

Goal-oriented Pattern

Family Framework

for Business Process Modeling

Saeed Ahmadi Behnam

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Ph.D. in Computer Science

Under the auspices of the Ottawa-Carleton Institute for Computer Science

University of Ottawa

Ottawa, Ontario, Canada

October 2012

© Saeed Ahmadi Behnam, Ottawa, Canada, 2012

This work is dedicated to

my mother and to the memory of my father;

both instilled in me a passion for science and the

continuous curiosity to understand, and they will

be eternal sources of inspiration for me.

 i

ABSTRACT .

While several approaches exist for modeling goals and business processes in organiza-

tions, the relationships between these two views are often not well defined. This inhibits

the effective reuse of available knowledge in models. This thesis aims to address this

issue through the introduction of a Goal-oriented Pattern Family (GoPF) framework that

helps constructing business process models from organization goals while expanding

these goals, establishing traceability relationships between the goal and process views,

and improving reusability. Methods for extracting domain knowledge as patterns, which

are composed of goal model building blocks, process model building blocks, and their

relationships, and for maintaining the patterns over time are also presented. The GoPF

framework provides the infrastructure for defining pattern families, i.e., collections of

related patterns for particular domains. The foundation of GoPF is formalized as a profile

of the User Requirements Notation, a standard modeling language that supports goals,

scenarios, and links between them. A method for the use of GoPF is defined and then

illustrated through a case study that targets the improvement of patient safety in

healthcare organizations. The framework and the extraction/maintenance methods are

also validated against another case study involving aviation security in a regulatory envi-

ronment.

The GoPF framework is expected to have a positive impact on the scientific

community through the formalization, evolution, and reuse of patterns in domain-specific

business domains. From an industrial viewpoint, this framework will also help intermedi-

ary organizations (such as consulting firms) who are required to repeatedly create and

document goal and process models for other organizations in their business domain.

 ii

ACKNOWLEDGEMENT

First and foremost, I wish to thank my supervisor, Dr. Daniel Amyot, for his support,

patience, and insightful comments all these years, making this research experience enjoy-

able, motivating and productive. I will always be inspired by his dedication to scientific

research and to the well-being of his students. I also extend thanks to my committee,

Dr. Liam Peyton, Dr. Michael Weiss, Dr. Morad Benyoucef, and Dr. Luiz Marcio

Cysneiros, for accepting to review and comment on this thesis.

My case study related to aviation security went smoothly thanks to insightful and

valuable inputs from Nick Cartwright, Edna Braun, and Mario Saucier. I am also grateful

to Dr. Alan Forster and his team for their help and suggestions in the patient safety case

study.

To my research colleagues, thank you all for your support and feedback. I am par-

ticularly indebted towards Dr. Gunter Mussbacher for his thoughtful ideas and sugges-

tions during the course of my research on pattern families. I would like to thank the sys-

tem support and administration staff of EECS, and particularly Jacques Sincennes, at the

University of Ottawa.

Then, I would like to express my thanks to my mom, Mahin, and to my siblings,

Fariba, Hamid, and Farzaneh for their encouragement and love which gave me enough

strength to focus on my research during these years. I am also grateful for the encour-

agement and support by my wonderful friends, Julie, Daniel, Danielle, Helen, Maryam,

Ali, Sarah, and Houman. The time I spent with my friends and thought provoking dialogs

and discussions with Daniel, Reza, Farzaneh, Julie, and Houman have always been a

source of joy and comfort and helped me through these years of research.

Finally, this research was made possible through the financial support of the On-

tario Research Network for Electronic Commerce, and of the Natural Sciences and Engi-

neering Research Council of Canada (Discovery and Collaborative Health Research Pro-

jects grants).

 iii

TABLE OF CONTENTS

Abstract . ..i

Acknowledgement ... ii

Table of Contents ... iii

List of Figures .. vii

List of Tables ...ix

List of Acronyms .. x

Chapter 1. Introduction .. 1

1.1 Problem Statement ..1

1.2 Motivation ...3

1.3 Research Hypothesis ...6

1.4 Solution: the GoPF Framework ..6

1.5 Research Methodology ..8

1.6 Thesis Contributions ...9

1.7 Thesis Outline ...11

Chapter 2. Related Work .. 12

2.1 Related Standards and Notations...12

2.1.1 User Requirements Notation .. 12

2.1.2 Business Process Modeling Notation ... 16

2.1.3 Business Process Definition Metamodel .. 17

2.2 Model-Driven Engineering ...18

2.2.1 Model-Driven Engineering... 18

2.2.2 Model-Driven Architecture .. 20

2.3 Patterns ..21

2.3.1 Overview of Patterns .. 21

2.3.2 Pattern Formalization ... 23

2.3.3 Evolution of Patterns .. 24

2.3.4 Pattern Framework ... 26

2.4 From Business Goals to Business Processes ...27

2.4.1 Enterprise Knowledge Patterns .. 27

2.4.2 Goal-Oriented Legal Compliance of Business Processes 27

 iv

2.4.3 Linking Business Goals to Process Models ... 28

2.4.4 Aspect-Oriented Business Process Improvement ... 28

2.4.5 Use of Ontologies to Increase Reusability ... 29

2.4.6 Reusability and Domain Engineering ... 29

2.4.7 Customization Approaches... 30

2.4.8 Product Line Software Engineering ... 31

2.5 Summary ...32

Chapter 3. Framework Metamodel (FMM) .. 33

3.1 Foundational Elements of FMM ...33

3.1.1 Goal Model Building Block ... 33

3.1.2 Business Process Building Block ... 35

3.1.3 Collection of Business Process Building Block ... 36

3.1.4 Business Strategy ... 36

3.1.5 Pattern .. 37

3.1.6 Pattern Family (PF) .. 38

3.1.7 Roles ... 39

3.2 Family Metamodel (FMM) ...41

3.2.1 Formalizing the Family Metamodel (FMM) .. 41

3.2.2 Example of FMM-based Pattern Family .. 45

3.3 Well-formedness of FMM-based Models ...48

3.3.1 Enforcing Well-formedness with OCL Constraints ... 48

3.3.2 Examples of OCL Constraints .. 49

3.4 Summary ...56

Chapter 4. Building Patterns and Pattern Families ... 58

4.1 Building Patterns ...58

4.1.1 Locating Recurring Problems ... 59

4.1.2 Locating Recurring Solutions ... 60

4.1.3 Forming Patterns .. 68

4.2 Family Creation ...68

4.3 Case Study ...69

4.3.1 Locating Recurrences: Example 1 .. 69

4.3.2 Locating Recurrences: Example 2 .. 72

4.4 Summary ...73

Chapter 5. Pattern Family Evolution ... 74

5.1 Motivation and Overview..74

5.2 Extension Mechanism ...76

 v

5.2.1 Extension Algorithm .. 77

5.2.2 Applying the Extension Algorithm .. 78

5.2.3 Example 1: Extension of an Empty PF .. 79

5.2.4 Example 2: Extension of Non-Empty PF ... 82

5.3 Modification ..88

5.3.1 Modification Algorithm ... 88

5.3.2 Applying the Modification Algorithm ... 89

5.3.3 Example: Modification of a Pattern ... 90

5.4 Elimination ..92

5.4.1 Elimination Algorithm ... 93

5.4.2 Applying the Elimination Algorithm ... 93

5.4.3 Example: Elimination of an Obsolete Pattern .. 94

5.5 Combination ..96

5.5.1 Combination Algorithm ... 96

5.5.2 Applying the Combination Algorithm ... 97

5.5.3 Example: Combination of two Pattern Families .. 98

5.6 Summary ...103

Chapter 6. Organization-driven Customization and Extraction Method

(OCEM) ... 104

6.1 Algorithm ..106

6.2 Application ..106

6.3 Example ...108

6.4 Summary ...113

Chapter 7. Evaluation .. 115

7.1 Case Study 1: Patient Safety Domain ...115

7.2 Case Study 2: Aviation Security Domain ...117

7.2.1 Introduction to the Aviation Security Domain ... 118

7.2.2 Outcome-based versus Prescriptive Approaches in Regulatory Compliance 119

7.2.3 Areas of Aviation Security Screening Domain .. 120

7.2.4 Motivation for Using GoPF and Creating a Pattern Family 120

7.2.5 Building an Aviation Screening Pattern Family ... 122

7.2.6 Evaluation of GoPF in the Aviation Security Domain ... 124

7.3 Comparison with Related Work ..125

7.3.1 Requirements Models Used For Model Transformation 127

7.3.2 Formalized Pattern Specification ... 127

7.3.3 Goal Model Inclusion ... 129

 vi

7.3.4 Links between Business Goals and Processes .. 131

7.3.5 Pattern Organization ... 132

7.3.6 Pattern and Family Evolution ... 133

7.3.7 Goal-oriented Solution Customization and Extraction ... 134

7.3.8 Domain Specialization ... 136

7.3.9 Pattern and Family Creation ... 138

7.4 Limitations and Threats to Validity ..138

7.4.1 Case Studies and Pattern Family Construction .. 139

7.4.2 OCEM Limitations ... 139

7.4.3 Precision of Goal Models in Patterns ... 140

7.4.4 Automation and Tool Support .. 140

7.5 Summary ...141

Chapter 8. Conclusions and Future Work .. 142

8.1 Conclusions ...142

8.2 Future Work ..145

8.2.1 Customization and Extraction of Models (and Propagation) 145

8.2.2 Usage of GoPF in Different Domains and by Different People 146

8.2.3 Usage of GoPF in Different Organizations of a Given Domain........................... 146

8.2.4 Evolution of Pattern Families ... 146

8.2.5 Other Modeling Languages .. 147

8.2.6 GoPF for Building Goal Models .. 147

8.2.7 Product Line Software Engineering ... 147

8.2.8 Tool Support ... 147

8.2.9 Run-Time Approach ... 148

References 149

Appendix A. OCL Constraints for FMM ... 160

A.1 Constraints on PFs ... 161

A.2 Constraints on Patterns .. 161

A.3 Constraints on GoalModelBuildingBlocks .. 163

A.4 Constraints on Intentions ... 164

A.5 Constraints on BusinessProcessBuildingBlocks .. 166

A.6 Constraints on ElementLinks ... 166

 vii

LIST OF FIGURES

Figure 1 Gaps between different levels of the software development process 2
Figure 2 Architecture of GoPF framework .. 7

Figure 3 GRL notational elements ... 14
Figure 4 URN overview with GRL (left) and UCM (right) ... 14
Figure 5 UCM notational elements .. 15
Figure 6 A BPMN model with annotation that shows mapping to BPEL4WS ‎[49] 17

Figure 7 Basic notions in object-orientation (a) and MDE (b) ‎[17] 20
Figure 8 MDA software development life cycle ‎[59] .. 21

Figure 9 Goal model building block for Increase Patient Safety 34

Figure 10 Two alternative business process building blocks for Increasing Patient
Safety ... 35

Figure 11 A collection of alternative business process building blocks for Make
Decision ... 36

Figure 12 Architecture of a typical pattern in GoPF .. 38
Figure 13 Interaction among different GoPF roles .. 41

Figure 14 Framework metamodel .. 43

Figure 15 High-level representation of the Increase Patient Safety pattern 44

Figure 16 Increase Patient Safety pattern in the form of FMM-based object model 45
Figure 17 An excerpt of a pattern family for the patient safety domain 46

Figure 18 FMM-based object model of the sample patient safety pattern family 47
Figure 19 Validation of OCL constrains for preventing circular defining pattern and

for dangling intentions .. 52
Figure 20 A pattern family with circular refinement patterns and dangling intentions . 53
Figure 21 Investigation of the source of OCL violations in the examples 54

Figure 22 Overview of a process for creating, evolving and applying PFs 58
Figure 23 Locate a recurring problem in a particular domain 59

Figure 24 Extracting goal model building blocks .. 61
Figure 25 Example of an extracted goal model building block 62

Figure 26 Process of building patterns and pattern families .. 63
Figure 27 Locate a recurring solution in a particular domain .. 64
Figure 28 Build business strategy .. 65
Figure 29 Collecting business process building blocks that address the problems in

goal model building blocks ... 66

Figure 30 Goal model building block and business strategies for Increase Patient
Safety Pattern ... 67

Figure 31 Forming a pattern using the components built when locating recurring

problems and solutions .. 68

Figure 32 Add a newly built pattern to a pattern family .. 69

Figure 33 Goal model building block for Increase Patient Safety 71
Figure 34 Business process building blocks for Increase Patient Safety 71

Figure 35 Goal model building block for Collect Data .. 72
Figure 36 Business process building blocks for Collect Data 73

 viii

Figure 37 Evolution UCM ... 76
Figure 38 Main steps of the Extension Mechanism ... 77

Figure 39 Top: goal model building block of xp - Bottom: business process building

blocks of xp ... 80

Figure 40 Object model of Increase Patient Safety pattern 81
Figure 41 Object model of an empty PF extended to include Increase Patient

Safety pattern ... 82

Figure 42 Left: goal model building block of xp - Right: business process building

blocks of xp ... 83
Figure 43 Object model of a non-empty PF used as initial PF 84

Figure 44 bpt1_3, which is the business process building block of bs1_3 85
Figure 45 Object model of xp pattern .. 85

Figure 46 Object model of the extended PF pf that includes the xp pattern.................. 87
Figure 47 Main steps of the modification mechanism ... 88

Figure 48 Object model of the p1 pattern after modification of its goal model

building block .. 91

Figure 49 Object model of the p1 pattern after modification .. 92
Figure 50 Main steps of the Eliminating Mechanism .. 93

Figure 51 Object model of initial PF with an obsolete pattern (op) 95

Figure 52 Using a stereotyped UML package to represent the Increase Patient
Safety pattern ... 99

Figure 53 pf1 is a PF that contains patterns for ad-hoc approaches to improve patient

safety ... 100

Figure 54 pf2 is a PF that contains patterns for both ad-hoc and systematic

approaches for improving patient safety ... 100

Figure 55 pf after first iteration of step ‎S5 ... 102

Figure 56 Combined pattern family ... 103
Figure 57 Using a pattern family to build requirements models for a specific

stakeholder in a domain .. 105
Figure 58 Original organizational goal model (‎I1, ‎I3) ... 109
Figure 59 Using OCEM: linking goal model building blocks to the organizational

goal model, with evaluations ... 113
Figure 60 Using‎OCEM:‎business‎process‎building‎blocks,‎with‎strategy‎“B”‎being‎

selected .. 113
Figure 61 Artificial example : (a) Pattern family, (b) Pattern and its internal

structure, (c) Goal model building block, (d) Business process building

blocks .. 123
Figure 62 Results of checking the OCL constraints on the Increase Patient Safety PF

example ... 160

 ix

LIST OF TABLES

Table 1 OCL constraints implemented to ensure the integrity of FMM-based

models ... 49

Table 2 OCL operations for retrieving a set of refining patterns 51
Table 3 OCL operations for retrieving a set of intentions .. 55

Table 4 Elements of the modifications ordered set in the extension algorithm 78

Table 5 Elements of the modifications ordered set in the modification algorithm ... 89

Table 6 Elements of the modifications set in the elimination algorithm 93
Table 7 Dimensions of comparison between GoPF and related work 125
Table 8 Summary of comparison between GoPF and related work 126

Table 9 Summary of comparison based on requirements models used for model

transformation ... 127
Table 10 Summary of assessment based on the formalized pattern specification

dimension .. 129

Table 11 Summary of assessment based on the goal model inclusion dimension 130
Table 12 Summary of assessment based on the links between business goals and

processes dimension .. 132

Table 13 Summary of assessment based on the pattern organization dimension 133

Table 14 Summary of assessment based on the pattern and family evolution

dimension .. 134
Table 15 Summary of assessment based on the goal-oriented customzation and

extraction dimension ... 136
Table 16 Summary of assessment based on the domain specialization dimension ... 137

Table 17 Summary of assessment based on the pattern and pattern family creation

dimension .. 138
Table 18 Invariant OCL constraints in the context of PatternFamily 161

Table 19 Invariant OCL constraints in the context of Pattern 162

Table 20 OCL operations of Pattern .. 162
Table 21 Post-condition and preconditions in the context of Pattern 163

Table 22 Invariant OCL constraints in the context of GoalModelBuildingBlock 163
Table 23 OCL operations of GoalModelBuildingBlock .. 164
Table 24 Post-condition and preconditions in the context of

GoalModelBuildingBlock ... 164
Table 25 Invariant OCL constraints in the context of Intention 165

Table 26 OCL operations of Intention ... 166
Table 27 Invariant OCL constraint in the context of BusinessProcessBuildingBlock166
Table 28 Invariant OCL constraints in the context of ElementLinks 166

 x

LIST OF ACRONYMS

Acronym Definition

BP Business Process

BPBB Business Process Building Block

BPDM Business Process Definition Metamodel

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language for Web Services

BPM Business Process Management

BPMN Business Process Modeling Notation

EHR Electronic Health Record

FDM Family Development Method

FMM Family Metamodel

GBPM Goal-driven Business Process Modeling

GDM Goal-driven Method

GoPF Goal-oriented Pattern Family

GMBB Goal Model Building Block

GRL Goal-oriented Requirement Language

IT Information Technology

ITU International Telecommunication Union

MDA Model-Driven Architecture

MDE Model-Driven Engineering

NFR Non-Functional Requirement

OCEM Organization-driven Customization and Extraction Method

OCL Object Constraint Language

ODP Organizational Development Process

OMG Object Management Group

PDCA Plan Do Check Act

PF Pattern Family

RE Requirements Engineering

SOA Service-Oriented Architecture

TQM Total Quality Management

UCM Use Case Map

UML Unified Modeling Language

 xi

URN User Requirements Notation

‎Chapter 1. Introduction - Problem Statement 1

Chapter 1. INTRODUCTION

This thesis provides a framework for reusing knowledge captured in the form of patterns

at the level of goal models and business process models. This chapter summarizes the

problem and motivation for this research, concisely defines the research hypothesis, high-

lights the research methodology, provides a summary of the solution, lists the main con-

tributions of this research, and outlines the content of this thesis.

1.1 Problem Statement

In‎today’s‎competitive‎and‎global‎economy,‎companies‎and‎other‎types‎of‎organizations‎

are faced with many challenges such as (i) the need for fast information transfer (ii) the

need for quick decision making (iii) the need to adapt to changes (iv) increased competi-

tion, and (v) the need for higher quality services and products ‎[1]. In the past two dec-

ades, there have been efforts to harness software applications in order to address such

challenges ‎[2]‎[3]‎[4]. Organizations attempt to take advantage of software solutions to

solve their problems and achieve their organizational objectives.

In a software development process, goals drive the definition of requirements.

The value of software application solutions to an organization is based on how well busi-

ness goals are satisfied through their use. When developing valuable software applica-

tions, organizations often have two major issues. First, they often have difficulties in

properly identifying and documenting their goals, their business processes, and the links

between these two views ‎[5]‎[6]‎[7]. Second, there are additional challenges in transform-

ing business processes to executable software applications that realize them. ‎Figure 1

illustrates the gaps to be filled when going from business goals to business processes and

then to software applications. This figure also shows the conventional roles typically as-

sociated with the artifacts discussed so far: business analyst for business goals, business

process analyst for business processes, and developer for software applications.

Sajay
Highlight
necesidades

Sajay
Highlight

Sajay
Highlight
importancia de la captura de requisitos

Sajay
Highlight

Sajay
Highlight

Sajay
Highlight

‎Chapter 1. Introduction - Problem Statement 2

Figure 1 Gaps between different levels of the software development process

The gap between business processes and software applications has received much atten-

tion over the past decade, and dedicated technologies such as the Web Service Business

Process Execution Language (WSBPEL) ‎[8] have emerged. In addition, the Object Man-

agement‎ Group’s‎Model-Driven Architecture (MDA) ‎[9], a well-known incarnation of

the Model-Driven Engineering (MDE) transformation approach ‎[10], can help formalize

and facilitate the generation of software from business process models. However, the gap

between business goals and business processes has received far less attention. Yet, not

addressing this gap leads to problems in effectively and appropriately identifying stake-

holders’‎ goals‎ and‎ devising‎ business‎ processes‎ that‎ satisfy‎ them.‎ Symptoms‎ of‎ these‎

problems typically identified by senior executives ‎[11], such as:

 Software investments are unrelated to business strategies;

 Payoff from software related investments is inadequate;

 There is‎too‎much‎“technology‎for‎technology’s‎sake”;

 Relations between users and software specialists are poor; and

 System‎designers‎do‎not‎consider‎users’‎preferences‎and‎work‎habits.

Sajay
Highlight
importantísimo ejemplo de conxion de problemas con antecedentes

Sajay
Highlight

Sajay
Highlight

‎Chapter 1. Introduction - Motivation 3

Consequently, many software development projects yield disappointing results or are

simply canceled because software applications and business processes are not aligned

properly with business goals ‎[12].

Currently, there are few approaches that capture and analyze goal models within

the software development process ‎[13]. When goals are indeed captured, even small

problems can lead to complex and large goal models ‎[14]. Furthermore, modeling busi-

ness goals and processes separately is not sufficient to bridge the gap between these two

views; alignment of goals and processes as well as traceability must also be taken into

account. Defining such models remains challenging, especially when done from scratch.

Reusing domain knowledge captured in the form of patterns can often help address this

issue. For instance, design patterns have been quite successful in the construction of

software applications ‎[15]. However, patterns that span business goals and processes are

far less common, and reusing existing knowledge with goals and business process re-

mains an open problem ‎[16].

1.2 Motivation

A paradigm shift towards model-driven development is happening in the field of software

engineering in order to deal with the challenges mentioned in the previous section. This is

changing the way software applications are developed ‎[17]. As Greenfield and Short ob-

serve in ‎[18], new artifacts beyond those offered by object-orientation are required:

“The software industry remains reliant on the craftsmanship of skilled individuals

engaged in labour intensive manual tasks. However, growing pressure to reduce cost and

time to market and to improve software quality may catalyse a transition to more auto-

mated methods. We look at how the software industry may be industrialized, and we de-

scribe technologies that might be used to support this vision. We suggest that the current

software development paradigm, based on object orientation, may have reached the point

of exhaustion…”

Suggested approaches to address the mentioned challenges are mostly process-

oriented but do not fully tackle the importance of goal models ‎[19]. This is particularly

significant because successful software applications must address the problems of stake-

holders ‎[20].‎Stakeholders’‎concerns‎must‎be‎captured,‎analyzed,‎and‎reasoned‎about,‎and‎

Martica
Highlight

‎Chapter 1. Introduction - Motivation 4

creating goal models is an appropriate means to this end. Goal models can drive the crea-

tion of business processes that address the concerns of stakeholders.

Still, creating high-quality goal models and business process models that repre-

sent requirements is challenging and requires much effort. Doing this is particularly diffi-

cult in ground-up approaches where models are created from scratch. Ground-up ap-

proaches for software development seldom take advantage of reusing the captured do-

main knowledge, especially at the goal and process levels. Creating solutions from

scratch for recurring problems makes them more vulnerable to: unsuccessful solutions

that may run against working routine ‎[21], difficulties in maintenance ‎[6], and failure of

the new solution because of conflicts that are hard to locate in early stages of requirement

engineering ‎[22]‎[23]. Furthermore, in such approaches, quality and resource consumption

(related to time and cost) have a reverse correlation. This is also known as the time, cost,

and quality triangle ‎[24]. In other words, developing high-quality applications is a re-

source-consuming process and lowering the costs often decreases the quality of the final

product. For instance, in the field of healthcare software applications, there are many

failure stories that result from the above difficulties ‎[25]‎[26]‎[27]‎[28].

These important concerns can be addressed by reusing domain knowledge in the

form of goal models and business process models. It is becoming increasingly difficult to

ignore the benefits of knowledge reusability in this context, as often emphasized in the

literature ‎[6]‎[7]‎[29]‎[30]‎[31]. However, two difficulties challenge the reuse of knowledge

for organization in a specific domain. First, it is usually not possible for an organization

to reuse entirely the goal models and business process models that represent the require-

ments and know-how of another organization. The reason is that despite the similarity of

objectives in a domain, there are differences in the organizational objectives and their

priorities, which lead to different hierarchies of requirements. Therefore, it is more plau-

sible for organizations to reuse pieces of the business goal and process models. However,

it is difficult to reuse only pieces of these models because they are usually captured as

complex hierarchical models. Second, reusing business goal and process models is suc-

cessful when an organization can evaluate the potential effects of alternative solutions

considering its particular context. However, when capturing the knowledge about the

requirements is done holistically, it is difficult to capture the alternative effects of solu-

Sajay
Highlight

‎Chapter 1. Introduction - Motivation 5

tion along with models. This makes it difficult for organizations to find and reuse those

pieces of model that are best suitable to the context of a particular organization and have

the most positive effect on how to solve the problems.

Considering the continuity of the spectrum of artifacts from requirements to soft-

ware applications, it is important to recognize that business process models are conceptu-

ally linked to goal models. These links indicate which business processes realize particu-

lar business goals. Capturing the links between business process models and goal models

facilitates the finding of known solutions in the context of conditions and requirements of

an organization. Hence, such links help bridge the gap between requirements of a particu-

lar organization and corresponding (existing) solutions.

Patterns are reusability mechanisms for capturing and reusing domain knowledge.

They can also capture goal models and business process models along with links that

define the realization relationships between them. The knowledge about domains cap-

tured in such a way can be systematically reused by a framework for creating solutions

for a particular organization. A means for capturing the knowledge enables solving com-

plex problems by reusing patterns that capture building blocks of problems and solutions.

These can be used for identifying the requirement and providing mechanisms that address

these requirements. However, the domain knowledge about business goals and processes

is volatile and changes over time at a more rapid pace than for design patterns. Therefore,

pattern families in a business modeling context can be useful only if they can adapt to the

changes that happen in the domain and reflect the respective solutions for emerging prob-

lems. Introducing evolution mechanisms that systematically help evolving pattern fami-

lies is hence a necessity. Inspired from the concepts of evolution
1
 and adaptive software

maintenance, these mechanisms should enable a gradual and iterative development where

a pattern family changes into a different and better form that more accurately represent

the knowledge about the current problems and solutions within a domain.

1
 Evolution in this thesis refers mainly to adaptive maintenance activities in conventional software evolu-

tion, which are (manual) modifications of a software product (or pattern here) performed after delivery to

keep it usable in a changed or changing environment. Evolution here is not related to genetic algorithms or

other automatic evolutionary algorithms from the artificial intelligence community.

Martica
Highlight

Martica
Highlight

‎Chapter 1. Introduction - Research Hypothesis 6

1.3 Research Hypothesis

Our main research hypothesis is defined as follows:

We can reuse and maintain, in a rigorous way, the knowledge about

business goals, business processes and the links between them, cap-

tured as patterns to create suitable business processes in the context of

a different organization.

The main objective of this research is to develop a goal-oriented pattern-based framework

that facilitates knowledge reusability based on business goals and processes for a given

domain. Furthermore, this framework serves as key enabler for creating organization-

specific goal models and business processes that realize them. Finally, by providing

mechanisms for pattern evolution, the knowledge captured in the framework will adapt to

changes in the domain.

1.4 Solution: the GoPF Framework

The solution developed in this thesis, named Goal-oriented Pattern Family (GoPF)

framework, is a framework that aims to facilitate the discovery and documentation of

recurring solutions to recurring problems in the form of patterns. It also provides mecha-

nisms to enable reusing and maintaining the knowledge at the level goal model and busi-

ness process models. The term family is used here to reflect the parent-child refinement

relationships that exist among the patterns that the family contains. GoPF is composed of

a Family Metamodel (FMM) and a Goal-driven Method (GDM), as shown in ‎Figure 2.

FMM is a metamodel that lays down a structure for Pattern Families (PF). A PF captures

the knowledge about a particular domain with patterns formalized with goals, business

processes, and links between them. It specifies typical refinements of goals in terms of

processes for a particular domain (e.g., healthcare). A PF is the key enabler for reusing

knowledge. The method in the framework, GDM, is composed of two major components:

(i) a Family Development Method (FDM), and (ii) the Organization-driven Customiza-

tion and Extraction Method (OCEM).

Martica
Highlight

Martica
Highlight

‎Chapter 1. Introduction - Solution: the GoPF Framework 7

Figure 2 Architecture of GoPF framework

 FDM provides algorithms for creating a PF and evolving it over time:

 Family Creation is a method that provides the steps for capturing existing

solutions to recurring problems in the form of patterns. The output of this

method is a PF; and

 Family Evolution is composed of algorithms for evolving a PF to adapt to

the changes in the domain in order to improve its accuracy and overall qual-

ity. Family Evolution algorithms accommodate eliminating obsolete pat-

terns, extending a PF by adding new patterns, modifying current patterns,

and combining a PF with another PF.

Another component of GDM is the Organization-driven Customization and Extraction

Method (OCEM), which includes algorithms that guide the selection of instances of solu-

tions for particular organizations within the domain. OCEM uses a PF as an input and

assesses the impact of alternative solutions for achieving the high-level goals of a given

organization in a step-by-step, top-down approach. Another input of OCEM is a partial

business goal model where only some of the high-level goals of an organization need to

be identified. The main output of the OCEM is a more complete goal model combined

with business processes that are aligned with the identified goals, as well as additional

traceability links between the two views.

Goal-oriented Pattern Family framework (GoPF)

Family Metamodel (FMM)

Organization-

driven

Customization

and Extraction

Method (OCEM)

Goal-driven Method (GDM)

Family Development Method (FDM)

Family Creation Family Evolution

User Requirements Notation

Goal-driven

Pattern

Family

(GPF)

profile of uses notation of

instance of

adapts

manages

‎Chapter 1. Introduction - Research Methodology 8

The main beneficiaries of this framework are requirements engineers and business

analysts whose objective is to model the business goals and business processes for a par-

ticular organization in a specific domain. The GoPF framework enables them to reuse

available knowledge of the domain at the level of goals and related business processes.

However, many other stakeholders of such organizations also indirectly benefit from this

framework by being exposed to potential problems and solutions in similar organizations.

The GoPF framework complies with the spirit of MDE while including goal models in

the chain of transformations of artifacts. The framework builds on the User Requirements

Notation (URN) ‎[32]‎[33], an international standard that already combines goal and sce-

nario modeling into a single language.

1.5 Research Methodology

In order to contribute to the research community, as characterized by March and

Smith ‎[34], this research attempts to provide a construct, i.e., the Goal-oriented Pattern

Family framework, to address a problem, namely how to reuse knowledge about re-

quirements and solutions in specific domains. The design-oriented methodology, an ap-

proach toward research in information systems suggested by Hevner et al. ‎[35], is the

underlying research methodology for this thesis. Following this approach, first the gap

between business goals and business processes as well as challenges for reusing the

knowledge in domains have been studied and characterized through a literature review

and further elaborated and illustrated through representative scenarios. Furthermore, a

framework is proposed to address the aforementioned challenges. This framework is

composed of a metamodel that formalizes patterns and of creation, usage, and evolution

methods, which together serve as the constructs contributing to research as highlighted by

Hevner et al. and March and Smith. Finally, this framework is evaluated against repre-

sentative case studies. A Patient Safety case study is used as an ongoing example

throughout the thesis, and then a second case study related to Aviation Security is dis-

cussed. The evaluation is intended to highlight the usefulness and applicability of the

framework in regard to addressing the motivating problems, but it is not intended to be an

empirical evaluation ‎[34]‎[35].

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

‎Chapter 1. Introduction - Thesis Contributions 9

1.6 Thesis Contributions

The contributions of this research are provided here in order of importance.

 A framework, called GoPF, for capturing the goal and process knowledge in

the enterprise domain in the form of patterns:

o This framework includes a metamodel (FMM) that provides the structure

for Pattern Families (PF);

o This framework is formalized as a URN profile that enables using the

URN standard and tools for capturing the patterns.

 A Goal-driven Method (GDM) that guides and partially automates the crea-

tion and evolution of a PF for a particular domain:

o This GDM includes a Family Creation algorithm;

o This GDM also includes several Family Evolution algorithms; and

o A library of Java classes that implement these algorithms in order to as-

sess the feasibility of evolving pattern families through evolution mecha-

nisms.

 An Organization-driven Customization and Extension Method (OCEM):

o OCEM includes algorithms for extracting and adapting models for a spe-

cific organization from patterns in a PF.

In order to evaluate the hypothesis of this research, two case studies have been carried

out. Considering that the generated PFs in these case studies capture reusable real-world

knowledge in their respective domains, they can be considered as minor contributions of

this thesis.

 Validation case studies:

o A pattern family for patient safety in healthcare is created and evolved.

This family is then used for extracting and adapting models for a depart-

ment in a healthcare organization;

o A pattern family for aviation security screening is created, with an em-

phasis on the use of indicators to enable measurement of compliance.

Martica
Highlight

Martica
Highlight

Martica
Highlight

‎Chapter 1. Introduction - Thesis Contributions 10

Several publications based on the above ideas are already available. The first one relates

to the healthcare case study whereas the second one uses patterns to capture knowledge in

a specific healthcare domain. The third and fourth papers‎represent‎GoPF’s‎approach‎for

maintaining the captured knowledge in pattern families. The next two papers highlight

the requirements of outcome-based regulatory compliance, which is then used as the ba-

sis for creating patterns in the aviation security domain. Using this domain as a case

study, the last paper illustrates the use of indicators in GoPF-based patterns, highlights

the process of creating patterns, and reports on the use of the framework for aviation se-

curity.

1. S.A. Behnam,‎D.‎Amyot,‎A.J.‎Forster,‎L.‎Peyton,‎ and‎A.‎Shamsaei,‎ “Goal-

Driven Development of a Patient Surveillance Application for Improving Pa-

tient‎ Safety”‎ E-Technologies: Innovation in an Open World, LNPIB 26,

Springer, 2009, pp. 65-76.

2. S.A. Behnam,‎ D.‎ Amyot,‎ and‎ G.‎ Mussbacher,‎ “Towards‎ a‎ Pattern-Based

Framework for Goal-Driven Business Process Modeling”, 8th Int. Conf. on

Software Engineering Research, Management and Applications (SERA2010),

Montréal, Canada, 2010. IEEE CS, pp. 137-145.

3. S.A. Behnam,‎ D.‎ Amyot,‎ “Evolution‎ of‎ Goal-driven Pattern Families for

Business Process Modeling”, 5th International MCETECH Conference on

eTechnologies (MCETECH 2011), LNBIP 78, Springer, 2011, pp. 17-31.

4. S.A. Behnam,‎ D.‎ Amyot,‎ “Evolution‎ of‎ Goal-driven Pattern Families for

Business Process Modeling”, Int. J. Electronic Business, Inderscience Pub-

lishers, (to appear, accepted Feb. 2012).

5. R. Tawhid, M. Alhaj, G. Mussbacher, E. Braun, N. Cartwright, A. Shamsaei,

D. Amyot, S.A. Behnam, and G. Richards, “Towards Outcome-Based Regu-

latory Compliance in Aviation Security”,‎20th IEEE Int. Requirements Engi-

neering Conference (RE’12), Chicago, USA, September 2012. IEEE CS, pp.

267-272.

‎Chapter 1. Introduction - Thesis Outline 11

6. E. Braun, N. Cartwright, A. Shamsaei, S.A. Behnam, G. Richards, G. Muss-

bacher, M. Alhaj, and R.‎Tawhid,‎“Drafting and Modeling of Regulations: Is

It Being‎Done‎Backwards?”,‎4th Int. Workshop on Requirements Engineering

and Law (RELAW), Chicago, USA, September 2012. IEEE CS, pp. 1-6.

7. S.A. Behnam, D. Amyot, G. Mussbacher, E. Braun, N. Cartwright, and M.

Saucier,‎“Using‎the‎Goal-Oriented Pattern Family Framework for Modelling

Outcome-Based‎ Regulations”,‎ Second International Workshop on Require-

ments Patterns (RePa), Chicago, USA, September 2012. IEEE CS, pp. 35-40.

1.7 Thesis Outline

The thesis is organized as follows. ‎Chapter 2 presents background information on URN,

MDE, patterns, approaches that attempt to reuse domain knowledge, and other approach-

es that attempt to bridge the gap between business goals and processes. Then, ‎Chapter 3

gives an overview of the GoPF framework metamodel and of how it is formalized with

the help of URN, with restrictions in OCL. ‎Chapter 4 presents the process of capturing

recurrences, creating individual patterns, and creating pattern families. ‎Chapter 5 de-

scribes four evolution mechanisms, provides related algorithms, and describes their ap-

plication through case studies. ‎Chapter 6 presents the mechanism for using the pattern

families through customizing and extracting methods for particular organizations. This

chapter also provides an algorithm and illustrates its application in the domain of patient

safety. ‎Chapter 7 evaluates the usefulness, applicability, and limitations of the suggested

framework through case studies and comparisons with related work. ‎Chapter 8 follows

with conclusions and future work.

‎Chapter 2. Related Work - Related Standards and Notations 12

Chapter 2. RELATED WORK

This chapter provides an overview of background concepts and notations as well as of the

research that proposes existing solutions for bridging the gap between business goals and

business processes. First, related notations and standards are recalled in section ‎2.1. The

User Requirement Notation (URN) and its two complementary sub-notations, the Goal-

oriented Requirement Language (GRL) and Use Case Maps (UCM), which are used in

this research, are briefly reviewed. Furthermore, the Business Process Modeling Notation

(BPMN), an alternative to UCM, and the Business Process Metamodel Definition

(BPDM), which is a related standard, are also discussed. Section ‎2.2 then reviews some

core concepts of model-driven engineering. Section ‎2.3 gives a brief description of pat-

terns and their formalization, which are some of the fundamental elements of this re-

search. Finally, section ‎2.4 reviews existing concepts and approaches related to the bridg-

ing of the goal-process gap.

2.1 Related Standards and Notations

This section first presents the User Requirement Notation (URN) standard, which pro-

vides the underlying foundations and notations for goal and business process modeling

used in this thesis. Next, OMG’s‎Business Process Modeling Notation and Business Pro-

cess Definition Metamodel are briefly introduced as standardized alternative foundations

for business process and goal modeling, respectively.

2.1.1 User Requirements Notation

The development of notations for capturing and analyzing requirements is a major

achievement of the last ten years ‎[13]. The User Requirements Notation (URN), a stand-

ard of the International Telecommunication Union (ITU-T Z.151) ‎[32]‎[36]‎[37]‎[38], is

intended for the elicitation, analysis, specification, and validation of requirements. URN

contains two complementary graphical modeling languages for goals (GRL) and scenari-

os (UCM). URN allows software and requirements engineers to discover and specify

requirements for a proposed system or an evolving system, and analyze such require-

ments for correctness and completeness. URN can also be used as a medium for commu-

‎Chapter 2. Related Work - Related Standards and Notations 13

nication with stakeholders about their requirements. The seamless presentation of goals

and behavior is done with GRL and UCM diagrams respectively. Although the main ap-

plication domains for URN include reactive systems and telecommunications systems,

this language has also been applied successfully to the modeling and analysis of business

goals and processes in many application domains ‎[39]‎[40].

Goal-oriented Requirement Language (GRL)

The Goal-oriented Requirement Language is a graphical language that enables the model-

ing of stakeholders, business goals (including functional and non-functional require-

ments),‎ alternatives,‎ and‎ rationales.‎ Modeling‎ stakeholders’‎ requirements‎ with‎ GRL‎

makes it possible to define and understand the problem that ought to be solved ‎[41].

Business analysts, requirement engineers, and software architects can achieve these ob-

jectives by using various types of intentional elements and relationships, as well as their

stakeholders called actors (). Intentional elements include goals () softgoals ()

for qualities and non-functional requirements, resources () for conditions, tasks ()

for activities and alternative solutions, and indicators () for measures. Intentional

elements can also be linked by AND/OR/XOR decompositions, by dependencies, and by

contributions. Various qualitative positive and negative contribution types exist (see leg-

end in ‎Figure 3) as well as quantitative contribution levels on a [-100, 100] scale.

On the analysis side, GRL evaluation strategies enable modelers to assign initial

satisfaction values to some of the intentional elements (usually alternatives at the bottom

of a goal graph) and propagate this information to the other elements through the decom-

position, dependency, and contribution links ‎[42]. In addition, importance values are usu-

ally defined for high-level goals of stakeholders in a quantitative range of [0, 100] or with

qualitative labels such as High, Medium, Low, or None. This ultimately helps assess the

impact of alternative solutions on high-level goals of the involved stakeholders. Such

models are also useful for evaluating trade-offs and documenting decision ration-

ales. ‎Figure 4 (left) is a GRL diagram that represents part of a goal model for increasing

patient safety (and various contributing factors from other softgoals) in the case study.

Note that despite of these features, the GRL notation and other goal modeling languages

such as i* lack good modularizion constructs ‎[43].

Sajay
Highlight

Sajay
Highlight

‎Chapter 2. Related Work - Related Standards and Notations 14

Figure 3 GRL notational elements

Figure 4 URN overview with GRL (left) and UCM (right)

Use Case Map

The Use Case Map (UCM) notation is a visual process modeling language for specifying

causal scenarios and optionally binding their responsibilities () to an underlying struc-

ture of components (). Responsibilities represent activities performed in a process

whereas components represent actors, systems, and system parts. UCMs support most of

the concepts used in common workflow modeling notations ‎[44] including start points

(), end points (|) as well as alternative and concurrent flows. Stubs () are containers

for sub-maps and may be used to organize a complex model in a hierarchical struc-

ture. ‎Figure 5 shows common UCM elements. As an example, ‎Figure 4 (right) illustrates

25

Making Safety

Decision

Adopting

Decision

Deploy Advanced
Infrastructure

Generate

Informative Outcome

Information

Adopt

Decision

Collecting

Data

Generating Informative

Outcome Information

URN link

Increase Quality of
Care in Long Term

Increase Patient

Safety

50 50

75

System

X Xstart end
[done]

[!done]

System

‎Chapter 2. Related Work - Related Standards and Notations 15

a UCM diagram that depicts the process that leads to Increase Patient Safety by provid-

ing the sequencing between relevant responsibilities and stubs (i.e., where the details are

specified in a different UCM diagram, not shown here). In this figure, a URN link is used

to trace the Adopt Decision goal in the GRL view to the corresponding stub in the UCM

view.

Figure 5 UCM notational elements

URN Links and Metadata

URN allows typed links called URN links to be established between modeling elements

(e.g., between goal and scenario model elements). URN also supports the annotation of

any model element with metadata, which are name-value pairs.

URN Profile

URN profiles are used for extending and tailoring the URN notation for a given domain.

The URN standard includes several mechanisms that allow defining domain specific pro-

files. URN links and metadata, together with the possibility of adding constraints in

UML’s‎Object‎Constraint‎Language‎(OCL) ‎[45], enable URN to be profiled to a particu-

lar application domain ‎[46].

[CS] [CE]

Path with Start Point with

Precondition CS and End

Point with Postcondition CE

… …

…

…

…

…
[CO1]

[CO2]

[CO3] …

…

……

…
…

…
… …

…

…

…

… …

… …IN1 OUT1

… …IN1 OUT1

… …

Responsibility

Or-Fork with

Conditions
Or-Join

And-Fork And-Join

Empty Point

Waiting Place with Condition

and Asynchronous Trigger

Timer with Timeout Path,

Conditions, and Synchronous

Release

Direction Arrow

Static Stub with In-Path ID

and Out-Path ID

… …

……
[CW]

[CTO]

… …

…

[CT]

…

Dynamic Stub with In-Path ID

and Out-Path ID

Team Process Object

Agent Actor

Components:

Protected

[CS] [CE]

Path with Start Point with

Precondition CS and End

Point with Postcondition CE[CS] [CE][CS] [CE]

Path with Start Point with

Precondition CS and End

Point with Postcondition CE

… …… …

…

…

…

…
[CO1]

[CO2]

[CO3]

…

…

…

…
[CO1]

[CO2]

[CO3] …

…

……

…

…

……

…
…

…
……
…

…
… …

…

…

… …
…

…

…

… …… …

… …IN1 OUT1… …… …… …IN1 OUT1

… …IN1 OUT1… …… …… …IN1 OUT1

… …… …

Responsibility

Or-Fork with

Conditions
Or-Join

And-Fork And-Join

Empty Point

Waiting Place with Condition

and Asynchronous Trigger

Timer with Timeout Path,

Conditions, and Synchronous

Release

Direction Arrow

Static Stub with In-Path ID

and Out-Path ID

… …

……
[CW]

… …… …

…… ……
[CW]

[CTO]

… …

…

[CT]

…

[CTO]

… …

…

[CT]

[CTO]

… …

…

[CT]

…

Dynamic Stub with In-Path ID

and Out-Path ID

Team Process Object

Agent Actor

Components:

Protected

‎Chapter 2. Related Work - Related Standards and Notations 16

Tool Support

jUCMNav is an open source URN tool for the creation, analysis, and management of

URN models ‎[47]. It allows for the qualitative, quantitative, or hybrid evaluation of GRL

models according to strategies, together with the abstract execution of UCM scenarios.

jUCMNav is an Eclipse plug-in that also supports extensions to URN for modeling key

performance indicators in the context of business process analysis, monitoring and per-

formance management ‎[48]. It also supports the verification of user-defined OCL con-

straints to enforce compliance to URN profiles ‎[46].

2.1.2 Business Process Modeling Notation

Historically, there has been a gap between business process models that are mostly busi-

ness-oriented and software applications that implement them ‎[6]‎[7]. The Business Pro-

cess Modeling Notation (BPMN) helps alleviate this gap by providing a standard notation

that can be mapped to execution models ‎[49]‎[50]. It was originally created by the Busi-

ness Process Management Institute to answer the need for graphical business processing

languages. This organization later became part of the Object Management Group (OMG),

who released the first version of the BPMN specification in 2004. BPMN provides a

comprehensive, integrated notation for business process modeling ‎[51]. It is a graph-

oriented and informal notation in which nodes can be connected almost arbitrarily ‎[52].

BPMN is targeted towards analysts and its models will look familiar to most business

analysts. This notation has attained a significant popularity after its introduction to the

business process modeling community and it is now supported by dozens of modeling

tools.

‎Figure 6 represents a typical BPMN model. Such models can also be mapped to

BPEL4WS, which is the de facto standard for business process execution modeling. In

other words, BPMN can be used to bridge the gap between business process models and

executable models (‎Figure 1). However, unlike the UCM notation, BPMN lacks a com-

plementary notation for modeling business goals and relationships to these goals.

Sajay
Highlight

Sajay
Highlight

Sajay
Highlight

‎Chapter 2. Related Work - Related Standards and Notations 17

Figure 6 A BPMN model with annotation that shows mapping to BPEL4WS ‎[49]

2.1.3 Business Process Definition Metamodel

As mentioned in ‎[53], business processes have been at the core of business and technolo-

gy improvement under the guise of many terms, notations, and methodologies. Business

Process Engineering or Re-Engineering, Business Process Management (BPM), Business

Process Execution, Process Improvement, Business Process Modeling and Workflow,

and Service Oriented Architectures (SOA) are among dozens of such approaches and

notations. Such methodologies and approaches have provided substantial benefits to or-

ganizations. However, many of these approaches are islands of particular technologies,

methodologies or notations and do not work well with the others. Therefore, it is very

difficult to develop solutions that integrate different types of models in order to address

complex problems.

In order to address these difficulties, the Business Process Definition Metamodel

(BPDM) was proposed as an infrastructure for specifying the business processes of an

organization, independently of notations and methodologies ‎[53]‎[54]. BPDM is a well-

defined, consistent, technology-independent, and precise metamodel, which was finalized

by OMG in 2008. It provides a language syntax and semantics for business process mod-

eling, but it omits the details of concrete syntax and semantics of such languages. In other

words, BPDM documents the necessary concepts for business process modeling, and

notations can be built on this standard. Therefore, BPDM-based notations and languages

can be used together, while avoiding tight coupling with one particular business process

‎Chapter 2. Related Work - Model-Driven Engineering 18

modeling infrastructure. BPDM also supports the separation of concerns in which the

intended outcome of processes will be separate from how the process achieves those out-

comes. Support for agility, easy integration and linkage of models, and loose coupling are

some of the benefits promised by BPDM when modeling.

Currently, there is no known goal modeling language based on BPDM. On the

other hand, URN is a standard that has a well-defined structure with complementary goal

modeling and business process modeling notations and links between them. The solution

in this research requires the combined use of goals and business processes in models.

Consequently, using the URN standard is a better choice for formalizing this solution.

However, despite the fact that the proposed solution (i.e., the GoPF framework) is based

on URN, the underlying concepts of the patterns in the solution are not dependent on

URN at the conceptual level. Thus, it may be possible to reconfigure the solution to use

BPDM-based notations in the future, if there is a compelling argument to do so.

2.2 Model-Driven Engineering

This section discusses Model-Driven Engineering and its well-known incarnation, name-

ly‎OMG’s Model-Driven Architecture.

2.2.1 Model-Driven Engineering

As Atkinson and Kuhne observed ‎[55], over the past five decades, software developers

and researchers have been rising the level of abstraction in development artifacts. This

has allowed them to specify what computers must do rather than how to perform it, and

hence, shielded them from increasing complexity of the problems. The Model-Driven

Engineering (MDE) approach is the continuation of this trend. MDE helps bridge the gap

between different levels of abstraction and integrate different bodies of knowledge ‎[56].

MDE‎is‎based‎on‎the‎premise‎that‎“everything‎is‎a‎model”‎and‎that‎a‎software‎develop-

ment process can be considered as a set of transformations between models from differ-

ent views and at different levels of abstraction. MDE claims to bring three major benefits

to the process of software development. First, it simplifies and partially automates the

process of developing software applications that satisfy their requirements. Second, it

shields developers from the complexities of the environment in the process of software

development ‎[10]. Third, it flattens the learning curve and facilitates contribution of ex-

‎Chapter 2. Related Work - Model-Driven Engineering 19

perts to the software development process by enabling them to create models at different

levels of abstractions and with familiar notations in their domains of expertise. In their

work, Atkinson and Kuhne predict that this move towards more abstraction holds the

potential to drastically reduce the complexity of the problems that are considered hard by

today’s‎standards‎‎[55].

‎Figure 7 compares the underlying ideas of MDE and those of the object-oriented

paradigm. Bézivin ‎[17] argues that the basic principle in the object-oriented paradigm,

“everything‎is‎an‎object”,‎was‎most‎helpful‎in‎driving‎technologies‎of‎the‎80s‎in‎the‎di-

rection of simplicity, generality, and increased integration power. Similarly in MDE, the

basic‎principle,‎“everything‎is‎model”,‎offers‎many‎interesting‎properties‎in‎terms‎of‎sim-

plicity and power of integration.

Although MDE does not limit the different bodies of knowledge that can be inte-

grated for software development, many proposed MDE-based approaches, including the

dominant Model-Driven Architecture (MDA) and its variations, focus on bridging the

gap between the processes and applications discussed in ‎Figure 1. Such approaches em-

phasize‎transformations‎from‎“what”‎is‎needed‎to‎“how”‎it‎can‎be‎done.‎In‎other‎words,‎

the abstraction suggested in these approaches is mostly in the solution domain and not

necessarily in the problem domain dominated by goals.

This thesis is concerned with abstractions in the problem domain. The knowledge

about the problem is captured as part of the patterns in the GoPF framework. This can be

seen as an extension of conventional MDE where goal models are included in the chain

of transformations of models.

‎Chapter 2. Related Work - Model-Driven Engineering 20

Figure 7 Basic notions in object-orientation (a) and MDE (b) ‎[17]

2.2.2 Model-Driven Architecture

The Model-Driven Architecture (MDA) standard from Object Management Group

(OMG) is a specific incarnation of the MDE approach ‎[56]. Being a well-known stand-

ard, MDA is sometimes mistaken for the general concepts that MDE stands for ‎[57]. A

detailed‎description‎of‎OMG’s‎MDA‎is‎provided‎ in‎ ‎[58], including the following prob-

lems that MDA aims to solve:

“The MDA defines an approach to IT system specification that separates the

specification of system functionality from the specification of the implementation of that

functionality on a specific technology platform. To this end, the MDA defines an architec-

ture for models that provides a set of guidelines for structuring specifications expressed

as models.

The MDA approach and the standards that support it allow the same model speci-

fying system functionality to be realized on multiple platforms through auxiliary mapping

standards, or through point mappings to specific platforms, and allow different applica-

tions to be integrated by explicitly relating their models, enabling integration and in-

teroperability and supporting system evolution as platform technologies come and go.”

Super Class

Class

Instance

Meta Model

Model

System

inherits

instanceOf representedBy

conformantTo

(a) (b)

‎Chapter 2. Related Work - Patterns 21

Figure 8 MDA software development life cycle ‎[59]

The MDA approach includes ways of modeling functionality and implementation plat-

forms as well as transformations from functional models to implementations. The life

cycle of MDA in ‎Figure 8 shows how it is mainly bridging the gap between an analysis

model and the final software application. However, MDA does not include ways of speci-

fying stakeholder goals and other intentional requirements.

2.3 Patterns

This section reviews the benefits of capturing knowledge in the form of patterns as a

means of reusing knowledge. Some of the relevant approaches that take advantage of

patterns are introduced and the importance of formalizing patterns is highlighted. Next,

the evolution of patterns is discussed as one needs to maintain the knowledge captured as

patterns when changes happen in the environment. Finally, frameworks are introduced as

solutions that provide infrastructure and foundations for capturing patterns, organizing

the knowledge, and reusing it.

2.3.1 Overview of Patterns

Patterns are three-part rules that express a relation between a problem, a solution, and a

certain context ‎[60]. They have been proposed to capture and categorize knowledge of

recurring problems and give advice on possible solutions to those problems ‎[15]‎[60].

Martica
Highlight

‎Chapter 2. Related Work - Patterns 22

Patterns capture existing knowledge and important practices that have occurred repeated-

ly. They are known to be a means of increasing reusability. A pattern can be thought of as

a reusable model that describes a need and solves a problem that may occur at different

levels of abstraction and in different domains. Reusing knowledge helps improving soft-

ware quality while minimizing the financial and temporal costs of creating software arti-

facts ‎[61]. Another benefit of patterns is that they encapsulate recurring problems and

solutions into modules. This is valuable because compared to holistic models, patterns are

less subjected to changes. Patterns have been used in the area of software engineering

with design patterns ‎[12], in conceptual modeling with analysis patterns ‎[62], in infor-

mation system architectures with architecture patterns ‎[63], in e-business with e-business

patterns ‎[64], and more recently in advanced distributed architectures with cloud compu-

ting patterns ‎[65].

Patterns also provide a description of the forces at play. As Gabriel observed ‎[66],

patterns allow the forces in the systems to resolve themselves. Forces are design trade-

offs that are affected by the problem and solution. In other words, forces typically discuss

the reasons for using the suggested solution for the given problem in the given context.

Describing forces and making the trade-off among them explicit is perhaps the most sig-

nificant contribution of patterns. In some cases, as mentioned by Weiss in ‎[67] and ‎[68],

forces cannot be resolved adequately by a single pattern. In such cases, a pattern includes

references to other patterns, which help resolve forces that were unresolved by the current

pattern. Patterns connected together in this way are often referred to as a pattern lan-

guage.

Although the concept of patterns is usually practiced with well-known object-

oriented design patterns, recently there have been efforts for using requirements pattern

as enabler for reusing requirements knowledge ‎[61]. For instance, Wen et al. ‎[69] high-

light the difficulties of reusing the knowledge about recurring security problems captured

in the form of natural language. They suggest an approach for capturing requirements

patterns containing the knowledge about the security problems in medical information

system based on the i* framework and on problem frames. In this approach, a large secu-

rity problem in the domain is decomposed into sub-problems accompanied by an evalua-

tion of threats for each sub-problem as well as potential protection measures. Wen et al.

Martica
Highlight

Martica
Highlight

Martica
Sticky Note
revisar estas referencias

Martica
Highlight

‎Chapter 2. Related Work - Patterns 23

did not include a systematic solution for capturing patterns but they underscore such solu-

tion as a desired extension of their work. In another example, Konard and Cheng ‎[70]

suggest an approach for using requirements patterns in the domain of embedded systems.

They use these patterns for capturing and reusing requirements specifications. In this ap-

proach, the Unified Modeling Language (UML) is used for formalizing the structural and

behavioral aspect of patterns. Amongst other benefits, Konard and Cheng report on two

advantages of using requirements patterns in their case studies: i) using an even small set

of requirements patterns helped novices in eliciting requirements of a fairly complete

embedded systems, and ii) using these patterns facilitated the understanding and mainte-

nance of the system specification by enabling the construction of more uniform system

specifications. Although Konard and Cheng’s approach suggests formal models for struc-

tural and behavioral aspects of requirements patterns, it does not provide a formal foun-

dation, such as goal models, for capturing the intentions in the specification of patterns.

2.3.2 Pattern Formalization

Reusable knowledge in patterns enables efficient transfer of skills and experience of do-

main experts. However many pattern descriptions tend to focus on the solution to a prob-

lem and not so much on the problem and forces that are involved ‎[71]. In addition, tradi-

tional pattern descriptions, including the Alexandrian ‎[60], Gang-of-Four (GoF), and

Coplien forms, are mostly expressed textually. The GoF form includes specific sections

for intent, motivation, structure, participants, and collaborations ‎[15]. In this form, the

main emphasis is on the solution while the discussion about the forces is spread over dif-

ferent sections of the pattern. Motivated by drawbacks of the GoF form, Coplien provid-

ed a more rigid pattern structure by explicitly representing forces and consequences of

patterns ‎[72].

When patterns are represented in such forms, it becomes challenging to recognize

under which conditions a pattern must be selected, how to compare the patterns that ad-

dress the same problems, and how to integrate the consequences of applying multiple

patterns to a model or system. This important issue motivated the development of better

formalizations of patterns. For example, Taibi et al. describe why patterns must be for-

malized and propose that structural and behavioral aspects of design patterns be com-

bined in one formal specification ‎[73].

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

‎Chapter 2. Related Work - Patterns 24

Formalizing the solution aspects of patterns has received more attention than the

problem and force aspects, although there are noticeable exceptions. For instance, Araújo

and Weiss have suggested an explicit representation of forces that are involved in pat-

terns ‎[74]. These forces and trade-offs are captured and then analyzed using the Non-

Functional Requirements (NFR) framework ‎[75]. In a related work by Ong and

Weiss ‎[76], the forces that are affected by a pattern are derived through close reading of

the textual pattern description. This enables the discovery of pattern contributions to the

overall system concerns, which were previously implicitly represented in textual descrip-

tions. Their main finding is that the contributions of a pattern are a lot less apparent in

textual descriptions.

Gross and Yu ‎[77], together with Chung et al. ‎[78], represent ways of reasoning

about patterns using NFRs. Similarly, Mussbacher et al. ‎[71] formalize patterns with

URN, including problems and forces with GRL, and solutions with UCM. However, their

work is more concerned with connections between patterns at the language level, as well

as with establishing models of the forces and the trade-offs that exist in a particular do-

main.

Andrade and Logrippo ‎[79] have used Use Case Map scenarios to describe pat-

terns of behavior in wireless systems. Andrade, in her thesis ‎[80], represents the need for

requirements and analysis patterns and shows that these patterns can be used for reusing

the knowledge about problems and solutions in mobile communication domain. Using

Use Case Map scenarios for capturing the commonalities of solutions, she also provides

methods for capturing and reusing these patterns. In similar work by Billard ‎[81], Use

Case Map scenarios are used to capture agent interaction patterns. Mussbacher and Amy-

ot ‎[82] proposed Use Case Map modeling patterns for describing and composing telepho-

ny features.

2.3.3 Evolution of Patterns

Changes‎in‎the‎stakeholder’s‎concerns‎and‎domain’s‎circumstances‎are‎unavoidable.‎This‎

consequently leads to changes in the chain of artifacts in software development, from

requirements models to software applications. This ripple effect in turn leads to resources

being consumed for software artifact evolution and, unfortunately, artifact evolution is

Martica
Highlight

‎Chapter 2. Related Work - Patterns 25

also subject to errors. One benefit of creating artifact with the aid of patterns is that ef-

fects of changes in the models would be limited to specific modules. However, once pat-

terns are established, it becomes somewhat difficult to maintain them and update their

embedded knowledge. As Henninger and Corrêa observed ‎[83], this should not, in gen-

eral, be a major problem because patterns are ideally “timeless”.‎Nevertheless,‎the‎rapid‎

pace of change in technology has highlighted the need for evolution of various kinds of

patterns. Requirements of stakeholders are changing even faster than foundation technol-

ogy of design patterns. Hence, this evolution challenge is more pronounced for require-

ment patterns of specific domains. In the long term, a collection of patterns targeting re-

quirements (including goals and processes) remains useful if the collection can be

evolved to accurately address the current recurring problems and solutions of the domain.

Zhao et al. suggest an approach for the evolution of pattern-based designs ‎[84]

and of design patterns ‎[85]. They propose a graph transformation method at the pattern

level for evolving and validating patterns and pattern-based designs. Likewise, Dong et

al. ‎[86]‎[87] propose a transformation based on two levels (primitive and pattern) to for-

mulate the evolution process of design patterns. However, the approaches of Zhao et al.

and of Dong et al. are limited in the context of this thesis because i) they are focused on

design patterns and are mostly fine-tuned toward changing UML class diagrams, and ii)

evolution is limited to variations of the initial pattern, i.e., the evolved pattern must be

reducible to the initial graph. For instance, an abstract factory pattern can evolve to a

new variation, which must still be based on the principles of abstract factory patterns. In

this thesis, evolution of the patterns is considered at a more abstract level that captures

the knowledge about the goals and requirements of stakeholders. Furthermore, patterns

can be changed beyond the principles of their initial versions.

Aoyama ‎[88] also highlights the importance of adapting patterns to rapid changes

in requirements. His research first proposes a more formal representation of patterns,

called pattern type diagram, which is then used as a basis for an evolutionary mechanism.

Evolution of patterns in Aoyama’s research is mainly focused on design patterns. Fur-

thermore, evolution mechanisms‎in‎Aoyama’s‎work (represented in pattern evolutionary

diagrams) are mostly concerned with capturing changes that happen for a particular de-

‎Chapter 2. Related Work - Patterns 26

sign pattern and for capturing the new emerging variations (e.g., evolution in the Factory

pattern family.)

Kobayashi and Saeki studied the evolution of patterns from a different view-

point ‎[89]. They consider software development as pattern instantiation (i.e., applying a

pattern to an actual problem) and pattern evolution. In their work, the evolution of pat-

terns is about creating new artifacts from artifacts found in earlier stages, which finally

results in the creation of a software application as the ultimate artifact in the chain of arti-

facts.‎Therefore,‎the‎“evolution”‎is‎not‎used‎for‎adapting‎to‎changes‎at‎a‎pattern‎level, but

is used more like stepwise refinement. This is different from this‎ thesis’ objective for

pattern evolution where the knowledge in the pattern is meant to be kept up to date.

2.3.4 Pattern Framework

Frameworks are a reuse technique for providing recurring solutions to sets of problems in

a particular domain. Gabriel defines a framework as a system that can be customized,

specialized, or extended to provide more specific, more appropriate, or slightly different

capabilities ‎[66]. In another popular definition from Johnson and Foote ‎[90], a framework

is a reusable design of all or part of a system that is represented by a set of abstract clas-

ses and the way their instances interact. These definitions tend to define programming

frameworks. However, frameworks can potentially be used at more abstract levels for

reusing the knowledge and for bridging the gap between business goals and business pro-

cesses. The importance of such systematic approaches for classifying and reusing re-

quirements patterns is highlight by Naish and Zhao in ‎[61].

Iida et al. ‎[91] propose a process pattern framework composed of process tem-

plates. The framework assists software engineers in constructing their custom software

processes by selecting and plugging process templates. This approach hence provides

project-level reusability of process templates. Prior to that work, Iida had also described

an early attempt at capturing process elements with patterns, for the software develop-

ment domain ‎[92]. Through transformations applied to a primitive process, customization

to a particular organization was possible, which is similar in spirit to the OCEM method

in the GoPF framework. However, these approaches consider only roles, products and

activities (process definitions at the level of UCM), and not goals of the patterns or of the

Martica
Highlight

‎Chapter 2. Related Work - From Business Goals to Business Processes 27

organization. The selection of patterns to apply during transformations is hence done in

an ad hoc way. In addition, patterns are fine-tuned for software development processes

and there is no mechanism in place to maintain the framework.

In his thesis, Tran reviewed many pattern-based process modeling approaches that

suffer from the same weaknesses ‎[93]. His approach however is interesting in that it for-

malizes the process patterns with a metamodel and provides algorithms to apply them

successively to processes for their evolution. Tran’s technique hence shares some com-

mon objectives with those in this thesis, except that this thesis emphasizes the evolution

of patterns, and also considers goals in addition to processes.

2.4 From Business Goals to Business Processes

This section discusses different approaches that aim to reuse domain knowledge in the

form of business goal and process models. Some of the approaches also explore the ad-

vantages of capturing and using the connections that exist between the business goal and

process models.

2.4.1 Enterprise Knowledge Patterns

Stirna et al. in ‎[94]‎[95]‎[96] propose Enterprise Knowledge Patterns, a systematic ap-

proach for documenting, analyzing, and capturing patterns and for managing knowledge.

Enterprise Knowledge Patterns contains patterns described with interrelated models such

as goal, business process, and concepts models. These models are used to describe reusa-

ble solutions for enterprise problems. However, this approach does not provide a formal

semantics for links between goal models and business processes. This prevents an auto-

mated transformation of goal models to business process models.

2.4.2 Goal-Oriented Legal Compliance of Business Processes

Ghanavati et al., in a recent literature survey ‎[97], have reviewed 88 papers (selected

from 800 related research articles) and have shown that goal-oriented languages have

often been used to model regulations and compliance. These approaches provide nota-

tions and tools for modeling the objectives of organizations. These goal models are then

used for evaluating the compliance of business processes in those organizations.

Shamsaei et al., in another literature survey on the usage of goal-oriented languages for

Martica
Highlight

‎Chapter 2. Related Work - From Business Goals to Business Processes 28

managing compliance in organizations ‎[98], have reviewed 32 papers (out of 198 related

research articles) and have concluded that in spite of availability of individual pieces,

current approaches are not effectively combining goals and indicators of business process

performance in the organizations.

These surveys show the benefits of using goal-oriented language in connection

with business process models for compliance management. However, the surveyed pa-

pers put less emphasis on providing approaches that benefit from such connection. This

prevents the effective capturing of the domain knowledge and its reuse.

2.4.3 Linking Business Goals to Process Models

Markovic and Kowalkiewicz ‎[99] provide a business process ontology, a goal modeling

notation, and a modeling pattern for linking goals and business processes. The ontology

captures the knowledge of conceptual models. The links then enable the integration of the

intentional perspective into the business process ontology. This ontology is used to per-

form automated analysis on goal specifications, i.e., by identifying inconsistencies, re-

dundancies, and conflicts. The ontology has been used as a basis for querying the

knowledge embedded in the conceptual model.

Rimassa et al. ‎‎[100]‎[101] present an approach to business process management

that leverages agent technology. This approach includes a goal-oriented business process

modeling notation (GO-BPMN), which is a visual language for specifying business pro-

cesses. GO-BPMN essentially enriches BPMN with explicit goal modeling. However, the

relationships between goals and business process are limited. For example, business pro-

cesses are not linked to goal models at different levels of abstraction.

2.4.4 Aspect-Oriented Business Process Improvement

The framework proposed by Pourshahid et al. ‎[102] is also a pattern-based and URN-

based approach for improving business processes when monitored key process indicators

change over time. This framework describes redesign patterns as transformation rules that

are applied to the existing organizational models with the help of an aspect-oriented ex-

tension of URN. Redesign patterns are more generic than the patterns described by the

GoPF framework, which encode more domain-specific knowledge. An aspect-oriented

Martica
Highlight

Martica
Sticky Note
yadary

Sajay
Highlight

‎Chapter 2. Related Work - From Business Goals to Business Processes 29

approach, however, could potentially be applied to GoPF to describe the family of busi-

ness processes for a pattern, at the cost of additional complexity.

2.4.5 Use of Ontologies to Increase Reusability

An ontology is defined as an explicit specification of conceptualization ‎[103]. Ontologies

can be used to capture and share knowledge. This can be useful to consolidate one im-

portant challenge of software development, which is capturing and sharing knowledge.

This challenge arises when different stakeholders and software development actors have

disagreements over terminology, concepts, and how concepts are modeled ‎[104]. Conse-

quently, by representing and sharing common knowledge, ontologies decrease misunder-

standings among stakeholders over terminologies and concepts.

In recent years, ontologies have been used to provide a unified view on the busi-

ness process space of organizations ‎[99]‎[105]. For instance, Kaiya and Saeki use ontolo-

gies to propose methods for detecting incompleteness and inconsistency issues in created

models ‎[106]‎[107]. Such approaches are useful for providing a unified view on require-

ments or business processes. Yet, they do not integrate these two views by capturing the

reusable knowledge about both business goals and business processes. In addition, ontol-

ogies in these approaches are providing an infrastructure that can be modeled as meta-

models that are specialized for modeling the infrastructures.

2.4.6 Reusability and Domain Engineering

Domain engineering aims at reusing common knowledge in the domain for addressing

the problems within that domain ‎[108]‎[109]. An essential activity in domain engineering

is domain modeling, which supports building models that contain the domain knowledge.

These models can be reused in the software development process, leading in decreased

costs of software development. These models have three main roles ‎[108]‎[110]: i) a uni-

fied source of reference when ambiguities arise in the analysis of problems, ii) a reposito-

ry of knowledge that facilitates reusing, teaching and communicating the common

knowledge in the domain, and iii) a specification for the implementer of reusable compo-

nents.

Wang et al. have suggested a domain modeling framework with five layers of on-

tologies for networked software applications ‎[20]‎[111]‎[112]. This framework uses ontol-

‎Chapter 2. Related Work - From Business Goals to Business Processes 30

ogies to encapsulate knowledge in different views such as goal, process, and service

views.‎ This‎ approach‎ enables‎ substitution‎ of‎ web‎ resources‎ based‎ on‎ different‎ users’‎

preferences. However, the main emphasis of their work is on reusing the functionalities

that are captured in the form of services for taking advantage of the service-oriented

computation paradigm shift. Consequently, this framework helps bridging the gap be-

tween process descriptions and the web services that realize these processes.

Čiukšys‎ and‎ Čaplinskas‎ have‎ suggested‎ an‎ ontology-based method for reusing

business processes in a domain ‎[16]. In their approach, a business process ontology, an

application domain ontology, and a process ontology are used to enable reusing business

processes in different application domains. Similarly, the suggested approach for Seman-

tic Business Processes Management by Filipowska et al. ‎[113] leverages ontologies for

capturing the knowledge about business processes in a domain. However, these suggested

domain engineering approaches mainly emphasize capturing the common knowledge

about business processes. On the other hand, capturing the knowledge about requirements

of stakeholders and linking them with processes that realize them has received far less

attention.

2.4.7 Customization Approaches

Traditional process-oriented software development generally pays little attention to high-

level goals of stakeholders. Such approaches put little emphasis on eliciting and analyz-

ing‎stakeholder’s‎business‎goals‎on‎one‎hand‎and‎linking‎them‎to‎the‎processes‎that‎real-

ize them on the other hand. Motivated by the above drawbacks, Lapouchnian et al. ‎[13]

propose an approach in which goal models capture the needs of stakeholders. They enrich

the goal models with annotations so models contain the necessary details about how the

goals can be achieved. Reasoning and selecting processes enables finding customization

alternatives‎that‎best‎accommodates‎stakeholders’‎goals.‎

In a related paper, Yu et al. ‎[114]‎ propose a two-step approach that utilizes goal

models for reasoning and selecting configuration alternatives that lead to better satisfac-

tion‎of‎stakeholders’‎goals.‎In‎the‎first‎step,‎software‎applications‎are‎reverse-engineered

and a goal model is created. The leaf intentions are associated with the configurable

items, which lead to different behaviors of the software application. In the second step,

‎Chapter 2. Related Work - From Business Goals to Business Processes 31

selecting the alternative that satisfies the best the root-level goals of stakeholders deter-

mines the appropriate configuration. Similarly, Liaskos et al. ‎[115] propose an approach

for configuring common personal software applications. In this approach, a goal model

captures the needs of stakeholders. Next, the goal model is used for reasoning about the

best configuration alternative that satisfies the goals of stakeholders.‎ While‎ Yu’s‎ ap-

proach and‎Liaskos’‎configure‎the‎software‎to‎realize‎the‎goals‎of‎stakeholders,‎they‎have‎

two limitations. First, they mostly focus on goal models and do not include explicit rea-

soning about business processes. Second, each application must be accompanied by a

goal model that represents the alternatives so it can be used when configuration is neces-

sary.

Hui et al. ‎[19] propose a framework for customization of software applications

based on goals, skills, and preferences of stakeholders. In this approach, a goal model

represents‎stakeholders’‎needs‎and‎ its‎ leaf‎ intentions‎are‎mapped‎ to‎class‎diagrams‎ that‎

denote the possible alternatives at the design level. Consequently, choosing an alternative

determines the static diagrams that represent the software architecture, which best ac-

commodates the needs of stakeholders.

2.4.8 Product Line Software Engineering

Software Product Lines ‎[116] increase reusability by guiding organizations toward using

core assets rather than developing software applications from scratch. Clements and

Northrop ‎[117] provide the details of product line software engineering. They highlight

core asset development and using those assets for product development as its two major

activities. By means of these activities, product line software engineering exploits the

commonalities amongst products while it manages their variability.

Feature modeling is one of the most popular techniques used for building reusable

core assets for a given domain ‎[118]. This technique analyzes the domain, captures the

externally distinctive characteristics of its products, and organizes them in the form of

feature models. Features are externally visible characteristics that differentiate amongst

products. This differentiation is a key enabler for selecting the appropriate core assets in

product engineering. Lee et al. ‎[118] highlight this as the main difference between feature

modeling and other means of reusability (e.g., objects or aspects) where conceptual ab-

‎Chapter 2. Related Work - Summary 32

stractions are identifiable by internal viewpoints. Similarly, this is the difference between

the reusability perspective used in this thesis and the one used in product line software

engineering. Note that product line software engineering is an active area of research and

that further opportunities for integrating it with the GoPF framework defined in this the-

sis will only be highlighted in future work (section ‎8.2.7).

2.5 Summary

This chapter provided an overview of User Requirements Notation (URN), which sup-

ports integrated goal and scenario modeling and analysis. Next, an overview of patterns

and of how they improve reusability was provided. Sections ‎2.3 and ‎2.4 also highlighted

existing research efforts that aimed to reuse requirements knowledge. Many attempts for

bridging the gap between goal modeling and business process modeling and their founda-

tions have been summarized in this chapter. Furthermore, this chapter discussed several

weaknesses of the surveyed approaches (including traceability between goals and pro-

cesses, pattern formalization, documentation and evolution, and customization in a given

context) that the GoPF framework intends to address. A comparison between the GoPF

framework and many of the approaches discussed in this chapter will be provided in sec-

tion ‎7.3.

The next chapter defines the core concepts of the GoPF framework with a meta-

model formalized as a profile of the User Requirements Notation.

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 33

Chapter 3. FRAMEWORK METAMODEL (FMM)

A pattern in the GoPF framework contains a goal model building block, business strate-

gies, business process building blocks, and realization links between business goals and

business processes that loosely couple goals in the goal model building block with model

elements in the business process building blocks. GoPF-based patterns are organized in a

pattern family, in which they are connected through refinement links (the term family

reflects the parent-child nature of these refinement links). This chapter describes these

key elements of the framework metamodel (FMM). In addition, it provides a formaliza-

tion of this metamodel as a URN profile in order to benefit from its integrated

goal/scenario concepts and existing tool support. In this profile, OCL constraints are used

to enforce well-formedness properties of pattern families.

The patient safety domain is used throughout this chapter for providing examples

that highlight the architecture and usage of the GoPF framework for intermediary organi-

zations. Examples are also given later on to show how pattern families are maintained

(‎Chapter 5) and used (‎Chapter 6).

3.1 Foundational Elements of FMM

3.1.1 Goal Model Building Block

Goal model building blocks capture recurring meaningful excerpts of goal models, i.e.,

several goals and their relationships that can stand by themselves, thus identifying com-

mon problems faced by organizations, potential solutions, as well as the forces that have

to be considered when solving these problems. Furthermore, goal model building blocks

enable reasoning about solutions that best address the identified problem by selecting one

strategy from a set of alternative solutions (captured in business process building blocks).

Goal model building blocks are GRL-based goal models that emphasize what stakeholder

requirements are and what must happen in order for the requirements to be realized. Each

goal model building block contains a self-contained meaningful and reusable piece of

goal model that represents a problem and elements of its solutions at a similar level of

abstraction. This goal model may also include side effect intentions, which are affected

Martica
Highlight

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 34

differently by alternative solutions. In addition, goal models may include the resources

that represent conditions and their effects on the intentions of goal model. Finally, each

goal model building block includes contributions connecting intentional elements of a

model. A contribution is a weighted link that indicates the potential realization effect of

one element on another element. ‎Figure 9 illustrates a goal model building block that

represents the highest-level problem and elements of solutions faced by some healthcare

institutes in the patient safety domain.

Figure 9 Goal model building block for Increase Patient Safety

Goal model building blocks are created by analyzing existing goal models and consulting

domain experts, which leads to locating and capturing recurrent best practices. Because

these models represent different levels of abstraction, the elements of solutions in one

model can be potentially considered as problems at less abstract levels and so on. In other

words, what must‎happen‎for‎one‎stakeholder’s‎main goal to be realized, can in turn be

the main goal of another stakeholder. In such cases, the stakeholders are at different lev-

els within the organization and the latter stakeholder’s‎ achievement‎ aids‎ the‎ former‎

stakeholder’s‎goals‎to‎be‎fulfilled.‎Goal model building blocks may need to be changed

and improved over time as more knowledge is gained or as the circumstances of domain

are changed, and GoPF encourages this practice through evolution mechanisms described

in ‎Chapter 5.

Martica
Highlight

Martica
Sticky Note
yadary

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 35

3.1.2 Business Process Building Block

A variety of definitions of business processes have been suggested ‎[119]‎[120]‎[121]‎[122].

In this thesis, a business process is identified as a structured set of activities that are de-

signed to fulfill a goal for a particular stakeholder. Business process building blocks are

recurrent abstract business process models that represent a solution, i.e., the process of

achieving goals, while leaving the concrete implementation of the process elements to

later deployment steps. Business process building blocks are Use Case Maps and are cre-

ated by analyzing the solutions identified in existing business processes and by consulting

domain experts. They capture the excerpts recurrently used as solutions for achieving

recurrent goals. A business process building block specifies how a solution is carried out

by laying down its steps and providing the sequencing of such steps. ‎Figure 10 illustrates

two business process building blocks defined at the same level of abstraction as the In-

crease Patient Safety goal model building block. They represent two alternative solutions

for increasing patient safety. One alternative solution employs ad hoc improvements

based on collecting and analyzing data. This alternative is more suitable to small

healthcare institutes and institutes with limited resources. The other model represents a

solution that systematically improves the healthcare institute but that also needs more

resources from the underlying infrastructure.

Figure 10 Two alternative business process building blocks for Increasing Patient Safety

(b)
Advanced

Process

(a) Ad hoc
Process

Martica
Highlight

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 36

3.1.3 Collection of Business Process Building Block

Individual elements of the business process building blocks may overlap, be shared, or be

slightly altered. Hence, a set of business process building blocks that specify alternative

solutions to a problem that is common to other members of the set may be viewed as a

collection of business process building blocks similar to families of software products. In

a collection of business process building blocks, each member represents one possible

way of fulfilling a goal shared by all members of the collection. One can think of the

members of the collection as design alternatives for fulfilling the common goal of the

collection captured in the corresponding goal model building block. These collections are

used for shaping the possible recurring solutions to the recurrent problems. For in-

stance, ‎Figure 11 shows a collection of business process building blocks that address a

common goal in the patient safety context, i.e., Make Decision, in which each member

represents an alternative solution. Although each member addresses the common goal,

there are variations among the members of the collection, which may lead to differences

in the degree of achieving the common goal and the conditions associated with a mem-

ber.

Figure 11 A collection of alternative business process building blocks for Make

Decision

3.1.4 Business Strategy

Real problems may lead to complex goal models with many goals at different levels of

abstraction. In many situations, goals may be satisfied in different ways (collection of

business process building blocks) and to different degrees. Each of these ways (members

Business Process Building Block
Business Process Building Block

Business Process Building Block

Collection of Business Process Building Blocks

Business Process Building Block

Business Process Building Block

Business Process Building Block

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 37

of business process building block collection) provides an alternative solution that shapes

the business differently. This definition of business strategy complies with its usual defi-

nition‎in‎game‎theory‎as‎“a‎plan‎of‎action”‎‎[123], which is consistent with the definition

of the‎word‎“strategy”‎in‎the Oxford Dictionary. Each business strategy is thus composed

of a business process building block along with its anticipated effects (the evaluation

strategy) on the intentions of the relevant goal model. Business process building blocks

define the behavior and structure of the solutions in more detail. Evaluation strategies

represent the anticipated effects of each business process building block that provide the

rationale for choosing the most appropriate solution in a given context. Business strate-

gies that contain pairs of <business process building block, evaluation strategy> provide a

twofold advantage. First, a business strategy captures the knowledge of a domain in terms

of reusable alternative solutions, their effects on the problems, and consequent satisfac-

tion of stakeholders. Second, this structure benefits the stakeholder by providing the flex-

ibility of selecting the solutions that suit best their specific requirement and circumstanc-

es. Therefore, this architecture enables reusing business process blocks for incrementally

building complex process models for organizations, which are in line with their require-

ments.

3.1.5 Pattern

In the GoPF framework, patterns are containers that capture the knowledge about domain

in three ways. First, patterns capture recurring problems and elements of solutions as well

as conditions and secondary intentions (and side effects) in the form of goal models (goal

model building blocks). Second, patterns include a group of alternative processes and

their effects on the related goals, which are simply pairs of business process building

block and evaluation strategies (i.e., business strategies). Finally, patterns include realiza-

tion links that connect related processes from business process building blocks and goals

from goal model building blocks. ‎Figure 12 represents the architecture of a pattern in the

GoPF approach.

Patterns and their constructs are formalized using URN. Such a formalized foun-

dation brings three benefits. First, clear specification of requirements and solutions ena-

ble business analysts to better discover reusable requirements, to choose from a set of

available solutions, and consequently to create hierarchical models for both requirements

Martica
Highlight

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 38

and corresponding solutions. Patterns based on such formalization are building blocks

that make it possible to reuse the domain knowledge by which customized goal and busi-

ness process models can be built for specific organizations. The second benefit of formal-

izing patterns is avoiding unclear requirements and corresponding solutions. This facili-

tates maintaining the patterns when changes in the domain highlight the need for chang-

ing the patterns. Such an approach to pattern specification attempts to address the diffi-

culties that arise by implicit and potential ambiguity in the knowledge captured in textual

specifications of patterns, as highlighted in the literature review (section ‎2.3.2). Finally, a

formalized foundation enables automatic mechanisms for creating, maintaining and using

patterns. Such mechanisms will be defined in ‎Chapter 5 and ‎Chapter 6.

Figure 12 Architecture of a typical pattern in GoPF

3.1.6 Pattern Family (PF)

For a specific domain, different patterns may exist that describe problems and solutions at

different levels of abstraction. Each of these patterns can be linked to those related pat-

terns that potentially refine it. The GoPF framework defines the concept of Pattern Fami-

ly (PF) as a container that includes all the patterns for a particular domain. Patterns in a

PF are connected to each other through refinement links. A pattern family captures and

organizes the knowledge of a domain in the form of patterns and their interconnections.

Each pattern in the family is a self-contained, meaningful, and reusable building block of

What How

Goal Model
Building Block

Business Strategy 1

Business
Process

BuildingBlock
(Reusable UCM

Diagram:
Solution
Process)

Strategy
(URN

Evaluation:
Effects of
Solution)

Reusable Piece
of Goal Model

(GRL graph)

Has

Has

Business Strategy 2

Strategy
(URN

Evaluation:
Effects of
Solution)

Main Goal
(Intention:
Captured
Problem)

Leave Goals
(Intentions:

Captured
Elements of
Solutions)

A GoPF-based Pattern

A GoPF-based Pattern Family

patternDef
(Refinement

Link)
Business
Process

BuildingBlock
(Reusable UCM

Diagram:
Solution
Process)

Martica
Highlight

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 39

requirements and solutions in that domain. ‎Figure 12 shows how a pattern family is com-

posed of interconnected patterns.

Patterns refine each other when solutions at one level are considered as problems

to be solved at other levels. Refinement links are in charge of capturing this type of in-

formation. These links between patterns represent how patterns can potentially refine

other patterns. Capturing refinement links between the known patterns of a domain ena-

bles organizing the knowledge about that domain; this is an important advantage of pat-

tern families.

Cysneiros et al. in ‎[124] emphasize the importance of enabling the chain of rea-

soning from abstract to concrete models in requirements engineering. The characteristics

of GoPF pattern families enable such reasoning at different levels of abstractions.

3.1.7 Roles

Different roles need to be played by people who want to use the GoPF framework.

Stakeholders

Freeman‎defines‎stakeholders‎as‎“any‎group‎or‎individual‎who can affect or is affected by

the‎achievement‎of‎the‎organization’s‎objectives”‎‎[125].‎Freeman’s‎definition‎is adopted

here with emphasis on the fact that stakeholders at different levels in an organizational

hierarchy have different goals in the organization’s‎ hierarchy of goals. Satisfaction

measures to what level the expectations of a stakeholder are met when a corresponding

goal is achieved.

Problems of stakeholders are what requirements engineers try to elicit, analyze,

and address. The more important the stakeholders are in an organization, the more their

satisfaction influences the success of a solution. Requirements of similar groups of stake-

holders within a particular domain are also similar. In order to benefit from this similari-

ty, GoPF captures recurring problems and recurring solutions in the form of patterns.

Moreover, both the UCM and the GRL notations used in GoPF support modeling actors,

which represent the stakeholders. This makes it possible to evaluate the effects of solu-

tions on problems of stakeholders and their satisfaction.

Martica
Highlight

Martica
Highlight

Martica
Highlight

‎Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 40

The GoPF framework helps the PF users discover the requirements of stakehold-

ers and create hierarchical solutions that are customized for them. Although most stake-

holders are not primary users of GoPF, they are the key elements in creating and evolving

pattern families (FDM; ‎Chapter 4). They will also reap the benefits of applications devel-

oped by PF users using the GoPF framework for creating hierarchal models of require-

ments and solutions (OCEM; ‎Chapter 5).

PF Analysts

A PF analyst is a domain-specialized modeler in charge of creating or evolving a Pattern

Family (PF). Based on interviews with stakeholders and domain experts, and on the anal-

ysis of available models, the PF analyst discovers requirements, locates recurrences in the

models, builds patterns, creates a family of patterns, and maintains the pattern family by

evolving it over time. In other words, the PF analyst analyzes the problems and solutions

in a particular domain and captures this knowledge in the form of reusable patterns. A PF

analyst usually works for an intermediary organization (e.g., a consulting firm), which

provides services to organizations in a domain. Pattern families are the deliverable arti-

facts produced and maintained by PF analysts. PF users, who are the other common ac-

tors in intermediary organizations, then use these artifacts. ‎Figure 13 shows the main in-

teraction among these different roles.

PF Users

A PF user is a business analyst who uses a PF for exploiting the domain knowledge it

contains. The PF user interacts with stakeholders of an organization within the relevant

domain to elicitate the requirements and to extract and customize specific models ad-

dressing these requirements for that organization by using the patterns in the PF.

PF users usually work for intermediary organizations, which are the primary ben-

eficiaries of the GoPF approach. For example, they may work for healthcare consulting

firms in charge of developing applications for improving patient safety in hospitals. Such

intermediary organizations are in a position to maintain their own pattern families

through experience gained solving similar issues in different target organizations. They

can also develop specific solutions for specific target organizations based on these pattern

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 41

families. Reusing domain knowledge hence facilitates their development efforts. Stake-

holders in a domain (e.g., hospitals and patients) will reap the benefits of applications

developed by intermediary organizations but they are not considered as direct beneficiar-

ies of the GoPF framework. For instance, the GoPF framework is not responsible for of

directly increasing patient safety; it only helps capturing and reusing problems and solu-

tions that support stakeholders in achieving their objectives in the domain of patient safe-

ty.

Figure 13 Interaction among different GoPF roles

3.2 Family Metamodel (FMM)

3.2.1 Formalizing the Family Metamodel (FMM)

The Family Metamodel formalizes the concepts of Pattern Family as a profile of the User

Requirements Notation, as shown in ‎Figure 14. The names between guillemets refer to

corresponding metaclasses from the URN standard metamodel ‎[32]. In URN, a concern is

a model element that groups other model elements, including other concerns. URN

metadata are used to associate stereotypes to model elements in a URN model that are

part of this framework, as specified in ‎Figure 14 (e.g., a URN concern may be stereo-

typed as a «pattern»).

A pattern family contains patterns, each of which includes one goal model build-

ing block (that formulates a problem and elements of its solutions) and at least one busi-

ness strategy (that captures the arrangement of a solution along with its effect on the

PF AnalystsPF Users

StakeholdersStakeholdersStakeholders

Pattern Family

KnowledgeReq. Models

C
u

st
o

m
iz

ed

Feedback

Organizational Customization and
 Extraction Method

Family Creation and Maintenance Methods

UseUse

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 42

problem). Each goal model building block is essentially a GRL graph, and hence includes

intentions (e.g., goals, tasks, and softgoals), indicators, and element links (i.e., contribu-

tions, decompositions, and dependencies) between them. In GRL, the intentions can be

contained in actors (not shown here because this concept is reused as is), which essential-

ly represent stakeholders. The goal intentions contributing to the main goal of such a

building block can themselves be refined by other patterns, through the new patternDef

relationship, formalized as a URN link. Business strategies contain two main parts: an

evaluation strategy (i.e., a regular GRL evaluation strategy, used for the evaluation of a

goal model) and a corresponding business process building block (i.e., a UCM map de-

scribing the process that specifies among other things the ordering of the goals selected

by the strategy). In addition, goals and tasks in the goal model building block can be real-

ized by process elements (e.g., stubs and responsibilities) in the business process building

block. Realization links connect goals that represent problems and elements of solutions

on one hand and business process building blocks that realize the goals on the other hand.

Such realization links are supported with URN links and enable traceability between

goals and business processes. Further realization links between goals and business pro-

cess building blocks are derived from existing associations (from Intention to Busi-

nessProcessBuildingBlock via patternDef). Such links capture the connection between

goals and those patterns that further refine them. The decomposition of patterns into goal

model building blocks and corresponding strategies enables organizing the knowledge

about the problem and its solutions in a reusable manner. Depending on the complexity

of the system, a series of decompositions can recur to form a hierarchy of problems and

solutions in a particular PF.

In this metamodel, goal model building blocks on one hand and business process

building blocks and evaluation strategies on the other hand are two sides of the same coin

(i.e., of a pattern). On one side, goal model building blocks represent the requirements

and address the problems that are important to stakeholders. On the other side, business

process building blocks and evaluation strategies represent recurring ways of doing busi-

ness along with how they fulfill those particular goals. In other words, goals need busi-

ness processes to be realized, and business processes are justified by goals.

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 43

Figure 14 Framework metamodel

The benefits of casting the framework metamodel as a URN profile is that resulting mod-

els are expressed in a standard and familiar language, together with existing analysis al-

gorithms (e.g., GRL propagation ‎[42]) that are reused as is. In addition, jUCMNav can

provide tool support for editing such models (with well-formedness checking through

OCL constraints) and for analyzing them.

«Concern»

PatternFamily

+ name: String

+ patternCollection() : Pattern[]

+ isEqualTo(PatternFamily) : boolean

«GRLGraph»

GoalModelBuildingBlock

+ name: String

+ leafCollection() : Intention[]

+ mainGoal() : Intention

+ isEqualTo(GoalModelBB) : boolean

«Concern»

BusinessStrategy

+ name: String

+ isEqualTo(BusinessStrategy) : boolean

«EvaluationStrategy»

Evaluation Strategy

+ name: String

+ isEqualTo(EvaluationStrategy) : boolean

«UCMmap»

BusinessProcess BuildingBlock

+ name: String

+ isEqualTo(BusinessProcessBB) : boolean

«IntentionalElementRef»

Intention

+ name: String

+ leaf: boolean

+ mainGoal: boolean

+ sideEffectGoal: boolean

+ satisfaction: int

+ isEqualTo(Intention) : boolean

+ evaluateSatisfaction() : int

«PathNode»

ProcessElement

+ name: String

+ isEqualTo(ProcessElement) : boolean

«ElementLink»

ElementLink

+ name: String

+ fromLink() : Intention

+ toLink() : Intention

+ isEqualTo(ElementLink) : boolean

+ linkType() : ElementLinkType

+ w eight() : int

«Concern»

Pattern

+ name: String

+ businessStrategyCollection() : BusinessStrategy []

+ replaceGMBB(GoalModelBB) : boolean

+ addBizS(BusinessStrategy) : boolean

+ removeBizS(BusinessStrategy) : boolean

+ isEqualTo(Pattern) : boolean

«IntentionalElementRef»

Indicator

+ name: String

+ satisfaction: int

«resource»

Condition

+ name: String

+ satisfaction: int

realized 0..1

realizingElement 0..*

businessStrategy 1..*

pattern 1

GMBB

1

pattern

1

evaluationStrategy

1

businessStrategy

1

BPBB

1

businessStrategy1

intention 0..*

GMBB

1

pattern 0..*

family 1

PE

1..*

BPBB

1

contextualCondition0..*

Intention

1..*

EL

0..*

GMBB

1

indicator 0..*

GMBB 1

Indicator 0..*

intention

1..*

ELt 0..*

toLinks 1

ELf 0..*

fromLinks 1

contextualCondition 0..*

GMBB 1

refined
0..*

patternDef

0..1

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 44

Figure 15 High-level representation of the Increase Patient Safety pattern

Bu
si

ne
ss

 P
ro

ce
ss

 B
ui

ld
in

g
Bl

oc
k

Bu
si

ne
ss

 P
ro

ce
ss

 B
ui

ld
in

g
Bl

oc
k

G
oa

l M
od

el
 B

ui
ld

in
g

Bl
oc

k

«
P
a
tt
e
rn
»

In
c

re
a

s
e

P
a

ti
e

n
tS

a
fe

ty

«G
oa

lM
od

el
Bu

ild
in

gB
lo

ck
»

In
cr

ea
se

 P
at

ie
nt

 S
af

et
y

«B
us

in
es

sP
ro

ce
ss

Bu
ild

in
gB

lo
ck

»
 A

dh
oc

 P
ro

ce
ss

«B
us

in
es

sS
tr

at
eg

y»
A

dh
oc

 Im
pr

ov
em

en
t

«E
va

lu
at

io
n

St
ra

te
gy

»
A

dh
oc

 E
va

lu
at

io
n

«B
us

in
es

sP
ro

ce
ss

Bu
ild

in
gB

lo
ck

»
 A

dv
an

ce
d

Pr
oc

es
s

«B
us

in
es

sS
tr

at
eg

y»
A

dv
an

ce
d

Im
pr

ov
em

en
t

«E
va

lu
at

io
n

St
ra

te
gy

»
A

dv
an

ce
dE

va
lu

at
io

n

St
ra

te
gy

St
ra

te
gy

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 45

3.2.2 Example of FMM-based Pattern Family

FMM is used here to give a formal representation of a sample pattern family in the pa-

tient safety domain. ‎Figure 15 illustrates the Increase Patient Safety pattern, which rep-

resents a top-level pattern (more abstract compared to other patterns of the family) con-

cerned with the improvement of patient safety in a healthcare organization.

This pattern has a goal model building block capturing a goal model that formu-

lates how to achieve Increase Patient Safety (i.e., the main goal of this pattern). It also

contains two alternative business strategies, each composed of a business process build-

ing block (UCM) and of a GRL business strategy, which capture different solutions to

address the problem as well as their effects.

‎Figure 16 represents this pattern in the form of an FMM-based object model. This

object model was created with the UML Specification Environment (USE) ‎[126]‎[127],

which is a tool for creating UML class diagrams and object models as well as for imple-

menting and checking OCL constraints.

Figure 16 Increase Patient Safety pattern in the form of FMM-based object model

FMM is implemented with USE and is available at ‎[128]. The FMM-based pattern family

for patient safety has been built as an instance of this metamodel in the USE environ-

ment, and is also available online ‎[129]. This sample family is a container for knowledge

that includes the captured patterns. ‎Figure 17 shows part of this pattern family in the form

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 46

of interconnected packages in which each package represents a pattern in the domain. As

seen in the figure, patterns in this family are connected through patternDef links that cap-

ture the refinement relationships among the patterns. For instance, Collect Data is an in-

tention that contributes to the satisfaction of the main goal of Increase Patient Safety pat-

tern. In other words, this is an element of solution for satisfaction of the main stakeholder

for the Increase Patient Safety pattern. Collect Data can in turn be considered as the main

goal of another pattern that captures the refining excerpt of the goal model along with

corresponding business processes and strategies. Consequently, ‎Figure 17 shows how

patternDef associates the refining Data Collection pattern to the Increase Patient Safety

pattern. Similarly, other elements of solutions in the Increase Patient Safety pattern can

be considered as recurring problems and captured as the main goals of new

terns. ‎Figure 18 represents part of the formal, FMM-based object model of this family

(for simplicity, all objects of ElementLink are hidden).

Figure 17 An excerpt of a pattern family for the patient safety domain

‎Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 47

Figure 18 FMM-based object model of the sample patient safety pattern family

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 48

3.3 Well-formedness of FMM-based Models

3.3.1 Enforcing Well-formedness with OCL Constraints

The family metamodel (FMM) establishes the foundation for creating pattern families.

However, this metamodel by itself is not sufficient to enforce well-formedness of the

pattern family models. In order to address this issue, constraints on different elements of

FMM were added for enforcing the well-formedness of FMM-based PFs. These con-

straints are specified formally with the Object Constraint Language (OCL) ‎[45], which is

a standard constraint language part of UML and maintained by the Object Management

Group (OMG). OCL provides modelers with means of adding constraints to models, in-

cluding invariants, preconditions, and post-conditions ‎[130]. OCL 2.0 also enables mod-

elers to query their models. These characteristics facilitate the specification of models in

a formal yet comprehensive manner, which makes OCL a suitable option for enforcing

restrictions in the GoPF framework.

‎Table 1 represents the constraints required for ensuring well-formedness of pat-

tern families. These constraints are implemented in USE. In order to validate that the

proposed constraints support well-formedness of the family metamodel, the following

tasks were carried out:

 A UML class diagram was created that represents FMM in the USE envi-

ronment ‎[128];

 FMM-based object models representing sample pattern families for the pa-

tient safety examples were implemented in USE ‎[129]. These object mod-

els offer a good coverage of the concepts in the metamodel;

 OCL constraints were implemented in USE; and

 The sample pattern families were validated against the OCL constraints.

The implementation details of these OCL constraints along with associated operations are

provided in ‎Appendix A. These OCL constraints are able to enforce the well-formedness

of FMM-based models. ‎Figure 62 on page 160 illustrates the result of validating a sample

pattern family against the constraints.

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 49

Table 1 OCL constraints implemented to ensure the integrity of FMM-based models

Context OCL Constraints

PF

inv UniquePFName
inv UniquePatternNameInPF
inv UniquePatternMainGoalInPF
inv UniqueEvalStrategyNameInPF

C1
C2
C3
C4

Pattern

inv UniqueBusinessStrategyNameInPattern
inv OnlyLeavesRefine
inv CorrectLeafMainGoalRefinement
inv NoOrphanPattern
inv NoCircularDefiningPatternExist
post businessStrategyCollectionisDone
post addGMBBisDone
post addBizSisDone
post removeBizSisDone

C5
C6
C7
C8
C9
P1
P2
P4
P5

GoalModelBuildingBlock
(GoalModelBB)

inv UniqueIntenionNameInGMBB
inv UniqueElementLinkNameInGMBB
inv JustOneMainGoal
post leafCollectionisDone
post mainGoalisDone

C10
C11
C12
P6
P7

Intention

inv LeavesBeingRefined
inv ElementsAreIncludedInRelatedBSTs
inv EitherMainGoalOrLeaf
inv LeavesAreConnected
inv MainGoalsAreConnected
inv MiddleGoalsAreConnected
inv AllPossibleRefiningLeafConnected
inv NoMiddleIntentionPossibleRefinement
inv NoDanglingMiddleIntention
inv LeavesHaveOneMainGoal
inv MainGoalsHaveAtLeastOneLeaf

C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23

BusinessProcess
BuildingBlock

(BusinessProcessBB)
inv UniqueProcessElementNameInBPBB C24

ElementLink inv DifferentSourceDestination C25

3.3.2 Examples of OCL Constraints

This section discusses two of the constraints for presenting how OCL constraints main-

tain the integrity of FMM-based pattern families.

Preventing Circular Pattern Definitions

The capability that patterns in a pattern family can refine or be refined by other patterns

in the family is one of the strengths of the GoPF framework. The framework metamodel

provides the foundation for creating such refinement links. This is done by setting pat-

ternDef of leaf goals of a pattern, which can be potentially refined, to the refining pat-

terns. The refining pattern can in turn be further refined by other patterns. For exam-

ple, ‎Figure 17 illustrates that the Data Collection pattern refines the Increase Patient

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 50

Safety pattern while also being refined by the Outcome Data Collection and Process Da-

ta Collection patterns.

Circular refinement happens when two patterns refine each other, directly or indi-

rectly. Direct refinement happens when two patterns mutually refine each other without

any other pattern in between. For example, in ‎Figure 17, if the Increase Patient Safety

pattern were to refine the Data Collection pattern, this would form a direct circular re-

finement. Indirect circular refinement happens when more than two patterns form a circu-

lar chain of refinements. In ‎Figure 17, if the Increase Patient Safety pattern were to re-

fine the Outcome Data Collection pattern, an indirect circular refinement would be

formed.

Considering that the GoPF framework uses refinement for discovering and ex-

tracting details of solutions to recurring problems, circular refinements represent incor-

rect structures in the pattern family and prevent the discovering, extracting, and maintain-

ing processes. The framework metamodel alone does not prevent circular refinements. It

hence needs to be supplemented by an OCL invariant to ensure pattern families do not

include such refinements:

context Pattern
inv NoCircularDefiningPatternExist:

self.DefiningPatternSet()->excludes(self)

This invariant ensures that a pattern is not included in the set of its directly or indirectly

refining patterns. In order to retrieve the set of refining patterns, and because OCL does

not support transitive closure as a first-class construct of the language, there is a need to

define two OCL operations, represented in ‎Table 2, for the metaclass Pattern.

The first OCL operation, DownPatternSet, is recursive. It takes a set of patterns

as input, finds all the patterns refining any member of the set, adds them the set, and re-

cursively calls the operation with the new resulting set. This will continue until no new

refining pattern is found. This happens when the resulting pattern set is equal to the set

received as parameter. The final set represents all the patterns that directly or indirectly

refine the initial set of patterns. This set is returned as the result of this OCL operation.

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 51

DefiningPatternSet is the second OCL operation. When DefiningPatternSet oper-

ates on a particular pattern, it initializes a set of patterns, calls the DownPatternSet opera-

tion, and returns the final refinement set. In order to create the initial set for the pattern it

operates on, DefiningPatternSet assesses patternDef links of leaf intentions of the pat-

tern’s‎goal model building block and creates an appropriate set of refining patterns. If this

set has at least one member, DownPatternSet will be invoked with this set as its initial

parameter. The result of this recursive operation represents those patterns that are directly

or indirectly refining the pattern that invokes DefiningPatternSet.

NoCircularDefiningPatternExist is an OCL invariant, and must hence be true all

the time. In order to enforce the constraint on every pattern in the family, this invariant

uses DefiningPatternSet for‎finding‎each‎pattern’s‎refinement set. If this set excludes the

pattern, NoCircularDefiningPatternExist returns true, indicating that no circular refine-

ment link has been found for that pattern. Ensuring that this invariant is true for all the

patterns in the PF prevents the family from including any circular refinements.

Table 2 OCL operations for retrieving a set of refining patterns

DownPatternSet(s:Set(Pattern)):Set(Pattern) =
 if s->includesAll(s.GMBB.intention.patternDef->asSet())
 then s
 else DownPatternSet(s->union(s.GMBB.intention.patternDef->

 asSet()))
 endif
DefiningPatternSet():Set(Pattern) =
 if self.GMBB.intention.patternDef->asSet()->size() > 0
 then
 DownPatternSet(self.GMBB.intention.patternDef->asSet())
 else null
 endif

‎Figure 19 (a) shows the result evaluation of the NoCircularDefiningPatternExist OCL

constraint against the sample patient safety pattern family presented in ‎Figure 18. This

constraint is evaluated to true because the pattern family is well formed. On the contrary,

the pattern family presented in ‎Figure 20 includes a circular refinement relationship be-

tween patterns. In this PF, Increase Patient Safety (p1) is refined by Data Collection (p2)

through a patternDef link from Collect Data (C) to p2. Next, Data Collection (p2) is re-

fined by Outcome Data Collection (p3) through a patternDef link from Collect Outcome

Data (O) to p3. Finally, there is an erroneous refinement relationship from Outcome Data

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 52

Collection (p2) to Increase Patient Safety (p1) because of the patternDef link from Ana-

lyze Observations (N) to p1. Consequently, as can be seen in ‎Figure 19 (b), NoCircu-

larDefiningPatternExist is correctly evaluated to false, hence expressing the existence of a

circular refinement relationship amongst the patterns. Finally, as illustrated in ‎Figure 21

(a), an investigation of the NoCircularDefiningPatternExist violation in USE makes it

possible to locate the circular refinement chain and possibly take steps to solve the indict-

ed problems.

Figure 19 Validation of OCL constrains for preventing circular defining pattern and for

dangling intentions

(a)
validation

of OCL
constraints

against
sample
Patient

Safety PF

(b)
validation

when
circular

definition
exist

(c)
validation

when
dangling
middle

intention
exist

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 53

Figure 20 A pattern family with circular refinement patterns and dangling intentions

X
is

 D
an

gl
in

g
In

te
nt

io
n.

 U
nl

ik
e

T,

it
 is

 n
ot

 a
 m

ai
nG

oa
l a

nd
 u

nl
in

k
V

or

 Z
 it

 is
 n

ot
 a

 le
af

. I
n

ot
he

r
w

or
ds

, T
hi

s
pa

tt
er

n
fa

m
ily

vi

ol
at

es
 O

C
L

co
ns

tr
ai

nt
 C

21

A
 c

ir
cu

la
r

re
fi

ne
m

en
t

ex
is

t:
p1

 t
o

p2
 t

hr
ou

gh
 C

, p
2

to
 p

3
th

ro
ug

h
O

, a
nd

 p
3

to
 p

1
th

ro
ug

h
N

. I
n

ot
he

r
w

or
ds

, t
hi

s
pa

tt
er

n
fa

m
ily

 v
io

la
te

s
O

C
L

co
ns

tr
ai

nt

C
9

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 54

Figure 21 Investigation of the source of OCL violations in the examples

As
 E

xp
ec

te
d,

 O
CL

 e
xp

re
ss

io
n

is
 e

va
lu

at
e

to
 fa

ls
e

fo
r p

1,
p2

,
an

d
p3

. T
he

se
 p

at
te

rn
s

ar
e

pa
rt

 o
f a

 c
irc

ul
ar

 re
fin

in
g

ch
ai

n.

U
S

E
 m

a
ke

s
it

p
o

ss
ib

le
 t
o

in
ve

st
ig

a
te

 t
h

e
 p

ro
b

le
m

 b
y

n
a

vi
g

a
tin

g
 t
o

 t
h

e
 in

te
n

tio
n

th
a

t
fo

rm
 a

 c
ir
cu

la
r

ch
a

in
.

(b
) I

nv
es

tig
at

io
n

of
 v

io
la

tio
n

of

N
oD

an
gl

in
gM

id
dl

eI
nt

en
tio

n
fo

r s
am

pl
e

pa
tie

nt
 s

af
et

y
pa

tt
er

n
fa

m
ily

(a
) I

nv
es

tig
at

io
n

of
 v

io
la

tio
n

of

N
oC

irc
ul

ar
D

ef
in

in
gP

at
te

rn
Ex

is
t

fo
r s

am
pl

e
pa

tie
nt

 s
af

et
y

pa
tt

er
n

fa
m

ily

As
 E

xp
ec

te
d,

 O
CL

 e
xp

re
ss

io
n

is
 e

va
lu

at
e

to
 fa

ls
e

fo
r X

. T
hi

s
is

 a
 d

an
gl

in
g

in
te

nt
io

n
w

hi
ch

do

es
n’

t h
av

e
an

y
le

af

co
nt

rib
ut

in
g

to
 it

.

It
 is

 p
os

si
bl

e
to

 d
ril

l d
ow

n
to

th

e
so

ur
ce

 o
f v

io
la

tio
n

an
d

fin
d

th
e

vi
ol

at
in

g
in

te
nt

io
n

(X
).

‎Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 55

Preventing Dangling Middle Intentions

An intention in goal model building blocks could be a leaf, a main goal, or neither. In the

latter case, the intention is located somewhere in the middle of the hierarchical goal mod-

el. In the GoPF framework, all intentions are directly or indirectly connected to leaf in-

tentions. Therefore, goal models are well-formed only when intentions have at least one

leaf from the same goal model building block that directly or indirectly contributes to

their satisfaction. The FMM lays down the foundation for creating goal models within the

goal model building blocks but it does not enforce the above restrictions on intentions.

Ensuring the well-formedness of goal model building blocks requires the presence of the

following OCL invariants, which must evaluate to true for all the intentions in the goal

model building blocks.

context Intention
inv NoDanglingMiddleIntention:

not (self.leaf or self.mainGoal)
implies
(DownIntentionSetFromSelf() -> exists(i|i.leaf))

In order to apply this invariant, two OCL operations on intentions are defined in ‎Table 3.

Table 3 OCL operations for retrieving a set of intentions

DownIntentionSet(s:Set(Intention)):Set(Intention) =
 if s ->includesAll(s.ELt.fromLink()->asSet())
 then s
 else DownIntentionSet(s->union(s.ELt.fromLink()->asSet()))
 endif

DownIntentionSetFromSelf():Set(Intention) = DownIntentionSet (Set{self})

DownIntentionSet is a recursive OCL operation in charge of finding and returning a final

set of intentions, which are directly or indirectly contributing to the satisfaction of an

initial set of intentions passed as a parameter. To achieve this, DownIntentionSet takes a

set of intentions, finds the other intentions that are contributing to their satisfaction, adds

them to the set it received as parameter, and re-invokes the operation with the new set.

DownIntentionSet continues to execute until all the intentions on the downside of the

original set in the goal model (those that are contributing to the set) are discovered and

included. Finally, the resulting set is returned.

‎Chapter 3. Framework Metamodel (FMM) - Summary 56

DownIntentionSetFromSelf operates on an intention and returns a set of intentions

from the same goal model building block that directly or indirectly contribute to the satis-

faction of this intention. For this purpose, DownIntentionSetFromSelf creates the initial

set with the intention that it operates on as the only member. It then passes the initial set

to DownIntentionSet and returns the resulting set received from DownIntentionSet.

NoDanglingMiddleIntention is the OCL invariant enforcing the well-formedness

of pattern families by preventing goal model building blocks from containing dangling

intentions. For this purpose, this invariant must evaluate to true for every intention of all

goal model building blocks. When encountered by an intention that is not a leaf or a main

goal, the DownIntentionSetFromSelf operation invoked by this invariant finds the set of

intentions that are contributing to that intention. The invariant returns true only if the in-

tention is directly or indirectly connected to at least one leaf goal. In other words, this

invariant indicates that no dangling intention exists in the goal model building blocks.

‎Figure 19 (a) shows the result evaluation of the NoDanglingMiddleIntention OCL

constraint against the sample patient safety pattern family presented in ‎Figure 18. This

constraint is evaluated to true because the pattern family is well formed. On the contrary,

the pattern family presented in ‎Figure 20 includes a dangling intention. In this PF, Dan-

gling Intention (X) is included in the goal model building block of Take Action (p4). It is a

dangling intention because it is not a mainGoal or a leaf and yet none of the leaves con-

tributes to it. Consequently, as can be seen in ‎Figure 19 (c), NoDanglingMiddleIntention is

correctly evaluated to false, hence expressing the existence of a dangling intention in the

pattern family. As illustrated in ‎Figure 21 (b), it is possible to investigate violations to

NoDanglingMiddleIntention for finding the exact dangling intentions and take relevant

actions for removing them.

3.4 Summary

This chapter described foundational elements of the GoPF framework, together with a

metamodel that formalizes the concepts related to families of patterns (PFs). URN al-

ready supports some of the basic concepts of GoPF. To further benefit from the standard

language, supporting concepts, and existing tools, URN is profiled to formalize FMM. In

particular, the concepts for which URN did not have a direct equivalent have been

‎Chapter 3. Framework Metamodel (FMM) - Summary 57

mapped to URN concepts, but with stereotypes captures as metadata. URN links are used

to capture new associations in the metamodel. Finally, OCL constraints are introduced to

enforce well-formedness of FMM-based pattern families as well as the stricter associa-

tion multiplicities found in the framework metamodel.

The next section is concerned with a method for creating pattern families, which

are instances of the metamodel just presented.

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 58

Chapter 4. BUILDING PATTERNS AND PATTERN FAMILIES

This chapter represents how FMM-based patterns and families are created for a particular

domain. This is done by building patterns and going through family creation. ‎Figure 22

gives an overview of the process used to create, evolve, and apply a PF. Note that many

UCMs in this chapter actually describe how to use the GoPF framework rather than arti-

facts (patterns) produced by GoPF.

In order to build patterns, recurring problems and solutions must be located. Lo-

cating recurrences takes place by analyzing goal and business process models for organi-

zations in a particular domain as well as by interviewing stakeholders and domain ex-

perts. Using these means helps to reveal the recurring problems and solutions, which to-

gether are used for building patterns. These patterns are then organized in a new PF or

used to evolve an existing one. Then the new or evolved PF can be used for customizing

and extracting models for a particular organization. This chapter focuses on locating re-

currences and on building patterns and families.

Figure 22 Overview of a process for creating, evolving and applying PFs

4.1 Building Patterns

In order to create a pattern family, the PF analyst must first form patterns by locating

recurrent problems and recurrent solutions (best practices) for each pattern. These prob-

lems and solutions are those that can be reused to model the business goals and business

Martica
Highlight

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 59

processes in a hierarchical fashion (this approach can be taken recursively to refine the

solutions).

4.1.1 Locating Recurring Problems

The PF analyst has three means for finding the recurring problems, as described in ‎Figure

23. First, she considers a problem as recurring when it has been observed repeatedly in

the requirements models over time and at different organizations (or units). A problem is

also recurring if similar types of domain stakeholders in different organization are high-

lighting it as an issue to be addressed. Finally, domain experts with a good understanding

of the problems in the domain can reveal recurring problems.

Figure 23 Locate a recurring problem in a particular domain

When a recurring problem is located, the PF analyst captures pieces of the goal model

containing the corresponding knowledge in the form of a goal model building block.

Such block includes a main goal representing a recurring problem as well as recurring

intentions that may contribute to its satisfaction (see ‎‎Figure 24, where side effects and

conditions have been hidden for simplicity). ‎Figure 25 represents an extracted goal model

building block that includes Minimize Costs of Infrastructure as its side-effect intention as

well as Healthcare Procedures Are Complicated as its condition. Each goal model build-

ing block represents one stakeholder’s problem together with elements of solution.

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 60

It is important to note that goal model building blocks are at different levels of ab-

straction. This allows for contributing intentions in one block be considered as the main

goals in other blocks. For instance, as shown in ‎Figure 24, Collect Data is part of the so-

lution for Increase Patient Safety whereas it becomes the main goal of the Data Collec-

tion goal model building block, where contributing intentions to Collect Data are cap-

tured. In such a hierarchy, higher-level goals are more abstract and intentional. They are

consequently satisfied by those goals that are less abstract and more operational. The

lowest-level goals typically represent concrete choices available to an organization. Us-

ing these goal models for extending an organizational goal model helps shaping and de-

signing the required business processes along the way.

The UCM shown in ‎Figure 26 gives an overview of the steps a PF analyst must

carry out for building pattern and families. This process includes the locating recurring

problem stub that invokes the process explained in this section (‎Figure 23) and uses the

located recurring problem for creating a goal model building block. As can be seen in this

UCM, recurring problem locations and the consequent creation of goal model building

blocks are iterative activities that include interactions with stakeholders and experts in the

domain.

4.1.2 Locating Recurring Solutions

The PF analyst locates recurring solutions for the problems found in the previous step.

These solutions are the best practices (e.g., workflows, procedures, protocols, etc.) used

to address a recurring issue or requirements in the domain. Similar to recurring problems,

there are three important means for PF analysts to locate such recurrences. First, the PF

analyst considers a solution as recurring when previous observations show its common

use for addressing a problem. A solution is also considered as recurring when similar

types of stakeholders in different organizations consider it as a means of addressing a

common problem in their domain. Finally, domain experts who know about common

problems can highlight the recurring solutions that are practiced by organizations in that

domain. As illustrated in ‎Figure 27, interviewing domain stakeholders and domain ex-

perts and analyzing the existing process models enable PF analyst to use the aforemen-

tioned sources of knowledge for locating recurring solutions.

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 61

Figure 24 Extracting goal model building blocks

Existing Goal

Model

Initial Goal

Model

Building

Blocks

Goal Model Building Block

Goal Model Building Block

Goal Model Building Block Goal Model Building Block

Goal Model Building Block

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 62

Figure 25 Example of an extracted goal model building block

A
 c

o
n

d
it
io

n
 e

n
a

b
le

s
 c

a
p

tu
ri
n

g

c
o

n
d

it
io

n
s
 o

f
a

 p
a

rt
ic

u
la

r

o
rg

a
n

iz
a

ti
o

n
 i
n

to
 a

c
c
o

u
n

t
w

h
e

n

c
a

lc
u

la
ti
n

g
 t
h

e
 s

a
ti
s
fa

c
ti
o

n
 o

f

m
a

in
 g

o
a

l
o

f
G

M
B

B
.

A
 s

id
e

 e
ff
e

c
t
in

te
n

ti
o

n
 e

n
a

b
le

s

c
a

p
tu

ri
n

g
 t
h

e
 e

ff
e

c
t
o

f
a

 d
e

c
is

io
n

o
n

 o
th

e
r

in
te

n
ti
o

n
s
 o

f
a

 p
a

rt
ic

u
la

r

o
rg

a
n

iz
a

ti
o

n
.

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 63

Figure 26 Process of building patterns and pattern families

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 64

Figure 27 Locate a recurring solution in a particular domain

This approach helps the PF analyst to locate well-known recurring solutions for the same

recurring problem. Each of these solutions is captured as a business process composed of

elements, e.g., sub-processes, which are contributing to the main goal of the goal model

building block representing the recurring problem. In other words, each solution repre-

sents a process implying an arrangement of contributing elements for addressing a com-

mon problem. Ideally, these elements have a counterpart, i.e., a contributing intention, in

the captured goal model building block representing to the main goal. However, in prac-

tice this can only be achieved through a series of iterations as illustrated in ‎Figure 26.

While finding these elements and their arrangements, the PF analyst also captures the

effects of each solution on the counterpart intentions of the respective goal model build-

ing block.

The recurring solutions and their effects are captured in the form of pairs of busi-

ness process building block and evaluation strategy. Each business process building block

is a UCM map that represents how a goal is satisfied and provides the ordering of ele-

ments of solutions, i.e., stubs and responsibilities. The bottom half of ‎‎Figure 29 shows

collections of business process building blocks, in which each member provides one pos-

sible way of fulfilling a goal shared by all members. Although all of these business pro-

cess building blocks address a common goal, there are variations among the members of

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 65

the collection that may lead to differences in the quality of achieving the common goal

and in the conditions associated with a member. The PF analyst uses URN-based evalua-

tion strategies for capturing these differences. Consequently, she pairs a business process

building block and the relevant evaluation strategy to form business strategies. ‎Figure 28

illustrates the sub-process for building business strategies, which is invoked by the main

UCM for building patterns and families presented ‎Figure 26.

‎Figure 30 (a) shows the goal model building block for the Increase Patient Safety

pattern and two related business strategies. For instance, the first business strategy, de-

picted in ‎Figure 30 (b), captures a recurring solution commonly used by small healthcare

organizations or units. Its business process building block shows the arrangement of sub-

processes, i.e., Collecting Data and Generating Informative Outcome Information. The

corresponding evaluation strategy shows that Collect Data and Generate Informative

Outcome Information are the contributing elements of the goal model building block af-

fected by this solution. The second business strategy in ‎Figure 30 (c) represents a differ-

ent solution and its corresponding effects. This solution is comprehensive compared the

first solution because not only it collects data and generates information but it also uses

them systematically to improve the procedures in a healthcare institute.

Figure 28 Build business strategy

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 66

Figure 29 Collecting business process building blocks that address the problems in goal

model building blocks

Goal Model

Building

Blocks

Goal Model Building Block

Goal Model Building Block

Goal Model Building Block Goal Model Building Block

Goal Model Building Block

Business Process Building Block
Business Process Building Block

Business Process Building Block

Collection of Business Process Building Blocks

Business Process Building Block
Business Process Building Block

Business Process Building Block

Collection of Business Process Building

Blocks

Business Process Building Block
Business Process Building Block

Business Process Building Block

Collection of Business Process Building Blocks

Business Process Building Block
Business Process Building Block

Business Process Building Block

Collection of Business Process Building Blocks

Business Process Building Block
Business Process Building Block

Business Process Building Block

Collection of Business Process Building Blocks

Collections

of Business

Process

Building

Blocks

‎Chapter 4. Building Patterns and Pattern Families - Building Patterns 67

Figure 30 Goal model building block and business strategies for Increase Patient

Safety Pattern

B
u

s
in

e
s
s
 P

ro
c
e

s
s
 B

u
ild

in
g

 B
lo

c
k

B
u

s
in

e
s
s
 P

ro
c
e

s
s
 B

u
ild

in
g

 B
lo

c
k

G
o

a
l
M

o
d

e
l
B

u
ild

in
g

 B
lo

c
k

E
v
a

lu
a

ti
o

n
 S

tr
a

te
g

y

E
v
a

lu
a

ti
o

n
 S

tr
a

te
g

y

(b
)

B
u

s
in

e
s
s

S
tr

a
te

g
y
:

A
d

-h
o

c

(c
)

B
u

s
in

e
s
s

S
tr

a
te

g
y
:

C
o

m
p

re
h

e
n

s
iv

e

(a
)

G
o

a
l
M

o
d

e
l

B
u

ild
in

g
 B

lo
c
k
:

In
c
re

a
s
e

 P
a

ti
e

n
t

S
a

fe
ty

E
a

c
h

 B
u

s
in

e
s
s
 P

ro
c
e

s
s
 B

u
ild

in
g

B
lo

c
k
 i
s
 a

 r
e

c
u

rr
in

g
 s

o
lu

ti
o

n

c
o

n
tr

ib
u

ti
n

g
 t
o

 t
h

e
 m

a
in

 g
o

a
l
o

f

G
o

a
l
M

o
d

e
l
B

u
ild

in
g

 B
lo

c
k

E
v
a

lu
a

ti
o

n
 S

tr
a

te
g

y

c
a

p
tu

re
s
 t
h

e
 e

ff
e

c
ts

 o
f

a
 s

o
lu

ti
o

n
 o

n

c
o

u
n

te
rp

a
rt

 i
n

te
n

ti
o

n
s

E
a

c
h

 B
u

s
in

e
s
s
 S

tr
a

te
g

y
 i
s

c
o

m
p

o
s
e

d
 o

f
a

 B
u

s
in

e
s
s

P
ro

c
e

s
s
 B

u
ild

in
g

 B
lo

c
k
 a

n
d

re
s
p

e
c
ti
v
e

 E
v
a

lu
a

ti
o

n
 S

tr
a

te
g

y

‎Chapter 4. Building Patterns and Pattern Families - Family Creation 68

4.1.3 Forming Patterns

After locating recurring problems and solutions, the PF analyst combines a goal model

building block together with the corresponding business strategies and forms a pat-

tern. ‎Figure 31 describes the approach for forming an FMM-based pattern. ‎Figure 30 il-

lustrates composing elements of the Increase Patient Safety pattern.

As shown in ‎Figure 26, building patterns is carried out iteratively by invoking the

sub-processes found in ‎Figure 31. The optional paths in ‎Figure 31 enable the gradual de-

velopment of a pattern, when new knowledge discovered through interactions with stake-

holders or experts can be combined with an existing pattern. For instance, the Increase

Patient Safety pattern may be first built by combining one goal model building block

(‎Figure 30 (a)), and one business strategy for ad-hoc improvement (‎Figure 30 (b)). In a

subsequent iteration, another business strategy (‎Figure 30 (c)) is added when interactions

with domain experts highlight the comprehensive approach for increasing patient safety.

 In addition, realization links are established between the goals in the goal model

building blocks and the elements in the business process building blocks. The patterns are

then used as input for the family creation method.

Figure 31 Forming a pattern using the components built when locating recurring

problems and solutions

4.2 Family Creation

Family creation is a method for building pattern families. Family creation is a special

case of family evolution of an initially empty PF by using the extension algorithm (ex-

plained in the next chapter). As illustrated in ‎Figure 26, after patterns are built using the

(a) Build
Pattern

Stub

(b) Add
Business
Strategy

Stub

‎Chapter 4. Building Patterns and Pattern Families - Case Study 69

located recurring problems and solutions, they are used as input for building a pattern

family. If no pattern family exists for the domain, a new pattern family is built by evolv-

ing it from an empty one (family creation). On the other hand, if a PF for the domain al-

ready exists, instead of creating a new pattern family, the captured patterns are used for

evolving the existing family.

‎Figure 32 shows this process and highlights its iterative nature. During the pro-

cess of building family by evolutionary mechanisms, refinement links are being estab-

lished to capture the refining relationship between a new pattern and existing patterns in a

family. Section ‎5.2.3 on page 79 shows how the extension algorithm is used to add a pat-

tern to an empty PF.

Figure 32 Add a newly built pattern to a pattern family

4.3 Case Study

This section illustrates how a PF analyst locates recurrences to form patterns.

4.3.1 Locating Recurrences: Example 1

The PF analyst analyzes the goal models and business process models created in the field

of patient safety. The top of ‎Figure 24 shows part of the goal model that was created by

observing different departments (Cardiac Surgery Intensive Care, Intensive Care, and

General Internal Medicine) of a real teaching hospital in Ontario between September

2008 and September 2009. Increase Patient Safety is an abstract, recurring requirement

in different hospital departments and in other healthcare institutions. The bottom half the

figure represents the recurrent pieces of goal models in the form goal model building

blocks. ‎Figure 33 shows the Increase Patient Safety goal model building blocks in more

details, including the contributions of Collect Data, Generate Informative Outcome In-

‎Chapter 4. Building Patterns and Pattern Families - Case Study 70

formation, Make Decision, and Apply Knowledge to the realization of Increase Patient

Safety and all side-effects (on quality and cost) as well as dependencies (on advanced

infrastructure).

Two strategies have been located in the business process models that correspond

to this goal model building block (see ‎Figure 34). The first strategy (A) includes only the

sub-goals Collect Data and Generate Informative Outcome Information and is described

in more detail by the top business process building block in ‎Figure 34. The business pro-

cess building block shows that collecting data occurs before generating information. The

second strategy (B) includes also the two other sub-goals, namely Make Decision and

Apply Knowledge, and adds these activities to its business process building block (bottom

of ‎Figure 34).

Then Collect Data, Generate Informative Outcome Information, Make Decision,

and Apply Knowledge are respectively linked (with URN links) to the Collecting Data,

Generating Informative Outcome Information, Making Safety Decision, and Adopting

Decision stubs in both business process building blocks in ‎Figure 34. All GRL and UCM

models linked together constitute the Increase Patient Safety pattern. ‎Figure 40 illus-

trates this pattern. The created pattern is then used as the input for creating a new PF by

extending an initially empty PF (an approach explained in detail in the next chapter).

‎Chapter 4. Building Patterns and Pattern Families - Case Study 71

Figure 33 Goal model building block for Increase Patient Safety

Figure 34 Business process building blocks for Increase Patient Safety

Increase Quality of
Care in Long Term

«external» Decrease Costs
«external»

Deploy Advanced
Infrastructure

«external»

Goal Model Building Block

Increase Patient

Safety «main»

1st Strategy: A

Generate

Informative Outcome

Information

Collect

Data
Make Safety

Decision

Adopt

Decision

A

A

B

B

B

B

50

50
50

50

2nd Strategy: B

25 25

75

75

-25
-25

Making Safety

Decision

Adopting

Decision

Business Process Building Block

Collecting

Data

Generating Informative

Outcome Information

Business Process Building Block

Collecting

Data

Generating Informative

Outcome Information

A

B

1st Strategy: A 2nd Strategy: B

‎Chapter 4. Building Patterns and Pattern Families - Case Study 72

4.3.2 Locating Recurrences: Example 2

The satisfaction of the four sub-goals of goal model building blocks in the Increase Pa-

tient Safety pattern (‎Figure 33) can in turn be described in another layer of more detailed

patterns. This section briefly illustrates the creation of a pattern that refines Collect Data.

‎Figure 35 presents such a goal model building block, located by the PF analyst.

The Collect Data goal requires two sub-goals of its own (Collect Outcome Data and Col-

lect Process Data). ‎‎Figure 36 represents the three corresponding strategies (C, D, and E,

i.e., one, or the other, or both in parallel). Then, Collect Outcome Data and Collect Pro-

cess Data are linked to the Collecting Outcome Data and Collecting Process Data stubs

in the business process building blocks (i.e., UCMs in ‎Figure 36). Finally, this goal mod-

el building block together with the business process building blocks form the Collect Da-

ta pattern.

Figure 35 Goal model building block for Collect Data

Increase Quality of
Care in Long Term

«external»

Goal Model Building Block

Collect Data

«main»

Collect

Outcome Data

C E D E

Collect

Process Data

1st Strategy: C 2nd Strategy: D

3rd Strategy: E

50 50

25
75

‎Chapter 4. Building Patterns and Pattern Families - Summary 73

Figure 36 Business process building blocks for Collect Data

In addition, the PF analyst locates the refinement link between the Collect Data in the

Increase Patient Safety pattern and the Collect Data pattern. This will be used when pre-

paring the inputs for the extension algorithm so the refinement relationship will be estab-

lished in the PF.

4.4 Summary

This chapter explained how the PF analyst builds patterns by locating recurring problems

and solutions within a domain. A pattern that captures this knowledge contains a goal

model building block, business strategies (i.e., pairs of business process building block

and evaluation strategy), and realization links between business goals and business pro-

cesses that loosely couple goals in the goal model building block with model elements in

the business process building blocks.

This chapter also illustrated how the PF analyst generates patterns by locating the

recurrent pieces of goal models and business processes models in patient safety and con-

sequently uses these patterns as inputs of evolution mechanisms for creating a PF. Such

mechanisms, which can also be used to create a first PF from a collection of patterns, are

discussed in the next chapter.

Business Process Building Block

Collecting

Outcome Data

Business Process Building BlockC

E

Collecting

Process Data

Business Process Building BlockD

Collecting

Outcome Data

Collecting
Process Data

1st Strategy: C 2nd Strategy: D 3rd Strategy: E

‎Chapter 5. Pattern Family Evolution - Motivation and Overview 74

Chapter 5. PATTERN FAMILY EVOLUTION

The Family Evolution method is comprised of a collection of solutions for maintaining

the quality and accuracy of patterns in a pattern family. This is an important part of the

Family Development Method (FDM) that enables ongoing development and improve-

ment of a pattern family over their life span, especially as pattern families and patterns

need to adapt to changes in the business domain.

5.1 Motivation and Overview

A Pattern Family (PF) captures the knowledge about recurring solutions that answer re-

curring problems in a specific context within a particular domain. When a PF is created

for a domain, it can be used by another organization in that domain for finding and reus-

ing solutions to a known problem that the particular organization is facing. This is done

through‎customizing‎and‎extending‎solutions‎by‎“applying”‎a‎PF (with the OCEM meth-

od), as will be discussed in ‎Chapter 6.

However,‎stakeholders’‎ requirements‎ in‎any‎domain‎are‎dynamic‎and‎constantly‎

changing, which in turn leads to emerging new problems that must be addressed. Con-

stant updates to requirements are caused by changes within the domain and outside of the

domain. For instance, when a government introduces new legislation to improve patient

safety in the healthcare domain (e.g., through stricter reporting of C.difficile cases and of

other infections ‎[131]), healthcare organizations must change their process to comply.

Consequently, this compliance can affect the current way of dealing with a particular

problem in the domain. Furthermore, when new successful practices gain recognition in

the healthcare domain, stakeholders of other healthcare organizations will ask for these

new practices to be integrated to their own. Thus in the long term, a PF can remain useful

only if it can be evolved to comply with ongoing changes.

In the GoPF framework, the PF analyst is a domain-specialized modeler who is

interested in creating and evolving a PF for a particular domain. The PF analyst observes

the goal models and business processes of the organizations in the domain, and inter-

‎Chapter 5. Pattern Family Evolution - Motivation and Overview 75

views with domain stakeholders as well as with domain experts in order to discover re-

curring problems and solutions. ‎Figure 23 on page 59 and ‎Figure 27 on page 64 represent

the location of recurring problems and solutions, respectively. ‎Figure 26 on page 63 illus-

trate how located problems and solutions are used for building patterns and families.

When new observed patterns are related to a particular PF, the Family Evolution method

will help maintaining this PF. On the other hand, when the PF analyst observes many

new and unrelated patterns, then creating a new PF may be considered. Creating PFs is a

special case of evolution in which Family Evolution mechanisms are used repeatedly on

an initially empty PF.

Extension, modification, elimination, and combination are four types of evolution

mechanisms (‎Figure 37) that help keep the patterns in a PF up-to-date ‎[132]‎[133]. They

maintain the usefulness of a PF by increasing the quality and accuracy of its patterns and

their interrelationships. They can address current problems and solutions that stakehold-

ers within the domain are facing. These mechanisms respectively change a PF by (i) add-

ing a new pattern, (ii) modifying a current pattern, (iii) eliminating an obsolete pattern,

and (iv) combining two PFs that represent problems of the same domain. Each of these

mechanisms keeps the integrity of the changing PF in addition to evolving individual

patterns. Although the extension and elimination mechanisms would be functionally suf-

ficient by themselves to maintain PFs, the modification and combination mechanisms

provide additional and much needed usability, especially for micro-evolutions (through

modifications addressing fine-grained changes) and macro-evolutions (through combina-

tions addressing large-scale changes).

Gradual changes of patterns in a PF in response to changes in a domain resembles

the concept of evolution in biology. However, changes in the GoPF framework are en-

forced by analysts based on their understanding of the domain, which differs from the

source of changes in biology where changes are mutations providing survival advantages.

Evolution in this thesis actually refers to adaptive maintenance activities in conventional

software evolution, which are (manual) modifications of a software product (or pattern)

performed after delivery to keep it usable in a changed or changing environment. Evolu-

tion here is therefore not related to biology or to automatic evolutionary algorithms from

the artificial intelligence community.

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 76

A Java program was created to implement these algorithms and test these four

evolution mechanisms. This program, discussed further in ‎Chapter 7, demonstrates the

feasibility of the algorithms, but it does not include advanced features such as rollback in

case of errors. In addition, the performance of the program was not considered, as usually

modification to pattern families (even complex ones) can be handled in less than a se-

cond.

The following four sections of this chapter provide detailed algorithms for each

evolution mechanism.

Figure 37 Evolution UCM

5.2 Extension Mechanism

When observing organizations and their processes reveals that a relevant pattern is not

included in a PF, the Extension Mechanism helps the PF analyst add the new pattern to

the PF and integrate it with the existing patterns within the family. The Extension Mech-

anism is composed of three major steps (‎Figure 38). First, it modifies those patterns that

are affected by the new pattern, then it adds the new pattern to the PF, and, finally, it

connects the new pattern to related patterns. In the latter step, all the patterns that are re-

fined by the new pattern are first connected to the extending pattern and then the new

pattern is also connected to those patterns that refine it.

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 77

Figure 38 Main steps of the Extension Mechanism

In the following, the extension algorithm is presented, described, and finally illustrated

through two examples.

5.2.1 Extension Algorithm

Algorithm 1 provides inputs, outputs, and steps of the extension algorithm. Algorithm

keywords and constants are in boldface whereas types (from the metamodel) are italicized.

Comments are shown between /* and */.

Inputs of the extension algorithm
I1. pf :PF /* initial pattern family */
I2. xp:Pattern /* the new extension pattern */
I3. modifications: ordered set of (rp:Pattern, link:ElementLink, action ∈ {#Add, #Delete},

 bst:BusinessStrategy, oldbst:BusinessStrategy)
where link.toLinks.isEqualTo(rp.mainGoal()) ∧

 (action == #Add ⇒ link.fromLinks.isEqualTo(xp.GMBB.mainGoal()))

Output of the extension algorithm
O1. modified pf:PF /* the original pattern family extended with xp */

Precondition and Post-conditions of the extension algorithm
Pre 1: modifications->forAll(m| rp.GMBB.intention->exists(i|i.isEqualTo(m.link.toLink)))
Post 1: modifications->forAll(m|m.action == #Add implies rp.GMBB.elementLink->includes(m.link) and

 rp.GMBB.intention->exists(i|i.isEqualTo(m.link.fromLink)))
Post 2: modifications->forAll(m|m.action == #Delete implies rp.GMBB.elementLink->excludes(m.link))
Post 3: modifications ->forAll(rp|rp.GMBB.leafCollection()->exists(i|i.isEqualTo(xp.GMBB.mainGoal())) or

xp.GMBB.leafCollection() -> exists

(i|i.isEqualTo(rp.GMBB.mainGoal())))

Steps of the extension algorithm
S1. mg:Intention = xp.GMBB.mainGoal() /* mg is the main Intention of xp */
S2. if (not modifications.isEmpty()) then
S3. modification (pf, modifications) /* related patterns are modified by using the modification mechanism*/
S4. endif
S5. pf.insert (xp) /* xp is added to pf */

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 78

S6. relatedIntentions: set of (ri:Intention) where ∃ op ∈ pf.patternCollection() ∧
 not op.isEqualTo(xp) ∧ ri ∈ op.GMBB.leafCollection() ∧ ri.isEqualTo(mg)
/* relatedIntentions represents those intentions in other patterns which are refined by xp */

S7. leafIntentions: set of (Intention) = xp.GMBB.leafCollection()
S8. foreach (i:Intention in relatedIntentions)

S8.1. i.patternDef = xp
S9. foreach (i:Intention in leafIntentions)

S9.1. foreach (p:Pattern in pf.patternCollection() where not p.isEqualTo(xp))
9.1.1. if (i.isEqualTo(p.GMBB.mainGoal())) then
9.1.2. i.patternDef = p
9.1.3. endif

Algorithm 1. Extension of PF

5.2.2 Applying the Extension Algorithm

Once observed recurrences highlight the need for adding a new pattern, the PF analyst

prepares the inputs of the extension algorithm before using it.

This algorithm takes three inputs: pf is an initial pattern family, xp is a pattern

used to extend the initial PF, and the modifications set (‎Table 4) highlights the effects that

extending pf with xp has on other related patterns of the family. The PF analyst prepares

the second and third inputs based on recurrences. As different types of modifications may

be necessary, the second, forth, and fifth elements of the modifications set may be null.

The precondition (Pre 1) ensures that the toLinks side of the link must always point to the

main goal of rp. If the action is #Add, after the execution of the algorithm, the relevant

pattern must include the link as well as fromLinks intention (post-condition 1). On the

other hand, if the action is #Delete, after the execution of the algorithm, the relevant pat-

tern must exclude the link (post-condition 2). Post-condition 3 limits the usage of the

modifications only to patterns that are refined by or that refine the extension pattern (xp).

These precondition and post-conditions prevent using the extension algorithm for merely

changing an unrelated pattern in pf. Isolated modifications of patterns must use the modi-

fication algorithm, which is described in section ‎5.3.

Table 4 Elements of the modifications ordered set in the extension algorithm

Element Description

rp A related pattern that is affected and must be modified
link A link between two intentions that highlights the part of

the goal model building block that must be modified
action An indicator of what must be done to the link
bst A new business strategy that represents a new solution
oldbst An old business strategy that must be eliminated from rp

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 79

Steps ‎S1 to ‎S9 carry out the three major activities illustrated in ‎Figure 38. Step ‎S1 initial-

izes mg with the main goal of xp’s‎goal model building block. Steps ‎S2 to ‎S4 take the

modifications set and invokes the modification algorithm (Algorithm 2) to modify related

patterns in pf. This captures the possible effects of adding xp on other patterns in PF. In

step ‎S5, the new pattern, xp, is added to pf. Although this is conceptually a simple inser-

tion of a pattern, it is in fact an in-depth copy in which every element of xp is copied into

pf. In step ‎S6, a set of leaf intentions (without any incoming links) of other patterns in pf

that are equal to the main goal of xp is assigned to relatedIntentions. This is the set of

intentions that are refined by xp. In ‎S7, the set of leaf intentions of xp’s‎goal model build-

ing block is assigned to leafIntentions. Elements of leafIntentions may be refined by other

patterns in pf. In step ‎S8, the related intentions are linked to xp by assigning xp to pat-

ternDef of intentions in relatedIntentions. Finally, in step ‎S9, intentions of xp’s‎ goal

model building block that can be refined with other patterns in pf are linked to the appro-

priate pattern by setting their patternDef accordingly.

5.2.3 Example 1: Extension of an Empty PF

Extending an empty PF is a special case of extension that initializes a new PF. This sec-

tion illustrates how to use the extension algorithm for creating a new PF in the patient

safety domain. When observing the patterns underscores the need for a new pattern fami-

ly, the PF analyst creates the inputs for the extension algorithm: pf is an empty PF (‎I1), xp

is the new pattern recognized that must be added to pf (‎I2), and modifications is an empty

set because no pattern in pf needs to be modified (‎I3).

The top half of ‎Figure 39 represents the goal model building block and business

processes templates of the Increase Patient Safety pattern. The goal model building

block (in GRL form) depicts a recurring problem (Increase Patient Safety) and elements

of solutions that influence its satisfaction (Collect Data, Generate Informative Outcome

Information, Make Safety Decision, and Adopt Decision). Business process building

blocks (in UCM form) capture the process of achieving Increase Patient Safety. In the

bottom half of the ‎Figure 39, the business process building blocks of two strategies in the

pattern are provided. Strategy A represents a solution in which Collecting Data and Gen-

erating Informative Outcome Information increase the patient safety by ad hoc improve-

ment of process brought to light by the collected data and the processing of such data.

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 80

Strategy B, on the other hand, uses Make Safety Decision and Adopt Decision in addition

to the other two elements. Consequently, it improves the quality of care by systematically

changing the underlying procedures in the hospital.

Figure 39 Top: goal model building block of xp - Bottom: business process building

blocks of xp

‎Figure 40 shows the Increase Patient Safety pattern as a UML object diagram instantiat-

ing the Family Metamodel (FMM). In order to increase readability of the diagram, ob-

jects of the ElementLink class in the metamodel are not shown. Furthermore, to make the

diagram more compact, I, C, G, M, and A are used respectively to identify the Increase

Patient Safety, Collect Data, Generate Informative Outcome Information, Make Decision,

and Adopt Decision intentions. Although the name attribute of these instances denotes the

complete name of the objects, this attribute is hidden on large diagrams in the rest of this

thesis.

Goal Template

a Business Process Templateb

Increase

Patient

Safety

Pattern a a b b bb

(Adavanced Strategy)Business Process Template(Ad-hoc Strategy)

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 81

Figure 40 Object model of Increase Patient Safety pattern

Application of the Extension Algorithm to an empty PF

Step ‎S1 initializes mg with I (Increase Patient Safety), which is the main goal of xp’s‎

goal model building block. The next three steps (‎S2, ‎S3, and ‎S4) are in charge of modifi-

cation but because the modifications set is empty, these steps do not invoke the modifica-

tion algorithm. Step ‎S5 adds xp to pf through an in-depth copy. After this step, xp be-

comes a part of pf but it is still an isolated pattern as the need for links between xp and

related patterns in pf is not yet explored. In step ‎S6, relatedIntentions is set to null be-

cause no other pattern with a leaf intention equal to mg exists in pf. In other words, the

new pattern is not refining any intention of other patterns. Step ‎S7 assigns the leaves of

xp ({C,G,M,A}) to leafIntentions. Steps ‎S8 and ‎S8.1 do not apply because relatedInten-

tions is empty. Steps ‎S9 and ‎S9.1 are applied for each element of leafIntentions. Howev-

er, because no pattern in pf refines elements of leafIntentions, no further action is taken in

steps ‎9.1.1 , ‎9.1.2 , or ‎9.1.3. ‎Figure 41 shows the output of this algorithm (‎O1) as an ob-

ject diagram. This figure represents the extended PF where Increase Patient Safety pat-

tern (xp) was added to the initially empty PF (pf).

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 82

Figure 41 Object model of an empty PF extended to include Increase Patient Safety

pattern

5.2.4 Example 2: Extension of Non-Empty PF

In this section, the extension algorithm is used for evolving a PF that is already estab-

lished and that contains some patterns.

In the patient safety case study, a pattern family comprised of 32 interrelated pat-

terns is created ‎[39]. These patterns are mostly focused on the problem of improving pa-

tient safety by highlighting processes that can be improved. The patterns in this family do

not use the data collected along the way for taking immediate actions to prevent an ad-

verse event for a particular patient. Over time, it was observed that some hospitals use

such collected data not only for a posteriori analysis but also for preventing the potential

adverse events that may happen. Consequently, the PF analyst creates a new pattern (xp)

that captures the problem of taking action to prevent predictable adverse events and its

alternative solutions. The recurring excerpt of the observed goal model that formulates

the main observed goal, Take Action, forms the goal model building block of xp (left side

of ‎Figure 42). In this goal model building block, the side effects of alternative business

strategies are hidden in order to simplify the example. The goal model building block is

composed of the main high-level goal, i.e., Take Action, and of the elements of solution,

i.e., Prioritize Outcome and Prevent Outcome. The alternative solutions are captured in

the form of business strategies that are composed of business process building blocks and

The pattern family

that now includes

“Increase Patient

Safety Pattern”

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 83

strategies. The two business process building blocks of the new pattern are shown

in ‎Figure 42 (right side).

Figure 42 Left: goal model building block of xp - Right: business process building

blocks of xp

The extension algorithm (Algorithm 1) changes the patient safety PF to include the Take

Action pattern. The analyst prepares and provides the following inputs: pf as the initial PF

that must be extended (‎I1), xp as the new pattern (‎I2), and modifications as a set that rep-

resents the needed modifications on other patterns in pf (‎I3).

The left part of ‎Figure 46 (with grey background) illustrates the initial pf as an

FMM-based UML object diagram, with only 3 out of the 32 patterns, for brevity. In this

example, the Increases Patient Safety pattern (p1) is the only pattern affected by the ex-

tension because Take Action positively contributes to the Increases Patient Safety goal.

Therefore, modifications is set to {(p1, link_I_T, #Add, bs1_3, null)}, indicating the new

goal that must be added to p1’s‎business‎goal model building block. It also indicates the

new business strategy that represents an alternative solution that must be added to

p1. ‎Figure 44 shows the business processes template of the bs1_3 business strategy as a

UCM diagram. As shown in this figure, the collected data and generated information

about the current outcome and potential outcome may be used to prevent outcomes by

taking immediate actions. Finally, because none of the existing business strategies is be-

ing eliminated, the last element of modifications set is null.

Business Process Template

Goal Template

5075

a

ba b Business Process Templateb

Take Action Pattern (xp)

1
st
 Strategy: a 2

nd
 Strategy: b

Preventing Outcome

Preventing OutcomePrioritizing Outcome

Take Action

Prevent Outcome Prioritize Outcome

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 84

Figure 43 Object model of a non-empty PF used as initial PF

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 85

‎Figure 45 illustrates xp as an FMM-based UML object diagram (objects of the Element-

Link class are not shown in favor of readability). In this diagram T, V, and Z respectively

identify intention objects for Take Action, Prevent Outcome, and Prioritize Outcome.

Figure 44 bpt1_3, which is the business process building block of bs1_3

Figure 45 Object model of xp pattern

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 86

Application of the Extension Algorithm to a non-empty PF

Step S1 initializes mg with T (Take action), which is the main goal of xp’s‎goal model

building block. Steps ‎S2, ‎S3, and ‎S4 invoke the modification method with pf and the

modifications set as its inputs. The modification algorithm (section ‎5.3) applies these

changes to the related patterns, i.e., p1, as it is the only related pattern in pf. ‎Figure 46

shows the modified pf, where the area encapsulated within the dashed box (bottom right)

represents the modifications. The details of T2 (Taking Action) at p1 level are dismissed

so when the users of pf choose a solution at p1’s‎level‎that‎includes‎T2, the solution will

be refined by using the new pattern. Step ‎S5 adds xp to pf. This is an in-depth copy of all

elements of xp into pf. After this step, xp becomes a part of pf but it is still an isolated

pattern as the links between xp and related patterns in pf are not yet established. Step ‎S6

finds those intentions that are (i) leaves of other patterns in pf and (ii) equal to the main

goal of xp’s‎goal model building block. In this example, T2 (Take Action) is a leaf inten-

tion in p1 and is equal to mg. Therefore, relatedIntentions is set to {T2}. Step ‎S7 assigns

the leaves of xp’s‎goal model building block ({V, Z}) to leafIntentions. Steps ‎S8 and ‎S8.1

set the patternDef of T2, which is the only member of relatedIntentions, to xp. This cap-

tures the fact that xp is refining the T2 intention in the goal model building block of p1.

Steps ‎S9 and ‎S9.1 are applied to each element of leafIntentions. However because no

pattern in pf refines either V or Z, no action takes place in steps ‎9.1.1 , ‎9.1.2 ,

or ‎9.1.3. ‎Figure 46 shows the output of this algorithm (‎O1). It represents the extended PF

after the new pattern xp (top-right) was added and integrated with the patterns in the ini-

tial PF (pf).

‎Chapter 5. Pattern Family Evolution - Extension Mechanism 87

Figure 46 Object model of the extended PF pf that includes the xp pattern

O
ri

g
in

al
 P

at
ie

n
t

S
af

et
y

P
F

 (
G

re
y

B
ac

kg
ro

u
n

d
)

T
ak

e
A

ct
io

n

P
at

te
rn

 (
xp

)

M
o

d
if

ic
at

io
n

s

o
f

p
1

In
cr

ea
se

 P
at

ie
n

t

S
af

et
y

P
at

te
rn

 (
p

1)

‎Chapter 5. Pattern Family Evolution - Modification 88

5.3 Modification

This section describes the algorithm for evolving a PF by modifying its patterns within a

PF. Such evolution is needed when:

I. changes in a domain indicate that the goal model building block or busi-

ness strategy of a pattern must be updated,

II. the PF is being extended with a new pattern and introducing the new pat-

tern affects a particular pattern (i.e., the way it is used within Algorithm

1), and

III. another pattern in the PF is eliminated and a particular pattern is affected.

The algorithm modifies the goal model building block to update the problem, elements of

solutions, and the contributions between the elements. Similarly, the modification of

business strategies enables the modification of solutions and their effects.

A modification is composed of three main optional and possibly cyclic steps

(see ‎Figure 47): first, it modifies the goal model building block of a pattern, then it re-

moves the old business strategy (if already present), and, finally, a new business strategy

is added (if available). The following subsections provide the details of the modification

algorithm, the general application of this algorithm, and its illustration based on a specific

example from the patient safety case study.

Figure 47 Main steps of the modification mechanism

5.3.1 Modification Algorithm

The following algorithm provides steps for modifying a PF.

‎Chapter 5. Pattern Family Evolution - Modification 89

Inputs of the modification algorithm
I1. pf:PF /* initial pattern family */
I2. modifications: ordered set of (p: Pattern, link:ElementLink, action ∈ {#Add,#Delete},

bst:BusinessStrategy , oldbst:BusinessStrategy)
 where link.toLinks.isEqualTo(p.GMBB.mainGoal())

Output of the modification algorithm
O1. modified pf:PF /* the modified pattern family */

Preconditions and post-conditions of the modification algorithm
Pre 1: pf.pattern->size()>0
Pre 2: modifications->forAll(m| p.GMBB.intention->exists(i|i.isEqualTo(m.link.toLink)))
Post 1: modifications->forAll(m|m.action == #Add implies p.GMBB.elementLink->includes(m.link) and

 p.GMBB.intention-
>exists(i|i.isEqualTo(m.link.fromLink)))
Post 2: modifications->forAll(m|m.action == #Delete implies p.GMBB.elementLink->excludes(m.link))

Steps of the modification algorithm
S1. for each m in modifications:
S2. mp:Pattern = a pattern in pf.patternCollection() where pattern.isEqualTo (m.p)

/* m.p is the first element of the m */
S3. if (m.action == #Delete) then
S4. mp.GMBB.delete(m.link)
S5. elseif (m.action == #Add) then
S6. mp.GMBB.add(m.link)
S7. endif /* if no action is provided then the GoalModelBuildingBlock is unchanged */
S8. if (m.oldbst ≠ null) then
S9. pbst:BusinessStrategy = a businessStrategy in mp.businessStrategyCollection()

 where businessStrategy.isEqualTo(m.oldbst)
S10. mp.delete(pbst)
S11. endif
S12. If (m.bst ≠ null) then
S13. mp.add(m.bst)
S14. endif

Algorithm 2. Modification of PF

5.3.2 Applying the Modification Algorithm

Once observed changes in the domain highlight the need for modifying a PF, the PF ana-

lyst prepares the inputs and uses the modification algorithm standalone or through other

evolution mechanisms to update the patterns.

The modification algorithm takes two inputs: pf is a PF in which some patterns

must be modified (‎I1), and a modifications ordered set (see the structure of its elements

in ‎Table 5) that represents the required modifications (‎I2).

Table 5 Elements of the modifications ordered set in the modification algorithm

Element Description

p A pattern that is affected and must be modified
link A link between two intentions that highlights the part of the

goal model building block that must be modified
action An indication of what must be done on the link
bst A new business strategy that represents a new solution
oldbst An old business strategy that must be eliminated from p

‎Chapter 5. Pattern Family Evolution - Modification 90

As different types of modifications may be necessary, the second, forth, and fifth ele-

ments of modifications set (‎Table 5) may be null. The first precondition prevents using

the modification algorithm on empty pattern families. The second precondition makes

sure the toLinks side of the link always points to an intention in the goal model building

block of p. The first post-condition ensures that when the action is #Add, the algorithm

adds the link as well as the link.toLinks intention‎ to‎ the‎ relevant‎ pattern’s‎ goal model

building block. The second post-condition ensures that when the action is #Delete, the

algorithm deletes the link from‎ the‎ relevant‎pattern’s‎ goal model building block. These

preconditions and post-conditions prevent using the modification algorithm for modify-

ing unrelated patterns. The output of the algorithm represents the modified pf (‎O1).

Steps ‎S2 to ‎S14 must be taken for each element of the modifications set. Step ‎S2

initializes mp with the pattern of the active member m of the modifications set. Next, in

steps ‎S3 to ‎S7, depending on the type of action, the link will be either added to

(steps ‎S3, ‎S4) or deleted from (steps ‎S5, ‎S6, ‎S7) mp’s‎goal model building block. Then, if

m.oldbst is not null, it will be deleted from mp in steps ‎S8 to ‎S11. Finally, if m.bst con-

tains a new business strategy, then it is added to mp (steps ‎S12 to ‎S14).

5.3.3 Example: Modification of a Pattern

The Modification Mechanism can be used as a standalone mechanism for modifying a

pattern within the family or it can be used through other mechanisms to update the fami-

ly. This example illustrates the details of how the modification algorithm modifies the PF

when it is used via the Extension Mechanism in the example of section ‎5.2.4. The inputs

of the modification algorithm in this example are:

(‎I1) – pf, which is the initial PF. This input is provided to the modification algo-

rithm by step ‎S3 of the extension algorithm in section ‎5.2.4. The left part of ‎Figure 46

(with grey background) represents this input.

(‎I2) – modifications set is the second input provided in ‎S3 of the extension algo-

rithm in section ‎5.2.4, which is equal here to {(p1, link_I_T, #Add, bs1_3, Null)}

Applying the Modification Algorithm

The steps (‎S2 - ‎S14) must be taken for all elements of the modifications set, which in this

case has only one member (called m). ‎S2 initializes mp with p1, i.e., the first element of

‎Chapter 5. Pattern Family Evolution - Modification 91

m. Because m.action is equal to #Add, steps ‎S5 to ‎S7 add link_I_T to the goal model

building block of p1. No action is taken in steps ‎S8, ‎S9, ‎S10, ‎S11 because m.oldbst is

null (there is no old business strategy to be deleted). The underlying object model at this

point is illustrated in ‎Figure 48.

Figure 48 Object model of the p1 pattern after modification of its goal model building

block

Steps ‎S12 to ‎S14 add the new business strategy in m.bst to p1. This business strategy

represents another solution to the problem (Increase Patient Safety) in p1. This solution

contains T2 (Take Action) along with other intentions for improving the underlying pro-

cedures. ‎Figure 44 on page 85 illustrates the business process building block of this solu-

tion. ‎Figure 49 represents p1 after the whole modification. ‎Figure 46 shows the complete

output of the modification algorithm (O1). In this particular example, the modified PF is

returned to step ‎S3 of the extension algorithm in section ‎5.2.4, which initially invoked the

modification algorithm.

‎Chapter 5. Pattern Family Evolution - Elimination 92

Figure 49 Object model of the p1 pattern after modification

5.4 Elimination

When the PF analyst observes that a pattern in the PF is no longer needed by the PF users

and does not solve current problems of the stakeholders, it is considered obsolete. Conse-

quently, it must be removed from the pattern family. This section describes the algorithm

for evolving a PF by eliminating its obsolete patterns. Elimination is composed of three

steps (‎Figure 50). First, all pattern refinement (patternDef) links from those patterns that

were refined by the obsolete pattern are removed. Next, related patterns in the family that

are being affected by elimination are modified. Then, the obsolete pattern is deleted from

the family. The elimination algorithm uses the modification algorithm for modifying the

related patterns in the family. The Elimination Mechanism does not propagate elimina-

tion of patterns, so if another pattern becomes obsolete as a result of removing one pat-

tern from the family, the PF analyst must explicitly use the Elimination Mechanism to

eliminate the other obsolete pattern.

To modify the pattern, the

Goal Model Building Block is

modified and a new

business strategy is added

‎Chapter 5. Pattern Family Evolution - Elimination 93

Figure 50 Main steps of the Eliminating Mechanism

5.4.1 Elimination Algorithm

Algorithm 3 provides inputs, output, and steps of the elimination mechanism.

Inputs of the elimination algorithm
I1. pf:PF
I2. op:Pattern /* an obsolete pattern that must be eliminated from pf */
I3. modifications: ordered set of (rp:Pattern, link:ElementLink, action ∈ {#Add,#Delete},

bst:BusinessStrategy , oldbst:BusinessStrategy)
where (link.toLinks.isEqualTo(rp.GMBB.mainGoal()) ∧

 (action == #Delete ⇒ link.fromLinks.isEqualTo(op.GMBB.mainGoal()))

Output of the elimination algorithm
O1. modified pf:PF /* the original pattern family where op is eliminated*/

Steps of the elimination algorithm
S1. foreach (p:Pattern in pf.patternCollection() where not p.isEqualTo(op))

S1.1. foreach (i:Intention in p.GMBB.leafCollection())
1.1.1. if (i.patternDef .isEqualTo(op))
1.1.2. i.patternDef = null
1.1.3. endif

S2. if (not modifications.isEmpty()) then
S3. modify (pf, modifications) /* related patterns that will be effected are modified */
S4. endif
S5. pf.delete(op) /* op is removed from pf */

Algorithm 3. Elimination of PF

5.4.2 Applying the Elimination Algorithm

This algorithm takes three inputs: pf is an initial PF (‎I1), op is an obsolete pattern that

must be removed from the initial PF (‎I2), and the modifications set (‎Table 6) highlights

the effects that eliminating op from pf has on other patterns in the family (‎I3).

Table 6 Elements of the modifications set in the elimination algorithm

Element Description

rp A related pattern that is affected by elimination of obso-

lete pattern and must be modified
link A link between two intentions that highlights the part of

the goal model building block that must be modified
action An indication of what must be done on the link
bst A new business strategy that represents a new solution
oldbst An old business strategy that must be eliminated from rp

‎Chapter 5. Pattern Family Evolution - Elimination 94

The PF analyst locates the obsolete pattern by observing pattern usage of PF users in a

specific domain and by using their feedback about patterns in the PF. She then analyzes

and determines the effects of this elimination, which in turn, leads to the creation of a

modifications set.

As different types of modifications may be necessary, the second, forth, and fifth

elements of modifications set (see ‎Table 6) may be null. The toLinks side of the link must

always point to the main goal of rp. If the action is #Delete, then the fromLinks side must

point to an intention that is refined by op. These two preconditions prevent using the

elimination algorithm for merely changing an unrelated pattern in pf. Isolated modifica-

tions of patterns must use the modification algorithm described in section ‎5.3. pf is the

modified pattern family in which the obsolete pattern is eliminated (‎O1).

Through steps ‎S1 to ‎S5, this algorithm carries out the three major activities illus-

trated in ‎Figure 50. Step ‎S1 and its sub-steps remove those refinement links in the family

that are pointing to the obsolete pattern. Steps ‎S2 to ‎S4 modify those patterns that are

affected by elimination of the obsolete pattern. Finally, step ‎S5 deletes the obsolete pat-

tern from the pattern family.

5.4.3 Example: Elimination of an Obsolete Pattern

This example illustrates how the elimination algorithm eliminates an obsolete pattern

from PF. In order to use the Elimination Mechanism, the PF analyst prepares and pro-

vides pf (‎I1), op (‎I2), and modifications set (‎I3).

For the purpose of simplicity, this example uses the pf created in section ‎5.2.4 and

eliminates the Action Taking pattern with which the PF in that section was

ed. ‎Figure 51 illustrates the FMM-based UML object diagram of the mentioned pf (‎I1). In

this PF, the Action Taking pattern is considered obsolete (‎I2). In this example, the In-

creases Patient Safety pattern (p1) is the only pattern affected by the elimination because

the PF analyst considers Take Action as an element that does not contribute to Increases

Patient Safety. Therefore, modifications is set to {(p1, link_I_T, #Delete, null, bs1_3)}.

link_I_T indicates the obsolete goal (Take Action) and its contributions that must be re-

moved from p1’s‎business‎goal model building block. It also indicates the old business

strategy that represents an alternative solution that must be removed from p1.

‎Chapter 5. Pattern Family Evolution - Elimination 95

Figure 51 Object model of initial PF with an obsolete pattern (op)

o
p

 i
s

an
 o

b
so

le
te

p
at

te
rn

 t
h

at
 m

u
st

b
e

el
im

in
at

ed

A
 G

o
al

 M
o

d
el

B
u

il
d

in
g

 B
lo

ck
 t

h
at

m
u

st
 b

e
m

o
d

if
ie

d

p
at

te
rn

D
ef

 l
in

k
 t

h
at

sh
o

w
s

o
p

 r
ef

in
es

 T
2

‎Chapter 5. Pattern Family Evolution - Combination 96

Applying the Elimination Algorithm

Step ‎S1 and its sub-steps set patternDef of T2 to null. This removes the refinement link

between T2 and op (see ‎Figure 51). The next three steps (‎S2, ‎S3, and ‎S4) invoke the

modification algorithm with pf and the modifications set as its inputs. The modification

algorithm (section ‎5.3) applies these changes to the related patterns, i.e., p1, as it is the

only related pattern in pf. Finally, ‎S5 removes op from the pf. The modified pf will be

equal to the pattern family illustrated in the left part of ‎Figure 46 (with grey background).

5.5 Combination

This section describes the Combination Mechanism, which targets the combination

(merging) of two pattern families. When PF analysts observe that two pattern families

describe similar areas of a domain, they may use this algorithm to merge the two fami-

lies. The output of this algorithm is a pattern family that includes the patterns from both

initial PFs. This algorithm also maintains the integrity of patterns and their relationships

in the output. The PF analyst can then further modify the resulting PF with the Extension,

Elimination, and Modification Mechanisms.

The Combination Mechanism empowers the PF analyst to define the starting

point of the combination of two pattern families. This feature makes it possible to use the

algorithm for two distinct purposes. First, selecting the highest-level common pattern as

starting point will lead to creating a pattern family that includes all the patterns that refine

the start point. Second, by selecting a common pattern in the middle of pattern family

hierarchy, this algorithm creates a common subset of both pattern families. The latter,

less apparent usage of this algorithm, is particularly useful to create a pattern family from

a common subset of patterns in two PFs that would otherwise have little similarities.

The Combination Mechanism can be used to combine two PFs from a particular

start point. Having a start point is valuable because it enables the analyst to merge the

overlapping parts of two slightly different pattern families into a new pattern family that

includes the more specific knowledge scattered over two original families.

5.5.1 Combination Algorithm

Algorithm 4 provides inputs, output, and steps of the combination mechanism.

‎Chapter 5. Pattern Family Evolution - Combination 97

Inputs of the combination algorithm
I1. pf1:PF /* this PF is the first pattern family */
I2. pf2:PF /* this PF is the second pattern family */
I3. startPattern:Pattern /* this is a common pattern in both pf1 and pf2 and is used as the start point for

combination */

Output of the combination algorithm
O1. pf:PF /* a pattern family that contains the patterns from both pf1 and pf2 */

Preconditions and post-condition of the combination algorithm
Pre 1: pf1.patternCollection()->exists(p|p.isEqualTo(startPattern))
Pre 2: pf2.patternCollection()->exists(p|p.isEqualTo(startPattern))
Post 1: let pf1subset = pf1.pattern->any(p|p.isEqualTo(startPattern))->first().DefiningPatternSet() in
 let pf2subset = pf2.pattern-> any(p|p.isEqualTo(startPattern))->first().DefiningPatternSet() in
 let pf1pf2subset = pf1subset->union(pf2subset)->union(startPattern) in
 pf.patternCollection()->forAll(p1|pf1pf2subset.->exists(p2|p2.isEqualTo(p1))) and
 pf1pf2subset->forAll(p1|pf.patterncollection()->exists(p2.isEqualTo(p1)))

Steps of the combination algorithm
S1. pf = new PF /* initialize pf */
S2. pf.insert(startPattern)
S3. toMerge: ordered set of (Pattern)= {startPattern}
S4. allPatterns: set of (Pattern) = pf1.patternCollection() ∪ pf2.patternCollection()
S5. while (toMerge is not empty)

S5.1. nextPattern:Pattern = toMerge.nextElement()
S5.2. nextLeafGoals:set of (Intention) = nextPattern.GMBB.leafCollection()
S5.3. foreach (g:Intention in nextLeafGoals)

5.3.1. foreach (p:Pattern in allPatterns)
5.3.2. if (p.GMBB.mainGoal().isEqualTo(g)) then
5.3.3. pf.insert(p)
5.3.4. g.patternDef = p
5.3.5. toMerge.append(p)
5.3.6. endif

S5.4. toMerge.removeElement(nextPattern)

Algorithm 4. Combination of PFs

5.5.2 Applying the Combination Algorithm

When two pattern families represent the knowledge in one domain and have similar pat-

terns, the PF analyst may decide to combine two families in order to have a new PF that

better captures the overall knowledge in the domain. The Combination Mechanism can

be used to combine two PFs from a particular start point.

In order to use the Combination Mechanism, the PF analyst prepares and provides

two pattern families, pf1 (‎I1) and pf2 (‎I2), along with the starting point startPattern (‎I3).

The output of the algorithm represents the new pf (‎O1). The combination algorithm as-

sumes that common patterns (i.e., patterns with the same name) are the same in both PFs.

In those cases where patterns are slightly different but can be combined into one common

pattern, the analyst must first use the Modification Mechanism (Section ‎5.3) in order to

eliminate the differences among patterns that must be considered as equivalent. Precondi-

‎Chapter 5. Pattern Family Evolution - Combination 98

tion 1 (Pre 1) and precondition 2 (Pre 2) respectively limit the inputs ‎I1 and ‎I2 so they

contain the startPattern (‎I3). The post-condition 1 ensures that the output pattern family

(pf) includes all the patterns in each of pf1 and pf2 that can potentially refine startPattern.

There are other well-formedness constraints‎such‎as‎“pf1 and pf2 must include no more

than one pattern equivalent to startPattern”‎or‎“all‎patterns‎in‎pf must directly or indirect-

ly refine startPattern”.‎It‎should‎be‎noted‎ that such well-formedness constraints are im-

plied by the OCL constraints provided in ‎Chapter 3.

Step ‎S1 defines pf as an empty pattern family. After the complete execution of the

algorithm, pf will contain the combined pattern family. Step ‎S2 inserts the pattern from

startPattern into pf. Step ‎S3 defines toMerge as an ordered set of patterns and initializes it

with startPattern as its first element. Step ‎S4 defines allPatterns as a set of patterns and

initializes it with the patterns in pf1 union those in pf2. Step ‎S5 is a loop that adds pat-

terns from the toMerge list to the combined pattern family. Step ‎S5.1 assigns the first

element of the toMerge list to nextPattern. Step ‎S5.2 then assigns all the leaf intentions of

the nextPattern’s‎goal model building block to nextLeafGoals. These intentions may po-

tentially be refined with other patterns in the allPatterns set. Step ‎S5.3 and its sub-steps

form a nested loop that checks all the elements of allPatterns to find patterns that refine

intentions in nextLeafGoals. Once a refining pattern is found, steps ‎5.3.3 to ‎5.3.5 add that

pattern to pf, connect it to the relevant intention in nextLeafGoals, and add it the toMerge

list. After all iterations of ‎S5.3, the pattern in nextPattern is connected to all those pat-

terns from both pf1 and pf2 that could refine its leaf intentions. Next, step ‎S5.4 removes

this pattern from the toMerge list. Subsequent iterations of step ‎S5 examine the next pat-

terns in toMerge for finding their refining patterns and adding them to pf. The iterations

of step ‎S5 continue until all the refining patterns in both pf1 and pf2 are included in pf.

5.5.3 Example: Combination of two Pattern Families

This section illustrates the application of the combination algorithm by combining two

patterns‎families‎that‎cover‎part‎of‎the‎case‎study’s‎patient‎safety‎domain‎(i.e.,‎prospec-

tive surveillance). In order to avoid unnecessary complexity, unlike the examples in pre-

vious sections, patterns are represented here in a more abstract and compact way using

stereotyped UML packages. ‎Figure 52 shows the Increase Patient Safety pattern in this

format and illustrates how it hides the details of this pattern.

‎Chapter 5. Pattern Family Evolution - Combination 99

Figure 52 Using a stereotyped UML package to represent the Increase Patient Safety

pattern

Some of the patterns in these two families are common, yet each of them contains unique

patterns that are not included in the other family. ‎Figure 53 illustrates pf1, which is the

first input of the algorithm (‎I1). This pattern family includes patterns for improving the

patient safety using ad hoc approaches. ‎Figure 54 presents pf2, which is the second input

of the algorithm (‎I2). pf2 includes needed patterns for systematic approaches but it does

not include the detailed refinement patterns included in pf1.

In this example, the PF analyst sets startPattern (‎I3) to Increase Patient Safety

pattern. This input indicates the common pattern, which will be the highest-level pattern

of the output pattern family (‎O1).

«Pattern»

IncreasePatientSafety

«GoalTemplate»

Increase Patient Safety

«BusinessStrateg...

Adhoc Improvement

«BusinessPr...

Adhoc Process

«BusinessStrategy»

Advanced Improvement

«Strategy»

Adhoc Effect Evaluation

«BusinessProces...

Advanced Process

«Strategy»

Advanced Effect Evaluation

‎Chapter 5. Pattern Family Evolution - Combination 100

Figure 53 pf1 is a PF that contains patterns for ad-hoc approaches to improve patient

safety

Figure 54 pf2 is a PF that contains patterns for both ad-hoc and systematic approaches

for improving patient safety

Applying the Combination Algorithm

Step ‎S1 creates pf, which is an empty PF that eventually will contain the combined pat-

tern family. Step ‎S2 inserts the Increase Patient Safety pattern into pf. Step ‎S3 defines

toMerge as an ordered set of patterns and initializes it with startPattern. Therefore, the

Increase Patient Safety pattern is set as the first element of toMerge. Steps ‎S4 defines

allPatterns and assigns to it all the patterns of pf1 union those of pf2, that is:{Increase

«Pattern»

IncreasePatientSafety

«Pattern»

DataCollection

«Pattern»

OucomeDataCollection

«Pattern»

ProcessDataCollection

«Pattern»

InformationGeneration

«patternDef» «patternDef»

«patternDef»«patternDef»

«Pattern»

KnowledgeApplication

«Pattern»

DataCollection

«Pattern»

InformationGeneration
«Pattern»

KnowledgeGeneration

«Pattern»

IncreasePatientSafety

«pattern»

ActionTaking

«patternDef»«patternDef» «patternDef»«patternDef» «patternDef»

‎Chapter 5. Pattern Family Evolution - Combination 101

Patient Safety, Data Collection, Information Generation, Outcome Data Collection, Pro-

cess Data Collection, Knowledge Generation, Knowledge Application, Action Taking}.

In the first iteration of step ‎S5, toMerge is equal to {Increase Patient Safety}.

Consequently, step ‎S5.1 assigns Increase Patient Safety pattern to nextPattern. Step ‎S5.2

assigns to nextLeafGoals the set of all of nextPattern’s‎intentions.‎After‎ this‎step,‎next-

LeafGoals is set to {Collect Data, Generate Informative Outcome Information, Make

Safety Decision, Adopt Decision, Take Action}. This set contains all the leaf intentions of

Increase Patient Safety pattern. Step ‎S5.3 compares each intention in the nextLeafGoals

to the main goal of all the patterns in allPatterns set. In the first iteration of ‎S5.3, the al-

gorithm will find that the main goal of Data Collection pattern is Collect Data from next-

LeafGoals. This implies that the Data Collection pattern refines the Collect Data goal in

the Increase Patient Safety pattern. Therefore, steps ‎5.3.3 to ‎5.3.5 add the Data Collec-

tion pattern to pf, connect Collect Data from Increase Patient Safety pattern to Data Col-

lection pattern through patternDef refinement link, and finally add Data Collection pattern

to the toMerge list. In the subsequent iterations of ‎S5.3, the following actions take place:

 Information Generation, Knowledge Generation, Knowledge Application,

Action Taking patterns are inserted in pf.

 Generate Informative Outcome Information, Make Safety Decision, Adopt

Decision, Take Action goals from the Increase Patient Safety pattern are

connected to relevant inserted patterns through patternDef links.

 Information Generation, Knowledge Generation, Knowledge Application,

Action Taking patterns are appended to the toMerge list.

Step ‎S5.4 then removes Increase Patient Safety pattern from the toMerge list. At the end

of the first iteration of step ‎S5, toMerge is equal to {Data Collection, Information Genera-

tion, Knowledge Generation, Knowledge Application, Action Taking}. ‎Figure 55 shows pf

at the end of this step.

‎Chapter 5. Pattern Family Evolution - Combination 102

Figure 55 pf after first iteration of step ‎S5

Because toMerge is not empty, step ‎S5 will be executed a second time. Step ‎S5.1 sets

nextPattern to the Data Collection pattern. Step ‎S5.2 sets nextLeafGoals to {Collect Out-

come Data, Collect Process Data}. Iterations of step ‎S5.3 and its sub-steps insert Out-

come Data Collection and Process Data Collection patterns into pf, set them as refining

patterns of Collect Outcome Data and Collect Process Data goals of Data Collection pat-

tern, and add them to the toMerge list. Step ‎S5.4 removes the Data Collection pattern

from the toMerge list. ‎Figure 56 represents pf at the end of the second iteration of ‎S5. At

this point, toMerge is equal to {Data Collection, Information Generation, Knowledge

Generation, Knowledge Application, Action Taking, Outcome Data Collection, Process

Data Collection}.

Because toMerge is again not empty, the execution of step ‎S5 will continue.

However, in these iterations, no refining pattern can be found and step ‎S5 removes the

patterns from toMerge at each iteration until it becomes empty. After complete execution

of the combination algorithm, pf represents a PF that contains the combination of pf1 and

pf2. ‎Figure 56 illustrates this PF.

«Pattern»

KnowledgeApplication

«Pattern»

DataCollection

«Pattern»

InformationGeneration
«Pattern»

KnowledgeGeneration

«Pattern»

IncreasePatientSafety

«pattern»

ActionTaking

«patternDef»«patternDef» «patternDef»«patternDef» «patternDef»

‎Chapter 5. Pattern Family Evolution - Summary 103

Figure 56 Combined pattern family

5.6 Summary

A pattern-based framework that lays down a foundation for capturing knowledge about

business goals and processes is valuable. However, the problems and solutions within a

domain are always changing. Consequently, such framework can be useful only if it can

evolve over time. This chapter introduced and formalized four evolution mechanisms for

extending and modifying PFs or for modifying or eliminating specific patterns within the

PFs. The feasibility and utility of these mechanisms was demonstrated with examples

from the patient safety domain.

The next chapter will present another method that focuses on how an up-to-date

pattern family can be used to extract suitable business processes (with links to business

goals) in the context of a given organization.

«Pattern»

KnowledgeApplication

«Pattern»

OucomeDataCollection

«Pattern»

ProcessDataCollection

«Pattern»

DataCollection
«Pattern»

InformationGeneration

«Pattern»

KnowledgeGeneration

«Pattern»

IncreasePatientSafety

«pattern»

ActionTaking

«patternDef»

«patternDef» «patternDef»

«patternDef»«patternDef»«patternDef»«patternDef»

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 104

Chapter 6. ORGANIZATION-DRIVEN CUSTOMIZATION AND

EXTRACTION METHOD (OCEM)

The knowledge captured in the form of patterns and organized as the family can help

target organizations achieve their objectives. However, the relevant part of this

knowledge must first be extracted and customized. A PF user is an analyst in charge of

using the patterns and of creating the customized models that represent the requirements

of stakeholders and corresponding business processes that can realize them. ‎Figure 57

gives an overview of the steps taken for building such models.

This chapter introduces OCEM, a goal-driven algorithm that formalizes the ex-

traction and customization of business processes by adapting instances of solutions for

particular organizations within the domain targeted by a pattern family (e.g., patient safe-

ty). This algorithm currently does not formalize the interactions of PF users and stake-

holders beyond receiving the initial organizational goal model. OCEM uses a PF as input

and assesses the impact of alternative solutions for achieving the high-level goals of a

given organization in a systematic, top-down approach. Another input is a partial busi-

ness goal model where only some of the high-level goals of an organization need to be

identified.‎OCEM’s‎main‎output‎is‎a‎more‎complete‎organizational goal model combined

with business processes aligned with the identified goals, as well as additional traceabil-

ity links between the two views. The usage of OCEM complies with the spirit of MDE

while including goal models in the chain of transformations. Finally, this chapter shows

how pattern families, whose development and evolution were discussed in previous chap-

ters, can be reused to create business goals and processes for individual healthcare organ-

izations while taking into consideration the specifics of their context, including their own

organizational goals and capabilities.

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 105

Figure 57 Using a pattern family to build requirements models for a specific

stakeholder in a domain

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Algorithm 106

6.1 Algorithm

Algorithm 3 provides the inputs, outputs, and main steps of the OCEM algorithm.

Inputs of the OCEM algorithm
I1. orgGM:GRLgraph /* initial organizational goal model */
I2. pf:PF /* pattern family of the domain */
I3. ev:EvaluationStrategy /* organization as-is evaluation */

Output of the OCEM algorithm
O1. orgGM:GRLgraph /* customized and extracted organizational goal model */
O2. orgBPM:UCMmap /* customized and extracted organizational business process model */
O3. URN links describing how the goals are realized by the process element.

Steps of the OCEM algorithm
S1. mainGoal:Intention = pf.GMBB.Intention where pf.GMBB.Intention.isEqualTo(orgGM.mainGoal)
S2. initBP:UCMmap = a simple process that contains only one stub (targetStub:Stub)
S3. toRefine:List = {(mainGoal, targetStub)}
S4. foreach (i:Intention in orgGM)
S5. if (i.isEqualTo(mainGoal)) then
S6. add a GRL contribution of weight 100 from mainGoal to i
S7. endif
S8. foreach (i:Intention in orgGM)
S9. foreach (p:Pattern in pf)
S10. foreach (ip:intention in p where i.isEqualTo(ip))
S11. if (ip.externalGoal ∧ ip.sideEffectGoal) then
S12. add a GRL contribution of weight 100 from ip to i
S13. elseif (ip.externalGoal ∧ ip.dependencyGoal) then
S14. add a GRL contribution of weight 100 from i to ip
S15. endif
S16. while (toRefine ≠ null)

S16.1. (NextGoal, NextStub) = next element of toRefine
S16.2. remove the element from toRefine
S16.3. strat:BusinessStrategy = best business strategy in p.businessStrategyCollection()

 where (p:Pattern in pf.patternCollection() ∧ p.GMBB.mainGoal.isEqualTo(NextGoal))

 /* selecting this business strategy leads to the highest satisfaction of the main actor in
 orgGM compared to ev */

S16.4. add NextGoal, strat.BPT.ProcessElement.intention (set of intentions), and their links to orgGM
S16.5. add strat.BPT as a plug-in to NextStub
S16.6. add realization URN link from NextGoal to its realization process element
S16.7. add realization URN link from NextGoal to its corresponding BPT
S16.8. add realization URN links from the intentions selected in strat to the corresponding process el-

ements in BPT
S16.9. foreach (i:Intention initialized in strat)
S16.10. if (i ≠ task) then

S16.11. toRefine.add(i, i’s realization stub)
S16.12. endif

Algorithm 5. OCEM

6.2 Application

A PF user is a modeler who uses the PF of a particular domain for creating the goal mod-

els and business processes that address the problems of an organization within the do-

main. The PF user prepares the inputs of the OCEM algorithm and then applies it.

This algorithm takes three inputs: orgGM as the initial organizational goal model

(‎I1), pf as the pattern family of the domain (‎I2), and ev as the as-is evaluation strategy of

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Application 107

the organization (‎I3). This last input (a GRL strategy) provides initial satisfaction values

to some of orgGM’s‎intentional‎elements.‎These‎values‎capture‎the‎current status of the

organization in need of a business process to be built from the pattern family. The OCEM

algorithm extracts the most appropriate pieces of goal and business process models and

builds a customized goal model accompanied with business process models that realize

its goals.

Step ‎S1 initializes the mainGoal with the intention in the domain that corresponds

to the main stakeholder goal stated in the orgGM. Then, step ‎S2 assigns a simple process

with only one stub (targetStub) to initBP, which contains the initial business process of

the organization. Next, step ‎S3 initializes toRefine to a list that contains the pair

(mainGoal, targetStub) as its only member. Steps ‎S4 to ‎S7 add a contribution with weight

100 from the mainGoal to the corresponding goal in orgGM. Steps ‎S8 to ‎S15 link corre-

sponding goals in orgGM and patterns in pf. Step ‎S10 looks‎for‎the‎“equality”‎between‎an‎

intention from the pattern family and one from the organizational goal model, but in fact

this equality could be weaken to some sort of equivalence (whose nature and handling are

outside the scope of this thesis). Steps ‎S11 and ‎S12 add contributions with weight 100

from side-effect intentions in the patterns to the corresponding goals in the orgGM, while

steps ‎S13 and ‎S14 add contributions with weight 100 from the intentions in orgGM to

those external goals, which other goals in the pattern depend on. Not all intentional ele-

ments from the organization goal model need to be linked to an element of the pattern.

Step ‎S16 is an iterative step that contains the following sub-steps. ‎S16.1 and

S16.2 initialize the pair (NextGoal, NextStub) with the next element on the toRefine list

and remove the element from the list. Step ‎S16.3 applies all strategies to find the best

solution. Depending on the preferences of the stakeholders, the best strategy is the solu-

tion that better satisfies the priorities provided in orgGM. Therefore, it is possible that

different stakeholders with different initial organizational goal models end up selecting

different strategies as their best solution, which then shapes their businesses differently.

Step ‎S16.4 adds the goals and links of the pattern to the organizational goal mod-

el, while step ‎S16.5 adds the business process building block related to the chosen strate-

gy as a plug-in to the stub of the simple process. Then, steps ‎S16.6, ‎S16.7, and ‎S16.8 es-

tablish realization links between the main goal and the business process building block as

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 108

well as the sub-goals of the pattern and the stubs of the business process building block.

Finally, step ‎S16.9, ‎S16.10, ‎S16.11, and ‎S16.12 add all sub-goals and linked stubs to the

toRefine list, to be evaluated in the next iterations of step ‎S16. This is done for all sub-

goals that are required by the chosen strategy. Step ‎S16 then iterates until all appropriate

goals in the pattern are added to orgGM and business process building blocks have been

chosen for all goals. In other words, continuous iteration of this step uses the knowledge

captured in the pf and refines the business goals and processes to the desired level of de-

tail.

The output of the OCEM is a refined GRL model of the organization (‎O1) with a

model of the chosen business process options (‎O2), together with links that represent the

rationale for their selection (‎O3).

6.3 Example

This patient safety case study illustrates how OCEM (Algorithm 5) is applied for custom-

izing and extracting goal and business process models for a particular hospital, at the

highest level of abstraction. In order to apply OCEM, the PF user prepares and provides

its inputs: orgGM as the initial organizational model for Hospital A (‎I1), pf as the PF of

the patient safety domain (‎I2), and ev as the as-is evaluation strategy of the Hospital A

(‎I3).

‎Figure 58 illustrates the organizational goal model of Hospital A (orgGM, ‎I1),

which identifies the main goal (Increase Patient Safety) and three high-level softgoals

related to quality, cost, and research concerns. Importance values are added to some of

these intentional elements in the organizational goal model. In this example, the im-

portance of Increase Patient Safety to its containing actor is deemed to be 100 while the

importance of Decrease Cost is 25, which means that decreasing cost is less of an issue

to Hospital A than increasing care and safety. Furthermore, ‎Figure 58 depicts ev (‎I3) that

is the current evaluation strategy of the organization, describing the as-is situation. Initial

satisfaction levels, shown by the presence of a star (*), are provided: 60 to the task, indi-

cating that although some advanced infrastructure is available, there is still room for im-

provement, and 40 to describe the current level of support to research on adverse events

at that hospital. Considering the hospital has an average initial safety system, the satisfac-

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 109

tion levels of Increase Patient Safety and Increase Quality of Care are equal to 0, which

consequently results in a general satisfaction of the stakeholder of -1. Color feedback is

provided to show the satisfaction level of the intentions (the greener, the better).

Figure 58 Original organizational goal model (‎I1, ‎I3)

The patient safety PF, which targets the improvement of patient safety, has been built

using the FDM described in ‎Chapter 4 and ‎Chapter 5 by observing the models created for

several departments of a teaching hospital. This pattern family has 32 patterns that in-

clude goal model building blocks (organized in ten layers) together with 79 strategies and

business process building blocks. This patient safety PF is used as the second input of

OCEM (‎I2). ‎Figure 43 illustrates a subset of the patient safety PF (3 patterns are shown).

Increasing patient safety is an abstract, recurring problem in different hospital de-

partments and other healthcare organizations. The Increase Patient Safety pattern in the

PF captures this problem and its solutions. The goal model building block of the pattern

shown in ‎Figure 33 represents the contributions of Collect Data, Generate Informative

Outcome Information, Make Decision, and Apply Knowledge to the realization of In-

crease Patient Safety together with side-effects (e.g., on Increase Quality of Care in

Long Term) and dependencies (e.g., on Deploy Advanced Infrastructures). Two strategies

have been defined for this pattern. The first one (A) includes only the sub-goals Collect

Data and Generate Informative Outcome Information. The second strategy (B) includes

also the two other sub-goals, Make Decision and Apply Knowledge and adds correspond-

ing activities to its business process building block. UCM models (see ‎Figure 34) repre-

sent business process building blocks of these two strategies, which describe the ordering

0

0

60*

-45

40*

-1

Organizational Goal Model

Increase Patient

Safety (100)

Implement Advanced

Infrastructure

Hospital

A

Support Research on

Adverse Events (20)

Decrease

Costs (25)

Increase Quality

of Care (100)

-75

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 110

of the activities (that are further refined in other patterns of the PF). All these models

together constitute the Increase Patient Safety pattern (p1 in ‎Figure 43).

OCEM establishes links between the initial organizational goal model and the

goal model building block of the pattern (left half of ‎Figure 59). First, a contribution with

weight 100 is added from the Increase Patient Safety goal in the pattern to the Increase

Patient Safety of the organization (showing the equivalence between these two goals,

which could have had different names too as‎ long‎ as‎ they‎ are‎ deemed‎ “equivalent”).

Then, two contributions with weight 100 are added from the quality/cost softgoals in the

pattern to the quality/cost softgoals of the organizational model. Finally, a contribution

with weight 100 is added from the task in the organizational model to the softgoal with

the dependencies in the pattern. Not all intentional elements from the organization goal

model need to be linked to an element of the pattern (e.g., Support Research on Adverse

Events is not addressed by the current pattern).

Next, all alternative strategies are compared automatically for finding the best so-

lution. Two strategies have been defined for this pattern, as shown in the left half

of ‎Figure 60. The first one (A) includes only the sub-goals Collect Data and Generate

Informative Outcome Information. The second strategy (B) includes also the two other

sub-goals, Make Safety Decision and Adopt Decision and adds corresponding activities to

its business process building block. UCM models represent these two strategies as busi-

ness process building blocks, which describe the ordering of the activities (that are further

refined in other patterns of the Pattern Family, not shown here).

‎Figure 59 shows the result of the second strategy (B) because it yields better re-

sults than the first strategy (A), given that the organizational goal model places more val-

ue on quality than on cost and already has some advanced infrastructure available. A dif-

ferent healthcare institute with more focus on cost than quality and no advanced infra-

structure available would see the first strategy (A) win over the second strategy (B). This

evaluation‎is‎automated‎with‎OCEM,‎as‎it‎builds‎on‎GRL’s‎quantitative evaluation algo-

rithm, which propagates the known satisfaction levels to other intentional elements in the

GRL models through their links.

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 111

The goals in the pattern and the links are then added to the organizational goal

model, while the business process building block related to the chosen strategy is added

as a sub-model to the Increase Patient Safety stub (indicated by the long-dash-dot-dotted

line in the right half of ‎Figure 60). ‎Figure 59 and ‎Figure 60 together represent the output

of applying the OCEM method: a refined GRL model of the organization with a model of

the chosen business process options, together with the rationale for their selection. Apply-

ing the patterns in the PF can further refine the four sub-goals and linked stubs of In-

crease Patient Safety pattern. In order to support a satisfactory level of detail, the pat-

terns of the patient safety family include ten layers of decomposition (of which only the

top one is discussed here).

Applying the OCEM Algorithm

The first three steps of OCEM initialize the mainGoal with Increase Patient Safety

(step ‎S1) and then the initBP and toRefine variables (steps ‎S2 and ‎S3). Steps ‎S4 to ‎S7 add

a contribution with weight 100 from the Increase Patient Safety goal in the pattern to the

Increase Patient Safety of orgGM (see ‎Figure 59). The next corresponding goals in or-

gGM and the Increase Patient Safety pattern are linked (steps ‎S8 to ‎S15). In steps ‎S11

and ‎S12, two contributions with weight 100 are added from the quality/cost softgoals in

the pattern to the quality/cost softgoals of the organizational model. Then, a contribution

with weight of 100 is added from the Implement Advanced Infrastructure task in the or-

ganizational model to the Deploy Advanced Infrastructures (the softgoal with the de-

pendencies) in the pattern (steps ‎S13 and ‎S14). It possible that some elements in orgGM

do not have links to the intentions in the pattern (e.g., Support Research on Adverse

Events is not addressed by the current PF).

At this point, the toRefine list contains the Increase Patient Safety goal and a

simple process with one stub, which are extracted to NextGoal and NextStub in

step ‎S16.1 and removed from toRefine in step S16.2. The next step, ‎S16.3, applies all

strategies to find the best solution for Hospital A. In this case, there are two strategies

defined for Increase Patient Safety pattern as shown in ‎Figure 33 on page 71. ‎Figure 60

(right) shows the result of the second strategy (B) because it yields the better result than

the first strategy (A), given that the organizational goal model places more value on qual-

ity than on cost and already has some advanced infrastructure available. For example, the

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 112

results are 98 vs. 98 for the main goal Increase Patient Safety, 50 vs. 98 for Increase

Quality of Care, -45 vs. -75 for Decrease Cost, and 59 vs. 75 for the main stakeholder for

strategy (A) vs. (B), respectively. A different healthcare institute with more focus on cost

than quality and no advanced infrastructure available would likely see the first strategy

(A) win over the second strategy (B). Note how the satisfaction values of the goals Make

Decision and Apply Knowledge are not the same as the satisfaction values of Collect Data

and Generate Informative Outcome Information as defined by the second strategy (B),

because the dependencies restrict the satisfaction values of Make Decision and Apply

Knowledge to lower values (in a dependency, the depender cannot be more satisfied than

the dependee).

Step ‎S16.4 then adds NextGoal, intentions of the Increase Patient Safety pattern

that are chosen regarding the selected strategy, and their links to the goal model of Hospi-

tal A. Then, step ‎S16.5 adds the business process building block of the selected strategy

(B) as a plug-in to the stub of the simple process (indicated by the long-dash-dot-dotted

line in ‎Figure 59). Step ‎S16.6, ‎S16.7, and ‎S16.8 establish realization links between the

Increase Patient Safety goal and the corresponding business process building block

(shown in ‎Figure 60) as well as between Collect Data, Generate Informative Outcome

Information, Make Decision, and Apply Knowledge as the sub-goals of the pattern and the

stubs of the business process building block (not shown in ‎Figure 60 for reasons of sim-

plicity). Finally, steps ‎S16.9, ‎S16.10, ‎S16.11, and ‎S16.12 add all four sub-goals and

linked stubs to the toRefine list to be evaluated in the next iterations of the loop. This is

done because all sub-goals are required by strategy (B). In the next iteration of step ‎S16,

the three strategies of the Collect Data (see ‎Figure 35 and ‎Figure 36) are assessed and the

best strategy is chosen (not shown in ‎Figure 60). Continuing this iteration further refines

the goal model of Hospital A and selects the business process building blocks for all of its

goals.

‎Figure 59 and ‎Figure 60 together represent the output of first iteration of OCEM

method for the highest-level pattern in the patient safety PF: a refined GRL model of the

organization (‎O1) with a set of the chosen business processes (‎O2) and realization links

between them (‎O3).

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 113

Figure 59 Using OCEM: linking goal model building blocks to the organizational goal

model, with evaluations

Figure 60 Using OCEM: business process building blocks,‎with‎strategy‎“B”‎being‎

selected

6.4 Summary

This chapter introduced OCEM, a method that enables the selection of appropriate solu-

tions from a pattern family in the context of a particular organization within the domain.

The OCEM algorithm provides a systematic approach for customizing and extracting

models based on the knowledge embedded in pattern families. The outcome of this algo-

rithm is a goal model customized to the requirements of stakeholders and accompanied

by a suitable business process where traceability links between goals and processes are

Increase Quality of

Care in Long Term
«external»

Goal Model Building Block of Increase Patient Safety Pattern

Increase

Patient Safety50

50
50

50

25 25

75

75

-25-25

Generate Informative

Outcome Information

Make Safety

Decision

Adopt

Decision

Collect Data

Decrease Costs

Deploy Advanced

Infrastructure
«external»

«external»

98

98

60*

-75 40*

75

Partial Goal Model for Hospital A

Increase Patient

Safety (100)

Implement Advanced

Infrastructure

Hospital

A

Support Research on

Adverse Events (20)
Decrease

Costs (25)

Increase Quality

of Care (100)

-75

98

98

100*

100*

60

60

60

-30 100

100

100

100

100

Making Safety

Decision

Adopting

Decision

Collecting

Data

Collecting

Data

Generating Informative

Outcome Information

Business Process Building Block (Strategy: b)

Generating Informative

Outcome Information

Making Safety

Decision

Adopting

Decision

Collecting

Data

Generating Informative

Outcome Information

Organizational Business Process

Organizational Business Process

Increase Patient Safety

Alternative Business Process Building Blocks

in Increase Patient Safety Pattern

Business Process Building Block (Strategy: a)

Hierarchy of business processes customized and extracted

for a particular hospital

‎Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 114

documented. An example related patient safety illustrated how OCEM is used. OCEM is

important as it enables knowledge reuse across organizations, while taking into consider-

ation the specifics of their context.

The next chapter presents and discusses the evaluation of the Goal-oriented Pat-

tern Family framework based on case studies and a comparison with related work, to-

gether with limitations and threats to the validity of this evaluation.

‎Chapter 7. Evaluation - Case Study 1: Patient Safety Domain 115

Chapter 7. EVALUATION

For evaluating the GoPF framework, two extensive pattern families were created for the

patient safety and the aviation security domains. Healthcare institutes interested in patient

safety and organizations that need to regulate aviation security can benefit from these

applications of the framework. The GoPF framework (i) lays down a foundation for cap-

turing knowledge about business goals and processes, (ii) provides methods for reusing

this knowledge within one organization or across similar ones by extracting and custom-

izing models for specific stakeholders, and (iii) enables evolution of the knowledge when

new problems and solutions emerge.

The patient safety case study was used as an ongoing example throughout this

thesis. Therefore, section ‎7.1 is limited to a summary of the experience gained with the

GoPF framework in the patient safety domain. Section ‎7.2 provides more detailed insight

on the experience gained using GoPF in the aviation security domain, including the use

of indicators in the patterns. The evaluation also includes an assessment of the GoPF

framework and a comparison to closely related work against nine dimensions (sec-

tion ‎7.3). Finally, section ‎7.4 discusses several limitations and threats to the validity of

this work.

7.1 Case Study 1: Patient Safety Domain

The patient safety domain was selected as one of the case studies for the evaluation of the

GoPF framework because of the recent push for healthcare reform that has caused

healthcare organizations to focus on better ways to provide high quality and safer treat-

ments while reducing related costs ‎[134]. This case study was developed as part of a col-

laborative project involving the University of Ottawa and a teaching hospital in Ontario,

which made it possible to access the necessary information and stakeholders for doing

research on pattern families in the patient safety domain. The patterns were mainly col-

lected between September 2008 and September 2009 and were then refined as GoPF be-

came more formal.

‎Chapter 7. Evaluation - Case Study 1: Patient Safety Domain 116

Healthcare institutions, which manage hundreds of clinical and other types of

business processes, strive to improve the safety of their patients. Yet, every year, thou-

sands of patients suffer from adverse events, which are defined as undesirable outcomes

caused by healthcare business processes. Decreasing adverse events by improving these

processes forms the scope of the patient safety domain targeted here.

In ‎[39], we showed that goal and business process modeling with URN could be

used effectively in this domain in order to capture problems and their solutions. Through

applying the methods of GoPF at different units of the hospital (Cardiac Surgery Inten-

sive Care, Intensive Care, and General Internal Medicine), a collection of 32 patterns,

grouped into a pattern family, were discovered and documented. This pattern family con-

tains 32 GRL diagrams with 145 intentional elements, together with 82 UCM diagrams

with 176 stubs, all of which being organized in a structure that is 10 levels deep.

For this thesis, the following activities were completed:

 Documentation of the Patient Safety PF based on observations and domain

expert interviews in different departments of a real teaching

tal. ‎Chapter 4, ‎Chapter 5, and ‎Chapter 6 provide extracts of this pattern

family, and the complete PF can be found online at ‎[135];

 In order to support the well-formedness of pattern families, constraints in

OCL (‎Appendix A) were developed and then tested using a formalized

subset of the Patient Safety PF implemented in the USE

ment ‎[128]‎[129]; and

 In order to validate the algorithms that formalize the methods of the

framework and demonstrate their potential for automation, the four evolu-

tion mechanisms described in Chapter 5 were implemented in Java ‎[136]

and tested against a subset of the Patient Safety PF described with data ob-

jects. These Java programs constitute a reusable library of transformations

for manipulating pattern families.

The feasibility of the methods provided in ‎Chapter 4, ‎Chapter 5, and ‎Chapter 6 for cap-

turing patterns, creating pattern families, evolving them, creating customized models for

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 117

healthcare organizations based on patient safety pattern family was illustrated through the

examples found in those chapters.

As an example of another (and somewhat unexpected) concrete impact of this

work, part of the resulting pattern family was used as the foundation for creating an ad-

verse event management system, a software application that supports the documentation

of potential healthcare adverse events through prospective surveillance done by special-

ized observer nurses and the classification and analysis of events by a committee of phy-

sicians. The prototype system was re-implemented at the hospital as part of a larger inci-

dent reporting system, and is now fully deployed.

7.2 Case Study 2: Aviation Security Domain

Some regulators in the aviation security domain are exploring outcome-based approaches

toward regulations. Outcome-based regulations focus on measurable goals rather than on

prescriptive ways of achieving these goals ‎[137]. As regulators start evolving existing

prescriptive regulations towards an outcome-based approach, it becomes important to

reuse knowledge about existing problems and solutions. However, these organizations

face some challenges for establishing the new approaches. The GoPF framework can be

used to address some of the challenges faced in this domain.

This second case study takes the opportunity of using GoPF to create a pattern

family that targets a new domain, namely aviation security regulatory compliance. This

PF was created as part of a collaborative research project involving the University of Ot-

tawa and a regulator for aviation safety and security, on the construction of performance

framework. Interactions with different stakeholders having similar yet different objec-

tives enabled exploring the feasibility of using‎the‎framework’s‎methods for creating pat-

terns in this new context. Note that the sensitive and confidential nature of this security

work prevents the discussion of the details of the patterns, but generic examples and

characteristics will be provided in the following subsections.

Using this case study helped to apply the full framework’s‎infrastructure (refined

based on the experience gained through the first case study) as well as the process of elic-

iting requirements leading to the creation of patterns and families ‎[137]. Given the im-

portance of measures in this outcome-based regulatory compliance context, the concept

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 118

of indicator from the framework is further emphasized as it enables the reuse of compli-

ance measurement, in context.

7.2.1 Introduction to the Aviation Security Domain

Many existing regulatory compliance approaches are prescriptive, which means that they

impose specific ways for regulated parties to comply. However, in some domains, regula-

tors are now trying to focus on the regulation intentions (e.g., the goals) that matter most

while enabling regulated parties to choose the business processes and implementation

strategies that best suit their context. In such outcome-based or goal-oriented regulatory

approaches, regulators must ensure that solutions chosen by regulated parties effectively

satisfy the intent of the regulations, e.g., by measuring whether the outcome is satisfacto-

ry.

Carrying out an outcome-based approach usually depends on the capability to

capture requirements from two angles. First, the regulator must define a hierarchy of

goals and related measures needed for evaluating their satisfaction. Second, a hierarchy

of business processes representing the regulatory strategies and best practices for achiev-

ing‎these‎goals‎at‎the‎organization’s‎end‎needs‎to‎be‎captured.

As an example, the regulator for aviation security in Canada is reviewing some of

its policies and regulations in order to see if moving from the current prescriptive style to

an outcome-based style is warranted. Such changes lead to three major challenges for an

effective and efficient implementation of this approach. First, it is necessary to capture

the knowledge about the hierarchy of intentions and related processes, which represent

problems and existing solutions. This is the knowledge that can be reused for achieving

the desired outcome of regulatory responsibilities. Moreover, it is difficult to measure the

satisfaction of regulatory goals for various reasons, such as a mismatch between indica-

tors (when they exist) and supposedly corresponding goals.

Second, requirements in this domain are complex and difficult to model from

scratch. In addition, there are different stakeholders with similar areas of responsibilities

(e.g., those in charge of different aspects of aviation security). These stakeholders need

different yet similar hierarchies of intentions. Despite the fact that they cannot reuse

complete models of intentions and related processes, it is possible and beneficial to reuse

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 119

parts of existing goal and business process models as building blocks for new models.

For this to happen, it is necessary to capture such knowledge in the form of reusable

building blocks of goal and business process models. Moreover, ignoring the similarities

of problems in the domain may lead to inconsistencies in goal and business process mod-

els that represent them. These issues underline the importance of reusing knowledge

about problems (goals) and solutions (business processes) in particular regulatory do-

mains.

Third, knowledge about problems and solutions in a given domain is gradually

and constantly changing. Furthermore, regulators and regulated parties need to be ac-

countable for their actions. Therefore, there is need to (i) retain the known problems and

solutions at given times in the past, and (ii) enable evolving the knowledge and tracking

such evolution when new lessons are learned.

In order to address these challenges, the GoPF framework is to target commonali-

ties across objectives of many regulations. Organizations in the aviation security domain

can benefit from using this framework by capturing knowledge in the form of goal and

process model building blocks, enabling regulatory parties to build a hierarchy of goals

and related processes that suits their context.

7.2.2 Outcome-based versus Prescriptive Approaches in Regulatory
Compliance

Currently, regulators prescribe the solutions that fit the highest number of regulated par-

ties (e.g., airports and airlines). These prescribed solutions fit the average conditions but

may not suit other conditions outside a narrow average.

The outcome-based approach in the aviation security domain, an alternative to the

current prescriptive approach, lifts the burden of implementing prescribed solutions from

regulated parties. Instead, it delegates the details to those who implement solutions, yet it

ensures that objectives of regulators are effectively achieved. This approach encourages

regulated parties to comply to regulations with innovative solutions. It is also more flexi-

ble and well aligned with the spirit of the oversight responsibility of regulatory organiza-

tions. With the desired outcome-based approach, regulators are able to (i) define the im-

portant objectives of aviation security screening at different levels of abstraction and for

different regulated parties, and (ii) create a system that takes available evidence data

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 120

(e.g., from audit information or from the execution of business processes) as input, evalu-

ates indicators, and ensures proper satisfaction of goals. In this approach, the effective-

ness of solutions is what will matter to security organizations. Compliance happens when

the implemented solutions are effective toward achieving the required objectives.

A typical performance framework ‎[138] can aim to (among other objectives) help

develop performance-based standards, define measurable and traceable compliance goals,

and define and assess performance expectations. Modeling was recently started of indi-

vidual outcome-based regulations ‎[139] with the User Requirements Notation. This work

underlined the importance of reusing the domain knowledge and inspired capturing the

knowledge in the form of patterns and families.

7.2.3 Areas of Aviation Security Screening Domain

In order to apply GoPF and create an aviation screening pattern family, collaborating

with stakeholders and domain experts is necessary to understand the domain require-

ments.Requirements for screening come from multiple regulations. An important objec-

tive of a regulator in the aviation security domain is to oversee the following aspects of

screening processes ‎‎[140]:

 Pre-board screening includes the screening of (i) passengers and (ii) their

carry-on baggage;

 Hold-baggage screening includes screening of checked bags; and

 Non-passenger screening is applied to non-passengers (e.g., employees)

entering restricted areas.

For each of these aspects, the regulator needs to ensure that the quality of screening com-

plies with the regulations and effectively mitigates relevant risks. Many commonalities

among these three aspects can be exploited to create patterns.

7.2.4 Motivation for Using GoPF and Creating a Pattern Family

Shamsaei et al. demonstrated that GRL supplemented with indicators can be used to

model regulations and organizational objectives, and to measure the compliance of these

organizations and their processes against regulations ‎[141]. This work is at the basis of

the modeling approach presented by Tawhid et al. ‎[139]. However, the lack of a hierar-

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 121

chical‎goal‎model‎of‎the‎regulator’s‎objectives‎accompanied by suitable indicators is one

of the challenges normally faced while implementing outcome-based approaches. The

screening oversight is complex and leads to a large hierarchy of intentions that represents

the objectives and concerns of a typical aviation security regulator at different levels of

abstractions. The goals in this hierarchy can be achieved through different potential solu-

tions. However, the best solution is not the same under all conditions. Depending on a

given context, the best solution is the one that results in higher levels of satisfaction of

goals in the hierarchy. Hence, it is difficult to build from scratch goal and process models

that focus on the outcome.

In order to successfully adopt the outcome-based approach in this domain, stake-

holders and domain experts need ways of capturing different problems, solutions, con-

texts and their relationships. In order to reuse these problems and solutions within one

organization or across similar regulatory organizations, there is a need for means of se-

lecting the best solution depending on a context. The dynamic nature of this domain (e.g.,

due to the discovery of new security threats) also highlights the need for systematic evo-

lution of captured problems and solutions. Moreover, there is a need to keep the history

of gradual changes over time. On one hand, this helps regulators to be accountable and to

understand the rationale of the past decisions. On the other hand, past versions of pattern

families can be used for learning lessons and turning them into new effective strategies.

Finally, according to informal feedback from stakeholders and experts in the domain,

addressing the above concerns is critical in the successful adoption of outcome-based

approaches that will be applied for improving the oversight screening process.

In this case study, GoPF is used for creating patterns and a pattern family that en-

ables the modeling and reuse of the commonalities and differences of measurable out-

come-based regulations. This can lead to the successful adoption of an outcome-based

approach where regulated parties are both compliant and effective. GoPF lays down the

infrastructure for (i) capturing different screening-related activities that lead to achieving

similar goals from different departments and aspects of regulations (capturing reusable

knowledge), and (ii) measuring the impact of solutions on the hierarchy of requirements.

The next subsection illustrates the results of applying the process introduced in ‎Chapter 4

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 122

to the task of building a GoPF-based pattern family for the aviation security screening

domain.

7.2.5 Building an Aviation Screening Pattern Family

While interacting with a few stakeholders and domain experts involved in our collabora-

tive research project, we were able to observe and analyze several requirements. GoPF’s‎

family development method (FDM in ‎Chapter 4 with its resulting artifacts illustrated

in ‎Figure 26) was used for building the aviation screening pattern family. Following the

enumerated steps, requirements elicitation sessions composed of stakeholders were first

performed, followed by individually interviews. This resulted in the creation of goal

models at different levels of abstraction. This process was repeated for oversight of

screening in three different regulation units: passenger, carry-on bag, and hold-baggage

screening.

The similarity of goals and responsibilities in these areas enabled the recognition

of the repetitive and reusable goal and business process models. These models are cap-

tured in the form of GRL graphs and UCM diagrams, respectively. In order to improve

correctness and accuracy, the models were discussed and validated with stakeholders and

domain experts.

In this pattern family, each goal model building block is linked with the corre-

sponding business process building blocks. For instance, the sample goal model building

block illustrated in ‎Figure 61(c) together with business process building blocks shown

in ‎Figure 61(d) form a pattern called ComplianceToProcedureX. As illustrated in ‎Figure

61(a), each discovered pattern is associated with patterns that refine it. Although the de-

tails of this non-trivial pattern family cannot be discussed, its structure can briefly be

characterized: 13 patterns, 4 levels of depth, 58 goals, 36 indicators, and 28 business pro-

cesses.

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 123

Figure 61 Artificial example : (a) Pattern family, (b) Pattern and its internal structure,

(c) Goal model building block, (d) Business process building blocks

Note the additional presence of indicators in goal model building blocks, as shown

in ‎Figure 61(c). Relevant indicators (which are GRL intentional elements) from the pat-

tern family are transferred to the goal model of the target organization or department after

(b)

A typical Pattern

Aviation Security
Pattern Family

patternDef
(Refinement

Link)

«GoalModel»
ComplyToProcedureX «BusinessProcess»

BasicProcessX

«BusinessStrategy»
BasicComplianceToX

«Strategy»
BasicEvaluationX

«BusinessProcess»
AdvancedProcessX

«BusinessStrategy»
AdvancedComplianceToX

«Strategy»
AdvancedEvaluationX

Goal Model
Building Block

Business Process
Building Blocks

(a)

(c)

(d)

«Pattern»

ComplianceToProcedureX

(BasicProcessX)

‎Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 124

the application of the OCEM method. This enables the organization or department to get

a first set of indicators that can be used to measure objectives (which are related to com-

pliance in this case study). Indicators in URN models can similarly improve reuse in the

context of performance management of medical processes such as the palliative care pro-

cesses recently documented by Kuziemsky et al. ‎[143], which include indicators.

7.2.6 Evaluation of GoPF in the Aviation Security Domain

The GoPF framework was used with a typical regulator for building a pattern family that

captures the intentions, expected outcomes, and processes of a given domain (screening

for aviation security). One aspect of using GoPF for this case study is the modeling of

indicators, which can help regulators measure compliance and effectiveness.

This pattern family was presented to and validated with stakeholders and domain

experts. The feedback was encouraging and provided ad hoc evidence of interest and po-

tential benefits in using GoPF in a regulatory domain. First, the aviation screening pattern

family captures knowledge about problems and solutions at a given time. This helps regu-

latory parties by enabling the reuse of goal and business process model building blocks. It

is also helpful to regulatory organizations by keeping track of the evolution of the do-

main’s‎ problems‎ and‎ solutions‎ on‎ one hand and by shedding light on the rationales of

past decisions on the other hand. The latter is particularly helpful for the accountability of

such organizations.

Second, the pattern family was successfully evolved on a small scale to address

the concerns and new requests received from stakeholders when creating the pattern

family. Such continuous evolution helps maintain the accuracy of the contained

knowledge in a pattern family. Finally, stakeholders confirmed that patterns in this family

are valuable vessels for reusing the knowledge for goal and business process modeling in

other areas of screening. For instance, non-passenger screening, which was outside the

scope of the case study, can benefit from using the patterns modeled in the screening pat-

tern family. Moreover, it is also expected that the knowledge captured here can be poten-

tially reused in other similar domains such as aviation safety or screening domains out-

side of aviation.

‎Chapter 7. Evaluation - Comparison with Related Work 125

7.3 Comparison with Related Work

This section compares the GoPF framework against similar alternative approaches, which

are introduced in the literature reviews in ‎Chapter 2. ‎Table 7 represents nine important

dimensions of comparison between GoPF and other related work.

Table 7 Dimensions of comparison between GoPF and related work

Comparison Dimensions Descriptive Questions

Requirements Models Used For

Model Transformation

Are requirements models being used to begin creating

a chain of model transformations?

Formalized Pattern Specification Is there any formal foundation for specifying

problems, solutions, and forces in the pattern?

Goal Model Inclusion Are the intentional requirements of stakeholders being

captured in the form of goal models within patterns?

Business Goals and Processes

Linkage

Are the reusable business goals and processes

connected?

Pattern Organization What is the mechanism for organizing patterns and

capturing their relationships?

Pattern and Family Evolution Is it possible to change patterns and collections of

patterns to reflect the changes that may happen in the

corresponding domain?

Goal-oriented Solution Customiza-

tion and Extraction

Are the requirements of stakeholders being used for

extracting the knowledge from the pattern in order to

extend the organization goals build relevant business

process models?

Domain Specialization Do patterns capture the domain-specific knowledge

about its recurring problems and solution?

Pattern and Family Creation Are there any guidelines for building patterns and

organizing them in collections?

‎Table 8 provides a summary of the assessment of the various approaches (including the

GoPF framework) against these dimensions, hence enabling a comparison between GoPF

and related work. The following subsections provide a more detailed assessment of the

various approaches per dimension and contrast how the GoPF framework stands out.

‎Chapter 7. Evaluation - Comparison with Related Work 126

Table 8 Summary of comparison between GoPF and related work

Dimension

Related

Work

Require-

quire-

ments
Models

Used

For
Model

Transfor

for-
mation

Formal-

ized

Pattern
Specifi-

cation

Goal

Model

Inclu-
sion

Business

Goals

and
Process-

es

Linkage

Pattern

Organi-

zation

Pattern

and

Family
Evolu-

tion

Goal-

oriented

Solution
Custom-

ization

and
Extrac-

tion

Domain

Speciali-

zation

Pattern

and

Family
Creation

MDA ‎[58] No No No No No No No No No

Mussbacher et

al. ‎[71]
No Partially Yes Yes Informal No No No No

Gross and Yu ‎[77] Partially Partially Yes No Informal No Partially No No

Chung et al. ‎[78] No No Partially No No No Partially No No

Konard and

Cheng ‎[70]
No Partially No No Informal No No Yes No

Andrade ‎[79]

‎[80]
No Partially No No Informal No No Yes Partially

Markovic and

Kowalkiewicz ‎[99]
Partially No Yes Yes No No Partially Yes No

Rimassa et

al. ‎‎[100]‎[101]
Partially No Partially Yes No No No Yes No

Stirna et al. ‎[94] Partially Partially Yes Partially Informal No Partially Yes Yes

Zhao et al. ‎[85] No No No No No Partially No No No

Dong et al. ‎[86]‎[87] No No No No No Partially No No Partially

Aoyama ‎[88] No Partially No No Informal Partially No No No

Lapouchnian et

al. ‎[13]
Yes No Partially Partially No No Yes No No

Yu et al. ‎[114]‎ Yes No Partially Partially No No Yes No No

Liaskos et al. ‎[115] No No Partially No No No Partially No No

Hui et al. ‎[19] Partially No Partially Partially No No Partially No No

Wang et

al. ‎[20]‎[111]‎[112]
Partially Yes Yes Yes Formal No Partially Yes No

Čiukšys‎and‎

Čaplinskas ‎[16]
Partially Yes Partially Yes No No Partially Yes No

Filipowska et

al. ‎[113]
Partially No No No No No No Yes No

Wen et al. ‎[69] Partially Partially Yes Partially Informal No Partially Yes Partially

GoPF framework Partially Yes Yes Yes Formal Yes Yes Yes Yes

‎Chapter 7. Evaluation - Comparison with Related Work 127

7.3.1 Requirements Models Used For Model Transformation

The GoPF framework introduces patterns and pattern families that capture and organize

requirements. It puts the emphasis on models that capture stakeholder intentions and link

them to models that specify their operationalizations in terms of business processes.

GoPF provides steps that take the initial organizational goal model as an input and itera-

tively build hierarchical business goal and process models. These models can then be

used as inputs for building more concrete models required for creating software applica-

tions using a MDE-based approach. This can be considered to some extent as an exten-

sion of MDA ‎[58] by including the requirements models at the beginning of the model

transformation chain. However, GoPF does not include any automated model transfor-

mation mechanism for this purpose. ‎Table 9 highlights other significant related work in

this dimension (with a focus on the approaches that do well against this criterion).

Table 9 Summary of comparison based on requirements models used for model

transformation

Related Work Assessment of Related Work

MDA ‎[58]
No. Modeling requirements of stakeholders are outside the

scope of MDA.

Lapouchnian et

al. ‎[13]

Yes. These two approaches begin with goal models that

represent the requirements of stakeholders and produce a model

that illustrates the better configuration. Note that these

approaches differ from GoPF as they do not reason about

business processes.

Yu et al. ‎[114]‎

7.3.2 Formalized Pattern Specification

The GoPF framework includes a metamodel for capturing patterns. Patterns are described

with URN by formalizing:

 The description of the problem and the forces that are involved with

GRL’s‎intentional‎elements‎as‎well‎as‎contribution‎links as reusable goal

models (goal model building blocks);

 The reusable business solutions composed of:

‎Chapter 7. Evaluation - Comparison with Related Work 128

o The UCM models representing business processes that provide a more

detailed description of the behavior and structure of the solution (busi-

ness process building block); and

o The URN evaluation strategies representing effects of corresponding

business processes.

The approach taken in GoPF for presenting ways of reasoning about patterns is similar to

approaches suggested by Mussbacher et al. ‎[71], Gross and Yu ‎[77], and Chung et

al. ‎[78] (see ‎Table 10). However, there are important differences. GoPF is more con-

cerned with formalizing, through a metamodel, both problem and solution sections of the

patterns along with the forces in the context, which leads to capturing the knowledge of

the domain.

Note that formalization of pattern specifications comes at the price of complexity

of pattern building. For example, as opposed to frameworks where patterns have a natural

language description, PF analysts in GoPF must be familiar with URN and with the steps

required to build business goal and process models. This characteristic of GoPF can be

seen as a disadvantage in terms of usability compared to approaches that have a less for-

mal structure for capturing knowledge. Therefore, the framework would be suitable to

those users who can accept such challenge.

‎Chapter 7. Evaluation - Comparison with Related Work 129

Table 10 Summary of assessment based on the formalized pattern specification

dimension

Related Work Assessment of Related Work

Mussbacher et

al. ‎[71]

Partially. This approach uses URN models for formally

representing problems, solutions, and forces. However, it does

not provide a formal foundation such as metamodel for capturing

the elements of patterns, nor does it include well-formedness

rules.

Gross and Yu ‎[77]

Partially. This approach represents the goals of patterns using

Non-Functional Requirements Goal Graphs. However, there is

no suggestion for an underlying foundation for formally

specifying both problems and solutions.

Chung et al. ‎[78]

No. This approach uses object-oriented, goal-driven, and pattern-

based‎methodologies‎for‎developing‎“good”‎software‎

architectures. Although the Non-Functional Requirements

framework used here provides a formal notation for capturing

problems, the paper does not suggest a formalization of patterns.

Wang et

al. ‎[20]‎[111]‎[112]

Yes. They suggest a metamodel that formalizes their O-RGPS

framework for capturing domain knowledge. This work, unlike

GoPF, does not modularize and organize this knowledge in the

form of pattern families.

Čiukšys‎and‎

Čaplinskas ‎[16]

Yes. They leverage an ontology and provide a metamodel for

capturing domain knowledge. However, their primary objective

is to reuse business processes and not to extend the initial goal

model of the stakeholders.

7.3.3 Goal Model Inclusion

GRL’s‎ability‎to‎represent‎a hierarchy of organization goals (and their interactions) ena-

bles the GoPF framework to capture the relevant reusable fractions of this hierarchy with-

in the patterns. Furthermore, patterns are also formalized with URN in a way such that

one pattern groups similar solutions that address a recurring problem, with their trade-

offs.

Konard and Cheng’s approach ‎[70] uses UML models for capturing structural and

behavioral aspects of requirements patterns. However, it does not include a formal foun-

dation, such as goal models, for capturing intentions and connecting them to the behav-

ioral models that realize them. Similarly, Andrade ‎[79]‎[80] uses UCM for formally cap-

turing the commonalities of solutions in her approach toward requirements patterns in

‎Chapter 7. Evaluation - Comparison with Related Work 130

wireless systems. Again, this approach does not include a formal description of the goals

that accompany the suggested patterns.

Patterns in the approaches suggested by Mussbacher et al. ‎[71] and Gross and

Yu ‎[77] include goal models while the approach in and Chung et al. ‎[78] link patterns to

such models. ‎Table 11 presents relevant related approaches that include goal models.

Table 11 Summary of assessment based on the goal model inclusion dimension

Related Work Assessment of Related Work

Konard and

Cheng ‎[70]

No. This approach uses the UML notation for formally defining

behavioral and structural aspects of patterns but does not include

goal models.

Andrade ‎[79]‎[80]
No. Andrade’s‎approach‎for‎analysis‎patterns‎in‎the mobile

systems domain does not include goal models.

Mussbacher et

al. ‎[71]

Yes. This approach uses URN-based goal models. It differs from

GoPF in the sense that it neither includes traceability links nor a

systematic approach that helps capturing, maintaining, and using

patterns.

Gross and Yu ‎[77]

Yes. This approach suggests using Non-Functional Requirements

Goal Graphs for better describing the problems that are being

addressed by patterns.

Chung et al. ‎[78]

Partially. Although the Non-Functional Requirements

framework is used to capture intentions of requirements, goal

models are not part of patterns.

Markovic and

Kowalkiewicz ‎[99]

Yes. They use goal models to improve Business Process

Management methodologies. This approach enables querying the

knowledge. However, this knowledge is not captured in the form

of patterns.

Stirna et al. ‎[94]

Yes. Their Enterprise Knowledge Patterns include goal models

to represent recurring problems. This approach does not provide

a formal foundation for the models used in their suggested

patterns. In addition, the organization of patterns is informal and

done through textual references.

Wang et

al. ‎[20]‎[111]‎[112]

Yes. The metamodel for O-RGPS includes a layer for capturing

goals (G-net). However, this work does not capture and organize

the domain knowledge in the form of patterns and families.

Wen et al. ‎[69]

Yes. In their analysis framework, i* is used for modeling

intentions as part of creating requirements patterns. This

knowledge is then used to address the problems in a specific

domain, namely medical information security. However, no

guideline is suggested for capturing the patterns and for using

them.

‎Chapter 7. Evaluation - Comparison with Related Work 131

7.3.4 Links between Business Goals and Processes

Problems and solutions are two sides of the same coin. They can be best understood when

goal and business process views are captured together. In the GoPF framework, such in-

tegration is formalized by two means. First, the metamodel defines a pattern as a contain-

er of a goal model building block on one side and a set of pairs of <business process

building block, evaluation strategy> on the other side. This structure is helpful because

patterns include both perspectives. In addition, the evaluation strategies capture the effect

of relevant business processes on the corresponding intentions in the goal model. Second,

the metamodel includes realization links between the contributing elements of a problem

depicted with GRL and elements of solutions represented in UCM diagrams with process

stubs and activities.

Markovic and Kowalkiewicz ‎[99] do not use patterns, but they provide an ap-

proach that includes a business process ontology and a goal modeling notation. The links

between these views then enable the integration of the intentional and business process

perspectives. This ontology is used for performing automated analysis and for querying

the contained knowledge. This is also feasible in the GoPF framework (e.g., by creating

OCL queries on the URN model). However, unlike for the GoPF framework, no method

or framework is provided to enable the creation of patterns in order to reuse solutions to

recurring problems.

Rimassa et al. ‎‎[100]‎[101] leverage agent technology and introduce the goal-

oriented business process modeling notation (GO-BPMN), which is a BPMN-based visu-

al language for business process modeling enriched by goal modeling. However, unlike

GoPF, the relationships between goals and business process are limited and the notation

does not support different levels of abstraction. ‎Table 12 highlights some of the closest

related work and how they link business goals and processes.

‎Chapter 7. Evaluation - Comparison with Related Work 132

Table 12 Summary of assessment based on the links between business goals and

processes dimension

Related Work Assessment of Related Work

Mussbacher et

al. ‎[71]

Yes. This approach uses GRL graphs in connection with UCM

diagram. However, their approach does not include a systematic

way of maintaining patterns.

Markovic and

Kowalkiewicz ‎[99]

Yes. Their approach suggests linking goal models to business

processes for improving Business Process Management

methodologies. This enables querying the captured knowledge.

However, this knowledge is not captured in the form of patterns.

Furthermore, it does not include steps needed for capturing such

knowledge.

Rimassa et

al. ‎‎[100]‎[101]

Yes. They provide limited linking between goals and business

processes through their visual language (GO-BPMN). However,

the links are limited and do not support organizing hierarchical

knowledge.

Wang et

al. ‎[20]‎[111]‎[112]

Yes. Their metamodel for ontology-based O-RGPS framework

enables lining the goals in G-net layer to the processes in P-net

layer. However, this work does not capture and organize the

domain knowledge in the form of patterns and families. In

addition, it does not provide steps for capturing the domain

knowledge.

Čiukšys‎and‎

Čaplinskas ‎[16]

Yes. They leverage an ontology and provide a metamodel that

enables linking goals to business process. However, their

primary objective is to reuse the business processes and do not

extend the initial goal model of the stakeholder.

7.3.5 Pattern Organization

The framework metamodel introduces pattern families, which organize patterns at differ-

ent levels of abstraction and enable navigation from more abstract problems and solutions

to more concrete ones. Furthermore, this organization of patterns addresses different in-

terests of stakeholders where intentions, while being considered as elements of solution

for one stakeholder, are also viewed as main goals for another stakeholder. The organiza-

tion of a pattern family is captured through refinement links between individual patterns

when one refines the other.

Stirna et al. in ‎[94]‎[95]‎[96] propose Enterprise Knowledge Patterns for capturing

patterns and for managing knowledge. Enterprise Knowledge Patterns contain interrelat-

ed goal, business process, and concepts models. They describe reusable solutions for en-

‎Chapter 7. Evaluation - Comparison with Related Work 133

terprise problems. This approach however does not provide a formal foundation for the

models and their relationships. In addition, it does not provide a formal foundation for

relationships between patterns, and domain knowledge is managed by capturing textual

references. The GoPF framework, on the other hand, is built upon a metamodel expressed

as a profile of the URN standard, along with a method that enables automated transfor-

mations. Moreover, the business strategies in the framework enable different solutions to

be used for the same pattern depending on the forces and goals characterizing the target

organization. Although patterns are not explicitly used by Wang et al. ‎[20]‎[111]‎[112],

their approach has a formal foundation for capturing domain knowledge (see ‎Table 13).

Table 13 Summary of assessment based on the pattern organization dimension

Related Work Assessment of Related Work

Stirna et al. ‎[94]

Informal. Enterprise Knowledge Patterns intend to capture and

manage domain knowledge using patterns. However, the pattern

organization is informal and takes place through textual

references. In addition, this approach does not provide a formal

foundation for patterns.

Wang et

al. ‎[20]‎[111]‎[112]

Formal. Their metamodel for the ontology-based O-RGPS

framework lays down a formal foundation for organizing goals,

processes, roles, and services. This approach does not use

patterns explicitly, which may negatively affect reusing the goals

and processes. GoPF on the other hand explicitly captures the

domain knowledge in the form of reusable blocks.

7.3.6 Pattern and Family Evolution

GoPF’s‎ evolutionary‎mechanisms are designed to maintain the knowledge captured in

pattern families and manage change.

Zhao et al. ‎[84]‎[85] propose and approach for the evolution of design patterns and

pattern-based designs. Similarly, Dong et al. ‎[86]‎[87] propose an approach for the evolu-

tion of design patterns. Aoyama ‎[88] also proposes an evolutionary mechanism based on

a more formal representation of patterns provided in his research. They are different from

the evolutionary mechanisms in GoPF in two ways: (i) these approaches focus on design

patterns, and (ii) evolution is limited to variations of the initial pattern. ‎Table 14 summa-

rizes these approaches.

‎Chapter 7. Evaluation - Comparison with Related Work 134

Table 14 Summary of assessment based on the pattern and family evolution dimension

Related Work Assessment of Related Work

Zhao et al. ‎[85]
Partially. They provide transformation approaches for evolving

design patterns. However, they are limited to evolving design

patterns to variations of initial ones. GoPF on the other hand

provides mechanisms that enable evolution of patterns and

pattern families so that they reflect the current knowledge of a

given domain.

Dong et al. ‎[86]‎[87]

Aoyama ‎[88]

Partially. He proposes a set of graphical notations, and collects

evolved patterns into families. This approach focuses on the

evolution of design patterns. It also introduces the concept of

collection as a set of variations for an initial pattern.

7.3.7 Goal-oriented Solution Customization and Extraction

Traditional process-oriented software development approaches put little emphasis on

using goal models for eliciting and analyzing stakeholder requirements. Consequently, no

links will be systematically established between business goals and processes at the time

of finding solutions that realize the requirements of stakeholders. In order to address this

disadvantage, the GoPF framework provides the OCEM method for extracting and cus-

tomizing solutions in the context of an initial organizational goal model. This method is

carried out iteratively and gradually extends the goal model of organization while consid-

ering the forces and conditions of the stakeholders and organization. Furthermore, this

method also builds a hierarchy of business process that is realizing the corresponding

goals in the extended goal model.

Lapouchnian et al. ‎[13] also propose an approach for capturing the needs of

stakeholders in goal models and for annotating them. This enables reasoning and select-

ing processes and finding customization alternatives that best accommodates stakehold-

ers’‎goals.‎In another research, Yu et al. ‎[114]‎ propose a two-step approach for reasoning

and selecting configuration alternatives by utilizing reverse-engineered goal models. Sim-

ilarly, Liaskos et al. ‎[115] provide an approach for configuring software applications. In

this approach, a goal model captures the requirements of stakeholders and is used for

reasoning about the best configuration alternatives.‎Yu’s‎ approach and‎Liaskos’‎ enable

configuration of the software application for realizing the goals of stakeholders, yet they

have two limitations. First, these approaches are mainly using goal models and do not

‎Chapter 7. Evaluation - Comparison with Related Work 135

include reasoning about business processes. Second, in order for these approaches to con-

figure software applications, they must be accompanied by a goal model representing the

alternatives.

Hui et al. ‎[19] also propose a framework that customizes software applications in

the context of goals, skills, and preferences of stakeholders. In her approach, a goal mod-

el represents stakeholder requirements while the leaf intentions are mapped to class dia-

grams that capture the possible alternatives. This approach then uses the goal model for

selecting the alternative that satisfies stakeholders in a given context.

These requirements-driven approaches tackle the gap between goals and their re-

alization, with an emphasis on goal models. Similarly, this thesis aims to bridge the gap

between business goals and business processes, but the solution presented here is differ-

ent from the above approaches in three important ways.

First, unlike the mentioned approaches that create specific goal models for partic-

ular software applications, GoPF uses goal models to capture domain knowledge. Se-

cond, unlike approaches in ‎[19]‎[114]‎[115] ‎that configure implemented business process-

es, GoPF provides different ways of achieving stakeholder goals at the business process

level rather than at the configuration level. Third, unlike ‎[13], GoPF captures goal models

and business process models separately along with traceability links between them. Sepa-

ration of goal models and business process models increases the maintainability of pat-

terns as well as their comprehensibility. In summary, GoPF aims to reuse domain

knowledge to enable business process development in context while the approaches men-

tioned in this subsection are fine-tuned for requirement-driven customization of behaviors

of applications after they are developed. ‎Table 15 summarizes those approaches that at-

tempt to extract and customize solutions based on goals of stakeholders.

‎Chapter 7. Evaluation - Comparison with Related Work 136

Table 15 Summary of assessment based on the goal-oriented customzation and

extraction dimension

Related Work Assessment of Related Work

Lapouchnian et

al. ‎[13]

Yes. This approach suggests the augmentation of goal models so

they represent the underlying business processes configuration

alternatives. This is then used to tailor the business process for

better addressing the requirements of stakeholders. This

approach differs from GoPF in two ways: (i) it does not attempt

to capture reusable knowledge across different organizations and

(ii) it strictly couples the knowledge about process alternatives in

the goal models.

Yu et al. ‎[114]‎

Yes. This approach uses the goal model that represents the

domain requirements and reasons about a configuration of an

application (e.g., Firefox browser) that is best suited for a

particular user. This approach is somewhat limited and mainly

focuses on configuration.

Liaskos et al. ‎[115]

Partially. This approach parameterizes the goal models and uses

them to find the best alternative. The main objective of this

solution is to enable automatic personalization of software

applications (e.g., Mozilla Thunderbird email client).

Hui et al. ‎[19]
Partially. In this approach, goal models are linked to class

diagrams and are used for the customization of applications.

7.3.8 Domain Specialization

The GoPF framework provides structures and methods for capturing the knowledge spe-

cific to a domain in the form of pattern families, where patterns highlight recurring prob-

lems and solutions. Furthermore, evolutionary mechanisms enable pattern families to

change over time and better reflect current problems and solutions in a specific domain.

In this sense, the objective of the GoPF framework, similar to that of domain engineering,

is to provide a source of reusable knowledge about the problems in the domain and facili-

tate reusing the solutions, while teaching and communicating with stakeholders.

Wang et al. have suggested a domain modeling framework for networked soft-

ware applications ‎[20]‎[111]‎[112]. This framework uses five layers of ontologies for en-

capsulating the domain knowledge in different views. However, the main objective of

this approach is to bridge the gap between process descriptions and web services by reus-

ing the functionalities that are captured in the form of services. Similarly, an ontology-

based method suggested by Čiukšys‎and‎Čaplinskas ‎[16] facilitates reusing business pro-

‎Chapter 7. Evaluation - Comparison with Related Work 137

cesses in a domain. Filipowska et al. ‎[113] also suggest an approach that leverages ontol-

ogies and captures the domain knowledge about business processes. However, the prima-

ry objective of the approaches of Filipowska et al. and of Čiukšys‎and‎Čaplinskas is to

capture the domain knowledge about business processes. The GoPF framework on the

other hand captures the knowledge about goals/requirements of stakeholders and links

them with processes that realize those requirements. ‎Table 16 compares the approaches

that enable capturing domain-specific knowledge.

Table 16 Summary of assessment based on the domain specialization dimension

Related Work Assessment of Related Work

Konard and

Cheng ‎[70]

Yes. The suggested approach captures can be specialized for a

domain. However, it does not include goal models.

Andrade ‎[79]‎[80]
Yes. Andrade’s‎suggested‎approach‎for‎analysis‎patterns‎in‎

mobile system domain does not include goal models.

Markovic and

Kowalkiewicz ‎[99]

Yes. Their approach attempts to improve Business Process

Management methodologies and enables querying the domain

knowledge. However, this knowledge is not captured in the form

of patterns.

Rimassa et

al. ‎‎[100]‎[101]

Yes. Their provided visual language (GO-BPMN) can be used

for capturing the goals and business processes for specific

domains. However, the models are limited and the approach does

not support organizing hierarchical knowledge.

Stirna et al. ‎[94]

Yes. They proposed Enterprise Knowledge Patterns for capturing

the enterprise knowledge in the form of patterns. This is similar

to GoPF but their approach does not provide a formal foundation

for the suggested pattern. In addition, the organization of patterns

is informal and no mechanism is suggested for evolution of

patterns.

Wang et

al. ‎[20]‎[111]‎[112]

Yes. This approach can be used for specific domains. However,

this work does not capture and organize the domain knowledge

in the form of patterns and families.

Čiukšys‎and‎

Čaplinskas ‎[16]

Yes. Their approaches attempt to reuse the domain knowledge

about business processes. However, this is the primary objective

and the approach does not attempt to extend the initial goal

model of the stakeholder.
Filipowska et

al. ‎[113]

Wen et al. ‎[69]

Yes. Requirements patterns in this analysis framework capture

the domain knowledge by using i* models in combination with

problems frames. This knowledge is then used to address the

problems in a specific domain, namely medical information

security. However, no guideline is suggested for capturing the

patterns and for using them.

‎Chapter 7. Evaluation - Limitations and Threats to Validity 138

7.3.9 Pattern and Family Creation

The GoPF framework provides a systematic way of eliciting goals/problems and captur-

ing recurring solutions of a specific domain. This method involves interactions with

stakeholders and domain experts as well as previous knowledge of PF analysts. In addi-

tion, this approach provides steps for building patterns from the elicited goal models and

related pairs of business processes and their effects. Finally, the approach takes the new

patterns as inputs for building new pattern families. Evolutionary mechanisms also enable

maintenance of a pattern family for a specific domain when new patterns in that domain

are built.

Wen et al. ‎[69] suggest an approach for capturing requirements patterns contain-

ing the knowledge about the security problems in medical information system based on

the i* framework and on problem frames. However, they did not include systematic

guidelines for capturing patterns but underlined such guidelines as a desired extension of

their work. Stirna et al. ‎[94] proposed guidelines for capturing patterns but the latter lack

the steps necessary for systematically organizing patterns into a collection. ‎Table 17

summarizes these approaches.

Table 17 Summary of assessment based on the pattern and pattern family creation

dimension

Related Work Assessment of Related Work

Stirna et al. ‎[94]

Yes. Enterprise Knowledge Patterns include guidelines for

capturing the domain knowledge in the form of patterns. These

guidelines do not include systematic steps for organizing patterns

into a family. Furthermore, this approach does not include a

formal foundation for patterns.

Wen et al. ‎[69]

Partially. Their analysis framework highlights the general steps

needed for capturing requirements patterns by combining i*

models with problems frames. However, no guideline is

provided for systematically capturing the patterns and using

them.

7.4 Limitations and Threats to Validity

This section discusses several important limitations related to the GoPF framework and

threats to the validity of the work surrounding its development and evaluation.

‎Chapter 7. Evaluation - Limitations and Threats to Validity 139

7.4.1 Case Studies and Pattern Family Construction

The patient safety pattern family is based on goals and actual processes observed in sev-

eral units of one teaching hospital in Ontario ‎[39]. However, the patterns would get

stronger by taking into account the PF‎users’‎feedback‎when‎the patterns are used and by

observing how relevant healthcare processes are done at different hospitals, perhaps even

across provinces or countries, so that best practices spanning multiple organizations in

different healthcare contexts can be shared. Note that, in order to mitigate this threat to

some extent, informal discussions with adverse event researchers at another hospital in

Quebec (involved in the same research project) were held to ensure some level generality

in the pattern family.

For the second case study, the aviation security pattern family was built by ob-

serving the objectives and business processes of different departments of one Canadian

regulatory organization contributing to screening security. Similarly, the patterns in this

family would be stronger by observing other organizations contributing to screening se-

curity.

The patterns in both these families would also benefit from being collected and

reused by more than one person, to avoid common bias issues. At‎the‎moment,‎the‎thesis’‎

author is the only person who has created and used pattern families. Having other PF ana-

lysts would also help demonstrate the usability of the approach prescribed by the frame-

work. The framework is also meant to be usable by third-party, intermediary organiza-

tions (e.g., consultants) as they are more likely to be observing goals and processes across

organizations in a domain, but again it is premature to claim that this is beneficial to such

intermediary organizations.

Finally, the framework was applied to only two (albeit very different) domains so

far. More pattern families need to be created and used in other contexts in order to claim

generality in terms of the domains where the framework is applicable.

7.4.2 OCEM Limitations

The current algorithm for Organization-driven Customization and Extraction Method

(OCEM), namely Algorithm 5, does not necessarily guarantee that the best solution for

the target organization will be extracted from the pattern family, even if that family is

‎Chapter 7. Evaluation - Limitations and Threats to Validity 140

perfectly modeled. The selection of goal strategies (and hence of corresponding business

processes) depends on the quality of the input organizational goal model, and how sensi-

tive the algorithm is to that input has not been studied. In addition, the selection of the

best strategies for a pattern is based on local optimizations (in a step-by-step or decision-

by-decision basis) rather than based on a global optimization across all patterns at once.

The latter approach might indeed lead to better global solutions for the organization, but

it would be more computationally challenging and less modular than the current OCEM

approach.

OCEM was also only exercised for the patient safety pattern family, and this was

not done in the context of a real organization. More validation is hence required on that

side.

7.4.3 Precision of Goal Models in Patterns

Like for any goal model, one can question the precision and correctness of the contribu-

tion weights as well as initial satisfaction values in strategies. These can however be re-

fined and validated with time and experience. Moreover, the strategy selection method is

a comparative one (e.g.,‎ the‎ algorithm‎ chooses‎ the‎ “best”‎ strategy‎ amongst‎ a‎ few), so

precise numbers are not always required in models. URN also allows modelers to start

with qualitative values, when knowledge is sparse and fuzzy, and then to refine these

links with more granular quantitative values as more precise knowledge is acquired.

7.4.4 Automation and Tool Support

Because the GoPF framework is using a profile mechanism to extend URN, current

URN-based tools such as jUCMNav can be used to model patterns and pattern families

through modeling their elements. However, modelers need to have a fair understanding of

the URN language. In addition, the available tools lack the ability to help modelers

evolve PFs (through the various evolution mechanisms seen in this thesis) and this cur-

rently limits the usability of the framework. The framework could benefit from GoPF-

customization of current URN modeling tools (e.g., jUCMNav) and from seeing its vari-

ous algorithms (Algorithms 1 to 5) integrated in them. The availability of Java implemen-

tations for the evolution algorithms ‎[136] is a step towards this vision, but much work

remains to be done in order to have a complete modeling and analysis environment.

‎Chapter 7. Evaluation - Summary 141

7.5 Summary

The GoPF framework was used for capturing knowledge in two different real-world do-

mains. This chapter evaluated the GoPF and its feasibility based on these two representa-

tive case studies. The patient safety case study, which has been an ongoing example

throughout the thesis, was briefly reviewed while the second case study about outcome-

based compliance in the aviation security domain was discussed with more details, espe-

cially in view of the use of indicators to measure goal satisfaction. In addition, different

dimensions of comparison were introduced, and the framework was compared to related

work along these dimensions. This comparison highlights that the GoPF framework is

quite unique in its formalization, manipulation, and usage of patterns and families that

exploit goals, business processes, and their relationships. Finally, the limitations of this

thesis as well as threats to its validity were discussed. Following the approach of Hevner

et al. ‎[35] for the research methodology, the intentions of this chapter was to illustrate the

usefulness and applicability of the GoPF framework.

The next chapter will summarize the intentions and structure of the GoPF frame-

work and provide concluding remarks. It will also highlight future areas of research that

can extend or improve this thesis.

‎Chapter 8. Conclusions and Future Work - Conclusions 142

Chapter 8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The value of software applications to an organization is based on how well business goals

are satisfied through their use. Successful software development for an organization in-

volves an accurate understanding of requirements, business goals, and (automated) busi-

ness processes that can satisfy them. Therefore, it is necessary to build goal and process

models that appropriately represent the requirements of stakeholders. However, defining

such models from scratch is challenging. In spite of similarities between problems and

solutions in a given domain, organizations often have difficulties in properly identifying,

documenting, organizing, and reusing goals, business processes, and the links between

these two views. In other words, capturing and reusing the domain knowledge is chal-

lenging and it is becoming increasingly difficult to ignore the benefits of knowledge re-

usability. Reusing domain knowledge captured in the form of patterns can often help

address this issue.

Furthermore, there is a gap between goals and business processes. Whereas much

attention has been devoted to the transition from business processes to supporting soft-

ware products, the gap between business goals and business processes has received far

less attention. Most approaches do not address the latter gap properly, and many even

ignore goals altogether. A significant number of software development projects, in

healthcare for example, yield disappointing results or are simply canceled because busi-

ness processes are not aligned properly with business goals. Modeling business goals and

processes separately is not sufficient to bridge this gap, and hence traceability must be

taken into account.

Motivated by the above challenges, this thesis introduced the Goal-oriented Pat-

tern Family (GoPF) framework, which is a pattern-based framework for capturing

knowledge about a domain, structuring it, and reusing it in other contexts. The patterns

contain the knowledge about recurring problems and solutions in the domain. They also

include the potential effects of alternative solutions on the goals. This knowledge is cap-

‎Chapter 8. Conclusions and Future Work - Conclusions 143

tured in the form of reusable goal model building blocks, business process building

blocks, links that define the realization relationships between them, and evaluation strat-

egy for alternative solutions. This structure of patterns indicates which business processes

alternatively realize particular business goals. Using the knowledge in the pattern along

with contextual conditions and requirements of a given organization enables selecting

and customizing known solutions for the organization. Hence, patterns help bridging the

gap between requirements of a particular organization and corresponding (existing) solu-

tions. These patterns are then organized in pattern families, i.e., collections of related

patterns, where refinement links capture potential refinement relationships amongst pat-

terns. The Framework Metamodel (FMM) lays down the foundation of pattern families

and formalizes the patterns that capture knowledge. FMM is formalized as a profile of the

standard URN modeling notation, which combines goals, processes, realization links be-

tween them, and potential effects of solutions, as well as refinement links in between pat-

terns.

The GoPF framework includes methods for capturing the domain knowledge by

locating recurrences and building patterns and pattern families through interaction with

stakeholders and domain experts. However, changes in the requirements and context of

stakeholders in a domain are unavoidable and therefore the problems and solutions within

a domain are always evolving. Furthermore, the knowledge about business requirements

in a domain is changing over time at a more rapid pace than for conventional software

design patterns. One benefit of using the GoPF framework for capturing knowledge is

that the patterns encapsulate recurring problems and solutions into loosely-coupled mod-

ules. Still, rapid changes in technologies, business environments, and concerns of stake-

holder have highlighted the need for evolving patterns and pattern families. This is essen-

tial for maintaining the accuracy and usefulness of patterns. Introducing evolutionary

mechanisms that systematically help maintaining pattern families is hence a necessity.

Adding new patterns, removing obsolete ones, modifying patterns, and combing pattern

families are core aspects of family evolution. GoPF is equipped with four automatable

evolutionary mechanisms for the extension, modification, elimination, and combination

of pattern families. According to the literature reviewed, this is the first attempt at de-

scribing and formalizing evolution mechanisms for patterns that integrate business goals

‎Chapter 8. Conclusions and Future Work - Conclusions 144

and processes. In order to demonstrate the feasibility of these mechanisms, a Java proto-

type application was developed that implements the four evolution algorithms. This ap-

plication was used to test the algorithms against various manipulations of the patient safe-

ty pattern family.

The GoPF framework also provides a customization and extraction method that

enables the selection of appropriate solutions in the context of a particular organization.

The framework facilitates extracting stakeholders’ business goals in the form of a hierar-

chical model and designing business processes with the help of reusable knowledge cap-

tured as patterns. This method uses the domain knowledge in the pattern families and an

initial organizational goal model as inputs and then assesses the impact of alternative

solutions for achieving the goals of stakeholders in a given organization with a step-by-

step, top-down approach. The result is a URN model where the business goals have been

refined based on the knowledge embedded in the patterns, where a suitable business pro-

cess was constructed, and where traceability links between the two views are document-

ed.

This thesis made the hypothesis that one can reuse and maintain, in a rigorous

way, the knowledge about business goals, business processes and the links between them,

captured as patterns to create suitable business processes in the context of a different or-

ganization. This hypothesis was demonstrated through the main contributions of this

work, which include:

 The GoPF framework itself, which includes a Family Metamodel that for-

malizes patterns and families using a URN profile. Pattern families capture

the knowledge of a given domain by including:

o Goal model and business process building blocks representing recurrent

problems (including indicators to measure them) and solutions, as well as

realization links between them;

o Effects of alternative solutions on stakeholders at the level of each pat-

tern; and

o Refinement links between patterns, hence capturing their hierarchy.

‎Chapter 8. Conclusions and Future Work - Future Work 145

 A Goal-driven Method (GDM) that includes processes, mechanisms and al-

gorithms for the creation and evolution (through extensions, modifications,

eliminations, and combinations) of pattern families;

 An Organization-driven Customization and Extension Method (OCEM)

providing steps for building customized goal and process models for specif-

ic organizations by reusing the captured knowledge in the families; and

 Two case studies in which the GoPF framework was used for capturing and

reusing their relevant domain knowledge.

The validation was done through the above two realistic case studies (where real prob-

lems, organizations, and stakeholders were involved), but also through a comparison with

related work, which highlighted the uniqueness of the framework and its potential. The

GoPF framework is expected to have a positive impact on the scientific community

through the formalization, evolution, and reuse of patterns in domain-specific business

domains. From an industrial viewpoint, this framework will also help intermediary organ-

izations (such as consulting firms) who are required to repeatedly create and document

goal and process models for other organizations in their business domain.

8.2 Future Work

Several limitations of the GoPF framework and threats to the validity of the work were

identified in the thesis, especially in section ‎7.4. These issues lead to different opportuni-

ties for improving and completing this work in the future.

8.2.1 Customization and Extraction of Models (and Propagation)

OCEM‎currently‎uses‎a‎“locally‎optimal”‎approach‎(in‎the‎context‎of‎a‎pattern)‎for‎select-

ing the most satisfying solution for the stakeholders. This implies a breadth-first evalua-

tion of one level of strategies in the context of a specific pattern. However, alternative

algorithms could also be explored, including depth-first or hybrid traversals, the evalua-

tion of combined strategies from N levels deep in a look-ahead way, etc. There are also

research opportunities for changing OCEM and assessing it against the current method.

For instance, a constraint-oriented solving approach to goal evaluations suggested by Luo

and Amyot ‎[144] may enable a “globally‎optimal”‎approach. Such approach can find the

‎Chapter 8. Conclusions and Future Work - Future Work 146

best solution in the context of the organization based on the possible evaluation strategies

outside the scope of a particular pattern.

Furthermore, OCEM currently starts from an empty business process, but another

possible start point could be the as-is organization business process, which PF users

would like to refine or extend through the framework.

8.2.2 Usage of GoPF in Different Domains and by Different People

The GoPF framework was used on two real-life examples. However, it would be valuable

for improving the framework to use it for capturing and reusing knowledge in other do-

mains.‎Analysis‎of‎its‎usefulness‎and‎difficulties‎will‎help‎improving‎GoPF’s‎metamodel‎

and methods, especially in terms of generality.

The framework should also be used by different people to avoid bias and enable

studying its usability. The experiments could be conducted by different PF analysts and

PF users, who respectively will be in charge of capturing and reusing domain knowledge.

8.2.3 Usage of GoPF in Different Organizations of a Given Domain

GoPF’s‎ feasibility‎ and‎ usefulness‎ was‎ evaluated‎ against different departments of two

large organizations. The departments in each of these organizations were also large and

had similar yet different requirements, which made them suitable candidates to play the

role of individual organizations in their domains. Domain experts underscored the bene-

fits of using the pattern families outside the scope of the examined organizations. Yet, a

broader experiment would be valuable. Therefore, one next step could be to use the GoPF

framework across multiple organizations (and not just departments) of a given domain.

Such experiments, in addition to helping with the assessment of the usefulness and gener-

ality of the framework, may improve the generality of the patterns and families them-

selves, leading to higher benefits for future users.

8.2.4 Evolution of Pattern Families

Another future work item is to monitor a domain and evolve its pattern family over long-

er periods (possibly years). Such research would examine the sufficiency of the evolu-

tionary mechanisms and incorporate learned lessons and emerging best practices. This

may potentially highlight the need for new or improved evolutionary mechanisms.

‎Chapter 8. Conclusions and Future Work - Future Work 147

8.2.5 Other Modeling Languages

At the time this research was started (in 2007), URN had advantages over similar alterna-

tives for goal and process modeling because it integrates these two views, and tool sup-

port was readily available. However, it would be interesting to evaluate the sufficiency

and completeness of URN-based goal and process models for organizations in different

domains and compare the results to similar experiments with alternative standards and

notations‎ such‎ as‎ OMG’s‎ BPMN ‎[49] and/or BPDM ‎[53]. Using such alternative lan-

guages might also enable transferring the benefits of GoPF outside of the URN world.

8.2.6 GoPF for Building Goal Models

This thesis focused on capturing and reusing the knowledge about business goals and

business processes. Currently, the GoPF framework is designed to reuse such domain

knowledge by extending the initial goal model to a full-blown goal model that fit stake-

holder requirements. The method in charge of building the goal model (OCEM) is simul-

taneously building a hierarchy of related business processes. Having both goal models

and relevant business processes is the desired outcome for many stakeholders. However,

there are domains, such as outcome-based compliance in general, in which some stake-

holders are mainly concerned with goal models, and not so much in business processes.

Thus, a future research item would be to customize the framework, and especially

OCEM, for building customized goal models.

8.2.7 Product Line Software Engineering

In this thesis, reusable business goals and processes are combined in patterns as the un-

derlying means of reusing domain knowledge. An interesting future work is to assess the

possibility of customizing some GoPF methods (e.g., evolutionary mechanisms) to be

used in product line software engineering. The research by Brown et al. [145], which

augments feature models with UCM diagrams, could be a start point for this purpose.

8.2.8 Tool Support

Currently, jUCMNav provides tool support for creating goal model and business process

building blocks in the form of GRL and UCM diagrams, respectively. Evaluation strate-

gies can also be captured. The refinement links and realization links are specified using

URN links. Finally, jUCMNav helps PF users build hierarchical goal and business pro-

‎Chapter 8. Conclusions and Future Work - Future Work 148

cess models for the stakeholder reusing pattern captured by PF analysts. The case studies

for patient safety and aviation security both made use of jUCMNav for capturing and

reusing knowledge. However, jUCMNav currently does not provide support for visuali-

zation of the structure of patterns and families, and evolutionary mechanisms and OCEM

are not integrated either. A tool more specialized for developing and using GoPF-based

patterns would benefit both PF analysts and PF users.

8.2.9 Run-Time Approach

The GoPF framework is mainly concerned with assisting requirements engineers and

business analysts by capturing domain knowledge and reusing it. Currently, reusing goals

and selecting the solutions that can better satisfy stakeholders happens at design time.

The framework is not attempting to dynamically reuse goals and processes at run-time, in

an adaptive way, but this could be the topic on interesting research. One challenge here is

providing a mechanism for applying the selected solution. For example, instead of having

only one sub-process (plug-in map) selected per stub and resolving everything at design

time, many sub-processes may be kept in dynamic stubs (which would allow for many

sub-processes) and be resolved at run-time according to the current context of the organi-

zation as monitored by the indicators. Pourshahid et al. ‎[146] have recently published a

systematic literature review on business process adaptation that discusses work in that

area, including work involving URN and aspect-oriented extensions to URN. In addition,

the current GoPF framework captures the knowledge about the problems and solutions

for the stakeholders in the organizations. However, run-time approaches may also need to

capture patterns about actors outside the scope of organizations.

References 149

REFERENCES .

[1] E. Simchi-Levi and P. Kaminsky, Designing and managing the supply chain:

concepts, strategies, and case studies. Irwin/McGraw-Hill, 2003.

[2] T. H. Davenport, Process innovation: reengineering work through information

technology. Harvard Business School Press, 1993.

[3] D. Georgakopoulos, M. Hornick, and A.‎Sheth,‎“An‎overview‎of‎workflow‎man-

agement:‎ From‎ process‎ modeling‎ to‎ workflow‎ automation‎ infrastructure”, Dis-

tributed and Parallel Databases, vol. 3, no. 2, pp. 119-153, 1995.

[4] R.‎K.‎Ko,‎S.‎S.‎Lee,‎and‎E.‎W.‎Lee,‎“Business‎process‎management‎(BPM)‎stand-

ards: a survey”, Business Process Management Journal, vol. 15, no. 5, pp. 744-

791, 2009.

[5] F.‎Alencar,‎B.‎Marín,‎G.‎Giachetti,‎O.‎Pastor,‎J.‎Castro,‎and‎J.‎H.‎Pimentel,‎“From‎

i* Requirements Models to Conceptual Models of a Model Driven Development

Process”, in The Practice of Enterprise Modeling, LNBIP 39, Springer, pp. 99-

114, 2009.

[6] Y. Huang,‎ S.‎ Kumaran,‎ and‎ K.‎ Bhaskaran,‎ “Platform-independent model tem-

plates for business process integration and management solutions”, in IEEE Inter-

national Conference on Information Reuse and Integration (IRI), IEEE CS, pp.

617-622, 2003.

[7] D.‎Amyot‎and‎G.‎Mussbacher,‎“Bridging‎the‎requirements/design‎gap‎in‎dynamic‎

systems with use case maps (UCMs)”, in Proceedings of the 23rd International

Conference on Software Engineering, IEEE CS, pp. 743-744, 2001.

[8] OASIS,‎ “Web‎Services‎Business‎Process‎Execution‎Language‎ (WSBPEL),‎ ver-

sion 2.0”, April 2007.

[9] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Compu-

ting. Wiley, 2003.

[10] D.‎C.‎Schmidt,‎“Model-driven Engineering”, IEEE Computer, vol. 39, no. 2, pp.

25-31, 2006.

[11] M.‎Bensaou‎and‎M.‎Earl,‎“The‎right‎mind-set for managing information technolo-

gy”, Harvard Business Review, vol. 76, pp. 118-129, 1998.

[12] T.‎Hoffman,‎ “Study:‎85%‎of‎ IT‎departments‎ fail‎ to‎meet‎biz‎ needs”, Computer

World, vol. 11, p. 24, Oct. 1999.

[13] A.‎ Lapouchnian,‎Y.‎Yu,‎ and‎ J.‎Mylopoulos,‎ “Requirements-Driven Design and

Configuration Management of Business Processes”, in Business Process Man-

agement,5th International Conference, BPM 2007, LNCS 4714, Springer, pp.

246-261, 2007.

References 150

[14] G.‎Mussbacher,‎ D.‎ Amyot,‎ J.‎ Araújo,‎ A.‎Moreira,‎ and‎M.‎Weiss,‎ “Visualizing‎

Aspect-Oriented Goal Models with AoGRL”, in 2nd Int. Workshop on Require-

ments Engineering Visualization, IEEE CS, p. 1, 2007.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[16] D.‎ Čiukšys‎ and‎ A.‎ Čaplinskas,‎ “Ontology-based approach to reuse of business

process knowledge”, Informacijos mokslai, no. 42, pp. 168-174, 2007.

[17] J. Bézivin,‎“In‎search‎of‎a‎basic‎principle‎for‎model‎driven‎engineering”, Novatica

Journal, Special Issue on UML , vol. 5, no. 2, pp. 21-24, 2004.

[18] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, 1st ed. Wiley, 2004.

[19] B.‎Hui,‎S.‎Liaskos,‎and‎J.‎Mylopoulos,‎“Requirements‎Analysis‎for‎Customizable‎

Software Goals-Skills-Preferences Framework”, in 11th IEEE International Con-

ference on Requirements Engineering, IEEE CS, p. 117, 2003.

[20] J.‎Wang,‎K.‎He,‎B.‎Li,‎W.‎Liu,‎and‎R.‎Peng,‎“Meta-models of Domain Modeling

Framework for Networked Software”, in 6th Int. Conf. on Grid and Cooperative

Computing, IEEE CS, pp. 878-886, 2007.

[21] G. Button, Technology in Working Order: Studies of Work, Interaction and Tech-

nology, 1st ed. Routledge, 1992.

[22] K.‎Schneider‎and‎I.‎Wagner,‎“Constructing‎the‎‘Dossier‎Représentatif’”, Comput-

er Supported Cooperative Work (CSCW), vol. 1, no. 4, pp. 229-253, Dec. 1993.

[23] J.‎ Bowers,‎ “Making‎ it‎ work:‎ a‎ field‎ study of a CSCW network: Computer-

supported cooperative work”, The Information Society: An International Journal,

vol. 11, no. 3, pp. 189-207, 1995.

[24] R.‎Atkinson,‎“Project‎management:‎cost,‎time‎and‎quality,‎two‎best‎guesses‎and‎a‎

phenomenon, it’s time to accept other success criteria”, International Journal of

Project Management, vol. 17, no. 6, pp. 337-342, 1999.

[25] M.‎Berg,‎“Implementing‎information‎systems‎in‎health‎care‎organizations:‎myths‎

and challenges”, International Journal of Medical Informatics, vol. 64, no. 2, pp.

143-156, Dec. 2001.

[26] M. Berg, Rationalizing Medical Work: Decision-Support Techniques and Medical

Practices. MIT Press, 1997.

[27] M. F. Collen, A History of Medical Informatics in the United States, 1950 to

1990, 1st ed. American Medical Informatics Association, 1995.

[28] E. B. Steen, D. E. Detmer, and I. O. Medicine, The Computer-Based Patient Rec-

ord: An Essential Technology for Health Care, Rev Sub. National Academy

Press, 1997.

[29] W.‎Hasselbring,‎“Information‎system‎integration”, Communications of the ACM,

vol. 43, no. 6, pp. 32-38, 2000.

References 151

[30] S.‎Herold,‎A.‎Metzger,‎A.‎Rausch,‎and‎H.‎Stallbaum,‎“Towards‎Bridging‎the‎Gap‎

between Goal-Oriented Requirements Engineering and Compositional Architec-

ture Development”, in 2nd Workshop on SHAring and Reusing architectural

Knowledge Architecture, Rationale, and Design Intent, IEEE CS, p. 7, 2007.

[31] S.‎S.‎Ostadzadeh,‎F.‎S.‎Aliee,‎and‎S.‎A.‎Ostadzadeh,‎ “An‎MDA-Based Generic

Framework to Address Various Aspects of Enterprise Architecture”, in Advances

in Computer and Information Sciences and Engineering, Springer, pp. 455-460,

2008.

[32] ITU-T – International Telecommunications Union, Recommendation Z.151

(10/12) User Requirements Notation (URN) – Language definition, Geneva, Swit-

zerland, 2012.

[33] “URN‎ Wiki”, http://www.usecasemaps.org/, Dec-2009. [Online]. Available:

http://www.usecasemaps.org/. [Accessed: 14-Sep-2009].

[34] S.‎T.‎March‎and‎G.‎F.‎Smith,‎“Design‎and‎natural‎science‎research‎on‎information‎

technology”,‎Decision Support Systems, vol. 15, no. 4, pp. 251-266, Dec. 1995.

[35] A.‎R.‎Hevner,‎S.‎T.‎March,‎J.‎Park,‎and‎S.‎Ram,‎“Design‎science‎in‎information

systems research”, MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004.

[36] “URN‎Virtual‎ Library”, http://www.usecasemaps.org/urn/, May-2009. [Online].

Available: http://www.usecasemaps.org/urn/. [Accessed: 11-May-2009].

[37] D. Amyot and G. Mussbacher,‎ “User Requirements Notation: The First Ten

Years, The Next Ten Years”, Journal of Software (JSW), Vol. 6, No. 5, Academy

Publisher, pp. 747-768, May 2011.

[38] ITU-T – International Telecommunications Union, Recommendation Z.150

(02/11), User Requirements Notation (URN) – Language Requirements and

Framework. Geneva, Switzerland, 2011.

[39] S. A. Behnam, D. Amyot, A. J. Forster, L. Peyton, and A. Shamsaei, “Goal-

Driven Development of a Patient Surveillance Application for Improving Patient

Safety”, in 4th Int. MCeTech Conf. on eTechnologies, LNBPI 26, Springer, pp.

65-76, 2009.

[40] M.‎Weiss‎and‎D.‎Amyot,‎“Business‎process‎modeling‎with‎URN”, International

Journal of E-Business Research, vol. 1, no. 3, pp. 63-90, 2005.

[41] Z.‎Cai‎and‎E.‎Yu,‎“Addressing‎Performance‎Requirements‎Using‎a‎Goal‎and‎Sce-

nario-Oriented Approach”, in Proceedings of 14th international Conference on

Advanced Information Systems Engineering, LNCS 2348, Springer, pp. 706-710,

2002.

[42] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu,

“Evaluating‎Goal‎Models‎within‎ the‎Goal-oriented Requirement Language”, In-

ternational Journal of Intelligent Systems (IJIS), vol. 25, issue 8, pp. 841-877,

2010.

References 152

[43] G. Mussbacher, D. Amyot, P. Heymans, “Eight Deadly Sins of GRL”,‎ ‎ in Pro-

ceedings of 5th International i* Workshop (iStar 2011), Trento, Italy, CEUR-WS,

Vol-766, pp. 2-7, 2011

[44] G.‎Mussbacher,‎“Evolving‎Use‎Case‎Maps‎as‎a‎Scenario‎and‎Workflow‎Descrip-

tion Language”, in 10th Workshop of Requirement Engineering (WER’07), pp.

56-67, Toronto, Canada, 2007.

[45] OMG,‎ “Object‎ Constraint‎ Language”, OMG Specification, Version 2.0, for-

mal/06-05, vol. 1, pp. 06-05, 2006.

[46] D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher,‎“A‎Lightweight‎GRL‎Profile‎

for i* Modeling”, 3rd Int. Workshop on Requirements, Intentions and Goals in

Conceptual Modeling (RIGiM 2009), ER Workshops, LNCS 5833, Springer, pp.

254-264, 2009.

[47] “jUCMNav‎ v5.1.0”, http://softwareengineering.ca/jucmnav/. [Accessed: 9-Jul-

2012].

[48] A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss, and A. J.

Forster,‎ “Business‎ process‎ management‎ with‎ the‎ user‎ requirements‎ notation”,

Journal of Electronic Commerce Research, vol. 9, no. 4, pp. 269-316, Dec. 2009.

[49] Stephen A. White, Introduction to BPMN, July 2012 http://www.omg.org/bpmn/

Documents/Introduction_to_BPMN.pdf.

[50] Stephen A. White, BPMN Tutorial, Sep 2009, http://www.bpmn.org/Documents/

OMG BPMN Tutorial.pdf.

[51] P. Wohed, W. M. van der Aalst, M. Dumas,‎A.‎H.‎Hofstede,‎and‎N.‎Russell,‎“On‎

the suitability of BPMN for business process modelling”, in Business Process

Management 2006, LNCS 4102, Springer, pp. 161-176, 2006.

[52] C.‎ Ouyang,‎ M.‎ Dumas,‎ A.‎ H.‎ ter‎ Hofstede,‎ and‎W.‎ M.‎ van‎ der‎ Aalst,‎ “From‎

BPMN process models to BPEL web services”, in Web Services, 2006. ICWS'06.

International Conference on, IEEE CS, pp. 285-292, 2006.

[53] Object Management Group, Business Process Definition MetaModel (BPDM),

version 1.0, formal/2008-11-03, November 2008.

[54] Object Management Group, BPDM - Common Infrastructure, September 2009,

http://www.omg.org/cgi-bin/doc?dtc/08-05-07.

[55] C.‎Atkinson‎and‎T.‎Kuhne,‎“Model-Driven Development: A Metamodeling Foun-

dation”, IEEE Software, vol. 20, no. 5, pp. 36-41, 2003.

[56] J.‎M.‎Favre,‎“Towards‎a basic theory to model model driven engineering”, in 3rd

Workshop in Software Model Engineering, WiSME, 2004.

[57] S.‎Kent,‎ “Model‎Driven‎Engineering”, in Integrated Formal Methods, Third In-

ternational Conference, LNCS 2335, Springer, pp. 286-298, 2002.

[58] Object Management Group, Model Driven Architecture - Architecture Board -

ORMSC, Nov 2009, http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01,.

References 153

[59] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast, MDA explained: the model

driven architecture: practice and promise. Addison-Wesley, 2003.

[60] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,

Buildings, Construction. Oxford University Press US, 1977.

[61] J.‎Naish‎and‎L.‎Zhao,‎“Towards‎a‎generalised‎framework‎for‎classifying‎and‎re-

trieving requirements patterns”, in Requirements Patterns (RePa), 2011 First In-

ternational Workshop on, IEEE CS, pp. 42 -51, 2011.

[62] M. Fowler, Analysis Patterns: reusable object models. Addison-Wesley, 2000.

[63] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-

Oriented Software Architecture Volume 1: A System of Patterns. John Viley &

Sons Ltd, Chirchester, England, 1996.

[64] J. Adams, S. Koushik, G. Galambos, and G. Vasudeva, Patterns for e-business: A

Strategy for Reuse. IBM Press, 2001.

[65] “Cloud‎Computing‎Patterns”, July 2012, http://cloudcomputingpatterns.org/

[66] R. P. Gabriel, Patterns of Software: Tales from the Software Community. Oxford

University Press, USA, 1998.

[67] M.‎Weiss,‎“Modelling‎Security‎Patterns‎Using‎NFR‎Analysis”, Integrating Secu-

rity and Software Engineering: Advances and Future Visions, IGI Global, pp.

127-141, 2006.

[68] M.‎Weiss,‎“Pay‎to‎play‎or‎requirements‎prioritization‎in‎collectives”, in Require-

ments Patterns (RePa), 2011 First International Workshop on, pp. 28 -31, 2011.

[69] Y. Wen, H. Zhao,‎and‎L.‎Liu,‎“Analysing‎security‎requirements‎patterns‎based‎on‎

problems decomposition and composition”, in Requirements Patterns (RePa),

2011 First International Workshop on, IEEE CS, pp. 11 -20, 2011.

[70] S.‎Konrad‎and‎B.‎H.‎C.‎Cheng,‎“Requirements‎Patterns for Embedded Systems”,

in 10th Anniversary IEEE Joint International Conference on Requirements Engi-

neering, IEEE CS, Washington, DC, USA, pp. 127-136, 2002.

[71] G.‎Mussbacher,‎D.‎Amyot,‎ and‎M.‎Weiss,‎ “Formalizing‎Patterns‎with‎ the‎User‎

Requirements Notation”, Design Pattern Formalization Techniques, IGI Global,

pp. 302-322, 2007.

[72] J. Coplien, Software Patterns. SIGS, 1996.

[73] T.‎Taibi‎and‎D.‎C.‎L.‎Ngo,‎“Why‎and‎how‎should‎patterns‎be‎formalized”, Jour-

nal of Object-Oriented Programming (JOOP), vol. 14, no. 4, pp. 8-9, 2001.

[74] I.‎Araújo‎and‎M.‎Weiss,‎“Linking‎non-functional requirements and patterns”, in

Conference on Pattern Languages of Programs (PLoP), 2002.

[75] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements

in software engineering. Kluwer Academic Publishers, 2000.

References 154

[76] H.‎Y.‎Ong,‎M.‎Weiss,‎ and‎ I.‎Araújo,‎ “Rewriting‎ a‎ pattern‎ language‎ to‎make‎ it‎

more expressive”, Hot Topic on the Expressiveness of Pattern Languages,

ChiliPLoP, 2003.

[77] D.‎Gross‎and‎E.‎Yu,‎“From‎Non-Functional Requirements to Design through Pat-

terns”, Requirements Engineering, vol. 6, no. 1, pp. 18-36, 2001.

[78] L.‎Chung,‎S.‎Supakkul,‎and‎A.‎Yu,‎“Good‎Software‎Architecting:‎Goals,‎Objects,‎

and Patterns”, in Information, Computing & Communication Technology Sympo-

sium (ICCT-2002), UKC'02, pp. 8-11, 2002.

[79] R.‎Andrade‎ and‎ L.‎ Logrippo,‎ “Reusability‎ at‎ the‎ Early‎Development‎ Stages‎ of‎

Mobile Wireless Communication Systems”, in 4th World Multiconference on Sys-

temics, Cybernetics and Informatics (SCI 2000), pp. 11-16, 2000.

[80] R. Andrade, Capture, Reuse, and Validation of Requirements and Analysis Pat-

terns for Mobile Systems, School of Information Technology and Engineering

(SITE), University of Ottawa, 2001.

[81] E.‎ Billard,‎ “Patterns‎ of‎ agent‎ interaction‎ scenarios‎ as‎ use‎ case‎ maps”, IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no.

4, pp. 1933-1939, 2004.

[82] G.‎Mussbacher‎and‎D.‎Amyot,‎“A‎collection‎of‎patterns‎for‎Use‎Case‎Maps”, in

First Latin American Conference on Pattern Languages of Programming (PLoP

01), 2001.

[83] S. Henninger‎ and‎ V.‎ Corrêa,‎ “Software‎ pattern‎ communities:‎ current‎ practices‎

and challenges”, in 14th Conference on Pattern Languages of Programs, ACM,

pp. 1-19, 2007.

[84] C.‎Zhao,‎J.‎Kong,‎J.‎Dong,‎and‎K.‎Zhang,‎“Pattern-based design evolution using

graph transformation”, Journal of Visual Languages and Computing, vol. 18, no.

4, pp. 378-398, 2007.

[85] C.‎Zhao,‎J.‎Kong,‎and‎K.‎Zhang,‎“Design‎pattern‎evolution‎and‎verification‎using‎

graph transformation”, in 40th Annual Hawaii Int. Conf. on System Sciences,

IEEE CS, p. 290a, 2007.

[86] J.‎Dong,‎S.‎Yang,‎and‎Y.‎Sun,‎“A‎Classification‎of‎Design‎Pattern‎Evolutions”,

International Journal of Object Technology, vol. 6, no. 10, pp. 95-109, Nov.

2007.

[87] J.‎ Dong,‎ Y.‎ Zhao,‎ and‎ Y.‎ Sun,‎ “Design‎ pattern‎ evolutions‎ in‎ QVT”, Software

Quality Journal, vol. 18, no. 2, pp. 269-297, 2010.

[88] M.‎Aoyama,‎“Evolutionary‎Patterns‎of‎Design‎and‎Design‎Patterns”, in Principles

of Software Evolution, International Symposium on, IEEE CS, pp. 110-116, 2000.

[89] T.‎Kobayashi‎ and‎M.‎ Saeki,‎ “Software‎ development‎ based on software pattern

evolution”, in 6
th

 Asia-Pacific Software Engineering Conference (APSEC99),

Takamatsu, Japan. IEEE CS, pp. 18-25, 1999.

References 155

[90] R.‎ E.‎ Johnson‎ and‎ B.‎ Foote,‎ “Designing‎ reusable‎ classes”, Journal of Object-

Oriented Programming, vol. 1, no. 2, pp. 22-35, 1988.

[91] H.‎ Iida‎and‎Y.‎Tanaka,‎“A‎Compositional‎Process‎Pattern‎Framework‎for‎Com-

ponent-based Process Modeling Assistance”, in 1st Workshop on Software Devel-

opment Process Patterns (SDPP’02), TUM-I0213, Munich, Germany, 2002.

[92] H.‎ Iida,‎ “Pattern-Oriented Approach to Software Process Evolution”, in Int.

Workshop on the Principles of Software Evolution, Fukuoka, Japan, pp. 55-59,

1999.

[93] H. Tran, Modélisation de Procédés Logiciels à Base de Patrons Réutilisables,

Thèse de doctorat, Université de Toulouse-le-Mirail, France, 2007.

[94] J. A. Bubenko Jr, A. Persson, and J. Stirna, User Guide of the Knowledge Man-

agement Approach Using Enterprise Knowledge Patterns, Deliverable D3, IST

Programme project HyperKnowledge–Hypermedia and Pattern Based Knowledge

Management for Smart Organisations, Stockholm, Sweden: Department, 2001.

[95] J.‎Stirna,‎A.‎Persson,‎and‎L.‎Aggestam,‎“Building‎Knowledge‎Repositories‎with‎

Enterprise Modelling and Patterns-from Theory to Practice”, in European Confer-

ence on Information Systems (ECIS), Göteborg, Sweden, 2006.

[96] A.‎ Persson,‎ J.‎ Stirna,‎ and‎ L.‎ Aggestam,‎ “How‎ to‎ Disseminate‎ Professional‎

Knowledge in Healthcare: The Case of Skaraborg Hospital”, Journal of Cases on

Information Technology, vol. 10, no. 4, pp. 41-64, 2008.

[97] S. Ghanavati, D. Amyot,‎and‎L.‎Peyton,‎“A‎Systematic‎Review‎of‎Goal-oriented

Requirements Management Frameworks for Business Process Compliance”, in

4th Int. Workshop on Requirements Engineering and Law (RELAW). IEEE CS,

pp. 25-34, Aug. 2011.

[98] A. Shamsaei, A. Pourshahid, and‎D.‎Amyot,‎ “A‎Systematic‎Review‎of‎Compli-

ance Management Based on Goals and Indicators”, in 3rd Workshop on Govern-

ance, Risk and Compliance-Applications in Information Systems (GRCIS 2011),

CAiSE 2011 Workshops. LNBIP 83, Springer, pp. 228-237, June 2011.

[99] I.‎Markovic‎and‎M.‎Kowalkiewicz,‎“Linking‎Business‎Goals‎to‎Process‎Models‎in‎

Semantic Business Process Modeling”, in Proceedings of the 12th International

IEEE Enterprise Distributed Object Computing Conference, IEEE CS, pp. 332-

338, 2008.

[100] G. Rimassa and B.‎Burmeister,‎“Achieving‎Business‎Process‎Agility‎in‎Engineer-

ing Change Management with Agent Technology”, in Workshop dagli Oggetti

agli Agenti WOA, Genova, Italy, pp. 1-7, 2007.

[101] D.‎ Greenwood‎ and‎ G.‎ Rimassa,‎ “Autonomic‎ Goal-Oriented Business Process

Management”, in 3rd International Conference on Autonomic and Autonomous

Systems, IEEE CS, pp. 43-48, 2007.

[102] A.‎Pourshahid,‎G.‎Mussbacher,‎D.‎Amyot,‎ and‎M.‎Weiss,‎ “An‎Aspect-Oriented

Framework for Business Process Improvement”, in 4th International MCeTech

References 156

Conference on eTechnologies (MCeTech09). LNBIP, vol. 26, Springer, pp. 290-

305, 2009.

[103] T.‎R.‎Gruber,‎“Toward‎principles‎for‎the‎design‎of‎ontologies‎used‎for‎knowledge‎

sharing”, International Journal of Human Computer Studies, vol. 43, no. 5, pp.

907-928, 1995.

[104] M.‎Sabetzadeh‎and‎S.‎Easterbrook,‎“View‎merging‎in‎the‎presence‎of‎incomplete-

ness and inconsistency”, Requirements Engineering, vol. 11, no. 3, pp. 174-193,

2006.

[105] M.‎Hepp,‎F.‎Leymann,‎J.‎Domingue,‎A.‎Wahler,‎E.‎Wahler,‎and‎D.‎Fensel,‎“Se-

mantic Business Process Management: A Vision Towards Using Semantic Web

Services for Business Process Management”, in IEEE International Conference

on e-Business Engineering, IEEE CS, pp. 535-540, 2005.

[106] H.‎Kaiya‎ and‎M.‎ Saeki,‎ “Ontology‎ Based‎ Requirements‎ Analysis:‎ Lightweight

Semantic Processing Approach”, in 5th International Conference on Quality

Software, IEEE CS, pp. 223-230, 2005.

[107] H.‎Kaiya‎and‎M.‎Saeki,‎“Using‎Domain‎Ontology‎as‎Domain‎Knowledge‎for‎Re-

quirements Elicitation”, in 14th IEEE International Requirements Engineering

Conference, IEEE CS, pp. 186-195, 2006.

[108] R.‎Falbo,‎G.‎Guizzardi,‎ and‎K.‎C.‎Duarte,‎ “An‎ontological‎ approach‎ to‎ domain‎

engineering”, in 14th international conference on software engineering and

knowledge engineering, ACM, pp. 351-358, 2002.

[109] R. S. Pressman, Software engineering: a practitioner's approach, 5th ed.

McGraw-Hill New York, 2000.

[110] G. Arango and R. Prieto-Diaz,‎“Domain‎Analysis‎Concepts‎and‎Research‎Direc-

tions”, in Domain analysis and software systems modeling, IEEE CS, pp. 9-32,

1991.

[111] L. Wei, H. Ke-Qing,‎W.‎Jiang,‎and‎P.‎Rong,‎“Heavyweight‎Semantic‎Inducement‎

for Requirement Elicitation and Analysis”, in Semantics, Knowledge and Grid,

Third International Conference on, IEEE CS, pp. 206-211, 2007.

[112] Y.‎He,‎K.‎He,‎J.‎Wang,‎and‎C.‎Wang,‎“Toward a Context Driven Approach for

Semantic Web Service Evolution”, in 3rd International Conference on Conver-

gence and Hybrid Information Technology, vol. 2, IEEE CS, pp. 1089-1094,

2008.

[113] A. Filipowska, M. Kaczmarek, M. Kowalkiewicz, I. Markovic, and X. Zhou,

“Organizational‎ontologies‎to‎support‎semantic‎business‎process‎management”, in

4th International Workshop on Semantic Business Process Management, New

York, NY, USA, pp. 35-42 , 2009.

[114] Y.‎ Yu,‎ S.‎ Liaskos,‎ J.‎ Mylopoulos,‎ and‎ A.‎ Lapouchnian,‎ “Requirements-driven

configuration of software systems”, in Reverse Engineering To Requirements

(RETR’05), Pittsburgh, USA. p. 18, 2005.

References 157

[115] S.‎Liaskos,‎A.‎Lapouchnian,‎Yiqiao‎Wang,‎Yijun‎Yu,‎and‎S.‎Easterbrook,‎“Con-

figuring common personal software: a requirements-driven approach”, in 13th

IEEE International Conference on Requirements Engineering, IEEE CS, pp. 9-18,

2005.

[116] L. Northrop and P. C. Clements, A framework for software product line practice,

version 5.0, Software Engineering Institute, Pittsburgh, USA, 2007.

[117] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[118] K.‎Lee,‎K.‎Kang,‎ and‎ J.‎Lee,‎ “Concepts‎ and‎guidelines‎of‎ feature‎modeling‎ for‎

product line software engineering”, Software Reuse: Methods, Techniques, and

Tools, LNCS 2319, Springer, pp. 62-77, 2002.

[119] T. H. Davenport, Process innovation: reengineering work through information

technology. Harvard Business School Pr, 1993.

[120] M. Penker and H. E. Eriksson, Business Modeling With UML: Business Patterns

at Work. John Wiley & Sons, 2000.

[121] M. Dumas, W. van der Aalst, and A. Ter Hofstede, Process-aware information

systems: bridging people and software through process technology. Wiley-

Blackwell, 2005.

[122] M. Hammer and J. Champy, Reengineering the corporation: A manifesto for

business revolution. Collins Business, 2003.

[123] M. D. McGinnis and I. U., Bloomington, Polycentric games and institutions. Uni-

versity of Michigan Press, 2000.

[124] L.‎ M.‎ Cysneiros,‎ V.‎ Werneck,‎ and‎ E.‎ Yu,‎ “Evaluating‎ Methodologies:‎ A‎ Re-

quirements Engineering Approach Through the Use of an Exemplar”, in 7th

Workshop on Requirements Engineering, 2004, pp. 40-55.

[125] R. E. Freeman, Strategic Management: A Stakeholder Approach. Pitman Publish-

ing, 1984.

[126] “USE: UML-based Specification Environment”, http://www.db.informatik.uni-

bremen.de/projects/USE/, Sep 2011. [Online].

[127] M.‎Gogolla,‎F.‎Büttner,‎and‎M.‎Richters,‎“USE:‎A‎UML-based specification envi-

ronment for validating UML and OCL”, Science of Computer Programming, vol.

69, no. 1-3, pp. 27-34, 2007.

[128] S.A. Behnam, FMM metamodel implementation in USE, http://www.eecs.

uottawa.ca/~damyot/pub/Behnam/FMM/, July 2012.

[129] S.A. Behnam, Sample pattern family implementation in USE, http://www.eecs.

uottawa.ca/~damyot/pub/Behnam/PF-USE, July 2012.

[130] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models

Ready for MDA, 2nd ed. Addison-Wesley Professional, 2003.

References 158

[131] L.‎ Eggertson,‎ “Hospitals‎ to‎ report‎ C.‎ difficile‎ and‎MRSA”.‎Canadian Medical

Association Journal (CMAJ), vol. 176 no. 10, pp. 1402-1403, May 2007.

http://www.cmaj.ca/content/176/10/1402.full

[132] S.A. Behnam and D.‎ Amyot,‎ “Evolution‎ Mechanisms‎ for‎ Goal-driven Pattern

Families‎used‎in‎Business‎Process‎Modeling”.‎Int. Journal of Electronic Business,

Inderscience Publishers, 2012 (to appear).

[133] S.A. Behnam and D.‎ Amyot,‎ “Evolution‎ of‎ Goal-driven Pattern Families for

Business‎Process‎Modeling”,‎in 5
th

 Int. MCETECH Conference on eTechnologies,

Les Diablerets, Switzerland, January 2011. LNBIP 78, Springer, pp. 46-61, 2011.

[134] D.‎Alexandrou‎and‎G.‎Mentzas,‎“Research‎Challenges for Achieving Healthcare

Business‎ Process‎ Interoperability”,‎ in‎ eHealth, Telemedicine, and Social Medi-

cine, eTELEMED’09. International Conference on, IEEE CS, pp. 58-65, 2009.

[135] S.A. Behnam, Patient Safety Pattern Family, http://www.eecs.uottawa.ca/

~damyot/pub/Behnam/PF, July 2012.

[136] S.A. Behnam, Implementation of Evolutionary Mechanisms, http://www.eecs.

uottawa.ca/~damyot/pub/Behnam/EM-Java, July 2012.

[137] S.A. Behnam, D. Amyot, G. Mussbacher, E. Braun, N. Cartwright, and M. Sauci-

er,‎“Using‎the‎Goal-Oriented Pattern Family Framework for Modelling Outcome-

Based‎Regulations”, in Second International Workshop on Requirements Patterns

(RePa), Chicago, USA, IEEE CS, pp. 35-40, September 2012.

[138] Government of Canada, Audit of Aviation Security Regulatory Oversight, April

2011. http://www.tc.gc.ca/eng/corporate-services/aas-audit-870.htm

[139] R. Tawhid, M. Alhaj, G. Mussbacher, E. Braun, N. Cartwright, A. Shamsaei, D.

Amyot,‎ S.A.‎ Behnam,‎ and‎ G.‎ Richards,‎ “Towards‎ Outcome-Based Regulatory

Compliance‎ in‎ Aviation‎ Security”,‎ in‎ 20th IEEE Int. Requirements Eng. Conf

(RE’12), IEEE CS, pp. 267-272, 2012.

[140] Canadian Air Transport Security Authority, What We Do, June 2012.

http://www.catsa.gc.ca/Page.aspx?ID=31

[141] A.‎ Shamsaei,‎ A.‎ Pourshahid,‎ and‎ D.‎ Amyot,‎ “Business‎ Process‎ Compliance‎

Tracking‎Using‎Key‎Performance‎ Indicators”,‎ in‎6th Int. Workshop on Business

Process Design (BPD 2010), LNBIP 66, Springer, pp. 73-84, 2010.

[142] S.‎A.‎Behnam,‎D.‎Amyot,‎and‎G.‎Mussbacher,‎“Towards a Pattern-Based Frame-

work for Goal-Driven‎Business‎Process‎Modeling”,‎in‎8th Int. Conf. on Software

Engineering Research, Management and Applications (SERA2010), IEEE CS, pp.

137-145, 2010.

[143] C.‎Kuziemsky,‎X.‎Liu,‎and‎L.‎Peyton,‎“Leveraging‎Goal‎Models and Performance

Indicators‎to‎Assess‎Health‎Care‎Information‎Systems”,‎in‎Quality of Information

and Communications Technology (QUATIC), 2010 Seventh International Confer-

ence on the, IEEE CS, pp. 222 -227, 2010.

References 159

[144] H. Luo and D. Amyot, “Towards a Declarative, Constraint-Oriented Semantics

with a Generic Evaluation Algorithm for GRL”, in 5th Int. i* Workshop, CEUR-

WS, Vol-766, pp. 26-31, 2011.

[145] J. Brown, R. Gawley, I. Spence, P. Kilpatrick, C. Gillan, R. Bashroush, and oth-

ers,‎“Requirements‎Modelling‎and‎Design‎Notations‎for‎Software‎Product‎Lines”,

in 1st Int. Workshop on Variability Modelling of Software-intensive Systems

(VaMoS), Limerick, Ireland, 2007.

[146] A.‎Pourshahid,‎D.‎Amyot,‎A.‎Shamsaei,‎G.‎Mussbacher,‎and‎M.‎Weiss,‎“A‎Sys-

tematic Review and Assessment of Aspect-oriented Methods Applied to Business

Process‎Adaptation”, Journal of Software (JSW), Vol. 7, No. 8, Academy Pub-

lisher, pp 1816-1826, August 2012.

Appendix A 160

Appendix A. OCL CONSTRAINTS FOR FMM

This appendix defines all the necessary OCL constraints implemented to ensure the integ-

rity of FMM-based models. These constraints are implemented along with FMM using

USE ‎[126]‎[127] and can be downloaded at ‎[128]. Furthermore, the Increase Patient Safe-

ty pattern family introduced as an example in Section ‎5.2.4 is also used as an example for

evaluating the effectiveness of OCL constraints. ‎Figure 62 illustrates the result of apply-

ing the OCL constraints on this example in the USE environment. The implementation of

this example in the USE environment can be downloaded from ‎[129]. In the following,

constraints are categorized by the FMM classes they target (i.e., the OCL context), and

a brief description of their purpose is also provided.

Figure 62 Results of checking the OCL constraints on the Increase Patient Safety PF

example

Appendix A 161

A.1 Constraints on PFs

‎Table 18 represents the four invariant constraints that must be evaluated to true for all

instances of PF. UniquePFName ensures that different patterns families are unique. Con-

sidering that, currently, the name is the unique identifying key of objects in GoPF mod-

els, there cannot exist two PFs with the same name. Similarly, UniquePatternNameInPF

ensures that two patterns that have the same name cannot exist in a particular PF. Next,

UniquePatternMainGoalInPF ensures that each pattern in the family has a unique

mainGoal in their GoalModelBuildingBlock. Finally, UniqueEvalStrategyName ensures

that instances of EvaluationStrategy are unique within a pattern family.

Table 18 Invariant OCL constraints in the context of PatternFamily

OCL Constraints

inv UniquePFName:
PF.allInstances()->isUnique(name)

inv UniquePatternNameInPF:
self.pattern->isUnique(name)

inv UniquePatternMainGoalInPF:
self.pattern->isUnique(GT.mainGoal().name)

inv UniqueStrategyNameInPF:
self.pattern.businessStrategy.evaluationStrategy->isUnique(name)

A.2 Constraints on Patterns

‎Table 19 contains the implemented invariant constraints on Patterns. UniqueBusiness-

StrategyNameInPattern guards the uniqueness of BusinessStrategies in a particular pat-

tern. OnlyLeavesRefined prevents a pattern to refine intentions, which are not leaves of

their respective GoalModelBuildingBlocks. CorrectLeafMainGoalRefinement limits the

refinement of intentions only to those patterns whose GoalModelBuildingBlocks’s

mainGoal is the same as the refined intention. NoOrphanPattern ensures that only one

root pattern exists in each pattern family. This means that all the patterns are connected

and therefore their usage in the extraction process is possible. NoCircularDefining-

PatternExist ensures refinement relationship between patterns is not circular. This pre-

vents both direct circular refinements and multi-level circular refinements.

Appendix A 162

Table 19 Invariant OCL constraints in the context of Pattern

OCL Constraints
inv UniqueBusinessStrategyNameInPattern:
self.businessStrategy->isUnique(name)

inv OnlyLeavesRefined:
self.refined->forAll(i|i.leaf)

inv CorrectLeafMainGoalRefinement:
self.refined->forAll(i|i.name = self.GMBB.mainGoal().name)

inv NoOrphanPattern:
Pattern.allInstances()->one(p| p.refined->size()=0)

inv NoCircularDefiningPatternExist:
self.DefiningPatternSet()->excludes(self)

NoCircularDefiningPatternExist uses two operations, namely DefiningPatternSet() and

indirectly DownPatternSet() defined in ‎Table 20, in order to support closure in circular

refinements.

Table 20 OCL operations of Pattern

businessStrategyCollection(): Set(BusinessStrategy) =
 self.businessStrategy
isEqualTo(p:Pattern):Boolean =
 ((self.name = p.name) and
 (self.GMBB.isEqualTo(p.GMBB)) and
 (self.businessStrategy->forAll(b1|p.businessStrategy->
 exists(b2|b2.isEqualTo(b1)))) and
 (p.businessStrategy->forAll(b1|self.businessStrategy->
 exists(b2|b2.isEqualTo(b1)))))
DownPatternSet(s:Set(Pattern)):Set(Pattern) =
 if s->includesAll(s.GMBB.intention.patternDef->asSet())
 then s
 else DownPatternSet(s->union(s.GMBB.intention.patternDef->

 asSet()))
 endif
DefiningPatternSet():Set(Pattern) =
 if self.GMBB.intention.patternDef->asSet()->size()>0
 then DownPatternSet(self.GMBB.intention.patternDef-
>asSet())
 else null
 endif

‎Table 21 represents the post-conditions that make sure the result of businessStrategy-

Collection(), replaceGT(), addBizS(), and removeBizS() are as expected by the FMM.

These post-conditions are relatively simple, however their definition in OCL clarifies the

expected results and guides the correct implementation of these operations.

Appendix A 163

Table 21 Post-condition and preconditions in the context of Pattern

Context OCL Constraints
context Pattern::
 businessStrategyCollection():
 Set(BusinessStrategy)

post businessStrategyCollectionisDone:
result = self.businessStrategy

context Pattern::
 replaceGMBB(g:GoalModelBuildingBlock):
 Boolean

post addGMBBisDone:
result = (self.GMBB=g)

context Pattern::
 addBizS(b:BusinessStrategy):Boolean

post addBizSisDone:
result = (self.businessStrategy
 =
 self.businessStrategy@pre->
 including(b)
)

context Pattern::
 removeBizS(b:BusinessStrategy):
 Boolean

post removeBizSisDone:
result = (self.businessStrategy
 =
 self.businessStrategy@pre->
 excluding(b)
)

A.3 Constraints on GoalModelBuildingBlocks

‎Table 22 defines the invariant constraints that guard the well-formedness of FMM-based

models. UniqueIntenionNameInGMBB and UniqueElementLinkNameInGMBB respective-

ly ensure the uniqueness of Intentions and ElementLinks within a particular GoalModel-

BuildingBlock. JustOneMainGoal forces that only one of the Intentions in a particular

GoalModelBuildingBlock be a mainGoal.

Table 22 Invariant OCL constraints in the context of GoalModelBuildingBlock

OCL Constraints
inv UniqueIntenionNameInGMBB:
self.intention->isUnique(name)

inv UniqueElementLinkNameInGMBB:
self.EL->isUnique(name)

inv JustOneMainGoal:
self.intention->one(i|i.mainGoal)

In ‎Table 23, the operations of GoalModelBuildingBlock are represented.

Appendix A 164

Table 23 OCL operations of GoalModelBuildingBlock

leafCollection(): Set(Intention) =
 self.intention->select(i|i.leaf)

mainGoal(): Intention =
 self.intention->select(i|i.mainGoal)->asSequence()->at(1)

isEqualTo(g:GoalModelBuildingBlock) : Boolean =
 ((self.name = g.name) and
 (self.intention->forAll(i1|g.intention->

 exists(i2|i2.isEqualTo(i1)))) and
 (g.intention->forAll(i1|self.intention->
 exists(i2|i2.isEqualTo(i1)))) and
 (self.EL->forAll(e1|g.EL->
 exists(e2|e2.isEqualTo(e1)))) and

 (g.EL->forAll(e1|self.EL->exists(e2|e2.isEqualTo(e1)))))

‎Table 24 represents the post-conditions that make sure the results of leafCollection() and

mainGoal() are as expected.

Table 24 Post-condition and preconditions in the context of GoalModelBuildingBlock

Context OCL Constraints
context GoalModelBuildingBlock::
 leafCollection(): Set(Intention)

post leafCollectionisDone:
 result = self.intention->select(i|i.leaf)

context GoalModelBuildingBlock::
 mainGoal(): Intention

post mainGoalisDone:
 self.intention->
 forAll(i|i.mainGoal implies result = i)

A.4 Constraints on Intentions

‎Table 25 defines the invariants in the context of Intention. LeavesBeingRefined ensures

that in patterns, only leaf intention may be refined. ElementsAreIncludedInRelatedBSTs

guarantees that when an intention is realized by a ProcessElement, the ProcessElement

is related to at least one BuisnesProcessTemplate from the holding pattern. Either-

MainGoalOrLeaf ensures that an intention cannot be both leaf and mainGoal at the same

time. The LeavesAreConnected, MainGoalsAreConnected, and MiddleGoalsAre-

Connected constraints make sure that intentions at different levels of hierarchy are well

connected and that their respective links are also included in the GoalModelBuilding-

Block.

AllPossibleRefiningLeafConnected ensures that all potential refinement relations

are established. This is done by making sure that, when a pattern whose GoalModelBuild-

ingBlock’s‎mainGoal‎is‎equal‎to‎a‎leaf‎intention, then they are connected. NoMiddleInten-

Appendix A 165

tionPossibleRefinement ensures that just leaf intentions may be potentially refined by

other patterns. NoDanglingMiddleIntention ensures that intentions in the middle of a hier-

archy are connected to one mainGoal though a chain of links. It also ensures that they are

connected to at least one leaf through a chain of links. LeavesHaveOne-MainGoal en-

sures that every leaf intention is connected to one mainGoal intention through a chain of

links. Similarly, MainGoalsHaveAtLeastOneLeaf ensures that through a chain of links,

each mainGoal is connected to at least one leaf intention.

Table 25 Invariant OCL constraints in the context of Intention

OCL Constraints
inv LeavesBeingRefined:
self.patternDef<>null implies self.leaf

inv ElementsAreIncludedInRelatedBSTs:
self.GMBB.pattern.businessStrategy.BPT.PE ->
includesAll(self.realizingElement)
inv EitherMainGoalOrLeaf:
not (mainGoal and leaf)

inv LeavesAreConnected:
self.leaf implies self.GMBB.EL->exists(e|e.fromLink()=self)

inv MainGoalsAreConnected:
self.mainGoal implies self.GMBB.EL->exists(e|e.toLink()=self)

inv MiddleGoalsAreConnected:
(not self.mainGoal and not self.leaf)
 implies
 self.GMBB.EL->
 exists(e1, e2|e1.toLink()= self and e2.fromLink() = self
)
inv AllPossibleRefiningLeafConnected:
self.leaf
implies
Pattern.allInstances()->
 forAll(p|(self.name = p.GMBB.mainGoal().name
 and self.GMBB.pattern<>p
 and self.GMBB.pattern.family.name=p.family.name)
 implies
 self.patternDef = p
)
inv NoMiddleIntentionPossibleRefinement:
Pattern.allInstances()->exists(p|self.name=p.GMBB.mainGoal().name)
implies (self.leaf or self.mainGoal)
inv NoDanglingMiddleIntention:
not (self.leaf or self.mainGoal) implies
 (UpIntentionSetFromSelf()->one(i|i.mainGoal) and
 DownIntentionSetFromSelf()->exists(i|i.leaf))
inv LeavesHaveOneMainGoal:
self.leaf implies UpIntentionSetFromSelf()->one(i|i.mainGoal)

inv MainGoalsHaveAtLeastOneLeaf:
self.mainGoal implies
 DownIntentionSetFromSelf()->exists(i|i.leaf)

Appendix A 166

‎Table 26 introduces the operations defined in the Intention class.

Table 26 OCL operations of Intention

isEqualTo(i:Intention) : Boolean =
 (self.name = i.name and
 self.mainGoal = i.mainGoal and
 self.leaf = i.leaf)
UpIntentionSet(s:Set(Intention)):Set(Intention) =
 if s ->includesAll(s.ELf.toLink()->asSet())
 then s
 else UpIntentionSet(s->union(s.ELf.toLink()->asSet()))
 endif
UpIntentionSetFromSelf():Set(Intention) =
 UpIntentionSet(Set{self})
DownIntentionSet(s:Set(Intention)):Set(Intention) =
 if s ->includesAll(s.ELt.fromLink()->asSet())
 then s
 else DownIntentionSet(s->union(s.ELt.fromLink()->asSet()))
 endif
DownIntentionSetFromSelf():Set(Intention) =
 DownIntentionSet (Set{self})

A.5 Constraints on BusinessProcessBuildingBlocks

‎Table 27 represents an invariant for BusinessProcessBuildingBlock. UniqueProcess-

ElementNameInBusinessProcessBuildingBlock ensures that ProcessElements are unique

in the context of BusinessProcessBuildingBlock.

Table 27 Invariant OCL constraint in the context of BusinessProcessBuildingBlock

OCL Constraint
inv UniqueProcessElementNameInBusinessProcessBuildingBlock:
self.PE->isUnique(name)

A.6 Constraints on ElementLinks

‎Table 28 represents an invariant for ElementLinks. DifferentSourceDestination ensures

that instances of ElementLink are not linking intentions to themselves.

Table 28 Invariant OCL constraints in the context of ElementLinks

OCL Constraint
inv DifferentSourceDestination:
self.toLink<>self.fromLink

