an Enumerable
The previous example created a class comprising two parts: the iterator that produced the enu-
merator and the GetEnumerator method that returned that enumerator. In this example, the
iterator is used to create an enumerable rather than an enumerator. There are some important
differences between this example and the last:

• In the previous example, iterator method BlackAndWhite returned an IEnumerator<string>
and MyClass implemented method GetEnumerator by returning the object returned by
BlackAndWhite.

• In this example, the iterator method BlackAndWhite returns an IEnumerable<string>
rather than an IEnumerator<string>. MyClass, therefore, implements its GetEnumerator
method by first calling method BlackAndWhite to get the enumerable object, and then
calling that object’s GetEnumerator method and returning its results.

• Notice that in the foreach statement in Main, you can either use an instance of the class
or call BlackAndWhite directly, since it returns an enumerable. Both ways are shown.

 class MyClass {
 public IEnumerator<string> GetEnumerator()
 {
 IEnumerable<string> myEnumerable = BlackAndWhite(); // Get enumerable
 return myEnumerable.GetEnumerator(); // Get enumerator
 } Returns an enumerable
 ↓
 public IEnumerable<string> BlackAndWhite()
 {
 yield return "black";
 yield return "gray";
 yield return "white";
 }
 }

Continued

9543.book Page 505 Thursday, December 27, 2007 8:34 PM

506 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

This code produces the following output:

black gray white black gray white

New page

 class Program {
 static void Main()
 {
 MyClass mc = new MyClass();
 Use the class object.
 ↓
 foreach (string shade in mc)
 Console.Write("{0} ", shade); Use the class iterator method.
 ↓
 foreach (string shade in mc.BlackAndWhite())
 Console.Write("{0} ", shade);
 }
 }

9543ch20.fm Page 506 Thursday, December 27, 2007 8:37 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 507

Common Iterator Patterns
The previous two sections showed that you can create an iterator to return either an enumera-
ble or an enumerator. Figure 20-9 summarizes how to use the common iterator patterns.

• When you implement an iterator that returns an enumerator, you must make the
class enumerable by implementing GetEnumerator, so that it returns the enumerator
returned by the iterator. This is shown on the left of the figure.

• In a class, when you implement an iterator that returns an enumerable, you can either make
this class itself enumerable or not by either making it implement GetEnumerator or not.

– If you implement GetEnumerator, make it call the iterator method to get an instance
of the automatically generated class that implements IEnumerable. Next, return the
enumerator built by GetEnumerator from this IEnumerable object, as shown on the
right of the figure.

– If you don’t make the class itself enumerable by not implementing GetEnumerator,
you can still use the enumerable returned by the iterator, by calling the iterator
method directly, as shown in the second foreach statement on the right.

Figure 20-9. The common iterator patterns

New page

9543.book Page 507 Thursday, December 27, 2007 8:34 PM

508 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

Producing Enumerables and Enumerators
The previous examples used iterators that returned either an IEnumerator<T> or an IEnumerable<T>.
You can also create iterators that return the non-generic versions as well. The return types you can
specify are the following:

• IEnumerator<T> (generic—substitute an actual type for T)

• IEnumerable<T> (generic—substitute an actual type for T)

• IEnumerator (non-generic)

• IEnumerable (non-generic)

For the two enumerator types, the compiler generates a nested class that contains the
implementation of either the non-generic or the generic enumerator, with the behavior speci-
fied by the iterator block.

For the two enumerable types, it does even more. It produces a nested class that is both
enumerable and the enumerator. The class, therefore, implements both the enumerator and
the GetEnumerator method. Notice that GetEnumerator is implemented as part of the nested
class—not as part of the enclosing class.

Figure 20-10 illustrates the generic enumerable produced by the enumerable iterator in
the last example.

• The iterator’s code is shown on the left side of the figure, and shows that its return type
is IEnumerable<string>.

• On the right side of the figure, the diagram shows that the nested class implements both
IEnumerator<string> and IEnumerable<string>.

Figure 20-10. The compiler produces a class that is both an enumerable and an enumerator. It
also produces the method that returns the class object.

9543.book Page 508 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 509

Producing Multiple Enumerables
In the following example, class ColorCollection has two enumerable iterators—one enumer-
ating the items in forward order and the other enumerating them in reverse order. Notice that
although it has two methods that return enumerables, the class itself is not enumerable since
it doesn’t implement GetEnumerator.

 using System;
 using System.Collections.Generic; // You need this namespace.

 namespace ColorCollectionIterator
 {
 class ColorCollection
 {
 string[] Colors={"Red", "Orange", "Yellow", "Green", "Blue", "Purple"};

 public IEnumerable<string> Forward() { // Enumerable iterator
 for (int i = 0; i < Colors.Length; i++)
 yield return Colors[i];
 }

 public IEnumerable<string> Reverse() { // Enumerable iterator
 for (int i = Colors.Length - 1; i >= 0; i--)
 yield return Colors[i];
 }
 }

Continued

9543.book Page 509 Thursday, December 27, 2007 8:34 PM

510 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

New pageThis code produces the following output:

Red Orange Yellow Green Blue Purple
Purple Blue Green Yellow Orange Red
Purple Blue Green Yellow Orange Red

 class Program
 {
 static void Main()
 {
 ColorCollection cc = new ColorCollection();
 Return enumerable to the foreach statement
 ↓
 foreach (string color in cc.Forward())
 Console.Write("{0} ", color);
 Console.WriteLine("");
 Return enumerable to the foreach statement
 ↓
 foreach (string color in cc.Reverse())
 Console.Write("{0} ", color);
 Console.WriteLine("");

 // Skip the foreach and manually use the enumerable and enumerator.
 IEnumerable<string> ieable = cc.Reverse();
 IEnumerator<string> ieator = ieable.GetEnumerator();
 while (ieator.MoveNext())
 Console.Write("{0} ", ieator.Current);
 Console.WriteLine("");
 }
 }
 }

9543.book Page 510 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 511

Producing Multiple Enumerators
The previous example used iterators to produce a class with two enumerables. This example shows
two things. First, it uses iterators to produce a class with two enumerators. Second, it shows how
iterators can be implemented as properties rather than methods.

The code declares two properties that define two different enumerators. The
GetEnumerator method returns one or the other of the two enumerators, depending on
the value of the Boolean variable ColorFlag. If ColorFlag is true, the Colors enumerator is
returned. Otherwise, the BlackAndWhite enumerator is returned.

 class MyClass: IEnumerable<string>
 {
 bool ColorFlag = true;

 public MyClass(bool flag) // Constructor
 {
 ColorFlag = flag;
 }

 IEnumerator<string> BlackAndWhite // Property--enumerator iterator
 {
 get {
 yield return "black";
 yield return "gray";
 yield return "white";
 }
 }

 IEnumerator<string> Colors // Property--enumerator iterator
 {
 get {
 string[] TheColors = { "blue", "red", "yellow" };
 for (int i = 0; i < TheColors.Length; i++)
 yield return TheColors[i];
 }
 }

Continued

9543.book Page 511 Thursday, December 27, 2007 8:34 PM

512 C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S

This code produces the following output:

blue red yellow
black gray white

New page

 public IEnumerator<string> GetEnumerator() // GetEnumerator
 {
 return ColorFlag
 ? Colors // Return Colors enumerator
 : BlackAndWhite; // Return BlackAndWhite enumerator
 }

 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return ColorFlag
 ? Colors // Return Colors enumerator
 : BlackAndWhite; // Return BlackAndWhite enumerator
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc1 = new MyClass(true); // Call constructor with true
 foreach (string s in mc1)
 Console.Write("{0} ", s);
 Console.WriteLine("");

 MyClass mc2 = new MyClass(false); // Call constructor with false
 foreach (string s in mc2)
 Console.Write("{0} ", s);
 Console.WriteLine("");
 }
 }

9543.book Page 512 Thursday, December 27, 2007 8:34 PM

C H A P T E R 2 0 ■ E N U M E R A T O R S A N D I T E R A T O R S 513

Behind the Scenes with Iterators
The following are some other important things to know about iterators:

• Iterators require the System.Collections.Generic namespace, so you should include it
with a using directive.

• In the compiler-generated enumerators, the Reset method is not supported. It is imple-
mented, since it is required by the interface, but the implementation throws a System.
NotSupportedException exception if it is called. Notice that the Reset method is shown
grayed out in Figure 20-8.

Behind the scenes, the enumerator class generated by the compiler is a state machine with
four states:

Before: The initial state before the first call to MoveNext.

Running: The state entered when MoveNext is called. While in this state, the enumerator
determines and sets the position for the next item. It exits the state when it encounters a
yield return, a yield break, or the end of the iterator body.

Suspended: The state where the state machine is waiting for the next call to MoveNext.

After: The state where there are no more items to enumerate.

If the state machine is in either the before or suspended states, and there is a call to the
MoveNext method, it goes into the running state. In the running state, it determines the next
item in the collection, and sets the position.

If there are more items, the state machine goes into the suspended state. If there are no
more items, it goes into the after state, where it remains. Figure 20-11 shows the state machine.

Figure 20-11. An iterator state machine

9543.book Page 513 Thursday, December 27, 2007 8:34 PM

9543.book Page 514 Thursday, December 27, 2007 8:34 PM

515

■ ■ ■

C H A P T E R 2 1

Introduction to LINQ

What Is LINQ?
LINQ Providers
Query Syntax and Method Syntax
Query Variables
The Structure of Query Expressions
The Standard Query Operators
LINQ to XML
New pageg

9543ch21.fm Page 515 Tuesday, January 8, 2008 3:11 PM

516 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

What Is LINQ?
LINQ is a new feature of C# and Visual Basic .NET that integrates into these languages the abil-
ity to query data.

In a relational database system, data is organized into nicely normalized tables, and
accessed with a very simple but powerful query language⎯SQL. SQL can work with any set
of data in a database because the data is organized into tables, following strict rules.

In a program, as opposed to a database, however, data is stored in class objects or structs
that are all vastly different. As a result, there has been no general query language for retrieving
data from data structures. The method of retrieving data from objects has always been custom-
designed as part of the program. With the introduction of LINQ in C# 3.0, however, the ability
to query collections of objects has been added to the language. The following are the important
high-level characteristics of LINQ:

• LINQ (pronounced link) stands for Language Integrated Query.

• LINQ is an extension of the .NET Framework that allows you to query collections of data
in a manner similar to database queries.

• C# 3.0 includes extensions that integrate LINQ into the language, allowing you to query
data from databases, collections of program objects, and XML documents.

The following code shows a simple example of using LINQ. In this code, the data source
being queried is simply an array of ints. The definition of the query is the statement with the
from and select keywords. Although the query is defined in this statement, it is actually per-
formed and used in the foreach statement at the bottom.

This code produces the following output:

2, 5,

New page

 static void Main()
 {
 int[] numbers = { 2, 12, 5, 15 }; // Data source

 IEnumerable<int> lowNums = // Define and store the query.
 from n in numbers
 where n < 10
 select n;

 foreach (var x in lowNums) // Execute the query.
 Console.Write("{0}, ", x);
 }

9543ch21.fm Page 516 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 517

LINQ Providers
In the previous example, the data source was simply an array of ints, which is an in-memory
object of the program. LINQ, however, can work with many different types of data sources,
such as SQL databases, XML documents, and a host of others. For every data source type, how-
ever, under the covers there must be a module of code that implements the LINQ queries in
terms of that data source type. These code modules are called LINQ providers. The important
points about LINQ providers are the following:

• Microsoft provides LINQ providers for a number of common data source types, as
shown in Figure 21-1.

• You can use any LINQ-enabled language (C# 3.0 in our case) to query any data source
type for which there is a LINQ provider.

• New LINQ providers are constantly being produced by third parties for all sorts of data
source types.

Figure 21-1. The architecture of LINQ, the LINQ-enabled languages, and LINQ providers

There are entire books dedicated to LINQ in all its forms and subtleties, but that is clearly
beyond the scope of this chapter. Instead, this chapter will introduce you to LINQ and explain
how to use it with program objects (LINQ to Objects) and XML (LINQ to XML).
New page

9543ch21.fm Page 517 Tuesday, January 8, 2008 3:11 PM

518 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Anonymous Types
Before getting into the details of LINQ’s querying features, I’ll start by covering a feature of
C# 3.0 that allows you to create unnamed class types. These are called, not surprisingly, anon-
ymous types.

In Chapter 5 we covered object initializers, which allow you to initialize the fields and
properties of a new class instance when using an object-creation expression. Just to remind
you, this kind of object-creation expression consists of three components: the keyword new, the
class name or constructor, and the object initializer. The object initializer consists of a comma-
separated list of member initializers between a set of curly braces.

Creating a variable of an anonymous type uses the same form—but without the class
name or constructor. The following line of code shows the object-creation expression form of
an anonymous type:

The following code shows an example of creating and using an anonymous type. It creates
a variable called student, with an anonymous type that has three string properties and one int
property. Notice in the WriteLine statement that the instance’s members are accessed just as if
they were members of a named type.

This code produces the following output:

Mary Jones, Age 19, Major: History

Important things to know about anonymous types are the following:

• Anonymous types can only be used with local variables—not with class members.

• Since an anonymous type does not have a name, you must use the var keyword as the
variable type.

New page

 Object initializer
 ↓
 new { FieldProp = InitExpr, FieldProp = InitExpr, ...}
 ↑ ↑
 Member initializer Member initializer

 static void Main()
 {
 var student = new {LName="Jones", FName="Mary", Age=19, Major="History"};
 ↑ ↑
 Must use var Object initializer
 Console.WriteLine("{0} {1}, Age {2}, Major: {3}",
 student.FName, student.LName, student.Age, student.Major);
 }

9543ch21.fm Page 518 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 519

When the compiler encounters the object initializer of an anonymous type, it creates a
new class type with a name it constructs. For each member initializer, it infers its type and cre-
ates a private variable of that type in the new class, and creates a read/write property to access
the variable. The property has the same name as the member initializer. Once the anonymous
type is constructed, the compiler creates an object of that type.

Besides the assignment form of member initializers, anonymous type object initializers also
allow two other forms: simple identifiers and member access expressions. These two forms are
called projection initializers. The following variable declaration shows all three forms. The first
member initializer is in the assignment form. The second is an identifier, and the third is a mem-
ber access expression.

For example, the following code uses all three types. Notice that the projection initializers
are defined before the declaration of the anonymous type. Major is a local variable, and Name is
a static field of class Other.

This code produces the following output:

Mary Jones, Age 19, Major: History

The projection initializer form of the object initializer just shown has exactly the same
result as the assignment form shown here:

 var student = new { Age = 19, Major, Other.Name };

 class Other
 {
 static public string Name = "Mary Jones";
 }

 class Program
 {
 static void Main()
 {
 string Major = "History";
 Assignment form Identifier
 ↓ ↓
 var student = new { Age = 19, Other.Name, Major};
 ↑
 Member access
 Console.WriteLine("{0}, Age {1}, Major: {2}",
 student.Name, student.Age, student.Major);
 }
 }

 var student = new { Age = Age, Name = Other.Name, Major = Major};

9543ch21.fm Page 519 Tuesday, January 8, 2008 3:11 PM

520 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Although your code cannot see the anonymous type, it is visible to object browsers. If the
compiler encounters another anonymous type with the same parameter names, with the same
inferred types, and in the same order, it will reuse the type and create a new instance—not cre-
ate a new anonymous type.

Query Syntax and Method Syntax
There are two syntactic forms you can use when writing LINQ queries⎯query syntax and
method syntax.

• Query syntax is a declarative form that looks very much like an SQL statement. Query
syntax is written in the form of query expressions.

• Method syntax is an imperative form, which uses standard method invocations. The
methods are from a set called the standard query operators, which will be described later
in the chapter.

• You can also combine both forms in a single query.

Microsoft recommends using query syntax because it’s more readable, and more clearly
states your query intentions, and is therefore less error-prone. There are some operators, how-
ever, that can only be written using method syntax.

■Note Queries expressed using query syntax are translated by the C# compiler into method invocation
form. There is no difference in runtime performance between the two forms.

New page

9543ch21.fm Page 520 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 521

The following code shows all three query forms. In the method syntax part, you might find
that the parameter of the Where method looks a bit odd. It’s a lambda expression, as was
described in Chapter 15. I will cover its use in LINQ a bit later in the chapter.

This code produces the following output:

2, 5, 17, 16,
2, 5, 17, 16,
4

New page

 static void Main()
 {
 int[] numbers = { 2, 5, 28, 31, 17, 16, 42 };

 var numsQuery = from n in numbers // Query syntax
 where n < 20
 select n;

 var numsMethod = numbers.Where(x => x < 20); // Method syntax

 int numsCount = (from n in numbers // Combined
 where n < 20
 select n).Count();

 foreach (var x in numsQuery)
 Console.Write("{0}, ", x);
 Console.WriteLine();

 foreach (var x in numsMethod)
 Console.Write("{0}, ", x);
 Console.WriteLine();

 Console.WriteLine(numsCount);
 }

9543ch21.fm Page 521 Tuesday, January 8, 2008 3:11 PM

522 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Query Variables
LINQ queries can return two types of results⎯an enumeration, which lists the items that sat-
isfy the query parameters; or a single value, called a scalar, which is some form of summary of
the results that satisfied the query.

For example, the first code statement that follows returns an IEnumerable object, which
can be used to enumerate the results of the query. The second statement executes a query and
then calls a method (Count) that returns the count of the items returned from the query. We will
cover operators that return scalars, such as Count, later in the chapter.

The variable on the left of the equals sign is called the query variable. Although the types of the
query variables are given explicitly in the preceding statements, you could also have had the com-
piler infer the types of the query variables by using the var keyword in place of the type names.

It’s important to understand the contents of query variables. After executing the preceding
code, query variable lowNums does not contain the results of the query. Instead, it contains an
object of type IEnumerable<int>, which can perform the query if it is called upon to do so later
in the code. Query variable numsCount, however, contains an actual integer value, which can
only have been obtained by actually running the query.

 int[] numbers = { 2, 5, 28 };

 IEnumerable<int> lowNums = from n in numbers // Returns an enumerator
 where n < 20
 select n;

 int numsCount = (from n in numbers // Returns an int
 where n < 20
 select n).Count();

9543ch21.fm Page 522 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 523

The differences in the timing of the execution of the queries can be summarized as follows:

• If a query expression returns an enumeration, the query is not executed until the enu-
meration is processed. If the enumeration is processed multiple times, the query is
executed multiple times.

• If the query expression returns a scalar, the query is executed immediately, and the
result is stored in the query variable.

Figure 21-2 illustrates this for the enumerable query. Variable lowNums contains a reference
to the enumerable that can enumerate the query results from the array.

Figure 21-2. The compiler creates an object that implements IEnumerable<int> and stores the
query in the object.

New page

9543ch21.fm Page 523 Tuesday, January 8, 2008 3:11 PM

524 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The Structure of Query Expressions
A query expression consists of a from clause followed by a query body, as illustrated in
Figure 21-3. Some of the important things to know about query expressions are the following:

• The clauses must appear in the order shown.

– The two parts that are required are the from clause and the select...group clause.

– The other clauses are optional.

• In a LINQ query expression, the select clause is at the end of the expression. This is dif-
ferent than SQL, where the SELECT statement is at the beginning of a query. One of the
reasons for using this position in C# is that it allows Visual Studio’s IntelliSense to give
you more options while you’re entering code.

• There can be any number of from...let...where clauses, as illustrated in the figure.

Figure 21-3. The structure of a query statement consists of a from clause followed by a query body.

New page

9543ch21.fm Page 524 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 525

The from Clause
The from clause specifies the data collection that is to be used as the data source. It also intro-
duces the iteration variable. The important points about the from clause are the following:

• The iteration variable sequentially represents each element in the data source.

• The syntax of the from clause is shown following, where

– Type is the type of the elements in the collection. This is optional, because the
compiler can infer the type from the collection.

– Item is the name of the iteration variable.

– Items is the name of the collection to be queried. The collection must be
enumerable, as described in Chapter 13.

The following code shows a query expression used to query an array of four ints. Iteration
variable item will represent each of the four elements in the array, and will be either selected or
rejected by the where and select clauses following it. This code leaves out the optional type
(int) of the iteration variable.

This code produces the following output:

10, 11, 12,

New page

 Iteration variable declaration
 ↓
from Type Item in Items

 int[] arr1 = {10, 11, 12, 13};
 Iteration variable
 ↓
 var query = from item in arr1
 where item < 13 ← Uses the iteration variable
 select item; ← Uses the iteration variable

 foreach(var item in query)
 Console.Write("{0}, ", item);

9543ch21.fm Page 525 Tuesday, January 8, 2008 3:11 PM

526 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The syntax of the from clause is shown in Figure 21-4. The type specifier is optional, since
it can be inferred by the compiler. There can be any number of optional join clauses.

Figure 21-4. The syntax of the from clause

Although there is a strong similarity between the LINQ from clause and the foreach state-
ment, there are several major differences:

• The foreach statement executes its body at the point in the code where it is encoun-
tered. The from clause, on the other hand, does not execute anything. It creates an
enumerable object that is stored in the query variable. The query itself might or might
not be executed later in the code.

• The foreach statement imperatively specifies that the items in the collection are to be
considered in order, from the first to the last. The from clause declaratively states that
each item in the collection must be considered, but does not assume an order.

New page

9543ch21.fm Page 526 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 527

The join Clause
The join clause in LINQ is much like the JOIN clause in SQL. If you’re familiar with joins from
SQL, then joins in LINQ will be nothing new for you conceptually, except for the fact that you
can now perform them on collections of objects as well as database tables. If you’re new to
joins, or need a refresher, then the next section should help clear things up for you.

The first important things to know about a join are the following:

• A join operation takes two collections and creates a new temporary collection of
objects, where each object contains all the fields from an object from both initial
collections.

• Use a join to combine data from two or more collections.

The syntax for a join is shown here. It specifies that the second collection is to be joined
with the collection in the previous clause.

Figure 21-5 illustrates the syntax for the join clause.

Figure 21-5. Syntax for the join clause

The following annotated statement shows an example of the join clause:

New page

 Keyword Keyword Keyword Keyword
 ↓ ↓ ↓ ↓
 join Identifier in Collection2 on Field1 equals Field2
 ↑ ↑
 Specify additional collection The fields to compare
 and ID to reference it for equality

 First collection and ID
 ↓ Item from first collection Item from second
 var query = from s in students ↓ ↓
 join c in studentsInCourses on s.StID equals c.StID
 ↑ ↑
 Second collection and ID Fields to compare

9543ch21.fm Page 527 Tuesday, January 8, 2008 3:11 PM

528 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

What Is a Join?
A join in LINQ takes two collections and creates a new collection where each element has
members from the elements of the two original collections.

For example, the following code declares two classes: Student and CourseStudent.

• Objects of type Student contain a student’s last name and student ID number.

• Objects of type CourseStudent represent a student that is enrolled in a course, and con-
tain the course name and a student ID number.

Figure 21-6 shows the situation in a program where there are three students and three
courses, and the students are enrolled in various courses. The program has an array called
students, of Student objects, and an array called studentsInCourses, of CourseStudent objects,
which contains one object for every student enrolled in each course.

Figure 21-6. Students enrolled in various courses

New page

public class Student
{
 public int StID;
 public string LastName;
}

public class CourseStudent
{
 public string CourseName;
 public int StID;
}

9543ch21.fm Page 528 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 529

Suppose now that you want to get the last name of every student in a particular course.
The students array has the last names and the studentsInCourses array has the course enroll-
ment information. To get the information, you must combine the information in the arrays,
based on the student ID field, which is common to objects of both types. You can do this with
a join on the StID field.

Figure 21-7 shows how the join works. The left column shows the students array and the
right column shows the studentsInCourses array. If we take the first student record and com-
pare its ID with the student ID in each studentsInCourses object, we find that two of them
match, as shown at the top of the center column. If we then do the same with the other two stu-
dents, we find that the second student is taking one course, and the third student is taking two
courses.

The five grayed objects in the middle column represent the join of the two arrays on
field StID. Each object contains three fields: the LastName field from the Students class, the
CourseName field from the CourseStudent class, and the StID field common to both classes.

Figure 21-7. Two arrays of objects and their join on field StId

The following code puts the whole example together. The query finds the last names of all
the students taking the history course.

9543ch21.fm Page 529 Tuesday, January 8, 2008 3:11 PM

530 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

This code produces the following output:

Student taking History: Carson
Student taking History: Flemming

New page

 class Program
 {
 public class Student { // Declare classes.
 public int StID;
 public string LastName;
 }

 public class CourseStudent {
 public string CourseName;
 public int StID;
 }
 // Initialize arrays.
 static CourseStudent[] studentsInCourses = new CourseStudent[] {
 new CourseStudent { CourseName = "Art", StID = 1 },
 new CourseStudent { CourseName = "Art", StID = 2 },
 new CourseStudent { CourseName = "History", StID = 1 },
 new CourseStudent { CourseName = "History", StID = 3 },
 new CourseStudent { CourseName = "Physics", StID = 3 },
 };

 static Student[] students = new Student[] {
 new Student { StID = 1, LastName = "Carson" },
 new Student { StID = 2, LastName = "Klassen" },
 new Student { StID = 3, LastName = "Flemming" },
 };

 static void Main()
 {
 // Find the last names of the students taking history.
 var query = from s in students
 join c in studentsInCourses on s.StID equals c.StID
 where c.CourseName == "History"
 select s.LastName;

 // Display the names of the students taking history.
 foreach (var q in query)
 Console.WriteLine("Student taking History: {0}", q);
 }
 }

9543ch21.fm Page 530 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 531

The from . . . let . . . where Section in the Query Body
The optional from...let...where section is the first section of the query body. It can have any
number of any of the three clauses that comprise it⎯the from clause, the let clause, and the
where clause. Figure 21-8 summarizes the syntax of the three clauses.

Figure 21-8. The syntax of the from . . . let . . . where clause

New page

9543ch21.fm Page 531 Tuesday, January 8, 2008 3:11 PM

532 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The from Clause

You saw that a query expression starts with a required from clause, which is followed by the
query body. The body itself can start with any number of additional from clauses, where each
subsequent from clause specifies an additional source data collection and introduces a new
iteration variable for use in further evaluations. The syntax and meanings of all the from clauses
are the same.

The following code shows an example of this use.

• The first from clause is the required clause of the query expression.

• The second from clause is the first clause of the query body.

• The select clause creates objects of an anonymous type. I covered anonymous types
earlier in the chapter, but will touch on them again shortly, describing how they are
used in query expressions.

This code produces the following output:

{ a = 5, b = 6, sum = 11 }
{ a = 5, b = 7, sum = 12 }
{ a = 5, b = 8, sum = 13 }
{ a = 6, b = 6, sum = 12 }
{ a = 6, b = 7, sum = 13 }
{ a = 6, b = 8, sum = 14 }

New page

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 6, 7, 8, 9 };

 var someInts = from a in groupA ← Required first from clause
 from b in groupB ← First clause of query body
 where a > 4 && b <= 8
 select new {a, b, sum = a + b}; ← Object of anonymous type

 foreach (var a in someInts)
 Console.WriteLine(a);
 }

9543ch21.fm Page 532 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 533

The let Clause

The let clause takes the evaluation of an expression and assigns it to an identifier to be used in
other evaluations. The syntax of the let clause is the following:

For example, the query expression in the following code pairs each member of array
groupA with each element of array groupB. The where clause eliminates each set of integers from
the two arrays where the sum of the two is not equal to 12.

This code produces the following output:

{ a = 3, b = 9, sum = 12 }
{ a = 4, b = 8, sum = 12 }
{ a = 5, b = 7, sum = 12 }
{ a = 6, b = 6, sum = 12 }

New page

 let Identifier = Expression

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 6, 7, 8, 9 };

 var someInts = from a in groupA
 from b in groupB
 let sum = a + b ← Store result in new variable
 where sum == 12
 select new {a, b, sum};

 foreach (var a in someInts)
 Console.WriteLine(a);
 }

9543ch21.fm Page 533 Tuesday, January 8, 2008 3:11 PM

534 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The where Clause

The where clause eliminates items from further consideration if they don’t meet the specified
condition. The syntax of the where clause is the following:

Important things to know about the where clause are the following:

• A query expression can have any number of where clauses, as long as they are in the
from...let...where section.

• An item must satisfy all the where clauses to avoid elimination from further
consideration.

The following code shows an example of a query expression that contains two where
clauses. The where clauses eliminate each set of integers from the two arrays where the sum of
the two is not greater than or equal to 11, and the element from groupA is not the value 4. Each
set of elements selected must satisfy the conditions of both where clauses.

This code produces the following output:

{ a = 4, b = 7, sum = 11 }
{ a = 4, b = 8, sum = 12 }
{ a = 4, b = 9, sum = 13 }

New page

 where BooleanExpression

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 6, 7, 8, 9 };

 var someInts = from int a in groupA
 from int b in groupB
 let sum = a + b
 where sum >= 11 ← Condition 1
 where a == 4 ← Condition 2
 select new {a, b, sum};

 foreach (var a in someInts)
 Console.WriteLine(a);
 }

9543ch21.fm Page 534 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 535

The orderby Clause
The orderby clause takes an expression and returns the result items in order according to the
expression.

The syntax of the orderby clause is shown in Figure 21-9. The optional keywords ascending
and descending set the direction of the order. Expression is generally a field of the items.

• The default ordering of an orderby clause is ascending. You can, however, explicitly set
the ordering of the elements to either ascending or descending, using the ascending and
descending keywords.

• There can be any number of orderby clauses, and they must be separated by commas.

Figure 21-9. The syntax of the orderby clause

The following code shows an example of student records ordered by the ages of the stu-
dents. Notice that the array of student information is stored in an array of anonymous types.

This code produces the following output:

Jones, Mary: 19 - History
Smith, Bob: 20 - CompSci
Fleming, Carol: 21 - History

New page

 static void Main() {
 var students = new [] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from student in students
 orderby student.Age ← Order by Age.
 select student;

 foreach (var s in query) {
 Console.WriteLine("{0}, {1}: {2} - {3}",
 s.LName, s.FName, s.Age, s.Major);
 }
 }

9543ch21.fm Page 535 Tuesday, January 8, 2008 3:11 PM

536 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The select . . . group Clause
There are two types of clauses that make up the select...group section—the select clause and
the group...by clause. While the clauses that precede the select...group section specify the
data sources and which objects to choose, the select...group section does the following:

• The select clause specifies which parts of the chosen objects should be selected. It can
specify any of the following:

– The entire data item

– A field from the data item

– A new object comprising several fields from the data item (or any other value, for
that matter).

• The group...by clause is optional, and specifies how the chosen items should be
grouped. We will cover the group...by clause later in the chapter.

The syntax for the select...group clause is shown in Figure 21-10.

Figure 21-10. The syntax of the select . . . group clause

New page

9543ch21.fm Page 536 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 537

The following code shows an example of using the select clause to select the entire data
item. First, an array of objects of an anonymous type is created. The query expression then uses
the select statement to select each item in the array.

This code produces the following output:

Jones, Mary: Age 19, History
Smith, Bob: Age 20, CompSci
Fleming, Carol: Age 21, History

You can also use the select clause to choose only particular fields of the object. For exam-
ple, the select clause in the following code only selects the last name of the student.

When you substitute these two statements for the corresponding two statements in the
preceding full example, the program produces the following output:

Jones
Smith
Fleming

New page

 using System;
 using System.Linq;
 class Program {
 static void Main() {
 var students = new[] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from s in students
 select s;

 foreach (var q in query)
 Console.WriteLine("{0}, {1}: Age {2}, {3}",
 q.LName, q.FName, q.Age, q.Major);
 }
 }

 var query = from s in students
 select s.LName;

 foreach (var q in query)
 Console.WriteLine(q);

9543ch21.fm Page 537 Tuesday, January 8, 2008 3:11 PM

538 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Anonymous Types in Queries
The result of a query can consist of items from the source collections, fields from the items in
the source collections, or anonymous types.

You can create an anonymous type in a select clause by placing curly braces around a
comma-separated list of fields you want to include in the type. For example, to make the code
in the previous section select just the names and majors of the students, you could use the fol-
lowing syntax:

For example, the following code creates an anonymous type in the select clause, and uses
it later in the WriteLine statement.

This code produces the following output:

Mary Jones -- History
Bob Smith -- CompSci
Carol Fleming -- History

New page

 select new { s.LastName, s.FirstName, s.Major };
 ↑
 Anonymous type

 using System;
 using System.Linq;

 class Program {
 static void Main()
 {
 var students = new[] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from s in students
 select new { s.LName, s.FName, s.Major };
 ↑
 Create anonymous type
 foreach (var q in query)
 Console.WriteLine("{0} {1} -- {2}",
 q.FName, q.LName, q.Major);
 } ↑
 } Access fields of anonymous type

9543ch21.fm Page 538 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 539

The group Clause
The group clause groups the selected objects according to some criterion. For example, with
the array of students in the previous examples, the program could group the students accord-
ing to their majors.

The important things to know about the group clause are the following:

• When items are included in the result of the query, they are placed in groups according
to the value of a particular field. The value on which items are grouped is called the key.

• Unlike the select clause, the group clause does not return an enumerable that can
enumerate the items from the original source. Instead, it returns an enumerable that
enumerates the groups of items that have been formed.

• The groups themselves are enumerable, and can enumerate the actual items.

An example of the syntax of the group clause is the following:

For example, the following code groups the students according to their majors:

 group student by student.Major;
 ↑ ↑
 Keyword Keyword

 static void Main()
 {
 var students = new[] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from student in students
 group student by student.Major;

 foreach (var s in query) // Enumerate the groups.
 {
 Console.WriteLine("{0}", s.Key);
 ↑
 Grouping key
 foreach (var t in s) // Enumerate the items in the group.
 Console.WriteLine(" {0}, {1}", t.LName, t.FName);
 }
 }

9543ch21.fm Page 539 Tuesday, January 8, 2008 3:11 PM

540 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

This code produces the following output:

History
 Jones, Mary
 Fleming, Carol
CompSci
 Smith, Bob

Figure 21-11 illustrates the object that is returned from the query expression and stored in
the query variable.

• The object returned from the query expression is an enumerable that enumerates the
groups resulting from the query.

• Each group is distinguished by a field called Key.

• Each group is itself enumerable and can enumerate its items.

Figure 21-11. The group clause returns a collection of collections of objects rather than a collection
of objects.

New page

9543ch21.fm Page 540 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 541

Query Continuation
A query continuation clause takes the result of one part of a query and assigns it a name so
that it can be used in another part of the query. The syntax for query continuation is shown in
Figure 21-12.

Figure 21-12. The syntax of the query continuation clause

For example, the following query joins groupA and groupB and names the join groupAandB.
It then performs a simple select from groupAandB.

This code produces the following output:

4 5 6

New page

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 4, 5, 6, 7 };

 var someInts = from a in groupA
 join b in groupB on a equals b
 into groupAandB ← Query continuation
 from c in groupAandB
 select c;

 foreach (var a in someInts)
 Console.Write("{0} ", a);
 }

9543ch21.fm Page 541 Tuesday, January 8, 2008 3:11 PM

542 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The Standard Query Operators
The standard query operators comprise a set of methods called an application programming
interface (API) that lets you query any .NET array or collection. Important characteristics of the
standard query operators are the following:

• The collection objects queried are called sequences, and must implement the
IEnumerable<T> interface, where T is a type.

• The standard query operators use method syntax.

• Some operators return IEnumerable objects (or other sequences), while others return
scalars. Operators that return scalars execute their queries immediately and return a
value instead of an enumerable object to be iterated over later.

For example, the following code shows the use of operators Sum and Count, which return
ints. Notice the following about the code:

• The operators are used as methods directly on the sequence objects, which in this case is
array numbers.

• The return type is not an IEnumerable object, but an int.

This code produces the following output:

Total: 12, Count: 3

New page

 class Program
 {
 static int[] numbers = new int[] {2, 4, 6};

 static void Main()
 {
 int total = numbers.Sum();
 int howMany = numbers.Count();
 ↑ ↑ ↑
 Scalar Sequence Operator
 object
 Console.WriteLine("Total: {0}, Count: {1}", total, howMany);
 }
 }

9543ch21.fm Page 542 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 543

There are 47 standard query operators that fall into 14 different categories. These catego-
ries are shown in Table 21-1.

Table 21-1. Categories of the Standard Query Operators

New page

Name Number of Operators Description

Restriction 1 Returns a subset of the objects of the sequence, based
on selection criteria

Projection 2 Selects which parts of the objects of a sequence are
finally returned

Partitioning 4 Skips or returns objects from a sequence

Join 2 Returns an IEnumerable object that joins two
sequences, based on some criterion

Concatenation 1 Produces a single sequence from two separate
sequences

Ordering 2 Orders a sequence based on supplied criteria

Grouping 1 Groups a sequence based on supplied criteria

Set 4 Performs set operations on a sequence

Conversion 7 Converts sequences to various forms such as arrays,
lists, and dictionaries

Equality 1 Compares two sequences for equality

Element 9 Returns a particular element of a sequence

Generation 3 Generates sequences

Quantifiers 3 Returns Boolean values specifying whether a particu-
lar predicate is true about a sequence

Aggregate 7 Returns a single value representing characteristics of a
sequence

9543ch21.fm Page 543 Tuesday, January 8, 2008 3:11 PM

544 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Query Expressions and the Standard Query Operators
As mentioned at the beginning of the chapter, every query expression can also be written using
method syntax with the standard query operators. The set of standard query operators is a set
of methods for performing queries. The compiler translates every query expression into stan-
dard query operator form.

Clearly, since all query expressions are translated into the standard query operators—the
operators can perform everything done by query expressions. But the operators also give addi-
tional capabilities that aren’t available in query expression form. For example, operators Sum
and Count, which were used in the previous example, can only be expressed using the method
syntax.

The two forms, query expressions and method syntax, however, can be combined. For
example, the following code shows a query expression that also uses operator Count. Notice in
the code that the query expression part of the statement is inside parentheses, which is fol-
lowed by a dot and the name of the method.

This code produces the following output:

Count: 3

New page

 static void Main()
 {
 var numbers = new int[] { 2, 6, 4, 8, 10 };

 int howMany = (from n in numbers
 where n < 7
 select n).Count();
 ↑ ↑
 Query expression Operator

 Console.WriteLine("Count: {0}", howMany);
 }

9543ch21.fm Page 544 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 545

Signatures of the Standard Query Operators
The standard query operators are methods declared in class System.Linq.Enumerable. These
methods, however, aren’t just any methods—they are extension methods that extend generic
class IEnumerable<T>.

Extension methods were covered in Chapters 7 and 19, but the most important thing to
remember about them is that they are public, static methods that, although defined in one
class, are designed to add functionality to another class⎯the one listed as the first formal
parameter. This formal parameter must be preceded by the keyword this.

For example, following are the signatures of three of the operators: Count, First, and
Where. At first glance, the signatures of the operators can be somewhat intimidating. Notice the
following about the signatures:

• Since the operators are generic methods, they have a generic parameter (T) associated
with their names.

• Since the operators are extension methods that extend IEnumerable, they must satisfy
the following syntactic requirements:

– They must be declared public and static.

– They must have the this extension indicator before the first parameter.

– They must have IEnumerable<T> as the first parameter.

New page

 Always Name and First
 public, static generic param parameter
 ↓ ↓ ↓
public static int Count<T>(this IEnumerable<T> source);
public static T First<T>(this IEnumerable<T> source);
public static IEnumerable<T> Where<T>(this IEnumerable<T> source, ...);
 ↑ ↑
 Return Extension
 type indicator

9543ch21.fm Page 545 Tuesday, January 8, 2008 3:11 PM

546 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

For example, the following code shows the use of operators Count and First. Both opera-
tors take only a single parameter⎯the reference to the IEnumerable<T> object.

• The Count operator returns a single value that is the count of all the elements in the
sequence.

• The First operator returns the first element of the sequence.

The first two times the operators are used in this code, they are called directly, just like nor-
mal methods, passing the name of the array as the first parameter. In the following two lines,
however, they are called using the extension method syntax, as if they were method members
of the array, which is enumerable. Notice that in this case no parameter is supplied. Instead,
the array name has been moved from the parameter list to before the method name. There it is
used as if it contained a declaration of the method.

The direct syntax calls and the extension syntax calls are completely equivalent in
effect⎯only their syntax is different.

This code produces the following output:

Count: 6, FirstNumber: 3
Count: 6, FirstNumber: 3

New page

 using System.Linq;
 ...
 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };
 Array as parameter
 ↓
 var count1 = Enumerable.Count(intArray); // Called directly
 var firstNum1 = Enumerable.First(intArray); // Called directly

 var count2 = intArray.Count(); // Called as extension
 var firstNum2 = intArray.First(); // Called as extension
 ↑
 Array as extended object
 Console.WriteLine("Count: {0}, FirstNumber: {1}", count1, firstNum1);
 Console.WriteLine("Count: {0}, FirstNumber: {1}", count2, firstNum2);
 }

9543ch21.fm Page 546 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 547

Delegates As Parameters
As you just saw in the previous section, the first parameter of every operator is a reference to an
IEnumerable<T> object. The parameters following it can be of any type. Many operators take
generic delegates as parameters. (Generic delegates were explained in Chapter 19.) The most
important thing to know about generic delegates as parameters is the following:

• Generic delegates are used to supply user-defined code to the operator.

To explain this, I’ll start with an example showing several ways you might use the Count
operator. The Count operator is overloaded and has two forms. The first form, which was used
in the previous example, has a single parameter, as shown here:

Like all extension methods, you can use it in the standard static method form or in the
form of an instance method on an instance of the class it extends, as shown in the following
two lines of code:

In these two instances, the query counts the number of ints in the given integer array.
Suppose, however, that you only want to count the odd elements of the array. To do that, you
must supply the Count method with code that determines whether or not an integer is odd.

To do this, you would use the second form of the Count method, which is shown following.
It has a generic delegate as its second parameter. At the point it is invoked, you must supply a
delegate object that takes a single input parameter of type T and returns a Boolean value. The
return value of the delegate code must specify whether or not the element should be included
in the count.

New page

 public static int Count<T>(this IEnumerable<T> source);

 var count1 = Linq.Enumerable.Count(intArray); // Static method form

 var count2 = intArray.Count(); // Instance method form

 public static int Count<T>(this IEnumerable<T> source,
 Func<T, bool> predicate);
 ↑
 Generic delegate

9543ch21.fm Page 547 Tuesday, January 8, 2008 3:11 PM

548 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

For example, the following code uses the second form of the Count operator to instruct it
to include only those values that are odd. It does this by supplying a lambda expression that
returns true if the input value is odd and false otherwise. (Lambda expressions were covered
in Chapter 15.) At each iteration through the collection, Count calls this method (represented
by the lambda expression) with the current value as input. If the input is odd, the method
returns true and Count includes the element in the total.

This code produces the following output:

Count of odd numbers: 4

New page

 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };

 var countOdd = intArray.Count(n => n % 2 == 1);
 ↑
 Lambda expression identifying the odd values
 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }

9543ch21.fm Page 548 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 549

The LINQ Predefined Delegate Types
Like the Count operator from the previous example, many of the LINQ operators require you to
supply code that directs how the operator performs its operation. You do this by using delegate
objects as parameters.

Remember from Chapter 15 that you can think of a delegate object as an object that
contains a method or list of methods with a particular signature and return type. When the
delegate is invoked, the methods it contains are invoked in sequence.

LINQ defines a family of five generic delegate types for use with the standard query oper-
ators. These are the Func delegates.

• The delegate objects you create for use as actual parameters must be of these five types
or of these forms.

• TR represents the return type, and is always last in the list of type parameters.

The five generic delegate types are listed here. The first form takes no method parameters
and returns an object of the return type. The second takes a single method parameter and
returns a value, and so forth.

With this in mind, if you look again at the declaration of Count, which follows, you can see
that the second parameter must be a delegate object that takes a single value of some type T as
the method parameter and returns a value of type bool.

Parameter delegates that produce a Boolean value are called predicates.
New page

 public delegate TR Func<TR> ();
 public delegate TR Func<T1, TR > (T1 a1);
 public delegate TR Func<T1, T2, TR > (T1 a1, T2 a2);
 public delegate TR Func<T1, T2, T3, TR> (T1 a1, T2 a2, T3 a3);
 public delegate TR Func<T1, T2, T3, T4, TR>(T1 a1, T2 a2, T3 a3, T4 a4);
 ↑ ↑ ↑
 Return type Type parameters Method parameters

 public static int Count<T>(this IEnumerable<T> source,
 Func<T, bool> predicate);
 ↑ ↑
 Parameter type Return type

9543ch21.fm Page 549 Tuesday, January 8, 2008 3:11 PM

550 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Example Using a Delegate Parameter
Now that you better understand Count’s signature and LINQ’s use of generic delegate parame-
ters, you’ll be better able to understand a full example.

The following code first declares method IsOdd, which takes a single parameter of type int
and returns a bool value stating whether the input parameter was odd. Method Main does the
following:

• It declares an array of ints as the data source.

• It creates a delegate object called MyDel of type Func<int, bool>, and uses method IsOdd
to initialize the delegate object. Notice that you don’t need to declare the Func delegate
type because, as you saw, it’s already predefined by LINQ.

• It calls Count using the delegate object.

This code produces the following output:

Count of odd numbers: 4

New page

 class Program
 {
 static bool IsOdd(int x) // Method to be used by the delegate object
 {
 return x % 2 == 1; // Return true if x is odd.
 }

 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };

 Func<int, bool> myDel = new Func<int, bool>(IsOdd); // Delegate object
 var countOdd = intArray.Count(myDel); // Use delegate

 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }
 }

9543ch21.fm Page 550 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 551

Example Using a Lambda Expression Parameter
The previous example used a separate method and a delegate to attach the code to the opera-
tor. This required declaring the method, declaring the delegate object, and then passing the
delegate object to the operator. This works fine, and is exactly the right approach to take if
either of the following conditions is true:

• If the method must be called from somewhere else in the program than just in the place
it is used to initialize the delegate object

• If the code in the method body is more than just a statement or two long

If neither of these conditions is true, however, you probably want to use a more compact
and localized method of supplying the code to the operator, using a lambda expression as
described in Chapter 15.

We can modify the previous example to use a lambda expression by first deleting the IsOdd
method entirely, and placing the equivalent lambda expression directly at the declaration of
the delegate object. The new code is shorter and cleaner, and looks like this:

Like the previous example, this code produces the following output:

Count of odd numbers: 4

New page

 class Program
 {
 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };
 Lambda expression
 ↓
 var countOdd = intArray.Count(x => x % 2 == 1);

 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }
 }

9543ch21.fm Page 551 Tuesday, January 8, 2008 3:11 PM

552 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

We could also have used an anonymous method in place of the lambda expression, as
shown following. This is more verbose, though, and since lambda expressions are equivalent
semantically and are less verbose, there’s little reason to use anonymous methods anymore.

New page

 class Program
 {
 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };
 Anonymous method
 ↓
 Func<int, bool> myDel = delegate(int x)
 {
 return x % 2 == 1;
 };
 var countOdd = intArray.Count(myDel);

 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }
 }

9543ch21.fm Page 552 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 553

LINQ to XML
Over the last several years, XML (Extensible Markup Language) has become an important
method of storing and exchanging data. C# 3.0 adds features to the language that make work-
ing with XML much easier than previous methods such as XPath and XSLT. If you’re familiar
with these methods, you might be pleased to hear that LINQ to XML simplifies the creation,
traversal, and manipulation of XML in a number of ways, including the following:

• You can create an XML tree in a top-down fashion, with a single statement.

• You can create and manipulate XML in-memory without having an XML document to
contain the tree.

• You can create and manipulate string nodes without having a Text sub-node.

Although I won’t give a complete treatment of XML, I will start by giving a very brief intro-
duction to it before describing some of the XML-manipulation features introduced with C# 3.0.

Markup Languages
A markup language is a set of tags placed in a document to give information about the informa-
tion in the document. That is, the markup tags are not the data of the document—they contain
data about the data. Data about data is called metadata.

A markup language is a defined set of tags designed to convey particular types of metadata
about the contents of a document. HTML, for example, is the most widely known markup lan-
guage. The metadata in its tags contains information about how a web page should be rendered
in a browser, and how to navigate among the pages using the hypertext links.

While most markup languages contain a predefined set of tags—XML contains only a few
defined tags, and the rest are defined by the programmer to represent whatever kinds of meta-
data are required by a particular document type. As long as the writer and reader of the data agree
on what the tags mean, the tags can contain whatever useful information the designers want.
New page

9543ch21.fm Page 553 Tuesday, January 8, 2008 3:11 PM

554 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

XML Basics
Data in an XML document is contained in an XML tree, which consists mainly of a set of nested
elements.

The element is the fundamental constituent of an XML tree. Every element has a name and
can contain data. Some can also contain other, nested elements. Elements are demarcated by
opening and closing tags. Any data contained by an element must be between its opening and
closing tags.

• An opening tag starts with an open angle bracket, followed by the element name, fol-
lowed optionally by any attributes, followed by a closing angle bracket.

• A closing tag starts with an open angle bracket, followed by a slash character, followed
by the element name, followed by a closing angle bracket.

• An element with no content can be represented by a single tag that starts with an open
angle bracket, followed by the name of the element, followed by a slash, and is termi-
nated with a closing angle bracket.

The following XML fragment shows an element named EmployeeName followed by an
empty element named PhoneNumber.

Other important things to know about XML are the following:

• XML documents must have a single root element that contains all the other elements.

• XML tags must be properly nested.

• Unlike HTML tags, XML tags are case sensitive.

• XML attributes are name/value pairs that contain additional metadata about an ele-
ment. The value part of an attribute must always be enclosed in quotation marks, which
can be either double quotation marks or single quotation marks.

• White space within an XML document is maintained. This is unlike HTML, where
whitespace is consolidated to a single space in the output.

New page

<PhoneNumber>

</PhoneNumber>

<PhoneNumber />

 <EmployeeName>Sally Jones</EmployeeName>
 ↑ ↑ ↑
 Opening tag Content Closing tag
 <PhoneNumber /> ← Element with no content

9543ch21.fm Page 554 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 555

The following XML document is an example of XML that contains information about
two employees. This XML tree is extremely simple in order to show the elements clearly. The
important things to notice about the XML tree are the following:

• The tree contains a root node of type Employees that contains two child nodes of type
Employee.

• Each Employee node contains nodes containing the name and phone numbers of an
employee.

Figure 21-13 illustrates the hierarchical structure of the sample XML tree.

Figure 21-13. Hierarchical structure of the sample XML tree

New page

<Employees>
 <Employee>
 <Name>Bob Smith</Name>
 <PhoneNumber>408-555-1000</PhoneNumber>
 <CellPhone />
 </Employee>
 <Employee>
 <Name>Sally Jones</Name>
 <PhoneNumber>415-555-2000</PhoneNumber>
 <PhoneNumber>415-555-2001</PhoneNumber>
 </Employee>
</Employees>

9543ch21.fm Page 555 Tuesday, January 8, 2008 3:11 PM

556 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The XML Classes
LINQ to XML can be used to work with XML in two ways. The first way is as a simplified XML-
manipulation API. The second way is to use the LINQ query facilities you’ve seen throughout
the earlier part of this chapter. I’ll start by introducing the LINQ to XML API.

The LINQ to XML API consists of a number of classes that represent the components of
an XML tree. The three most important classes you will use are XElement, XAttribute, and
XDocument. There are other classes as well, but these are the main ones.

In Figure 21-13, you saw that an XML tree is a set of nested elements. Figure 21-14 shows
the classes used to build an XML tree and how they can be nested.

For example, the figure shows the following:

• An XDocument node can have as its direct child nodes:

– At most, one of each of the following node types: an XDeclaration node, an
XDocumentType node, and an XElement node

– Any number of XProcessingInstruction nodes

• If there is a top-level XElement node under the XDocument, it is the root of the rest of the
elements in the XML tree.

• The root element can in turn contain any number of nested XElement, XComment, or
XProcessingInstruction nodes, nested to any level.

Figure 21-14. The containment structure of XML nodes

Except for the XAttribute class, most of the classes used to create an XML tree are derived from
a class called XNode, and are referred to generically in the literature as “XNodes.” Figure 21-14 shows
the XNode classes in white clouds, while the XAttribute class is shown in a gray cloud.
New page

9543ch21.fm Page 556 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 557

Creating, Saving, Loading, and Displaying an XML Document

The best way to demonstrate the simplicity and usage of the XML API is to show simple code
samples. For example, the following code shows how simple it is to perform several of the
important tasks required when working with XML.

It starts by creating a simple XML tree consisting of a node called Employees, with two sub-
nodes containing the names of two employees. Notice the following about the code:

• The tree is created with a single statement that in turn creates all the nested elements in
place in the tree. This is called functional construction.

• Each element is created in place using an object-creation expression, using the con-
structor of the type of the node.

After creating the tree, the code saves it to a file called EmployeesFile.xml, using
XDocument’s Save method. It then reads the XML tree back from the file using XDocument’s static
Load method, and assigns the tree to a new XDocument object. Finally, it uses WriteLine to dis-
play the structure of the tree held by the new XDocument object.

This code produces the following output:

<Employees>
 <Name>Bob Smith</Name>
 <Name>Sally Jones</Name>
</Employees>

 using System;
 using System.Xml.Linq; // Required namespace

 class Program {
 static void Main() {
 XDocument employees1 =
 new XDocument(// Create the XML document.
 new XElement("Employees", // Create the root element.
 new XElement("Name", "Bob Smith"), // Create element
 new XElement("Name", "Sally Jones") // Create element
)
);

 employees1.Save("EmployeesFile.xml"); // Save to a file

 // Load the saved document into a new variable.
 XDocument employees2 = XDocument.Load("EmployeesFile.xml");
 ↑
 Static method
 Console.WriteLine(employees2); // Display document
 }
 }

9543ch21.fm Page 557 Tuesday, January 8, 2008 3:11 PM

558 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Creating an XML Tree

In the previous example, you saw that you can create an XML document in-memory by using
constructors for XDocument and XElement. In the case of both constructors

• The first parameter is the name of the object.

• The second and following parameters contain the nodes of the XML tree. The second
parameter of the constructor is a params parameter, and so can have any number of
parameters.

For example, the following code produces an XML tree and displays it using the
Console.WriteLine method:

 using System;
 using System.Xml.Linq; // This namespace is required.

 class Program
 {
 static void Main() {
 XDocument employeeDoc =
 new XDocument(// Create the document.
 new XElement("Employees", // Create the root element.

 new XElement("Employee", // First employee element
 new XElement("Name", "Bob Smith"),
 new XElement("PhoneNumber", "408-555-1000")),

 new XElement("Employee", // Second employee element
 new XElement("Name", "Sally Jones"),
 new XElement("PhoneNumber", "415-555-2000"),
 new XElement("PhoneNumber", "415-555-2001"))
)
);
 Console.WriteLine(employeeDoc); // Displays the document
 }
 }

9543ch21.fm Page 558 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 559

This code produces the following output:

<Employees>
 <Employee>
 <Name>Bob Smith</Name>
 <PhoneNumber>408-555-1000</PhoneNumber>
 </Employee>
 <Employee>
 <Name>Sally Jones</Name>
 <PhoneNumber>415-555-2000</PhoneNumber>
 <PhoneNumber>415-555-2001</PhoneNumber>
 </Employee>
</Employees>

Using Values from the XML Tree
The power of XML becomes evident when you traverse an XML tree and retrieve or modify val-
ues. The main methods used for retrieving data are shown in Table 21-2.

Table 21-2. Methods for Querying XML

Method Name Class Return Type Description

Nodes XDocument
XElement

IEnumerable<object> Returns all the children of the cur-
rent node, regardless of their type

Elements XDocument
XElement

IEnumerable<XElement> Returns all the current node’s
XElement child nodes, or all the child
nodes with a specific name

Element XDocument
XElement

XElement Returns the current node’s first
XElement child node, or the first
child node with a specific name

Descendants XElement IEnumerable<XElement> Returns all the descendant
XElement nodes, or all the descen-
dant XElement nodes with a specific
name, regardless of their level of
nesting below the current node

DescendantsAndSelf XElement IEnumerable<XElement> Same as Descendants, but also
includes the current node

Ancestors XElement IEnumerable<XElement> Returns all the ancestor XElement
nodes, or all the ancestor
XElement nodes above the current
node that have a specific name

AncestorsAndSelf XElement IEnumerable<XElement> Same as Ancestors, but also
includes the current node

Parent XElement XElement Returns the parent node of the
current node

9543ch21.fm Page 559 Tuesday, January 8, 2008 3:11 PM

560 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Some of the important things to know about the methods in Table 21-2 are the following:

• Nodes: The Nodes method returns an object of type IEnumerable<object>, because the
nodes returned might be of different types, such as XElement, XComment, and so on. You
can use the type parameterized method OfType<type> to specify what type of nodes to
return. For example, the following line of code retrieves only the XComment nodes:

• Elements: Since retrieving XElements is such a common requirement, there is a shortcut
for expression Nodes().OfType<XElement>()⎯the Elements method.

– Using the Elements method with no parameters returns all the child XElements.

– Using the Elements method with a single name parameter returns only the child
XElements with that name. For example, the following line of code returns all the
child XElement nodes with the name PhoneNumber.

• Element: This method retrieves just the first child XElement of the current node. Like
the Elements method, it can be called with either one or no parameters. With no param-
eters, it gets the first child XElement node. With a single name parameter, it gets the first
child XElement node of that name.

• Descendants and Ancestors: These methods work like the Elements and Parent methods,
but instead of returning the immediate child elements or parent element, they include the
elements below or above the current node, regardless of the difference in nesting level.

New page

IEnumerable<XComment> comments = xd.Nodes().OfType<XComment>();

IEnumerable<XElement> empPhones = emp.Elements("PhoneNumber");

9543ch21.fm Page 560 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 561

The following code illustrates the Element and Elements methods:

This code produces the following output:

Bob Smith
 408-555-1000
Sally Jones
 415-555-2000
 415-555-2001

New page

 using System;
 using System.Collections.Generic;
 using System.Xml.Linq;

 class Program {
 static void Main() {
 XDocument employeeDoc =
 new XDocument(
 new XElement("Employees",
 new XElement("Employee",
 new XElement("Name", "Bob Smith"),
 new XElement("PhoneNumber", "408-555-1000")),
 new XElement("Employee",
 new XElement("Name", "Sally Jones"),
 new XElement("PhoneNumber", "415-555-2000"),
 new XElement("PhoneNumber", "415-555-2001"))
)
); Get first child XElement named “Employees”
 ↓
 XElement root = employeeDoc.Element("Employees");
 IEnumerable<XElement> employees = root.Elements();

 foreach (XElement emp in employees)
 { Get first child XElement named “Name”
 ↓
 XElement empNameNode = emp.Element("Name");
 Console.WriteLine(empNameNode.Value);
 Get all child elements named "PhoneNumber"
 ↓
 IEnumerable<XElement> empPhones = emp.Elements("PhoneNumber");
 foreach (XElement phone in empPhones)
 Console.WriteLine(" {0}", phone.Value);
 }
 }
 }

9543ch21.fm Page 561 Tuesday, January 8, 2008 3:11 PM

562 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Adding Nodes and Manipulating XML

You can add a child element to an existing element using the Add method. The Add method
allows you to add as many elements as you like in a single method call, regardless of the node
types you are adding.

For example, the following code creates a simple XML tree and displays it. It then uses the Add
method to add a single node to the root element. Following that, it uses the Add method a second
time to add three elements—two XElements and an XComment. Notice the results in the output:

 using System;
 using System.Xml.Linq;

 class Program
 {
 static void Main()
 {
 XDocument xd = new XDocument(// Create XML tree
 new XElement("root",
 new XElement("first")
)
);

 Console.WriteLine("Original tree");
 Console.WriteLine(xd); Console.WriteLine(); // Display the tree.

 XElement rt = xd.Element("root"); // Get the first element.

 rt.Add(new XElement("second")); // Add a child element.

 rt.Add(new XElement("third"), // Add three more children.
 new XComment("Important Comment"),
 new XElement("fourth"));

 Console.WriteLine("Modified tree");
 Console.WriteLine(xd); // Display modified tree
 }
 }

9543ch21.fm Page 562 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 563

This code produces the following output:

<root>
 <first />
</root>

<root>
 <first />
 <second />
 <third />
 <!--Important Comment-->
 <fourth />
</root>

The Add method places the new child nodes after the existing child nodes, but you can
place the nodes before and between the child nodes as well, using the AddFirst, AddBeforeSelf,
and AddAfterSelf methods.

Table 21-3 lists some of the most important methods for manipulating XML. Notice that
some of the methods are applied to the parent node and others to the node itself.

Table 21-3. Methods for Manipulating XML

New page

Method Name Call From Description

Add Parent Adds new child nodes after the existing child nodes of the current
node

AddFirst Parent Adds new child nodes before the existing child nodes of the cur-
rent node

AddBeforeSelf Node Adds new nodes before the current node at the same level

AddAfterSelf Node Adds new nodes after the current node at the same level

Remove Node Deletes the currently selected node and its contents

RemoveNodes Node Deletes the currently selected XElement and its contents

SetElement Parent Sets the contents of a node

ReplaceContent Node Replaces the contents of a node

9543ch21.fm Page 563 Tuesday, January 8, 2008 3:11 PM

564 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Working with XML Attributes
Attributes give additional information about an XElement node. They are placed in the opening
tag of the XML element.

When you functionally construct an XML tree, you can add attributes by just including
XAttribute constructors within the scope of the XElement constructor. There are two forms of
the XAttribute constructor; one takes a name and a value, and the other takes a reference to an
already existing XAttribute.

The following code adds two attributes to root. Notice that both parameters to the
XAttribute constructor are strings; the first specifies the name of the attribute, and the second
gives the value.

This code produces the following output. Notice that the attributes are placed inside the
opening tag of the element.

<root color="red" size="large">
 <first />
 <second />
</root>

New page

 XDocument xd = new XDocument(
 Name Value
 new XElement("root", ↓ ↓
 new XAttribute("color", "red"), // Attribute constructor
 new XAttribute("size", "large"), // Attribute constructor
 new XElement("first"),
 new XElement("second")
)
);

 Console.WriteLine(xd);

9543ch21.fm Page 564 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 565

To retrieve an attribute from an XElement node, use the Attribute method, supplying the
name of the attribute as the parameter. The following code creates an XML tree with a node with
two attributes—color and size. It then retrieves the values of the attributes and displays them.

This code produces the following output:

<root color="red" size="large">
 <first />
</root>

color is red
size is large

 static void Main()
 {
 XDocument xd = new XDocument(// Create XML tree
 new XElement("root",
 new XAttribute("color", "red"),
 new XAttribute("size", "large"),
 new XElement("first")
)
);

 Console.WriteLine(xd); Console.WriteLine(); // Display XML tree

 XElement rt = xd.Element("root"); // Get the element.

 XAttribute color = rt.Attribute("color"); // Get the attribute.
 XAttribute size = rt.Attribute("size"); // Get the attribute.

 Console.WriteLine("color is {0}", color.Value); // Display attr. value
 Console.WriteLine("size is {0}", size.Value); // Display attr. value
 }

9543ch21.fm Page 565 Tuesday, January 8, 2008 3:11 PM

566 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

To remove an attribute, you can select the attribute and use the Remove method, or use the
SetAttributeValue method on its parent and set the attribute value to null. The following code
demonstrates both methods:

This code produces the following output:

<root>
 <first />
</root>

 static void Main() {
 XDocument xd = new XDocument(
 new XElement("root",
 new XAttribute("color", "red"),
 new XAttribute("size", "large"),
 new XElement("first")
)
);

 XElement rt = xd.Element("root"); // Get the element.

 rt.Attribute("color").Remove(); // Remove the color attribute.
 rt.SetAttributeValue("size", null); // Remove the size attribute.

 Console.WriteLine(xd);
 }

9543ch21.fm Page 566 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 567

To add an attribute to an XML tree or change the value of an attribute, you can use the
SetAttributeValue method, as shown in the following code:

This code produces the following output:

<root color="red" size="medium" width="narrow">
 <first />
</root>

New page

 static void Main() {
 XDocument xd = new XDocument(
 new XElement("root",
 new XAttribute("color", "red"),
 new XAttribute("size", "large"),
 new XElement("first")));

 XElement rt = xd.Element("root"); // Get the element.

 rt.SetAttributeValue("size", "medium"); // Change attribute value
 rt.SetAttributeValue("width", "narrow"); // Add an attribute.

 Console.WriteLine(xd); Console.WriteLine();
 }

9543ch21.fm Page 567 Tuesday, January 8, 2008 3:11 PM

568 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Other Types of Nodes
Three other types of nodes used in the previous examples are XComment, XDeclaration, and
XProcessingInstruction. They are described in the following sections.

XComment

Comments in XML consist of text between the <!-- and --> tokens. The text between the
tokens is ignored by XML parsers. You can insert text in an XML document using the XComment
class, as shown in the following line of code:

XDeclaration

XML documents start with a line that includes the version of XML used, the type of character
encoding used, and whether or not the document depends on external references. This is
called the XML declaration, and is inserted using the XDeclaration class. The following shows
an example of an XDeclaration statement:

XProcessingInstruction

An XML processing instruction is used to supply additional data about how an XML document
should be used or interpreted. Most commonly, processing instructions are used to associate a
style sheet with the XML document.

You can include a processing instruction using the XProcessingInstruction constructor,
which takes two string parameters—a target and a data string. If the processing instruction
takes multiple data parameters, those parameters must be included in the second parameter
string of the XProcessingInstruction constructor, as shown in the following constructor code.
Notice that in this example, the second parameter is a verbatim string, and literal double
quotes inside the string are represented by sets of two contiguous double quote marks.

New page

 new XComment("This is a comment")

 new XDeclaration("1.0", "utf-8", "yes")

 new XProcessingInstruction("xml-stylesheet",
 @"href=""stories"", type=""text/css""")

9543ch21.fm Page 568 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 569

The following code uses all three constructs:

This code produces the following output in the output file. Using a WriteLine of xd, however,
would not show the declaration statement, even though it is included in the document file.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--This is a comment-->
<?xml-stylesheet href="stories.css" type="text/css"?>
<root>
 <first />
 <second />
</root>

New page

 static void Main()
 {
 XDocument xd = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("This is a comment"),
 new XProcessingInstruction("xml-stylesheet",
 @"href=""stories.css"" type=""text/css"""),
 new XElement("root",
 new XElement("first"),
 new XElement("second")
)
);
 }

9543ch21.fm Page 569 Tuesday, January 8, 2008 3:11 PM

570 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

Using LINQ Queries with LINQ to XML
You can combine the LINQ XML API with LINQ query expressions to produce simple yet pow-
erful XML tree searches.

The following code creates a simple XML tree, displays it to the screen, and then saves it to
a file called SimpleSample.xml. Although there’s nothing new in this code, we’ll use this XML
tree in the following examples.

This code produces the following output:

<MyElements>
 <first color="red" size="small" />
 <second color="red" size="medium" />
 <third color="blue" size="large" />
</MyElements>

New page

 using System;
 using System.Xml.Linq;

 static void Main()
 {
 XDocument xd = new XDocument(
 new XElement("MyElements",
 new XElement("first",
 new XAttribute("color", "red"),
 new XAttribute("size", "small")),
 new XElement("second",
 new XAttribute("color", "red"),
 new XAttribute("size", "medium")),
 new XElement("third",
 new XAttribute("color", "blue"),
 new XAttribute("size", "large"))));

 Console.WriteLine(xd); // Display XML tree
 xd.Save("SimpleSample.xml"); // Save XML tree
 }

9543ch21.fm Page 570 Tuesday, January 8, 2008 3:11 PM

C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q 571

The following example code uses a simple LINQ query to select a subset of the nodes from
the XML tree, and then displays them in several ways. This code does the following:

• It selects from the XML tree only those elements whose names have five characters.
Since the names of the elements are first, second, and third, only node names first and
third match the search criterion, and therefore those nodes are selected.

• It displays the names of the selected elements.

• It formats and displays the selected nodes, including the node name and the values of
the attributes. Notice that the attributes are retrieved using the Attribute method, and
the values of the attributes are retrieved with the Value property.

This code produces the following output:

first
third

Name: first, color: red, size: small
Name: third, color: blue, size: large

New page

 using System;
 using System.Linq;
 using System.Xml.Linq;

 static void Main()
 {
 XDocument xd = XDocument.Load("SimpleSample.xml"); // Load the document.
 XElement rt = xd.Element("MyElements"); // Get the root element.

 var xyz = from e in rt.Elements() // Select elements whose
 where e.Name.ToString().Length == 5 // names have 5 chars.
 select e;

 foreach (XElement x in xyz) // Display the
 Console.WriteLine(x.Name.ToString()); // selected elements.

 Console.WriteLine();
 foreach (XElement x in xyz)
 Console.WriteLine("Name: {0}, color: {1}, size: {2}",
 x.Name,
 x.Attribute("color").Value,
 x.Attribute("size") .Value);
 ↑ ↑
 } Get the attribute. Get the attribute’s value.

9543ch21.fm Page 571 Tuesday, January 8, 2008 3:11 PM

572 C H A P T E R 2 1 ■ I N T R O D U C T I O N T O L I N Q

The following code uses a simple query to retrieve all the top-level elements of the XML
tree, and creates an object of an anonymous type for each one. The first use of the WriteLine
method shows the default formatting of the anonymous type. The second WriteLine statement
explicitly formats the members of the anonymous type objects.

This code produces the following output. The first three lines show the default formatting
of the anonymous type. The last three lines show the explicit formatting specified in the format
string of the second WriteLine method.

{ Name = first, color = color="red" }
{ Name = second, color = color="red" }
{ Name = third, color = color="blue" }

first , color: red
second, color: red
third , color: blue

From these examples you can see that you can easily combine the XML API with the LINQ
query facilities to produce powerful XML querying capabilities.

 using System;
 using System.Linq;
 using System.Xml.Linq;

 static void Main()
 {
 XDocument xd = XDocument.Load("SimpleSample.xml"); // Load the document.
 XElement rt = xd.Element("MyElements"); // Get the root element.

 var xyz = from e in rt.Elements()
 select new { e.Name, color = e.Attribute("color") };
 ↑
 foreach (var x in xyz) Create an anonymous type.
 Console.WriteLine(x); // Default formatting

 Console.WriteLine();
 foreach (var x in xyz)
 Console.WriteLine("{0,-6}, color: {1, -7}", x.Name, x.color.Value);
 }

9543ch21.fm Page 572 Tuesday, January 8, 2008 3:11 PM

573

■ ■ ■

C H A P T E R 2 2

Introduction to Asynchronous
Programming

Processes, Threads, and Asynchronous Programming
Asynchronous Programming Patterns
BeginInvoke and EndInvoke
Timers
New page

9543.book Page 573 Friday, January 11, 2008 8:35 PM

574 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

Processes, Threads, and Asynchronous
Programming
When you start a program, the system creates a new process in memory. A process is the set of
resources that comprise a running program. These include the virtual address space, file han-
dles, and a host of other things required for the program to run.

Inside the process, the system creates a kernel object, called a thread, which represents the
actual execution of the program. (Thread is short for “thread of execution.”) Once the process
is set up, the system starts execution of the thread at the first statement in method Main.

Some important things to know about threads are the following:

• By default, a process contains only a single thread, which executes from the beginning
of the program to the end.

• A thread can spawn other threads, so that at any time, a process might have multiple
threads in various states, executing different parts of the program.

• If there are multiple threads in a process, they all share the process’s resources.

• Threads are the units that are scheduled by the system for execution on the processor—
not processes.

All the sample programs shown so far in this text have used only a single thread, and have
executed sequentially from the first statement in the program to the last. This is called synchro-
nous programming. Asynchronous programming refers to programs that spawn multiple
threads, which are, at least conceptually, executed at the same time. (They might not actually
be executed at the same time.)

If the program is running on a multiprocessor system, the different threads might actually
be executing at the same time on different processors. This can considerably improve perfor-
mance, and as multi-core processors become the norm, we need to write our programs to take
advantage of this opportunity.

On a single-processor system, though, clearly only one instruction can be executed by the
processor at a time. In this case, the operating system coordinates the threads so that the pro-
cessor is shared among them. Each thread gets the processor for a short time, called a time
slice, before being kicked off the processor and sent to the back of the line. This round-robin
sharing of the processor lets all the threads work their ways through the code.
New page

9543.book Page 574 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 575

Multithreading Considerations
Using multiple threads in a program, called multithreading, or just threading, creates program
overhead and additional program complexity. For example

• There are time and resource costs in both creating and destroying threads.

• The time required for scheduling threads, loading them onto the processor, and storing
their states after each time slice is pure overhead.

• Since the threads in a process all share the same resources and heap, it adds additional
programming complexity to ensure that they are not stepping on each other’s work.

• Debugging multithreaded programs can be quite difficult, since the timing on each run
of the program can be different, producing different results. And the act of running the
program in a debugger blows the timing out of the water.

In spite of these considerations, the benefits of threading can far outweigh its costs, as long
as it is used wisely⎯and not overused. For example, you’ve already seen that on a multipro-
cessor system, if the different threads can be placed on different processors, it can result in a
much more efficient execution.

To help alleviate some of the costs associated with creating and destroying threads, the
CLR maintains a thread pool for each process. Initially, a process’s thread pool is empty, but
after a thread is created and used by a process, and the thread completes its execution, it is not
destroyed, but instead added to the process’s thread pool. Later, if the process needs another
thread, the CLR recycles one from the pool, saving a significant amount of time.

Another common example where multithreading is crucial is in graphical user interface
(GUI) programming, where the user expects a quick response any time he or she clicks on a
button or uses the keyboard. In this case, if the program needs to perform an operation that is
going to take any appreciable time, it must perform that operation on another thread, leaving
the main thread available to respond to the user’s input. It would be totally unacceptable to
have the program unresponsive during that time.
New page

9543.book Page 575 Friday, January 11, 2008 8:35 PM

576 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

The Complexity of Multithreading
Although multithreading is conceptually easy, getting all the details right can be frustratingly
difficult on nontrivial programs. The areas that need to be considered are the following:

• Communicating between the threads: There are few built-in mechanisms for communi-
cating between threads, so this is often done simply using memory, since memory is
visible and accessible by all threads in the same process.

• Coordinating threads: Although it’s easy to create threads, you also need to be able to
coordinate their actions. For example, a thread might need to wait for one or more other
threads to complete before it can continue its execution.

• Synchronization of resource usage: Since all the threads in a process share the same
resources and memory, you need to make sure that the different threads aren’t access-
ing and changing them at the same time, causing state inconsistencies.

The System.Threading namespace contains classes and types that you can use to build
complex multithreaded systems. These include the Thread class itself, and classes such as
Mutex, Semaphore, and Monitor, which are used to synchronize resource usage. The use, com-
plexities, and nuances of this tricky subject are beyond the scope of this text, and you’d be
better advised to settle down with an in-depth book on the subject.

You can, however, add very powerful multithreading to your programs through two sim-
ple techniques—asynchronous delegates and timers⎯which I will cover in the rest of this
chapter. For most programs, these are probably the only techniques you will need.
New page

9543.book Page 576 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 577

Asynchronous Programming Patterns
So far in the text, all the code you’ve seen has been synchronous. C#, however, has an easy-to-
use mechanism for executing a method asynchronously, using delegates.

In Chapter 15, we covered the topic of delegates, and you saw that when a delegate object
is invoked, it invokes the methods contained in its invocation list. This is done synchronously,
just as if the methods had been called by the program.

If a delegate object has only a single method (which I’ll call the referenced method) in its
invocation list, it can execute that method asynchronously. The delegate class has two meth-
ods, called BeginInvoke and EndInvoke, that are used to do this. These methods are used in the
following way:

• When you call the delegate’s BeginInvoke method, it starts its referenced method exe-
cuting on a separate thread from the thread pool, and then returns immediately to the
initial thread. The initial thread can then continue on while the referenced method
executes in parallel in the thread pool thread.

• When your program wants to retrieve the results of the completed asynchronous
method, it either checks the IsCompleted property of the IAsyncResult returned by
BeginInvoke or calls the delegate’s EndInvoke method to wait for the delegate to finish.

The three standard patterns for using this process are illustrated in Figure 22-1. In all three
patterns, the initial thread initiates an asynchronous method call and then does some addi-
tional processing. The patterns differ, however, in the ways in which the initial thread receives
the information that the spawned thread has completed.

• In the wait-until-done pattern, after spawning the asynchronous method and doing
some additional processing, the initial thread halts and waits for the asynchronous
method to finish before continuing on.

• In the polling pattern, the initial thread checks periodically whether the spawned thread
has completed, and if not, it continues additional processing.

• In the callback pattern, the initial thread continues execution without waiting or check-
ing whether the spawned thread has completed. Instead, when the referenced method
in the spawned thread is finished, the spawned thread then calls a callback method,
which handles the results of the asynchronous method before calling EndInvoke.

Figure 22-1. The standard patterns for asynchronous method calls

New page

9543.book Page 577 Friday, January 11, 2008 8:35 PM

578 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

BeginInvoke and EndInvoke
Before we look at examples of the asynchronous programming patterns, let’s take a closer
look at the BeginInvoke and EndInvoke methods. Some of the important things to know about
BeginInvoke are the following:

• When calling BeginInvoke, the actual parameters in the parameter list consist of the
following:

– The parameters required by the referenced method

– Two additional parameters, called the callback parameter and the state parameter

• BeginInvoke retrieves a thread from the thread pool and starts the referenced method
running on the new thread.

• BeginInvoke returns to the calling thread a reference to an object implementing the
IAsyncResult interface. This interface reference contains information about the current
state of the asynchronous method. The initial thread then continues execution.

The following code shows an example of calling a delegate’s BeginInvoke method. The first
line declares a delegate type called MyDel. The next line declares a method called Sum, which
matches the delegate.

• The following line declares a delegate object called del, of the delegate type MyDel, and
initializes its invocation list with the Sum method.

• Finally, the last line of code calls the BeginInvoke method of the delegate object, and
supplies it with the two delegate parameters 3 and 5, and the two BeginInvoke parame-
ters callback and state, which are set to null in this example. When executed, the
BeginInvoke method performs two actions:

– It gets a thread from the thread pool and starts method Sum running on the new
thread, supplying it with 3 and 5 as its actual parameters.

– It collects information about the state of the new thread and makes it available
through a reference to an interface of type IAsyncResult, which it returns to the
calling thread. The calling thread stores it in a variable called iar.

New page

delegate long MyDel(int first, int second); // Delegate declaration
 ...
static long Sum(int x, int y){ ... } // Method matching delegate
 ...
MyDel del = new MyDel(Sum); // Create delegate object
IAsyncResult iar = del.BeginInvoke(3, 5, null, null);
 ↑ ↑ ↑ ↑
 Information about Invoke delegate Delegate Extra
 new thread asynchronously params params

9543.book Page 578 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 579

The EndInvoke method is used to retrieve the values returned by the asynchronous method
call, and to release resources used by the thread. EndInvoke has the following characteristics:

• It takes as a parameter the reference to the IAsyncResult returned by the BeginInvoke
method, and finds the thread it refers to.

• If the thread pool thread has exited, EndInvoke does the following:

– It cleans up the exited thread’s loose ends and disposes of its resources.

– It finds the value returned by the referenced method and returns that value as its
return value.

• If the thread pool thread is still running when EndInvoke is called, the calling thread
stops and waits for it to finish before cleaning up and returning the value. Because
EndInvoke cleans up after the spawned thread, you must make sure that an EndInvoke is
called for each BeginInvoke.

• If the asynchronous method triggers an exception, the exception is raised when
EndInvoke is called.

The following line of code shows an example of calling EndInvoke to retrieve the value from
an asynchronous method. You must always include the reference to the IAsyncResult object as
a parameter.

EndInvoke supplies all the output from the asynchronous method call, including ref and
out parameters. If a delegate’s referenced method has ref or out parameters, they must be
included in EndInvoke’s parameter list before the reference to the IAsyncResult object, as
shown here:

New page

 Delegate object
 ↓
 long result = del.EndInvoke(iar);
 ↑ ↑
 Return value IAsyncResult
 from async method object

 long result = del.EndInvoke(out someInt, iar);
 ↑ ↑ ↑
 Return value Out IAsyncResult
 from async method param object

9543.book Page 579 Friday, January 11, 2008 8:35 PM

580 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

The Wait-Until-Done Pattern
Now that you understand the BeginInvoke and EndInvoke delegate methods, we can look at the
asynchronous programming patterns. The first one we’ll look at is the wait-until-done pattern.
In this pattern, the initial thread initiates an asynchronous method call, does some additional
processing, and then stops and waits until the spawned thread finishes. It is summarized as
follows:

The following code shows a full example of this pattern. This code uses the Sleep method
of the Thread class to suspend itself for 100 milliseconds (1/10 of a second). The Thread class is
in the System.Threading namespace.

 IAsyncResult iar = del.BeginInvoke(3, 5, null, null);
 // Do additional work in the calling thread, while the method
 // is being executed asynchronously in the spawned thread.
 ...
 long result = del.EndInvoke(iar);

 using System.Threading; // For Thread.Sleep()
 ...
 delegate long MyDel(int first, int second); // Declare delegate type

 class Program
 {
 static long Sum(int x, int y) // Declare method for async
 {
 Console.WriteLine(" Inside Sum");
 Thread.Sleep(100);

 return x + y;
 }

Continued

9543.book Page 580 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 581

This code produces the following output:

Before BeginInvoke
After BeginInvoke
Doing stuff
 Inside Sum
After EndInvoke: 8

New page

 static void Main()
 {
 MyDel del = new MyDel(Sum);

 Console.WriteLine("Before BeginInvoke");
 IAsyncResult iar = del.BeginInvoke(3, 5, null, null); // Start async
 Console.WriteLine("After BeginInvoke");

 Console.WriteLine("Doing stuff");

 long result = del.EndInvoke(iar); // Wait for end and get result
 Console.WriteLine("After EndInvoke: {0}", result);
 }
 }

9543.book Page 581 Friday, January 11, 2008 8:35 PM

582 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

The AsyncResult Class
Now that you’ve seen BeginInvoke and EndInvoke in action in their simplest forms, it’s time to
take a closer look at IAsyncResult, which is an integral part of using these methods.

BeginInvoke returns a reference to an IAsyncResult interface that is inside a class object of
type AsyncResult. The AsyncResult class represents the state of the asynchronous method.
Figure 22-2 shows a representation of some of the important parts of the class. The important
things to know about the class are the following:

• When you call a delegate object’s BeginInvoke method, the system creates an object of
the class AsyncResult. It doesn’t, however, return a reference to the class object. Instead
it returns a reference to the IAsyncResult interface contained in the object.

• An AsyncResult object contains a property called AsyncDelegate, which returns a refer-
ence to the delegate that was invoked to start the asynchronous method. This property,
however, is part of the class object, but not part of the interface.

• The IsCompleted property returns a Boolean value indicating whether the asynchro-
nous method has completed.

• The AsyncState property returns a reference to the object that was listed as the state
parameter in the BeginInvoke method invocation. It returns a reference of type object.
I will explain this in the section on the callback pattern.

Figure 22-2. An AsyncResult class object

New page

9543.book Page 582 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 583

The Polling Pattern
In the polling pattern, the initial thread initiates an asynchronous method call, does some
additional processing, and then uses the IsCompleted method of the IAsyncResult object to
check periodically whether the spawned thread has completed. If the asynchronous method
has completed, the initial thread calls EndInvoke and continues on. Otherwise, it does some
additional processing and checks again later. The “processing” in this case just consists of
counting from 0 to 10,000,000.

 delegate long MyDel(int first, int second);

 class Program
 {
 static long Sum(int x, int y)
 {
 Console.WriteLine(" Inside Sum");
 Thread.Sleep(100);

 return x + y;
 }

 static void Main()
 {
 MyDel del = new MyDel(Sum); Spawn async method
 ↓
 IAsyncResult iar = del.BeginInvoke(3, 5, null, null); // Start async.
 Console.WriteLine("After BeginInvoke");
 Check whether the async method is done.
 ↓
 while (!iar.IsCompleted)
 {
 Console.WriteLine("Not Done");

 // Continue processing, even though in this case it's just busywork.
 for (long i = 0; i < 10000000; i++)
 ;
 }
 Console.WriteLine("Done");
 Call EndInvoke to get result and clean up.
 ↓
 long result = del.EndInvoke(iar);
 Console.WriteLine("Result: {0}", result);
 }
 }

9543.book Page 583 Friday, January 11, 2008 8:35 PM

584 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

This code produces the following output:

After BeginInvoke
Not Done
 Inside Sum
Not Done
Not Done
Done
Result: 8

New page

9543.book Page 584 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 585

The Callback Pattern
In the previous two patterns, wait-until-done and polling, the initial thread continues on with
its flow of control only after it knows that the spawned thread has completed. It then retrieves
the results and continues.

The callback pattern is different in that once the initial thread spawns the asynchronous
method, it goes on its way without synchronizing with it again. When the asynchronous
method call completes, the system invokes a user-supplied method to handle its results, and to
call the delegate’s EndInvoke method. This user-defined method is called a callback method, or
just callback.

The two extra parameters at the end of the BeginInvoke parameter list are used with the
callback method as follows:

• The first of the two parameters, the callback parameter, is the name of the callback
method.

• The second parameter, the state parameter, can be either null or a reference to an
object you want passed into the callback method. You’ll be able to access this object
through the method’s IAsyncResult parameter using its AsyncState property. The type
of this parameter is object.

The Callback Method

The signature and return type of the callback method must be of the form described by the
AsyncCallback delegate type. This form requires that the method take a single parameter of
type IAsyncResult and have a void return type, as shown here:

There are several ways you can supply the callback method to the BeginInvoke method.
Since the callback parameter in BeginInvoke is a delegate of type AsyncCallback, you can sup-
ply it as a delegate, as shown in the first code statement that follows. Or you can just supply the
name of the callback method and let the compiler create the delegate for you. Both forms are
semantically equivalent.

The second BeginInvoke parameter is used to send an object to the callback method. It can
be an object of any type, but the parameter is of type object, so inside the callback method you
will have to cast it to the correct type.
New page

 void AsyncCallback(IAsyncResult iar)

 Create a delegate with the callback method.
 IAsyncResult iar1 = ↓
 del.BeginInvoke(3, 5, new AsyncCallback(CallWhenDone), null);
 Just use the callback method’s name.
 ↓
 IAsyncResult iar2 = del.BeginInvoke(3, 5, CallWhenDone, null);

9543.book Page 585 Friday, January 11, 2008 8:35 PM

586 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

Calling EndInvoke Inside the Callback Method

Inside the callback method, your code should call the delegate’s EndInvoke method and take
care of handling the output results of the asynchronous method execution. To call the dele-
gate’s EndInvoke method, though, you need a reference to the delegate object, which is in the
initial thread—not here in the spawned thread.

If you’re not using BeginInvoke’s state parameter for anything else, you can use it to send
the delegate reference to the callback method, as shown here:

Otherwise, you can extract the delegate’s reference from the IAsyncResult object sent into
the method as the parameter. This is shown in the following code and illustrated in Figure 22-3.

• The single parameter to the callback method is a reference to the IAsyncResult interface
of the asynchronous method that has just completed. Remember that the IAsyncResult
interface object is inside the AsyncResult class object.

• Although the IAsyncResult interface doesn’t have a reference to the delegate object, the
AsyncResult class object enclosing it does have a reference to the delegate object. So the
first line inside the example method body gets a reference to the class object by casting
the interface reference to the class type. Variable ar now has a reference to the class
object.

• With the reference to the class object, you can now call the AsyncDelegate property of
the class object and cast it to the appropriate delegate type. This gives you the delegate
reference, which you can then use to call EndInvoke.

 Delegate object Send delegate object as state param
 ↓ ↓
 IAsyncResult iar = del.BeginInvoke(3, 5, CallWhenDone, del);

using System.Runtime.Remoting.Messaging; // Contains AsyncResult class

void CallWhenDone(IAsyncResult iar)
{
 AsyncResult ar = (AsyncResult) iar; // Get class object reference
 MyDel del = (MyDel) ar.AsyncDelegate; // Get reference to delegate

 long Sum = del.EndInvoke(iar); // Call EndInvoke
 ...
}

9543.book Page 586 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 587

Figure 22-3. Extracting the delegate’s reference inside the callback method

New page

9543.book Page 587 Friday, January 11, 2008 8:35 PM

588 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

The following code puts it all together, and is an example of using the callback pattern.

This code produces the following output:

Before BeginInvoke
Doing more work in Main.
 Inside Sum
 Inside CallWhenDone.
 The result is: 8.
Done with Main. Exiting.

New page

 using System.Runtime.Remoting.Messaging; // To access the AsyncResult type
 ...
 delegate long MyDel(int first, int second);

 class Program {
 static long Sum(int x, int y)
 {
 Console.WriteLine(" Inside Sum");
 Thread.Sleep(100);
 return x + y;
 }

 static void CallWhenDone(IAsyncResult iar) {
 Console.WriteLine(" Inside CallWhenDone.");
 AsyncResult ar = (AsyncResult) iar;
 MyDel del = (MyDel)ar.AsyncDelegate;

 long result = del.EndInvoke(iar);
 Console.WriteLine
 (" The result is: {0}.", result);
 }

 static void Main() {
 MyDel del = new MyDel(Sum);

 Console.WriteLine("Before BeginInvoke");
 IAsyncResult iar =
 del.BeginInvoke(3, 5, new AsyncCallback(CallWhenDone), null);

 Console.WriteLine("Doing more work in Main.");
 Thread.Sleep(500);
 Console.WriteLine("Done with Main. Exiting.");
 }
 }

9543.book Page 588 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 589

Timers
Timers provide another way to run an asynchronous method on a regular, recurring basis.
Although there are several Timer classes available in the .NET BCL, I’ll describe the one in the
System.Threading namespace.

The important things to know about this timer class are the following:

• The timer uses a callback method that is called each time the timer expires. The callback
method must be in the form of the TimerCallback delegate, which has the following
form. It takes a single parameter of type object, and has a void return type.

• When the timer expires, the system sets up the callback method on a thread from the
thread pool, supplies the state object as its parameter, and starts it running.

• You can set a number of the timer’s characteristics, including the following:

– The dueTime is the amount of time before the first call of the callback method. If
dueTime is set to the special value Timeout.Infinite, the timer will not start. If it’s set
to 0, the callback will be called immediately.

– The period is the amount of time between each successive call of the callback
method. If its value is set to Timeout.Infinite, the callback won’t be called after the
first time.

– The state is either null or a reference to an object to be passed to the callback
method each time it’s executed.

The constructor for the Timer class takes as parameters the name of the callback method,
the dueTime, the period, and the state. There are several constructors for Timer; the one that is
probably the most commonly used has the following form:

The following code statement shows an example of the creation of a Timer object:

Once a Timer object is created, you can change its dueTime or period using the Change
method.
New page

void TimerCallback(object state)

 Timer(TimerCallback callback, object state, uint dueTime, uint period)

 Name of Call first time after
 the callback 2000 milliseconds
 ↓ ↓
 Timer myTimer = new Timer (MyCallback, someObject, 2000, 1000);
 ↑ ↑
 Object to pass Call every
 to the callback 1000 milliseconds

9543.book Page 589 Friday, January 11, 2008 8:35 PM

590 C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G

The following code shows an example of using a timer. The Main method creates the timer
so that it will call the callback for the first time after two seconds, and once every second after
that. The callback method simply prints out a message, including the number of times it has
been called.

This code produces the following output before being terminated after about 5 seconds:

Timer started.
Processing timer event 1
Processing timer event 2
Processing timer event 3
Processing timer event 4

 using System;
 using System.Threading;

 namespace Timers
 {
 class Program
 {
 int TimesCalled = 0;

 void Display (object state)
 {
 Console.WriteLine("{0} {1}",(string)state, ++TimesCalled);
 }

 static void Main()
 {
 Program p = new Program(); First callback at
 2 seconds
 Timer myTimer = new Timer ↓
 (p.Display, "Processing timer event", 2000, 1000);
 Console.WriteLine("Timer started."); ↑
 Repeat every
 Console.ReadLine(); second
 }
 }
 }

9543.book Page 590 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 2 ■ I N T R O D U C T I O N T O A S Y N C H R O N O U S P R O G R A M M I N G 591

There are several other timer classes supplied by the .NET BCL, each having its own uses.
The other timer classes are the following:

• System.Windows.Forms.Timer: This class is used in Windows Forms applications to
periodically place WM_TIMER messages into the program’s message queue. When the
program gets the message from the queue, it processes the handler synchronously on
the main user interface thread. This is extremely important in Windows Forms
applications.

• System.Timers.Timer: This class is more extensive, and contains a number of members
for manipulating the timer through properties and methods. It also has a member event
called Elapsed, which is raised when each period expires. This timer can run on either a
user interface thread or a worker thread.

9543.book Page 591 Friday, January 11, 2008 8:35 PM

9543.book Page 592 Friday, January 11, 2008 8:35 PM

593

■ ■ ■

C H A P T E R 2 3

Preprocessor Directives

What Are Preprocessor Directives?
General Rules
The #define and #undef Directives
Conditional Compilation
The Conditional Compilation Constructs
Diagnostic Directives
Line Number Directives
Region Directives
The #pragma warning Directive
New page

9543.book Page 593 Friday, January 11, 2008 8:35 PM

594 C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S

What Are Preprocessor Directives?
The source code specifies the definition of a program. The preprocessor directives instruct the
compiler how to treat the source code. For example, under certain conditions, you might want
the compiler to ignore portions of the code, and under other conditions, you might want that
code compiled. The preprocessor directives give you those options and several others.

In C and C++ there is an actual preprocessor phase, in which the preprocessor goes
through the source code and prepares an output stream of text to be processed by the subse-
quent compilation phase. In C# there is no actual preprocessor. The “preprocessor” directives
are handled by the compiler. The term, however, remains.

General Rules
Some of the most important syntactic rules for preprocessor directives are the following:

• Preprocessor directives must be on lines separate from C# code.

• Unlike C# statements, preprocessor directives are not terminated with a semicolon.

• Every line containing a preprocessor directive must start with the # character.

– There can be space before the # character.

– There can be space between the # character and the directive.

• End-of-line comments are allowed.

• Delimited comments are not allowed in a preprocessor directive line.

New page

9543.book Page 594 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S 595

Here are some examples illustrating the rules:

The preprocessor directives are listed in Table 23-1.

Table 23-1. Preprocessor Directives

New page

 No semicolon
 ↓
 #define PremiumVersion // OK

 Space before
 ↓
 #define BudgetVersion // OK
 # define MediumVersion // OK
 ↑
 Space between Delimited comments are not allowed.
 ↓
 #define PremiumVersion /* all bells & whistles */

 End-of-line comments are fine.
 ↓
 #define BudgetVersion // Stripped-down version

Directive Summary of Meaning

#define identifier Defines a compilation symbol

#undef identifier Undefines a compilation symbol

#if expression If the expression is true, compiles the following section

#elif expression If the expression is true, compiles the following section

#else If the previous #if or #elif expression is false, compiles the following
section

#endif Marks the end of an #if construct

#region name Marks the beginning of a region of code; has no compilation effect

#endregion name Marks the end of a region of code; has no compilation effect

#warning message Displays a compile-time warning message

#error message Displays a compile-time error message

#line indicator Changes the line numbers displayed in compiler messages

#pragma text Specifies information about the program context

9543.book Page 595 Friday, January 11, 2008 8:35 PM

596 C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S

The #define and #undef Directives
A compilation symbol is an identifier that has only two possible states. It is either defined or
undefined. A compilation symbol has the following characteristics:

• It can be any identifier except true or false. This includes C# keywords, and identifiers
declared in your C# code—both of which are fine.

• It has no value. Unlike in C and C++, it does not represent a string.

As shown in Table 23-1

• The #define directive declares a compilation symbol.

• The #undef directive undefines a compilation symbol.

The #define and #undef directives can be used only at the top of a source file, before any
C# code is listed. After the C# code has started, the #define and #undef directives can no longer
be used.

The scope of a compilation symbol is limited to a single source file. Redefining a symbol
that is already defined is perfectly fine—as long as it’s before any C# code, of course.

New page

#define PremiumVersion
#define EconomyVersion
 ...
#undef PremiumVersion

 using System; // First line of C# code
 #define PremiumVersion // Error

 namespace Eagle
 {
 #define PremiumVersion // Error
 ...

 #define AValue
 #define BValue

 #define AValue // Redefinition is fine.

9543.book Page 596 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S 597

Conditional Compilation
Conditional compilation allows you to mark a section of source code to be either compiled or
skipped, depending on whether a particular compilation symbol is defined.

There are four directives for specifying conditional compilation:

• #if

• #else

• #elif

• #endif

A condition is a simple expression that returns either true or false.

• A condition can consist of a single compilation symbol, or an expression of symbols and
operators, as summarized in Table 23-2. Sub-expressions can be grouped with
parentheses.

• The literals true and false can also be used in conditional expressions.

Table 23-2. Conditions Used in the #if and #elif Directives

The following are examples of conditional compilation conditions:

New page

Parameter Type Meaning Evaluation

Compilation symbol Identifier, defined (or not) using
the #define directive

True: If the symbol has been
defined using a #define directive
False: Otherwise

Expression Constructed using symbols and
the operators !, ==, !=, &&, ||

True: If the expression evaluates to
true
False: Otherwise

 Expression

 #if !DemoVersion
 ...
 #endif Expression

 #if (LeftHanded && OemVersion) || FullVersion
 ...
 #endif

 #if true // The following code segment will always be compiled.
 ...
 #endif

9543.book Page 597 Friday, January 11, 2008 8:35 PM

598 C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S

The Conditional Compilation Constructs
The #if and #endif directives are the matching demarcations of a conditional compilation
construct. Whenever there is an #if directive, there must also be a matching #endif.

The #if and #if...#else constructs are illustrated in Figure 23-1.

• If the condition in the #if construct evaluates to true, the code section following it is
compiled. Otherwise, it is skipped.

• In the #if...#else construct, if the condition evaluates to true, CodeSection1 is com-
piled. Otherwise, CodeSection2 is compiled.

Figure 23-1. The #if and #else constructs

For example, the following code illustrates a simple #if...#else construct. If the symbol
RightHanded is defined, the code between the #if and the #else will be compiled. Otherwise,
the code between the #else and the #endif will be compiled.

New page

 ...
 #if RightHanded
 // Code implementing right-handed functionality
 ...
 #else
 // Code implementing left-handed functionality
 ...
 #endif

9543.book Page 598 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S 599

The #if...#elif and #if...#elif...#else constructs are illustrated in Figure 23-2.

• In the #if...#elif construct, if Cond1 evaluates to true, CodeSection1 is compiled, and
compilation continues after the #endif.

– Otherwise, if Cond2 evaluates to true, CodeSection2 is compiled, and compilation
continues after the #endif.

– This continues until either a condition evaluates to true, or all the conditions have
returned false. If that is the case, none of the code sections in the construct are
compiled, and compilation continues after the #endif.

• The #if...#elif...#else construct works the same way, except that if no condition is
true, then the code section after the #else is then compiled, and compilation continues
after the #endif.

Figure 23-2. The #elif construct

New page

9543.book Page 599 Friday, January 11, 2008 8:35 PM

600 C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S

The following code demonstrates the #if...#elif...#else construct. The string contain-
ing the description of the version of the program is set to various values, depending on which
compilation symbol is defined.

New page

 #define DemoVersionWithoutTimeLimit
 ...
 const int intExpireLength = 30;
 string strVersionDesc = null;
 int intExpireCount = 0;

 #if DemoVersionWithTimeLimit
 intExpireCount = intExpireLength;
 strVersionDesc = "This version of Supergame Plus will expire in 30 days";

 #elif DemoVersionWithoutTimeLimit
 strVersionDesc = "Demo Version of Supergame Plus";

 #elif OEMVersion
 strVersionDesc = " Supergame Plus, distributed under license";

 #else
 strVersionDesc = "The original Supergame Plus!!";

 #endif

 Console.WriteLine(strVersionDesc);
 ...

9543.book Page 600 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S 601

Diagnostic Directives
Diagnostic directives produce user-defined compile-time warning and error messages.

The following is the syntax of the diagnostic directives. The messages are strings, but
notice that unlike normal C# strings, they do not have to be enclosed in quotation marks.

When the compiler reaches a diagnostic directive, it writes out the associated message.
The diagnostic directive messages are listed by the compiler along with any compiler-
generated warning and error messages.

For example, the following code shows an #error directive and a #warning directive.

• The #error directive is inside an #if construct, so that it will be generated only if the
conditions on the #if directive are met.

• The #warning directive is a reminder to the programmer to come back and clean up a
section of code.

New page

 #warning Message

 #error Message

#define RightHanded
#define LeftHanded

#if RightHanded && LeftHanded
#error Can't build for both RightHanded and LeftHanded
#endif

#warning Remember to come back and clean up this code!

9543.book Page 601 Friday, January 11, 2008 8:35 PM

602 C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S

Line Number Directives
Line number directives can do several things, including the following:

• Change the apparent line numbers reported by the compiler’s warning and error
messages

• Change the apparent filename of the source file being compiled

• Hide a sequence of lines from the interactive debugger

The syntax for the #line directives is the following:

The #line directive with an integer parameter causes the compiler to consider that value
to be the line number of the following line of code. Numbering of the subsequent lines contin-
ues, based on that line number.

• To change the apparent filename, use the filename, inside double quotes, as the param-
eter. The double quotes are required.

• To return to true line numbering and the true filename, use default as the parameter.

• To hide a segment of code from the step-through-code feature of the interactive debug-
ger, use hidden as the parameter. To stop hiding, use the directive with no parameter. This
feature has, so far, mostly been used in ASP.NET for hiding compiler-generated code.

The following code shows examples of the line number directives:

New page

 #line integer // Sets line number of next line to value of integer
 #line "filename" // Sets the apparent filename
 #line default // Restores real line number and filename

 #line hidden // Hides the following code from stepping debugger
 #line // Stops hiding from debugger

 #line 226
 x = y + z; // Now considered by the compiler to be line 226
 ...

 #line 330 "SourceFile.cs" // Changes the reported line number and filename
 var1 = var2 + var3;
 ...

 #line default // Restores true line numbers and filename

9543.book Page 602 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S 603

Region Directives
The region directive allows you to mark, and optionally name, a section of code. The #region
directive

• Is placed on the line above the section of code you want to mark

• Can have an optional string of text following it on the line, which serves as its name

• Must be terminated by an #endregion directive, farther down in the code

Although region directives are ignored by the compiler, they can be used by source code
tools. Visual Studio, for example, allows you to easily hide or display regions.

As an example, the following code has a region called Constructors, which encloses the
two constructors of class MyClass. In Visual Studio, you could collapse this region to a single
line when you didn’t want to see it in the code, and then expand it again when you needed to
work on it or add another constructor.

Regions can be nested, as shown in Figure 23-3.

Figure 23-3. Nested regions

New page

 #region Constructors
 MyClass()
 { ... }

 MyClass(string s)
 { ... }
 #endregion

9543.book Page 603 Friday, January 11, 2008 8:35 PM

604 C H A P T E R 2 3 ■ P R E P R O C E S S O R D I R E C T I V E S

The #pragma warning Directive
The #pragma warning directive allows you to turn off warning messages and to turn them back on.

• To turn off warning messages, use the disable form with a comma-separated list of
warning numbers you want to turn off.

• To turn warning messages back on, use the restore form with a list of the warning num-
bers you want to turn back on.

For example, the following code turns off two warning messages: 618 and 414. Farther
down in the code, it turns on messages for 618 but leaves the messages for 414 turned off.

If you use either form without a warning number list, the command then applies to all
warnings. For example, the following code turns off, and then restores, all warning messages.

 Warning messages to turn off
 ↓
 #pragma warning disable 618, 414
 ... Messages for the listed warnings are off in this section of code.
 #pragma warning restore 618

 #pragma warning disable
 ... All warning messages are turned off in this section of code.

 #pragma warning restore
 ... All warning messages are turned back on in this section of code.

9543.book Page 604 Friday, January 11, 2008 8:35 PM

605

■ ■ ■

C H A P T E R 2 4

Reflection and Attributes

Metadata and Reflection
The Type Class
Getting a Type Object
What Is an Attribute?
Applying an Attribute
Predefined, Reserved Attributes
More About Applying Attributes
Custom Attributes
Accessing an Attribute
New page

9543.book Page 605 Friday, January 11, 2008 8:35 PM

606 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Metadata and Reflection
Most programs are written to work on data. They read, write, manipulate, and display data.
(Graphics are a form of data.) The types that you as the programmer create and use are
designed for these purposes, and it is you, at design time, that must understand the character-
istics of the types you use.

For some types of programs, however, the data they manipulate is not numbers, text, or
graphics, but information about programs and program types themselves.

• Data about programs and their types is called metadata, and is stored in the programs’
assemblies.

• A program can look at the metadata of other assemblies or of itself, while it is running.
When a running program looks at its own metadata, or that of other programs, it is
called reflection.

An object browser is an example of a program that displays metadata. It can read assem-
blies and display the types they contain, along with all the characteristics and members.

This chapter will look at how your programs can reflect on data using the Type class and
how you can add metadata to your types using attributes.

■Note To use reflection, you must use the System.Reflection namespace.

The Type Class
Throughout this text I have described how to declare and use the types available in C#. These
include the predefined types (int, long, string, etc.), types from the BCL (Console, IEnumerable,
etc.), and user-defined types (MyClass, MyDel, etc.). Every type has its own members and
characteristics.

The BCL declares an abstract class called Type, which is designed to contain the character-
istics of a type. Using objects of this class allows you to get information about the types your
program is using.

Since Type is an abstract class, it cannot have actual instances. Instead, at run time, the
CLR creates instances of a class derived from Type (RuntimeType) that contains the type infor-
mation. When you access one of these instances, the CLR returns a reference, not of the
derived type, but of the base class Type. For simplicity’s sake, though, throughout the rest of the
chapter, I will call the object pointed at by the reference an object of type Type, although tech-
nically it is an object of a derived type, with a reference of type Type.
New page

9543.book Page 606 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 607

Important things to know about Type are the following:

• For every type used in a program, the CLR creates an object of type Type that contains
the information about the type.

• Every type used in a program is associated with a separate object of class Type.

• Regardless of the number of instances of a type that are created, there is only a single
Type object associated with all the instances.

Figure 24-1 shows a running program with two MyClass objects and an OtherClass object.
Notice that although there are two instances of MyClass, there is only a single Type object rep-
resenting it.

Figure 24-1. The CLR instantiates objects of type Type for every type used in a program.

You can get almost anything you need to know about a type from its Type object. Some of
the more useful members of the class are listed in Table 24-1.

Table 24-1. Selected Members of Class System.Type

New page

Member Member Type Description

Name Property Returns the name of the type

Namespace Property Returns the namespace containing the type declaration

GetFields Method Returns a list of the type’s fields

GetProperties Method Returns a list of the type’s properties

GetMethods Method Returns a list of the type’s methods

9543.book Page 607 Friday, January 11, 2008 8:35 PM

608 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Getting a Type Object
There are several ways to get a Type object. We will look at using the GetType method and using
the typeof operator.

Type object contains a method called GetType, which returns a reference to an instance’s
Type object. Since every type is ultimately derived from object, you can call the GetType
method on an object of any type to get its Type object, as shown here:

The following code shows the declarations of a base class and a class derived from it.
Method Main creates an instance of each class and places the references in an array called bca
for easy processing. Inside the outer foreach loop, the code gets the Type object and prints out
the name of the class. It then gets the fields of the class and prints them out. Figure 24-2 illus-
trates the objects in memory.

New page

 Type t = myInstance.GetType();

 class BaseClass
 { public int BaseField = 0; }

 class DerivedClass : BaseClass
 { public int DerivedField = 0; }

 class Program
 {
 static void Main()
 {
 var bc = new BaseClass();
 var dc = new DerivedClass();
 BaseClass[] bca = new BaseClass[] { bc, dc };

 foreach (var v in bca)
 {
 Type t = v.GetType(); // Get the type.

 Console.WriteLine("Object type : {0}", t.Name);

 FieldInfo[] fi = t.GetFields(); // Get the field info.
 foreach (var f in fi)
 Console.WriteLine(" Field : {0}", f.Name);
 Console.WriteLine();
 }
 }
 }

9543.book Page 608 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 609

This code produces the following output:

Object type : BaseClass
 Field : BaseField

Object type : DerivedClass
 Field : DerivedField
 Field : BaseField

Figure 24-2. The base class and derived class objects along with their Type objects

New page

9543.book Page 609 Friday, January 11, 2008 8:35 PM

610 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

You can also use the typeof operator to get a Type object. Just supply the name of the type
as the operand, and it returns a reference to the Type object, as shown here:

The following code shows a simple example of using the typeof operator:

This code produces the following output:

Result is DerivedClass.
It has the following fields:
 MyFieldDerived
 MyFieldBase

New page

 Type t = typeof(DerivedClass);
 ↑ ↑
 Operator Type you want the Type object for

 using System;
 using System.Reflection; // Must use this namespace

 namespace SimpleReflection
 {
 class BaseClass
 { public int MyFieldBase; }

 class DerivedClass : BaseClass
 { public int MyFieldDerived; }

 class Program
 {
 static void Main()
 {
 Type tbc = typeof(DerivedClass); // Get the type.
 Console.WriteLine("Result is {0}.", tbc.Name);

 Console.WriteLine("It has the following fields:"); // Use the type.
 FieldInfo[] fi = tbc.GetFields();
 foreach (var f in fi)
 Console.WriteLine(" {0}", f.Name);
 }
 }
 }

9543.book Page 610 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 611

What Is an Attribute?
An attribute is a language construct that allows you to add metadata to a program’s assembly.
It is a special type of class for storing information about program constructs.

• The program construct to which you apply an attribute is called its target.

• Programs designed to retrieve and use metadata, such as object browsers, are said to be
consumers of the attributes.

• There are attributes that are predefined in .NET, and you can also declare custom
attributes.

Figure 24-3 is an overview of the components involved in using attributes, and illustrates
the following points about them:

• You apply attributes to program constructs in the source code.

• The compiler takes the source code and produces metadata from the attributes, and
places that metadata in the assembly.

• Consumer programs can access the metadata of the attributes along with the metadata
for the rest of the components of the program. Notice that the compiler both produces
and consumes attributes.

Figure 24-3. The components involved with creating and using attributes

By convention, attribute names use Pascal casing and end with the suffix Attribute. When
applying an attribute to a target, you can leave off the suffix. For example, with attributes
SerializableAttribute and MyAttributeAttribute, you can use the short names Serializable
and MyAttribute when applying them to a construct.
New page

9543.book Page 611 Friday, January 11, 2008 8:35 PM

612 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Applying an Attribute
The purpose of an attribute is to tell the compiler to emit a certain set of metadata about a pro-
gram construct to the assembly. You do this by applying the attribute to the construct.

• You apply an attribute by placing an attribute section immediately before the construct.

• An attribute section consists of square brackets enclosing an attribute name and some-
times a parameter list.

For example, the following code shows the headings of two classes. The first few lines
of code show an attribute named Serializable applied to class MyClass. Notice that
Serializable has no parameter list. The second class declaration has an attribute called
MyAttribute, which has a parameter list with two string parameters.

Some important things to know about attributes are the following:

• Most attributes apply only to the construct immediately following the attribute section
or sections.

• A construct with an attribute applied to it is said to be decorated, or adorned, with the
attribute. Both terms are common.

New page

 [Serializable] // Attribute
 public class MyClass
 { ...

 [MyAttribute("Simple class", "Version 3.57")] // Attribute with parameters
 public class MyOtherClass
 { ...

9543.book Page 612 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 613

Predefined, Reserved Attributes
Before looking at how you can define your own attributes, this section describes two attributes
predefined and reserved by .NET: the Obsolete and Conditional attributes.

The Obsolete Attribute
The Obsolete attribute allows you to mark a program construct as obsolete and to display a helpful
warning message when the code is compiled. The following code shows an example of its use:

Notice that method Main calls PrintOut even though it’s marked as obsolete. In spite of
this, the code compiles and runs fine, and produces the following output:

Start of Main

During compilation, though, the compiler produces the following CS0618 warning mes-
sage to inform you that you are using an obsolete construct:

'AttrObs.Program.PrintOut(string)' is obsolete: 'Use method SuperPrintOut'

Another overload of the Obsolete attribute takes a second parameter of type bool. This
parameter specifies whether use of the target should be flagged as an error instead of just a
warning. The following code specifies that it should be flagged as an error:

 class Program Apply attribute
 { ↓
 [Obsolete("Use method SuperPrintOut")] // Apply attribute to method
 static void PrintOut(string str)
 {
 Console.WriteLine(str);
 }

 static void Main(string[] args)
 {
 PrintOut("Start of Main"); // Invoke obsolete method
 }
 }

 Flag as an error
 ↓
 [Obsolete("Use method SuperPrintOut", true)] // Apply attribute to method
 static void PrintOut(string str)
 { ...

9543.book Page 613 Friday, January 11, 2008 8:35 PM

614 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

The Conditional Attribute
The Conditional attribute allows you to either include or exclude all the invocations of a partic-
ular method. To use the Conditional attribute, apply it to the method declaration, along with a
compilation symbol as a parameter.

• If the compilation symbol is defined, the compiler will include the code for all the invo-
cations of the method, the way it would for any normal method.

• If the compilation symbol is not defined, the compiler will omit all the method invoca-
tions throughout the code.

The CIL code defining the method itself is always included in the assembly. It is just the
invocations that are either inserted or omitted.

For example, in the following code, the Conditional attribute is applied to the declaration
of a method called TraceMessage. The attribute has a single parameter, which in this case is the
string DoTrace.

• When the compiler is compiling the code, it will check whether there is a compilation
symbol named DoTrace defined.

• If DoTrace is defined, the compiler will include all the calls to method TraceMessage,
as usual.

• If there is no DoTrace compilation symbol defined, it will not output code for any of the
calls to TraceMessage.

New page

 Compilation symbol
 ↓
[Conditional("DoTrace")]
static void TraceMessage(string str)
{
 Console.WriteLine(str);
}

9543.book Page 614 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 615

Example of the Conditional Attribute

The following code shows a full example of using the Conditional attribute.

• Method Main contains two calls to method TraceMessage.

• The declaration for method TraceMessage is decorated with the Conditional attribute,
which has the compilation symbol DoTrace as its parameter. So if DoTrace is defined, the
compiler will include the code for all the calls to TraceMessage.

• Since the first line of code defines a compilation symbol named DoTrace, the compiler
will include the code for both calls to TraceMessage.

This code produces the following output:

Start of Main
Doing work in Main.
End of Main

If you comment out the first line so that DoTrace is not defined, the compiler will not insert
the code for the two calls to TraceMessage. This time, when you run the program, it produces the
following output:

Doing work in Main.

#define DoTrace
using System;
using System.Diagnostics;

namespace AttributesConditional
{
 class Program
 {
 [Conditional("DoTrace")]
 static void TraceMessage(string str)
 { Console.WriteLine(str); }

 static void Main()
 {
 TraceMessage("Start of Main");
 Console.WriteLine("Doing work in Main.");
 TraceMessage("End of Main");
 }
 }
}

9543.book Page 615 Friday, January 11, 2008 8:35 PM

616 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Predefined Attributes
The .NET Framework predefines a number of attributes that are understood and interpreted by
the compiler and the CLR. Table 24-2 lists some of these. The table uses the short names, without
the “Attribute” suffix. For example, the full name of CLSCompliant is CLSCompliantAttribute.

Table 24-2. Important Attributes Defined in .NET

New page

Attribute Meaning

CLSCompliant Declares that the publicly exposed members should be checked by the com-
piler for compliance with the CLS. Compliant assemblies can be used by any
.NET-compliant language.

Serializable Declares that the construct can be serialized.

NonSerialized Declares that the construct cannot be serialized.

Obsolete Declares that the construct should not be used. The compiler also produces a
compile-time warning or error message, if the construct is used.

DLLImport Declares that the implementation is unmanaged code.

WebMethod Declares that the method should be exposed as part of an XML web service.

AttributeUsage Declares what types of program constructs the attribute can be applied to.
This attribute is applied to attribute declarations.

9543.book Page 616 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 617

More About Applying Attributes
The simple attributes shown so far have used a single attribute applied to a method. This sec-
tion describes other types of attribute usage.

Multiple Attributes
You can apply multiple attributes to a single construct.

• Multiple attributes can be listed in either of the following formats:

– Separate attribute sections stacked on top of each other

– A single attribute section, with the attributes separated by commas

• You can list the attributes in any order.

For example, the following two sections of code show the two ways of applying multiple
attributes. The sections of code are equivalent.

New page

 [Serializable] // Stacked
 [MyAttribute("Simple class", "Version 3.57")]

 [MyAttribute("Simple class", "Version 3.57"), Serializable] // Commas
 ↑ ↑
 Attribute Attribute

9543.book Page 617 Friday, January 11, 2008 8:35 PM

618 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Other Types of Targets
Besides classes, you can also apply attributes to other program constructs such as fields and
properties. The following declaration shows an attribute on a field, and multiple attributes on
a method:

You can also explicitly label attributes to apply to a particular target construct. To use an
explicit target, place the target type, followed by a colon, at the beginning of the attribute sec-
tion. For example, the following code decorates the method with an attribute, and also applies
an attribute to the return value.

The C# language defines ten standard attribute targets, which are listed in Table 24-3.
Most of the target names are self-explanatory, but type covers classes, structs, delegates,
enums, and interfaces. The typevar target name specifies type parameters to constructs that
use generics.

Table 24-3. Attribute Targets

New page

 [MyAttribute("Holds a value", "Version 3.2")] // On a field
 public int MyField;

 [Obsolete] // On a method
 [MyAttribute("Prints out a message.", "Version 3.6")]
 public void PrintOut()
 {
 ...

 Explicit target
 ↓
 [method: MyAttribute("Prints out a message.", "Version 3.6")]
 [return: MyAttribute("This value represents ...", "Version 2.3")]
 public long ReturnSetting()
 {
 ...

event field

method param

property return

type typevar

assembly module

9543.book Page 618 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 619

Global Attributes
You can also use an explicit target to set attributes at the assembly and module level, by using the
assembly and module target names. (Assemblies and modules were explained in Chapter 10.)
Some important points about assembly-level attributes are the following:

• Assembly-level attributes must be placed outside any namespace scope and are usually
placed in the AssemblyInfo.cs file.

• The AssembyInfo.cs file usually contains metadata about the company, product, and
copyright information.

The following are lines from an AssemblyInfo.cs file:

New page

 [assembly: AssemblyTitle("SuperWidget")]
 [assembly: AssemblyDescription("Implements the SuperWidget product.")]
 [assembly: AssemblyConfiguration("")]
 [assembly: AssemblyCompany("McArthur Widgets, Inc.")]
 [assembly: AssemblyProduct("Super Widget Deluxe")]
 [assembly: AssemblyCopyright("Copyright © McArthur Widgets 2008")]
 [assembly: AssemblyTrademark("")]
 [assembly: AssemblyCulture("")]

9543.book Page 619 Friday, January 11, 2008 8:35 PM

620 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Custom Attributes
You’ve probably noticed that the syntax for applying an attribute is very different from any-
thing you’ve seen so far. From that, you might get the impression that attributes are an entirely
different type of construct. They’re not—they’re just a special kind of class.

Some important points about attribute classes are the following:

• User-defined attribute classes are called custom attributes.

• All attribute classes are derived from class System.Attribute.

Declaring a Custom Attribute
Declaring an attribute class is, for the most part, the same as declaring any other class. There
are, however, several things to be aware of:

• To declare a custom attribute, do the following:

– Declare a class derived from System.Attribute.

– Give it a name ending with the suffix Attribute.

• For security, it is a generally suggested that you declare your attribute classes as sealed.

For example, the following code shows the beginning of the declaration of attribute
MyAttributeAttribute:

Since an attribute holds information about the target, the public members of an attribute
class generally consist only of the following:

• Fields

• Properties

• Constructors

New page

 Attribute name
 ↓
 public sealed class MyAttributeAttribute : System.Attribute
 { ↑ ↑
 ... Suffix Base class

9543.book Page 620 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 621

Using Attribute Constructors
Attributes, like other classes, have constructors. Every attribute must have at least one public
constructor.

• As with other classes, if you don’t declare a constructor, the compiler will produce an
implicit, public, parameterless constructor for you.

• Attribute constructors, like other constructors, can be overloaded.

• When declaring the constructor, you must use the full class name, including the suffix.
You can use the shortened name only when applying an attribute.

For example, with the following constructor, the compiler would produce an error mes-
sage if the name did not include the suffix:

Specifying the Constructor
When you apply an attribute to a target, you are specifying which constructor should be used
to create the instance of the attribute. The parameters listed in the attribute application are the
actual parameters for the constructor.

For example, in the following code, MyAttribute is applied to a field and to a method. For the
field, the declaration specifies a constructor with a single string parameter. For the method, it
specifies a constructor with two string parameters.

New page

 Suffix
 ↓
 public MyAttributeAttribute(string desc, string ver)
 {
 Description = desc;
 VersionNumber = ver;
 }

 [MyAttribute("Holds a value")] // Constructor with one string
 public int MyField;

 [MyAttribute("Version 1.3", "Sal Martin")] // Constructor with two strings
 public void MyMethod()
 { ...

9543.book Page 621 Friday, January 11, 2008 8:35 PM

622 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Other important points about attribute constructors are the following:

• When applying an attribute, the actual parameters for the constructor must be constant
expressions whose values can be determined at compile time.

• If you apply an attribute constructor with no parameters, you can leave off the paren-
theses. For example, both classes in the following code use the parameterless
constructor for the attribute MyAttr. The meanings of the two forms are the same.

Using the Constructor
As with other classes, you cannot call the constructor explicitly. An instance of an attribute is
created, and a constructor called, only when an attribute consumer accesses the attribute. This
is very different from other class instances, which are created at the position where you use an
object-creation expression. Applying an attribute is a declarative statement that does not
determine when an object of the attribute class should be constructed.

Figure 24-4 compares the use of a constructor for a regular class and the use of a construc-
tor with attributes.

• The imperative statement says, in effect, “Create a new class object here.”

• The declarative statement says, “This attribute is associated with this target, and in case
the attribute needs to be constructed, use this constructor.”

Figure 24-4. Comparing the use of constructors

New page

[MyAttr]
class SomeClass ...

[MyAttr()]
class OtherClass ...

9543.book Page 622 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 623

Positional and Named Parameters in Constructors
So far, the parameters you’ve seen with attribute constructors have been like the parameters
for regular class constructors. As with regular constructors, the actual parameters of attribute
constructors must be placed in the correct order, matching the formal parameters in the class
declaration. These are called positional parameters, because the compiler knows which actual
parameter goes with which formal parameter by its position in the parameter list.

But attribute constructors can also have another type of actual parameter, called a named
parameter.

• A named parameter sets the value of an attribute’s field or property.

• A named parameter consists of the name of a field or property, followed by an equals
sign, followed by an initializing value.

Named parameters are actual parameters. There is nothing different in the declaration of
the formal parameters of the constructor. The only difference is in the list of actual parameters
that is supplied when the attribute is applied.

The following code shows the application of an attribute using a positional parameter and
two named parameters:

New page

 Positional parameter Named parameter Named parameter
 ↓ ↓ ↓
 [MyAttribute("An excellent class", Reviewer="Amy McArthur", Ver="0.7.15.33")]
 ↑ ↑
 Equals sign Equals sign

9543.book Page 623 Friday, January 11, 2008 8:35 PM

624 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

The following code shows the declaration of the attribute class, as well as its application on
class MyClass. Notice that the constructor declaration lists only a single formal parameter. And
yet, by using named parameters, you can give the constructor three actual parameters. The two
named parameters set the values of fields Ver and Reviewer.

■Note If the constructor requires any positional parameters, they must be placed before any named
parameters.

New page

 public sealed class MyAttributeAttribute : System.Attribute
 {
 public string Description;
 public string Ver;
 public string Reviewer;

 public MyAttributeAttribute(string desc) // Single formal parameters
 { Description = desc; }
 } Three actual parameters
 ↓
 [MyAttribute("An excellent class", Reviewer="Amy McArthur", Ver="7.15.33")]
 class MyClass
 { ... }

9543.book Page 624 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 625

Restricting the Usage of an Attribute
You’ve seen that you can apply attributes to classes. But attributes themselves are classes, and
there is one important predefined attribute that you can apply to your custom attributes. It is
the AttributeUsage attribute. You can use it to restrict the usage of an attribute to a specific set
of target types.

For example, if you want your custom attribute MyAttribute to be applied only to meth-
ods, you could use the following form of AttributeUsage:

AttributeUsage has three important public properties, which are listed in Table 24-4. The
table shows the names of the properties and their meanings. For the second two properties, it
also shows their default values.

Table 24-4. Public Properties of AttributeUsage

New page

 Only to methods
 ↓
 [AttributeUsage(AttributeTarget.Method)]
 public sealed class MyAttributeAttribute : System.Attribute
 { ...

Name Meaning Default

ValidOn Stores a list of the types of targets to which the attribute can be
applied. The first parameter of the constructor must be an enum
value of type AttributeTarget.

Inherited A Boolean value that specifies whether the attribute can be inher-
ited by derived classes of the decorated type.

true

AllowMultiple A Boolean value that specifies whether the target can have multiple
instances of the attribute applied to it.

false

9543.book Page 625 Friday, January 11, 2008 8:35 PM

626 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

The Constructor for AttributeUsage

The constructor for AttributeUsage takes a single, positional parameter that specifies which
target types are allowed for the attribute. It uses this parameter to set the ValidOn property. The
acceptable target types are members of the AttributeTarget enumeration. The complete set of
the members of the AttributeTarget enumeration is shown in Table 24-5.

You can combine the usage types by using the bitwise OR operator. For example, the
attribute declared in the following code can be applied only to methods and constructors.

Table 24-5. Members of Enum AttributeTarget

When you apply AttributeUsage to an attribute declaration, the constructor will have at
least the one required parameter, which contains the target types to be stored in ValidOn. You
can also optionally set the Inherited and AllowMultiple properties by using named parame-
ters. If you do not set them, they will have their default values, as shown in Table 24-4.

As an example, the next code block specifies the following about MyAttribute:

• MyAttribute must be applied only to classes.

• MyAttribute is not inherited by classes derived from classes to which it is applied.

• There cannot be multiple instances of MyAttribute applied to the same target.

New page

 Targets
 ↓
 [AttributeUsage(AttributeTarget.Method | AttributeTarget.Constructor)]
 public sealed class MyAttributeAttribute : System.Attribute
 { ...

All Assembly Class Constructor

Delegate Enum Event Field

GenericParameter Interface Method Module

Parameter Property ReturnValue Struct

[AttributeUsage(AttributeTarget.Class, // Required, positional
 Inherited = false, // Optional, named
 AllowMultiple = false)] // Optional, named
public sealed class MyAttributeAttribute : System.Attribute
{ ...

9543.book Page 626 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 627

Suggested Practices for Custom Attributes
The following practices are strongly suggested when writing custom attributes:

• The attribute class should represent some state of the target construct.

• If the attribute requires certain fields, include a constructor with positional parameters
to collect that data, and let optional fields be initialized with named parameters, as
needed.

• Don’t implement public methods or other function members other than properties.

• For additional security, declare the attribute class as sealed.

• Use the AttributeUsage attribute on your attribute declaration to explicitly specify the
set of attribute targets.

The following code illustrates these guidelines:

New page

 [AttributeUsage(AttributeTargets.Class)]
 public sealed class MyAttributeAttribute : System.Attribute
 {
 private string _Description;
 private string _VersionNumber;
 private string _ReviewerID;

 public string Description
 { get { return _Description; } set { _Description = value; } }

 public string VersionNumber
 { get { return _VersionNumber; } set { _VersionNumber = value; } }

 public string ReviewerID
 { get { return _ReviewerID; } set { _ReviewerID = value; } }

 public MyAttributeAttribute(string desc, string ver)
 {
 Description = desc;
 VersionNumber = ver;
 }
 }

9543.book Page 627 Friday, January 11, 2008 8:35 PM

628 C H A P T E R 2 4 ■ R E F LE C T I O N A N D A T T R I B U T E S

Accessing an Attribute
At the beginning of the chapter, you saw that you can access information about a type using its
Type object. You can access custom attributes in the same way. There are two methods of Type
that are particularly useful in this: IsDefined and GetCustomAttributes.

Using the IsDefined Method
You can use the IsDefined method of the Type object to determine whether a particular
attribute is applied to a particular class.

For example, the following code declares an attributed class called MyClass, and also acts
as its own attribute consumer by accessing an attribute declared and applied in the program
itself. At the top of the code are declarations of the attribute MyAttribute and the class MyClass,
to which it is applied. The code does the following:

• First, Main creates an object of the class. It then retrieves a reference to the Type object
by using the GetType method, which it inherited from its base class, object.

• With the reference to the Type object, it can call the IsDefined method to find out
whether attribute MyAttribute is applied to this class.

– The first parameter takes a Type object of the attribute you are checking for.

– The second parameter is of type bool and specifies whether to search the inheritance
tree of MyClass to find the attribute.

This code produces the following output:

MyAttribute is applied to type MyClass

[AttributeUsage(AttributeTargets.Class)]
public sealed class MyAttributeAttribute : System.Attribute
{ ... }

[MyAttribute("Check it out", "2.4")]
class MyClass { }

class Program {
 static void Main() {
 MyClass mc = new MyClass(); // Create an instance of the class.

Type t = mc.GetType(); // Get the Type object from the instance.
 bool isDefined = // Check the Type for the attribute.
 t.IsDefined(typeof(MyAttributeAttribute), false);

 if(isDefined)
 Console.WriteLine("MyAttribute is applied to type {0}", t.Name);
 }
}

9543.book Page 628 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 4 ■ R E F L E C T I O N A N D A T T R I B U T E S 629

Using the GetCustomAttributes Method
The GetCustomAttributes method returns an array of the attributes applied to a construct.

• The actual object returned is an array of objects, which you must then cast to the cor-
rect attribute type.

• The Boolean parameter specifies whether to search the inheritance tree to find the
attribute.

• When the GetCustomAttributes method is called, an instance of each attribute associ-
ated with the target is created.

The following code uses the same attribute and class declarations as the previous exam-
ple. But in this case, it doesn’t just determine whether an attribute is applied to the class.
Instead, it retrieves an array of the attributes applied to the class and cycles through them,
printing out their member values.

This code produces the following output:

Description : Check it out
Version Number : 2.4
Reviewer ID :

object[] AttArr = t.GetCustomAttributes(false);

 static void Main()
 {
 Type t = typeof(MyClass);
 object[] AttArr = t.GetCustomAttributes(false);

 foreach (Attribute a in AttArr)
 {
 MyAttributeAttribute attr = a as MyAttributeAttribute;
 if (null != attr)
 {
 Console.WriteLine("Description : {0}", attr.Description);
 Console.WriteLine("Version Number : {0}", attr.VersionNumber);
 Console.WriteLine("Reviewer ID : {0}", attr.ReviewerID);
 }
 }
 }

9543.book Page 629 Friday, January 11, 2008 8:35 PM

9543.book Page 630 Friday, January 11, 2008 8:35 PM

631

■ ■ ■

C H A P T E R 2 5

Other Topics

Overview
Strings
Parsing Strings to Data Values
Nullable Types
Method Main
Documentation Comments
Nested Types
New page

9543.book Page 631 Friday, January 11, 2008 8:35 PM

632 C H A P T E R 2 5 ■ O T H E R T O P I C S

Overview
In this chapter, I’ll cover a number of other topics that are important in using C#, but that don’t
fit neatly into one of the other chapters. These include string handling, nullable types, the Main
method, documentation comments, and nested types.

Strings
0s and 1s are fine for internal computation, but for human-readable input and output, we need
strings of characters. The BCL provides a number of classes that make string handling easy.

The C# predefined type string represents the .NET class System.String. The most impor-
tant things to know about strings are the following:

• Strings are arrays of Unicode characters.

• Strings are immutable—they cannot be changed.

The string type has many useful string-manipulation members, including those that
allow you to determine their length, change their case, concatenate strings, and perform many
other useful tasks. Some of the most useful members are listed in Table 25-1.

Table 25-1. Useful Members of the string Type

The names of many of the methods in Table 25-1 sound as if they are changing the string
object. Actually, they are not changing the strings but returning new copies. For a string, any
“change” allocates a new immutable string.
New page

Member Type Meaning

Length Property Returns the length of the string

Concat Static method Returns a string that is the concatenation of its argument strings

Contains Method Returns a bool value indicating whether the argument is a sub-
string of the object string

Format Static method Returns a formatted string

Insert Method Inserts a string at a specific point in the object string

Remove Method Removes a set of characters from the object string

Replace Method Replaces a character or string in the object string

SubString Method Retrieves a substring from the object string

ToUpper Method Returns a copy of the object string in which the alphabetic charac-
ters are all uppercase

ToLower Method Returns a copy of the object string in which the alphabetic charac-
ters are all lowercase

9543.book Page 632 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 633

For example, the following code declares and initializes a string called s. The first
WriteLine statement calls the ToUpper method on s, which returns a copy of the string in all
uppercase. The last line prints out the value of s, showing that it is unchanged.

This code produces the following output:

HI THERE.
Hi there.

Using Class StringBuilder
The StringBuilder class produces strings that can be changed.

• The StringBuilder class is a member of the BCL, in namespace System.Text.

• A StringBuilder object is a mutable array of Unicode characters.

For example, the following code declares and initializes a string of type StringBuilder and
prints its value. The fourth line changes the actual object by replacing part of the string. Now
when you print its value, you can see that, unlike an object of type string, the StringBuilder
object has actually been changed.

This code produces the following output:

Hi there.
Hello there.

When a StringBuilder object is created, the class allocates a buffer longer than the actual
current string length. As long as the changes made to the string can fit in the buffer, no new
memory is allocated. If changes to the string require more space than is available in the buffer,
a new, larger buffer is allocated, and the string is copied to it. Like the original buffer, this new
buffer also has extra space.

To get the string corresponding to the StringBuilder content, you simply call its ToString
method.
New page

 string s = "Hi there.";

 Console.WriteLine("{0}", s.ToUpper()); // Print uppercase copy
 Console.WriteLine("{0}", s); // String is unchanged

 using System.Text;

 StringBuilder sb = new StringBuilder("Hi there.");
 Console.WriteLine("{0}", sb); // Print string
 sb.Replace("Hi", "Hello"); // Replace a substring
 Console.WriteLine("{0}", sb); // Print changed string

9543.book Page 633 Friday, January 11, 2008 8:35 PM

634 C H A P T E R 2 5 ■ O T H E R T O P I C S

Formatting Numeric Strings
Throughout the text, the sample code has used the WriteLine method to display values. Each
time, it used the simple substitution marker consisting of curly braces surrounding an integer.
Many times, however, you will want to present the output of a text string in a format more
appropriate than just a plain number. For example, you might want to display a value as cur-
rency or as a fixed-point value with a certain number of decimal places. You can do these
things by using format strings.

For example, the following code consists of two statements that print out the value 500.
The first line prints out the number without any additional formatting. In the second line, the
format string specifies that the number should be formatted as currency.

This code produces the following output:

The value: 500.
The value: $500.00.

The difference between the two statements is that the format item includes additional
information in the form of a format specifier. The syntax for a format specifier consists of three
fields inside the set of curly braces: the index, the alignment specifier, and the format specifier.
The syntax is shown in Figure 25-1.

Figure 25-1. Syntax for a format item

The first thing in the format item is the index. As you well know by now, the index specifies
which item from the list following the format string should be formatted. The index is required,
and numbering of the list items starts at 0.
New page

 Console.WriteLine("The value: {0}." , 500); // Print out number
 Console.WriteLine("The value: {0:C}.", 500); // Format as currency
 ↑
 Format as currency

9543.book Page 634 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 635

The Alignment Specifier

The alignment specifier represents the minimum width of the field in terms of characters. The
alignment specifier has the following characteristics:

• It is optional and separated from the index with a comma.

• It consists of a positive or negative integer.

– The integer represents the minimum number of characters to use for the field.

– The sign represents either right or left alignment. Positive specifies right alignment;
negative specifies left alignment.

For example, the following code shows two format items, formatting the value of int
variable myInt. In the first case, the value of myInt is displayed as a right-aligned string of ten
characters. In the second case, it is left-aligned. The format items are between two vertical
bars, just to show in the output their limits on each side.

This code produces the following output; there are ten characters between the vertical bars:

| 500|
|500 |

The actual representation of the value might take more or fewer characters than specified
in the alignment specifier:

• If the representation takes fewer characters than specified in the alignment specifier,
the remaining characters are padded with spaces.

• If the representation takes more characters than specified, the alignment specifier is
ignored, and the representation uses as many characters as is needed.

New page

 Index—use 0th item in the list
 ↓
Console.WriteLine("{0, 10}", 500);
 ↑
 Alignment specifier—right-align in a field of ten characters

 int myInt = 500;
 Console.WriteLine("|{0, 10}|", myInt); // Aligned right
 Console.WriteLine("|{0,-10}|", myInt); // Aligned left

9543.book Page 635 Friday, January 11, 2008 8:35 PM

636 C H A P T E R 2 5 ■ O T H E R T O P I C S

The Format Component

The format component specifies the form that the numeric representation should take. For
example, should it be represented as currency, in decimal format, in hexadecimal format, or in
fixed-point notation?

The format component has two parts, as shown in Figure 25-2:

• The format specifier is a single alphabetic character, from a set of nine built-in character
formats. The character can be uppercase or lowercase. The case is significant for some
specifiers, but not for others.

• The precision specifier is optional, and consists of one or two digits. Its actual meaning
depends on the format specifier.

Figure 25-2. Standard format specifier string

The following code shows an example of the syntax of the format string component:

Some examples of different format strings are shown in the following code:

This code produces the following output:

12.345678 -- General
12.345678 -- Default, same as General
12.3457 -- Fixed Point, 4 dec places
$12.35 -- Currency
1.235E+001 -- Sci. Notation, 3 dec places
123adf -- Hexadecimal integer

New page

 Index—use 0th item in the list
 ↓
 Console.WriteLine("{0:F4}", 12.345678);
 ↑
 Format component—fixed-point, four decimal places

 double myDouble = 12.345678;
 Console.WriteLine("{0,-10:G} -- General", myDouble);
 Console.WriteLine("{0,-10} -- Default, same as General", myDouble);
 Console.WriteLine("{0,-10:F4} -- Fixed Point, 4 dec places", myDouble);
 Console.WriteLine("{0,-10:C} -- Currency", myDouble);
 Console.WriteLine("{0,-10:E3} -- Sci. Notation, 3 dec places", myDouble);
 Console.WriteLine("{0,-10:x} -- Hexadecimal integer", 1194719);

9543.book Page 636 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 637

Standard Numeric Format Specifiers

The Regional and Language Options applet of the Windows Control Panel can affect the result-
ing formats of some of the specifiers. For example, the currency symbol of the country or
region specified will be used by the currency format specifier.

Table 25-2 summarizes the nine standard numeric format specifiers. The first column lists
the name of the specifier followed by the specifier characters. If the specifier characters have
different output depending on their case, they are marked case sensitive.

Table 25-2. Standard Numeric Format Specifiers

Name and
Characters Meaning

Currency
C, c

Formats the value as a currency, using a currency symbol.
Precision specifier: The number of decimal places.

Sample: Console.WriteLine("{0 :C}", 12.5);
Output: $12.50

Decimal
D, d

A string of decimal digits, with a negative sign, if appropriate. Can be used only
with integral types.
Precision specifier: The minimum number of digits to use in the output string.
If the number has fewer digits, it will be padded with 0s on the left.

Sample: Console.WriteLine("{0 :D4}", 12);
Output: 0012

Fixed-point
F, f

A string of decimal digits with a decimal point. Can also include a negative
sign, if appropriate.
Precision specifier: The number of decimal places.

Sample: Console.WriteLine("{0 :F4}", 12.3456789);
Output: 12.3457

General
G, g

A compact fixed-point representation or a scientific notation representation,
depending on the value. This is the default, if no specifier is listed.
Precision specifier: Depends on the value.

Sample: Console.WriteLine("{0 :G4}", 12.3456789);
Output: 12.35

Hexadecimal
X, x
Case sensitive

A string of hexadecimal digits. The hex digits A through F will match the case of
the specifier.
Precision specifier: The minimum number of digits to use in the output string.
If the number has fewer digits, it will be padded with 0s on the left.

Sample: Console.WriteLine("{0 :x}", 180026);
Output: 2bf3a

Number
N, n

Similar to fixed-point representation, but includes separators between each
group of three digits, starting at the decimal point and going left.
Precision specifier: The number of decimal places.

Sample: Console.WriteLine("{0 :N2}", 12345678.54321);
Output: 12,345,678.54

Percent
P, p

A string that represents percent. The number is multiplied by 100.
Precision specifier: The number of decimal places.

Continued

9543.book Page 637 Friday, January 11, 2008 8:35 PM

638 C H A P T E R 2 5 ■ O T H E R T O P I C S

Table 25-2. Continued

New page

Name and
Characters Meaning

Sample: Console.WriteLine("{0 :P2}", 0.1221897);
Output: 12.22 %

Round-trip
R, r

The output string is chosen so that if the string is converted back to a numeric
value using a Parse method, the result will be the original value.
Precision specifier: Ignored.

Sample: Console.WriteLine("{0 :R}", 1234.21897);
Output: 1234.21897

Scientific
E, e
Case sensitive

Scientific notation with a mantissa and an exponent. The exponent is pre-
ceded by the letter E. The E will be the same case as the specifier.
Precision specifier: The number of decimal places.

Sample: Console.WriteLine("{0 :e4}", 12.3456789);
Output: 1.2346e+001

9543.book Page 638 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 639

Parsing Strings to Data Values
Strings are arrays of Unicode characters. For example, string "25.873" is six characters long
and is not a number. Although it looks like a number, you cannot perform arithmetic functions
on it. “Adding” two strings produces their concatenation.

• Parsing allows you to take a string that represents a value and convert it into an actual value.

• All the predefined, simple types have a static method called Parse, which takes a string
value representing the type and converts it into an actual value of the type.

The following statement shows an example of the syntax of using a Parse method. Notice
that Parse is static, so you need to invoke it by using the name of the target type.

The following code shows an example of parsing two strings to values of type double and
then adding them:

This code produces the following output:

Total: 62.113

If the string cannot be parsed, the system raises an exception. There is another static
method, TryParse, that returns true if the string was successfully parsed and false otherwise.
It does not raise an exception if the parse fails.

■Note A common misconception about Parse is that since it operates on a string, it is thought of as a
member of the string class. It is not. Parse is not a single method at all, but a number of methods imple-
mented by the target types.

 double d1 = double.Parse("25.873");
 ↑ ↑
 Target type String to be converted

 static void Main()
 {
 string s1 = "25.873";
 string s2 = "36.240";

 double d1 = double.Parse(s1);
 double d2 = double.Parse(s2);

 double total = d1 + d2;
 Console.WriteLine("Total: {0}", total);
 }

9543.book Page 639 Friday, January 11, 2008 8:35 PM

640 C H A P T E R 2 5 ■ O T H E R T O P I C S

Nullable Types
There are situations, particularly when working with databases, where you want to indicate
that a variable does not currently hold a valid value. For reference types, you can do this easily,
by setting the variable to null. When you define a variable of a value type, however, its memory
is allocated whether or not its contents have any valid meaning.

What you would like in this situation is to have a Boolean indicator associated with the
variable, so that when the value is valid, the indicator is true, and when the value is not valid,
the indicator is false.

Nullable types, which were introduced in C# 2.0, allow you to create a value type variable
that can be marked as valid or invalid so that you can make sure a variable is valid before using
it. Regular value types are called non-nullable types.

Creating a Nullable Type
A nullable type is always based on another type, called the underlying type, that has already
been declared.

• You can create a nullable type from any value type, including the predefined, simple types.

• You cannot create a nullable type from a reference type or another nullable type.

• You do not explicitly declare a nullable type in your code. Instead, you declare a variable
of a nullable type. The compiler implicitly creates the nullable type for you, using gener-
ics, as you’ll see later.

To create a variable of a nullable type, simply add a question mark to the end of the name
of the underlying type, in the variable declaration. Unfortunately, this syntax makes it appear
that you have a lot of questions about your code.
New page

9543.book Page 640 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 641

For example, the following code declares a variable of the nullable int type. Notice that the
suffix is attached to the type name—not the variable name.

With this declaration statement, the compiler takes care of both producing the nullable
type and the variable of that type. Figure 25-3 shows the structure of this nullable type. It con-
tains the following:

• An instance of the underlying type

• Several important read-only properties:

– Property HasValue is of type bool and indicates whether the value is valid.

– Property Value is the same type as the underlying type and returns the value of the
variable—if the variable is valid.

Figure 25-3. A nullable type contains an object of the underlying type in a struct, with two read-
only properties.

New page

 Suffix
 ↓
 int? myNInt = 28;
 ↑
 The name of the nullable type includes the suffix.

9543.book Page 641 Friday, January 11, 2008 8:35 PM

642 C H A P T E R 2 5 ■ O T H E R T O P I C S

You can use the two read-only properties explicitly as follows:

A better method, however, is to use the shortcut forms, as shown in the following code.

• To check whether a nullable type has a value, you can compare it to null.

• Like any variable, to retrieve its value, you can just use its name.

Both sets of code produce the following output:

15

Reading a variable of a nullable type returns its value. You must, however, make sure that
the variable is not null. Attempting to read the value of a null variable produces an exception.

You can easily convert between a nullable type and its corresponding non-nullable type.

• There is an implicit conversion between a non-nullable type and its nullable version.
That is, no cast is needed.

• There is an explicit conversion between a nullable type and its non-nullable version.

For example, the following lines show conversion in both directions. In the first line, a
literal of type int is implicitly converted to a value of type int? and is used to initialize the
variable of the nullable type. In the second line, the variable is explicitly converted to its non-
nullable version.

New page

 int? myInt1 = 15;
 Explicitly use the property.
 ↓
 if (myInt1.HasValue)
 Console.WriteLine("{0}", myInt1.Value);
 ↑
 Explicitly use the property.

 Compare to null
 ↓
 if (myInt1 != null)
 Console.WriteLine("{0}", myInt1);
 ↑
 Use variable name

 int? myInt1 = 15; // Implicitly convert int to int?
 int regInt = (int) myInt1; // Explicitly convert int? to int

9543.book Page 642 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 643

Assigning to a Nullable Type
There are three kinds of values you can assign to a variable of a nullable type:

• A value of the underlying type

• A value of the same nullable type

• The value null

The following code shows an example of each of the three types of assignment:

This code produces the following output:

myI1: 28, myI2: 28
myI3 is null

New page

 int? myI1, myI2, myI3;

 myI1 = 28; // Value of underlying type
 myI2 = myI1; // Value of nullable type
 myI3 = null; // Null

 Console.WriteLine("myI1: {0}, myI2: {1}", myI1, myI2);
 Console.WriteLine("myI3 {0} null", myI3 == null ? "is" : "is not");

9543.book Page 643 Friday, January 11, 2008 8:35 PM

644 C H A P T E R 2 5 ■ O T H E R T O P I C S

Using Operators and the Null Coalescing Operator

The standard arithmetic and comparison operators also handle nullable types. There is also
a new operator called the null coalescing operator, which allows you to return a value to an
expression, in case a nullable type variable is null.

The null coalescing operator consists of two contiguous question marks and has two
operands:

• The first operand is a variable of a nullable type.

• The second is a non-nullable value of the same underlying type.

• If, at run time, the first operand evaluates to null, the second operand is returned as the
result of the operation.

This code produces the following output:

myI4: -1
myI4: 10

The equality comparison operators, == and !=, have an interesting characteristic you need
to be aware of. If you compare two values of the same nullable type, and both are null, the
equality comparison operators consider them equal. For example, in the following code, the
two nullable ints are set to null. The equality comparison operator will declare them equal.

New page

 Null coalescing operator
int? myI4 = null; ↓
Console.WriteLine("myI4: {0}", myI4 ?? -1);

myI4 = 10;
Console.WriteLine("myI4: {0}", myI4 ?? -1);

 int? i1 = null, i2 = null; // Both are null.

 if (i1 == i2) // Operator returns true.
 Console.WriteLine("Equal");

9543.book Page 644 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 645

Using Nullable User-Defined Types
So far, you have seen nullable forms of the predefined, simple types. You can also create nul-
lable forms of user-defined value types. These bring up additional issues that don’t come up
when using the simple types.

The main issue is access to the members of the encapsulated underlying type. A nullable
type doesn’t directly expose any of the members of the underlying type. For example, take a
look at the following code and its representation in Figure 25-4. The code declares a struct
(which is a value type) called MyStruct, with two public fields.

• Since the fields of the struct are public, they can easily be accessed in any instance of the
struct, as shown on the left of the figure.

• The nullable version of the struct, however, exposes the underlying type only through
the Value property, and does not directly expose any of its members. Although the mem-
bers are public to the struct, they are not public to the nullable type, as shown on the
right of the figure.

Figure 25-4. The accessibility of the members of a struct is different from that of the nullable type.

New page

struct MyStruct // Declare a struct.
{
 public int X; // Field
 public int Y; // Field
 public MyStruct(int xVal, int yVal) // Constructor
 { X = xVal; Y = yVal; }
}

class Program {
 static void Main()
 {
 MyStruct? mSNull = new MyStruct(5, 10);
 ...

9543.book Page 645 Friday, January 11, 2008 8:35 PM

646 C H A P T E R 2 5 ■ O T H E R T O P I C S

For example, the following code uses the previously declared struct and creates variables
of both the struct and the corresponding nullable type. In the third and fourth lines of code, the
values of the struct’s variables are read directly. In the fifth and sixth lines, they must be read
from the value returned by the nullable’s Value property.

Nullable<T>

Nullable types are implemented by using a .NET type called System.Nullable<T>, which uses
the C# generics feature.

The question mark syntax of C# nullable types is just shortcut syntax for creating a variable
of type Nullable<T>, where T is the underlying type. Nullable<T> takes the underlying type and
embeds it in a structure, and provides the structure with the properties, methods, and con-
structors of the nullable type.

You can use either the generics syntax of Nullable<T> or the C# shortcut syntax. The short-
cut syntax is easier to write and to understand, and is less prone to errors.

The following code uses the Nullable<T> syntax with struct MyStruct, declared in the pre-
ceding example, to create a variable called mSNull of type Nullable<MyStruct>:

The following code uses the question mark syntax but is semantically equivalent to the
Nullable<T> syntax:

New page

 MyStruct mSStruct = new MyStruct(6, 11); // Variable of struct
 MyStruct? mSNull = new MyStruct(5, 10); // Variable of nullable type
 Struct access
 ↓
 Console.WriteLine("mSStruct.X: {0}", mSStruct.X);
 Console.WriteLine("mSStruct.Y: {0}", mSStruct.Y);

 Console.WriteLine("mSNull.X: {0}", mSNull.Value.X);
 Console.WriteLine("mSNull.Y: {0}", mSNull.Value.Y);
 ↑
 Nullable type access

 Nullable<MyStruct> mSNull = new Nullable<MyStruct>();

 MyStruct? mSNull = new MyStruct();

9543.book Page 646 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 647

Method Main
Every C# program must have one entry point—a method that must be called Main.

In the sample code throughout this text, I have used a version of Main that takes no param-
eters and returns no value. There are, however, four forms of Main that are acceptable as the
entry point to a program. These forms are the following:

• static void Main() {...}

• static void Main(string[] args) {...}

• static int Main() {...}

• static int Main(string[] args) {...}

The first two forms don’t return a value to the execution environment when the program
terminates. The second two forms return an int value. A return value, if one is used, is generally
used to report success or failure of the program, where 0 is generally used to indicate success.

The second and fourth forms allow you to pass actual parameters, also called arguments,
from the command line into the program, when it starts. Some important characteristics of
command-line arguments are the following:

• There can be zero or more command-line arguments. Even if there are no arguments,
the args parameter is not null. Instead, it is an array with no elements.

• The arguments are separated by spaces or tabs.

• Each argument is interpreted by the program as a string, but you do not need to enclose
them in quotation marks on the command line.

For example, the following program, called CommandLineArgs, accepts command-line
arguments and prints out each argument supplied:

The following command line executes program CommandLineArgs with five arguments:

New page

 class Program
 {
 static void Main(string[] args)
 {
 foreach (string s in args)
 Console.WriteLine(s);
 }
 }

 CommandLineArgs Jon Peter Beth Julia Tammi
 ↑ ↑
 Executable Arguments
 name

9543.book Page 647 Friday, January 11, 2008 8:35 PM

648 C H A P T E R 2 5 ■ O T H E R T O P I C S

The preceding program and command line produce the following output:

Jon
Peter
Beth
Julia
Tammi

Other important things to know about Main are the following:

• Main must always be declared static.

• Main can be declared in either a class or a struct.

A program can contain only one declaration of the four acceptable entry point forms of
Main. You can, however, legally declare other methods named Main, as long as they don’t have
any of the four entry point forms—but doing this is inviting confusion.

Accessibility of Main
Main can be declared public or private:

• If Main is declared private, other assemblies cannot access it, and only the execution
environment can start the program.

• If Main is declared public, other assemblies can call it.

The execution environment, however, always has access to Main, regardless of its declared
access level, or the declared access level of the class or struct in which it is declared.

By default, when Visual Studio creates a project, it creates a program outline where Main is
implicitly private. You can always add the public modifier if you need to.
New page

9543.book Page 648 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 649

Documentation Comments
The documentation comments feature allows you to include documentation of your program in
the form of XML elements. Visual Studio even assists you in inserting the elements, and will read
them from your source file and copy them to a separate XML file for you. This section does not
cover the topic of XML, but presents the overall process of using documentation comments.

Figure 25-5 gives an overview of using XML comments. This includes the following steps:

• You can use Visual Studio to produce the source file with the embedded XML. Visual
Studio can automatically insert most of the important XML elements.

• Visual Studio reads the XML from the source code file and copies the XML code to a
new file.

• Another program, called a documentation compiler, can take the XML file and produce
various types of documentation files from it.

Figure 25-5. The XML comments process

Earlier versions of Visual Studio contained an elementary documentation compiler,
but it was removed before the release of Visual Studio 2005. Microsoft is developing a new
documentation compiler called Sandcastle, which they already use to generate the .NET
Framework documentation. You can download it from the Microsoft Developer Network
website (http://msdn.microsoft.com).
New page

9543.book Page 649 Friday, January 11, 2008 8:35 PM

http://msdn.microsoft.com

650 C H A P T E R 2 5 ■ O T H E R T O P I C S

Inserting Documentation Comments
Documentation comments start with three consecutive forward slashes.

• The first two slashes indicate to the compiler that this is an end-of-line comment and
should be ignored in the parsing of the program.

• The third slash indicates that it is a documentation comment.

For example, in the following code, the first four lines show documentation comments
about the class declaration. They use the <summary> XML tag. Above the declaration of the field
are three lines documenting the field—again using the <summary> tag.

Each XML element is inserted by Visual Studio automatically when you type three slashes
above the declaration of a language feature, such as a class or a class member.

For example, the following code shows two slashes above the declaration of class MyClass:

As soon as you add the third slash, Visual Studio immediately expands the comment to the
following code, without your having to do anything. You can then type anything you want on
the documentation comment lines between the tags.

New page

 /// <summary> ← Open XML tag for the class
 /// This is class MyClass, which does the following wonderful things, using
 /// the following algorithm. ... Besides those, it does these additional
 /// wonderful things.
 /// </summary> ← Close XML tag
 class MyClass // Class declaration
 {
 /// <summary> ← Open XML tag for the field
 /// Field1 is used to hold the value of ...
 /// </summary> ← Close XML tag
 public int Field1 = 10; // Field declaration
 ...

 //
 class MyClass
 { ...

 /// <summary> Automatically inserted
 /// Automatically inserted
 /// </summary> Automatically inserted
 class MyClass
 { ...

9543.book Page 650 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 651

Using Other XML Tags
In the preceding examples, you saw the use of the summary XML tag. There are also a number of
other tags that C# recognizes. Some of the most important are listed in Table 25-3.

Table 25-3. Documentation Code XML Tags

New page

Tag Meaning

<code> Format the enclosing lines in a font that looks like code.

<example> Mark the enclosing lines as an example.

<param> Mark a parameter for a method or constructor, and allow a description.

<remarks> Describe a type declaration.

<returns> Describe a return value.

<seealso> Create a See Also entry in the output document.

<summary> Describe a type or a type member.

<value> Describe a property.

9543.book Page 651 Friday, January 11, 2008 8:35 PM

652 C H A P T E R 2 5 ■ O T H E R T O P I C S

Nested Types
Types are usually declared directly inside a namespace. You can, however, also declare types
inside a class or struct declaration.

• Types declared inside another type declaration are called nested types. Like all type dec-
larations, nested types are templates for an instance of the type.

• A nested type is declared like a member of the enclosing type.

– A nested type can be any type.

– An enclosing type can be either a class or a struct.

For example, the following code shows class MyClass, with a nested class called MyCounter.

Declaring a type as a nested type often makes sense if it is only meant to be used as a helper
for the enclosing type.

Don’t be confused by the term nested. Nested refers to the location of the declaration—not
the location of any instances. Although a nested type’s declaration is inside the enclosing type’s
declaration, objects of the nested type are not necessarily enclosed in objects of the enclosing
type. Objects of the nested type—if any are created at all—are located wherever they would
have been located had they not been declared inside another type.

For example, Figure 25-6 shows objects of types MyClass and MyCounter, as outlined in the
preceding code. The figure additionally shows a field called Counter, in class MyClass, that is a
reference to an object of the nested class, which is located elsewhere in the heap.

Figure 25-6. Nesting refers to the location of the declaration, not the location of the object.

New page

 class MyClass // Enclosing class
 {
 class MyCounter // Nested class
 {
 ...
 }
 ...
 }

9543.book Page 652 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 653

Example of a Nested Class
The following code fleshes out classes MyClass and MyCounter into a full program. MyCounter
implements an integer counter that starts at 0 and can be incremented using the ++ operator.
When the constructor for MyClass is called, it creates an instance of the nested class and assigns
the reference to the field. Figure 25-7 illustrates the structure of the objects in the code.

New page

 class MyClass
 {
 class MyCounter // Nested class
 {
 private int _Count = 0;
 public int Count // Read-only property
 {
 get { return _Count; }
 }

 public static MyCounter operator++(MyCounter current)
 {
 current._Count++;
 return current;
 }
 }

 private MyCounter counter; // Field of nested class

 public MyClass() { counter = new MyCounter(); } // Constructor

 public int Incr() { return (counter++).Count; } // Increment method
 public int GetValue() { return counter.Count; } // Get counter value
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create object

 mc.Incr(); mc.Incr(); mc.Incr(); // Increment it.
 mc.Incr(); mc.Incr(); mc.Incr(); // Increment it.

 Console.WriteLine("Total: {0}", mc.GetValue()); // Print its value.
 }
 }

9543.book Page 653 Friday, January 11, 2008 8:35 PM

654 C H A P T E R 2 5 ■ O T H E R T O P I C S

This code produces the following output:

Total: 6

Figure 25-7. Objects of a nested class and its enclosing class

Visibility and Nested Types
In Chapter 7, you learned that classes, and types in general, can have an access level of either
public or internal. Nested types, however, are different in that they have member accessibility
rather than type accessibility. Therefore, the following are true:

• A nested type declared inside a class can have any of the five class member accessibility
levels public, protected, private, internal, or protected internal.

• A nested type declared inside a struct can have one of the three struct member accessi-
bility levels public, internal, or private.

In both cases, the default access level of a nested type is private, which means it cannot be
seen outside the enclosing type.

The relationship between the members of the enclosing class and the nested class is a little
less straightforward, and is illustrated in Figure 25-8. The nested type has complete access to
the members of the enclosing type, regardless of their declared accessibility, including mem-
bers that are private and protected.

The relationship, however, is not symmetrical. Although the members of the enclosing
type can always see the nested type declaration and create variables and instances of it, they do
not have complete access to its members. Instead, their access is limited to the declared access
of the nested class members—just as if the nested type were a separate type. That is, they can
access the public and internal members, but cannot access the private or protected mem-
bers of the nested type.
New page

9543.book Page 654 Friday, January 11, 2008 8:35 PM

C H A P T E R 2 5 ■ O T H E R T O P I C S 655

Figure 25-8. Accessibility between nested type members and enclosing type members

You can summarize this relationship as follows:

• The members of a nested type always have full access rights to members of the enclos-
ing type.

• The members of an enclosing type

– Always have access to the nested type itself

– Only have the declared access rights to members of the nested type

The visibility of nested types can also affect the inheritance of base members. If the enclos-
ing class is a derived class, a nested type can hide a base class member with the same name.
Use the new modifier with the declaration of the nested class to make the hiding explicit.

A this reference within a nested type refers to the object of the nested type—not the object
of the enclosing type. If an object of the nested type needs access to the enclosing type, it must
have a reference to it. You can have the enclosing object supply its this reference as a parame-
ter to the nested type’s constructor, as shown in the following code:

9543.book Page 655 Friday, January 11, 2008 8:35 PM

656 C H A P T E R 2 5 ■ O T H E R T O P I C S

This code produces the following output:

Field1: 15
Field2: 20

 class SomeClass // Enclosing class
 {
 int Field1 = 15, Field2 = 20; // Fields of enclosing class
 MyNested mn = null; // Reference to nested class

 public void PrintMyMembers()
 {
 mn.PrintOuterMembers(); // Call method in nested class
 }

 public SomeClass() // Constructor
 {
 mn = new MyNested(this); // Create instance of nested class
 } ↑
 Pass in the reference to the enclosing class.
 class MyNested // Nested class declaration
 {
 SomeClass sc = null; // Reference to enclosing class

 public MyNested(SomeClass SC) // Constructor of the nested class
 { olm
 sc = SC; // Store reference to enclosing class
 }

 public void PrintOuterMembers()
 {
 Console.WriteLine("Field1: {0}", sc.Field1); // Enclosing field
 Console.WriteLine("Field2: {0}", sc.Field2); // Enclosing field
 }
 } // End of nested class
 }

 class Program {
 static void Main() {
 SomeClass MySC = new SomeClass();
 MySC.PrintMyMembers();
 }
 }

9543.book Page 656 Friday, January 11, 2008 8:35 PM

657

Index

■Symbols
! (logical NOT) operator, 209

!= comparison operator, 205

character, preprocessor directives, 594, 595

% arithmetic operator, 204

%= assignment operator, 215

& (bitwise AND) operator, 211

&& (logical AND) operator, 209

&= assignment operator, 215

* arithmetic operator, 203

*= assignment operator, 215

+ arithmetic operator, 203

+ unary operator, 219

++ (increment) operators, 207

+= assignment operator, 215, 386

- arithmetic operator, 203

- unary operator, 219

-- (decrement) operators, 207

-= assignment operator, 215, 388

.NET entries alphabetized as NET

/ arithmetic operator, 203

/= assignment operator, 215

= assignment operator, 215, 224

== comparison operator, 205

? : conditional operator, 217, 218

@ character

identifier naming rules, 18

verbatim string literals, 199

\ (backslash) character, escape sequences, 198

^ (bitwise XOR) operator, 211

^= assignment operator, 215

{} (curly braces), statement blocks, 22

| (bitwise OR) operator, 211

|= assignment operator, 215

|| (logical OR) operator, 209

~ (bitwise negation) operator, 211

< comparison operator, 205

<< shift operator, 213

<<= assignment operator, 215

<> placeholder, generic classes, 457, 459

> comparison operator, 205

>> shift operator, 213

>>= assignment operator, 215

■Numerics
1’s complement, 211

2’s complement, 213

■A
abstract classes, 183–184

abstract members, 182

abstract methods, 184

abstract modifier, 182, 183

access modifiers, 56–58

access modifiers of accessors, 150

accessing members from inside classes, 59

accessing members from outside classes,
60–61

categories of member access, 56

class access modifiers, 173

declaring interfaces, 403

default access level, 56

instance constructors, 130

internal access modifier, 179

member access modifiers, 176–181

private access modifiers, 56, 57, 58, 178

protected access modifiers, 179

9543index.fm Page 657 Friday, January 18, 2008 4:59 PM

658 ■I N D E X

access modifiers (continued)

protected internal access modifiers, 180

public access modifiers, 57, 58, 178

static constructors, 129

accessibility

nested types, 654

accessors

access modifiers of, 150

auto-implemented properties, 123

calculations with, 119, 121

event accessors, 396

properties and, 113

property declarations and, 114

read-only/write-only properties, 120

static properties, 125

acronyms, .NET, 13

actual parameters, 79–80

add accessor

event accessors, 396

Add method, XElement class, 562, 563

AddAfterSelf method, XElement class, 563

AddBeforeSelf method, XElement class, 563

AddFirst method, XElement class, 563

addition operator, 203

after state

enumerator class state machine, 513

aggregate query operator, LINQ, 543

alert

escape sequence and hex encoding for, 198

aliases

using alias directive, 272

alignment specifier

formatting numeric strings, 635

AllowMultiple property, AttributeUsage
attribute, 625, 626

Ancestors method, XElement class, 559, 560

AncestorsAndSelf method, XElement class, 559

AND (bitwise AND) operator, 211, 212

unpacking bit flags, 318, 319

AND (logical AND) operator, 209, 210

angle brackets (<>)

declaring generic classes, 457, 459

anonymous methods, 370–374

adding event handlers, 386

alternative to lambda expression
parameter, LINQ, 552

comparing named method and
anonymous method, 370

event handler declarations, 382

extension of captured variables lifetime, 374

lambda expressions, 375–377

outer variables, 373

parameters, 372

params parameter, 372

return type, 371

scope of variables and parameters,
373–374

syntax of, 371–372

when to use, 370

anonymous types, 518–520

creating variable of, 518

projection initializers, 519

query expressions, LINQ, 538

select clause creating, 532

using LINQ queries with LINQ to XML, 572

application directory, 279

ArgumentNullException, 299

arithmetic operators, 203

operator precedence, 201

remainder (%) operator, 204

unary arithmetic operators, 219

using with nullable types, 644

Array class

Clone method, 352–353

GetLength method, 342

properties, 330

properties and methods, 350–351

array element variable type, 42

automatic initialization, 43

9543index.fm Page 658 Friday, January 18, 2008 4:59 PM

659■I N D E X

array parameters see parameter arrays

array type, 34, 37

arrays

arrays as objects, 330

assigning object of different type, 349

brief description, 90

comparing array types, 354

comparing rectangular/jagged arrays, 343

covariance, 349

dimensions, 328

dynamic arrays, 328

elements, 328

accessing array elements, 333, 344–348

enumerable types, 484

foreach statement, 344–348, 484

iteration variable is read-only, 346

implicit reference conversions, 438

initialization, 334–338

automatic initialization, 334

explicit initialization, 334–336

implicitly typed arrays, 337

shortcut syntax, 336

instantiation, 332

jagged arrays, 340–341

introduction, 328

jagged arrays, 329, 339–342, 343

foreach statement, 348

length, 328

multidimensional arrays, 329

foreach statement, 347–348

new operator, 332

one-dimensional arrays, 329, 331–332

parameter arrays, 90–94

rank, 328

rectangular arrays, 329, 331–332, 343

foreach statement, 347

reference type array, 330

reference types, 330

shallow copy of, 352–353

size of, 328

sub-array vectors, 329

types of arrays, 329

implicitly typed arrays, 337

value type array, 330

zero based arrays, 328

as operator, 452

using with interfaces, 408

ascending keyword

orderby clause, LINQ queries, 535

assemblies

application directory, 279

assembly manifest, 273

CIL section, 273

components of assembly identity in
manifest, 276

configuration files, 282

culture information, 275

delayed signing, 283–284

description, 7

identity of, 275–276

inheritance between, 174–175

installing into the GAC, 280

internal member accessibility, 179

member access modifier groupings, 177

metadata, 7

mscorlib assembly, 263–264

multiple-file assemblies, 274

naming conventions, 275

private assemblies, 279

private deployment of, 279

private key, 275

protected internal member accessibility, 180

public key, 275

referencing other assemblies, 260–264

resources section, 273

security, 277

shared assemblies and the GAC, 280–281

side-by-side execution in the GAC, 281

9543index.fm Page 659 Friday, January 18, 2008 4:59 PM

660 ■I N D E X

assemblies (continued)

single-file assemblies, 273

strongly named assemblies, 277–278

structure of, 273–274

summary of member accessibility, 181

type metadata section, 273

version number, 275

weakly named assemblies, 277

Assembly directory

GAC (global assembly cache), 280

assembly name

identity of assemblies, 275

assembly-level attributes, 619

assigning delegates, 360

assignment operators, 215–216

associativity, 202

compound assignment operators, 216

operator overloading, 224

operator precedence, 201

associativity

operator associativity, 202

AsyncDelegate property, AsyncResult class, 582

calling EndInvoke inside callback
method, 586

asynchronous delegates

multithreading, 576

asynchronous programming, 574

AsyncResult class, 582

BeginInvoke method, 578

callback pattern, 585–588

EndInvoke method, 579

patterns, 577

polling pattern, 583–584

referenced method, 577

timers, 589–591

wait-until-done pattern, 580–581

AsyncResult class, 582

AsyncDelegate property, 582

AsyncState property, 582

calling EndInvoke inside callback
method, 586

IsCompleted property, 582

AsyncState property, AsyncResult class, 582

callback pattern, 585

Attribute class

attribute class derivation, 620

declaring custom attributes, 620

writing custom attributes, 627

Attribute method, XElement class, 565

using LINQ queries with LINQ to XML, 571

attribute section

applying attributes, 612

Attribute suffix

attribute constructors, 621

declaring custom attributes, 620

omitting in short names, 616

attributes, 611

see also custom attributes

accessing attributes, 628–629

applying attributes, 612, 617–619

assembly-level attributes, 619

attribute constructors, 621

positional/named parameters, 623–624

specifying, 621–622

AttributeUsage attribute, 616

class and attribute constructors, 622

class member declaration statements, 102

CLSCompliant attribute, 616

Conditional attribute, 614–615

consumers of, 611

DLLImport attribute, 616

Flags attribute, 320–321

global attributes, 619

multiple attributes, 617

naming conventions, 611

NonSerialized attribute, 616

Obsolete attribute, 613, 616

predefined attributes, 613, 616

9543index.fm Page 660 Friday, January 18, 2008 4:59 PM

661■I N D E X

Serializable attribute, 616

short names, 616

targets, 611

C# standard attribute targets, 618

other types of targets, 618

WebMethod attribute, 616

working with XML attributes, 554, 564–567

AttributeTarget enumeration, 626

AttributeUsage attribute, 616

AllowMultiple property, 625, 626

constructor for, 626

Inherited property, 625, 626

properties, 625

restricting attribute usage, 625

ValidOn property, 625, 626

writing custom attributes, 627

auto-implemented properties, 123–124

■B
backslash (\) character

escape sequence and hex encoding for, 198

backspace

escape sequence and hex encoding for, 198

Base Class Library see BCL

base classes

accessing hidden inherited members, 161

accessing inherited members, 157

class access modifiers, 173

constructor execution, 169

constructor initializers, 171–172

derived class and, 158

description, 156

extending, 156

hiding members of, 159–160

implementing interfaces, 404

implementing multiple interfaces, 409

inheritance between assemblies, 174

inherited members as interface
implementation, 414

using references to, 162–168

virtual and override methods, 164–165

overriding method marked as override,
166, 168

base keyword, 161

constructor initializers, 171

BCL (Base Class Library), 3, 6

exceptions, 289

namespaces, 267, 268

Type class, 606

before state

enumerator class state machine, 513

BeginInvoke method, Delegate class, 577,
578, 585

binary operators

associativity, 202

operator overloading, 224

overload methods for, 223

BinarySearch method, Array class, 350

bit flags, enumerations, 318–323

Flags attribute, 320–321

bitwise logical operators, 211–212

bitwise negation (~) operator, 211

bitwise shift operators, 213–214

blocks, 22

iterator blocks, 503

local constants, 71

statements, 230

bool type, 35, 36

literal values for, 195

boxing conversions, 428, 442–444

structs, 311

using enumerators, 494

break statements, 72, 247

switch statements, 235

byte type, 36

■C
C# programming

calling destructors, 134

classes, 46–63

9543index.fm Page 661 Friday, January 18, 2008 4:59 PM

662 ■I N D E X

comments, 28–30

single-line comments, 16

contextual keywords, 20

declaring classes, 17

declaring Main method, 17

documentation comments, 649–651

format strings, 26

multiple markers and values, 27

substitution values/markers, 26

generics, 456–457

heaps, 39

identifiers, 18

importing namespaces, 17

introduction, 16

keywords, 20

Main method, 21, 647–648

methods, 66–77

namespaces, 17, 32

naming conventions, 19

nested types, 652–656

nullable types, 640–646

parameters of methods, 78–94

preprocessor directives, 594

SimpleProgram.cs, 16

stacks, 38

statement termination, 17

statements, 22–23

string handling, 632–638

text output, 24–27

type declarations, 17

types, 32–37

using statement, 17

whitespace, 21

Write method, Console class, 24

WriteLine method, Console class, 25

C++ programming

calling destructors, 134

callback method

calling EndInvoke inside, 586–588

extracting delegate reference inside, 587

TimerCallback delegate, 589

callback parameter

BeginInvoke method, Delegate class, 578

callback pattern, 585–588

asynchronous programming patterns, 577

calling methods, 73

Camel casing, 19

carriage return

escape sequence and hex encoding for, 198

case keyword, switch statements, 239

case sensitivity, identifiers, 18

cast expressions, 427

user-defined conversions, 448

cast operator, 162

explicit conversions, 222

casting

explicit conversions, 427

using references to base class, 162

catch clauses, 290–292

example searching down call stack, 298

finding handlers for code without try
statement, 295

finding handlers for exceptions, 294

handling exceptions, 288

throwing without exception object,
300–301

try statement, 287, 288

char type, 35, 36

character literals, 198

characters

special characters, 198

checked operator

overflow checking, 430, 431

checked statement, 257

overflow checking, 431

9543index.fm Page 662 Friday, January 18, 2008 4:59 PM

663■I N D E X

CIL (Common Intermediate Language)

assemblies, 273

CLR compiling CIL and execution, 8–9

compiling to, 7

class access modifiers, 173

class body, 48

class constructed type, generics, 468

class declarations, 48

member access modifiers, 176–181

properties and, 115

class definition, 48

class field variable type

automatic initialization, 43

class inheritance, 156

accessing hidden inherited members, 161

accessing inherited members, 157

class access modifiers, 173

constructor execution, 169–173

constructor initializers, 171–172

hiding members of base classes, 159–160

inheritance between assemblies, 174–175

object class, 158

single inheritance, 158

using references to base class, 162–168

virtual and override methods, 164–165

overriding method marked as override,
166–168

class keyword, 48

class libraries

mscorlib library, 263–264

referencing other assemblies, 260

class members, 49–51, 102–103

declaration statements, 102

fields, 49–50

instance members, 104

member constants, 110–112

methods, 51

order of member modifiers, 102–103

static class member types, 109

static function members, 108

static members, 105, 106–107

types of class members, 102

class types, 37

anonymous types, 518–520

class-base specification, 156

classes

see also interfaces

abstract classes, 183–184

access modifiers, 56–58

accessors, 150

internal access, 173, 179

private access, 178

protected access, 179

protected internal access, 180

public access, 173, 178

readonly, 138–139

accessing members from inside, 59

accessing members from outside, 60–61, 62

active data structures, 46

allocating memory for data, 53–54

assigning class variables, 306

base class, 156

constraint types and order, generics, 468

constructors and destructors compared, 137

creating variables and instances of, 52, 62

declaring, 17, 62

derived classes, 156

destructors, 133–137

encapsulation, 46

exception classes, 289

extension methods, 187–190

external methods, 191–192

generic classes, 458

declaring, 459

extension methods with, 481–482

generic methods, 476

implicit reference conversions for, 437

indexers, 141–149

9543index.fm Page 663 Friday, January 18, 2008 4:59 PM

664 ■I N D E X

classes (continued)

instance constructors, 126–128

instance members, 55

memory layout of instances of, 63

object initializers, 131–132

operator overloading, 223

overview, 46

partial classes, 151–152

programs and, 47

properties, 113–125

reference types, 52

sealed classes, 185

static classes, 186

static constructors, 129–130

static members, 55

structs compared, 304, 306

this keyword, 140

Type class, 606–607

XML classes, 556–559

Clear method, Array class, 350

CLI (Common Language Infrastructure),
11–12

Clone method, Array class, 350, 352–353

closing tags, XML, 554

CLR (Common Language Runtime), 10

compiling CIL and execution, 8–9

introduction, 3

CLS (Common Language Specification), 12

CLSCompliant attribute, 616

code blocks see blocks

code tags

documentation code XML tags, 651

collection classes, .NET Framework, 6

COM, .NET Framework and, 5

combining delegates, 361

comments, 28–30

delimited comments, 28, 30

documentation comments, 29, 30,
649–651

ending comments, 29

inline comments, 28, 30

nested comments, 29

preprocessor directives, 594

single-line comments, 16, 28, 30

XComment node/class, 568

Common Intermediate Language see CIL

Common Language Infrastructure (CLI),
11–12

Common Language Runtime see CLR

Common Language Specification (CLS), 12

Common Type System (CTS), 12

CompareTo method, IComparable, 398, 399,
400, 401

comparison operators, 205–206

deep comparison, 206

shallow comparison, 206

using with nullable types, 644

compilation symbols, 596

compile-time processes, 9

producing metadata, 611

compound assignment operators, 216

Concat method, String class, 632

concatenation query operator, LINQ, 543

Conditional attribute, 614–615

conditional compilation

preprocessor directives, 597–600

conditional execution statements, 232

conditional logical operators, 209–210

conditional operator, 217–218

brief description, 119

conditional operators

associativity, 202

operator precedence, 201

configuration files, 282

Console class

mscorlib library, 263

printing message to screen, 17

text output, 24

Write method, 24

WriteLine method, 25

9543index.fm Page 664 Friday, January 18, 2008 4:59 PM

665■I N D E X

console window

text output, 24

const keyword, 71

readonly modifier compared, 138

constants

enumerations, 314

local constants, 71

member constants, 110–112

constraints

constraint types and order, 468

type parameters, generics, 466–468

where clause, 467

constructed types, generic classes

creating, 460

creating variables and instances, 461–462

constructor constraint, generics, 468

constructor execution, 169–173

class access modifiers, 173

constructor initializers, 171–172

constructors

attribute constructors, 621

positional/named parameters, 623–624

specifying, 621–622

class and attribute constructors, 622

compared to destructors, 137

instance constructors, 126–128,
307–308, 309

constructors with parameters, 127

default constructors, 128

private constructors, 130

public constructors, 130

static constructors, 129–130, 309

structs, 307–309

consumers of attributes, 611

Contains method, String class, 632

contextual keywords, 20

continue statement, 248

continue statements, 72

control statements

flow of control, 72

convariance, arrays, 349

conversion query operator, LINQ, 543

conversions see type conversions

Count operator, LINQ

delegates as parameters, 547, 548

signature of, 545

values returned, 546

CTS (Common Type System), 12

culture information

identity of assemblies, 275

curly braces {}, statement blocks, 22

currency format specifier, 637

Current method, IEnumerator <>, 497

Current property, IEnumerator, 486, 488, 489

generic/non-generic interfaces
compared, 496

non-interface enumerations, 494

returning object types, 494

custom attributes, 620

accessing attributes, 628–629

attribute constructors, 621

positional/named parameters, 623–624

specifying, 621–622

class and attribute constructors, 622

constructor for AttributeUsage, 626

declaring, 620

GetCustomAttributes method, Type
class, 629

IsDefined method, Type class, 628

restricting attribute usage, 625

writing custom attributes, 627

■D
d/D real literal suffix, 197

data

parsing strings to data values, 639

9543index.fm Page 665 Friday, January 18, 2008 4:59 PM

666 ■I N D E X

data members, 46

fields, 49

indexers and properties accessing, 142

types, 34

data storage

local variables and instance fields, 68

value/reference types, 40

data structures

classes as, 46

types and templates, 33

decimal format specifier, 637

decimal type, 35, 36

explicit conversion to integer, 433

explicit conversions from float/double, 434

explicit conversions to float/double, 435

declaration statements, 230

class member declaration statements, 102

declarations

class declarations, 48

connecting with implementation, 191

declaring classes, 62

fields, 49

multiple fields, 50

methods, 51

property declarations and accessors, 114

type declarations, 32, 37

variable declarations, 42–43

multiple-variable declarations, 44

decrement operators, 207–208

operator overloading, 224

deep comparison, 206

default constructors, 128

default section, switch statements, 235, 238

default values

reference types, 50

simple types, 36

define directive, 595, 596

delayed signing, 283–284

DelaySignAttribute, 283

Delegate class

BeginInvoke method, 578

EndInvoke method, 579

delegate keyword, 357

lambda expressions, 375

delegate type declaration, events, 382

delegate types, 37

delegates

adding methods to, 362

anonymous methods, 370–374

lambda expressions, 375–377

assigning, 360

asynchronous programming, 577

combining, 361

comparing named method and
anonymous method, 370

comparison of reference types, 206

creating delegate objects, 358–359

declaring delegate types, 357

delegate parameters, LINQ, 547–548, 550

disposing of, 360

events as encapsulated delegates, 381

event declarations, 384

EventHandler delegate, 384

using custom delegate, 391–393

events compared, 380

Func delegates, LINQ, 549

generic delegates, 391, 473–475

implicit reference conversions, 438

instantiating, 359

anonymous methods, 370

introduction, 356

invocation list, 356

invoking, 364–369

with reference parameters, 368–369

with return values, 366–367

lambda expression parameter, LINQ, 551

predefined delegate types, LINQ, 549

private delegates of events, 381

9543index.fm Page 666 Friday, January 18, 2008 4:59 PM

667■I N D E X

raising events, 385

removing methods from, 363

TimerCallback delegate, 589

delimited comments, 28, 30

ending, 29

preprocessor directives, 594

deployment

private deployment of assemblies, 279

simplified deployment, .NET Framework, 6

xcopy deployment, 279

derived classes

accessing hidden inherited members, 161

accessing inherited members, 157

constructor execution, 169

constructor initializers, 171

description, 156

general usage of term, 158

hiding members of base classes, 159–160

implementing abstract method, 184

inheritance between assemblies, 174–175

inherited members as interface
implementation, 414

protected internal member accessibility, 180

protected member accessibility, 179

summary of member accessibility, 181

using references to base class, 162–168

virtual and override methods, 164, 165

overriding method marked as override,
166–168

Descendants method, XElement class, 559, 560

DescendantsAndSelf method, XElement
class, 559

descending keyword

orderby clause, LINQ queries, 535

destructors, 133–137

calling, 134–135

compared to constructors, 137

finalizers or destructors, 133

standard dispose pattern, 136–137

structs, 307, 309

diagnostic directives

preprocessor directives, 601

digital signatures

delayed signing, 284

strongly named assemblies, 277

dimensions, arrays, 328

GetLength method, 342

rank specifiers, 331

setting number and length, 331

directives

see also preprocessor directives

using alias directive, 272

using directives, 271

using namespace directive, 271

directories

application directory, 279

Assembly directory, 280

Dispose method

alternative form of using statement, 256

calling destructors, 134–135

IDisposable interface, 252, 497

packaging use of resource with using
statement, 253

using statement example, 254

dispose pattern, 136–137

DivideByZeroException, 298, 291

division operator, 203

dll extension

referencing other assemblies, 260

DllImport attribute, 616

connecting declaration with
implementation, 191

DLLs

configuration files, 282

side-by-side execution in the GAC, 281

side-by-side execution, .NET Framework, 6

do loop, 241–242

break statement, 247

continue statement, 248

do statements, 72

9543index.fm Page 667 Friday, January 18, 2008 4:59 PM

668 ■I N D E X

documentation comments, 29, 30, 649–651

inserting, 650

XML tags, 651

documentation compiler, 649

dot-syntax notation

accessing members from outside classes,
60, 106

double literal, 195

double quotes

escape sequence and hex encoding for, 198

verbatim string literals, 199

double type, 35, 36

explicit conversion to decimal, 434

explicit conversion to integer, 433

explicit conversions from decimal, 435

explicit conversions to float, 434

■E
Elapsed event

declaring events, 383

MyTimerClass, 394

raising events, 385

subscribing to events, 386

Timer class, 591

Element method, XElement class, 559, 560, 561

element query operator, LINQ, 543

Elements method, XElement class, 559,
560, 561

elements, arrays, 328

accessing array elements, 333, 344–348

elements, XML, 554

elif directive, 595, 597, 599, 600

else directive, 595, 597, 598, 599, 600

else keyword

if . . . else statement, 234

embedded statements, 230

Employee class

indexer for, 141, 146–147

empty statements, 231

encapsulation, classes, 46

endif directive, 595, 597, 598, 599

EndInvoke method, Delegate class, 579

asynchronous programming, 577

calling inside callback method, 586–588

endregion directive, 595

region directives, 603

enumerable classes

creating with iterators, 502

iterator patterns, 507

enumerable types, 37

boxing conversions using, 494

comparison of, 206

description, 484

foreach statement, 485

GetEnumerator method, 484

IEnumerable interface, 491

non-interface enumerations, 494

producing, 508

producing multiple enumerables, 509

type safety using non-generic interface
methods, 494

using IEnumerable and IEnumerator,
492–493

using iterator to create enumerable,
505–506

enumerations

bit flags, 318–323

Flags attribute, 320–321

comparing members from different, 325

explicitly setting values, 316

generic enumeration interfaces, 496

implicit member numbering, 317

introduction, 314–315

member type, 324

members, 314, 324

modifiers, 324

query variables, LINQ, 522, 523

setting underlying type, 316

ToString method, 320

9543index.fm Page 668 Friday, January 18, 2008 4:59 PM

669■I N D E X

underlying type and values, 314, 315

yield return statements, 502

enumerator class

generic/non-generic interfaces
compared, 496

nested classes, 487

non-interface enumerations, 494

state machine, 513

enumerators

boxing conversions using, 494

creating with iterators, 502

declaring IEnumerator, 489–490

description, 484

generic enumeration interfaces, 496

IEnumerable interface, 491, 492–493

IEnumerator interface, 486–490, 492–493

non-interface enumerators, 494–495

producing, 508

multiple enumerators, 511–512

retrieving object’s enumerator, 484

states, 487

types of, 485

using foreach statement, 484–485

using iterator to create, 504

equality operations

comparison of reference types, 206

equality operators, 205–206

nullable types, 644

operator precedence, 201

equality query operator, LINQ, 543

error directive, 595

diagnostic directives, 601

errors

errors and exceptions, 286

escape sequences, 198, 199

event handlers

declaring, 382, 383

description, 380

EventHandler delegate, 384

removing, 388

EventArgs class, 389

passing data by extending, 390

EventHandler delegate, 389

delegate type and, 384

EventArgs object, 389

passing data by extending, 390

using custom delegate, 391–393

events

declaring, 382, 383–384

delegate type, 384

using generic delegate, 391

declaring virtual and override, 165

delegate type declaration, 382

delegates compared, 380

encapsulated delegates, 381

event accessors, 396

event registration, 382

member initialization, 384

member or type, 384

MyTimerClass, 394–395

private delegates, 381

publisher, 380, 381

raising, 380, 382, 385

source code components, 382

subscriber, 380, 381

subscribing to, 386–387

using, 389–393

example tag, XML, 651

exception classes, 289

exception handlers

catch clause, try statement, 287

example searching down call stack,
297–298

finding handlers for code without try
statement, 295

finding handlers for exceptions, 294

9543index.fm Page 669 Friday, January 18, 2008 4:59 PM

670 ■I N D E X

exception handlers (continued)

general algorithm for handling exceptions,
296

try statement, 288

exception inheritance hierarchy, 289

exception variable

specific catch clause with object, 290

exceptions

catch clause, 290–292

COM and .NET, 5

errors and, 286

example searching down call stack,
297–298

finally block, 293

finding handlers for, 294

finding handlers for code without try
statement, 295

general algorithm for handling exceptions,
296

handling, 288

introduction, 286

throwing, 299

without exception object, 300–301

try and finally blocks, 253

try statement, 288, 287–288

expanded form

method invocation, 91–93

explicit conversions, 220, 221, 426–427, 429

cast operator, 222

casting, 427

integral to integral, 432

nullable/non-nullable types, 642

numeric conversions, 432–435

decimal to float or double, 435

decimal to integral, 433

double to float, 434

float or double to decimal, 434

float or double to integral, 433

overflow checking, 430–431

reference conversions, 439–441

valid conversion scenarios, 440

valid conversions, 441

explicit interface member implementations,
415–418

explicit keyword, 446

user-defined conversions, 448

expression statements, 231

expressions, 194

evaluating, 194

lambda expressions, 375–377

operator associativity, 202

operator precedence, 201

order of evaluation, 201–202

parenthesized expressions, 202

extending base classes, 156

extension methods, 187–190

generic classes and, 481–482

query operators, LINQ, 545, 546

extern modifier, 191

external methods, 191–192

■F
f/F real literal suffix, 197

field initializers, 50

structs, 310

field variable type, 42

automatic initialization, 43

fields, 49–50

declaring, 49

multiple fields, 50

readonly modifier, 138

explicit/implicit initialization, 50

naming conventions, 19, 118

properties and associated fields, 117–118

properties compared, 113

public fields, 124

static members, 105

finalizers see also destructors

9543index.fm Page 670 Friday, January 18, 2008 4:59 PM

671■I N D E X

finally block, 257, 293

example searching down call stack, 298

exceptions, 253

finding handlers for code without try
statement, 295

finding handlers for exceptions, 294

try statement, 287

firing events, 380

First operator, LINQ

signature of, 545

values returned, 546

fixed-point format specifier, 637

flags

bit flags, 318–323

Flags attribute

bit flags, enumerations, 320–321

using with enum, 318

float literal, 195

float type, 35, 36

explicit conversion to decimal, 434

explicit conversion to integer, 433

explicit conversions from decimal, 435

explicit conversions from double, 434

flow of control, 72, 232

for loop, 243–246

break statement, 247

continue statement, 248

multiple expressions in initializer and
iterator expression, 246

scope of variables in, 245

for statements, 72

foreach statements, 257

accessing elements in arrays, 344–348, 484

iteration variable, 344

iteration variable is read-only, 346

break statement, 247

brief description, 72

continue statement, 248

enumerable types, 485

jagged arrays, 348

LINQ queries, 516

compared to from clause, 526

multidimensional arrays, 347–348

non-interface enumerations, 495

rectangular arrays, 347

using with enumerators, 484–485, 492

using with IEnumerator interface, 488

form feed

escape sequence and hex encoding for, 198

formal parameters, 78, 80

method signature, 99

Format method, String class, 632

format specifiers, 637

formatting numeric strings, 634, 636

standard numeric format specifiers,
637–638

format strings, 26

multiple markers and values, 27

substitution values/markers, 26

Framework Class Library (FCL) see BCL

friendly name

identity of assemblies, 275

from clause, LINQ, 516, 524, 525–526, 532

compared to foreach statement, 526

from . . . let . . . where section, LINQ, 524, 531

fully qualified names

namespaces, 266

nested namespace declarations, 270

using alias directive, 266, 272

Func delegates

predefined delegate types, LINQ, 549

using delegate parameter, LINQ, 550

function members, 46

methods, 49

properties and fields compared, 113

types, 34

functional construction, XML trees, 557

9543index.fm Page 671 Friday, January 18, 2008 4:59 PM

672 ■I N D E X

functions

global functions, 51

Main method, 21

■G
GAC (global assembly cache)

Assembly directory, 280

delayed signing, 283

installing assemblies into, 280

shared assemblies and, 280–281

side-by-side execution in, 281

strongly named assemblies, 280

gacutil.exe utility, 280

garbage collection

destructors, 133, 134

GC (Garbage Collector)

.NET Framework environment, 4

garbage collection process, 39

heap objects, 39

general format specifier, 637

generation query operator, LINQ, 543

generic classes, 458–468

creating constructed types, 460

creating variables and instances, 461–462

declaring, 457, 458, 459

extension methods with, 481–482

type parameters, 459

generic delegates, 473–475

delegates as parameters, LINQ, 547

predefined delegate types, LINQ, 549

using, 391

generic interfaces, 485, 470–472

generic enumeration interfaces, 496

IEnumerable <> interface, 500–501

IEnumerator <> interface, 497–499

non-generic interfaces compared, 496

unique implementations of, 472

generic methods, 476–480

declaring, 477

inferring types, 479

invoking, 478–479

parameter lists, 477

Generic namespace

iterators requiring, 513

generic structs, 469

generics, 454–455

C#, 456–457

comparing generic/non-generic stacks, 465

constraints on type parameters, 466–468

constraint types and order, 468

where clause, 467

constructor constraint, 468

creating constructed types, 460

Nullable<> type, 646

stack example, 454–455, 457, 463–464

user-defined types and, 456

get accessors

calculations with, 119, 121

class declarations, 115

indexers, 142, 145, 146

properties, 113, 114, 116

properties associated with values in
databases, 122

read-only properties, 120

GetCustomAttributes method, Type class

accessing attributes, 629

GetEnumerator method

IEnumerable interface, 491

generic/non-generic interfaces
compared, 496

IEnumerable <> interface, 500

iterator patterns, 507

non-interface enumerations, 494

producing enumerators, 508

producing multiple enumerators, 511

retrieving object’s enumerator, 484, 485

using iterator to create enumerable, 505

using iterator to create enumerator, 504

GetFields method, Type class, 607

9543index.fm Page 672 Friday, January 18, 2008 4:59 PM

673■I N D E X

GetLength method, Array class, 342, 350

GetMethods method, Type class, 607

GetProperties method, Type class, 607

GetType method, Object class

accessing attributes, 628

calling typeof operator, 228

getting Type object, 608

GetUpperBound method, Array class, 350

global assembly cache see GAC

global attributes, 619

global functions, 51

global variables, 49

goto statements, 251

brief description, 72

switch statements, 236, 251

greater than (>) operator, 205

group . . . by clause, LINQ, 536, 539–540

grouping query operator, LINQ, 543

GUI programming

multithreading, 575

■H
handlers, events see event handlers

handlers, exceptions see exception handlers

HasValue property

variables of a nullable type, 641

heaps, 39

allocating memory for data, 53

Garbage Collector (GC), 39

local variables and instance fields, 68

parameter arrays, 93

storing members of reference types, 40

value parameters in, 83

HelpLink property, Exception class, 289

hex encoding

special characters, 198

hex escape sequence, 198

hexadecimal format specifier, 637

hidden inherited members

accessing, 161

hiding, 159

overriding method marked as override or
new, 166–168

horizontal tab

escape sequence and hex encoding for, 198

HRESULT data type, COM and .NET, 5

■I
IAsyncResult interface

AsyncResult class, 582

BeginInvoke returning calling thread, 578

calling EndInvoke inside callback
method, 586

EndInvoke retrieving thread values, 579

IComparable interface, 399–402

CompareTo method, 398, 399, 400, 401

IDataRetrieve interface, 409

IDataStore interface, 409

identifiers, 18, 19

IDisposable interface, 252

calling destructors, 134

Dispose method, 497

using statement example, 254

IEnumerable interface, 491

drawbacks to using, 494

generic/non-generic interfaces
compared, 496

GetEnumerator method, 491

non-generic interfaces, 485

producing enumerators, 508

using with IEnumerator, 492–493

IEnumerable <> interface, 500–501

generic interfaces, 485

GetEnumerator method, 500

producing enumerators, 508

query operators, LINQ, 542, 545

9543index.fm Page 673 Friday, January 18, 2008 4:59 PM

674 ■I N D E X

IEnumerable objects

query operators, LINQ, 542

query variables, LINQ, 522

IEnumerator interface, 486–490

declaring IEnumerator enumerator,
489–490

drawbacks to using, 494

generic/non-generic interfaces
compared, 496

members, 486

non-generic interfaces, 485

producing enumerators, 508

using with IEnumerable, 492–493

IEnumerator <> interface, 497–499

Current method, 497

generic interfaces, 485

producing enumerators, 508

if directive, 595

conditional compilation, 597, 598, 599, 600

if . . . else statements, 234

? : conditional operator compared, 217, 218

description, 72, 218

if statement, 233–234

brief description, 72

return statement and void methods, 76

IL see CIL

implementation body

virtual and abstract members compared,
182

implementations

connecting declaration with, 191

implicit conversions, 220, 221, 425

implicit numeric conversions, 429

implicit reference conversions, 437–438

nullable/non-nullable types, 642

user-defined conversions, 448

implicit initialization

local variables and instance fields, 68

implicit keyword, 446

increment operators, 207–208

operator overloading, 224

index notation, 141

indexer overloading, 149

indexers, 141–149

declaring, 143

for Employee class, 146–147

declaring virtual and override, 165

get accessor, 145, 146

indexing int fields example, 148

memory allocation, 142

properties and, 142

set accessor, 144, 146

indexes

zero based arrays, 328

IndexOf method, Array class, 350

IndexOutOfRangeException, 290

example searching down call stack, 298

inheritance

accessing hidden inherited members, 161

accessing inherited members, 157

class access modifiers, 173

class inheritance, 156

constructor execution, 169–173

constructor initializers, 171–172

explicit interface member
implementations, 418

extending base classes, 156

hiding members of base classes, 159–160

inheritance between assemblies, 174–175

object class, 158

single inheritance, 158

structs, 310

using references to base class, 162–168

virtual and override methods, 164–165

overriding method marked as override,
166–168

Inherited property, AttributeUsage attribute,
625, 626

9543index.fm Page 674 Friday, January 18, 2008 4:59 PM

675■I N D E X

initialization

arrays, 334–338

automatic initialization, 43

local variables and instance fields, 68

initializers

constructor initializers, 171–172

fields, 50

object initializers, 131–132

variable initializers, 43

inline comments, 28, 30

InnerException property, Exception class, 289

input parameters, 80

Insert method, String class, 632

instance class members, 104

instance constructors, 126–128

access modifiers, 130

constructors and destructors compared, 137

constructors with parameters, 127

default constructors, 128

structs, 307–308, 309

instance fields

compared to local variables, 68

instance members, 55

instances

creating instances of classes, 52

destructors, 133

instantiating types, 33

memory layout of class instances, 63

instantiation

types, 33

predefined/user-defined types, 37

int type, 36

indexing int fields example, 148

integer literals, 196

integer types, 35

explicit conversion from float/double, 433

explicit conversion to integer, 432

explicit conversions from decimal, 433

interface types, 37

interfaces

constraint types and order, generics, 468

declaring, 402–403

description, 252

different classes implementing, 420–421

explicit member implementations,
415–418

generic enumeration interfaces, 496

generic interfaces, 470–472, 485

unique implementations of, 472

generic methods, 476

getting reference to interface, 406–407

IComparable interface, 399–402

IDisposable interface, 497

IEnumerable interface, 491

IEnumerable <> interface, 500–501

IEnumerator interface, 486–490

IEnumerator <> interface, 497–499

implementing, 404–405

multiple interfaces, 409

with duplicate members, 410–411

implementing with structs, 398, 399,
400, 404

implicit reference conversions for, 437

inherited members as implementation, 414

interfaces inheriting interfaces, 419

introduction, 398

naming conventions, 402

non-generic interfaces, 485

non-interface enumerators, 494–495

partial interfaces, 402

qualified interface name, 415

references to multiple interfaces, 412–413

using as operator with, 408

internal access modifier

class and member accessibility, 179

classes, 173

summary of effects of modifiers, 181

interoperability, .NET Framework, 5

InvalidCastException, 439, 445

9543index.fm Page 675 Friday, January 18, 2008 4:59 PM

676 ■I N D E X

InvalidOperationException, 486

invocation list, delegate methods, 356

adding methods to delegates, 362

combining delegates, 361

invoking delegates, 364

removing methods from delegates, 363

invoking delegates, 364–369

with reference parameters, 368–369

with return values, 366–367

invoking events, 380

invoking methods, 73

is operator, 451

IsCompleted property, AsyncResult class,
582, 583

IsDefined method, Type class, 628

iteration statements, 72

iteration variable

accessing elements in arrays, 344, 346

enumerators, 485

from clause, LINQ, 525

iterator blocks, 503

iterators, 502–507, 513

creating enumerables, 502, 505–506

multiple enumerables, 509

creating enumerators, 502, 504

multiple enumerators, 511

Generic namespace, 513

implementing as properties not
methods, 511

iterator patterns, 507

IUnknown interface, COM and .NET, 5

■J
jagged arrays, 329, 339–342

comparing array types, 354

comparing rectangular arrays, 343

declaring, 340

foreach statement, 348

instantiation, 340–341

sub-arrays in, 342

JIT (Just-In-Time)

assemblies and CIL, 273

CLR compiling CIL and execution, 8

join clause, LINQ, 527–530

structure of LINQ queries, 526

join query operator, LINQ, 543

jump statements, 72, 232, 247

Just-in-Time see JIT

■K
keywords, 20

ascending, 535

base, 161, 171

case, 239

class, 48

const, 71, 138

contextual keywords, 20

control keywords, 72

delegate, 357, 375

descending, 535

else, 234

explicit, 446, 448

implicit, 446

new, 53, 131

override, 183

params, 372

return, 74

select, 516

static, 129, 383

this, 140

var, 69

void, 74

■L
l/L integer literal suffixes, 196

labeled statements, 230, 249–250

goto statement transferring control to, 251

scope, 250

lambda calculus, 375

9543index.fm Page 676 Friday, January 18, 2008 4:59 PM

677■I N D E X

lambda expressions

adding event handlers, 386

anonymous methods, 375–377

event handler declarations, 382

method syntax, LINQ, 521

using lambda expression parameter,
LINQ, 551–552

lambda operator (=>), 375

left shift operator, 213

left-associative operators, 202

Length property, Array class, 330, 350

Length property, String class, 632

length, arrays, 328

setting, 331

less than (<) operator, 205

let clause, LINQ, 533

line directive, 595

line number directives, 602

LINQ (Language Integrated Query)

anonymous types, 518–520

introduction, 516

LINQ providers, 517

LINQ-enabled languages, 517

LINQ queries, 541

anonymous types in, 538

foreach statement, 516

from clause, 524, 525–526, 532

from keyword, 516

from . . . let . . . where section, 524, 531

group . . . by clause, 536, 539–540

join clause, 527–530

let clause, 533

method syntax, 520–521

orderby clause, 535

query continuation clause, 541

query expressions, 524

query returning enumeration or scalar,
522–523

query syntax, 520–521

query variables, 522–523

select clause, 536–537

select keyword, 516

select . . . group section, 524, 536

standard query operators, 542–552

delegates as parameters, 547–548

predefined delegate types, 549

query expressions and, 544

signatures of, 545–546

using delegate parameters, 550

using lambda expression parameter,
551–552

using with LINQ to XML, 570–572

where clause, 534

LINQ to XML, 553–572

LINQ to XML API, 556

markup languages, 553

methods for manipulating XML, 563

using LINQ queries with, 570–572

XComment node/class, 568

XDeclaration node/class, 568

XML attributes, 554, 564–567

XML classes, 556–559

XML documents, 554

creating/saving/loading/displaying, 557

XML elements, 554

XML trees, 554, 555

adding nodes, 562

creating, 558–559

using values from, 559–561

XProcessingInstruction node/class, 568

literals, 195

character literals, 198

integer literals, 196

real literals, 197

string literals, 199–200

Load method, XDocument class, 557

local constants, 71

9543index.fm Page 677 Friday, January 18, 2008 4:59 PM

678 ■I N D E X

local variables, 42, 68–70

automatic initialization, 43

compared to instance fields, 68

declaring, 68

existence of, 68

flow of control, 72

inside nested blocks, 70

lifetime of, 70

popping item from stack, 70

scope when nested, 70

type inference, 69

var keyword, 69

variable initializers, 43

logical operators

bitwise logical operators, 211–212

conditional logical operators, 209–210

operator precedence, 201

long type, 36

looping statements, 232

do loop, 241–242

for loop, 243–246

while loop, 240

■M
m/M real literal suffix, 197

Main method, 21, 647–648

accessibility, 648

arguments, 647

calling methods inside, 73

declaring, 17, 648

public/private access modifiers, 648

static access modifier, 648

using constructors in, 128

managed code, 8

manifest

components of assembly identity in, 276

structure of assemblies, 273

markup languages, 553

masking inherited members see hiding
inherited members

member access modifiers, 176–181

default access level, 176

internal access modifier, 179

nested types, 654

private access modifier, 178

protected access modifier, 179

protected internal access modifier, 180

public access modifier, 178

summary of effects of modifiers, 181

member constants, 110–112

enumerations, 324

static fields and, 111–112

members

see also class members

abstract members, 182

accessing inherited members, 157

accessing members from inside classes, 59

accessing members from outside classes,
60–61

data members, 34, 46

events, 384

function members, 34, 46

instance members, 55, 104

namespaces, 268

order of member modifiers, 102–103

private and public access, 56, 58

static class member types, 109

static function members, 108

static members, 55, 105

accessing from outside class, 106–107

lifetime of, 107

storing members of reference types, 40–41

types, 34

memory

allocating memory for data, 53–54

heaps, 39

indexers, 142

memory allocation for methods, 95

memory layout of class instances, 63

9543index.fm Page 678 Friday, January 18, 2008 4:59 PM

679■I N D E X

stacks, 38

types and, 38, 40

memory leaks

.NET Framework Garbage Collector, 4

Message property, Exception class, 289

metadata, 553, 606

accessing by consumers, 611

applying attributes, 612

assemblies, 7

method body, 51, 66

code execution in, 67

local constants, 71

nested blocks inside, 70

method header, 66

formal parameters, 78

method invocation, parameter arrays, 91–94

arrays as actual parameters, 94

expanded form, 91–93

method overloading, 99

method signature, 99

method syntax, LINQ, 520–521

query expressions and, 544

query operators, 542

Sum and Count operators, 544

methods, 51, 66

abstract methods, 184

adding to delegates, 362

anonymous methods, 370–374

code execution in method body, 67

declaring, 51

declaring virtual and override, 165

delegate methods in invocation list, 356

extension methods, 187–190

generic classes and, 481–482

external methods, 191–192

flow of control, 72

generic methods, 476–480

invoking, 73

invoking delegates, 364–369

local constants, 71

local variables, 68–70

inside nested blocks, 70

Main method, 21, 647–648

memory allocation for, 95

method calling itself, 97

override methods, 164–165

parameter arrays, 90–94

method invocation, 91, 94

parameters, 78–94

actual parameters, 79, 80

formal parameters, 78, 80

input parameters, 80

output parameters, 87, 89

reference parameters, 84, 86

summary of parameter types, 94

value parameters, 81, 83

partial methods, 153–154

passing data into, 78

recursion, 97–98

removing from delegates, 363

return statements, 76

return values, 74–77

stack frames, 95–96

storing data for use within, 68

struct methods, 67

structure, 66–67

virtual methods, 164–165

void methods, 76–77

modifiers

abstract modifier, 182, 183

access modifiers, 56–58

access modifiers of accessors, 150

class access modifiers, 173

class member declaration statements, 102

enumerations, 324

extern modifier, 191

member access modifiers, 176–181

order of member modifiers, 102–103

9543index.fm Page 679 Friday, January 18, 2008 4:59 PM

680 ■I N D E X

modifiers (continued)

out modifier, 87

override modifier, 164

parameter type usage of, 91

params modifier, 90, 91

readonly modifier, 138–139

ref modifier, 84

sealed modifier, 185

structs, 310

virtual modifier, 164

modulus operator, 204

MoveNext method, IEnumerator, 486, 487, 488

enumerator class state machine, 513

mscorlib assembly/library, 263–264

MSIL see CIL

multidimensional arrays

foreach statement, 347–348

jagged arrays, 329, 339–342

rectangular arrays, 329, 331–332, 335–336

types of, 329

multiple attributes, 617

multiple-variable declarations, 44

multiplication operator, 203

multithreading, 575, 576

MyTimerClass, 394–395

declaring events, 383

subscribing to events, 387

■N
Name property, Type class, 607

named parameters, attribute constructors,
623–624

writing custom attributes, 627

Namespace property, Type class, 607

namespaces, 265–270

declarations, 268, 270

description, 17

fully qualified names, 266

importing, 17

members, 268

naming, 265, 266, 267

nested namespaces, 270

source files for, 269

type declarations, 32, 269

type names, 268

using namespace directive, 271

naming conventions/rules, 19

assemblies, 275

attribute names, 611

field names, 19

identifiers, 18

interfaces, 402

keywords, 20

namespaces, 267

properties and associated fields, 118

Native Image Generator (Ngen), 8

nested classes, 487

private member accessibility, 178

nested comments, 29

nested namespaces, 270

nested types, 652–656

hiding base class member, 655

member accessibility, 654

visibility, 654–656

.NET

acronyms, 13

CLR compiling CIL and execution, 8–9

compiling to CIL, 7

pre-.NET, 2

.NET Framework, 2

asynchronous handling of program
events, 389

Base Class Library (BCL), 6

CLI (Common Language Infrastructure),
11–12

CLR (Common Language Runtime), 10

collection classes, 6

COM, 5

components, 3

CTS (Common Type System), 12

9543index.fm Page 680 Friday, January 18, 2008 4:59 PM

681■I N D E X

Garbage Collector (GC), 4

interoperability, 5

introduction, 2

object-orientation, 4

programming environment, 4–6

side-by-side execution, 6

simplified deployment, 6

synchronization classes, 6

threading classes, 6

type safety, 6

types, 36

XML classes, 6

new constructed type, generics, 468

new keyword, 53, 131

new line

escape sequence and hex encoding f
or, 198

new modifier

hiding inherited members, 159, 160

overriding method marked as new, 168

structs, 310

new operator

allocating memory for data, 53

creating delegate objects, 358

instance constructors, 127

instance constructors, structs, 307

instantiating jagged arrays, 340

instantiating one-dimensional
arrays, 332

instantiating rectangular arrays, 332

object-creation expression, 53

Ngen (Native Image Generator), 8

Nodes method, XElement class, 559, 560

nodes, XML

adding, 562

AddXyz methods, 563

methods for manipulating XML, 563

other types of, 568–569

XML trees, 555

non-generic interfaces, 485

generic interfaces compared, 496

non-nullable types, 640

NonSerialized attribute, 616

NOT (logical NOT) operator, 209, 210

NotSupportedException, 513

Now property, 126

null

escape sequence and hex encoding for, 198

null coalescing operator, 644

nullable types, 640–646

accessibility of members of, 645

assigning values to, 643–644

creating, 640–642

equality comparison operators, 644

HasValue property, 641

Nullable<> type, 646

underlying type, 640

user-defined nullable types, 645–646

using operators with, 644

Value property, 641

Nullable<> type, 646

NullReferenceException, 292

number format specifier, 637

numeric conversions, 428–435

explicit numeric conversions, 432–435

implicit numeric conversions, 429

overflow checking, 430–431

numeric types, 35

formatting numeric strings, 634–638

alignment specifier, 635

format component, 636

format specifier, 634

standard numeric format specifiers,
637–638

■O
object class inheritance, 158

object initializers, 131–132, 518

9543index.fm Page 681 Friday, January 18, 2008 4:59 PM

682 ■I N D E X

object types, 35, 36

boxing conversions, 442

instantiating, 33

object-creation expression

new operator, 53

object-orientation, .NET Framework, 4

objects

programs and, 47

retrieving data from, 516

Obsolete attribute, 613, 616

one’s complement, 211

one-dimensional arrays, 329, 331–332

automatic initialization, 334

comparing array types, 354

declaring, 331

explicit initialization, 334

instantiating, 332

opening tags, XML, 554

operands, 194

operator associativity, 202

operator overloading, 223–226

restrictions on, 224

typeof operator, 227

operator precedence, 201

parenthesized expressions, 202

operators

arithmetic operators, 203

as operator, 408–452

assignment operators, 215–216

bitwise logical operators, 211–212

bitwise shift operators, 213–214

cast operator, 162, 222

checked operator, 430

comparison operators, 205–206

conditional logical operators, 209–210

conditional operator, 217–218

decrement operators, 207–208

equality operators, 205–206

evaluating expressions, 194

increment operators, 207–208

is operator, 451

lambda operator (=>), 375

LINQ queries, 542–552

null coalescing operator, 644

relational operators, 205–206

remainder (%) operator, 204

typeof operator, 226–228, 610

unary arithmetic operators, 219

unchecked operator, 430

OR (bitwise OR) operator, 211, 212

setting bits for bit flags, 318, 319

OR (logical OR) operator, 209, 210

orderby clause, LINQ, 535

ordering query operator, LINQ, 543

out modifier, 87

out parameter

EndInvoke method, 579

structs, 311

outer variables

anonymous methods, delegates, 373, 374

output parameters, 87–89

modifiers and, 91

summary of syntax and usage, 94

overflow checking

checked operator, 430, 431

checked statement, 431

default context, 430

explicit conversions, 430–431

unchecked operator, 430, 431

unchecked statement, 431

OverflowException, 430, 432, 433, 434

overloading

indexer overloading, 149

instance constructors, 127

method overloading, 99

operator overloading, 223–226

override keyword, abstract classes, 183

override methods, 164–165, 166–168

9543index.fm Page 682 Friday, January 18, 2008 4:59 PM

683■I N D E X

override modifier, 164

implementing abstract methods, 182

overriding method marked as override,
166–167

structs, 310

overriding, 182

■P
P/Invoke, 5

param tag, XML, 651

parameter arrays, 90–94

arrays as actual parameters, 94

expanded form, 91–93

method invocation, 91–94

modifiers and, 91

summary of syntax and usage, 94

parameter variable type, 42

automatic initialization, 43

parameters, 78–94

actual parameters, 79–80

anonymous methods, 372

constructors with, 127

declaring indexers, 143, 146

declaring methods, 51

formal parameters, 78, 80

input parameters, 80

method signature, 99

output parameters, 87–89

params parameter, 372

positional/named parameters, 623–624

reference parameters, 84–86

structs, 311

summary of parameter types, 94

type-parameterized code, 456

value parameters, 81–83

params keyword, 372

params modifier, 90, 91

params parameter, 372

Parent method, XElement class, 559

parenthesized expressions

operator precedence, 202

Parse method, 639

parsing strings to data values, 639

partial classes, 151–152

partial interfaces, 402

partial methods, 153–154

partial (delayed) signing, 283–284

partial structs, 311

partial types, 152

partially trusted callers

strongly named assemblies, 277

partitioning query operator, LINQ, 543

Pascal casing, 19, 20

patterns

asynchronous programming patterns, 577

callback pattern, 585–588

iterator patterns, 507

polling pattern, 583–584

standard dispose pattern, 136–137

wait-until-done pattern, 580–581

percent format specifier, 637

performance

destructors, 133

structs, 311

placeholders

declaring generic classes, 457, 458, 459

platform invoke (P/Invoke), 5

platforms, .NET Framework and, 3

polling pattern, 583–584

asynchronous programming patterns, 577

popping item from stack, 38

local variables, 70

positional parameters, attribute
constructors, 623–624

writing custom attributes, 627

post-decrement operator, 207, 208

post-increment operator, 207, 208

pragma directive, 595, 604

9543index.fm Page 683 Friday, January 18, 2008 4:59 PM

684 ■I N D E X

precedence

operator precedence, 201

precision specifiers

formatting numeric strings, 636

pre-decrement operator, 207, 208

predefined attributes, 616

predefined types, 35–36

predicates, 549

pre-increment operator, 207, 208

preprocessor directives, 594–595

character, 594

define directive, 596

elif directive, 597, 599, 600

else directive, 597, 598, 599, 600

endif directive, 597, 598, 599, 600

endregion directive, 603

error directive, 601

if directive, 597, 598, 599, 600

line directive, 602

pragma directive, 604

region directive, 603

undef directive, 596

warning directive, 601

conditional compilation, 597–600

diagnostic directives, 601

line number directives, 602

region directives, 603

table of, 595

primary module, assemblies, 274

private access modifier, 56, 57, 58

accessing members from inside classes, 59

class and member accessibility, 178

member access modifiers, 176

order of member modifiers, 103

summary of effects of modifiers, 181

private assemblies, 279

private deployment of assemblies, 279

private constructors, 130

private key

assemblies, 275

delayed signing, 283

private member accessibility

properties and associated fields, 117

processes, 574

processing instructions

XProcessingInstruction node/class, 568

programming

see also patterns

classes and programs, 47

complexity of multithreading, 576

goals for next-generation programming, 2

multithreading considerations, 575

Windows in late 1990s, 2

programming environment, .NET, 4–6

projection initializers, 519

projection query operator, LINQ, 543

properties, 113–125

accessors, 113

calculations with, 119

get/set accessors, 113, 114, 116

property declarations and, 114

associated fields and, 117–118

associated with values in databases, 122

auto-implemented properties, 123–124

class declarations, 115

declarations and accessors, 114

declaring virtual and override, 165

fields compared, 113

indexers and, 142

naming conventions, 118

read-only properties, 120, 121

static properties, 125

write-only properties, 120

writing to and reading from, 116

protected access modifier, 179, 181

protected internal access modifier, 180, 181

9543index.fm Page 684 Friday, January 18, 2008 4:59 PM

685■I N D E X

public access modifier, 57, 58

accessing members from outside classes, 60

class and member accessibility, 178

classes, 173

declaring indexer for Employee class, 146

instance constructors, 126

member access modifiers, 176

order of member modifiers, 103

properties and associated fields, 117

summary of effects of modifiers, 181

public constructors, 130

public fields

auto-implemented properties, 124

public key

delayed signing, 283

identity of assemblies, 275

publisher, events, 380, 381, 385

pushing item onto stack, 38

■Q
qualified interface name

explicit interface member
implementations, 415

quantifiers query operator, LINQ, 543

query continuation clause, LINQ, 541

query expressions, LINQ, 524–541

anonymous types in queries, 538

from clause, 524, 525–526, 532

from . . . let . . . where section, 524, 531

group . . . by clause, 536, 539–540

join clause, 527–530

let clause, 533

method syntax and, 544

orderby clause, 535

query continuation clause, 541

query operators and, 544

select clause, 536–537

select . . . group section, 524, 536

using with LINQ to XML, 570–572

where clause, 534

query operators, LINQ

categories of, 543

delegates as parameters, 547–548

predefined delegate types, 549

query expressions and, 544

signatures of, 545–546

standard query operators, 542–552

using delegate parameters, 550

using lambda expression parameter,
551–552

query syntax, LINQ, 520–521

query variables, LINQ, 522–523

querying data see LINQ

■R
raising events, 380, 385

event code components, 382

Random class, 130

Rank property, Array class, 330, 350

rank, arrays, 328

initializing rectangular arrays, 335

rank specifiers, 331

readonly modifier, 138–139

read-only properties, 120, 121

real literals, 197

rectangular arrays, 329, 331–332

comparing array types, 354

comparing jagged arrays, 343

declaring, 331

explicit initialization, 335–336

foreach statement, 347

instantiating, 332

recursion, methods, 97–98

ref modifier, 84

ref parameter

EndInvoke method, 579

structs, 311

reference conversions, 436–441

explicit reference conversions, 439–441

implicit reference conversions, 437–438

9543index.fm Page 685 Friday, January 18, 2008 4:59 PM

686 ■I N D E X

reference counting, COM and .NET, 5

reference parameters, 84–86

invoking delegates with, 368–369

modifiers and, 91

summary of syntax and usage, 94

reference type array, 330

cloning, 352, 353

reference types, 40

allocating memory for data, 53

arrays, 330

boxing conversions, 444

categorizing C# types, 41

classes, 52

comparison of, 206

declaring delegate objects, 358

default value, 50

getting reference to interface, 406–407

null for, 195

storing members of, 40–41

storing types on heap or stack, 40, 83

variable declarations, 42

referenced method

asynchronous programming, 577

References folder, Solution Explorer

mscorlib library, 263

referencing other assemblies, 261

reflection, 606

region directive, 595, 603

registry

COM and .NET, 5

deployment in .NET Framework, 6

regular string literals, 199

relational operators, 205–206

operator precedence, 201

remainder (%) operator, 204

remarks tag, XML, 651

remove accessor, event accessors, 396

Remove method, String class, 632

Remove method, XElement class, 563, 566

RemoveNodes method, XElement class, 563

Replace method, String class, 632

ReplaceContent method, XElement class, 563

Reset method, IEnumerator, 486

compiler-generated enumerators, 513

resources, 252

multiple resources and nesting, 255

packaging use with using statement, 253

resources section, assemblies, 273

restriction query operator, LINQ, 543

return keyword, 74

return statements, 257

brief description, 72

methods, 76

switch statements, 236

void methods and, 76–77

return type

anonymous methods, 371

declaring methods, 51, 74

method signature, 99

user-defined types, 75

void, 51

return values, 74–77

instance constructors, 126

invoking delegates with, 366–367

structs, 311

returns tag, XML, 651

Reverse method, Array class, 350

right shift operator, 213

right-associative operators, 202

round-trip format specifier, 638

running state

enumerator class state machine, 513

runtime processes

overview of compile-time and, 9

■S
Save method, XDocument class, 557

sbyte type, 36

9543index.fm Page 686 Friday, January 18, 2008 4:59 PM

687■I N D E X

scalars

query variables, LINQ, 522, 523

scientific format specifier, 638

scope

anonymous methods, 373

local constants, 71

nested local variables, 70

variables in for loop, 245

sealed classes, 185

sealed modifier, 185

sealed structs, 310

secondary modules, assemblies, 274

security

assemblies, 277

.NET Framework and, 3

seealso tag, XML, 651

select clause, LINQ, 536–537

anonymous types in queries, 538

structure of LINQ queries, 525

select keyword, LINQ, 516

select . . . group section, LINQ, 524, 536

selection statements, 72

Serializable attribute, 616

set accessors

calculations with, 119

class declarations, 115

indexers, 142, 144, 146

properties, 113, 114, 116

properties associated with values in
databases, 122

write-only properties, 120

set query operator, LINQ, 543

SetAttributeValue method, XElement class,
566, 567

SetElement method, XElement class, 563

shallow comparison, 206

shared assemblies

installing assemblies into, 280

shared assemblies and the GAC, 280–281

side-by-side execution in the GAC, 281

shift operators

bitwise shift operators, 213–214

operator precedence, 201

short type, 36

side-by-side execution

in the GAC, 281

.NET Framework, 6

sign extensions, 425

signatures

see also digital signatures

hiding members of base classes, 159

method signature, 99

overriding method marked as override, 166

query operators, LINQ, 545–546

signed conversions

sign extensions in, 425

simple name

identity of assemblies, 275

simple types, 34

predefined simple types and structs, 311

single inheritance, 158

single quotes

escape sequence and hex encoding for, 198

single-line comments, 16, 28, 30

ending, 29

Sleep method, Thread class

wait-until-done pattern, 580

Sort method, Array class, 350

example using IComparable interface,
399, 400, 401

Source property, Exception class, 289

special characters, 198

stack frames, 95–96

recursion of methods, 98

stacks, 38

comparing generic/non-generic stacks, 465

local variables and instance fields, 68

output parameters on, 89

parameter arrays, 92, 93

9543index.fm Page 687 Friday, January 18, 2008 4:59 PM

688 ■I N D E X

stacks (continued)

popping item from, 38, 70

formal parameters, 83

pushing item onto, 38

stack frames, 95

recursion of methods, 97

reference parameters on, 84, 86

stack example using generics, 463–464

storing members of reference types, 40

unwinding, 95, 96

value parameters on, 81, 83

StackTrace property, Exception class, 289

standard dispose pattern, 136–137

standards, .NET Framework and, 3

state

instance constructors, 126

state parameter

BeginInvoke method, 578

callback pattern, 585

EndInvoke method, 586

statements, 22–23, 230–231

blocks, 22, 230

break statement, 247

checked statement, 257

conditional execution statements, 232

continue statement, 248

declaration statements, 230

do loop, 241–242

embedded statements, 230

empty statements, 231

expression statements, 231

finally statement, 257

flow-of-control statements, 232

for loop, 243–246

foreach statement, 257

goto statements, 251

if . . . else statement, 234

if statement, 233–234

jump statements, 232, 247

labeled statements, 230, 249–250

looping statements, 232

major categories of statements, 230

return statement, 257

simple statement, 230

statement termination, 17, 22

switch statement, 235–239

throw statement, 257

try statement, 257

unchecked statement, 257

using statement, 252–256

while loop, 240

yield statement, 257

static access modifier, 189

static class member types, 109

static classes, 186

extension methods, generic classes, 481

static constructors, 129–130

access modifiers, 129

destructors compared, 137

structs, 309

static fields

member constants and, 111–112

readonly modifier, 138

static function members, 108

static keyword

declaring events, 383

static constructors, 129

static members, 55, 105

accessing from outside class, 106–107

hiding inherited members, 159

lifetime of, 107

static methods

overriding methods, 165

static function members, 108

static modifier

declaring static field, 105

order of member modifiers, 103

value parameters, 82

9543index.fm Page 688 Friday, January 18, 2008 4:59 PM

689■I N D E X

static properties, 125

Now property, 126

storing data see data storage

String class

properties and methods, 632

string handling, 632–638

changing string copies, 632

formatting numeric strings, 634–638

alignment specifier, 635

format component, 636

format specifier, 634

standard numeric format specifiers,
637–638

parsing strings to data values, 639

StringBuilder class, 633

string literals, 199–200

string type, 35, 36

StringBuilder class, 633

strongly named assemblies, 277–278

assemblies and the GAC, 280

partially trusted callers, 277

struct constructed type, generics, 468

struct field variable type

automatic initialization, 43

struct methods, 67

struct types, 37

structs

accessibility of members of, 645

assigning struct variables, 306

boxing, 311

classes compared, 304, 306

constructors, 307–309

declaring, 304

destructors, 307, 309

field initializers, 310

generic methods, 476

generic structs, 469

inheritance, 310

instance constructors, 307–308, 309

introduction, 304

methods and, 67

modifiers, 310

new modifier, 310

operator overloading, 223

out parameter, 311

override modifier, 310

parameters, 311

partial structs, 311

performance, 311

predefined simple types and, 311

ref parameter, 311

return values, 311

sealed structs, 310

static constructors, 309

user-defined nullable types, 645

value parameters, 311

value types, 305

subscriber, events, 380, 381

subscribing to events, 386–387

substitution markers/values, format strings,
26, 27

SubString method, String class, 632

subtraction operator, 203

summary tag, XML, 650, 651

SuppressFinalize method, GC class

using Dispose method, 134

suspended state

enumerator class state machine, 513

switch statements, 235–239

brief description, 72

case keyword, 239

default section, 235, 238

switch labels, 239

using goto statement inside, 251

synchronization classes, .NET, 6

synchronous programming, 574

System namespace, importing, 17

9543index.fm Page 689 Friday, January 18, 2008 4:59 PM

690 ■I N D E X

system registry

COM and .NET, 5

deployment in .NET Framework, 6

System.Threading namespace, 576

■T
tabs

escape sequence and hex encoding
for, 198

tags, XML, 554

targets, attributes, 611, 618

AttributeUsage attribute specifying, 627

templates

generic types, 456

types and templates, 33

text output, 24–27

format strings, 26

Write method, 24

WriteLine method, 25

TextReader/TextWriter classes, 254

this keyword, 140

constructor initializers, 171

declaring indexers, 143

extension methods, 189, 481

nested types, 655

query operators, LINQ, 545

static constructors, 129

thread pool, 575

EndInvoke retrieving thread values, 579

threading classes, .NET, 6

Threading namespace, 576

threads

asynchronous programming, 574

communicating between, 576

coordinating, 576

description, 574

multiple threads, 574

multithreading, 575, 576

synchronization of resource usage, 576

throw statement, 257

throwing exceptions, 299

without exception object, 300–301

Timer class

MyTimerClass, 394

Threading namespace, 589–590

Timers namespace, 591

Windows.Forms namespace, 591

TimerCallback delegate, 589

timers, 589

multithreading, 576

ToLowermethod, String class, 632

tools, .NET Framework, 3

ToString method

bit flags, enumerations, 320

ToUpper method, String class, 632, 633

TR used in code

predefined delegate types, LINQ, 549

TraceMessage method

using Conditional attribute, 614, 615

try block, 287

exceptions, 253

finding handlers for exceptions, 294

try statement, 257, 287–288

catch clause, 287, 290–292

catch clauses section, 292

examples using specific catch clause, 291

finally block, 287, 293

finding handlers for code without, 295

handling exceptions, 288

handling the exception, 288

TryParse method

parsing strings to data values, 639

two’s complement, 213

type arguments

creating constructed types, generic
classes, 460

type parameters compared, 460

9543index.fm Page 690 Friday, January 18, 2008 4:59 PM

691■I N D E X

Type class, 606–607

accessing attributes, 628

GetCustomAttributes method, 629

GetFields method, 607

GetMethods method, 607

GetProperties method, 607

getting Type object, 608–610

IsDefined method, 628

members, 607

Name property, 607

Namespace property, 607

typeof operator, 226

type conversions

as operator, 452

automatic conversions in C#, 427

boxing conversions, 428, 442–444

cast expressions, 427

checking if conversion will work, 451

explicit conversions, 426–427, 429

casting, 427

overflow checking, 430–431

explicit numeric conversions, 432–435

explicit reference conversions, 439–441

implicit conversions, 425

implicit numeric conversions, 429

implicit reference conversions, 437–438

introduction, 424

is operator, 451

loss of data during, 426, 427

explicitly taking responsibility for risk, 427

numeric conversions, 428–435

reference conversions, 436–441

setting target reference to null on failure, 452

sign extensions, 425

signed conversions, 425

source, 424

target, 424

types of conversions, 428

unboxing conversions, 428, 444–445

unsigned conversions, 425

user-defined conversions, 220–222,
446–450

zero extension, 425

type declarations, 17

adding to namespaces, 269

type inference, local variables, 69

type libraries, COM and .NET, 5

type metadata section, assemblies, 273

type names

namespaces, 268

Pascal casing, 20

type parameters

constraints on, generics, 466–468

constraint types and order, 468

where clause, 467

declaring generic classes, 459

generic delegates, 473

type arguments compared, 460

unbounded type parameters, 466

type safety, .NET Framework, 6

typeof operator, 226–228

getting Type object, 610

GetType method calling, 228

overloading, 227

type-parameterized code

generics in C#, 456

types

anonymous types, 518–520

array type, 34

categorizing C# types, 41

creating constructed types, generics, 460

CTS (Common Type System), 12

data members, 34

default values, 36

defining types, 33

delegates, 357

enumerable types, 484

enumerations, 314

9543index.fm Page 691 Friday, January 18, 2008 4:59 PM

692 ■I N D E X

types (continued)

function members, 34

generic types, 456

instantiating, 33

members, 34

memory and, 38, 40

namespaces, 268

nested types, 652–656

.NET Framework, 36

non-simple types, 36

nullable types, 640–646

object/instance of, 33

partial types, 152

predefined simple types and structs, 311

predefined types, 35–36

instantiation, 37

reference types, 40

default value, 50

simple types, 34, 36

storing members of reference types, 40–41

storing types on heap or stack, 40

templates and, 33

type declarations, 32, 37

types of arrays, 329

user-defined types, 37

value types, 40

■U
u/U integer literal suffixes, 196

uint type, 36

ulong type, 36

unary arithmetic operators, 219

unary operators

operator overloading, 224

operator precedence, 201

overload methods for, 223

unbounded type parameters, 466

unboxing conversions, 428, 444–445

unchecked operator

overflow checking, 430, 431

unchecked statement, 257, 431

undef directive, 595, 596

Unicode character types, 35

Unicode escape sequence, 198

unmanaged code, 8

unmanaged resources

calling destructors, 134

unsigned conversions

zero extension in, 425

uppercase naming style, 19

user-defined type conversions, 220–222,
446–450

cast operator, 222

constraints on, 446

evaluating, 449

explicit conversions, 220

implicit conversions, 220

multi-step user-defined conversion, 449

user-defined types, 37

generics and, 456

return type, 75

user-defined nullable types, 645–646

ushort type, 36

using directive, 271

inheritance between assemblies, 174

using alias directive, 272

fully qualified names, 266

using namespace directive, 271

using statement, 17, 252–256

alternative form of, 256

multiple resources and nesting, 255

packaging use of resource with, 253

try and finally blocks, 253

■V
ValidOn property, AttributeUsage attribute,

625, 626

value parameters, 81–83

modifiers and, 91

structs, 311

summary of syntax and usage, 94

9543index.fm Page 692 Friday, January 18, 2008 4:59 PM

693■I N D E X

Value property

user-defined nullable types, 645

using LINQ queries with LINQ to XML, 571

variables of a nullable type, 641

value tag, XML, 651

value type array, 330

cloning, 352

value types, 40

boxing conversions, 444

categorizing C# types, 41

enumerations, 314

storing members of reference types, 40

storing types on heap or stack, 40, 83

structs, 305

variable declarations, 42

var keyword

generic classes, 461

implicitly typed arrays, 337

local variables, 69

query variables, LINQ, 522

var, JavaScript, 69

variables

allocating memory for data, 53

automatic initialization, 43

creating variables and instances of
classes, 52

global variables, 49

introduction, 42

local variables, 68–70

scope in for loop, 245

types of, 42

using values of, 44

variable declarations, 42–43

multiple-variable declarations, 44

variable initializers, 43

verbatim string literals, 199

version number

identity of assemblies, 275

vertical tab

escape sequence and hex encoding for, 198

virtual members

compared to abstract members, 182

virtual methods, 164–165

calling in constructors, 170

virtual modifier, 164

abstract methods, 182

visibility

nested types, 654–656

Visual Studio

documentation comments, 649, 650

void return type, methods, 51, 74, 76–77

■W
wait-until-done pattern, 580–581

asynchronous programming patterns, 577

warning directive, 595

diagnostic directives, 601

weakly named assemblies, 277

delayed signing, 283

WebMethod attribute, 616

where clause

type parameter constraints, generics, 467

order of constraints, 468

where clause, LINQ, 534

structure of LINQ queries, 525

Where operator, LINQ, 545

while loop, 240

break statement, 247

while statements

brief description, 72

continue statement, 248

whitespace, 21

XML, 554

Windows Forms applications

Timer class, 591

Write method, Console class, 24

9543index.fm Page 693 Friday, January 18, 2008 4:59 PM

694 ■I N D E X

WriteLine method, Console class, 25

alternative ways to display values, 634

WriteLine statement

return statement and void methods, 77

return values, 75

write-only properties, 120

■X
XAttribute node/class, 556, 564

XComment node/class, 556, 568

xcopy deployment, 279

XDeclaration node/class, 556, 568

XDocument node/class

constructor, 558

LINQ to XML API, 556

Load method, 557

methods for querying XML, 559

Save method, 557

XDocumentType node/class, 556

XElement node/class

Add method, 562

Attribute method, 565

constructor, 558

LINQ to XML API, 556

methods for manipulating XML, 563

methods for querying XML, 559

Remove method, 566

retrieving an attribute from, 565

SetAttributeValue method, 566, 567

XML attributes, 564

XML

elements, 554

LINQ to XML, 553–572

markup languages, 553

methods for manipulating, 563

tags, 554

using LINQ queries with LINQ to XML,
570–572

whitespace, 554

XML attributes, 554

changing value of, 567

working with, 564–567

XML classes, 556–559

.NET Framework, 6

XML comments, 649

XML documents, 554, 557, 568

XML nodes, 568–569

XML tags, 651

XML trees, 554, 555

adding attribute to, 567

adding nodes, 562

creating, 558–559

functional construction, 557

using LINQ queries with LINQ to XML, 571

using values from, 559–561

XNode class

XML class derivation, 556

XOR (bitwise XOR) operator, 211, 212

XProcessingInstruction node/class, 556, 568

■Y
yield break statements, 503

yield return statements

enumerations, 502

iterator blocks, 503

yield statements, 257

enumerator class state machine, 513

iterator blocks, 503

■Z
zero based arrays, 328

zero extension, type conversions, 425

9543index.fm Page 694 Friday, January 18, 2008 4:59 PM

	Illustrated C# 2008
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	C# and the .NET Framework
	Unknown
	Windows Programming in the Late 1990s
	Goals for the Next-Generation Platform
	Components of the .NET Framework
	An Improved Programming Environment
	Object-Oriented Development Environment
	Automatic Garbage Collection
	Interoperability
	No COM Required
	Simplified Deployment
	Type Safety
	The Base Class Library

	Overview of Compilation and Execution
	Important Parts of the CLI
	Common Type System (CTS)
	Common Language Specification (CLS)

	Overview of C# Programming
	Types, Storage, and Variables
	Unknown
	Types of Members
	More About the Predefined Types
	The Stack
	Facts About Stacks

	The Heap
	Storing Members of a Reference Type Object
	Categorizing the C# Types
	Variable Declarations
	Variable Initializers
	Automatic Initialization

	Multiple-Variable Declarations
	Using the Value of a Variable

	Classes: The Basics
	Unknown
	A Class Is an Active Data Structure
	Fields
	Explicit and Implicit Field Initialization
	Declarations with Multiple Fields

	Methods
	Combining the Steps
	Private and Public Access
	Depicting Public and Private Access
	Example of Member Access

	Methods
	Unknown
	Code Execution in the Method Body
	Type Inference and the var Keyword
	Local Variables Inside Nested Blocks
	Flow of Control
	The Return Statement and Void Methods
	Formal Parameters
	Actual Parameters
	An Example of Methods with Input Parameters

	Method Invocation
	Expanded Form

	Arrays As Actual Parameters

	More About Classes
	Unknown
	Order of Member Modifiers
	Example of a Static Field
	Lifetimes of Static Members
	Constants Are Like Statics
	Property Declarations and Accessors
	A Property Example
	Using a Property
	Properties and Associated Fields
	Performing Other Calculations
	Read-Only and Write-Only Properties
	An Example of a Computed, Read-Only Property
	Example of Properties and Databases
	Automatically Implemented Properties
	Static Properties
	Constructors with Parameters
	Default Constructors
	Example of a Static Constructor
	Accessibility of Constructors
	Calling the Destructor
	The Standard Dispose Pattern
	What Is an Indexer?
	Indexers and Properties
	Declaring an Indexer
	The set Accessor
	The get Accessor
	More About Indexers
	Declaring the Indexer for the Employee Example
	Another Indexer Example
	Indexer Overloading
	Partial Methods

	Classes and Inheritance
	Unknown
	All Classes Are Derived from Class object
	Virtual and Override Methods
	Overriding a Method Marked override
	Case 1: Declaring Print with override
	Case 2: Declaring Print with new

	Constructor Initializers
	Class Access Modifiers
	Regions Accessing a Member
	Public Member Accessibility
	Private Member Accessibility
	Protected Member Accessibility
	Internal Member Accessibility
	Protected Internal Member Accessibility
	Summary of Member Access Modifiers
	Example of an Abstract Class and an Abstract Method

	Expressions and Operators
	Unknown
	Real Literals
	Precedence
	Associativity
	Comparison and Equality Operations
	Compound Assignment
	Explicit Conversion and the Cast Operator
	Restrictions on Operator Overloading
	Example of Operator Overloading

	Statements
	Unknown
	A Switch Example
	More on the switch Statement
	Switch Labels
	The Scope of Variables in a for Statement
	Multiple Expressions in the Initializer and Iteration Expression
	Labels
	The Scope of Labeled Statements
	The goto Statement Inside a switch Statement
	Packaging Use of the Resource
	Example of the using Statement
	Multiple Resources and Nesting
	Another Form of the using Statement

	Namespaces and Assemblies
	Unknown
	The mscorlib Library
	Namespace Names
	More About Namespaces
	Namespaces Spread Across Files
	Nesting Namespaces
	The using Namespace Directive
	The using Alias Directive
	Creating a Strongly Named Assembly
	Installing Assemblies into the GAC
	Side-by-Side Execution in the GAC

	Exceptions
	Unknown
	Handling the Exception
	General Algorithm
	Example of Searching Down the Call Stack

	Structs
	Unknown
	Instance Constructors
	Static Constructors
	Summary of Constructors and Destructors

	Enumerations
	Unknown
	Setting the Underlying Type and Explicit Values
	Implicit Member Numbering
	The Flags Attribute
	Example Using Bit Flags

	Arrays
	Unknown
	Definitions
	Important Details
	Declaring a One-Dimensional Array or a Rectangular Array
	Explicit Initialization of One-Dimensional Arrays
	Explicit Initialization of Rectangular Arrays
	Syntax Points for Initializing Rectangular Arrays
	Shortcut Syntax
	Implicitly Typed Arrays
	Putting It All Together
	Declaring a Jagged Array
	Shortcut Instantiation
	Instantiating a Jagged Array
	Sub-Arrays in Jagged Arrays
	The Iteration Variable Is Read-Only
	The foreach Statement with Multidimensional Arrays
	Example with a Rectangular Array
	Example with a Jagged Array

	The Clone Method

	Delegates
	Unknown
	Methods in the Invocation List
	Using Anonymous Methods
	Syntax of Anonymous Methods
	Return Type
	Parameters
	params Parameters

	Scope of Variables and Parameters
	Outer Variables
	Extension of Captured Variable’s Lifetime

	Events
	Unknown
	An Event Has a Private Delegate
	An Event Is a Member
	The Delegate Type and EventHandler
	Removing Event Handlers
	Using the EventArgs Class
	Passing Data by Extending EventArgs
	Using the Custom Delegate

	Interfaces
	Unknown
	Example Using the IComparable Interface
	Example with a Simple Interface
	Accessing Explicit Interface Member Implementations
	Example of Different Classes Implementing an Interface

	Conversions
	Unknown
	Casting
	Implicit Numeric Conversions
	Overflow Checking Context
	The checked and unchecked Operators
	The checked and unchecked Statements

	Explicit Numeric Conversions
	Integral to Integral
	float or double to Integral
	decimal to Integral
	double to float
	float or double to decimal
	decimal to float or double

	Implicit Reference Conversions
	Explicit Reference Conversions
	Valid Explicit Reference Conversions
	Boxing Creates a Copy
	The Boxing Conversions

	The Unboxing Conversions
	Constraints on User-Defined Conversions
	Example of a User-Defined Conversion
	Evaluating User-Defined Conversions
	Example of a Multi-Step User-Defined Conversion

	Generics
	Unknown
	A Stack Example
	Continuing with the Stack Example
	The Stack Example Using Generics
	Comparing the Generic and Non-Generic Stack
	Where Clauses
	Constraint Types and Order
	An Example Using Generic Interfaces
	Generic Interface Implementations Must Be Unique
	Another Generic Delegate Example
	Declaring a Generic Method
	Invoking a Generic Method
	Inferring Types

	Example of a Generic Method

	Enumerators and Iterators
	Unknown
	Using the foreach Statement
	Types of Enumerators
	Declaring an IEnumerator Enumerator
	Example Using IEnumerable and IEnumerator
	Iterator Blocks
	Using an Iterator to Create an Enumerator
	Using an Iterator to Create an Enumerable

	Introduction to LINQ
	Unknown
	Anonymous Types
	The from Clause
	The join Clause
	What Is a Join?
	The from . . . let . . . where Section in the Query Body
	The from Clause
	The let Clause
	The where Clause

	The orderby Clause
	The select . . . group Clause
	Anonymous Types in Queries
	The group Clause
	Query Continuation
	Query Expressions and the Standard Query Operators
	Signatures of the Standard Query Operators
	Delegates As Parameters
	The LINQ Predefined Delegate Types
	Example Using a Delegate Parameter
	Example Using a Lambda Expression Parameter
	Markup Languages
	XML Basics
	The XML Classes
	Creating, Saving, Loading, and Displaying an XML Document
	Creating an XML Tree

	Using Values from the XML Tree
	Adding Nodes and Manipulating XML

	Working with XML Attributes
	Other Types of Nodes
	XComment
	XDeclaration
	XProcessingInstruction

	Using LINQ Queries with LINQ to XML

	Introduction to Asynchronous Programming
	Unknown
	Multithreading Considerations
	The Complexity of Multithreading
	The Wait-Until-Done Pattern
	The AsyncResult Class
	The Polling Pattern
	The Callback Pattern
	The Callback Method
	Calling EndInvoke Inside the Callback Method

	Preprocessor Directives
	Reflection and Attributes
	Unknown
	The Obsolete Attribute
	The Conditional Attribute
	Example of the Conditional Attribute

	Predefined Attributes
	Multiple Attributes
	Other Types of Targets
	Global Attributes
	Declaring a Custom Attribute
	Using Attribute Constructors
	Specifying the Constructor
	Using the Constructor
	Positional and Named Parameters in Constructors
	Restricting the Usage of an Attribute
	The Constructor for AttributeUsage

	Suggested Practices for Custom Attributes
	Using the IsDefined Method
	Using the GetCustomAttributes Method

	Other Topics
	Unknown
	Using Class StringBuilder
	Formatting Numeric Strings
	The Alignment Specifier
	The Format Component
	Standard Numeric Format Specifiers

	Creating a Nullable Type
	Assigning to a Nullable Type
	Using Operators and the Null Coalescing Operator

	Using Nullable User-Defined Types
	Nullable<T>

	Accessibility of Main
	Inserting Documentation Comments
	Using Other XML Tags
	Example of a Nested Class
	Visibility and Nested Types

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

