Goal-oriented Pattern
Family Framework
for Business Process Modeling

Saeed Ahmadi Behnam

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
in partial fulfillment of the requirements for the degree of

Ph.D. in Computer Science

Under the auspices of the Ottawa-Carleton Institute for Computer Science

_

[I111

uOttawa

University of Ottawa
Ofttawa, Ontario, Canada
October 2012

© Saeed Ahmadi Behnam, Ottawa, Canada, 2012

This work is dedicated to

my mother and to the memory of my father;

both instilled in me a passion for science and the
continuous curiosity to understand, and they will
be eternal sources of inspiration for me.

ABSTRACT

While several approaches exist for modeling goals and business processes in organiza-
tions, the relationships between these two views are often not well defined. This inhibits
the effective reuse of available knowledge in models. This thesis aims to address this
issue through the introduction of a Goal-oriented Pattern Family (GoPF) framework that
helps constructing business process models from organization goals while expanding
these goals, establishing traceability relationships between the goal and process views,
and improving reusability. Methods for extracting domain knowledge as patterns, which
are composed of goal model building blocks, process model building blocks, and their
relationships, and for maintaining the patterns over time are also presented. The GoPF
framework provides the infrastructure for defining pattern families, i.e., collections of
related patterns for particular domains. The foundation of GoPF is formalized as a profile
of the User Requirements Notation, a standard modeling language that supports goals,
scenarios, and links between them. A method for the use of GoPF is defined and then
illustrated through a case study that targets the improvement of patient safety in
healthcare organizations. The framework and the extraction/maintenance methods are
also validated against another case study involving aviation security in a regulatory envi-

ronment.

The GoPF framework is expected to have a positive impact on the scientific
community through the formalization, evolution, and reuse of patterns in domain-specific
business domains. From an industrial viewpoint, this framework will also help intermedi-
ary organizations (such as consulting firms) who are required to repeatedly create and

document goal and process models for other organizations in their business domain.

ACKNOWLEDGEMENT

First and foremost, | wish to thank my supervisor, Dr. Daniel Amyot, for his support,
patience, and insightful comments all these years, making this research experience enjoy-
able, motivating and productive. I will always be inspired by his dedication to scientific
research and to the well-being of his students. | also extend thanks to my committee,
Dr. Liam Peyton, Dr. Michael Weiss, Dr. Morad Benyoucef, and Dr. Luiz Marcio

Cysneiros, for accepting to review and comment on this thesis.

My case study related to aviation security went smoothly thanks to insightful and
valuable inputs from Nick Cartwright, Edna Braun, and Mario Saucier. | am also grateful
to Dr. Alan Forster and his team for their help and suggestions in the patient safety case

study.

To my research colleagues, thank you all for your support and feedback. | am par-
ticularly indebted towards Dr. Gunter Mussbacher for his thoughtful ideas and sugges-
tions during the course of my research on pattern families. 1 would like to thank the sys-
tem support and administration staff of EECS, and particularly Jacques Sincennes, at the

University of Ottawa.

Then, 1 would like to express my thanks to my mom, Mahin, and to my siblings,
Fariba, Hamid, and Farzaneh for their encouragement and love which gave me enough
strength to focus on my research during these years. | am also grateful for the encour-
agement and support by my wonderful friends, Julie, Daniel, Danielle, Helen, Maryam,
Ali, Sarah, and Houman. The time | spent with my friends and thought provoking dialogs
and discussions with Daniel, Reza, Farzaneh, Julie, and Houman have always been a

source of joy and comfort and helped me through these years of research.

Finally, this research was made possible through the financial support of the On-
tario Research Network for Electronic Commerce, and of the Natural Sciences and Engi-
neering Research Council of Canada (Discovery and Collaborative Health Research Pro-

jects grants).

TABLE OF CONTENTS

A o131 = o! SO PPTPPP i
ACKNOWIEAGEMENT ...t te e rs ii
TabIe OF CONTENTS ..o et sre e enes iii
LEST OF FIQUIES. ..ttt vii
LISt OF TADIES ... s iX
LiST OF ACTONYMIS ...ttt et e e esbe e teereesreenteeneenneas X
Chapter 1. INTrOAUCTIONooiiiiiiiccc e 1
1.1 Problem Statementccooviiiiiice e 1
O |V [0 1YL o] o [OOSR 3
1.3 ReSEarch HYPOThESIScouiiiiiiicie s 6
1.4 Solution: the GOPF Frameworkcccciiiiiiiii e 6
1.5 Research Methodology.........cccciiiiiiiiiicie et 8
1.6 ThesisS CONIIDULIONScocviiiiiiiic ettt 9
1.7 TheSIS OULIING ..o ere s 11
Chapter 2. Related WOIKooioiie e 12
2.1 Related Standards and NOTAtIONS.ccviiriirereiiereee e 12
2.1.1 User Requirements NOTALIONooeieieieiiiie e 12
2.1.2 Business Process Modeling NOtationccccvvevieiieeniecsic s see e 16
2.1.3 Business Process Definition Metamodel...........c.cceivveeiiiiiiiiiiie e 17

2.2 Model-Driven ENQINEEIINGcccuiiriiiiieie ettt 18
2.2.1 Model-Driven ENGINEEIING.......cccviiriieieiiisiisie sttt 18
2.2.2 Model-Driven ArChiteCIUIEcocviiee et 20

PG T - 1 (= 1 USSP 21
2.3. 1 OVEIVIEW OF PAttBINSveciiiiticctiice ettt ettt 21
2.3.2 Pattern FOrmalizationcooooiiiiee e 23
2.3.3 EVOIULION OF PATEINS ..ot 24
2.3.4 Pattern FramMEBWOTKc.oiiiiiiirieie et 26

2.4 From Business Goals to BUSINESS PrOCESSES......c.cuevuvevereerieeiesieesieesieseesieeneenns 27
2.4.1 Enterprise Knowledge Patternscccooieieiiiieniieiee e 27
2.4.2 Goal-Oriented Legal Compliance of BUSiNess ProCesSesccccvevevveiververieenenn. 27

2.4.3 Linking Business Goals to Process MOodelsccccovvevviriic i 28

2.4.4 Aspect-Oriented Business Process Improvement............cccoovvrvneneneneneseeeennns 28
245 Use of Ontologies to Increase Reusabilityc.ccccovveviiviii i 29
2.4.6 Reusability and Domain ENQGINEEIING..........coiiiirinireieieeesese s 29
2.4.7 Customization APPrOaChES........cccceiieieie i 30
2.4.8 Product Line Software ENGINEEIiNGccoviiiririnerieieeesesese s 31
2.5 SUMMAIY ..ottt ettt b et sbe et e et e e e be e nnneenes 32
Chapter 3. Framework Metamodel (FMM) ... 33
3.1 Foundational EIements OF FMIMcccccooiiiiiiiiieneee e 33
3.1.1 Goal Model BUilding BIOCKccccciveieiiiiiii et 33
3.1.2 Business Process Building BIOCK............cccoiiiiiiriniiecesse s 35
3.1.3 Collection of Business Process Building BIOCKccccooviiiiinininenceeee 36
3.1 4 BUSINESS SLFALEQY .vveviveiiieiiite ittt ste ettt st et e a e s beera e besbeenaestesne e e e 36
315 PABIN e e 37
3.1.6 Pattern Family (PF)ooi i 38
BT ROIES. .ttt 39
3.2 Family Metamodel (FIMIM)ooiiiiiiieee e 41
3.2.1 Formalizing the Family Metamodel (FMM)c.ccoooiiiiininiiiiineeeeeees 41
3.2.2 Example of FMM-based Pattern Familycccocoviiiiiiiiic e 45
3.3 Well-formedness of FMM-based MOdElSc.ccovveiiieneniieniieseeeeeiee, 48
3.3.1 Enforcing Well-formedness with OCL CONSraintscccoovrvrerenereneieinennns 48
3.3.2 Examples of OCL CONSIIAINTS........cccvevveiiiiiii ettt s 49
34 SUMMAIY .ottt b e bbb e b e nbe e 56
Chapter 4. Building Patterns and Pattern Familiesccccoocvvvviievieiie e, 58
4.1 BUIdING PAEINS ..ot 58
4.1.1 Locating Recurring ProbIems............coooiiiiii i 59
4.1.2 Locating RecUrring SOIULIONS.coveiiiiiiinie e 60
4.1.3 FOIMING PALEINSooveiiiiitiee ettt ettt e e seeeneenne 68
4.2 FaMIlY Creation........cociiiieiie ettt 68
G T OF 1T IS (1[0 |V 2SSOSR 69
4.3.1 Locating Recurrences: EXample L. 69
4.3.2 Locating Recurrences: EXample 2........ccooviiiiiiiniieic e 72
A4 SUMIMAIY Leiiiiiieiiiie ittt ettt e sa e et e e sbb e e ekt e e e bb e e e bb e e asne e e snbbeeanseeennes 73
Chapter 5. Pattern Family EVOIULION...........ccoiiiiiiiniiceceeee e 74
51 Motivation and OVEIVIEW.ccuiiriiieieiie ettt 74
5.2 EXension MECNANISMc.oiiiiiiiiiieieie e 76

521 EXension AIGOrithIM ..o 77

5.2.2 Applying the Extension AlGOrithm ..o 78
5.2.3 Example 1: Extension of an EMpty PF ... 79
5.2.4 Example 2: Extension of NON-EMPty PF ... 82
5.3 MOGITICALION ...ttt 88
53.1 Modification AlGOrtNMcooiiiiieee s 88
5.3.2 Applying the Modification AlQOrithmcccccveviiiiici e 89
5.3.3 Example: Modification of @ Patterncccooiiiiiinencicsee e 90
5.4 ENMINGTION ..ottt bbbt 92
54.1 ElimIination AIGOTTNMcoiiiiiiiee s 93
5.4.2 Applying the Elimination AIgOrithmc.ccccoov i 93
5.4.3 Example: Elimination of an Obsolete Patterncccooeveieinineneneneseeeee 94
5.5 COMDINALIONcouiiiiiiiiiiite e bbbt 96
551 Combination AIGOItNMccciiiiiiiieee s 96
5.5.2 Applying the Combination AlQOrithm ... 97
5.5.3 Example: Combination of two Pattern Familiesccccoovvviiiininencicee, 98
5.6 SUMMAIY ..ottt nne s 103
Chapter 6. Organization-driven Customization and Extraction Method
(104 = 1V TSRS 104
6.1 AIGOTTENM oo s 106
6.2 APPHCALIONoiiiieicc e e 106
6.3 EXAMPIE.. e s 108
6.4 SUMMAIY ...oeiiiiiiti ettt nb et b e nne s 113
Chapter 7. EVAIUALION...........ccocoveiiiiece e 115
7.1 Case Study 1: Patient Safety DOMAINccccoiiiiriininieie e 115
7.2 Case Study 2: Aviation Security DOMAINccovevieiiiiieie e 117
7.2.1 Introduction to the Aviation Security DOMAINccccoreiviiiniiiiinineseereeeeias 118
7.2.2 Outcome-based versus Prescriptive Approaches in Regulatory Compliance 119
7.2.3 Areas of Aviation Security Screening DOMaiNcooecviiininenenenesecins 120
7.24 Motivation for Using GoPF and Creating a Pattern Familyccocovvvine. 120
7.2.5 Building an Aviation Screening Pattern Family............cccccooviiiiinnniiccs 122
7.2.6 Evaluation of GoPF in the Aviation Security DOmMain...........ccccevenviiencieenennee. 124
7.3 Comparison with Related WOrK...........cccooiiiiiii e 125
7.3.1 Requirements Models Used For Model Transformation...........cccccoevoevvnennnnn. 127
7.3.2 Formalized Pattern SpecifiCationcccccevviiieiiiicic e 127
7.3.3 Goal MOl INCIUSTON.......coiiiiiiiiiiieee e 129

7.3.4 Links between Busingss GOals and PrOCESSES.........uviivveeeeiirrereiirreeesseseeessesseees 131

7.3.5 Pattern Organization...........coovieriierieieeieeee s 132
7.3.6 Pattern and Family EVOIULION..........ccccci i 133
7.3.7 Goal-oriented Solution Customization and EXtraction..............ccccceevvevervneenenne. 134
7.3.8 Domain SPECIialiZationccccveieiieii it 136
7.3.9 Pattern and Family Creation...........coooeiiiiiininineseeees e 138
7.4 Limitations and Threats to Validityccccooeiiiiiiiiiiiie e 138
7.4.1 Case Studies and Pattern Family Constructioncccccvoviiiiiineneneieieens 139
7.4.2 OCEM LIMITAtIONS......ciiiiiiiiiieiiesiesieie ettt nneas 139
7.4.3 Precision of Goal Models in Patterns.........cccccvvveviiiiieneeiese e e 140
7.4.4 Automation and TOOI SUPPOIT........cccveiiiieiiie et 140
TS 1V 11110 -1V PP 141
Chapter 8. Conclusions and FUture WOrK ... 142
8.1 CONCIUSIONS ...ttt et bbbt 142
8.2 FULUIE WOTK ...t 145
8.2.1 Customization and Extraction of Models (and Propagation)ccccccevvvvennne. 145
8.2.2 Usage of GoPF in Different Domains and by Different People............cccceceinene 146
8.2.3 Usage of GoPF in Different Organizations of a Given Domain...............ccccc....... 146
8.2.4 Evolution of Pattern FamilieS..........cceviiiiiiiiiiiie e 146
8.25 Other Modeling LanQUAGEScoveieiieieeieite sttt sre et st 147
8.2.6 GOPF for Building Goal MOGEIScceiiiiiiiiiieeeeee e 147
8.2.7 Product Line Software ENGINEEIINGccvcvviiiiiieieceeie ettt 147
ST T o 1o IRV o] o To] o AP SR 147
8.2.9 RUN-TIME APPrOACH....c.oiiiiiiii e 148
=] (] (=] (o1 149
Appendix A. OCL Constraints for FIMMcccccoiiiiiiiii e 160
AL CONSLIAINTS ON PES ..ottt sre e b e 161
A2 CoNSLraINtS 0N PALIBINSc.eiiiiieiiiteee sttt sttt eeseeeree e 161
A.3 Constraints on GoalModelBuildingBIOCKSccccoviiiiiiiiiiiiece 163
A4 Constraints 0N INTENTIONSooiiiiiiie et 164
A.5 Constraints on BusinessProcessBuildingBIOCKS............cooiiiiiiiniiencccccee 166
A6 Constraints 0N E1ementLINKSooviiiiiiiee et 166

Vi

LIST OF FIGURES

Figure 1 Gaps between different levels of the software development process................ 2
Figure 2 Architecture of GOPF frameworkcccooeiiiiiiiiiiiieececee e 7
Figure 3 GRL notational elementsS............cooiiieiiiie i 14
Figure 4 URN overview with GRL (left) and UCM (right).......cccccooviviniiiininnie, 14
Figure 5 UCM notational elementS...........ccociiieiiiie i 15
Figure 6 A BPMN model with annotation that shows mapping to BPEL4WS [49] 17
Figure 7 Basic notions in object-orientation (a) and MDE (b) [17]...ccccccvvvvviniiniinnnnnn. 20
Figure 8 MDA software development life cycle [59] ... 21
Figure 9 Goal model building block for Increase Patient Safetycc.ccoceveneee. 34
Figure 10 Two alternative business process building blocks for Increasing Patient
SAILY i 35
Figure 11 A collection of alternative business process building blocks for Make
DT o 153 o o USSR 36
Figure 12 Architecture of a typical pattern in GOPF............ccocooiiiiiiiiie e 38
Figure 13 Interaction among different GOPF roles...........cccccvviiiiiiiniinene e 41
Figure 14 Framework metamodel ... 43
Figure 15 High-level representation of the Increase Patient Safety pattern.............. 44
Figure 16 Increase Patient Safety pattern in the form of FMM-based object model 45
Figure 17 An excerpt of a pattern family for the patient safety domain........................ 46

Figure 18 FMM-based object model of the sample patient safety pattern family 47
Figure 19 Validation of OCL constrains for preventing circular defining pattern and

for dangling INtENLIONSc.ecviiieie e 52
Figure 20 A pattern family with circular refinement patterns and dangling intentions. 53
Figure 21 Investigation of the source of OCL violations in the examples 54
Figure 22 Overview of a process for creating, evolving and applying PFs................... 58
Figure 23 Locate a recurring problem in a particular domainccccoceveveiinirinnnnn 59
Figure 24 Extracting goal model building bIOCKS...........ccoooiiiiiiiiiiiie 61
Figure 25 Example of an extracted goal model building block ... 62
Figure 26 Process of building patterns and pattern families............cccccoceriniiiinnnnnn 63
Figure 27 Locate a recurring solution in a particular domain...........ccccceeevniininienne. 64
Figure 28 Build DUSINESS STrategyccoiiiiiiiiiiiieee e 65
Figure 29 Collecting business process building blocks that address the problems in

goal model building BIOCKScoiiiiiiieiii s 66
Figure 30 Goal model building block and business strategies for Increase Patient

SaAfEtY PALIEIN ..o 67
Figure 31 Forming a pattern using the components built when locating recurring

problems and SOIULIONS...........cveiiiiiie e 68
Figure 32 Add a newly built pattern to a pattern familyc.ccccooovvveiiiic i 69
Figure 33 Goal model building block for Increase Patient Safetyccccceeveee.. 71
Figure 34 Business process building blocks for Increase Patient Safety 71
Figure 35 Goal model building block for Collect Data............cc.cccoeeveieicieiiniieee, 72
Figure 36 Business process building blocks for Collect Data.............cccccceevevveiernnnee. 73

vii

Figure 37 EVOIULION UCMcoiiiiiiii e 76

Figure 38 Main steps of the Extension MechanisSm.............ccccoevveveiiieviencsiese e 77
Figure 39 Top: goal model building block of xp - Bottom: business process building

DIOCKS OF XD ..ttt 80
Figure 40 Object model of Increase Patient Safety pattern...........ccccceeveveiiniinnnne 81
Figure 41 Object model of an empty PF extended to include Increase Patient

Safety PALEIN ...c..eeiece s 82
Figure 42 Left: goal model building block of xp - Right: business process building

DIOCKS OF XD ..t 83
Figure 43 Object model of a non-empty PF used as initial PF ... 84
Figure 44 bptl_3, which is the business process building block of bs1_3................. 85
Figure 45 Object model of XP Pattern.........ccooiiiiiiiiiee e 85
Figure 46 Object model of the extended PF pf that includes the xp pattern.................. 87
Figure 47 Main steps of the modification mechanism............ccocovviviirenn i 88
Figure 48 Object model of the p1 pattern after modification of its goal model

PUIAING DIOCK. ... 91
Figure 49 Object model of the p1 pattern after modification...........cccoceeeniiiiiinnnnne. 92
Figure 50 Main steps of the Eliminating Mechanismccocvovviiiiiencnenenenee 93
Figure 51 Object model of initial PF with an obsolete pattern (0p)cccccocevvrvrnnnnee 95
Figure 52 Using a stereotyped UML package to represent the Increase Patient

Safety PALEIN ..o 99
Figure 53 pfl is a PF that contains patterns for ad-hoc approaches to improve patient

SATELY vttt 100
Figure 54 pf2 is a PF that contains patterns for both ad-hoc and systematic

approaches for improving patient safetycccoocvieiiicii i, 100
Figure 55 pf after first iteration of Step S5......cccvviiiiiiii i 102
Figure 56 Combined pattern family ... 103
Figure 57 Using a pattern family to build requirements models for a specific

stakeholder IN @ dOMAINccoiiiiieiiee e 105
Figure 58 Original organizational goal model (11, 13)......ccccovviiiiiiiiieic e 109
Figure 59 Using OCEM: linking goal model building blocks to the organizational

goal model, with evaluations.............c.ccoveiiiiiieiie e 113
Figure 60 Using OCEM: business process building blocks, with strategy “B” being

SEIBCTEA ...t 113

Figure 61 Artificial example : (a) Pattern family, (b) Pattern and its internal
structure, (¢) Goal model building block, (d) Business process building

0] (003 USSR 123
Figure 62 Results of checking the OCL constraints on the Increase Patient Safety PF
BXAMPIE .o 160

viii

LIST OF TABLES

Table 1

Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9

Table 10

Table 11
Table 12

Table 13
Table 14

Table 15

Table 16
Table 17

Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24

Table 25
Table 26
Table 27
Table 28

OCL constraints implemented to ensure the integrity of FMM-based

100 [T USSP 49
OCL operations for retrieving a set of refining patterns...........ccccccoceevvennne. 51
OCL operations for retrieving a set of INteNtions...........ccccvvvereiieieerennnn 55
Elements of the modifications ordered set in the extension algorithm........ 78
Elements of the modifications ordered set in the modification algorithm... 89
Elements of the modifications set in the elimination algorithm 93
Dimensions of comparison between GoPF and related work 125
Summary of comparison between GoPF and related work..............c.......... 126
Summary of comparison based on requirements models used for model
EraNSTOMALIONviiiiciicce e 127
Summary of assessment based on the formalized pattern specification
IMENSION L.ttt 129

Summary of assessment based on the goal model inclusion dimension..... 130
Summary of assessment based on the links between business goals and
ProCeSSES AIMENSIONcuviiiieie ettt ree e e e 132
Summary of assessment based on the pattern organization dimension 133
Summary of assessment based on the pattern and family evolution

(0T 0T 0] (oo SR 134
Summary of assessment based on the goal-oriented customzation and
eXEraCtion AIMENSIONcc.eeiiieie e 136

Summary of assessment based on the domain specialization dimension ... 137
Summary of assessment based on the pattern and pattern family creation

IMENSION L.ttt 138
Invariant OCL constraints in the context of PatternFamily 161
Invariant OCL constraints in the context of Pattern............ccccocoeeeveiennnnnns 162
OCL operations Of PAtternccocoviiiiieiiie e 162
Post-condition and preconditions in the context of Pattern 163
Invariant OCL constraints in the context of GoalModelBuildingBlock 163
OCL operations of GoalModelBuildingBlocKcccccoovveviiiiiciiiieeen, 164
Post-condition and preconditions in the context of

GoalModelBuildingBIOCKcoviiiieie e 164
Invariant OCL constraints in the context of Intentioncc.ccoeevevveenee. 165
OCL operations of INtENLIONcccvveiiiiiie e 166
Invariant OCL constraint in the context of BusinessProcessBuildingBlock166
Invariant OCL constraints in the context of ElementLinks 166

LIST OF ACRONYMS

Acronym

BP
BPBB
BPDM
BPEL
BPEL4AWS
BPM
BPMN
EHR
FDM
FMM
GBPM
GDM
GoPF
GMBB
GRL
IT
ITU
MDA
MDE
NFR
OCEM
OCL
ODP
OMG
PDCA
PF

RE
SOA
TOM
UCM
UML

Definition

Business Process

Business Process Building Block
Business Process Definition Metamodel
Business Process Execution Language
Business Process Execution Language for Web Services
Business Process Management
Business Process Modeling Notation
Electronic Health Record

Family Development Method

Family Metamodel

Goal-driven Business Process Modeling
Goal-driven Method

Goal-oriented Pattern Family

Goal Model Building Block
Goal-oriented Requirement Language
Information Technology

International Telecommunication Union
Model-Driven Architecture
Model-Driven Engineering
Non-Functional Requirement

Organization-driven Customization and Extraction Method

Object Constraint Language
Organizational Development Process
Object Management Group

Plan Do Check Act

Pattern Family

Requirements Engineering
Service-Oriented Architecture

Total Quality Management

Use Case Map

Unified Modeling Language

URN

User Requirements Notation

Xi

Chapter 1. INTRODUCTION

This thesis provides a framework for reusing knowledge captured in the form of patterns
at the level of goal models and business process models. This chapter summarizes the
problem and motivation for this research, concisely defines the research hypothesis, high-
lights the research methodology, provides a summary of the solution, lists the main con-
tributions of this research, and outlines the content of this thesis.

1.1 Problem Statement

In today’s competitive and global economy, companies and other types of organizations
are faced with many challenges such as (i) the need for fast information transfer (ii) the
need for quick decision making (iii) the need to adapt to changes (iv) increased competi-
tion, and (v) the need for higher quality services and products [1]. In the past two dec-
ades, there have been efforts to harness software applications in order to address such
challenges [2][3][4]. Organizations attempt to take advantage of software solutions to

solve their problems and achieve their organizational objectives.

In a software development process, goals drive the definition of requirements.
The value of software application solutions to an organization is based on how well busi-
ness goals are satisfied through their use. When developing valuable software applica-
tions, organizations often have two major issues. First, they often have difficulties in
properly identifying and documenting their goals, their business processes, and the links
between these two views [5][6][7]. Second, there are additional challenges in transform-
ing business processes to executable software applications that realize them. Figure 1
illustrates the gaps to be filled when going from business goals to business processes and
then to software applications. This figure also shows the conventional roles typically as-
sociated with the artifacts discussed so far: business analyst for business goals, business

process analyst for business processes, and developer for software applications.

Chapter 1. Introduction - Problem Statement 1

Sajay
Highlight
necesidades

Sajay
Highlight

Sajay
Highlight
importancia de la captura de requisitos

Sajay
Highlight

Sajay
Highlight

Sajay
Highlight

Business
Analyst

This Research

Business {}

Process
Analyst \ Business Processes

= =
Gap

= =

Software Applications \

—+O

Developer

Figure 1 Gaps between different levels of the software development process

The gap between business processes and software applications has received much atten-
tion over the past decade, and dedicated technologies such as the Web Service Business
Process Execution Language (WSBPEL) [8] have emerged. In addition, the Object Man-
agement Group’s Model-Driven Architecture (MDA) [9], a well-known incarnation of
the Model-Driven Engineering (MDE) transformation approach [10], can help formalize
and facilitate the generation of software from business process models. However, the gap
between business goals and business processes has received far less attention. Yet, not
addressing this gap leads to problems in effectively and appropriately identifying stake-
holders’ goals and devising business processes that satisfy them. Symptoms of these

problems typically identified by senior executives [11], such as:
e Software investments are unrelated to business strategies;
e Payoff from software related investments is inadequate;
e There is too much “technology for technology’s sake”;
¢ Relations between users and software specialists are poor; and

e System designers do not consider users’ preferences and work habits.

Chapter 1. Introduction - Problem Statement 2

Sajay
Highlight
importantísimo ejemplo de conxion de problemas con antecedentes

Sajay
Highlight

Sajay
Highlight

Consequently, many software development projects yield disappointing results or are
simply canceled because software applications and business processes are not aligned

properly with business goals [12].

Currently, there are few approaches that capture and analyze goal models within
the software development process [13]. When goals are indeed captured, even small
problems can lead to complex and large goal models [14]. Furthermore, modeling busi-
ness goals and processes separately is not sufficient to bridge the gap between these two
views; alignment of goals and processes as well as traceability must also be taken into
account. Defining such models remains challenging, especially when done from scratch.
Reusing domain knowledge captured in the form of patterns can often help address this
issue. For instance, design patterns have been quite successful in the construction of
software applications [15]. However, patterns that span business goals and processes are
far less common, and reusing existing knowledge with goals and business process re-

mains an open problem [16].

1.2 Motivation

A paradigm shift towards model-driven development is happening in the field of software
engineering in order to deal with the challenges mentioned in the previous section. This is
changing the way software applications are developed [17]. As Greenfield and Short ob-

serve in [18], new artifacts beyond those offered by object-orientation are required:

“The software industry remains reliant on the craftsmanship of skilled individuals
engaged in labour intensive manual tasks. However, growing pressure to reduce cost and
time to market and to improve software quality may catalyse a transition to more auto-
mated methods. We look at how the software industry may be industrialized, and we de-
scribe technologies that might be used to support this vision. We suggest that the current
software development paradigm, based on object orientation, may have reached the point

’

of exhaustion...’

Suggested approaches to address the mentioned challenges are mostly process-
oriented but do not fully tackle the importance of goal models [19]. This is particularly
significant because successful software applications must address the problems of stake-

holders [20]. Stakeholders’ concerns must be captured, analyzed, and reasoned about, and

Chapter 1. Introduction - Motivation 3

Martica
Highlight

creating goal models is an appropriate means to this end. Goal models can drive the crea-

tion of business processes that address the concerns of stakeholders.

Still, creating high-quality goal models and business process models that repre-
sent requirements is challenging and requires much effort. Doing this is particularly diffi-
cult in ground-up approaches where models are created from scratch. Ground-up ap-
proaches for software development seldom take advantage of reusing the captured do-
main knowledge, especially at the goal and process levels. Creating solutions from
scratch for recurring problems makes them more vulnerable to: unsuccessful solutions
that may run against working routine [21], difficulties in maintenance [6], and failure of
the new solution because of conflicts that are hard to locate in early stages of requirement
engineering [22][23]. Furthermore, in such approaches, quality and resource consumption
(related to time and cost) have a reverse correlation. This is also known as the time, cost,
and quality triangle [24]. In other words, developing high-quality applications is a re-
source-consuming process and lowering the costs often decreases the quality of the final
product. For instance, in the field of healthcare software applications, there are many
failure stories that result from the above difficulties [25][26][27][28].

These important concerns can be addressed by reusing domain knowledge in the
form of goal models and business process models. It is becoming increasingly difficult to
ignore the benefits of knowledge reusability in this context, as often emphasized in the
literature [6][7][29][30][31]. However, two difficulties challenge the reuse of knowledge
for organization in a specific domain. First, it is usually not possible for an organization
to reuse entirely the goal models and business process models that represent the require-
ments and know-how of another organization. The reason is that despite the similarity of
objectives in a domain, there are differences in the organizational objectives and their
priorities, which lead to different hierarchies of requirements. Therefore, it is more plau-
sible for organizations to reuse pieces of the business goal and process models. However,
it is difficult to reuse only pieces of these models because they are usually captured as
complex hierarchical models. Second, reusing business goal and process models is suc-
cessful when an organization can evaluate the potential effects of alternative solutions
considering its particular context. However, when capturing the knowledge about the

requirements is done holistically, it is difficult to capture the alternative effects of solu-

Chapter 1. Introduction - Motivation 4

Sajay
Highlight

tion along with models. This makes it difficult for organizations to find and reuse those
pieces of model that are best suitable to the context of a particular organization and have

the most positive effect on how to solve the problems.

Considering the continuity of the spectrum of artifacts from requirements to soft-
ware applications, it is important to recognize that business process models are conceptu-
ally linked to goal models. These links indicate which business processes realize particu-
lar business goals. Capturing the links between business process models and goal models
facilitates the finding of known solutions in the context of conditions and requirements of
an organization. Hence, such links help bridge the gap between requirements of a particu-

lar organization and corresponding (existing) solutions.

Patterns are reusability mechanisms for capturing and reusing domain knowledge.
They can also capture goal models and business process models along with links that
define the realization relationships between them. The knowledge about domains cap-
tured in such a way can be systematically reused by a framework for creating solutions
for a particular organization. A means for capturing the knowledge enables solving com-
plex problems by reusing patterns that capture building blocks of problems and solutions.
These can be used for identifying the requirement and providing mechanisms that address
these requirements. However, the domain knowledge about business goals and processes
is volatile and changes over time at a more rapid pace than for design patterns. Therefore,
pattern families in a business modeling context can be useful only if they can adapt to the
changes that happen in the domain and reflect the respective solutions for emerging prob-
lems. Introducing evolution mechanisms that systematically help evolving pattern fami-
lies is hence a necessity. Inspired from the concepts of evolution® and adaptive software
maintenance, these mechanisms should enable a gradual and iterative development where
a pattern family changes into a different and better form that more accurately represent

the knowledge about the current problems and solutions within a domain.

! Evolution in this thesis refers mainly to adaptive maintenance activities in conventional software evolu-
tion, which are (manual) modifications of a software product (or pattern here) performed after delivery to
keep it usable in a changed or changing environment. Evolution here is not related to genetic algorithms or
other automatic evolutionary algorithms from the artificial intelligence community.

Chapter 1. Introduction - Motivation 5

Martica
Highlight

Martica
Highlight

1.3 Research Hypothesis

Our main research hypothesis is defined as follows:

We can reuse and maintain, in a rigorous way, the knowledge about
business goals, business processes and the links between them, cap-
tured as patterns to create suitable business processes in the context of
a different organization.

The main objective of this research is to develop a goal-oriented pattern-based framework
that facilitates knowledge reusability based on business goals and processes for a given
domain. Furthermore, this framework serves as key enabler for creating organization-
specific goal models and business processes that realize them. Finally, by providing
mechanisms for pattern evolution, the knowledge captured in the framework will adapt to
changes in the domain.

1.4 Solution: the GoPF Framework

The solution developed in this thesis, named Goal-oriented Pattern Family (GoPF)
framework, is a framework that aims to facilitate the discovery and documentation of
recurring solutions to recurring problems in the form of patterns. It also provides mecha-
nisms to enable reusing and maintaining the knowledge at the level goal model and busi-
ness process models. The term family is used here to reflect the parent-child refinement
relationships that exist among the patterns that the family contains. GoPF is composed of
a Family Metamodel (FMM) and a Goal-driven Method (GDM), as shown in Figure 2.
FMM is a metamodel that lays down a structure for Pattern Families (PF). A PF captures
the knowledge about a particular domain with patterns formalized with goals, business
processes, and links between them. It specifies typical refinements of goals in terms of
processes for a particular domain (e.g., healthcare). A PF is the key enabler for reusing
knowledge. The method in the framework, GDM, is composed of two major components:
(i) a Family Development Method (FDM), and (ii) the Organization-driven Customiza-
tion and Extraction Method (OCEM).

Chapter 1. Introduction - Research Hypothesis 6

Martica
Highlight

Martica
Highlight

Goal-oriented Pattern Family framework (GoPF)

Goal-driven Method (GDM)

Organization-
driven
Customization
and Extraction
Method (OCEM)

Family Development Method (FDM)

Family Creation Family Evolution

Family Metamodel (FMM)

manages .
> Goal-driven
Pattern
adapts Family
P (GPF)
instance of
|

profile of *

uses notation of

;

User Requirements Notation

Figure 2 Architecture of GoPF framework

FDM provides algorithms for creating a PF and evolving it over time:

e Family Creation is a method that provides the steps for capturing existing

solutions to recurring problems in the form of patterns. The output of this

method is a PF; and

e Family Evolution is composed of algorithms for evolving a PF to adapt to

the changes in the domain in order to improve its accuracy and overall qual-

ity. Family Evolution algorithms accommodate eliminating obsolete pat-

terns, extending a PF by adding new patterns, modifying current patterns,

and combining a PF with another PF.

Another component of GDM is the Organization-driven Customization and Extraction

Method (OCEM), which includes algorithms that guide the selection of instances of solu-

tions for particular organizations within the domain. OCEM uses a PF as an input and

assesses the impact of alternative solutions for achieving the high-level goals of a given

organization in a step-by-step, top-down approach. Another input of OCEM is a partial

business goal model where only some of the high-level goals of an organization need to

be identified. The main output of the OCEM is a more complete goal model combined

with business processes that are aligned with the identified goals, as well as additional

traceability links between the two views.

Chapter 1. Introduction - Solution: the GoPF Framework

The main beneficiaries of this framework are requirements engineers and business
analysts whose objective is to model the business goals and business processes for a par-
ticular organization in a specific domain. The GoPF framework enables them to reuse
available knowledge of the domain at the level of goals and related business processes.
However, many other stakeholders of such organizations also indirectly benefit from this
framework by being exposed to potential problems and solutions in similar organizations.
The GoPF framework complies with the spirit of MDE while including goal models in
the chain of transformations of artifacts. The framework builds on the User Requirements
Notation (URN) [32][33], an international standard that already combines goal and sce-

nario modeling into a single language.

1.5 Research Methodology

In order to contribute to the research community, as characterized by March and
Smith [34], this research attempts to provide a construct, i.e., the Goal-oriented Pattern
Family framework, to address a problem, namely how to reuse knowledge about re-
quirements and solutions in specific domains. The design-oriented methodology, an ap-
proach toward research in information systems suggested by Hevner et al. [35], is the
underlying research methodology for this thesis. Following this approach, first the gap
between business goals and business processes as well as challenges for reusing the
knowledge in domains have been studied and characterized through a literature review
and further elaborated and illustrated through representative scenarios. Furthermore, a
framework is proposed to address the aforementioned challenges. This framework is
composed of a metamodel that formalizes patterns and of creation, usage, and evolution
methods, which together serve as the constructs contributing to research as highlighted by
Hevner et al. and March and Smith. Finally, this framework is evaluated against repre-
sentative case studies. A Patient Safety case study is used as an ongoing example
throughout the thesis, and then a second case study related to Aviation Security is dis-
cussed. The evaluation is intended to highlight the usefulness and applicability of the
framework in regard to addressing the motivating problems, but it is not intended to be an

empirical evaluation [34][35].

Chapter 1. Introduction - Research Methodology 8

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

1.6 Thesis Contributions

The contributions of this research are provided here in order of importance.

A framework, called GoPF, for capturing the goal and process knowledge in

the enterprise domain in the form of patterns:

o This framework includes a metamodel (FMM) that provides the structure
for Pattern Families (PF);

o This framework is formalized as a URN profile that enables using the

URN standard and tools for capturing the patterns.

A Goal-driven Method (GDM) that guides and partially automates the crea-

tion and evolution of a PF for a particular domain:
o This GDM includes a Family Creation algorithm;
o This GDM also includes several Family Evolution algorithms; and

o A library of Java classes that implement these algorithms in order to as-
sess the feasibility of evolving pattern families through evolution mecha-

nisms.
An Organization-driven Customization and Extension Method (OCEM):

o OCEM includes algorithms for extracting and adapting models for a spe-
cific organization from patterns in a PF.

In order to evaluate the hypothesis of this research, two case studies have been carried

out. Considering that the generated PFs in these case studies capture reusable real-world

knowledge in their respective domains, they can be considered as minor contributions of

this thesis.

Validation case studies:

o A pattern family for patient safety in healthcare is created and evolved.
This family is then used for extracting and adapting models for a depart-

ment in a healthcare organization;

o A pattern family for aviation security screening is created, with an em-

phasis on the use of indicators to enable measurement of compliance.

Chapter 1. Introduction - Thesis Contributions 9

Martica
Highlight

Martica
Highlight

Martica
Highlight

Several publications based on the above ideas are already available. The first one relates
to the healthcare case study whereas the second one uses patterns to capture knowledge in
a specific healthcare domain. The third and fourth papers represent GoPF’s approach for
maintaining the captured knowledge in pattern families. The next two papers highlight
the requirements of outcome-based regulatory compliance, which is then used as the ba-
sis for creating patterns in the aviation security domain. Using this domain as a case
study, the last paper illustrates the use of indicators in GoPF-based patterns, highlights
the process of creating patterns, and reports on the use of the framework for aviation se-

curity.

1. S.A. Behnam, D. Amyot, A.J. Forster, L. Peyton, and A. Shamsaei, “Goal-
Driven Development of a Patient Surveillance Application for Improving Pa-
tient Safety” E-Technologies: Innovation in an Open World, LNPIB 26,
Springer, 2009, pp. 65-76.

2. S.A. Behnam, D. Amyot, and G. Mussbacher, “Towards a Pattern-Based
Framework for Goal-Driven Business Process Modeling”, 8th Int. Conf. on
Software Engineering Research, Management and Applications (SERA2010),
Montréal, Canada, 2010. IEEE CS, pp. 137-145.

3. S.A. Behnam, D. Amyot, “Evolution of Goal-driven Pattern Families for
Business Process Modeling”, 5th International MCETECH Conference on
eTechnologies (MCETECH 2011), LNBIP 78, Springer, 2011, pp. 17-31.

4. S.A. Behnam, D. Amyot, “Evolution of Goal-driven Pattern Families for
Business Process Modeling”, Int. J. Electronic Business, Inderscience Pub-

lishers, (to appear, accepted Feb. 2012).

5. R. Tawhid, M. Alhaj, G. Mussbacher, E. Braun, N. Cartwright, A. Shamsaeli,
D. Amyot, S.A. Behnam, and G. Richards, “Towards Outcome-Based Regu-
latory Compliance in Aviation Security”, 20th IEEE Int. Requirements Engi-
neering Conference (RE’12), Chicago, USA, September 2012. IEEE CS, pp.
267-272.

Chapter 1. Introduction - Thesis Contributions 10

6. E. Braun, N. Cartwright, A. Shamsaei, S.A. Behnam, G. Richards, G. Muss-
bacher, M. Alhaj, and R. Tawhid, “Drafting and Modeling of Regulations: Is
It Being Done Backwards?”, 4th Int. Workshop on Requirements Engineering
and Law (RELAW), Chicago, USA, September 2012. IEEE CS, pp. 1-6.

7. S.A. Behnam, D. Amyot, G. Mussbacher, E. Braun, N. Cartwright, and M.
Saucier, “Using the Goal-Oriented Pattern Family Framework for Modelling
Outcome-Based Regulations”, Second International Workshop on Require-
ments Patterns (RePa), Chicago, USA, September 2012. IEEE CS, pp. 35-40.

1.7 Thesis Outline

The thesis is organized as follows. Chapter 2 presents background information on URN,
MDE, patterns, approaches that attempt to reuse domain knowledge, and other approach-
es that attempt to bridge the gap between business goals and processes. Then, Chapter 3
gives an overview of the GoPF framework metamodel and of how it is formalized with
the help of URN, with restrictions in OCL. Chapter 4 presents the process of capturing
recurrences, creating individual patterns, and creating pattern families. Chapter 5 de-
scribes four evolution mechanisms, provides related algorithms, and describes their ap-
plication through case studies. Chapter 6 presents the mechanism for using the pattern
families through customizing and extracting methods for particular organizations. This
chapter also provides an algorithm and illustrates its application in the domain of patient
safety. Chapter 7 evaluates the usefulness, applicability, and limitations of the suggested
framework through case studies and comparisons with related work. Chapter 8 follows

with conclusions and future work.

Chapter 1. Introduction - Thesis Outline 11

Chapter 2. RELATED WORK

This chapter provides an overview of background concepts and notations as well as of the
research that proposes existing solutions for bridging the gap between business goals and
business processes. First, related notations and standards are recalled in section 2.1. The
User Requirement Notation (URN) and its two complementary sub-notations, the Goal-
oriented Requirement Language (GRL) and Use Case Maps (UCM), which are used in
this research, are briefly reviewed. Furthermore, the Business Process Modeling Notation
(BPMN), an alternative to UCM, and the Business Process Metamodel Definition
(BPDM), which is a related standard, are also discussed. Section 2.2 then reviews some
core concepts of model-driven engineering. Section 2.3 gives a brief description of pat-
terns and their formalization, which are some of the fundamental elements of this re-
search. Finally, section 2.4 reviews existing concepts and approaches related to the bridg-

ing of the goal-process gap.

2.1 Related Standards and Notations

This section first presents the User Requirement Notation (URN) standard, which pro-
vides the underlying foundations and notations for goal and business process modeling
used in this thesis. Next, OMG’s Business Process Modeling Notation and Business Pro-
cess Definition Metamodel are briefly introduced as standardized alternative foundations

for business process and goal modeling, respectively.

2.1.1 User Requirements Notation
The development of notations for capturing and analyzing requirements is a major

achievement of the last ten years [13]. The User Requirements Notation (URN), a stand-
ard of the International Telecommunication Union (ITU-T Z.151) [32][36][37][38], is
intended for the elicitation, analysis, specification, and validation of requirements. URN
contains two complementary graphical modeling languages for goals (GRL) and scenari-
0os (UCM). URN allows software and requirements engineers to discover and specify
requirements for a proposed system or an evolving system, and analyze such require-

ments for correctness and completeness. URN can also be used as a medium for commu-

Chapter 2. Related Work - Related Standards and Notations 12

nication with stakeholders about their requirements. The seamless presentation of goals
and behavior is done with GRL and UCM diagrams respectively. Although the main ap-
plication domains for URN include reactive systems and telecommunications systems,
this language has also been applied successfully to the modeling and analysis of business

goals and processes in many application domains [39][40].

Goal-oriented Requirement Language (GRL)

The Goal-oriented Requirement Language is a graphical language that enables the model-
ing of stakeholders, business goals (including functional and non-functional require-
ments), alternatives, and rationales. Modeling stakeholders’ requirements with GRL
makes it possible to define and understand the problem that ought to be solved [41].
Business analysts, requirement engineers, and software architects can achieve these ob-
jectives by using various types of intentional elements and relationships, as well as their
stakeholders called actors (). Intentional elements include goals (CD) softgoals (CO)
for qualities and non-functional requirements, resources () for conditions, tasks (<)
for activities and alternative solutions, and indicators (<) for measures. Intentional
elements can also be linked by AND/OR/XOR decompositions, by dependencies, and by
contributions. Various qualitative positive and negative contribution types exist (see leg-

end in Figure 3) as well as quantitative contribution levels on a [-100, 100] scale.

On the analysis side, GRL evaluation strategies enable modelers to assign initial
satisfaction values to some of the intentional elements (usually alternatives at the bottom
of a goal graph) and propagate this information to the other elements through the decom-
position, dependency, and contribution links [42]. In addition, importance values are usu-
ally defined for high-level goals of stakeholders in a quantitative range of [0, 100] or with
qualitative labels such as High, Medium, Low, or None. This ultimately helps assess the
impact of alternative solutions on high-level goals of the involved stakeholders. Such
models are also useful for evaluating trade-offs and documenting decision ration-
ales. Figure 4 (left) is a GRL diagram that represents part of a goal model for increasing
patient safety (and various contributing factors from other softgoals) in the case study.
Note that despite of these features, the GRL notation and other goal modeling languages

such as i* lack good modularizion constructs [43].

Chapter 2. Related Work - Related Standards and Notations 13

Sajay
Highlight

Sajay
Highlight

Weakly Satisficed

»
< Task > Resource 2 Undecided

T .
', Actor A 4’ Weakly Denied
Boundar .
\ 31" X Denied
M N‘t_
OR

Ve
AND

Conflict
(a) GRL Elements (b) GRL Satisfaction Levels (c) Link Composition
———> Contribution 2 T = b)
_____ Correlation Break Hurt Some- Unknown
L]

—D— Dependenc-y-' + l!- o+ =
_I— Decomposition Make Help Some+ Equal

(d) GRL Links (e) GRL Contributions Types

Figure 3 GRL notational elements

Increase Patient
Safety

System

4 Collecting Making Safety
; Generate) DAd_o pt Data Decision
\ Informative Qutcome p ecision start @ X% ¥ end
AR Information A [done] o
~ -7 Generating Informative “Adopting

Outcome Information Decision

~ - -z ’
~ o - 1 — ,/
25
U ,/ 75
Increase Quality of Deploy Advanced
Care in Long Term Infrastructure

Figure 4 URN overview with GRL (left) and UCM (right)

Use Case Map

The Use Case Map (UCM) notation is a visual process modeling language for specifying
causal scenarios and optionally binding their responsibilities (X) to an underlying struc-
ture of components (). Responsibilities represent activities performed in a process
whereas components represent actors, systems, and system parts. UCMs support most of

the concepts used in common workflow modeling notations [44] including start points

(@), end points (]) as well as alternative and concurrent flows. Stubs (<) are containers

for sub-maps and may be used to organize a complex model in a hierarchical struc-

ture. Figure 5 shows common UCM elements. As an example, Figure 4 (right) illustrates

Chapter 2. Related Work - Related Standards and Notations 14

a UCM diagram that depicts the process that leads to Increase Patient Safety by provid-
ing the sequencing between relevant responsibilities and stubs (i.e., where the details are
specified in a different UCM diagram, not shown here). In this figure, a URN link is used
to trace the Adopt Decision goal in the GRL view to the corresponding stub in the UCM

view.
Path with Start Point with [co1] oo ve
Precondition CS and End coz
[cs] [CE] Point with Postcondition CE ... [coa .. .
et Responsibility [co3]
che—O———— et Empty Point Or-Fork with Or-Join
Conditions
ee—> .. Direction Arrow

" Waiting Place with Condition .. e o
[cw and Asynchronous Trigger

And-Fork And-Join
[CTO]
Timer with Timeout Path,
e’ Conditions, and Synchronous Components:

Release / / ()

L_INL ouTL Static Stub with In-Path ID Team Process Object
and Out-Path ID kS

C_IN1L N ouTL Dynamic Stub with In-Path ID

AN and Out-Path ID Agent Actor Protected

Figure 5 UCM notational elements

URN Links and Metadata

URN allows typed links called URN links to be established between modeling elements
(e.g., between goal and scenario model elements). URN also supports the annotation of

any model element with metadata, which are name-value pairs.

URN Profile

URN profiles are used for extending and tailoring the URN notation for a given domain.
The URN standard includes several mechanisms that allow defining domain specific pro-
files. URN links and metadata, together with the possibility of adding constraints in
UML’s Object Constraint Language (OCL) [45], enable URN to be profiled to a particu-

lar application domain [46].

Chapter 2. Related Work - Related Standards and Notations 15

Tool Support

JUCMNav is an open source URN tool for the creation, analysis, and management of
URN models [47]. It allows for the qualitative, quantitative, or hybrid evaluation of GRL
models according to strategies, together with the abstract execution of UCM scenarios.
JUCMNav is an Eclipse plug-in that also supports extensions to URN for modeling key
performance indicators in the context of business process analysis, monitoring and per-
formance management [48]. It also supports the verification of user-defined OCL con-

straints to enforce compliance to URN profiles [46].

2.1.2 Business Process Modeling Notation
Historically, there has been a gap between business process models that are mostly busi-

ness-oriented and software applications that implement them [6][7]. The Business Pro-
cess Modeling Notation (BPMN) helps alleviate this gap by providing a standard notation
that can be mapped to execution models [49][50]. It was originally created by the Busi-
ness Process Management Institute to answer the need for graphical business processing
languages. This organization later became part of the Object Management Group (OMG),
who released the first version of the BPMN specification in 2004. BPMN provides a
comprehensive, integrated notation for business process modeling [51]. It is a graph-
oriented and informal notation in which nodes can be connected almost arbitrarily [52].
BPMN is targeted towards analysts and its models will look familiar to most business
analysts. This notation has attained a significant popularity after its introduction to the
business process modeling community and it is now supported by dozens of modeling

tools.

Figure 6 represents a typical BPMN model. Such models can also be mapped to
BPEL4WS, which is the de facto standard for business process execution modeling. In
other words, BPMN can be used to bridge the gap between business process models and
executable models (Figure 1). However, unlike the UCM notation, BPMN lacks a com-

plementary notation for modeling business goals and relationships to these goals.

Chapter 2. Related Work - Related Standards and Notations 16

Sajay
Highlight

Sajay
Highlight

Sajay
Highlight

The entire set will be
enveloped in a BPELAWS _
sequence p .

within the

|

| T | switch
|
|

The Gateway Altemnalive B
starts a BPELAWS
Correct Problem
case Cannob_p—’tr Re 'r’rl)duoe Statement

switch

‘ / r\ncnner Problem

|
|
| — |
Fﬂmls’ . |
OT. Recaive Problem Record Problem R;E;g:igze N ™,__. Duplication of Verlfy Solution
|
[
|

The Receive T:.\skl i)
|Eaps o B’,:EL“WS The Gateway Default
receive l ["The Task mapstoa . Alternative starts a BPELAWS ‘
BFELMS . otherwise : ID Problem and
| invoke within the Ca %» Resoluion |——
L switch e [

e - -)
Figure 6 A BPMN model with annotation that shows mapping to BPEL4WS [49]

2.1.3 Business Process Definition Metamodel
As mentioned in [53], business processes have been at the core of business and technolo-

gy improvement under the guise of many terms, notations, and methodologies. Business
Process Engineering or Re-Engineering, Business Process Management (BPM), Business
Process Execution, Process Improvement, Business Process Modeling and Workflow,
and Service Oriented Architectures (SOA) are among dozens of such approaches and
notations. Such methodologies and approaches have provided substantial benefits to or-
ganizations. However, many of these approaches are islands of particular technologies,
methodologies or notations and do not work well with the others. Therefore, it is very
difficult to develop solutions that integrate different types of models in order to address

complex problems.

In order to address these difficulties, the Business Process Definition Metamodel
(BPDM) was proposed as an infrastructure for specifying the business processes of an
organization, independently of notations and methodologies [53][54]. BPDM is a well-
defined, consistent, technology-independent, and precise metamodel, which was finalized
by OMG in 2008. It provides a language syntax and semantics for business process mod-
eling, but it omits the details of concrete syntax and semantics of such languages. In other
words, BPDM documents the necessary concepts for business process modeling, and
notations can be built on this standard. Therefore, BPDM-based notations and languages
can be used together, while avoiding tight coupling with one particular business process

Chapter 2. Related Work - Related Standards and Notations 17

modeling infrastructure. BPDM also supports the separation of concerns in which the
intended outcome of processes will be separate from how the process achieves those out-
comes. Support for agility, easy integration and linkage of models, and loose coupling are
some of the benefits promised by BPDM when modeling.

Currently, there is no known goal modeling language based on BPDM. On the
other hand, URN is a standard that has a well-defined structure with complementary goal
modeling and business process modeling notations and links between them. The solution
in this research requires the combined use of goals and business processes in models.
Consequently, using the URN standard is a better choice for formalizing this solution.
However, despite the fact that the proposed solution (i.e., the GoPF framework) is based
on URN, the underlying concepts of the patterns in the solution are not dependent on
URN at the conceptual level. Thus, it may be possible to reconfigure the solution to use
BPDM-based notations in the future, if there is a compelling argument to do so.

2.2 Model-Driven Engineering

This section discusses Model-Driven Engineering and its well-known incarnation, name-
ly OMG’s Model-Driven Architecture.

2.2.1 Model-Driven Engineering
As Atkinson and Kuhne observed [55], over the past five decades, software developers

and researchers have been rising the level of abstraction in development artifacts. This
has allowed them to specify what computers must do rather than how to perform it, and
hence, shielded them from increasing complexity of the problems. The Model-Driven
Engineering (MDE) approach is the continuation of this trend. MDE helps bridge the gap
between different levels of abstraction and integrate different bodies of knowledge [56].
MDE is based on the premise that “everything is a model” and that a software develop-
ment process can be considered as a set of transformations between models from differ-
ent views and at different levels of abstraction. MDE claims to bring three major benefits
to the process of software development. First, it simplifies and partially automates the
process of developing software applications that satisfy their requirements. Second, it
shields developers from the complexities of the environment in the process of software
development [10]. Third, it flattens the learning curve and facilitates contribution of ex-

Chapter 2. Related Work - Model-Driven Engineering 18

perts to the software development process by enabling them to create models at different
levels of abstractions and with familiar notations in their domains of expertise. In their
work, Atkinson and Kuhne predict that this move towards more abstraction holds the
potential to drastically reduce the complexity of the problems that are considered hard by
today’s standards [55].

Figure 7 compares the underlying ideas of MDE and those of the object-oriented
paradigm. Bézivin [17] argues that the basic principle in the object-oriented paradigm,
“everything is an object”, was most helpful in driving technologies of the 80s in the di-
rection of simplicity, generality, and increased integration power. Similarly in MDE, the
basic principle, “everything is model”, offers many interesting properties in terms of sim-

plicity and power of integration.

Although MDE does not limit the different bodies of knowledge that can be inte-
grated for software development, many proposed MDE-based approaches, including the
dominant Model-Driven Architecture (MDA) and its variations, focus on bridging the
gap between the processes and applications discussed in Figure 1. Such approaches em-
phasize transformations from “what” is needed to “how” it can be done. In other words,
the abstraction suggested in these approaches is mostly in the solution domain and not

necessarily in the problem domain dominated by goals.

This thesis is concerned with abstractions in the problem domain. The knowledge
about the problem is captured as part of the patterns in the GoPF framework. This can be
seen as an extension of conventional MDE where goal models are included in the chain

of transformations of models.

Chapter 2. Related Work - Model-Driven Engineering 19

Super Class Meta Model

Class Model

instanceOf representedBy

Instance System

(@) (b)

Figure 7 Basic notions in object-orientation (a) and MDE (b) [17]

2.2.2 Model-Driven Architecture
The Model-Driven Architecture (MDA) standard from Object Management Group

(OMG) is a specific incarnation of the MDE approach [56]. Being a well-known stand-
ard, MDA is sometimes mistaken for the general concepts that MDE stands for [57]. A
detailed description of OMG’s MDA is provided in [58], including the following prob-
lems that MDA aims to solve:

“The MDA defines an approach to IT system specification that separates the
specification of system functionality from the specification of the implementation of that
functionality on a specific technology platform. To this end, the MDA defines an architec-
ture for models that provides a set of guidelines for structuring specifications expressed

as models.

The MDA approach and the standards that support it allow the same model speci-
fying system functionality to be realized on multiple platforms through auxiliary mapping
standards, or through point mappings to specific platforms, and allow different applica-
tions to be integrated by explicitly relating their models, enabling integration and in-

teroperability and supporting system evolution as platform technologies come and go.”

Chapter 2. Related Work - Model-Driven Engineering 20

requirements
mostly
text
MDA

process PIM

0

low-level design

PSM

Code

Code

deployment

0900

Figure 8 MDA software development life cycle [59]

The MDA approach includes ways of modeling functionality and implementation plat-
forms as well as transformations from functional models to implementations. The life
cycle of MDA in Figure 8 shows how it is mainly bridging the gap between an analysis
model and the final software application. However, MDA does not include ways of speci-

fying stakeholder goals and other intentional requirements.

2.3 Patterns

This section reviews the benefits of capturing knowledge in the form of patterns as a
means of reusing knowledge. Some of the relevant approaches that take advantage of
patterns are introduced and the importance of formalizing patterns is highlighted. Next,
the evolution of patterns is discussed as one needs to maintain the knowledge captured as
patterns when changes happen in the environment. Finally, frameworks are introduced as
solutions that provide infrastructure and foundations for capturing patterns, organizing

the knowledge, and reusing it.

2.3.1 Overview of Patterns
Patterns are three-part rules that express a relation between a problem, a solution, and a

certain context [60]. They have been proposed to capture and categorize knowledge of
recurring problems and give advice on possible solutions to those problems [15][60].

Chapter 2. Related Work - Patterns 21

Martica
Highlight

Patterns capture existing knowledge and important practices that have occurred repeated-
ly. They are known to be a means of increasing reusability. A pattern can be thought of as
a reusable model that describes a need and solves a problem that may occur at different
levels of abstraction and in different domains. Reusing knowledge helps improving soft-
ware quality while minimizing the financial and temporal costs of creating software arti-
facts [61]. Another benefit of patterns is that they encapsulate recurring problems and
solutions into modules. This is valuable because compared to holistic models, patterns are
less subjected to changes. Patterns have been used in the area of software engineering
with design patterns [12], in conceptual modeling with analysis patterns [62], in infor-
mation system architectures with architecture patterns [63], in e-business with e-business
patterns [64], and more recently in advanced distributed architectures with cloud compu-
ting patterns [65].

Patterns also provide a description of the forces at play. As Gabriel observed [66],
patterns allow the forces in the systems to resolve themselves. Forces are design trade-
offs that are affected by the problem and solution. In other words, forces typically discuss
the reasons for using the suggested solution for the given problem in the given context.
Describing forces and making the trade-off among them explicit is perhaps the most sig-
nificant contribution of patterns. In some cases, as mentioned by Weiss in [67] and [68],
forces cannot be resolved adequately by a single pattern. In such cases, a pattern includes
references to other patterns, which help resolve forces that were unresolved by the current
pattern. Patterns connected together in this way are often referred to as a pattern lan-

guage.

Although the concept of patterns is usually practiced with well-known object-
oriented design patterns, recently there have been efforts for using requirements pattern
as enabler for reusing requirements knowledge [61]. For instance, Wen et al. [69] high-
light the difficulties of reusing the knowledge about recurring security problems captured
in the form of natural language. They suggest an approach for capturing requirements
patterns containing the knowledge about the security problems in medical information
system based on the i* framework and on problem frames. In this approach, a large secu-
rity problem in the domain is decomposed into sub-problems accompanied by an evalua-

tion of threats for each sub-problem as well as potential protection measures. Wen et al.

Chapter 2. Related Work - Patterns 22

Martica
Highlight

Martica
Highlight

Martica
Sticky Note
revisar estas referencias

Martica
Highlight

did not include a systematic solution for capturing patterns but they underscore such solu-
tion as a desired extension of their work. In another example, Konard and Cheng [70]
suggest an approach for using requirements patterns in the domain of embedded systems.
They use these patterns for capturing and reusing requirements specifications. In this ap-
proach, the Unified Modeling Language (UML) is used for formalizing the structural and
behavioral aspect of patterns. Amongst other benefits, Konard and Cheng report on two
advantages of using requirements patterns in their case studies: i) using an even small set
of requirements patterns helped novices in eliciting requirements of a fairly complete
embedded systems, and ii) using these patterns facilitated the understanding and mainte-
nance of the system specification by enabling the construction of more uniform system
specifications. Although Konard and Cheng’s approach suggests formal models for struc-
tural and behavioral aspects of requirements patterns, it does not provide a formal foun-

dation, such as goal models, for capturing the intentions in the specification of patterns.

2.3.2 Pattern Formalization
Reusable knowledge in patterns enables efficient transfer of skills and experience of do-

main experts. However many pattern descriptions tend to focus on the solution to a prob-
lem and not so much on the problem and forces that are involved [71]. In addition, tradi-
tional pattern descriptions, including the Alexandrian [60], Gang-of-Four (GoF), and
Coplien forms, are mostly expressed textually. The GoF form includes specific sections
for intent, motivation, structure, participants, and collaborations [15]. In this form, the
main emphasis is on the solution while the discussion about the forces is spread over dif-
ferent sections of the pattern. Motivated by drawbacks of the GoF form, Coplien provid-
ed a more rigid pattern structure by explicitly representing forces and consequences of
patterns [72].

When patterns are represented in such forms, it becomes challenging to recognize
under which conditions a pattern must be selected, how to compare the patterns that ad-
dress the same problems, and how to integrate the consequences of applying multiple
patterns to a model or system. This important issue motivated the development of better
formalizations of patterns. For example, Taibi et al. describe why patterns must be for-
malized and propose that structural and behavioral aspects of design patterns be com-

bined in one formal specification [73].

Chapter 2. Related Work - Patterns 23

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Martica
Highlight

Formalizing the solution aspects of patterns has received more attention than the
problem and force aspects, although there are noticeable exceptions. For instance, Aradjo
and Weiss have suggested an explicit representation of forces that are involved in pat-
terns [74]. These forces and trade-offs are captured and then analyzed using the Non-
Functional Requirements (NFR) framework [75]. In a related work by Ong and
Weiss [76], the forces that are affected by a pattern are derived through close reading of
the textual pattern description. This enables the discovery of pattern contributions to the
overall system concerns, which were previously implicitly represented in textual descrip-
tions. Their main finding is that the contributions of a pattern are a lot less apparent in

textual descriptions.

Gross and Yu [77], together with Chung et al. [78], represent ways of reasoning
about patterns using NFRs. Similarly, Mussbacher et al. [71] formalize patterns with
URN, including problems and forces with GRL, and solutions with UCM. However, their
work is more concerned with connections between patterns at the language level, as well
as with establishing models of the forces and the trade-offs that exist in a particular do-

main.

Andrade and Logrippo [79] have used Use Case Map scenarios to describe pat-
terns of behavior in wireless systems. Andrade, in her thesis [80], represents the need for
requirements and analysis patterns and shows that these patterns can be used for reusing
the knowledge about problems and solutions in mobile communication domain. Using
Use Case Map scenarios for capturing the commonalities of solutions, she also provides
methods for capturing and reusing these patterns. In similar work by Billard [81], Use
Case Map scenarios are used to capture agent interaction patterns. Mussbacher and Amy-
ot [82] proposed Use Case Map modeling patterns for describing and composing telepho-

ny features.

2.3.3 Evolution of Patterns

Changes in the stakeholder’s concerns and domain’s circumstances are unavoidable. This
consequently leads to changes in the chain of artifacts in software development, from
requirements models to software applications. This ripple effect in turn leads to resources

being consumed for software artifact evolution and, unfortunately, artifact evolution is

Chapter 2. Related Work - Patterns 24

Martica
Highlight

also subject to errors. One benefit of creating artifact with the aid of patterns is that ef-
fects of changes in the models would be limited to specific modules. However, once pat-
terns are established, it becomes somewhat difficult to maintain them and update their
embedded knowledge. As Henninger and Corréa observed [83], this should not, in gen-
eral, be a major problem because patterns are ideally “timeless”. Nevertheless, the rapid
pace of change in technology has highlighted the need for evolution of various kinds of
patterns. Requirements of stakeholders are changing even faster than foundation technol-
ogy of design patterns. Hence, this evolution challenge is more pronounced for require-
ment patterns of specific domains. In the long term, a collection of patterns targeting re-
quirements (including goals and processes) remains useful if the collection can be

evolved to accurately address the current recurring problems and solutions of the domain.

Zhao et al. suggest an approach for the evolution of pattern-based designs [84]
and of design patterns [85]. They propose a graph transformation method at the pattern
level for evolving and validating patterns and pattern-based designs. Likewise, Dong et
al. [86][87] propose a transformation based on two levels (primitive and pattern) to for-
mulate the evolution process of design patterns. However, the approaches of Zhao et al.
and of Dong et al. are limited in the context of this thesis because i) they are focused on
design patterns and are mostly fine-tuned toward changing UML class diagrams, and ii)
evolution is limited to variations of the initial pattern, i.e., the evolved pattern must be
reducible to the initial graph. For instance, an abstract factory pattern can evolve to a
new variation, which must still be based on the principles of abstract factory patterns. In
this thesis, evolution of the patterns is considered at a more abstract level that captures
the knowledge about the goals and requirements of stakeholders. Furthermore, patterns

can be changed beyond the principles of their initial versions.

Aoyama [88] also highlights the importance of adapting patterns to rapid changes
in requirements. His research first proposes a more formal representation of patterns,
called pattern type diagram, which is then used as a basis for an evolutionary mechanism.
Evolution of patterns in Aoyama’s research is mainly focused on design patterns. Fur-
thermore, evolution mechanisms in Aoyama’s work (represented in pattern evolutionary

diagrams) are mostly concerned with capturing changes that happen for a particular de-

Chapter 2. Related Work - Patterns 25

sign pattern and for capturing the new emerging variations (e.g., evolution in the Factory

pattern family.)

Kobayashi and Saeki studied the evolution of patterns from a different view-
point [89]. They consider software development as pattern instantiation (i.e., applying a
pattern to an actual problem) and pattern evolution. In their work, the evolution of pat-
terns is about creating new artifacts from artifacts found in earlier stages, which finally
results in the creation of a software application as the ultimate artifact in the chain of arti-
facts. Therefore, the “evolution” is not used for adapting to changes at a pattern level, but
is used more like stepwise refinement. This is different from this thesis’ objective for

pattern evolution where the knowledge in the pattern is meant to be kept up to date.

2.3.4 Pattern Framework
Frameworks are a reuse technique for providing recurring solutions to sets of problems in

a particular domain. Gabriel defines a framework as a system that can be customized,
specialized, or extended to provide more specific, more appropriate, or slightly different
capabilities [66]. In another popular definition from Johnson and Foote [90], a framework
is a reusable design of all or part of a system that is represented by a set of abstract clas-
ses and the way their instances interact. These definitions tend to define programming
frameworks. However, frameworks can potentially be used at more abstract levels for
reusing the knowledge and for bridging the gap between business goals and business pro-
cesses. The importance of such systematic approaches for classifying and reusing re-

quirements patterns is highlight by Naish and Zhao in [61].

lida et al. [91] propose a process pattern framework composed of process tem-
plates. The framework assists software engineers in constructing their custom software
processes by selecting and plugging process templates. This approach hence provides
project-level reusability of process templates. Prior to that work, lida had also described
an early attempt at capturing process elements with patterns, for the software develop-
ment domain [92]. Through transformations applied to a primitive process, customization
to a particular organization was possible, which is similar in spirit to the OCEM method
in the GoPF framework. However, these approaches consider only roles, products and

activities (process definitions at the level of UCM), and not goals of the patterns or of the

Chapter 2. Related Work - Patterns 26

Martica
Highlight

organization. The selection of patterns to apply during transformations is hence done in
an ad hoc way. In addition, patterns are fine-tuned for software development processes

and there is no mechanism in place to maintain the framework.

In his thesis, Tran reviewed many pattern-based process modeling approaches that
suffer from the same weaknesses [93]. His approach however is interesting in that it for-
malizes the process patterns with a metamodel and provides algorithms to apply them
successively to processes for their evolution. Tran’s technique hence shares some com-
mon objectives with those in this thesis, except that this thesis emphasizes the evolution
of patterns, and also considers goals in addition to processes.

2.4 From Business Goals to Business Processes

This section discusses different approaches that aim to reuse domain knowledge in the
form of business goal and process models. Some of the approaches also explore the ad-
vantages of capturing and using the connections that exist between the business goal and
process models.

2.4.1 Enterprise Knowledge Patterns
Stirna et al. in [94][95][96] propose Enterprise Knowledge Patterns, a systematic ap-

proach for documenting, analyzing, and capturing patterns and for managing knowledge.
Enterprise Knowledge Patterns contains patterns described with interrelated models such
as goal, business process, and concepts models. These models are used to describe reusa-
ble solutions for enterprise problems. However, this approach does not provide a formal
semantics for links between goal models and business processes. This prevents an auto-

mated transformation of goal models to business process models.

2.4.2 Goal-Oriented Legal Compliance of Business Processes
Ghanavati et al., in a recent literature survey [97], have reviewed 88 papers (selected

from 800 related research articles) and have shown that goal-oriented languages have
often been used to model regulations and compliance. These approaches provide nota-
tions and tools for modeling the objectives of organizations. These goal models are then
used for evaluating the compliance of business processes in those organizations.

Shamsaei et al., in another literature survey on the usage of goal-oriented languages for

Chapter 2. Related Work - From Business Goals to Business Processes 27

Martica
Highlight

managing compliance in organizations [98], have reviewed 32 papers (out of 198 related
research articles) and have concluded that in spite of availability of individual pieces,
current approaches are not effectively combining goals and indicators of business process

performance in the organizations.

These surveys show the benefits of using goal-oriented language in connection
with business process models for compliance management. However, the surveyed pa-
pers put less emphasis on providing approaches that benefit from such connection. This

prevents the effective capturing of the domain knowledge and its reuse.

2.4.3 Linking Business Goals to Process Models
Markovic and Kowalkiewicz [99] provide a business process ontology, a goal modeling

notation, and a modeling pattern for linking goals and business processes. The ontology
captures the knowledge of conceptual models. The links then enable the integration of the
intentional perspective into the business process ontology. This ontology is used to per-
form automated analysis on goal specifications, i.e., by identifying inconsistencies, re-
dundancies, and conflicts. The ontology has been used as a basis for querying the

knowledge embedded in the conceptual model.

Rimassa et al. [100][101] present an approach to business process management
that leverages agent technology. This approach includes a goal-oriented business process
modeling notation (GO-BPMN), which is a visual language for specifying business pro-
cesses. GO-BPMN essentially enriches BPMN with explicit goal modeling. However, the
relationships between goals and business process are limited. For example, business pro-

cesses are not linked to goal models at different levels of abstraction.

2.4.4 Aspect-Oriented Business Process Improvement
The framework proposed by Pourshahid et al. [102] is also a pattern-based and URN-

based approach for improving business processes when monitored key process indicators
change over time. This framework describes redesign patterns as transformation rules that
are applied to the existing organizational models with the help of an aspect-oriented ex-
tension of URN. Redesign patterns are more generic than the patterns described by the

GoPF framework, which encode more domain-specific knowledge. An aspect-oriented

Chapter 2. Related Work - From Business Goals to Business Processes 28

Martica
Highlight

Martica
Sticky Note
yadary

Sajay
Highlight

approach, however, could potentially be applied to GoPF to describe the family of busi-

ness processes for a pattern, at the cost of additional complexity.

2.4.5 Use of Ontologies to Increase Reusability
An ontology is defined as an explicit specification of conceptualization [103]. Ontologies

can be used to capture and share knowledge. This can be useful to consolidate one im-
portant challenge of software development, which is capturing and sharing knowledge.
This challenge arises when different stakeholders and software development actors have
disagreements over terminology, concepts, and how concepts are modeled [104]. Conse-
quently, by representing and sharing common knowledge, ontologies decrease misunder-

standings among stakeholders over terminologies and concepts.

In recent years, ontologies have been used to provide a unified view on the busi-
ness process space of organizations [99][105]. For instance, Kaiya and Saeki use ontolo-
gies to propose methods for detecting incompleteness and inconsistency issues in created
models [106][107]. Such approaches are useful for providing a unified view on require-
ments or business processes. Yet, they do not integrate these two views by capturing the
reusable knowledge about both business goals and business processes. In addition, ontol-
ogies in these approaches are providing an infrastructure that can be modeled as meta-

models that are specialized for modeling the infrastructures.

2.4.6 Reusability and Domain Engineering
Domain engineering aims at reusing common knowledge in the domain for addressing

the problems within that domain [108][109]. An essential activity in domain engineering
is domain modeling, which supports building models that contain the domain knowledge.
These models can be reused in the software development process, leading in decreased
costs of software development. These models have three main roles [108][110]: i) a uni-
fied source of reference when ambiguities arise in the analysis of problems, ii) a reposito-
ry of knowledge that facilitates reusing, teaching and communicating the common
knowledge in the domain, and iii) a specification for the implementer of reusable compo-

nents.

Wang et al. have suggested a domain modeling framework with five layers of on-

tologies for networked software applications [20][111][112]. This framework uses ontol-

Chapter 2. Related Work - From Business Goals to Business Processes 29

ogies to encapsulate knowledge in different views such as goal, process, and service
views. This approach enables substitution of web resources based on different users’
preferences. However, the main emphasis of their work is on reusing the functionalities
that are captured in the form of services for taking advantage of the service-oriented
computation paradigm shift. Consequently, this framework helps bridging the gap be-

tween process descriptions and the web services that realize these processes.

Ciuksys and Caplinskas have suggested an ontology-based method for reusing
business processes in a domain [16]. In their approach, a business process ontology, an
application domain ontology, and a process ontology are used to enable reusing business
processes in different application domains. Similarly, the suggested approach for Seman-
tic Business Processes Management by Filipowska et al. [113] leverages ontologies for
capturing the knowledge about business processes in a domain. However, these suggested
domain engineering approaches mainly emphasize capturing the common knowledge
about business processes. On the other hand, capturing the knowledge about requirements
of stakeholders and linking them with processes that realize them has received far less

attention.

2.4.7 Customization Approaches
Traditional process-oriented software development generally pays little attention to high-

level goals of stakeholders. Such approaches put little emphasis on eliciting and analyz-
ing stakeholder’s business goals on one hand and linking them to the processes that real-
ize them on the other hand. Motivated by the above drawbacks, Lapouchnian et al. [13]
propose an approach in which goal models capture the needs of stakeholders. They enrich
the goal models with annotations so models contain the necessary details about how the
goals can be achieved. Reasoning and selecting processes enables finding customization

alternatives that best accommodates stakeholders’ goals.

In a related paper, Yu et al. [114] propose a two-step approach that utilizes goal
models for reasoning and selecting configuration alternatives that lead to better satisfac-
tion of stakeholders’ goals. In the first step, software applications are reverse-engineered
and a goal model is created. The leaf intentions are associated with the configurable

items, which lead to different behaviors of the software application. In the second step,

Chapter 2. Related Work - From Business Goals to Business Processes 30

selecting the alternative that satisfies the best the root-level goals of stakeholders deter-
mines the appropriate configuration. Similarly, Liaskos et al. [115] propose an approach
for configuring common personal software applications. In this approach, a goal model
captures the needs of stakeholders. Next, the goal model is used for reasoning about the
best configuration alternative that satisfies the goals of stakeholders. While Yu’s ap-
proach and Liaskos’ configure the software to realize the goals of stakeholders, they have
two limitations. First, they mostly focus on goal models and do not include explicit rea-
soning about business processes. Second, each application must be accompanied by a
goal model that represents the alternatives so it can be used when configuration is neces-

sary.

Hui et al. [19] propose a framework for customization of software applications
based on goals, skills, and preferences of stakeholders. In this approach, a goal model
represents stakeholders’ needs and its leaf intentions are mapped to class diagrams that
denote the possible alternatives at the design level. Consequently, choosing an alternative
determines the static diagrams that represent the software architecture, which best ac-

commodates the needs of stakeholders.

2.4.8 Product Line Software Engineering
Software Product Lines [116] increase reusability by guiding organizations toward using

core assets rather than developing software applications from scratch. Clements and
Northrop [117] provide the details of product line software engineering. They highlight
core asset development and using those assets for product development as its two major
activities. By means of these activities, product line software engineering exploits the

commonalities amongst products while it manages their variability.

Feature modeling is one of the most popular techniques used for building reusable
core assets for a given domain [118]. This technique analyzes the domain, captures the
externally distinctive characteristics of its products, and organizes them in the form of
feature models. Features are externally visible characteristics that differentiate amongst
products. This differentiation is a key enabler for selecting the appropriate core assets in
product engineering. Lee et al. [118] highlight this as the main difference between feature

modeling and other means of reusability (e.g., objects or aspects) where conceptual ab-

Chapter 2. Related Work - From Business Goals to Business Processes 31

stractions are identifiable by internal viewpoints. Similarly, this is the difference between
the reusability perspective used in this thesis and the one used in product line software
engineering. Note that product line software engineering is an active area of research and
that further opportunities for integrating it with the GoPF framework defined in this the-

sis will only be highlighted in future work (section 8.2.7).

2.5 Summary

This chapter provided an overview of User Requirements Notation (URN), which sup-
ports integrated goal and scenario modeling and analysis. Next, an overview of patterns
and of how they improve reusability was provided. Sections 2.3 and 2.4 also highlighted
existing research efforts that aimed to reuse requirements knowledge. Many attempts for
bridging the gap between goal modeling and business process modeling and their founda-
tions have been summarized in this chapter. Furthermore, this chapter discussed several
weaknesses of the surveyed approaches (including traceability between goals and pro-
cesses, pattern formalization, documentation and evolution, and customization in a given
context) that the GoPF framework intends to address. A comparison between the GoPF
framework and many of the approaches discussed in this chapter will be provided in sec-
tion 7.3.

The next chapter defines the core concepts of the GoPF framework with a meta-

model formalized as a profile of the User Requirements Notation.

Chapter 2. Related Work - Summary 32

Chapter 3. FRAMEWORK METAMODEL (FMM)

A pattern in the GoPF framework contains a goal model building block, business strate-
gies, business process building blocks, and realization links between business goals and
business processes that loosely couple goals in the goal model building block with model
elements in the business process building blocks. GoPF-based patterns are organized in a
pattern family, in which they are connected through refinement links (the term family
reflects the parent-child nature of these refinement links). This chapter describes these
key elements of the framework metamodel (FMM). In addition, it provides a formaliza-
tion of this metamodel as a URN profile in order to benefit from its integrated
goal/scenario concepts and existing tool support. In this profile, OCL constraints are used

to enforce well-formedness properties of pattern families.

The patient safety domain is used throughout this chapter for providing examples
that highlight the architecture and usage of the GoPF framework for intermediary organi-
zations. Examples are also given later on to show how pattern families are maintained
(Chapter 5) and used (Chapter 6).

3.1 Foundational Elements of FMM

3.1.1 Goal Model Building Block
Goal model building blocks capture recurring meaningful excerpts of goal models, i.e.,

several goals and their relationships that can stand by themselves, thus identifying com-
mon problems faced by organizations, potential solutions, as well as the forces that have
to be considered when solving these problems. Furthermore, goal model building blocks
enable reasoning about solutions that best address the identified problem by selecting one
strategy from a set of alternative solutions (captured in business process building blocks).
Goal model building blocks are GRL-based goal models that emphasize what stakeholder
requirements are and what must happen in order for the requirements to be realized. Each
goal model building block contains a self-contained meaningful and reusable piece of
goal model that represents a problem and elements of its solutions at a similar level of

abstraction. This goal model may also include side effect intentions, which are affected

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 33

Martica
Highlight

differently by alternative solutions. In addition, goal models may include the resources
that represent conditions and their effects on the intentions of goal model. Finally, each
goal model building block includes contributions connecting intentional elements of a
model. A contribution is a weighted link that indicates the potential realization effect of
one element on another element. Figure 9 illustrates a goal model building block that
represents the highest-level problem and elements of solutions faced by some healthcare

institutes in the patient safety domain.

Healthcare Institute

e i
T
'

!
t
!

Increase Patient
Safety

Healthcare Procedures
Are Complicated

Minimize Costs of
Infrastructure o
o
m\\\“‘ o
"

Collect Data (Make Safety) (Adopt Decision)
Decision

Figure 9 Goal model building block for Increase Patient Safety

Generate Informative
Outcome Information

Goal model building blocks are created by analyzing existing goal models and consulting
domain experts, which leads to locating and capturing recurrent best practices. Because
these models represent different levels of abstraction, the elements of solutions in one
model can be potentially considered as problems at less abstract levels and so on. In other
words, what must happen for one stakeholder’s main goal to be realized, can in turn be
the main goal of another stakeholder. In such cases, the stakeholders are at different lev-
els within the organization and the latter stakeholder’s achievement aids the former
stakeholder’s goals to be fulfilled. Goal model building blocks may need to be changed
and improved over time as more knowledge is gained or as the circumstances of domain
are changed, and GoPF encourages this practice through evolution mechanisms described
in Chapter 5.

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 34

Martica
Highlight

Martica
Sticky Note
yadary

3.1.2 Business Process Building Block
A variety of definitions of business processes have been suggested [119][120][121][122].

In this thesis, a business process is identified as a structured set of activities that are de-
signed to fulfill a goal for a particular stakeholder. Business process building blocks are
recurrent abstract business process models that represent a solution, i.e., the process of
achieving goals, while leaving the concrete implementation of the process elements to
later deployment steps. Business process building blocks are Use Case Maps and are cre-
ated by analyzing the solutions identified in existing business processes and by consulting
domain experts. They capture the excerpts recurrently used as solutions for achieving
recurrent goals. A business process building block specifies how a solution is carried out
by laying down its steps and providing the sequencing of such steps. Figure 10 illustrates
two business process building blocks defined at the same level of abstraction as the In-
crease Patient Safety goal model building block. They represent two alternative solutions
for increasing patient safety. One alternative solution employs ad hoc improvements
based on collecting and analyzing data. This alternative is more suitable to small
healthcare institutes and institutes with limited resources. The other model represents a
solution that systematically improves the healthcare institute but that also needs more
resources from the underlying infrastructure.

(a) Ad hoc
Process

StartPoint CoIIecthg Data Generating Informativ? Outcome Information EndPoint

(b)

™

Advanced
Process
Collecting Data @enerating Informative Outcome Information
StartPoint Ag ~
EndPoint Adopting Decision Making Saf:ety Degfsion
— A S

Figure 10 Two alternative business process building blocks for Increasing Patient Safety

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 35

Martica
Highlight

3.1.3 Collection of Business Process Building Block
Individual elements of the business process building blocks may overlap, be shared, or be

slightly altered. Hence, a set of business process building blocks that specify alternative
solutions to a problem that is common to other members of the set may be viewed as a
collection of business process building blocks similar to families of software products. In
a collection of business process building blocks, each member represents one possible
way of fulfilling a goal shared by all members of the collection. One can think of the
members of the collection as design alternatives for fulfilling the common goal of the
collection captured in the corresponding goal model building block. These collections are
used for shaping the possible recurring solutions to the recurrent problems. For in-
stance, Figure 11 shows a collection of business process building blocks that address a
common goal in the patient safety context, i.e., Make Decision, in which each member
represents an alternative solution. Although each member addresses the common goal,
there are variations among the members of the collection, which may lead to differences
in the degree of achieving the common goal and the conditions associated with a mem-

ber.

/ Business Process Building Block \
Collection of Business Process Building Blocks Locete Potential Outcomes by Hea i Record Analsts

StartPoint

e

/ Business Process Building Block \

Locate Potential Qutcomes g io\ by Physicians

Locate Potential Outcomes by Nurses

Business Process Building Block \

tartPoint Review D:)cuments Compare v‘f}h Guideline EndPoin
AN L, |
. e 7 !

\/ Business Process Building Block \

StartPoint Locate Poterjzi‘:al Outcomes poview by Physicians EndPoint
PN FaN
.——’x\ D /——4

Figure 11 A collection of alternative business process building blocks for Make

StartPoint

N AN

v

EndPaint

Decision

3.1.4 Business Strategy
Real problems may lead to complex goal models with many goals at different levels of

abstraction. In many situations, goals may be satisfied in different ways (collection of
business process building blocks) and to different degrees. Each of these ways (members

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 36

of business process building block collection) provides an alternative solution that shapes
the business differently. This definition of business strategy complies with its usual defi-
nition in game theory as “a plan of action” [123], which is consistent with the definition
of the word “strategy” in the Oxford Dictionary. Each business strategy is thus composed
of a business process building block along with its anticipated effects (the evaluation
strategy) on the intentions of the relevant goal model. Business process building blocks
define the behavior and structure of the solutions in more detail. Evaluation strategies
represent the anticipated effects of each business process building block that provide the
rationale for choosing the most appropriate solution in a given context. Business strate-
gies that contain pairs of <business process building block, evaluation strategy> provide a
twofold advantage. First, a business strategy captures the knowledge of a domain in terms
of reusable alternative solutions, their effects on the problems, and consequent satisfac-
tion of stakeholders. Second, this structure benefits the stakeholder by providing the flex-
ibility of selecting the solutions that suit best their specific requirement and circumstanc-
es. Therefore, this architecture enables reusing business process blocks for incrementally
building complex process models for organizations, which are in line with their require-

ments.

3.1.5 Pattern
In the GoPF framework, patterns are containers that capture the knowledge about domain

in three ways. First, patterns capture recurring problems and elements of solutions as well
as conditions and secondary intentions (and side effects) in the form of goal models (goal
model building blocks). Second, patterns include a group of alternative processes and
their effects on the related goals, which are simply pairs of business process building
block and evaluation strategies (i.e., business strategies). Finally, patterns include realiza-
tion links that connect related processes from business process building blocks and goals
from goal model building blocks. Figure 12 represents the architecture of a pattern in the

GoPF approach.

Patterns and their constructs are formalized using URN. Such a formalized foun-
dation brings three benefits. First, clear specification of requirements and solutions ena-
ble business analysts to better discover reusable requirements, to choose from a set of

available solutions, and consequently to create hierarchical models for both requirements

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 37

Martica
Highlight

and corresponding solutions. Patterns based on such formalization are building blocks
that make it possible to reuse the domain knowledge by which customized goal and busi-
ness process models can be built for specific organizations. The second benefit of formal-
izing patterns is avoiding unclear requirements and corresponding solutions. This facili-
tates maintaining the patterns when changes in the domain highlight the need for chang-
ing the patterns. Such an approach to pattern specification attempts to address the diffi-
culties that arise by implicit and potential ambiguity in the knowledge captured in textual
specifications of patterns, as highlighted in the literature review (section 2.3.2). Finally, a
formalized foundation enables automatic mechanisms for creating, maintaining and using
patterns. Such mechanisms will be defined in Chapter 5 and Chapter 6.

A GoPF-based Pattern

Goal Model Business Strategy 1 .
.
Building Block Business RN
Process Strategy AN
Has BuildingBlock (URN K

Reusable Piece
of Goal Model
(GRL graph)

Main Goal
(Intention:
Captured
Problem)

Leave Goals
(Intentions:

(Reusable UCM
Diagram:
Solution
Process)

Evaluation:

Effects of
Solution)

Business Strategy 2

Business
Process
BuildingBlock
(Reusable UCM
Diagram:
Solution

Strategy
(URN

Evaluation:

Effects of
Solution)

patternDef
> (Refinement
Link)

oy

'Eﬁmﬁzﬁz
ﬁ'ﬁﬁﬁ

Figure 12 Architecture of a typical pattern in GoPF

Captured Process)

Elements of
Solutions)
as

What How

3.1.6 Pattern Family (PF)
For a specific domain, different patterns may exist that describe problems and solutions at

different levels of abstraction. Each of these patterns can be linked to those related pat-
terns that potentially refine it. The GoPF framework defines the concept of Pattern Fami-
ly (PF) as a container that includes all the patterns for a particular domain. Patterns in a
PF are connected to each other through refinement links. A pattern family captures and
organizes the knowledge of a domain in the form of patterns and their interconnections.

Each pattern in the family is a self-contained, meaningful, and reusable building block of

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 38

Martica
Highlight

requirements and solutions in that domain. Figure 12 shows how a pattern family is com-

posed of interconnected patterns.

Patterns refine each other when solutions at one level are considered as problems
to be solved at other levels. Refinement links are in charge of capturing this type of in-
formation. These links between patterns represent how patterns can potentially refine
other patterns. Capturing refinement links between the known patterns of a domain ena-
bles organizing the knowledge about that domain; this is an important advantage of pat-

tern families.

Cysneiros et al. in [124] emphasize the importance of enabling the chain of rea-
soning from abstract to concrete models in requirements engineering. The characteristics

of GoPF pattern families enable such reasoning at different levels of abstractions.

3.1.7 Roles
Different roles need to be played by people who want to use the GoPF framework.

Stakeholders

Freeman defines stakeholders as “any group or individual who can affect or is affected by
the achievement of the organization’s objectives” [125]. Freeman’s definition is adopted
here with emphasis on the fact that stakeholders at different levels in an organizational
hierarchy have different goals in the organization’s hierarchy of goals. Satisfaction
measures to what level the expectations of a stakeholder are met when a corresponding

goal is achieved.

Problems of stakeholders are what requirements engineers try to elicit, analyze,
and address. The more important the stakeholders are in an organization, the more their
satisfaction influences the success of a solution. Requirements of similar groups of stake-
holders within a particular domain are also similar. In order to benefit from this similari-
ty, GoPF captures recurring problems and recurring solutions in the form of patterns.
Moreover, both the UCM and the GRL notations used in GoPF support modeling actors,
which represent the stakeholders. This makes it possible to evaluate the effects of solu-

tions on problems of stakeholders and their satisfaction.

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 39

Martica
Highlight

Martica
Highlight

Martica
Highlight

The GoPF framework helps the PF users discover the requirements of stakehold-
ers and create hierarchical solutions that are customized for them. Although most stake-
holders are not primary users of GoPF, they are the key elements in creating and evolving
pattern families (FDM; Chapter 4). They will also reap the benefits of applications devel-
oped by PF users using the GoPF framework for creating hierarchal models of require-
ments and solutions (OCEM; Chapter 5).

PF Analysts

A PF analyst is a domain-specialized modeler in charge of creating or evolving a Pattern
Family (PF). Based on interviews with stakeholders and domain experts, and on the anal-
ysis of available models, the PF analyst discovers requirements, locates recurrences in the
models, builds patterns, creates a family of patterns, and maintains the pattern family by
evolving it over time. In other words, the PF analyst analyzes the problems and solutions
in a particular domain and captures this knowledge in the form of reusable patterns. A PF
analyst usually works for an intermediary organization (e.g., a consulting firm), which
provides services to organizations in a domain. Pattern families are the deliverable arti-
facts produced and maintained by PF analysts. PF users, who are the other common ac-
tors in intermediary organizations, then use these artifacts. Figure 13 shows the main in-

teraction among these different roles.

PF Users

A PF user is a business analyst who uses a PF for exploiting the domain knowledge it
contains. The PF user interacts with stakeholders of an organization within the relevant
domain to elicitate the requirements and to extract and customize specific models ad-

dressing these requirements for that organization by using the patterns in the PF.

PF users usually work for intermediary organizations, which are the primary ben-
eficiaries of the GoPF approach. For example, they may work for healthcare consulting
firms in charge of developing applications for improving patient safety in hospitals. Such
intermediary organizations are in a position to maintain their own pattern families
through experience gained solving similar issues in different target organizations. They

can also develop specific solutions for specific target organizations based on these pattern

Chapter 3. Framework Metamodel (FMM) - Foundational Elements of FMM 40

families. Reusing domain knowledge hence facilitates their development efforts. Stake-
holders in a domain (e.g., hospitals and patients) will reap the benefits of applications
developed by intermediary organizations but they are not considered as direct beneficiar-
ies of the GoPF framework. For instance, the GoPF framework is not responsible for of
directly increasing patient safety; it only helps capturing and reusing problems and solu-

tions that support stakeholders in achieving their objectives in the domain of patient safe-

ty.

Req. Models

Knowledge

Customized

Use Use

\

Family Creation and Maintenance Methods

Organizational Customization and
Extraction Method

Figure 13 Interaction among different GoPF roles

3.2 Family Metamodel (FMM)

3.2.1 Formalizing the Family Metamodel (FMM)
The Family Metamodel formalizes the concepts of Pattern Family as a profile of the User

Requirements Notation, as shown in Figure 14. The names between guillemets refer to
corresponding metaclasses from the URN standard metamodel [32]. In URN, a concern is
a model element that groups other model elements, including other concerns. URN
metadata are used to associate stereotypes to model elements in a URN model that are
part of this framework, as specified in Figure 14 (e.g., a URN concern may be stereo-
typed as a «pattern»).

A pattern family contains patterns, each of which includes one goal model build-
ing block (that formulates a problem and elements of its solutions) and at least one busi-

ness strategy (that captures the arrangement of a solution along with its effect on the

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 41

problem). Each goal model building block is essentially a GRL graph, and hence includes
intentions (e.g., goals, tasks, and softgoals), indicators, and element links (i.e., contribu-
tions, decompositions, and dependencies) between them. In GRL, the intentions can be
contained in actors (not shown here because this concept is reused as is), which essential-
ly represent stakeholders. The goal intentions contributing to the main goal of such a
building block can themselves be refined by other patterns, through the new patternDef
relationship, formalized as a URN link. Business strategies contain two main parts: an
evaluation strategy (i.e., a regular GRL evaluation strategy, used for the evaluation of a
goal model) and a corresponding business process building block (i.e., a UCM map de-
scribing the process that specifies among other things the ordering of the goals selected
by the strategy). In addition, goals and tasks in the goal model building block can be real-
ized by process elements (e.g., stubs and responsibilities) in the business process building
block. Realization links connect goals that represent problems and elements of solutions
on one hand and business process building blocks that realize the goals on the other hand.
Such realization links are supported with URN links and enable traceability between
goals and business processes. Further realization links between goals and business pro-
cess building blocks are derived from existing associations (from Intention to Busi-
nessProcessBuildingBlock via patternDef). Such links capture the connection between
goals and those patterns that further refine them. The decomposition of patterns into goal
model building blocks and corresponding strategies enables organizing the knowledge
about the problem and its solutions in a reusable manner. Depending on the complexity
of the system, a series of decompositions can recur to form a hierarchy of problems and

solutions in a particular PF.

In this metamodel, goal model building blocks on one hand and business process
building blocks and evaluation strategies on the other hand are two sides of the same coin
(i.e., of a pattern). On one side, goal model building blocks represent the requirements
and address the problems that are important to stakeholders. On the other side, business
process building blocks and evaluation strategies represent recurring ways of doing busi-
ness along with how they fulfill those particular goals. In other words, goals need busi-

ness processes to be realized, and business processes are justified by goals.

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 42

«Concern» «GRLGraph» «BlementLink»

PatternFamily GoalModelBuildingBlock BementLink
GMBB EL
+ name: String + name: String 0. + name: String
1 ..
+ patternCollection() : Pattern[] + leafCollection() : Intention[] + fromLink() : Intention
+ isEqualTo(PatternFamily) : boolean + mainGoal() : Intention GMBB + toLink() : Intention
+ isEqualTo(GoalModelBB) : boolean + isEqualTo(ElementLink) : boolean
famil 1 GMBB i : i
y GMBB 1 GMBB + IlnkType() : ElementLinkType
1 + weight() : int
ELt | 0.* ELf | 0.*
indicator | 0..* contextualCondition 0.*
«IntentionalElementRef» «resource»
Indicator Condition
+ name: String + name: String
+ satisfaction: int + satisfaction: int intention (0..*
Indicator | 0..* 0.*| contextualCondition toLinks | 1 fromLinks | 1
pattern <<IntentionaIE|§rT\entRef»
pattern [. * 1 Intention
«Concern» + nanr?e: String
pattern) + Ieaf. boolean
Intention | + mainGoal: boolean
+ name: String 1+ sideEffectGoal: boolean
L.+ satisfaction: int
+ businessStrategyCollection() : BusinessStrategy [] intention
+ replaceGMBB(GoalModelBB) : boolean + isEqualTo(Intention) : boolean
+ addBizS(BusinessStrategy) : boolean 1.*] + evaluateSatisfaction() : int
+ removeBizS(BusinessStrategy) : boolean
+ isEqualTo(Pattern) : boolean refined 0.+ realized [0.1
pattern 1 0.1
patternDef
businessStrategy |[1..*
«Concern» «EvaluationStrategy »
BusinessStrategy businessStrategy evaluationStrategy Evaluation Strategy
+ name: String 1 1 |+ name: String
+__isEqualTo(BusinessStrateqy) : boolean +__isEqualTo(EvaluationStrate : boolean
1 businessStrategy
realizingElement 0.*
«UCMmap» «PathNode»
BusinessProcess BuildingBlock ProcessEement
BPBB - BPEB PE ”
+ name: String <>———]+ name: String
1 L
+ isEqualTo(BusinessProcessBB) : boolean +__isEgualTo(ProcessElement) : boolean

Figure 14 Framework metamodel

The benefits of casting the framework metamodel as a URN profile is that resulting mod-
els are expressed in a standard and familiar language, together with existing analysis al-
gorithms (e.g., GRL propagation [42]) that are reused as is. In addition, JUCMNav can
provide tool support for editing such models (with well-formedness checking through

OCL constraints) and for analyzing them.

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 43

Kipjes axew

4
[}
uoispaq I
\
\,

T

—___\Inlllll/
UOQEULIOUT BWOOINO » Y, ejeq P3| _
N ——— (oot
(:Joot

uoisna(jdopy
0

A8a1e45

-

I
Juiodpu3

o
:o_umE_ow:HmESSOm>szL££mczsw:wo

eleq mLﬁw:ou

Juioguels

N

%20]g 8uip|ing $532014 Ssaulsng

uojienjea3 Joypy
«ASarens
uofien|ea3» r

uoljen|eAgpasueApy
«ASa1e038
uopien(eag»

Pty $53204d J0ypy $592044 pasueapy |
«ojgsulp|ing
$532044SSaUISNg»

«©polgauiping
$590044SsauIsng»

paeadwo) any
sanpaoold seoyfesH

vorsieq 3dopy

aanpnaselyu]
10 53500 Bz

UORBWIOU] BWOAN0
BAJeULIOJU] BleIRUBY

feps
woneq sseenur

3 N
.\ \ \ K . J
4 \ " N _
... uoisyfaq bmwmm Bunepy uoispaq bundopy uIodpul
juawanosdw '\
S juawanosdw s0ypy " B
pasuenpy \ N y
«ASa3e435553UISNG» \ —
«ASa1e.35553UISNG» . N\ '
. 5 Jiodyes
\ Uojewour WonnQ sAzewoju] Bupjessusy B¥ed PUBRRII0)
\
/% --------------- _..
\
\
A1ajes Juaned aseasnu| ._.
©}00|g8ulp|Ing|aPOIN|e0D» \

amgsu] a1eapeaH

5

T ———— \\l’llllll\l&

4 '
1 1
\, vospeaopy 7y

ammm———t A

(Joot

‘| S ———

-

N mm—————
(oot

'\ g m——

1
UONELIOJUT BWODIND)y ejeq P3jjo)
SnPULDT A1RRUSY rluﬂlll\\
oot

A8ajens

/ 320|g Buipjing $s320.d ssaulsng

0|8 Sulp|ing [SPOIN 209

/

fivjesiuanedasealou
«uiened»

Figure 15 High-level representation of the Increase Patient Safety pattern

44

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM)

3.2.2 Example of FMM-based Pattern Family
FMM is used here to give a formal representation of a sample pattern family in the pa-

tient safety domain. Figure 15 illustrates the Increase Patient Safety pattern, which rep-
resents a top-level pattern (more abstract compared to other patterns of the family) con-

cerned with the improvement of patient safety in a healthcare organization.

This pattern has a goal model building block capturing a goal model that formu-
lates how to achieve Increase Patient Safety (i.e., the main goal of this pattern). It also
contains two alternative business strategies, each composed of a business process build-
ing block (UCM) and of a GRL business strategy, which capture different solutions to

address the problem as well as their effects.

Figure 16 represents this pattern in the form of an FMM-based object model. This
object model was created with the UML Specification Environment (USE) [126][127],
which is a tool for creating UML class diagrams and object models as well as for imple-

menting and checking OCL constraints.

[wl:Pattern | - ORPE
\/] rame="ncreasePatiert SatetyPattern’ | name="HeslthcarePF'

=1 1:EvalugtionStrateqy
name="Basicimprovement'

=1 2EvaluationStratedy

name="'Advancedimprovement'

bzl 1:BusinessSirate

name="Basiclmprovement'

bs1 ZBusinessSirate |~

name="Advancedimproverment'

bptl 1:BusinessProcessBE

bpt1 2 BusinessProcessBE
natme="Bagicimprovement'
L [

name="&dvancedimprovement'

GPs1 2ProcessFlement
name="GeneratinglnformativeCl

CP=1 1:ProcessElement
name="CollectingDataPattern'

GPs1 1 ProcessElement

name="GeneratinglnformativeOr

MPs1 2 ProcessElement
name="MakingDecision'

CPs1 2:ProcessElement
name="CollectingDataPattern’

APsl 2. ProcessBlement
name="Applyingknowledge’

Cintertion, Giintertion Miinterdion
name="CollectDataPattern’ name='GenetatelnformativeCl name="iakeDecizion’
leat=true leat=true leat=true
mainGoal=false meinGoal=talze mainGoal=false name="Applyknowlecge'

Alntertion

leaf=true
mainGoal=false
Lintention
| gl:GoallodelBE | name=1ncreasePatientSatety’

| name="ncressePatientSatety GoalModelBE' | leaf=false
mainGoalktrus

Figure 16 Increase Patient Safety pattern in the form of FMM-based object model

FMM is implemented with USE and is available at [128]. The FMM-based pattern family
for patient safety has been built as an instance of this metamodel in the USE environ-
ment, and is also available online [129]. This sample family is a container for knowledge

that includes the captured patterns. Figure 17 shows part of this pattern family in the form

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 45

of interconnected packages in which each package represents a pattern in the domain. As
seen in the figure, patterns in this family are connected through patternDef links that cap-
ture the refinement relationships among the patterns. For instance, Collect Data is an in-
tention that contributes to the satisfaction of the main goal of Increase Patient Safety pat-
tern. In other words, this is an element of solution for satisfaction of the main stakeholder
for the Increase Patient Safety pattern. Collect Data can in turn be considered as the main
goal of another pattern that captures the refining excerpt of the goal model along with
corresponding business processes and strategies. Consequently, Figure 17 shows how
patternDef associates the refining Data Collection pattern to the Increase Patient Safety
pattern. Similarly, other elements of solutions in the Increase Patient Safety pattern can
be considered as recurring problems and captured as the main goals of new
terns. Figure 18 represents part of the formal, FMM-based object model of this family

(for simplicity, all objects of ElementLink are hidden).

«Pattern»

This links associated the IncreasePatientSafety
Collect Data intention in the
Goal Model Building Block
of Increase Patient Safety
pattern to the refining Data < ~ <

Collection pattern .. i ! A NN
. /s ! \ ~ ~a
e / \ ~ ~ .
e / \ ~ ~
s / \ ~ >~
~
«patfernDef» «pattérnDef» «patterpDef» «patlekﬂ;{ef» «patternDef»
e / \ ~ ~
v e / \ ~ S~ N
’ \ N ~
e
£ 4 N SN B
<

«Pattern» «Pattern» «Pattern» «Pattern» S pattern»
DataCollection Know ledge Generation InformationGeneration KnowledgeApplication ActionTaking

T <

1 S

] ~

I RN

«paltern Def» « pat!erHDef »
~
v SN

«Pattern» «Pattern»
OucomeDataCollection ProcessDataCollection

Figure 17 An excerpt of a pattern family for the patient safety domain

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM) 46

| DEEEaa0IgE AT :E_

FE] R R Al =g T g TEeHEsa00Id s [odel

JIRWETEEa300dT FEdh _|_ [NETNENITRE q = [ENEEEEERRIEES _‘m{
: -7
SEEEEa00dE EdW

UEWE[I=5a001d | Fodh _ _ TEIEH

i

[IENEFEEERGIE A]

. “ R
TEWEEESSI0NE 5D
ARSI AR
SIS saEng L Fea L ” \|

BUBFEE2 20447 24V

i
e \ R A T

VISWRBEEEa000d T [=dD

=]
T |

A 0s=aa01d 7, Codh [EE

T

|
TEUREEEa000d e bad

_ TREWEFEEa30E (540

LR

TIEUEgEa900d L 25dd

TIEWEEEEa00/dE C5d0
T4 *

EDEE R FA T
IEE N _|_ MENEEESERIRRD mmaoj _ BN =R mma_ o SENEUONENERT T 1S
=]

5 [

SIERONIE0D]

SENSEsalEng: | [5g

_ AOTEao0IdesauEng . h 7

SENSUONENEAT | &

TIEREdCd

BESEsalEng | ey

47

Figure 18 FMM-based object model of the sample patient safety pattern family

Chapter 3. Framework Metamodel (FMM) - Family Metamodel (FMM)

3.3 Well-formedness of FMM-based Models

3.3.1 Enforcing Well-formedness with OCL Constraints
The family metamodel (FMM) establishes the foundation for creating pattern families.

However, this metamodel by itself is not sufficient to enforce well-formedness of the
pattern family models. In order to address this issue, constraints on different elements of
FMM were added for enforcing the well-formedness of FMM-based PFs. These con-
straints are specified formally with the Object Constraint Language (OCL) [45], which is
a standard constraint language part of UML and maintained by the Object Management
Group (OMG). OCL provides modelers with means of adding constraints to models, in-
cluding invariants, preconditions, and post-conditions [130]. OCL 2.0 also enables mod-
elers to query their models. These characteristics facilitate the specification of models in
a formal yet comprehensive manner, which makes OCL a suitable option for enforcing
restrictions in the GoPF framework.

Table 1 represents the constraints required for ensuring well-formedness of pat-
tern families. These constraints are implemented in USE. In order to validate that the
proposed constraints support well-formedness of the family metamodel, the following

tasks were carried out:

e A UML class diagram was created that represents FMM in the USE envi-
ronment [128];

e FMM-based object models representing sample pattern families for the pa-
tient safety examples were implemented in USE [129]. These object mod-

els offer a good coverage of the concepts in the metamodel;
e OCL constraints were implemented in USE; and
e The sample pattern families were validated against the OCL constraints.

The implementation details of these OCL constraints along with associated operations are
provided in Appendix A. These OCL constraints are able to enforce the well-formedness
of FMM-based models. Figure 62 on page 160 illustrates the result of validating a sample

pattern family against the constraints.

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 48

Table 1 OCL constraints implemented to ensure the integrity of FMM-based models

Context OCL Constraints

inv UniquePFName c1

PE inv UniquePatternNameInPF c2

inv UniquePatternMainGoalInPF c3

inv UniqueEvalStrategyNameInPF ca

inv UniqueBusinessStrategyNameInPattern c5

inv OnlylLeavesRefine c6

inv CorrectlLeafMainGoalRefinement c7

Pattern inv NoOrphanPattern c8
inv NoCircularDefiningPatternExist c9

post businessStrategyCollectionisDone P1

post addGMBBisDone P2

post addBizSisDone P4

post removeBizSisDone P5

inv UniqueIntenionNameInGMBB ci1e
GoalModelBuildingBlock |inv UniqueElementLinkNameInGMBB Cc11
(GoalModelBB) inv JustOneMainGoal c12
post leafCollectionisDone P6

post mainGoalisDone P7

inv LeavesBeingRefined C13
inv ElementsAreIncludedInRelatedBSTs ci14

inv EitherMainGoalOrLeaf C15

inv LeavesAreConnected Cl6

Intention inv MainGoalsAreConnected c17
inv MiddleGoalsAreConnected Cc18

inv AllPossibleRefininglLeafConnected c19

inv NoMiddleIntentionPossibleRefinement Cc20

inv NoDanglingMiddleIntention c21

inv LeavesHaveOneMainGoal Cc22

inv MainGoalsHaveAtlLeastOnelLeaf C23

BusinessProcess
BuildingBlock inv UniqueProcessElementNameInBPBB c24
(BusinessProcessBB)

ElementLink inv DifferentSourceDestination C25

3.3.2 Examples of OCL Constraints
This section discusses two of the constraints for presenting how OCL constraints main-

tain the integrity of FMM-based pattern families.

Preventing Circular Pattern Definitions

The capability that patterns in a pattern family can refine or be refined by other patterns
in the family is one of the strengths of the GoPF framework. The framework metamodel
provides the foundation for creating such refinement links. This is done by setting pat-
ternDef of leaf goals of a pattern, which can be potentially refined, to the refining pat-
terns. The refining pattern can in turn be further refined by other patterns. For exam-

ple, Figure 17 illustrates that the Data Collection pattern refines the Increase Patient

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 49

Safety pattern while also being refined by the Outcome Data Collection and Process Da-

ta Collection patterns.

Circular refinement happens when two patterns refine each other, directly or indi-
rectly. Direct refinement happens when two patterns mutually refine each other without
any other pattern in between. For example, in Figure 17, if the Increase Patient Safety
pattern were to refine the Data Collection pattern, this would form a direct circular re-
finement. Indirect circular refinement happens when more than two patterns form a circu-
lar chain of refinements. In Figure 17, if the Increase Patient Safety pattern were to re-
fine the Outcome Data Collection pattern, an indirect circular refinement would be

formed.

Considering that the GoPF framework uses refinement for discovering and ex-
tracting details of solutions to recurring problems, circular refinements represent incor-
rect structures in the pattern family and prevent the discovering, extracting, and maintain-
ing processes. The framework metamodel alone does not prevent circular refinements. It
hence needs to be supplemented by an OCL invariant to ensure pattern families do not

include such refinements:

context Pattern
inv NoCircularDefiningPatternExist:
self.DefiningPatternSet()->excludes(self)

This invariant ensures that a pattern is not included in the set of its directly or indirectly
refining patterns. In order to retrieve the set of refining patterns, and because OCL does
not support transitive closure as a first-class construct of the language, there is a need to

define two OCL operations, represented in Table 2, for the metaclass Pattern.

The first OCL operation, DownPatternSet, is recursive. It takes a set of patterns
as input, finds all the patterns refining any member of the set, adds them the set, and re-
cursively calls the operation with the new resulting set. This will continue until no new
refining pattern is found. This happens when the resulting pattern set is equal to the set
received as parameter. The final set represents all the patterns that directly or indirectly
refine the initial set of patterns. This set is returned as the result of this OCL operation.

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 50

DefiningPatternSet is the second OCL operation. When DefiningPatternSet oper-
ates on a particular pattern, it initializes a set of patterns, calls the DownPatternSet opera-
tion, and returns the final refinement set. In order to create the initial set for the pattern it
operates on, DefiningPatternSet assesses patternDef links of leaf intentions of the pat-
tern’s goal model building block and creates an appropriate set of refining patterns. If this
set has at least one member, DownPatternSet will be invoked with this set as its initial
parameter. The result of this recursive operation represents those patterns that are directly
or indirectly refining the pattern that invokes DefiningPatternSet.

NoCircularDefiningPatternExist is an OCL invariant, and must hence be true all
the time. In order to enforce the constraint on every pattern in the family, this invariant
uses DefiningPatternSet for finding each pattern’s refinement set. If this set excludes the
pattern, NoCircularDefiningPatternExist returns true, indicating that no circular refine-
ment link has been found for that pattern. Ensuring that this invariant is true for all the

patterns in the PF prevents the family from including any circular refinements.

Table 2 OCL operations for retrieving a set of refining patterns

DownPatternSet(s:Set(Pattern)):Set(Pattern) =
if s->includesAll(s.GMBB.intention.patternDef->asSet())

then s

else DownPatternSet(s->union(s.GMBB.intention.patternDef->
asSet()))

endif

DefiningPatternSet():Set(Pattern) =
if self.GMBB.intention.patternDef->asSet()->size() > ©
then
DownPatternSet(self.GMBB.intention.patternDef->asSet())
else null
endif

Figure 19 (a) shows the result evaluation of the NoCircularDefiningPatternExist OCL
constraint against the sample patient safety pattern family presented in Figure 18. This
constraint is evaluated to true because the pattern family is well formed. On the contrary,
the pattern family presented in Figure 20 includes a circular refinement relationship be-
tween patterns. In this PF, Increase Patient Safety (p1) is refined by Data Collection (p2)
through a patternDef link from Collect Data (C) to p2. Next, Data Collection (p2) is re-
fined by Outcome Data Collection (p3) through a patternDef link from Collect Outcome

Data (O) to p3. Finally, there is an erroneous refinement relationship from Outcome Data

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 51

Collection (p2) to Increase Patient Safety (p1) because of the patternDef link from Ana-
lyze Observations (N) to p1. Consequently, as can be seen in Figure 19 (b), NoCircu-
larDefiningPatternExist is correctly evaluated to false, hence expressing the existence of a
circular refinement relationship amongst the patterns. Finally, as illustrated in Figure 21
(@), an investigation of the NoCircularDefiningPatternExist violation in USE makes it
possible to locate the circular refinement chain and possibly take steps to solve the indict-
ed problems.

(a)

validation & Class invariants
of OCL

: Invariant
constraints . Wlintention:: NoDanglingMiddlelntention
against Pattern::NoCircularDefiningPatternExist
sample
Patient
i 100%
Safety PF onstraints ok. 100%

validation & Class invariants -

when Inwariant
circular Pattern::MoCircularDefiningPatternExist
definiti
€ |n.| on 1 constraint failed.
exist
(c)
validation & Class invariants
when —
dangling Invariant
middle Intention::MoDanglingMiddleintention
intention i iled. 100%:
exist

Figure 19 Validation of OCL constrains for preventing circular defining pattern and for
dangling intentions

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 52

DR A T T _|_ T _.
T EUEHEEa00Id . Fodh _|_ =

_ TN wmn_>_ _ TOUETITL

i

_ FENCIENERT | FE _

FRSENSUOENEAT T wm_ g9553044==aUEng | .Emlm_

0 l
- J.
BENGsaUEng | Fod o SRR

TTJ ulel3suod)0 saie|oln

WS gEEa004d 7, LEdN Uoiually Ajiwey usaned siy| ‘spJom
i 13430 U] “§B3| B 10U S| 31 7 10

e EEa00d T, tedy A= A 3jUljun pue [eoSulew e jou si 3
jun "uopuau Buljdueq si X

T TR

_ FEER A 9_

v

_ ThSENSEaUEng. | £50 _|AV_

Emtwn_“mn_

P
TEWEEEE2900dE 15D
[EIETEAN \
[EETE WELEFEESI0IAT [=dY

co_EmE{ ;
] \ eagEsa00ids [=dn

—— "~

TEWE3ea000dE 1ode]

TEIEEEEa000dE 1549

[ENEEEE=RO]

i
TS |
Taa S |

TEWEEEST00IE [5dY
77
JIEWEIEEaa0id e [Edi

A A

JEWEEEEA0Id T D
| YeIEEEsEnnd T 1540

FIEE =]
—
TREWEEEERI0MT] =0

_ R = _‘ﬁg_

N

ysnouyi 1d 03 ¢d pue ‘Q ydnouayy

6J
JUIBJISUOD DO SI3L|OIA Ajlwey
utayied siy3 ‘spIom Jaylo u| ‘N

¢d 01 zd ‘D ySnouya ¢d 03 Td
11SIX3 JUSWAULAI JejNdII Y

t patterns and dangling intentions

Figure 20 A pattern family with circular refinemen

53

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models

(x)

UOIUR}UI SUIIBIOIA BY) PULY |-------=

ans = (Ueal1 | uonua : 1sjena<-{ J3SW0)A3SUORUSIUUMOT Ji3S SaIdl {|BODUIBLIHaS 10 B3l Jias) jou) [

as(B) = [B3[1 _|
D@5 = (Maswolfasuonuapumoaas [

“““““““““““““““““““““““““““““““““““““““ § XD s

PUE UOI3B[OIA JO 32N0S 3y}
0} UMOP [|LIp 03 3|qissod 1 3|

Ajiwey usaned
Aajes juaned ajdwes Joy
uopuau3|ppINSulBueqon
10 UoI3e|OIA JO UoIeSIISaAU] (q)

)1 01 SuiIngLIU0d

Jed| Aue aney 1,usaop

Ya1ym uonuaul uljSuep e si
SIYL "X 40§ 3S|e} 03 31eN(eAS S|
sa.dxa 100 ‘paroadx3 sy

“UIRYD Je|Nalid e Wioj ey} {pdD cdD 24D 4D PaLyBPUNRRS = (Rsse«-{Jaguiayed ag | uoguap M&EEE__DE TR mm__._wh_m%mr:mﬁn_:;a wes [

uonuajul ay 03 buebineu
Aq wajqoud sy} arebinsanul
0} 3jqissod)l sayew 3sn

“““ asie, = [EopuRwes [F
%*_s .

aspey=jegyas i
25[E) = (|BOQUIBW Y35 10 Jea|Yas) |

B3[1 [UOUBIU| - JSERe}-(iaswolJasuoquapumog yes [F

=

AN} = {|BOSUIBW Y25 JO JE3] J25) Jou 7 =

pasiey | ((yeat | uoguagy :
anJy = {{yea) | voguagy,
and} = ({yes|1 | voguajy
ant = ({yea|1 | vonuay :

anJy = ({yea|1 | voguagy
aniy = {{yea| | voguagy :
aniy = {{yea|1 | voguagy
aniy = {{yea)1 | voguagy

ann = {liman “limsyae-linacin nacin

UMD 1138 83

10T = yjas

(04D 24D | 4D paunapunies = (esuwenediuuagyes [

.% (Jjes)sapnpxa«-{jaguspegiuuyag:
70D = 193

1)8180ia<-{ YA 5W0l RS U0 UMOT J25 SaIdw ([BoouiBw J|2S Jo Jea|)Rs) :_5 ﬂ
1)818a<-{ 2 5Wol a5 UoUaILUMOT J2S Sadw (jeoouew =S Jo Jes|yas) Jou) _|
1)sisixa<-{)asWwol Jlesuoiuaiuuma yas saidul (|BoguiBw 428 10 Jea| j|2s) jou) _|
1)s18xa<-{))|a5Wwol I3 uoiusiuumod Jes saiduwl ([BoguiBw Jas 10 Jeal }|as) jou) _|
andy = ({Jea1 | vonualy| : DE1sxa=-{)1[a5Wol a5 UoUaILU MO)25 Saldw {|BoSUIBL Y SS 10 JBS| |55 1ou) _|
1)8]a0a<-{ a5l a5 UoUaILUMOT JSS Saldwl (BoSUEW YSS 10 JE3|J85) Jou) _|
1)5]500E<-{ JASWOl RS UoUAILIUMOT JZS Saldw) (Boouew =S 10 Jes|)2s) Jou) _|
1)5]50iae-{) A5Wol JRS UoUaiLuUMO] J#5 Saldwl ([Eoguiew =S 10 Jes| J2s) Jou) _|
1)5]506a<-{)} A5Wol RS UoUAILUMO J35 Saidwl ([EoguIew =S 10 Jes| Jas) Jou) _|
anJy = {{yea)1 | voguajy : sjsxa=-{)|25WolJJFSuousuuMo Yas Saidw {[EoaUBw |5 10 JBS| |85) jou) _|

o

*

s @
L

ﬁ@ 640 7dD' | 0@ ‘pauyapunlias = (esuayedbuyag yes [

£4@ = Jlos

ND =25 &
E.@ Eﬁ_Emnmnmmﬂ =

peuapUn = E“_Emnmn a5 _|
{HD'Z0D ND @S = uonuajurgaNDes [
{1d@'pauyapun Eéo_u_._:tuém_..__._:vmmm =(}aquisped-ag | uonuagu| : ag)pajsaiasod=-uonuaiurgaNo s ko 3
E@ pauyapunlies = Jagse<-{jaquiaged-ag | uojuaju| 85)pajsaniasad<-UoNUSIUr BEHD 1S Foa
- 7 = szs<jagse-{jaquiaped-ag | uoquaju| : a5)pasapiasoa<-uoluBlU gAKD WES kB
ang ={[< 2215<-ja5se=-{jaguianed a4 | vojuajy) : 35)pelsaNIa|oa<-UOGURIU GANS) HRS) ﬂ B

E (Jjas)sapnpxa=-{jaguapedbuuyag jes ﬂ =]

-

{pdiD cd@'zd@' 0@ pauyapuniies = Jpua (PIOARD)PRULSPUNIR0 252 (jegse=-{jaguisped ag | uojuaj) | a5)pajsanioa)od<-uoquayll mm_zw:umummEurmn__._;nm_ 2% uay} {p = 221s<-jagse=-{}aguiaed 35 | uojuay) | 3g)paisaNoa|0<-LoRURIL GaNS HAs) I ﬂ =

Ajjwey usaned
Ayajes juaiied ajdwes Joy
1s1xquJa1ed8ululyR@.IendIINON
J0 UonEOIA JO uoneSISAAU] (E)

“uleyo
Sujuiyal Jenauid e jo ued

aJe susaned asay] “gd pue
‘zd‘1d 4oy 35|B4 03 31EN[EAS S|
oissa.dxa 100 ‘pardadx3 sy

cdd=yes o

{dD'cd@ 74D 10D 'paunapuniies = eswelediuweagues [3
‘‘‘ % Pasie; |- (yes)sepniaxas-(asuispediuuyenes B @

and} = (J|as)sapnaxa<-{jesulepedbuuyag s _|

{40 e 70D LODYHeS = SHOUBISUIE WSIE] &

258} = ((Ja8)sapnaxa=-{JjasLIanediuuaq Ies | LISNEd | IBE)yI0)=<-S20UB)E

"uiaed ﬂ

Figure 21 Investigation of the source of OCL violations in the examples

54

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models

Preventing Dangling Middle Intentions

An intention in goal model building blocks could be a leaf, a main goal, or neither. In the
latter case, the intention is located somewhere in the middle of the hierarchical goal mod-
el. In the GoPF framework, all intentions are directly or indirectly connected to leaf in-
tentions. Therefore, goal models are well-formed only when intentions have at least one
leaf from the same goal model building block that directly or indirectly contributes to
their satisfaction. The FMM lays down the foundation for creating goal models within the
goal model building blocks but it does not enforce the above restrictions on intentions.
Ensuring the well-formedness of goal model building blocks requires the presence of the
following OCL invariants, which must evaluate to true for all the intentions in the goal

model building blocks.

context Intention
inv NoDanglingMiddleIntention:
not (self.leaf or self.mainGoal)
implies
(DownIntentionSetFromSelf() -> exists(i|i.leaf))

In order to apply this invariant, two OCL operations on intentions are defined in Table 3.

Table3 OCL operations for retrieving a set of intentions

DownIntentionSet(s:Set(Intention)):Set(Intention) =
if s ->includesAll(s.ELt.fromLink()->asSet())
then s
else DownIntentionSet(s->union(s.ELt.fromLink()->asSet()))
endif

DownIntentionSetFromSelf():Set(Intention) = DownIntentionSet (Set{self})

DownlintentionSet is a recursive OCL operation in charge of finding and returning a final
set of intentions, which are directly or indirectly contributing to the satisfaction of an
initial set of intentions passed as a parameter. To achieve this, DownintentionSet takes a
set of intentions, finds the other intentions that are contributing to their satisfaction, adds
them to the set it received as parameter, and re-invokes the operation with the new set.
DownlntentionSet continues to execute until all the intentions on the downside of the
original set in the goal model (those that are contributing to the set) are discovered and

included. Finally, the resulting set is returned.

Chapter 3. Framework Metamodel (FMM) - Well-formedness of FMM-based Models 55

DownlIntentionSetFromSelf operates on an intention and returns a set of intentions
from the same goal model building block that directly or indirectly contribute to the satis-
faction of this intention. For this purpose, DownlintentionSetFromSelf creates the initial
set with the intention that it operates on as the only member. It then passes the initial set

to DownlntentionSet and returns the resulting set received from DownintentionSet.

NoDanglingMiddlelntention is the OCL invariant enforcing the well-formedness
of pattern families by preventing goal model building blocks from containing dangling
intentions. For this purpose, this invariant must evaluate to true for every intention of all
goal model building blocks. When encountered by an intention that is not a leaf or a main
goal, the DownlintentionSetFromSelf operation invoked by this invariant finds the set of
intentions that are contributing to that intention. The invariant returns true only if the in-
tention is directly or indirectly connected to at least one leaf goal. In other words, this
invariant indicates that no dangling intention exists in the goal model building blocks.

Figure 19 (a) shows the result evaluation of the NoDanglingMiddleIntention OCL
constraint against the sample patient safety pattern family presented in Figure 18. This
constraint is evaluated to true because the pattern family is well formed. On the contrary,
the pattern family presented in Figure 20 includes a dangling intention. In this PF, Dan-
gling Intention (X) is included in the goal model building block of Take Action (p4). Itis a
dangling intention because it is not a mainGoal or a leaf and yet none of the leaves con-
tributes to it. Consequently, as can be seen in Figure 19 (c), NoDanglingMiddleIntention is
correctly evaluated to false, hence expressing the existence of a dangling intention in the
pattern family. As illustrated in Figure 21 (b), it is possible to investigate violations to
NoDanglingMiddlelntention for finding the exact dangling intentions and take relevant

actions for removing them.

3.4 Summary

This chapter described foundational elements of the GoPF framework, together with a
metamodel that formalizes the concepts related to families of patterns (PFs). URN al-
ready supports some of the basic concepts of GoPF. To further benefit from the standard
language, supporting concepts, and existing tools, URN is profiled to formalize FMM. In
particular, the concepts for which URN did not have a direct equivalent have been

Chapter 3. Framework Metamodel (FMM) - Summary 56

mapped to URN concepts, but with stereotypes captures as metadata. URN links are used
to capture new associations in the metamodel. Finally, OCL constraints are introduced to
enforce well-formedness of FMM-based pattern families as well as the stricter associa-

tion multiplicities found in the framework metamodel.

The next section is concerned with a method for creating pattern families, which

are instances of the metamodel just presented.

Chapter 3. Framework Metamodel (FMM) - Summary 57

Chapter 4. BUILDING PATTERNS AND PATTERN FAMILIES

This chapter represents how FMM-based patterns and families are created for a particular
domain. This is done by building patterns and going through family creation. Figure 22
gives an overview of the process used to create, evolve, and apply a PF. Note that many
UCMs in this chapter actually describe how to use the GoPF framework rather than arti-
facts (patterns) produced by GoPF.

In order to build patterns, recurring problems and solutions must be located. Lo-
cating recurrences takes place by analyzing goal and business process models for organi-
zations in a particular domain as well as by interviewing stakeholders and domain ex-
perts. Using these means helps to reveal the recurring problems and solutions, which to-
gether are used for building patterns. These patterns are then organized in a new PF or
used to evolve an existing one. Then the new or evolved PF can be used for customizing
and extracting models for a particular organization. This chapter focuses on locating re-
currences and on building patterns and families.

Feedback and new recurring problems and solutions
i

S
PF Analyst /— PF User)

Customization and Extraction

Observe Recurrences Family Evolution

Figure 22 Overview of a process for creating, evolving and applying PFs

Reuse Problem and Solutions

._,_

—/

Domain specific Pattern Family

PF Retired
I Solution Reused

4.1 Building Patterns

In order to create a pattern family, the PF analyst must first form patterns by locating
recurrent problems and recurrent solutions (best practices) for each pattern. These prob-
lems and solutions are those that can be reused to model the business goals and business

Chapter 4. Building Patterns and Pattern Families - Building Patterns 58

Martica
Highlight

processes in a hierarchical fashion (this approach can be taken recursively to refine the

solutions).

4.1.1 Locating Recurring Problems
The PF analyst has three means for finding the recurring problems, as described in Figure

23. First, she considers a problem as recurring when it has been observed repeatedly in
the requirements models over time and at different organizations (or units). A problem is
also recurring if similar types of domain stakeholders in different organization are high-
lighting it as an issue to be addressed. Finally, domain experts with a good understanding
of the problems in the domain can reveal recurring problems.

Domain Stakeholder

% Provide Organizational
Requirements

[\

PF Analyst \
; Analyze Provided
Organizational Locate
) Compare Historical Requirements Extract Recurring
Locate Recurring Problem Requirements Models Requirements Problems

Q 3¢ Recurring Problem Located
Analyze Provided
Domain Requirements

Provide Domain
Requirements

Figure 23 Locate a recurring problem in a particular domain

When a recurring problem is located, the PF analyst captures pieces of the goal model
containing the corresponding knowledge in the form of a goal model building block.
Such block includes a main goal representing a recurring problem as well as recurring
intentions that may contribute to its satisfaction (see Figure 24, where side effects and
conditions have been hidden for simplicity). Figure 25 represents an extracted goal model
building block that includes Minimize Costs of Infrastructure as its side-effect intention as
well as Healthcare Procedures Are Complicated as its condition. Each goal model build-

ing block represents one stakeholder’s problem together with elements of solution.

Chapter 4. Building Patterns and Pattern Families - Building Patterns 59

It is important to note that goal model building blocks are at different levels of ab-
straction. This allows for contributing intentions in one block be considered as the main
goals in other blocks. For instance, as shown in Figure 24, Collect Data is part of the so-
lution for Increase Patient Safety whereas it becomes the main goal of the Data Collec-
tion goal model building block, where contributing intentions to Collect Data are cap-
tured. In such a hierarchy, higher-level goals are more abstract and intentional. They are
consequently satisfied by those goals that are less abstract and more operational. The
lowest-level goals typically represent concrete choices available to an organization. Us-
ing these goal models for extending an organizational goal model helps shaping and de-

signing the required business processes along the way.

The UCM shown in Figure 26 gives an overview of the steps a PF analyst must
carry out for building pattern and families. This process includes the locating recurring
problem stub that invokes the process explained in this section (Figure 23) and uses the
located recurring problem for creating a goal model building block. As can be seen in this
UCM, recurring problem locations and the consequent creation of goal model building
blocks are iterative activities that include interactions with stakeholders and experts in the

domain.

4.1.2 Locating Recurring Solutions
The PF analyst locates recurring solutions for the problems found in the previous step.

These solutions are the best practices (e.g., workflows, procedures, protocols, etc.) used
to address a recurring issue or requirements in the domain. Similar to recurring problems,
there are three important means for PF analysts to locate such recurrences. First, the PF
analyst considers a solution as recurring when previous observations show its common
use for addressing a problem. A solution is also considered as recurring when similar
types of stakeholders in different organizations consider it as a means of addressing a
common problem in their domain. Finally, domain experts who know about common
problems can highlight the recurring solutions that are practiced by organizations in that
domain. As illustrated in Figure 27, interviewing domain stakeholders and domain ex-
perts and analyzing the existing process models enable PF analyst to use the aforemen-

tioned sources of knowledge for locating recurring solutions.

Chapter 4. Building Patterns and Pattern Families - Building Patterns 60

Increase Patient

Safety

Collect Outcome
Data

Gbnerdte Informative
Outcome Information

Anblyze Outcome
" Data

\
\
\
\
\
\
\
\

\
\

Analyze Outcome
Inofrmation Database
by Analysts

(Share Decision)(Apply Decision)
\
\

Existing Goal
Model

Make Safety
Decision
O+ \5\
Inform Decision
Makers

Discuss the Issue
by Decision
Makers

Decide about Issues

by Decision Makers

/+5+7 5

Collect Feedback Modify Dedisions
about Decision

Goal Mgdel Building Block

\\\ / + vs\tc
<

Increase Patient
Safety

~

Initial Goal

+ Model
\ \ \ Building
| | 3 Blocks
\ \ ‘ .
' 4 e e (R ()
ﬁ\Goal Model Building Block Goal Model Building Block
|
\
\

Collect Outcome Collect Process
K Data Data /

Goal Model Building Block x

Generate Informative

Analyze Outcome
Inofimation Database
by Analysts

Make Safety
Decision

50 50
+ + 75| 4 s \
Analyze Outcome

Information by lnfnrriln Eeclsmn
lakers

Discuss the Issue
by Decision
Healthcare Experts i

Outcome Information

Decide about Issues
by Decision Makers/

Goal Model Building Block

50

N

Analyze Outcome
\um

Generate Expert
Opinion

75 50
ﬁ/ + 75 N\ 5c+

- —~ Callect Feedback Madify Dedisions
Qre Decision ply Decision about Decision /

Figure 24 Extracting goal model building blocks

Chapter 4. Building Patterns and Pattern Families - Building Patterns

61

‘uonreziuebio

Jejnaiued e Jo suonuajul Jaylo uo
UoISIZap © JO 109)48 ay) Buunmded
S9|qeus UoRUSIUI 1939 3pIS

uoIsSIa(]
f1oes e

UOIJRULIOJU] SWODINQ
BAIELLION] SJRlaus

uoispaq 1dopy e3eQ 392100

99D Jo [eob urew

Jo uonoejsies ayy Bunenojes
Usym Junodde ojul uoneziuehio
Jejnanued e Jo suonipuod
Buunmded sajgqeus uonIpuod v

LTI

e
$N|
S¢-

“,
o

\

alnpngseyur
1O 51500 DZIWIUIY

Tt

pegeoidwo)) a1y
S3.NPanold SIEOLEeH

A,
o sy,

-

fyajes
juaj3ed 9sea.DU]

“,

0s-

sy

ajnsuj asesyjjeaq

62

Figure 25 Example of an extracted goal model building block

Chapter 4. Building Patterns and Pattern Families - Building Patterns

abpajmouy ulewoq ainyden) 03 UORUBIU]

abpajmouy c_mc,_oomf paimdeD Ajjwe4 uened

Madx3 urewoq 1apjoyaye)s ulewoq

sjuswalinbay
paimde) uo
}oegpas4 apinoid

UleWOQ 8y} 1o} suiayied
ulaned Jo xuauniay U0 }oeqpaa4 apIADIg
juanbaig wiyuod

—
’ sulalled uo
uonealn Peqpaad MIASY sjuawalinbay uo
e Jjoeqpas] Mainay
Uiened [21qe1s 51 Wsned]
‘ Poegpasy Ladx]
[papaau st ulaped map] ushied piing Boeqpaad Jap|oysyels)

[suonnjos siopy 81L207]

¥po|g Buipjing

p [sal Suol
¢ nnjos sjeaid)] |ePoW [POD
£bajens ssauisng pjing . e ‘
suonn|os bupinoay #1e307 wa|qold Buluniay ayedo
L N
boolg Buipiing [9poi 1209 AipoiAl] - W
¥sfjeuy id

Figure 26 Process of building patterns and pattern families

63

Chapter 4. Building Patterns and Pattern Families - Building Patterns

Domain Stakeholder

3

Provide Organizational
Knowledge
about Solutions

PF Anflyst \
% Analyze Provided
Organizational Knowledge
about Solutions
Locate Recurring
Solution
Compare Historical .
Locate a Recurring Solution Knowledge about Solutions Extract Solution Solution Located
Analyze Provided
Domain Knowledge Caplur.e Effects .of
about Solutions Recurring Solution
Domab Expert I

Provide Domain
Knowledge
about Solutions

Figure 27 Locate a recurring solution in a particular domain

This approach helps the PF analyst to locate well-known recurring solutions for the same
recurring problem. Each of these solutions is captured as a business process composed of
elements, e.g., sub-processes, which are contributing to the main goal of the goal model
building block representing the recurring problem. In other words, each solution repre-
sents a process implying an arrangement of contributing elements for addressing a com-
mon problem. Ideally, these elements have a counterpart, i.e., a contributing intention, in
the captured goal model building block representing to the main goal. However, in prac-
tice this can only be achieved through a series of iterations as illustrated in Figure 26.
While finding these elements and their arrangements, the PF analyst also captures the
effects of each solution on the counterpart intentions of the respective goal model build-
ing block.

The recurring solutions and their effects are captured in the form of pairs of busi-
ness process building block and evaluation strategy. Each business process building block
is a UCM map that represents how a goal is satisfied and provides the ordering of ele-
ments of solutions, i.e., stubs and responsibilities. The bottom half of Figure 29 shows
collections of business process building blocks, in which each member provides one pos-
sible way of fulfilling a goal shared by all members. Although all of these business pro-

cess building blocks address a common goal, there are variations among the members of

Chapter 4. Building Patterns and Pattern Families - Building Patterns 64

the collection that may lead to differences in the quality of achieving the common goal
and in the conditions associated with a member. The PF analyst uses URN-based evalua-
tion strategies for capturing these differences. Consequently, she pairs a business process
building block and the relevant evaluation strategy to form business strategies. Figure 28
illustrates the sub-process for building business strategies, which is invoked by the main

UCM for building patterns and families presented Figure 26.

Figure 30 (a) shows the goal model building block for the Increase Patient Safety
pattern and two related business strategies. For instance, the first business strategy, de-
picted in Figure 30 (b), captures a recurring solution commonly used by small healthcare
organizations or units. Its business process building block shows the arrangement of sub-
processes, i.e., Collecting Data and Generating Informative Outcome Information. The
corresponding evaluation strategy shows that Collect Data and Generate Informative
Outcome Information are the contributing elements of the goal model building block af-
fected by this solution. The second business strategy in Figure 30 (c) represents a differ-
ent solution and its corresponding effects. This solution is comprehensive compared the
first solution because not only it collects data and generates information but it also uses
them systematically to improve the procedures in a healthcare institute.

Build
Business Porcess

Build Evaluation
Building Blocks

Build Business Strategy Strategy Business Strategy Built

® % %]

Figure 28 Build business strategy

Chapter 4. Building Patterns and Pattern Families - Building Patterns 65

-

Goal Model Building Block

Collect Data

‘Generate Infor
Outcome Infor:

ative
ation

Goal Model
Building
Blocks

/Goal Model Building Block

Collect Data

7
+ 75 50
//

/1

Collect Outcome !
Data S

[

|

f Goal Model/BllliIdir\g Bloc

Genérate Igformative
| Outtome Iformation
!

(EE) mJ

Goal Model Building Block

~

Make Safew
Decwslun
‘ + b 4 s
|
|
|
|
Analyze Qutcome
Inform Decision
Makers

Inofrmation’ Database
Goal Model Building Block
T

Analyze Outcome
Information by
Healtheare Experts

Andlysts

Discuss the Issue
by Decision

about Issues
by Decision Makers

\

h

| \
+ 5F g
| \

I
Analyze [Outcome
DPC:!
‘
‘
]
o
|

Adopt Decision
\
\
J
| \
! Generate a it
| Op\man
|
|
|
|
1

\ =+ 75 sc
\
\
: Collect Feedback Modify Decisions
Share Decision about Decision
L
!
! |
! \
| \
|
|
|

h |
|

EndPoint

Blocks

Collection of Business Process Building Blocks

N O
<& L
/ AN

Collection of Business Process Building
Blocks
/ D i o Dug Daaildi i=]] L
. hJ

Making Safety Degibion

/D D =P P~ H Dl 1
Business P\rocess Building Block Business Process Building Block
CO"eCﬁﬂg Qutcome Data StartPoint Analyze Outcome lnﬁ:rma;tlor\ by Healthcare Experts
P L *— *,
StartPoint o EndPoint ’ IHQWH Makers|
'S
Collecting Pﬁrocess Data EndPoint Decide about Issues by Decision Makej
AN e
\ =T

KCollectlon of Business Process Building Blocks\

ﬁollection of Business Process Building Block\<

/D' o 0.l

Business Process Building Block
T

Business Process Bwldlng Block \‘—
T
Anal Qut Data G ting E: t O
startpoing 12V Pricome Data Generating Epert ORINGN Endpoint StartPoint Share Decision Apply Decision
., o~ ~
W | *——— >

<
o

Collect Feedbac]aboul Decision

Modify Decisions
EndPoint

"

Collections
a o Bildinn Dlaal of Business
\ usiness Process Building Block
\ L B 9 Process
\ \ \ . .
\
| \ \ Building
\ G ting Infe tive Out Infe ti
\\ \\ | cortPoint Cbl\ect\‘rlg Data Generating Informa I.je\u come Information
\ \ \ S\~
\ \ \
\ \ \
\ \ \
\

~

~

2
Figure 29 Collecting business process building blocks that address the problems in goal

model building blocks
Chapter 4. Building Patterns and Pattern Families - Building Patterns

66

67

z IJI_ ABarens uonenieas annoadsal

uoisfBaq Aayes Bupjey uoisppaq bundopy julodpu3 pue xo0|g @C_U__Dm $S9201d

R VA WA e N] . ssauisng e Jo pasodwod

'\ osaa03dopy PN e BEn Y\ emewojur exeieuen /'Y, PRA DA S sI ABajens ssauisng yoes
(oot (oot !lllll@oloﬂl t-Joot uolewlioju] 8WodN0O m\\,_umc:ot: Bunessusn 80 m:<_tw__ou HodHEs \

/ ABorens uonenpeas \ o anIsuayaidwo)d

:ABarens
ssauisng (9)

\

/ o0]g Buipjing ssa20id ssauisng

uonewloyu] 3WodINQ aAnewou] bunelsusg eleq bunds|jod Julodyers

I
—— e —————
uoisoaa s~ ~y _-\ === Ia Juiodpu3
uosnaq 3dopy fajes ey J | Sonen ML EEORI0 IV eeqpeioy J
 2Ajeuoju ajeiauag g Y, 1RO D 7

Safety Pattern

0n::mguoﬂ sgmﬂ 20U-py
:ABarens
/ ABajens uonenpens / 300|g Buipjing ssa20.1d ssauisng K ssauisng
\ ()
>20|g bBuiping [8pON [e0D
suonusul Ledisunod — (o=) R -1 Jo [eob urew sy 0 Bunnguiuod
2ANRULIOJU] RIBUDD

uo uonnjos e

0 $1981 L Samdes uonnjos Bulndal e s yoo0|g

uIp|iNg SS820l1d Sssauisng yoeg

ABayens uoneneny

“+ Aajes
wonny basaur 1uaned asealou|
00|g Buip|ing
_ %001g BuIp|INg [9POW [20D J |OPOIN 209 (&)

Figure 30 Goal model building block and business strategies for Increase Patient

Chapter 4. Building Patterns and Pattern Families - Building Patterns

4.1.3 Forming Patterns
After locating recurring problems and solutions, the PF analyst combines a goal model

building block together with the corresponding business strategies and forms a pat-
tern. Figure 31 describes the approach for forming an FMM-based pattern. Figure 30 il-

lustrates composing elements of the Increase Patient Safety pattern.

As shown in Figure 26, building patterns is carried out iteratively by invoking the
sub-processes found in Figure 31. The optional paths in Figure 31 enable the gradual de-
velopment of a pattern, when new knowledge discovered through interactions with stake-
holders or experts can be combined with an existing pattern. For instance, the Increase
Patient Safety pattern may be first built by combining one goal model building block
(Figure 30 (a)), and one business strategy for ad-hoc improvement (Figure 30 (b)). In a
subsequent iteration, another business strategy (Figure 30 (c)) is added when interactions
with domain experts highlight the comprehensive approach for increasing patient safety.

In addition, realization links are established between the goals in the goal model
building blocks and the elements in the business process building blocks. The patterns are

then used as input for the family creation method.

(a) Build Add Goal Model

. Add Business Strategy
Building Block

Pattern
Stub
Build Pattern

Establish
Realization

Links Pattern Built

[New GMBB Needed]

[New Business Strategy Needed]

[Else] (Else]

(b) Add Add
Business Add Business Process Evaluation

i ildi Strate Business Strategy Added
Strategy Add Business Strategy Building Block qy qy

Stub Q He— a3 I

Figure 31 Forming a pattern using the components built when locating recurring
problems and solutions
4.2 Family Creation

Family creation is a method for building pattern families. Family creation is a special
case of family evolution of an initially empty PF by using the extension algorithm (ex-

plained in the next chapter). As illustrated in Figure 26, after patterns are built using the

Chapter 4. Building Patterns and Pattern Families - Family Creation 68

located recurring problems and solutions, they are used as input for building a pattern
family. If no pattern family exists for the domain, a new pattern family is built by evolv-
ing it from an empty one (family creation). On the other hand, if a PF for the domain al-
ready exists, instead of creating a new pattern family, the captured patterns are used for

evolving the existing family.

Figure 32 shows this process and highlights its iterative nature. During the pro-
cess of building family by evolutionary mechanisms, refinement links are being estab-
lished to capture the refining relationship between a new pattern and existing patterns in a
family. Section 5.2.3 on page 79 shows how the extension algorithm is used to add a pat-
tern to an empty PF.

Evolve the
Capture Domain Knowledge Pattern Family

! using the New Pattern

[More New Patterns]

[Else]
Release the stable Pattern

Family for PF Users

F

The Domain Knowledge Captured

Figure 32 Add a newly built pattern to a pattern family

4.3 Case Study

This section illustrates how a PF analyst locates recurrences to form patterns.

4.3.1 Locating Recurrences: Example 1
The PF analyst analyzes the goal models and business process models created in the field

of patient safety. The top of Figure 24 shows part of the goal model that was created by
observing different departments (Cardiac Surgery Intensive Care, Intensive Care, and
General Internal Medicine) of a real teaching hospital in Ontario between September
2008 and September 2009. Increase Patient Safety is an abstract, recurring requirement
in different hospital departments and in other healthcare institutions. The bottom half the
figure represents the recurrent pieces of goal models in the form goal model building
blocks. Figure 33 shows the Increase Patient Safety goal model building blocks in more

details, including the contributions of Collect Data, Generate Informative Outcome In-

Chapter 4. Building Patterns and Pattern Families - Case Study 69

formation, Make Decision, and Apply Knowledge to the realization of Increase Patient
Safety and all side-effects (on quality and cost) as well as dependencies (on advanced

infrastructure).

Two strategies have been located in the business process models that correspond
to this goal model building block (see Figure 34). The first strategy (A) includes only the
sub-goals Collect Data and Generate Informative Outcome Information and is described
in more detail by the top business process building block in Figure 34. The business pro-
cess building block shows that collecting data occurs before generating information. The
second strategy (B) includes also the two other sub-goals, namely Make Decision and
Apply Knowledge, and adds these activities to its business process building block (bottom
of Figure 34).

Then Collect Data, Generate Informative Outcome Information, Make Decision,
and Apply Knowledge are respectively linked (with URN links) to the Collecting Data,
Generating Informative Outcome Information, Making Safety Decision, and Adopting
Decision stubs in both business process building blocks in Figure 34. All GRL and UCM
models linked together constitute the Increase Patient Safety pattern. Figure 40 illus-
trates this pattern. The created pattern is then used as the input for creating a new PF by

extending an initially empty PF (an approach explained in detail in the next chapter).

Chapter 4. Building Patterns and Pattern Families - Case Study 70

4 Goal Model Building Block N\

Increase Patient
Safety «main»

Collect
Data

Make Safety

Decision

Geperate Adopt
Informative Qutcome ’ Decision
Information

25 Deploy Advanced
Infrastructure

«external»

28/ [

Decrease Costs
K «external»

1st Strategy: Q 2d Strategy: @

Figure 33 Goal model building block for Increase Patient Safety

Increase Quality of
Care in Long Term
«external»

/

Q Business Process Building Block

Collecting éﬁ
Data
AN AN
. % i

Generating Informative

K Outcome Information /

@ Business Process Building Block

Collecting
Data

Making Safety

Decision
Generating Informative Adopting
K Outcome Information Decision

1st Strategy: @ 2nd Strategy: @

Figure 34 Business process building blocks for Increase Patient Safety

Chapter 4. Building Patterns and Pattern Families - Case Study 71

4.3.2 Locating Recurrences: Example 2
The satisfaction of the four sub-goals of goal model building blocks in the Increase Pa-

tient Safety pattern (Figure 33) can in turn be described in another layer of more detailed
patterns. This section briefly illustrates the creation of a pattern that refines Collect Data.

Figure 35 presents such a goal model building block, located by the PF analyst.
The Collect Data goal requires two sub-goals of its own (Collect Outcome Data and Col-
lect Process Data). Figure 36 represents the three corresponding strategies (C, D, and E,
i.e., one, or the other, or both in parallel). Then, Collect Outcome Data and Collect Pro-
cess Data are linked to the Collecting Outcome Data and Collecting Process Data stubs
in the business process building blocks (i.e., UCMs in Figure 36). Finally, this goal mod-
el building block together with the business process building blocks form the Collect Da-

ta pattern.

/ Goal Model Building Block \

Collect Data
«main»
Collect

Process Data

Collect
Outcome Data

Increase Quality of
Care in Long Term
«external»

- /

1st Strategy: @ 2nd Strategy: @
3rd Strategy: @

Figure 35 Goal model building block for Collect Data

Chapter 4. Building Patterns and Pattern Families - Case Study 72

/e Business Process Building Bloch /@ Business Process Building BIOCN

Collecting Collecting
Outcome Data Process Data
® % | ® % |

\ AN /

G Business Process Building Block

Collecting
Outcome Data

Collecting

\ Process Data /
1st Strategy: G 2nd Strategy: @ 3'd Strategy: @

Figure 36 Business process building blocks for Collect Data

In addition, the PF analyst locates the refinement link between the Collect Data in the
Increase Patient Safety pattern and the Collect Data pattern. This will be used when pre-
paring the inputs for the extension algorithm so the refinement relationship will be estab-
lished in the PF.

4.4 Summary

This chapter explained how the PF analyst builds patterns by locating recurring problems
and solutions within a domain. A pattern that captures this knowledge contains a goal
model building block, business strategies (i.e., pairs of business process building block
and evaluation strategy), and realization links between business goals and business pro-
cesses that loosely couple goals in the goal model building block with model elements in

the business process building blocks.

This chapter also illustrated how the PF analyst generates patterns by locating the
recurrent pieces of goal models and business processes models in patient safety and con-
sequently uses these patterns as inputs of evolution mechanisms for creating a PF. Such
mechanisms, which can also be used to create a first PF from a collection of patterns, are

discussed in the next chapter.

Chapter 4. Building Patterns and Pattern Families - Summary 73

Chapter 5. PATTERN FAMILY EVOLUTION

The Family Evolution method is comprised of a collection of solutions for maintaining
the quality and accuracy of patterns in a pattern family. This is an important part of the
Family Development Method (FDM) that enables ongoing development and improve-
ment of a pattern family over their life span, especially as pattern families and patterns
need to adapt to changes in the business domain.

5.1 Motivation and Overview

A Pattern Family (PF) captures the knowledge about recurring solutions that answer re-
curring problems in a specific context within a particular domain. When a PF is created
for a domain, it can be used by another organization in that domain for finding and reus-
ing solutions to a known problem that the particular organization is facing. This is done
through customizing and extending solutions by “applying” a PF (with the OCEM meth-

od), as will be discussed in Chapter 6.

However, stakeholders’ requirements in any domain are dynamic and constantly
changing, which in turn leads to emerging new problems that must be addressed. Con-
stant updates to requirements are caused by changes within the domain and outside of the
domain. For instance, when a government introduces new legislation to improve patient
safety in the healthcare domain (e.g., through stricter reporting of C.difficile cases and of
other infections [131]), healthcare organizations must change their process to comply.
Consequently, this compliance can affect the current way of dealing with a particular
problem in the domain. Furthermore, when new successful practices gain recognition in
the healthcare domain, stakeholders of other healthcare organizations will ask for these
new practices to be integrated to their own. Thus in the long term, a PF can remain useful

only if it can be evolved to comply with ongoing changes.

In the GoPF framework, the PF analyst is a domain-specialized modeler who is
interested in creating and evolving a PF for a particular domain. The PF analyst observes

the goal models and business processes of the organizations in the domain, and inter-

Chapter 5. Pattern Family Evolution - Mativation and Overview 74

views with domain stakeholders as well as with domain experts in order to discover re-
curring problems and solutions. Figure 23 on page 59 and Figure 27 on page 64 represent
the location of recurring problems and solutions, respectively. Figure 26 on page 63 illus-
trate how located problems and solutions are used for building patterns and families.
When new observed patterns are related to a particular PF, the Family Evolution method
will help maintaining this PF. On the other hand, when the PF analyst observes many
new and unrelated patterns, then creating a new PF may be considered. Creating PFs is a
special case of evolution in which Family Evolution mechanisms are used repeatedly on
an initially empty PF.

Extension, modification, elimination, and combination are four types of evolution
mechanisms (Figure 37) that help keep the patterns in a PF up-to-date [132][133]. They
maintain the usefulness of a PF by increasing the quality and accuracy of its patterns and
their interrelationships. They can address current problems and solutions that stakehold-
ers within the domain are facing. These mechanisms respectively change a PF by (i) add-
ing a new pattern, (ii) modifying a current pattern, (iii) eliminating an obsolete pattern,
and (iv) combining two PFs that represent problems of the same domain. Each of these
mechanisms keeps the integrity of the changing PF in addition to evolving individual
patterns. Although the extension and elimination mechanisms would be functionally suf-
ficient by themselves to maintain PFs, the modification and combination mechanisms
provide additional and much needed usability, especially for micro-evolutions (through
modifications addressing fine-grained changes) and macro-evolutions (through combina-

tions addressing large-scale changes).

Gradual changes of patterns in a PF in response to changes in a domain resembles
the concept of evolution in biology. However, changes in the GoPF framework are en-
forced by analysts based on their understanding of the domain, which differs from the
source of changes in biology where changes are mutations providing survival advantages.
Evolution in this thesis actually refers to adaptive maintenance activities in conventional
software evolution, which are (manual) modifications of a software product (or pattern)
performed after delivery to keep it usable in a changed or changing environment. Evolu-
tion here is therefore not related to biology or to automatic evolutionary algorithms from

the artificial intelligence community.

Chapter 5. Pattern Family Evolution - Mativation and Overview 75

A Java program was created to implement these algorithms and test these four
evolution mechanisms. This program, discussed further in Chapter 7, demonstrates the
feasibility of the algorithms, but it does not include advanced features such as rollback in
case of errors. In addition, the performance of the program was not considered, as usually
modification to pattern families (even complex ones) can be handled in less than a se-

cond.

The following four sections of this chapter provide detailed algorithms for each

evolution mechanism.

Family Maintenance

Extention

Combination

O

Figure 37 Evolution UCM

Maintain GPF
aintain GPF Maintained

5.2 Extension Mechanism
When observing organizations and their processes reveals that a relevant pattern is not

included in a PF, the Extension Mechanism helps the PF analyst add the new pattern to
the PF and integrate it with the existing patterns within the family. The Extension Mech-
anism is composed of three major steps (Figure 38). First, it modifies those patterns that
are affected by the new pattern, then it adds the new pattern to the PF, and, finally, it
connects the new pattern to related patterns. In the latter step, all the patterns that are re-
fined by the new pattern are first connected to the extending pattern and then the new

pattern is also connected to those patterns that refine it.

Chapter 5. Pattern Family Evolution - Extension Mechanism 76

Extension Mechanism

[related pattern doesn't exist]

Extend GPF Insert New Pattern

[related patterns exist] Modify Related Pattern

GPF Extended Connect to Related Patterns

Figure 38 Main steps of the Extension Mechanism

In the following, the extension algorithm is presented, described, and finally illustrated

through two examples.

5.2.1 Extension Algorithm

Algorithm 1 provides inputs, outputs, and steps of the extension algorithm. Algorithm
keywords and constants are in boldface Whereas types (from the metamodel) are italicized.

Comments are shown between /+ and */.

Inputs of the extension algorithm
1. pf:PF /* initial pattern family */
2. xp:Pattern /* the new extension pattern */
I13. modifications: ordered set of (rp:Pattern, link:ElementLink, action € {#Add, #Delete},
bst:BusinessStrategy, oldbst:BusinessStrategy)
where link.toLinks.isEqualTo(rp.mainGoal()) A
(action == #Add = link.fromLinks.isEqualTo(xp.GMBB.mainGoal()))

Output of the extension algorithm
0O1. modified pf:PF /* the original pattern family extended with xp */

Precondition and Post-conditions of the extension algorithm

Pre 1: modifications->forAll(m| rp.GMBB.intention->exists(ii.isEqualTo(m.link.toLink)))

Post 1: modifications->forAll(m|m.action == #Add implies rp.GMBB.elementLink->includes(m.link) and
rp.GMBB.intention->exists(i|i.isEqualTo(m.link.fromLink)))

Post 2: modifications->forAll(m|m.action == #Delete implies rp.GMBB.elementLink->excludes(m.link))
Post 3: modifications ->forAll(rp|rp.GMBB.leafCollection()->exists(i|i.isEqualTo(xp.GMBB.mainGoal())) or
xp.GMBB.leafCollection() -> exists

(ili.isEqualTo(rp.GMBB.mainGoal())))

Steps of the extension algorithm

S1. mg:Intention = xp.GMBB.mainGoal() /* mg is the main Intention of xp */

S2. if (not modifications.iSEmpty()) then

S3. maodification (pf, modifications) /* related patterns are modified by using the modification mechanism?*/
S4. endif

S5. pf.insert (xp) /* xp is added to pf */

Chapter 5. Pattern Family Evolution - Extension Mechanism 77

S6. relatedintentions: set of (ri:Intention) where 3 op € pf.patternCollection() A
not op.isEqualTo(xp) A ri € op.GMBB.leafCollection() A ri.isEqualTo(mg)
/* relatedIntentions represents those intentions in other patterns which are refined by xp */
S7. leafintentions: set of (Intention) = xp.GMBB.leafCollection()
S8. foreach (i:Intention in relatedintentions)
S8.1.i.patternDef = xp
S9. foreach (i:Intention in leaflntentions)
S9.1. foreach (p:Pattern in pf.patternCollection() where not p.isEqualTo(xp))
9.1.1. if (i.isEqualTo(p.GMBB.mainGoal())) then
9.1.2. i.patternDef=p
9.1.3. endif

Algorithm 1. Extension of PF

5.2.2 Applying the Extension Algorithm

Once observed recurrences highlight the need for adding a new pattern, the PF analyst

prepares the inputs of the extension algorithm before using it.

This algorithm takes three inputs: pf is an initial pattern family, xp is a pattern
used to extend the initial PF, and the modifications set (Table 4) highlights the effects that
extending pf with xp has on other related patterns of the family. The PF analyst prepares
the second and third inputs based on recurrences. As different types of modifications may
be necessary, the second, forth, and fifth elements of the modifications set may be null.
The precondition (Pre 1) ensures that the toLinks side of the link must always point to the
main goal of rp. If the action is #Add, after the execution of the algorithm, the relevant
pattern must include the link as well as fromLinks intention (post-condition 1). On the
other hand, if the action is #Delete, after the execution of the algorithm, the relevant pat-
tern must exclude the link (post-condition 2). Post-condition 3 limits the usage of the
modifications only to patterns that are refined by or that refine the extension pattern (xp).
These precondition and post-conditions prevent using the extension algorithm for merely
changing an unrelated pattern in pf. Isolated modifications of patterns must use the modi-

fication algorithm, which is described in section 5.3.

Table 4 Elements of the modifications ordered set in the extension algorithm

Element Description

p A related pattern that is affected and must be modified

link A link between two intentions that highlights the part of
the goal model building block that must be modified

action An indicator of what must be done to the link

bst A new business strategy that represents a new solution

oldbst An old business strategy that must be eliminated from rp

Chapter 5. Pattern Family Evolution - Extension Mechanism 78

Steps S1 to S9 carry out the three major activities illustrated in Figure 38. Step S1 initial-
izes mg with the main goal of xp’s goal model building block. Steps S2 to S4 take the
modifications set and invokes the modification algorithm (Algorithm 2) to modify related
patterns in pf. This captures the possible effects of adding xp on other patterns in PF. In
step S5, the new pattern, xp, is added to pf. Although this is conceptually a simple inser-
tion of a pattern, it is in fact an in-depth copy in which every element of xp is copied into
pf. In step S6, a set of leaf intentions (without any incoming links) of other patterns in pf
that are equal to the main goal of xp is assigned to relatedintentions. This is the set of
intentions that are refined by xp. In S7, the set of leaf intentions of xp’s goal model build-
ing block is assigned to leafintentions. Elements of leafintentions may be refined by other
patterns in pf. In step S8, the related intentions are linked to xp by assigning xp to pat-
ternDef of intentions in relatedintentions. Finally, in step S9, intentions of xp’s goal
model building block that can be refined with other patterns in pf are linked to the appro-

priate pattern by setting their patternDef accordingly.

5.2.3 Example 1: Extension of an Empty PF
Extending an empty PF is a special case of extension that initializes a new PF. This sec-

tion illustrates how to use the extension algorithm for creating a new PF in the patient
safety domain. When observing the patterns underscores the need for a new pattern fami-
ly, the PF analyst creates the inputs for the extension algorithm: pf is an empty PF (11), xp
is the new pattern recognized that must be added to pf (12), and modifications is an empty

set because no pattern in pf needs to be modified (I3).

The top half of Figure 39 represents the goal model building block and business
processes templates of the Increase Patient Safety pattern. The goal model building
block (in GRL form) depicts a recurring problem (Increase Patient Safety) and elements
of solutions that influence its satisfaction (Collect Data, Generate Informative Outcome
Information, Make Safety Decision, and Adopt Decision). Business process building
blocks (in UCM form) capture the process of achieving Increase Patient Safety. In the
bottom half of the Figure 39, the business process building blocks of two strategies in the
pattern are provided. Strategy A represents a solution in which Collecting Data and Gen-
erating Informative Outcome Information increase the patient safety by ad hoc improve-

ment of process brought to light by the collected data and the processing of such data.

Chapter 5. Pattern Family Evolution - Extension Mechanism 79

Strategy B, on the other hand, uses Make Safety Decision and Adopt Decision in addition
to the other two elements. Consequently, it improves the quality of care by systematically

changing the underlying procedures in the hospital.

Goal Template

Increase Patient
Safety

* /’+50 o= 50 B

S Generat If ti b b
- enerate 1nrormative
Collect Data Qutcome Information MaDkeeCISS?Ofﬁty AdOpt Decision

a (Ad-hoc Strategy) Business Process Template b (Adavanced Strategy) Business Process Template

Vi
N

Increase Patient Safety Collecting Data

Collecting Data Generating Informative Outcome Information

Patient Safety Increased
Increase Patient Safety

Adopting Decision Making Safety Decision

Generating Informative Outcome Information

Patient Safety Increased

Figure 39 Top: goal model building block of xp - Bottom: business process building

blocks of xp

Figure 40 shows the Increase Patient Safety pattern as a UML object diagram instantiat-
ing the Family Metamodel (FMM). In order to increase readability of the diagram, ob-
jects of the ElementLink class in the metamodel are not shown. Furthermore, to make the
diagram more compact, I, C, G, M, and A are used respectively to identify the Increase
Patient Safety, Collect Data, Generate Informative Outcome Information, Make Decision,
and Adopt Decision intentions. Although the name attribute of these instances denotes the
complete name of the objects, this attribute is hidden on large diagrams in the rest of this
thesis.

Chapter 5. Pattern Family Evolution - Extension Mechanism 80

| pl:Pattern | -~ ptPF
\/] name="ncreasePatient SatetyPattern' | name="HeslthcarePF"

=1 1:EvalustionStrateqy

bzl 1:BusinessSirate
name="Basicimprovement'

name="Basicimprovement'

=1 ZEvalustionStrateqy

name="Advancedimprovement'

hel 2BusinessStratedy

name="Advancedimprovement'

< -

bptl 1:BusinessProcessBB
natme="Bagiclimprovement'
& [

GPs1 1.ProcessElement

name="GeneratinglnformativeOl

bpt1 2 BusinessProcessBE

name="Advancedimprovement'

CP=1 1:ProcessBlement

name="CollectinybstaPattern'

WMPs1 2:ProcessElement
natme="makingDecision’

CPs1 ZProcessElement GPs1 2 ProcessElement
name="CollectingDataPattern' name="GeneratinglnformativeCl

APs1 2.ProcessElement
natme="4pplyingknowlecdge’

Ciirtertion Gintention - intertion
name='"CollectDataPattern’ name='GeneratelnformativeOr name=MakeDecision’ -
leaf=true leaf=irue leaf=true Silizniton
mainGoal=talse meinGoal=talse mainGoal=false name="Applyknowledse!
leaf=true
mainGoal=falze
Lintention
| ol:GoalModelBE | name="ncreasePatientSatety’
| name='ncreasePatientSatetyGoalodelBE' | leaf=false
mainGoalktrue

Figure 40 Object model of Increase Patient Safety pattern

Application of the Extension Algorithm to an empty PF

Step S1 initializes mg with | (Increase Patient Safety), which is the main goal of xp’s
goal model building block. The next three steps (S2, S3, and S4) are in charge of modifi-
cation but because the modifications set is empty, these steps do not invoke the modifica-
tion algorithm. Step S5 adds xp to pf through an in-depth copy. After this step, xp be-
comes a part of pf but it is still an isolated pattern as the need for links between xp and
related patterns in pf is not yet explored. In step S6, relatedintentions is set to null be-
cause no other pattern with a leaf intention equal to mg exists in pf. In other words, the
new pattern is not refining any intention of other patterns. Step S7 assigns the leaves of
xp ({C,G,M,A}) to leafintentions. Steps S8 and S8.1 do not apply because relatedinten-
tions is empty. Steps S9 and S9.1 are applied for each element of leafintentions. Howev-
er, because no pattern in pf refines elements of leafintentions, no further action is taken in
steps 9.1.1, 9.1.2, or 9.1.3. Figure 41 shows the output of this algorithm (O1) as an ob-
ject diagram. This figure represents the extended PF where Increase Patient Safety pat-

tern (xp) was added to the initially empty PF (pf).

Chapter 5. Pattern Family Evolution - Extension Mechanism 81

[ol Pattern | ptPE
\/] nate="ncreasePatient SatetyPattern’ | Lname:‘HealthcarePF'

1

The pattern family 1
that now includes 1
1

1

______ | “Increase Patient
Safety Pattern”

=1 1:Evalustionstrateqy

8 bzl 1:BusinessSirate
name=Basicimprovement'

name="Basiclmprovement'

bptl 1:BusinessProcessBB

£

=1 ZEvalustionStratecy

name="'Advancedimprovement'

bs1 2 BusinessStrateqy
name="Advancedimproyement'

bpt1 2 BusinessProcessBE
name="S&dvancedimprovement

7 i o

CP21 2:ProcessElement GPs1 2 ProcessElement
name="GeneratinglnformativeCl

name="CollectingDataPattern'

name="Basiclmprovement'

[}

CP=1 1:ProcessElement

name="CollectinybataPattern'

GPs1 1 ProcessElement

name="GeneratinglnformativeOl

MPs1 2:ProcessElement
natme="makingDecision’

APs1 2 ProcessElement
name="Applyingknowlecge’

Cirtertion Gintertion Windertion
name="CollectDataPattern’ name='Generatelnformativec! name="WskeDecizion'
leaf=true leaf=true leaf=true
mainGoal=false meinGoal=talze mainGoal=false name="Applyknowlecge'

A Intention

leaf=true
mainoal=falze
Lintention
| gl:GoallodelBE | name=1ncreasePatiertSatety’

| name="ncreasePatientSatetyGoalModsIBE" | leaf=false
mainGoal=true

Figure 41 Object model of an empty PF extended to include Increase Patient Safety

pattern

5.2.4 Example 2: Extension of Non-Empty PF
In this section, the extension algorithm is used for evolving a PF that is already estab-

lished and that contains some patterns.

In the patient safety case study, a pattern family comprised of 32 interrelated pat-
terns is created [39]. These patterns are mostly focused on the problem of improving pa-
tient safety by highlighting processes that can be improved. The patterns in this family do
not use the data collected along the way for taking immediate actions to prevent an ad-
verse event for a particular patient. Over time, it was observed that some hospitals use
such collected data not only for a posteriori analysis but also for preventing the potential
adverse events that may happen. Consequently, the PF analyst creates a new pattern (xp)
that captures the problem of taking action to prevent predictable adverse events and its
alternative solutions. The recurring excerpt of the observed goal model that formulates
the main observed goal, Take Action, forms the goal model building block of xp (left side
of Figure 42). In this goal model building block, the side effects of alternative business
strategies are hidden in order to simplify the example. The goal model building block is
composed of the main high-level goal, i.e., Take Action, and of the elements of solution,
i.e., Prioritize Outcome and Prevent Outcome. The alternative solutions are captured in

the form of business strategies that are composed of business process building blocks and

Chapter 5. Pattern Family Evolution - Extension Mechanism 82

strategies. The two business process building blocks of the new pattern are shown
in Figure 42 (right side).

Goal Template

Business Process Template
Take Action Preventing,Outcome

— —1

Business Process Template

Prevent Outcome Prioritizing/thome Pre/ve\nting Outcome

X I

Figure 42 Left: goal model building block of xp - Right: business process building
blocks of xp

The extension algorithm (Algorithm 1) changes the patient safety PF to include the Take
Action pattern. The analyst prepares and provides the following inputs: pf as the initial PF
that must be extended (I11), xp as the new pattern (I12), and modifications as a set that rep-

resents the needed modifications on other patterns in pf (13).

The left part of Figure 46 (with grey background) illustrates the initial pf as an
FMM-based UML object diagram, with only 3 out of the 32 patterns, for brevity. In this
example, the Increases Patient Safety pattern (p1) is the only pattern affected by the ex-
tension because Take Action positively contributes to the Increases Patient Safety goal.
Therefore, modifications is set to {(p1, link_I_T, #Add, bs1_3, null)}, indicating the new
goal that must be added to p1’s business goal model building block. It also indicates the
new business strategy that represents an alternative solution that must be added to
pl. Figure 44 shows the business processes template of the bs1_3 business strategy as a
UCM diagram. As shown in this figure, the collected data and generated information
about the current outcome and potential outcome may be used to prevent outcomes by
taking immediate actions. Finally, because none of the existing business strategies is be-

ing eliminated, the last element of modifications set is null.

Chapter 5. Pattern Family Evolution - Extension Mechanism 83

TAUASa00T ol

TRUAESI0137 o

TR0, £

_ HHssa00IgssaURTg g £ 9_

TEeEsan | o

£5dy

ThARIEEEaUENT T £5g

/

JIEINETREEERT

SENEUORNERIT 5

£5d7

UoU=ZD

{ OB

TR0 50

WO |

-§

TRWEEEST0 T Codd

_ FRISEEAUIENG | CEY

TQ%

SelSUOENEAT]] €3

TRWRERSE0T Jdv

TOURESE0GT (5

TEWEEEseI0IdT S

TEE0g]

%

E

FESe00igEsaUEng . o _

AlRSERAUENTE L5

FENSEEaUENT T o

_ ggszadoldzzauEng:] 7 Q_

BEISUDNENEAT | 73
W T

FESEEaUENT | 5

TR 0onEnEAT] &

TERNSIOENETT =

ial PF

ini

Figure 43 Object model of a non-empty PF used as

84

Chapter 5. Pattern Family Evolution - Extension Mechanism

Figure 45 illustrates xp as an FMM-based UML object diagram (objects of the Element-
Link class are not shown in favor of readability). In this diagram T, V, and Z respectively

identify intention objects for Take Action, Prevent Outcome, and Prioritize Outcome.

2
~

Generating Informative Outcome Information

ey
#
PN

Collecting Data

ey
4,
Y

|

Increase Patient Safety

’

Taking Action

#
#
PN

Patient Safety Increased Adoptln?’\Deaswn Making Safety Decision
I_ __t:' \:\J\/ﬁ‘\

Figure 44 bptl_3, which is the business process building block of bs1_3

xp:Pattern be4 1:BusinessStratedy . 24 1:EvalustionStratecy
name="DecreaseCutcomePattern’ name="ImmediatePrevention’ name="ImmediatePrevention’
e bptd 1:BusinessProcessBR
% name="ImmediatePrevention’
name='"TakeAction'
leat=false /
< GoaModeIBE mainGosl-tre PR T pp——
- B 1 : oy
T] = YP=d4 1:ProcessFlement w&-w
siEngen I name="PriortizedPrevention’ namme="PriottizedPrevention’
\ name="PrevertOutcome’ S = e
leat=true 5—‘“\-&_ ?
[ueinCosiatalss WPgd 2:ProcessElement
p— e G [-———{ bitd 2:BusinessProcessBB
= ,_—-’4> name="PrioritizecPrevention’
name="PriortizeCutcomes' 7P=d4 2 ProcessElement
lea.fztrue name="PriotitizeCutcomes
mainGoal=false

Figure 45 Object model of xp pattern

Chapter 5. Pattern Family Evolution - Extension Mechanism 85

Application of the Extension Algorithm to a non-empty PF

Step S1 initializes mg with T (Take action), which is the main goal of xp’s goal model
building block. Steps S2, S3, and S4 invoke the modification method with pf and the
modifications set as its inputs. The modification algorithm (section 5.3) applies these
changes to the related patterns, i.e., p1, as it is the only related pattern in pf. Figure 46
shows the modified pf, where the area encapsulated within the dashed box (bottom right)
represents the modifications. The details of T2 (Taking Action) at p1 level are dismissed
so when the users of pf choose a solution at p1’s level that includes T2, the solution will
be refined by using the new pattern. Step S5 adds xp to pf. This is an in-depth copy of all
elements of xp into pf. After this step, xp becomes a part of pf but it is still an isolated
pattern as the links between xp and related patterns in pf are not yet established. Step S6
finds those intentions that are (i) leaves of other patterns in pf and (ii) equal to the main
goal of xp’s goal model building block. In this example, T2 (Take Action) is a leaf inten-
tion in p1 and is equal to mg. Therefore, relatedintentions is set to {T2}. Step S7 assigns
the leaves of xp’s goal model building block ({V, Z}) to leafintentions. Steps S8 and S8.1
set the patternDef of T2, which is the only member of relatedIntentions, to xp. This cap-
tures the fact that xp is refining the T2 intention in the goal model building block of p1.
Steps S9 and S9.1 are applied to each element of leafintentions. However because no
pattern in pf refines either V or Z, no action takes place in steps 9.1.1 , 9.1.2 ,
or 9.1.3. Figure 46 shows the output of this algorithm (O1). It represents the extended PF
after the new pattern xp (top-right) was added and integrated with the patterns in the ini-
tial PF (pf).

Chapter 5. Pattern Family Evolution - Extension Mechanism 86

— e

UonUaLA

TEWEIEEa000d] Fedh,

uonu=gu L

(dx) useped
uonay ayel \

TEURESSE0IL] 1530 |

U=

_ FIENE EE R]

/

(punoibyoeg
Ka19) 1d Majes
juaijed [euiBIO

TEEEEEa000d | £=d

R]

JUAWRIFEEI0.4E FE4d

-g

[ITITNENITR

WEER TEEERTT 5
oy

uonusiio

TIEWEgEEa000d | Z5d0

UORH[ED

L]]

SORPONETD

TEwEgEEaa0Id), 1edD

———— — INENEEEE R - gIsza00i4s2aUlEngs g
o e
suonedyipo TENETEEaI004E 15 TRIETRTEE
* < ORI TEWEIEEa00IdE, [odD PRISTIPRGE P
TR RWRIEERI00 T [Edy
[Gmenis | TEUSZESE0IT [530
T | SR Fa]
(I

(1d) wieyed fojes
jualjed asealou|

ludes the xp pattern

InC

Figure 46 Object model of the extended PF pf that

87

Chapter 5. Pattern Family Evolution - Extension Mechanism

5.3 Modification
This section describes the algorithm for evolving a PF by modifying its patterns within a

PF. Such evolution is needed when:

I. changes in a domain indicate that the goal model building block or busi-

ness strategy of a pattern must be updated,

Il. the PF is being extended with a new pattern and introducing the new pat-
tern affects a particular pattern (i.e., the way it is used within Algorithm
1), and

I1l. another pattern in the PF is eliminated and a particular pattern is affected.

The algorithm modifies the goal model building block to update the problem, elements of
solutions, and the contributions between the elements. Similarly, the modification of

business strategies enables the modification of solutions and their effects.

A modification is composed of three main optional and possibly cyclic steps
(see Figure 47): first, it modifies the goal model building block of a pattern, then it re-
moves the old business strategy (if already present), and, finally, a new business strategy
is added (if available). The following subsections provide the details of the modification
algorithm, the general application of this algorithm, and its illustration based on a specific

example from the patient safety case study.

Modifying Goal Template Inserting New Business Strategy
Eliminating Obsolete Business Strategy

Modify Patterns Patterns Modified

Vd
~

Figure 47 Main steps of the modification mechanism

5.3.1 Modification Algorithm
The following algorithm provides steps for modifying a PF.

Chapter 5. Pattern Family Evolution - Madification 88

Inputs of the modification algorithm
1. pf:PF /[*initial pattern family */
I2. modifications: ordered set of (p: Pattern, link:ElementLink, action € {#Add,#Delete},
bst:BusinessStrategy , oldbst:BusinessStrategy)
where link.toLinks.isEqualTo(p.GMBB.mainGoal())

Output of the modification algorithm
O1. modified pf:PF /* the modified pattern family */

Preconditions and post-conditions of the modification algorithm

Pre 1: pf.pattern->size()>0

Pre 2: modifications->forAll(m| p.GMBB.intention->exists(i|i.isEqualTo(m.link.toLink)))

Post 1: modifications->forAll(m|m.action == #Add implies p.GMBB.elementLink->includes(m.link) and
p.GMBB.intention-

>exists(ili.isEqualTo(m.link.fromLink)))

Post 2: modifications->forAll(m|m.action == #Delete implies p.GMBB.elementLink->excludes(m.link))

Steps of the modification algorithm
S1. for each m in modifications:
S2. mp:Pattern = a pattern in pf.patternCollection() where pattern.isEqualTo (m.p)
/* m.p is the first element of the m */
S3. if (m.action == #Delete) then
S4. mp.GMBB.delete(m.link)
S5. elseif (m.action == #Add) then
S6. mp.GMBB.add(m.link)
S7. endif /*if no action is provided then the GoalModelBuildingBlock is unchanged */
S8. if (m.oldbst # null) then
So9. pbst:BusinessStrategy = a businessStrategy in mp.businessStrategyCollection()
where businessStrategy.isEqualTo(m.oldbst)
S10. mp.delete(pbst)
S11. endif
S12. If (m.bst # null) then
S13. mp.add(m.bst)
S14. endif

Algorithm 2. Modification of PF
5.3.2 Applying the Modification Algorithm
Once observed changes in the domain highlight the need for modifying a PF, the PF ana-
lyst prepares the inputs and uses the modification algorithm standalone or through other
evolution mechanisms to update the patterns.

The modification algorithm takes two inputs: pf is a PF in which some patterns
must be modified (I1), and a modifications ordered set (see the structure of its elements

in Table 5) that represents the required modifications (12).

Table 5 Elements of the modifications ordered set in the modification algorithm

Element Description

p A pattern that is affected and must be modified

link A link between two intentions that highlights the part of the
goal model building block that must be modified

action An indication of what must be done on the link

bst A new business strategy that represents a new solution

oldbst An old business strategy that must be eliminated from p

Chapter 5. Pattern Family Evolution - Madification 89

As different types of modifications may be necessary, the second, forth, and fifth ele-
ments of modifications set (Table 5) may be null. The first precondition prevents using
the modification algorithm on empty pattern families. The second precondition makes
sure the toLinks side of the link always points to an intention in the goal model building
block of p. The first post-condition ensures that when the action is #Add, the algorithm
adds the link as well as the link.toLinks intention to the relevant pattern’s goal model
building block. The second post-condition ensures that when the action is #Delete, the
algorithm deletes the link from the relevant pattern’s goal model building block. These
preconditions and post-conditions prevent using the modification algorithm for modify-

ing unrelated patterns. The output of the algorithm represents the modified pf (O1).

Steps S2 to S14 must be taken for each element of the modifications set. Step S2
initializes mp with the pattern of the active member m of the modifications set. Next, in
steps S3 to S7, depending on the type of action, the link will be either added to
(steps S3, S4) or deleted from (steps S5, S6, S7) mp’s goal model building block. Then, if
m.oldbst is not null, it will be deleted from mp in steps S8 to S11. Finally, if m.bst con-

tains a new business strategy, then it is added to mp (steps S12 to S14).

5.3.3 Example: Modification of a Pattern
The Modification Mechanism can be used as a standalone mechanism for modifying a

pattern within the family or it can be used through other mechanisms to update the fami-
ly. This example illustrates the details of how the modification algorithm modifies the PF
when it is used via the Extension Mechanism in the example of section 5.2.4. The inputs

of the modification algorithm in this example are:

(11) — pf, which is the initial PF. This input is provided to the modification algo-
rithm by step S3 of the extension algorithm in section 5.2.4. The left part of Figure 46
(with grey background) represents this input.

(12) — modifications set is the second input provided in S3 of the extension algo-
rithm in section 5.2.4, which is equal here to {(p1, link_I_T, #Add, bs1_3, Null)}

Applying the Modification Algorithm

The steps (S2 - S14) must be taken for all elements of the modifications set, which in this

case has only one member (called m). S2 initializes mp with p1, i.e., the first element of

Chapter 5. Pattern Family Evolution - Madification 90

m. Because m.action is equal to #Add, steps S5 to S7 add link_I_T to the goal model
building block of p1. No action is taken in steps S8, S9, S10, S11 because m.oldbst is
null (there is no old business strategy to be deleted). The underlying object model at this

point is illustrated in Figure 48.

[o0-Pattern |
L7

|bs1 1:BusinessStratedy |<j31 1:EvalustionStratecyy

31 _2EvaluationStratedy bpt! 1:BusinessProcessBB

b1 2BusinessStratedy

CP=1 1:ProcessElement

R
GPs1 1:ProcessElement

|bp11 2 BusineszProceszBB |

iy
\ CPs1 2:ProcessElement

C:Irtention

GPs1 2ProcessElement Girtention
MPs1 2:ProcessElement h:Intention

APs1 2ProcessElement

Aclntertion

T2:Intention

Figure 48 Object model of the p1 pattern after modification of its goal model building
block

Steps S12 to S14 add the new business strategy in m.bst to p1. This business strategy
represents another solution to the problem (Increase Patient Safety) in p1. This solution
contains T2 (Take Action) along with other intentions for improving the underlying pro-
cedures. Figure 44 on page 85 illustrates the business process building block of this solu-
tion. Figure 49 represents p1 after the whole modification. Figure 46 shows the complete
output of the modification algorithm (O1). In this particular example, the modified PF is
returned to step S3 of the extension algorithm in section 5.2.4, which initially invoked the

modification algorithm.

Chapter 5. Pattern Family Evolution - Madification 91

Lintertion <_ ul.GoaMadelEE

S e g

\ CPs1 2:ProcessElement Cintertion

GPz1 2:ProcessElement ' G ntention

tiPs1 2:ProcessElement W ntertion |7
o

APs1 2:ProcessElement

1 Addntention
i
CPs1 3 ProcessElement
=

= ——— =
z1_SFvalustionStratedy

N

\

T2 Intertion

5Ps1 FProcessElement

‘ N To modify the pattern, the
b1 3BusinessStratedy S G B e ire Goal Model Building Block is

modified and a new
business strategy is added

0

bpt! 3:BusinessProcessBE T2P=1 3:F‘rocessEIement|]

APzl 3:ProcessElement |

Figure 49 Object model of the p1 pattern after modification

5.4 Elimination
When the PF analyst observes that a pattern in the PF is no longer needed by the PF users

and does not solve current problems of the stakeholders, it is considered obsolete. Conse-
quently, it must be removed from the pattern family. This section describes the algorithm
for evolving a PF by eliminating its obsolete patterns. Elimination is composed of three
steps (Figure 50). First, all pattern refinement (patternDef) links from those patterns that
were refined by the obsolete pattern are removed. Next, related patterns in the family that
are being affected by elimination are modified. Then, the obsolete pattern is deleted from
the family. The elimination algorithm uses the modification algorithm for modifying the
related patterns in the family. The Elimination Mechanism does not propagate elimina-
tion of patterns, so if another pattern becomes obsolete as a result of removing one pat-
tern from the family, the PF analyst must explicitly use the Elimination Mechanism to

eliminate the other obsolete pattern.

Chapter 5. Pattern Family Evolution - Elimination 92

Eliminate Pattern Remove Refinement Connections Maodify Related Patterns Delete the Obsolete Pattern pattern Eliminated

- N BN —

Figure 50 Main steps of the Eliminating Mechanism

5.4.1 Elimination Algorithm

Algorithm 3 provides inputs, output, and steps of the elimination mechanism.

Inputs of the elimination algorithm
11. pf:PF
I2. op:Pattern /* an obsolete pattern that must be eliminated from pf */
I3. modifications: ordered set of (rp:Pattern, link:ElementLink, action € {#Add,#Delete},
bst:BusinessStrategy , oldbst:BusinessStrategy)
where (link.toLinks.isEqualTo(rp.GMBB.mainGoal()) A
(action == #Delete = link.fromLinks.isEqualTo(op.GMBB.mainGoal()))

Output of the elimination algorithm
O1. modified pf:PF /* the original pattern family where op is eliminated*/

Steps of the elimination algorithm
S1. foreach (p:Pattern in pf.patternCollection() where not p.isEqualTo(op))
S1.1.foreach (i:Intention in p.GMBB.leafCollection())
1.1.1. if (i.patternDef .isEqualTo(op))
1.1.2. i.patternDef =null

1.1.3. endif
S2. if (not modifications.isEmpty()) then
S3. modify (pf, modifications) /* related patterns that will be effected are modified */
S4. endif

S5. pf.delete(op) /* op is removed from pf */
Algorithm 3. Elimination of PF

5.4.2 Applying the Elimination Algorithm
This algorithm takes three inputs: pf is an initial PF (11), op is an obsolete pattern that

must be removed from the initial PF (12), and the modifications set (Table 6) highlights
the effects that eliminating op from pf has on other patterns in the family (I3).

Table 6 Elements of the modifications set in the elimination algorithm

Element Description

p A related pattern that is affected by elimination of obso-
lete pattern and must be modified

link A link between two intentions that highlights the part of
the goal model building block that must be modified

action An indication of what must be done on the link

bst A new business strategy that represents a new solution

oldbst An old business strategy that must be eliminated from rp

Chapter 5. Pattern Family Evolution - Elimination 93

The PF analyst locates the obsolete pattern by observing pattern usage of PF users in a
specific domain and by using their feedback about patterns in the PF. She then analyzes
and determines the effects of this elimination, which in turn, leads to the creation of a

modifications set.

As different types of modifications may be necessary, the second, forth, and fifth
elements of modifications set (see Table 6) may be null. The toLinks side of the link must
always point to the main goal of rp. If the action is #Delete, then the fromLinks side must
point to an intention that is refined by op. These two preconditions prevent using the
elimination algorithm for merely changing an unrelated pattern in pf. Isolated modifica-
tions of patterns must use the modification algorithm described in section 5.3. pf is the

modified pattern family in which the obsolete pattern is eliminated (O1).

Through steps S1 to S5, this algorithm carries out the three major activities illus-
trated in Figure 50. Step S1 and its sub-steps remove those refinement links in the family
that are pointing to the obsolete pattern. Steps S2 to S4 modify those patterns that are
affected by elimination of the obsolete pattern. Finally, step S5 deletes the obsolete pat-

tern from the pattern family.

5.4.3 Example: Elimination of an Obsolete Pattern
This example illustrates how the elimination algorithm eliminates an obsolete pattern

from PF. In order to use the Elimination Mechanism, the PF analyst prepares and pro-
vides pf (I11), op (12), and modifications set (I3).

For the purpose of simplicity, this example uses the pf created in section 5.2.4 and
eliminates the Action Taking pattern with which the PF in that section was
ed. Figure 51 illustrates the FMM-based UML object diagram of the mentioned pf (11). In
this PF, the Action Taking pattern is considered obsolete (12). In this example, the In-
creases Patient Safety pattern (p1) is the only pattern affected by the elimination because
the PF analyst considers Take Action as an element that does not contribute to Increases
Patient Safety. Therefore, modifications is set to {(p1, link_I_T, #Delete, null, bs1_3)}.
link_I_T indicates the obsolete goal (Take Action) and its contributions that must be re-
moved from p1’s business goal model building block. It also indicates the old business

strategy that represents an alternative solution that must be removed from p1.

Chapter 5. Pattern Family Evolution - Elimination 94

TRUEEEEa00id T bedz

JEWSEESI0EE Fedh

[ET=Tw

ME=e

Z1 saulyal do smoys

EEHIETTE

TOR0aTH

eWEgEEa00id e E5dN
=0T E BT e] =T

VEWR[EFEEII0IT Ead |

UoRUauLT

TEUEEEEaa01g | tedd

[

JRWIESEA00/d] E5d 1

i

UDRUSLIZ o

palipow aq Isnw
1eyr 0|g Buipjing

TETREEEa0IdE [Edv
S
By Sul| Jaquiayed TEUREEE00d L 12dW
. B -
DEIEEAl \EmEm_mmmmuEa T 150

oS | TRWEEEsa00idE 1549

[EHIETTEE]

TOEG || TRRREEssa0d] 25d0 |

UORUIULZ T

L]

EEETERY

aWE 590000 E 154D

TOETEFEEEI0 T (=40

S

=T =R

ial PF with an obsolete pattern (op)

ini

Figure 51 Object model of

95

Chapter 5. Pattern Family Evolution - Elimination

Applying the Elimination Algorithm

Step S1 and its sub-steps set patternDef of T2 to null. This removes the refinement link
between T2 and op (see Figure 51). The next three steps (S2, S3, and S4) invoke the
modification algorithm with pf and the modifications set as its inputs. The modification
algorithm (section 5.3) applies these changes to the related patterns, i.e., p1, as it is the
only related pattern in pf. Finally, S5 removes op from the pf. The modified pf will be
equal to the pattern family illustrated in the left part of Figure 46 (with grey background).

5.5 Combination
This section describes the Combination Mechanism, which targets the combination

(merging) of two pattern families. When PF analysts observe that two pattern families
describe similar areas of a domain, they may use this algorithm to merge the two fami-
lies. The output of this algorithm is a pattern family that includes the patterns from both
initial PFs. This algorithm also maintains the integrity of patterns and their relationships
in the output. The PF analyst can then further modify the resulting PF with the Extension,
Elimination, and Modification Mechanisms.

The Combination Mechanism empowers the PF analyst to define the starting
point of the combination of two pattern families. This feature makes it possible to use the
algorithm for two distinct purposes. First, selecting the highest-level common pattern as
starting point will lead to creating a pattern family that includes all the patterns that refine
the start point. Second, by selecting a common pattern in the middle of pattern family
hierarchy, this algorithm creates a common subset of both pattern families. The latter,
less apparent usage of this algorithm, is particularly useful to create a pattern family from

a common subset of patterns in two PFs that would otherwise have little similarities.

The Combination Mechanism can be used to combine two PFs from a particular
start point. Having a start point is valuable because it enables the analyst to merge the
overlapping parts of two slightly different pattern families into a new pattern family that

includes the more specific knowledge scattered over two original families.

5.5.1 Combination Algorithm

Algorithm 4 provides inputs, output, and steps of the combination mechanism.

Chapter 5. Pattern Family Evolution - Combination 96

Inputs of the combination algorithm

1. pfl:PF /*this PF is the first pattern family */

2. pf2:PF /* this PF is the second pattern family */

I3. startPattern:Pattern /* this is a common pattern in both pfl and pf2 and is used as the start point for
combination */

Output of the combination algorithm
O1l. pf:PF /* a pattern family that contains the patterns from both pfl and pf2 */

Preconditions and post-condition of the combination algorithm

Pre 1: pfl.patternCollection()->exists(p|p.isEqualTo(startPattern))

Pre 2: pf2.patternCollection()->exists(p|p.isEqualTo(startPattern))

Post 1: let pflsubset = pfl.pattern->any(p|p.isEqualTo(startPattern))->first().DefiningPatternSet() in
let pf2subset = pf2.pattern-> any(p|p.isEqualTo(startPattern))->first().DefiningPatternSet() in
let pflpf2subset = pflsubset->union(pf2subset)->union(startPattern) in
pf.patternCollection()->forAll(p1|pflpf2subset.->exists(p2|p2.isEqualTo(pl))) and
pflpf2subset->forAll(pl|pf.patterncollection()->exists(p2.isEqualTo(pl)))

Steps of the combination algorithm
S1. pf=new PF /*initialize pf */
S2. pfinsert(startPattern)
S3. toMerge: ordered set of (Pattern)= {startPattern}
S4. allPatterns: set of (Pattern) = pfl.patternCollection() U pf2.patternCollection()
S5. while (toMerge is not empty)
S5.1.nextPattern:Pattern = toMerge.nextElement()
S5.2.nextLeafGoals:set of (Intention) = nextPattern.GMBB.leafCollection()
S5.3.foreach (g:Intention in nextLeafGoals)
5.3.1. foreach (p:Pattern in allPatterns)
5.3.2. if (p.GMBB.mainGoal().isEqualTo(g)) then

5.3.3. pf.insert(p)

5.3.4. g.patternDef = p
5.3.5. toMerge.append(p)
5.3.6. endif

S5.4.toMerge.removeElement(nextPattern)

Algorithm 4. Combination of PFs

5.5.2 Applying the Combination Algorithm
When two pattern families represent the knowledge in one domain and have similar pat-

terns, the PF analyst may decide to combine two families in order to have a new PF that
better captures the overall knowledge in the domain. The Combination Mechanism can

be used to combine two PFs from a particular start point.

In order to use the Combination Mechanism, the PF analyst prepares and provides
two pattern families, pfl (I11) and pf2 (12), along with the starting point startPattern (13).
The output of the algorithm represents the new pf (O1). The combination algorithm as-
sumes that common patterns (i.e., patterns with the same name) are the same in both PFs.
In those cases where patterns are slightly different but can be combined into one common
pattern, the analyst must first use the Modification Mechanism (Section 5.3) in order to
eliminate the differences among patterns that must be considered as equivalent. Precondi-

Chapter 5. Pattern Family Evolution - Combination 97

tion 1 (Pre 1) and precondition 2 (Pre 2) respectively limit the inputs 11 and 12 so they
contain the startPattern (13). The post-condition 1 ensures that the output pattern family
(pf) includes all the patterns in each of pfl and pf2 that can potentially refine startPattern.
There are other well-formedness constraints such as “pfl and pf2 must include no more
than one pattern equivalent to startPattern” or “all patterns in pf must directly or indirect-
ly refine startPattern”. It should be noted that such well-formedness constraints are im-

plied by the OCL constraints provided in Chapter 3.

Step S1 defines pf as an empty pattern family. After the complete execution of the
algorithm, pf will contain the combined pattern family. Step S2 inserts the pattern from
startPattern into pf. Step S3 defines toMerge as an ordered set of patterns and initializes it
with startPattern as its first element. Step S4 defines allPatterns as a set of patterns and
initializes it with the patterns in pfl union those in pf2. Step S5 is a loop that adds pat-
terns from the toMerge list to the combined pattern family. Step S5.1 assigns the first
element of the toMerge list to nextPattern. Step S5.2 then assigns all the leaf intentions of
the nextPattern’s goal model building block to nextLeafGoals. These intentions may po-
tentially be refined with other patterns in the allPatterns set. Step S5.3 and its sub-steps
form a nested loop that checks all the elements of allPatterns to find patterns that refine
intentions in nextLeafGoals. Once a refining pattern is found, steps 5.3.3 to 5.3.5 add that
pattern to pf, connect it to the relevant intention in nextLeafGoals, and add it the toMerge
list. After all iterations of S5.3, the pattern in nextPattern is connected to all those pat-
terns from both pfl and pf2 that could refine its leaf intentions. Next, step S5.4 removes
this pattern from the toMerge list. Subsequent iterations of step S5 examine the next pat-
terns in toMerge for finding their refining patterns and adding them to pf. The iterations

of step S5 continue until all the refining patterns in both pfl and pf2 are included in pf.

5.5.3 Example: Combination of two Pattern Families
This section illustrates the application of the combination algorithm by combining two

patterns families that cover part of the case study’s patient safety domain (i.e., prospec-
tive surveillance). In order to avoid unnecessary complexity, unlike the examples in pre-
vious sections, patterns are represented here in a more abstract and compact way using
stereotyped UML packages. Figure 52 shows the Increase Patient Safety pattern in this

format and illustrates how it hides the details of this pattern.

Chapter 5. Pattern Family Evolution - Combination 98

. / «GoalTemplate»
7 Increase Patient Safety
/
/
/
/
,° «BusinessStrategy» «BusinessStrateg...
/, Advanced Improvement IAdhoc Improvement
/
«Pattern» <>
IncreasePatientSafety ?
«BusinessProces... «BusinessPr...
Advanced Process Adhoc Process
\
\
\
\
. «Strategy» «Strategy»
N Advanced Effect Evaluation Adhoc Efect Evaluation
\
\

Figure 52 Using a stereotyped UML package to represent the Increase Patient Safety

pattern

Some of the patterns in these two families are common, yet each of them contains unique
patterns that are not included in the other family. Figure 53 illustrates pfl, which is the
first input of the algorithm (I11). This pattern family includes patterns for improving the
patient safety using ad hoc approaches. Figure 54 presents pf2, which is the second input

of the algorithm (12). pf2 includes needed patterns for systematic approaches but it does

not include the detailed refinement patterns included in pf1.

In this example, the PF analyst sets startPattern (I3) to Increase Patient Safety

pattern. This input indicates the common pattern, which will be the highest-level pattern

of the output pattern family (O1).

Chapter 5. Pattern Family Evolution - Combination

99

«Pattern»
IncreasePatientSafety

G <
/ AN
/ \
/ \
«patternDef» «patternDef»
4 N\
«Pattern» «Pattern»
DataCollection InformationGeneration
7 <
/ \
/ \
/ \
«pa}ternDef » «pattern\Def»
J N
«Pattern» «Pattern»
OucomeDataCollection ProcessDataCollection

Figure 53 pfl is a PF that contains patterns for ad-hoc approaches to improve patient

safety

«Pattern»
IncreasePatientSafety

- / \ ~ SO
- / \ N ~
s / \ ~ ~o
7 N ~ ~
- / \ S SO
. e A/ \ R NN
«BanernDef » «palt,ernDef » « pattem\Def » «patternDei» «patternDef»_
s / \ N S~
7 /. ~
Ve 4 N N\ B
N
«Pattern» «Pattern» «Pattern» «Pattern» RN «pattern»
DataCollection InformationGeneration KnowledgeGeneration Know ledgeApplication ActionTaking

Figure 54 pf2 is a PF that contains patterns for both ad-hoc and systematic approaches

for improving patient safety

Applying the Combination Algorithm

Step S1 creates pf, which is an empty PF that eventually will contain the combined pat-
tern family. Step S2 inserts the Increase Patient Safety pattern into pf. Step S3 defines
toMerge as an ordered set of patterns and initializes it with startPattern. Therefore, the
Increase Patient Safety pattern is set as the first element of toMerge. Steps S4 defines

allPatterns and assigns to it all the patterns of pfl union those of pf2, that is:{Increase

Chapter 5. Pattern Family Evolution - Combination 100

Patient Safety, Data Collection, Information Generation, Outcome Data Collection, Pro-

cess Data Collection, Knowledge Generation, Knowledge Application, Action Taking}.

In the first iteration of step S5, toMerge is equal to {Increase Patient Safety}.
Consequently, step S5.1 assigns Increase Patient Safety pattern to nextPattern. Step S5.2
assigns to nextLeafGoals the set of all of nextPattern’s intentions. After this step, next-
LeafGoals is set to {Collect Data, Generate Informative Outcome Information, Make
Safety Decision, Adopt Decision, Take Action}. This set contains all the leaf intentions of
Increase Patient Safety pattern. Step S5.3 compares each intention in the nextLeafGoals
to the main goal of all the patterns in allPatterns set. In the first iteration of S5.3, the al-
gorithm will find that the main goal of Data Collection pattern is Collect Data from next-
LeafGoals. This implies that the Data Collection pattern refines the Collect Data goal in
the Increase Patient Safety pattern. Therefore, steps 5.3.3 to 5.3.5 add the Data Collec-
tion pattern to pf, connect Collect Data from Increase Patient Safety pattern to Data Col-
lection pattern through patternDef refinement link, and finally add Data Collection pattern

to the toMerge list. In the subsequent iterations of S5.3, the following actions take place:

e Information Generation, Knowledge Generation, Knowledge Application,

Action Taking patterns are inserted in pf.

e Generate Informative Outcome Information, Make Safety Decision, Adopt
Decision, Take Action goals from the Increase Patient Safety pattern are

connected to relevant inserted patterns through patternDef links.

e Information Generation, Knowledge Generation, Knowledge Application,

Action Taking patterns are appended to the toMerge list.

Step S5.4 then removes Increase Patient Safety pattern from the toMerge list. At the end
of the first iteration of step S5, toMerge is equal to {Data Collection, Information Genera-
tion, Knowledge Generation, Knowledge Application, Action Taking}. Figure 55 shows pf

at the end of this step.

Chapter 5. Pattern Family Evolution - Combination 101

«Pattern»
IncreasePatientSafety

7z / N ~
Y / \\ ~ S
7 N ~ ~
s / \ ~ N ~o
i K \ N S
«Battern Def» « patt/ern Def» «patlern\Def » «patternDei » «patternDefx_
s / \ N S~
s / \ N ~
V24 %4 N N S~
«Pattern» «Pattern» «Pattern» «Pattern» | «pattern»
DataCollection InformationGeneration KnowledgeGeneration KnowledgeApplication ActionTaking

Figure 55 pf after first iteration of step S5

Because toMerge is not empty, step S5 will be executed a second time. Step S5.1 sets
nextPattern to the Data Collection pattern. Step S5.2 sets nextLeafGoals to {Collect Out-
come Data, Collect Process Data}. Iterations of step S5.3 and its sub-steps insert Out-
come Data Collection and Process Data Collection patterns into pf, set them as refining
patterns of Collect Outcome Data and Collect Process Data goals of Data Collection pat-
tern, and add them to the toMerge list. Step S5.4 removes the Data Collection pattern
from the toMerge list. Figure 56 represents pf at the end of the second iteration of S5. At
this point, toMerge is equal to {Data Collection, Information Generation, Knowledge
Generation, Knowledge Application, Action Taking, Outcome Data Collection, Process

Data Collection}.

Because toMerge is again not empty, the execution of step S5 will continue.
However, in these iterations, no refining pattern can be found and step S5 removes the
patterns from toMerge at each iteration until it becomes empty. After complete execution
of the combination algorithm, pf represents a PF that contains the combination of pfl and
pf2. Figure 56 illustrates this PF.

Chapter 5. Pattern Family Evolution - Combination 102

«Pattern»

IncreasePatientSafety

s \ N S
- / \ AN ~Sa
i / \ ~ ~o
.7 / \ N N o
«patternDef» «patternDef» «patternDef» «patternDef» «patternDef»
Ve / \ ~ N
P / \ N S~ ~
/ \ N ~
& /4 N N\ -
N

«Pattern») «Pattern» «Pattern» «Pattern» = «pattern»
DataCollection KnowledgeGeneration InformationGeneration KnowledgeApplication ActionTaking

] N

~
|
|

N
~
N
N

«pattelrnDef» «patterﬁDefz
v NN
«Pattern» «Pattern»
OucomeDataCollection ProcessDataCollection
Figure 56 Combined pattern family
5.6 Summary

A pattern-based framework that lays down a foundation for capturing knowledge about
business goals and processes is valuable. However, the problems and solutions within a
domain are always changing. Consequently, such framework can be useful only if it can
evolve over time. This chapter introduced and formalized four evolution mechanisms for
extending and modifying PFs or for modifying or eliminating specific patterns within the
PFs. The feasibility and utility of these mechanisms was demonstrated with examples

from the patient safety domain.

The next chapter will present another method that focuses on how an up-to-date
pattern family can be used to extract suitable business processes (with links to business

goals) in the context of a given organization.

Chapter 5. Pattern Family Evolution - Summary 103

Chapter 6. ORGANIZATION-DRIVEN CUSTOMIZATION AND
EXTRACTION METHOD (OCEM)

The knowledge captured in the form of patterns and organized as the family can help
target organizations achieve their objectives. However, the relevant part of this
knowledge must first be extracted and customized. A PF user is an analyst in charge of
using the patterns and of creating the customized models that represent the requirements
of stakeholders and corresponding business processes that can realize them. Figure 57

gives an overview of the steps taken for building such models.

This chapter introduces OCEM, a goal-driven algorithm that formalizes the ex-
traction and customization of business processes by adapting instances of solutions for
particular organizations within the domain targeted by a pattern family (e.g., patient safe-
ty). This algorithm currently does not formalize the interactions of PF users and stake-
holders beyond receiving the initial organizational goal model. OCEM uses a PF as input
and assesses the impact of alternative solutions for achieving the high-level goals of a
given organization in a systematic, top-down approach. Another input is a partial busi-
ness goal model where only some of the high-level goals of an organization need to be
identified. OCEM’s main output is a more complete organizational goal model combined
with business processes aligned with the identified goals, as well as additional traceabil-
ity links between the two views. The usage of OCEM complies with the spirit of MDE
while including goal models in the chain of transformations. Finally, this chapter shows
how pattern families, whose development and evolution were discussed in previous chap-
ters, can be reused to create business goals and processes for individual healthcare organ-
izations while taking into consideration the specifics of their context, including their own

organizational goals and capabilities.

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 104

13pjoyaxes uiewog

palinbal 321nos [euiaiul yim abuey) ®

pajapow ale suawainnbay paJinbal 321n0s [Buls1Xe UM abuey) .II

Buiajos wajqoud Bunsanbay

s|apow buimaiasy ¥oeqpaz; BuipiAclg

/ 7\

Dpeqpaa) Jaypef o} pasy]

[uoijelall 210w paay]

Joneziuefio ay} Joy sippow [2ob dojana(

EETETEER|

uonezjuebio 3y} 1o} s|2potl ssa01d ssauisng dojarag

¥oeqpaay Bunen|eAd

W 10N 00

”~,
P x
/Mms

v susaned pasn jo
ssaunyasn ay) Buiuiuwag

[21eY]
swialed buney

[suawainbay AIPON]

[s13po AHIpoA]

[uonela)l oW paap]

eqp32) Jayied o} pasn] suoneziuebio spuawaiinbai oy

sjuawalnbal 1o}
slppow dojanaq
uoneziuebio Jo sjuawannbal puegsiapuny Allwed waned uiewo uf suaned s M

250 4d

ts models for a specific

Iremen

Figure 57 Using a pattern family to build requ

stakeholder in a domain

105

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary

6.1 Algorithm

Algorithm 3 provides the inputs, outputs, and main steps of the OCEM algorithm.
Inputs of the OCEM algorithm

1. orgGM:GRLgraph [* initial organizational goal model */

2. pf:PF [* pattern family of the domain */

I3. ev:EvaluationStrategy /* organization as-is evaluation */

Output of the OCEM algorithm

O1. orgGM:GRLgraph /* customized and extracted organizational goal model */

02. orgBPM:UCMmap /* customized and extracted organizational business process model */
03. URN links describing how the goals are realized by the process element.

Steps of the OCEM algorithm

S1. mainGoal:Intention = pf.GMBB.Intention where pf.GMBB.Intention.isEqualTo(orgGM.mainGoal)
S2. initBP:UCMmap = a simple process that contains only one stub (targetStub:Stub)

S3. toRefine:List = {(mainGoal, targetStub)}

S4. foreach (i:Intention in orgGM)

S5. if (i.isEqualTo(mainGoal)) then

S6. add a GRL contribution of weight 100 from mainGoal to i

S7. endif

S8. foreach (i:Intention in orgGM)

So9. foreach (p:Pattern in pf)

S10. foreach (ip:intention in p where i.isEqualTo(ip))
S11. if (ip.externalGoal A ip.sideEffectGoal) then

S12. add a GRL contribution of weight 100 from ip to i
S13. elseif (ip.externalGoal A ip.dependencyGoal) then
S14. add a GRL contribution of weight 100 from i to ip
S15. endif

S16. while (toRefine # null)
S16.1. (NextGoal, NextStub) = next element of toRefine
S16.2. remove the element from toRefine
S16.3. strat:BusinessStrategy = best business strategy in p.businessStrategyCollection()
where (p:Pattern in pf.patternCollection() A p.GMBB.mainGoal.isEqualTo(NextGoal))
[* selecting this business strategy leads to the highest satisfaction of the main actor in
orgGM compared to ev */
S16.4. add NextGoal, strat.BPT.ProcessElement.intention (set of intentions), and their links to orgGM
S16.5. add strat.BPT as a plug-in to NextStub
S16.6. add realization URN link from NextGoal to its realization process element
S16.7. add realization URN link from NextGoal to its corresponding BPT
S16.8. add realization URN links from the intentions selected in strat to the corresponding process el-
ements in BPT
S16.9. foreach (i:Intention initialized in strat)
S16.10. if (i # task) then
S16.11. toRefine.add(i, i’s realization stub)
S16.12. endif

Algorithm 5. OCEM

6.2 Application

A PF user is a modeler who uses the PF of a particular domain for creating the goal mod-
els and business processes that address the problems of an organization within the do-

main. The PF user prepares the inputs of the OCEM algorithm and then applies it.

This algorithm takes three inputs: orgGM as the initial organizational goal model
(11), pf as the pattern family of the domain (12), and ev as the as-is evaluation strategy of

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Algorithm 106

the organization (13). This last input (a GRL strategy) provides initial satisfaction values
to some of orgGM’s intentional elements. These values capture the current status of the
organization in need of a business process to be built from the pattern family. The OCEM
algorithm extracts the most appropriate pieces of goal and business process models and
builds a customized goal model accompanied with business process models that realize

its goals.

Step S1 initializes the mainGoal with the intention in the domain that corresponds
to the main stakeholder goal stated in the orgGM. Then, step S2 assigns a simple process
with only one stub (targetStub) to initBP, which contains the initial business process of
the organization. Next, step S3 initializes toRefine to a list that contains the pair
(mainGoal, targetStub) as its only member. Steps S4 to S7 add a contribution with weight
100 from the mainGoal to the corresponding goal in orgGM. Steps S8 to S15 link corre-
sponding goals in orgGM and patterns in pf. Step S10 looks for the “equality” between an
intention from the pattern family and one from the organizational goal model, but in fact
this equality could be weaken to some sort of equivalence (whose nature and handling are
outside the scope of this thesis). Steps S11 and S12 add contributions with weight 100
from side-effect intentions in the patterns to the corresponding goals in the orgGM, while
steps S13 and S14 add contributions with weight 100 from the intentions in orgGM to
those external goals, which other goals in the pattern depend on. Not all intentional ele-

ments from the organization goal model need to be linked to an element of the pattern.

Step S16 is an iterative step that contains the following sub-steps. S16.1 and
S16.2 initialize the pair (NextGoal, NextStub) with the next element on the toRefine list
and remove the element from the list. Step S16.3 applies all strategies to find the best
solution. Depending on the preferences of the stakeholders, the best strategy is the solu-
tion that better satisfies the priorities provided in orgGM. Therefore, it is possible that
different stakeholders with different initial organizational goal models end up selecting
different strategies as their best solution, which then shapes their businesses differently.

Step S16.4 adds the goals and links of the pattern to the organizational goal mod-
el, while step S16.5 adds the business process building block related to the chosen strate-
gy as a plug-in to the stub of the simple process. Then, steps S16.6, S16.7, and S16.8 es-

tablish realization links between the main goal and the business process building block as

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Application 107

well as the sub-goals of the pattern and the stubs of the business process building block.
Finally, step S16.9, S16.10, S16.11, and S16.12 add all sub-goals and linked stubs to the
toRefine list, to be evaluated in the next iterations of step S16. This is done for all sub-
goals that are required by the chosen strategy. Step S16 then iterates until all appropriate
goals in the pattern are added to orgGM and business process building blocks have been
chosen for all goals. In other words, continuous iteration of this step uses the knowledge
captured in the pf and refines the business goals and processes to the desired level of de-
tail.

The output of the OCEM is a refined GRL model of the organization (O1) with a
model of the chosen business process options (02), together with links that represent the

rationale for their selection (O3).

6.3 Example

This patient safety case study illustrates how OCEM (Algorithm 5) is applied for custom-
izing and extracting goal and business process models for a particular hospital, at the
highest level of abstraction. In order to apply OCEM, the PF user prepares and provides
its inputs: orgGM as the initial organizational model for Hospital A (I11), pf as the PF of
the patient safety domain (12), and ev as the as-is evaluation strategy of the Hospital A
(13).

Figure 58 illustrates the organizational goal model of Hospital A (orgGM, I1),
which identifies the main goal (Increase Patient Safety) and three high-level softgoals
related to quality, cost, and research concerns. Importance values are added to some of
these intentional elements in the organizational goal model. In this example, the im-
portance of Increase Patient Safety to its containing actor is deemed to be 100 while the
importance of Decrease Cost is 25, which means that decreasing cost is less of an issue
to Hospital A than increasing care and safety. Furthermore, Figure 58 depicts ev (13) that
is the current evaluation strategy of the organization, describing the as-is situation. Initial
satisfaction levels, shown by the presence of a star (*), are provided: 60 to the task, indi-
cating that although some advanced infrastructure is available, there is still room for im-
provement, and 40 to describe the current level of support to research on adverse events
at that hospital. Considering the hospital has an average initial safety system, the satisfac-

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 108

tion levels of Increase Patient Safety and Increase Quality of Care are equal to 0, which
consequently results in a general satisfaction of the stakeholder of -1. Color feedback is

provided to show the satisfaction level of the intentions (the greener, the better).

(Organizational Goal Model)
-1 -t Tt T T o — " o
: N
ncrease Patient ~
A Safety (100) N
/ 40* \\
/ Support Research on \
ll 0 Adverse Events (20) 60" ‘:
'\ ncrease Qualit Implement Advanced \
\\ of Care (100) Infrastructure Il
\ -45 ’
AN Decrease /2 ,/'
A Costs (25) 7
\ N e e e e e e e e e e =" -)

Figure 58 Original organizational goal model (11, 13)

The patient safety PF, which targets the improvement of patient safety, has been built
using the FDM described in Chapter 4 and Chapter 5 by observing the models created for
several departments of a teaching hospital. This pattern family has 32 patterns that in-
clude goal model building blocks (organized in ten layers) together with 79 strategies and
business process building blocks. This patient safety PF is used as the second input of
OCEM (12). Figure 43 illustrates a subset of the patient safety PF (3 patterns are shown).

Increasing patient safety is an abstract, recurring problem in different hospital de-
partments and other healthcare organizations. The Increase Patient Safety pattern in the
PF captures this problem and its solutions. The goal model building block of the pattern
shown in Figure 33 represents the contributions of Collect Data, Generate Informative
Outcome Information, Make Decision, and Apply Knowledge to the realization of In-
crease Patient Safety together with side-effects (e.g., on Increase Quality of Care in
Long Term) and dependencies (e.g., on Deploy Advanced Infrastructures). Two strategies
have been defined for this pattern. The first one (A) includes only the sub-goals Collect
Data and Generate Informative Outcome Information. The second strategy (B) includes
also the two other sub-goals, Make Decision and Apply Knowledge and adds correspond-
ing activities to its business process building block. UCM models (see Figure 34) repre-

sent business process building blocks of these two strategies, which describe the ordering

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 109

of the activities (that are further refined in other patterns of the PF). All these models

together constitute the Increase Patient Safety pattern (p1 in Figure 43).

OCEM establishes links between the initial organizational goal model and the
goal model building block of the pattern (left half of Figure 59). First, a contribution with
weight 100 is added from the Increase Patient Safety goal in the pattern to the Increase
Patient Safety of the organization (showing the equivalence between these two goals,
which could have had different names too as long as they are deemed “equivalent”).
Then, two contributions with weight 100 are added from the quality/cost softgoals in the
pattern to the quality/cost softgoals of the organizational model. Finally, a contribution
with weight 100 is added from the task in the organizational model to the softgoal with
the dependencies in the pattern. Not all intentional elements from the organization goal
model need to be linked to an element of the pattern (e.g., Support Research on Adverse
Events is not addressed by the current pattern).

Next, all alternative strategies are compared automatically for finding the best so-
lution. Two strategies have been defined for this pattern, as shown in the left half
of Figure 60. The first one (A) includes only the sub-goals Collect Data and Generate
Informative Outcome Information. The second strategy (B) includes also the two other
sub-goals, Make Safety Decision and Adopt Decision and adds corresponding activities to
its business process building block. UCM models represent these two strategies as busi-
ness process building blocks, which describe the ordering of the activities (that are further

refined in other patterns of the Pattern Family, not shown here).

Figure 59 shows the result of the second strategy (B) because it yields better re-
sults than the first strategy (A), given that the organizational goal model places more val-
ue on quality than on cost and already has some advanced infrastructure available. A dif-
ferent healthcare institute with more focus on cost than quality and no advanced infra-
structure available would see the first strategy (A) win over the second strategy (B). This
evaluation is automated with OCEM, as it builds on GRL’s quantitative evaluation algo-
rithm, which propagates the known satisfaction levels to other intentional elements in the
GRL models through their links.

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 110

The goals in the pattern and the links are then added to the organizational goal
model, while the business process building block related to the chosen strategy is added
as a sub-model to the Increase Patient Safety stub (indicated by the long-dash-dot-dotted
line in the right half of Figure 60). Figure 59 and Figure 60 together represent the output
of applying the OCEM method: a refined GRL model of the organization with a model of
the chosen business process options, together with the rationale for their selection. Apply-
ing the patterns in the PF can further refine the four sub-goals and linked stubs of In-
crease Patient Safety pattern. In order to support a satisfactory level of detail, the pat-
terns of the patient safety family include ten layers of decomposition (of which only the

top one is discussed here).
Applying the OCEM Algorithm

The first three steps of OCEM initialize the mainGoal with Increase Patient Safety
(step S1) and then the initBP and toRefine variables (steps S2 and S3). Steps S4 to S7 add
a contribution with weight 100 from the Increase Patient Safety goal in the pattern to the
Increase Patient Safety of orgGM (see Figure 59). The next corresponding goals in or-
gGM and the Increase Patient Safety pattern are linked (steps S8 to S15). In steps S11
and S12, two contributions with weight 100 are added from the quality/cost softgoals in
the pattern to the quality/cost softgoals of the organizational model. Then, a contribution
with weight of 100 is added from the Implement Advanced Infrastructure task in the or-
ganizational model to the Deploy Advanced Infrastructures (the softgoal with the de-
pendencies) in the pattern (steps S13 and S14). It possible that some elements in orgGM
do not have links to the intentions in the pattern (e.g., Support Research on Adverse
Events is not addressed by the current PF).

At this point, the toRefine list contains the Increase Patient Safety goal and a
simple process with one stub, which are extracted to NextGoal and NextStub in
step S16.1 and removed from toRefine in step S16.2. The next step, S16.3, applies all
strategies to find the best solution for Hospital A. In this case, there are two strategies
defined for Increase Patient Safety pattern as shown in Figure 33 on page 71. Figure 60
(right) shows the result of the second strategy (B) because it yields the better result than
the first strategy (A), given that the organizational goal model places more value on qual-

ity than on cost and already has some advanced infrastructure available. For example, the

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 111

results are 98 vs. 98 for the main goal Increase Patient Safety, 50 vs. 98 for Increase
Quiality of Care, -45 vs. -75 for Decrease Cost, and 59 vs. 75 for the main stakeholder for
strategy (A) vs. (B), respectively. A different healthcare institute with more focus on cost
than quality and no advanced infrastructure available would likely see the first strategy
(A) win over the second strategy (B). Note how the satisfaction values of the goals Make
Decision and Apply Knowledge are not the same as the satisfaction values of Collect Data
and Generate Informative Outcome Information as defined by the second strategy (B),
because the dependencies restrict the satisfaction values of Make Decision and Apply
Knowledge to lower values (in a dependency, the depender cannot be more satisfied than

the dependee).

Step S16.4 then adds NextGoal, intentions of the Increase Patient Safety pattern
that are chosen regarding the selected strategy, and their links to the goal model of Hospi-
tal A. Then, step S16.5 adds the business process building block of the selected strategy
(B) as a plug-in to the stub of the simple process (indicated by the long-dash-dot-dotted
line in Figure 59). Step S16.6, S16.7, and S16.8 establish realization links between the
Increase Patient Safety goal and the corresponding business process building block
(shown in Figure 60) as well as between Collect Data, Generate Informative Outcome
Information, Make Decision, and Apply Knowledge as the sub-goals of the pattern and the
stubs of the business process building block (not shown in Figure 60 for reasons of sim-
plicity). Finally, steps S16.9, S16.10, S16.11, and S16.12 add all four sub-goals and
linked stubs to the toRefine list to be evaluated in the next iterations of the loop. This is
done because all sub-goals are required by strategy (B). In the next iteration of step S16,
the three strategies of the Collect Data (see Figure 35 and Figure 36) are assessed and the
best strategy is chosen (not shown in Figure 60). Continuing this iteration further refines
the goal model of Hospital A and selects the business process building blocks for all of its
goals.

Figure 59 and Figure 60 together represent the output of first iteration of OCEM
method for the highest-level pattern in the patient safety PF: a refined GRL model of the
organization (O1) with a set of the chosen business processes (02) and realization links
between them (O3).

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Example 112

(Goal Model Building Block of Increase Patient Safety Pattern) 100 (Partial Goal Model for Hospital A)

P e e LT

40*

Support Research on\s
Adverse Events (20)
/

— Jid “~ 100
75 ¢ 98 \

fetesriial Safety (100) \

Make Safety A \
Decision \
60 Implement Advanced \ 60* \
Adopt Infrastructure ',
Decision 5 :
1

Deploy Advanced

: Infrastructure
-30 v «external»

Decrease Costs
«external»

Figure 59 Using OCEM: linking goal model building blocks to the organizational goal

LR A

model, with evaluations

Business Process Building Block (Strategy: a)

Organizational Business Process

Collecting Generating Informative
D}t{ Outcon}l{formation

N\

Business Process Building Block (Strategy: b)

.- ‘Ifcrease Patient Saféty- ~ .

QOrganizational Business Process

Collecting Making Safety Collecting Making Safety
Data Decision Data Decision

Generating Informative Adopting Generating Informative Adopting
Outcome Information Decision Outcome Information Decision

Figure 60 Using OCEM: business process building blocks, with strategy “B” being

selected

6.4 Summary

This chapter introduced OCEM, a method that enables the selection of appropriate solu-
tions from a pattern family in the context of a particular organization within the domain.
The OCEM algorithm provides a systematic approach for customizing and extracting
models based on the knowledge embedded in pattern families. The outcome of this algo-
rithm is a goal model customized to the requirements of stakeholders and accompanied

by a suitable business process where traceability links between goals and processes are

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 113

documented. An example related patient safety illustrated how OCEM is used. OCEM is
important as it enables knowledge reuse across organizations, while taking into consider-

ation the specifics of their context.

The next chapter presents and discusses the evaluation of the Goal-oriented Pat-
tern Family framework based on case studies and a comparison with related work, to-

gether with limitations and threats to the validity of this evaluation.

Chapter 6. Organization-driven Customization and Extraction Method (OCEM) - Summary 114

Chapter 7. EVALUATION

For evaluating the GoPF framework, two extensive pattern families were created for the
patient safety and the aviation security domains. Healthcare institutes interested in patient
safety and organizations that need to regulate aviation security can benefit from these
applications of the framework. The GoPF framework (i) lays down a foundation for cap-
turing knowledge about business goals and processes, (ii) provides methods for reusing
this knowledge within one organization or across similar ones by extracting and custom-
izing models for specific stakeholders, and (iii) enables evolution of the knowledge when

new problems and solutions emerge.

The patient safety case study was used as an ongoing example throughout this
thesis. Therefore, section 7.1 is limited to a summary of the experience gained with the
GoPF framework in the patient safety domain. Section 7.2 provides more detailed insight
on the experience gained using GoPF in the aviation security domain, including the use
of indicators in the patterns. The evaluation also includes an assessment of the GoPF
framework and a comparison to closely related work against nine dimensions (sec-
tion 7.3). Finally, section 7.4 discusses several limitations and threats to the validity of

this work.

7.1 Case Study 1: Patient Safety Domain

The patient safety domain was selected as one of the case studies for the evaluation of the
GoPF framework because of the recent push for healthcare reform that has caused
healthcare organizations to focus on better ways to provide high quality and safer treat-
ments while reducing related costs [134]. This case study was developed as part of a col-
laborative project involving the University of Ottawa and a teaching hospital in Ontario,
which made it possible to access the necessary information and stakeholders for doing
research on pattern families in the patient safety domain. The patterns were mainly col-
lected between September 2008 and September 2009 and were then refined as GoPF be-

came more formal.

Chapter 7. Evaluation - Case Study 1: Patient Safety Domain 115

Healthcare institutions, which manage hundreds of clinical and other types of
business processes, strive to improve the safety of their patients. Yet, every year, thou-
sands of patients suffer from adverse events, which are defined as undesirable outcomes
caused by healthcare business processes. Decreasing adverse events by improving these

processes forms the scope of the patient safety domain targeted here.

In [39], we showed that goal and business process modeling with URN could be
used effectively in this domain in order to capture problems and their solutions. Through
applying the methods of GoPF at different units of the hospital (Cardiac Surgery Inten-
sive Care, Intensive Care, and General Internal Medicine), a collection of 32 patterns,
grouped into a pattern family, were discovered and documented. This pattern family con-
tains 32 GRL diagrams with 145 intentional elements, together with 82 UCM diagrams

with 176 stubs, all of which being organized in a structure that is 10 levels deep.
For this thesis, the following activities were completed:

e Documentation of the Patient Safety PF based on observations and domain
expert interviews in different departments of a real teaching
tal. Chapter 4, Chapter 5, and Chapter 6 provide extracts of this pattern

family, and the complete PF can be found online at [135];

e In order to support the well-formedness of pattern families, constraints in
OCL (Appendix A) were developed and then tested using a formalized
subset of the Patient Safety PF implemented in the USE
ment [128][129]; and

e In order to validate the algorithms that formalize the methods of the
framework and demonstrate their potential for automation, the four evolu-
tion mechanisms described in Chapter 5 were implemented in Java [136]
and tested against a subset of the Patient Safety PF described with data ob-
jects. These Java programs constitute a reusable library of transformations

for manipulating pattern families.

The feasibility of the methods provided in Chapter 4, Chapter 5, and Chapter 6 for cap-

turing patterns, creating pattern families, evolving them, creating customized models for

Chapter 7. Evaluation - Case Study 1: Patient Safety Domain 116

healthcare organizations based on patient safety pattern family was illustrated through the

examples found in those chapters.

As an example of another (and somewhat unexpected) concrete impact of this
work, part of the resulting pattern family was used as the foundation for creating an ad-
verse event management system, a software application that supports the documentation
of potential healthcare adverse events through prospective surveillance done by special-
ized observer nurses and the classification and analysis of events by a committee of phy-
sicians. The prototype system was re-implemented at the hospital as part of a larger inci-
dent reporting system, and is now fully deployed.

7.2 Case Study 2: Aviation Security Domain

Some regulators in the aviation security domain are exploring outcome-based approaches
toward regulations. Outcome-based regulations focus on measurable goals rather than on
prescriptive ways of achieving these goals [137]. As regulators start evolving existing
prescriptive regulations towards an outcome-based approach, it becomes important to
reuse knowledge about existing problems and solutions. However, these organizations
face some challenges for establishing the new approaches. The GoPF framework can be

used to address some of the challenges faced in this domain.

This second case study takes the opportunity of using GoPF to create a pattern
family that targets a new domain, namely aviation security regulatory compliance. This
PF was created as part of a collaborative research project involving the University of Ot-
tawa and a regulator for aviation safety and security, on the construction of performance
framework. Interactions with different stakeholders having similar yet different objec-
tives enabled exploring the feasibility of using the framework’s methods for creating pat-
terns in this new context. Note that the sensitive and confidential nature of this security
work prevents the discussion of the details of the patterns, but generic examples and

characteristics will be provided in the following subsections.

Using this case study helped to apply the full framework’s infrastructure (refined
based on the experience gained through the first case study) as well as the process of elic-
iting requirements leading to the creation of patterns and families [137]. Given the im-

portance of measures in this outcome-based regulatory compliance context, the concept

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 117

of indicator from the framework is further emphasized as it enables the reuse of compli-

ance measurement, in context.

7.2.1 Introduction to the Aviation Security Domain
Many existing regulatory compliance approaches are prescriptive, which means that they

impose specific ways for regulated parties to comply. However, in some domains, regula-
tors are now trying to focus on the regulation intentions (e.g., the goals) that matter most
while enabling regulated parties to choose the business processes and implementation
strategies that best suit their context. In such outcome-based or goal-oriented regulatory
approaches, regulators must ensure that solutions chosen by regulated parties effectively
satisfy the intent of the regulations, e.g., by measuring whether the outcome is satisfacto-
ry.

Carrying out an outcome-based approach usually depends on the capability to
capture requirements from two angles. First, the regulator must define a hierarchy of
goals and related measures needed for evaluating their satisfaction. Second, a hierarchy
of business processes representing the regulatory strategies and best practices for achiev-

ing these goals at the organization’s end needs to be captured.

As an example, the regulator for aviation security in Canada is reviewing some of
its policies and regulations in order to see if moving from the current prescriptive style to
an outcome-based style is warranted. Such changes lead to three major challenges for an
effective and efficient implementation of this approach. First, it is necessary to capture
the knowledge about the hierarchy of intentions and related processes, which represent
problems and existing solutions. This is the knowledge that can be reused for achieving
the desired outcome of regulatory responsibilities. Moreover, it is difficult to measure the
satisfaction of regulatory goals for various reasons, such as a mismatch between indica-

tors (when they exist) and supposedly corresponding goals.

Second, requirements in this domain are complex and difficult to model from
scratch. In addition, there are different stakeholders with similar areas of responsibilities
(e.g., those in charge of different aspects of aviation security). These stakeholders need
different yet similar hierarchies of intentions. Despite the fact that they cannot reuse

complete models of intentions and related processes, it is possible and beneficial to reuse

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 118

parts of existing goal and business process models as building blocks for new models.
For this to happen, it is necessary to capture such knowledge in the form of reusable
building blocks of goal and business process models. Moreover, ignoring the similarities
of problems in the domain may lead to inconsistencies in goal and business process mod-
els that represent them. These issues underline the importance of reusing knowledge
about problems (goals) and solutions (business processes) in particular regulatory do-

mains.

Third, knowledge about problems and solutions in a given domain is gradually
and constantly changing. Furthermore, regulators and regulated parties need to be ac-
countable for their actions. Therefore, there is need to (i) retain the known problems and
solutions at given times in the past, and (ii) enable evolving the knowledge and tracking

such evolution when new lessons are learned.

In order to address these challenges, the GoPF framework is to target commonali-
ties across objectives of many regulations. Organizations in the aviation security domain
can benefit from using this framework by capturing knowledge in the form of goal and
process model building blocks, enabling regulatory parties to build a hierarchy of goals

and related processes that suits their context.

7.2.2 Outcome-based versus Prescriptive Approaches in Regulatory
Compliance

Currently, regulators prescribe the solutions that fit the highest number of regulated par-
ties (e.g., airports and airlines). These prescribed solutions fit the average conditions but

may not suit other conditions outside a narrow average.

The outcome-based approach in the aviation security domain, an alternative to the
current prescriptive approach, lifts the burden of implementing prescribed solutions from
regulated parties. Instead, it delegates the details to those who implement solutions, yet it
ensures that objectives of regulators are effectively achieved. This approach encourages
regulated parties to comply to regulations with innovative solutions. It is also more flexi-
ble and well aligned with the spirit of the oversight responsibility of regulatory organiza-
tions. With the desired outcome-based approach, regulators are able to (i) define the im-
portant objectives of aviation security screening at different levels of abstraction and for
different regulated parties, and (ii) create a system that takes available evidence data

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 119

(e.g., from audit information or from the execution of business processes) as input, evalu-
ates indicators, and ensures proper satisfaction of goals. In this approach, the effective-
ness of solutions is what will matter to security organizations. Compliance happens when

the implemented solutions are effective toward achieving the required objectives.

A typical performance framework [138] can aim to (among other objectives) help
develop performance-based standards, define measurable and traceable compliance goals,
and define and assess performance expectations. Modeling was recently started of indi-
vidual outcome-based regulations [139] with the User Requirements Notation. This work
underlined the importance of reusing the domain knowledge and inspired capturing the

knowledge in the form of patterns and families.

7.2.3 Areas of Aviation Security Screening Domain
In order to apply GoPF and create an aviation screening pattern family, collaborating

with stakeholders and domain experts is necessary to understand the domain require-
ments.Requirements for screening come from multiple regulations. An important objec-
tive of a regulator in the aviation security domain is to oversee the following aspects of

screening processes [140]:

e Pre-board screening includes the screening of (i) passengers and (ii) their

carry-on baggage;
e Hold-baggage screening includes screening of checked bags; and

e Non-passenger screening is applied to non-passengers (e.g., employees)

entering restricted areas.

For each of these aspects, the regulator needs to ensure that the quality of screening com-
plies with the regulations and effectively mitigates relevant risks. Many commonalities

among these three aspects can be exploited to create patterns.

7.2.4 Motivation for Using GoPF and Creating a Pattern Family
Shamsaei et al. demonstrated that GRL supplemented with indicators can be used to

model regulations and organizational objectives, and to measure the compliance of these
organizations and their processes against regulations [141]. This work is at the basis of
the modeling approach presented by Tawhid et al. [139]. However, the lack of a hierar-

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 120

chical goal model of the regulator’s objectives accompanied by suitable indicators is one
of the challenges normally faced while implementing outcome-based approaches. The
screening oversight is complex and leads to a large hierarchy of intentions that represents
the objectives and concerns of a typical aviation security regulator at different levels of
abstractions. The goals in this hierarchy can be achieved through different potential solu-
tions. However, the best solution is not the same under all conditions. Depending on a
given context, the best solution is the one that results in higher levels of satisfaction of
goals in the hierarchy. Hence, it is difficult to build from scratch goal and process models

that focus on the outcome.

In order to successfully adopt the outcome-based approach in this domain, stake-
holders and domain experts need ways of capturing different problems, solutions, con-
texts and their relationships. In order to reuse these problems and solutions within one
organization or across similar regulatory organizations, there is a need for means of se-
lecting the best solution depending on a context. The dynamic nature of this domain (e.g.,
due to the discovery of new security threats) also highlights the need for systematic evo-
lution of captured problems and solutions. Moreover, there is a need to keep the history
of gradual changes over time. On one hand, this helps regulators to be accountable and to
understand the rationale of the past decisions. On the other hand, past versions of pattern
families can be used for learning lessons and turning them into new effective strategies.
Finally, according to informal feedback from stakeholders and experts in the domain,
addressing the above concerns is critical in the successful adoption of outcome-based

approaches that will be applied for improving the oversight screening process.

In this case study, GoPF is used for creating patterns and a pattern family that en-
ables the modeling and reuse of the commonalities and differences of measurable out-
come-based regulations. This can lead to the successful adoption of an outcome-based
approach where regulated parties are both compliant and effective. GoPF lays down the
infrastructure for (i) capturing different screening-related activities that lead to achieving
similar goals from different departments and aspects of regulations (capturing reusable
knowledge), and (ii) measuring the impact of solutions on the hierarchy of requirements.

The next subsection illustrates the results of applying the process introduced in Chapter 4

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 121

to the task of building a GoPF-based pattern family for the aviation security screening

domain.

7.2.5 Building an Aviation Screening Pattern Family
While interacting with a few stakeholders and domain experts involved in our collabora-

tive research project, we were able to observe and analyze several requirements. GoPF’s
family development method (FDM in Chapter 4 with its resulting artifacts illustrated
in Figure 26) was used for building the aviation screening pattern family. Following the
enumerated steps, requirements elicitation sessions composed of stakeholders were first
performed, followed by individually interviews. This resulted in the creation of goal
models at different levels of abstraction. This process was repeated for oversight of
screening in three different regulation units: passenger, carry-on bag, and hold-baggage

screening.

The similarity of goals and responsibilities in these areas enabled the recognition
of the repetitive and reusable goal and business process models. These models are cap-
tured in the form of GRL graphs and UCM diagrams, respectively. In order to improve
correctness and accuracy, the models were discussed and validated with stakeholders and

domain experts.

In this pattern family, each goal model building block is linked with the corre-
sponding business process building blocks. For instance, the sample goal model building
block illustrated in Figure 61(c) together with business process building blocks shown
in Figure 61(d) form a pattern called ComplianceToProcedureX. As illustrated in Figure
61(a), each discovered pattern is associated with patterns that refine it. Although the de-
tails of this non-trivial pattern family cannot be discussed, its structure can briefly be
characterized: 13 patterns, 4 levels of depth, 58 goals, 36 indicators, and 28 business pro-

cesses.

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 122

Aviation Security

Pattern Family
(a)
patternDef

Ref|nement \
Link) ﬁ %

cea
......
e

A typical Pattern

(b)

EELE AN

«Pattern»

ComplianceToProcedureX

........ .
--------- [}
---------- [}
--------- [}
«BusinessStrategy» «BusinessStrategy»
BasicComplianceToX AdvancedComplianceToX
«GoalModel»
ComplyToProcedureX «BusinessProcess» «BusinessProcess»
BasicProcessX AdvancedProcessX
«Strategy» «Strategy» [
BasicEvaluationX AdvancedEvaluationX
\ I\ J
Comply to Security
Standard Operation
Procedure X
Goal Model yv—
Building Block 25 Implementation
25 i
(C) Time

Train Screeners On Certify Screener Verify Adherence
Procedure X for Procedure X to Procedure X

enfy
Performance nf
Procedure X

100 ﬂ

zuﬂ

80

Tramlng Adherence Number of ————
Completion "~ Certification Verification Verification
Rate Success Rate Success Rate Tests Success Rate
. Training for Certify Screeners
(BasicProcessX) 9 fy

Procedure X for Procedure X
.___(/’\)_<I'\‘__I
~ A
T T T T T TVerity Compliance.

to Procedure X
Training for Certify Screeners /'\
Procedure X for ProcedureX : N :
’ \ /‘\
. :\ 74 (e N
Verify Effdctiveness
of Procedure X

Building Blocks
(d)

Figure 61 Artificial example : (a) Pattern family, (b) Pattern and its internal structure,

(c) Goal model building block, (d) Business process building blocks

Note the additional presence of indicators in goal model building blocks, as shown
in Figure 61(c). Relevant indicators (which are GRL intentional elements) from the pat-
tern family are transferred to the goal model of the target organization or department after

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 123

the application of the OCEM method. This enables the organization or department to get
a first set of indicators that can be used to measure objectives (which are related to com-
pliance in this case study). Indicators in URN models can similarly improve reuse in the
context of performance management of medical processes such as the palliative care pro-

cesses recently documented by Kuziemsky et al. [143], which include indicators.

7.2.6 Evaluation of GoPF in the Aviation Security Domain
The GoPF framework was used with a typical regulator for building a pattern family that

captures the intentions, expected outcomes, and processes of a given domain (screening
for aviation security). One aspect of using GoPF for this case study is the modeling of

indicators, which can help regulators measure compliance and effectiveness.

This pattern family was presented to and validated with stakeholders and domain
experts. The feedback was encouraging and provided ad hoc evidence of interest and po-
tential benefits in using GoPF in a regulatory domain. First, the aviation screening pattern
family captures knowledge about problems and solutions at a given time. This helps regu-
latory parties by enabling the reuse of goal and business process model building blocks. It
is also helpful to regulatory organizations by keeping track of the evolution of the do-
main’s problems and solutions on one hand and by shedding light on the rationales of
past decisions on the other hand. The latter is particularly helpful for the accountability of

such organizations.

Second, the pattern family was successfully evolved on a small scale to address
the concerns and new requests received from stakeholders when creating the pattern
family. Such continuous evolution helps maintain the accuracy of the contained
knowledge in a pattern family. Finally, stakeholders confirmed that patterns in this family
are valuable vessels for reusing the knowledge for goal and business process modeling in
other areas of screening. For instance, non-passenger screening, which was outside the
scope of the case study, can benefit from using the patterns modeled in the screening pat-
tern family. Moreover, it is also expected that the knowledge captured here can be poten-
tially reused in other similar domains such as aviation safety or screening domains out-

side of aviation.

Chapter 7. Evaluation - Case Study 2: Aviation Security Domain 124

7.3 Comparison with Related Work

This section compares the GoPF framework against similar alternative approaches, which

are introduced in the literature reviews in Chapter 2. Table 7 represents nine important

dimensions of comparison between GoPF and other related work.

Table 7

Dimensions of comparison between GoPF and related work

Comparison Dimensions

Descriptive Questions

Requirements Models Used For
Model Transformation

Are requirements models being used to begin creating
a chain of model transformations?

Formalized Pattern Specification

Is there any formal foundation for specifying
problems, solutions, and forces in the pattern?

Goal Model Inclusion

Are the intentional requirements of stakeholders being
captured in the form of goal models within patterns?

Business Goals and Processes
Linkage

Avre the reusable business goals and processes
connected?

Pattern Organization

What is the mechanism for organizing patterns and
capturing their relationships?

Pattern and Family Evolution

Is it possible to change patterns and collections of
patterns to reflect the changes that may happen in the
corresponding domain?

Goal-oriented Solution Customiza-
tion and Extraction

Are the requirements of stakeholders being used for
extracting the knowledge from the pattern in order to
extend the organization goals build relevant business
process models?

Domain Specialization

Do patterns capture the domain-specific knowledge
about its recurring problems and solution?

Pattern and Family Creation

Are there any guidelines for building patterns and
organizing them in collections?

Table 8 provides a summary of the assessment of the various approaches (including the

GoPF framework) against these dimensions, hence enabling a comparison between GoPF

and related work. The following subsections provide a more detailed assessment of the

various approaches per dimension and contrast how the GoPF framework stands out.

Chapter 7. Evaluation - Comparison with Related Work

125

Table 8 Summary of comparison between GoPF and related work

Require- | Formal- Goal Business | Pattern | Pattern Goal- Domain | Pattern
quire- ized Model Goals Organi- and oriented | Speciali- and
i H ments Pattern Inclu- and zation Family | Solution | zation Family
Dimension Models | Specifi- sion Process- Evolu- | Custom- Creation
Used cation es tion ization
For Linkage and
Related Model Extrac-
Work Transfor tion
for-
mation
MDA [58] No No No No No No No No No
Mussbacher et No Partially Yes Yes Informal No No No No
al. [71]
Gross and Yu [77] Partially | Partially | Yes No Informal No Partially No No
Chung et al. [78] No No | Partially | No No No Partially No No
Konard and No Partially No No Informal No No Yes No
Cheng [70]
'E‘ég(]jrade [79] No Partially No No Informal No No Yes Partially
Markovic and . i
L Partiall No Yes Yes No No Partiall Yes No
Kowalkiewicz [99] 4 Y
Rimassa et . i
Partiall No Partiall Yes No No No Yes No
al. [100][101] d d
Stirna et al. [94] Partially | Partially | Yes Partially | Informal No Partially | Yes Yes
Zhao et al. [85] No No No No No Partially No No No
Dong et al. [86][87] No No No No No Partially No No | Partially
Aoyama [88] No | Partially | No No | Informal | Partially No No No
Lapouchnlan et Yes No Partially | Partially No No Yes No No
al. [13]
Yuetal. [114] Yes No | Partially | Partially [No No Yes No No
Liaskos et al. [115] No No Partially No No No Partially No No
Hui et al. [19] Partially No Partially | Partially No No Partially No No
Wang et .)
Partiall Yes Yes Yes Formal No Partiall Yes No
al. [20][111][112] d ’
(Vfiuk.§ys and Partially Yes Partially Yes No No Partially Yes No
Caplinskas [16]
Filipowska et Partially | No No No No No No Yes No
al. [113]
Wen et al. [69] Partially | Partially Yes Partially | Informal No Partially Yes Partially
GoPF framework Partially | Yes Yes Yes Formal Yes Yes Yes Yes
Chapter 7. Evaluation - Comparison with Related Work 126

7.3.1 Requirements Models Used For Model Transformation
The GoPF framework introduces patterns and pattern families that capture and organize

requirements. It puts the emphasis on models that capture stakeholder intentions and link
them to models that specify their operationalizations in terms of business processes.
GOPF provides steps that take the initial organizational goal model as an input and itera-
tively build hierarchical business goal and process models. These models can then be
used as inputs for building more concrete models required for creating software applica-
tions using a MDE-based approach. This can be considered to some extent as an exten-
sion of MDA [58] by including the requirements models at the beginning of the model
transformation chain. However, GoPF does not include any automated model transfor-
mation mechanism for this purpose. Table 9 highlights other significant related work in
this dimension (with a focus on the approaches that do well against this criterion).

Table 9 Summary of comparison based on requirements models used for model
transformation

Related Work Assessment of Related Work
No. Modeling requirements of stakeholders are outside the
MDA [58] scope of MDA.
Lapouchnian et Yes. These two approaches begin with goal models that
al. [13] represent the requirements of stakeholders and produce a model

that illustrates the better configuration. Note that these
approaches differ from GoPF as they do not reason about

Yu et al. [114] business processes.

7.3.2 Formalized Pattern Specification
The GoPF framework includes a metamodel for capturing patterns. Patterns are described

with URN by formalizing:

e The description of the problem and the forces that are involved with
GRL’s intentional elements as well as contribution links as reusable goal

models (goal model building blocks);

e The reusable business solutions composed of:

Chapter 7. Evaluation - Comparison with Related Work 127

o The UCM models representing business processes that provide a more
detailed description of the behavior and structure of the solution (busi-

ness process building block); and

o The URN evaluation strategies representing effects of corresponding

business processes.

The approach taken in GoPF for presenting ways of reasoning about patterns is similar to
approaches suggested by Mussbacher et al. [71], Gross and Yu [77], and Chung et
al. [78] (see Table 10). However, there are important differences. GoPF is more con-
cerned with formalizing, through a metamodel, both problem and solution sections of the
patterns along with the forces in the context, which leads to capturing the knowledge of

the domain.

Note that formalization of pattern specifications comes at the price of complexity
of pattern building. For example, as opposed to frameworks where patterns have a natural
language description, PF analysts in GoPF must be familiar with URN and with the steps
required to build business goal and process models. This characteristic of GoPF can be
seen as a disadvantage in terms of usability compared to approaches that have a less for-
mal structure for capturing knowledge. Therefore, the framework would be suitable to

those users who can accept such challenge.

Chapter 7. Evaluation - Comparison with Related Work 128

Table 10 Summary of assessment based on the formalized pattern specification
dimension

Related Work Assessment of Related Work

Partially. This approach uses URN models for formally
representing problems, solutions, and forces. However, it does
not provide a formal foundation such as metamodel for capturing
the elements of patterns, nor does it include well-formedness
rules.

Mussbacher et
al. [71]

Partially. This approach represents the goals of patterns using
Non-Functional Requirements Goal Graphs. However, there is
no suggestion for an underlying foundation for formally
specifying both problems and solutions.

Gross and Yu [77]

No. This approach uses object-oriented, goal-driven, and pattern-
based methodologies for developing “good” software

Chung et al. [78] architectures. Although the Non-Functional Requirements
framework used here provides a formal notation for capturing
problems, the paper does not suggest a formalization of patterns.

Yes. They suggest a metamodel that formalizes their O-RGPS
Wang et framework for capturing domain knowledge. This work, unlike
al. [20][111][112] GoPF, does not modularize and organize this knowledge in the
form of pattern families.

Yes. They leverage an ontology and provide a metamodel for
Ciuk3ys and capturing domain knowledge. However, their primary objective
Caplinskas [16] is to reuse business processes and not to extend the initial goal
model of the stakeholders.

7.3.3 Goal Model Inclusion
GRL’s ability to represent a hierarchy of organization goals (and their interactions) ena-

bles the GoPF framework to capture the relevant reusable fractions of this hierarchy with-
in the patterns. Furthermore, patterns are also formalized with URN in a way such that
one pattern groups similar solutions that address a recurring problem, with their trade-
offs.

Konard and Cheng’s approach [70] uses UML models for capturing structural and
behavioral aspects of requirements patterns. However, it does not include a formal foun-
dation, such as goal models, for capturing intentions and connecting them to the behav-
ioral models that realize them. Similarly, Andrade [79][80] uses UCM for formally cap-

turing the commonalities of solutions in her approach toward requirements patterns in

Chapter 7. Evaluation - Comparison with Related Work 129

wireless systems. Again, this approach does not include a formal description of the goals

that accompany the suggested patterns.

Patterns in the approaches suggested by Mussbacher et al. [71] and Gross and

Yu [77] include goal models while the approach in and Chung et al. [78] link patterns to

such models. Table 11 presents relevant related approaches that include goal models.

Table 11 Summary of assessment based on the goal model inclusion dimension

Related Work Assessment of Related Work
Konard and No. This approach uses the UML notation for formally defining
Cheng [70] behavioral and structural aspects of patterns but does not include

goal models.

Andrade [79][80]

No. Andrade’s approach for analysis patterns in the mobile
systems domain does not include goal models.

Mussbacher et
al. [71]

Yes. This approach uses URN-based goal models. It differs from
GOPF in the sense that it neither includes traceability links nor a
systematic approach that helps capturing, maintaining, and using
patterns.

Gross and Yu [77]

Yes. This approach suggests using Non-Functional Requirements
Goal Graphs for better describing the problems that are being
addressed by patterns.

Chung et al. [78]

Partially. Although the Non-Functional Requirements
framework is used to capture intentions of requirements, goal
models are not part of patterns.

Markovic and
Kowalkiewicz [99]

Yes. They use goal models to improve Business Process
Management methodologies. This approach enables querying the
knowledge. However, this knowledge is not captured in the form
of patterns.

Stirna et al. [94]

Yes. Their Enterprise Knowledge Patterns include goal models
to represent recurring problems. This approach does not provide
a formal foundation for the models used in their suggested
patterns. In addition, the organization of patterns is informal and
done through textual references.

Wang et
al. [20][111][112]

Yes. The metamodel for O-RGPS includes a layer for capturing
goals (G-net). However, this work does not capture and organize
the domain knowledge in the form of patterns and families.

Wen et al. [69]

Yes. In their analysis framework, i* is used for modeling
intentions as part of creating requirements patterns. This
knowledge is then used to address the problems in a specific
domain, namely medical information security. However, no
guideline is suggested for capturing the patterns and for using
them.

Chapter 7. Evaluation - Comparison with Related Work 130

7.3.4 Links between Business Goals and Processes
Problems and solutions are two sides of the same coin. They can be best understood when

goal and business process views are captured together. In the GoPF framework, such in-
tegration is formalized by two means. First, the metamodel defines a pattern as a contain-
er of a goal model building block on one side and a set of pairs of <business process
building block, evaluation strategy> on the other side. This structure is helpful because
patterns include both perspectives. In addition, the evaluation strategies capture the effect
of relevant business processes on the corresponding intentions in the goal model. Second,
the metamodel includes realization links between the contributing elements of a problem
depicted with GRL and elements of solutions represented in UCM diagrams with process

stubs and activities.

Markovic and Kowalkiewicz [99] do not use patterns, but they provide an ap-
proach that includes a business process ontology and a goal modeling notation. The links
between these views then enable the integration of the intentional and business process
perspectives. This ontology is used for performing automated analysis and for querying
the contained knowledge. This is also feasible in the GoPF framework (e.g., by creating
OCL queries on the URN model). However, unlike for the GoPF framework, no method
or framework is provided to enable the creation of patterns in order to reuse solutions to

recurring problems.

Rimassa et al. [100][101] leverage agent technology and introduce the goal-
oriented business process modeling notation (GO-BPMN), which is a BPMN-based visu-
al language for business process modeling enriched by goal modeling. However, unlike
GOPF, the relationships between goals and business process are limited and the notation
does not support different levels of abstraction. Table 12 highlights some of the closest

related work and how they link business goals and processes.

Chapter 7. Evaluation - Comparison with Related Work 131

Table 12 Summary of assessment based on the links between business goals and
processes dimension

Related Work Assessment of Related Work

Yes. This approach uses GRL graphs in connection with UCM
diagram. However, their approach does not include a systematic
way of maintaining patterns.

Mussbacher et
al. [71]

Yes. Their approach suggests linking goal models to business
processes for improving Business Process Management
Markovic and methodologies. This enables querying the captured knowledge.
Kowalkiewicz [99] However, this knowledge is not captured in the form of patterns.
Furthermore, it does not include steps needed for capturing such

knowledge.

Yes. They provide limited linking between goals and business
Rimassa et processes through their visual language (GO-BPMN). However,
al. [100][101] the links are limited and do not support organizing hierarchical

knowledge.

Yes. Their metamodel for ontology-based O-RGPS framework
enables lining the goals in G-net layer to the processes in P-net
Wang et layer. However, this work does not capture and organize the
al. [20][111][112] domain knowledge in the form of patterns and families. In
addition, it does not provide steps for capturing the domain

knowledge.

Yes. They leverage an ontology and provide a metamodel that
Ciuksys and enables linking goals to business process. However, their
Caplinskas [16] primary objective is to reuse the business processes and do not

extend the initial goal model of the stakeholder.

7.3.5 Pattern Organization
The framework metamodel introduces pattern families, which organize patterns at differ-

ent levels of abstraction and enable navigation from more abstract problems and solutions
to more concrete ones. Furthermore, this organization of patterns addresses different in-
terests of stakeholders where intentions, while being considered as elements of solution
for one stakeholder, are also viewed as main goals for another stakeholder. The organiza-
tion of a pattern family is captured through refinement links between individual patterns

when one refines the other.

Stirna et al. in [94][95][96] propose Enterprise Knowledge Patterns for capturing
patterns and for managing knowledge. Enterprise Knowledge Patterns contain interrelat-

ed goal, business process, and concepts models. They describe reusable solutions for en-

Chapter 7. Evaluation - Comparison with Related Work 132

terprise problems. This approach however does not provide a formal foundation for the
models and their relationships. In addition, it does not provide a formal foundation for
relationships between patterns, and domain knowledge is managed by capturing textual
references. The GoPF framework, on the other hand, is built upon a metamodel expressed
as a profile of the URN standard, along with a method that enables automated transfor-
mations. Moreover, the business strategies in the framework enable different solutions to
be used for the same pattern depending on the forces and goals characterizing the target
organization. Although patterns are not explicitly used by Wang et al. [20][111][112],

their approach has a formal foundation for capturing domain knowledge (see Table 13).

Table 13 Summary of assessment based on the pattern organization dimension

Related Work Assessment of Related Work

Informal. Enterprise Knowledge Patterns intend to capture and
manage domain knowledge using patterns. However, the pattern
organization is informal and takes place through textual
references. In addition, this approach does not provide a formal
foundation for patterns.

Stirna et al. [94]

Formal. Their metamodel for the ontology-based O-RGPS
framework lays down a formal foundation for organizing goals,
Wang et processes, roles, and services. This approach does not use

al. [20][111][112] patterns explicitly, which may negatively affect reusing the goals
and processes. GOPF on the other hand explicitly captures the
domain knowledge in the form of reusable blocks.

7.3.6 Pattern and Family Evolution
GoPF’s evolutionary mechanisms are designed to maintain the knowledge captured in

pattern families and manage change.

Zhao et al. [84][85] propose and approach for the evolution of design patterns and
pattern-based designs. Similarly, Dong et al. [86][87] propose an approach for the evolu-
tion of design patterns. Aoyama [88] also proposes an evolutionary mechanism based on
a more formal representation of patterns provided in his research. They are different from
the evolutionary mechanisms in GoPF in two ways: (i) these approaches focus on design
patterns, and (ii) evolution is limited to variations of the initial pattern. Table 14 summa-

rizes these approaches.

Chapter 7. Evaluation - Comparison with Related Work 133

Table 14 Summary of assessment based on the pattern and family evolution dimension

Related Work Assessment of Related Work

Zhao et al. [85] Partially. They provide transformation approaches for evolving
' design patterns. However, they are limited to evolving design

patterns to variations of initial ones. GoPF on the other hand
provides mechanisms that enable evolution of patterns and
pattern families so that they reflect the current knowledge of a
given domain.

Dong et al. [86][87]

Partially. He proposes a set of graphical notations, and collects
evolved patterns into families. This approach focuses on the
evolution of design patterns. It also introduces the concept of
collection as a set of variations for an initial pattern.

Aoyama [88]

7.3.7 Goal-oriented Solution Customization and Extraction
Traditional process-oriented software development approaches put little emphasis on

using goal models for eliciting and analyzing stakeholder requirements. Consequently, no
links will be systematically established between business goals and processes at the time
of finding solutions that realize the requirements of stakeholders. In order to address this
disadvantage, the GoPF framework provides the OCEM method for extracting and cus-
tomizing solutions in the context of an initial organizational goal model. This method is
carried out iteratively and gradually extends the goal model of organization while consid-
ering the forces and conditions of the stakeholders and organization. Furthermore, this
method also builds a hierarchy of business process that is realizing the corresponding

goals in the extended goal model.

Lapouchnian et al. [13] also propose an approach for capturing the needs of
stakeholders in goal models and for annotating them. This enables reasoning and select-
ing processes and finding customization alternatives that best accommodates stakehold-
ers’ goals. In another research, Yu et al. [114] propose a two-step approach for reasoning
and selecting configuration alternatives by utilizing reverse-engineered goal models. Sim-
ilarly, Liaskos et al. [115] provide an approach for configuring software applications. In
this approach, a goal model captures the requirements of stakeholders and is used for
reasoning about the best configuration alternatives. Yu’s approach and Liaskos’ enable
configuration of the software application for realizing the goals of stakeholders, yet they

have two limitations. First, these approaches are mainly using goal models and do not

Chapter 7. Evaluation - Comparison with Related Work 134

include reasoning about business processes. Second, in order for these approaches to con-
figure software applications, they must be accompanied by a goal model representing the

alternatives.

Hui et al. [19] also propose a framework that customizes software applications in
the context of goals, skills, and preferences of stakeholders. In her approach, a goal mod-
el represents stakeholder requirements while the leaf intentions are mapped to class dia-
grams that capture the possible alternatives. This approach then uses the goal model for

selecting the alternative that satisfies stakeholders in a given context.

These requirements-driven approaches tackle the gap between goals and their re-
alization, with an emphasis on goal models. Similarly, this thesis aims to bridge the gap
between business goals and business processes, but the solution presented here is differ-

ent from the above approaches in three important ways.

First, unlike the mentioned approaches that create specific goal models for partic-
ular software applications, GoPF uses goal models to capture domain knowledge. Se-
cond, unlike approaches in [19][114][115] that configure implemented business process-
es, GoPF provides different ways of achieving stakeholder goals at the business process
level rather than at the configuration level. Third, unlike [13], GoPF captures goal models
and business process models separately along with traceability links between them. Sepa-
ration of goal models and business process models increases the maintainability of pat-
terns as well as their comprehensibility. In summary, GoPF aims to reuse domain
knowledge to enable business process development in context while the approaches men-
tioned in this subsection are fine-tuned for requirement-driven customization of behaviors
of applications after they are developed. Table 15 summarizes those approaches that at-
tempt to extract and customize solutions based on goals of stakeholders.

Chapter 7. Evaluation - Comparison with Related Work 135

Table 15 Summary of assessment based on the goal-oriented customzation and
extraction dimension

Related Work Assessment of Related Work

Yes. This approach suggests the augmentation of goal models so
they represent the underlying business processes configuration
alternatives. This is then used to tailor the business process for
Lapouchnian et better addressing the requirements of stakeholders. This

al. [13] approach differs from GoPF in two ways: (i) it does not attempt
to capture reusable knowledge across different organizations and
(i) it strictly couples the knowledge about process alternatives in
the goal models.

Yes. This approach uses the goal model that represents the
domain requirements and reasons about a configuration of an
Yu etal. [114] application (e.g., Firefox browser) that is best suited for a
particular user. This approach is somewhat limited and mainly
focuses on configuration.

Partially. This approach parameterizes the goal models and uses
them to find the best alternative. The main objective of this
solution is to enable automatic personalization of software
applications (e.g., Mozilla Thunderbird email client).

Liaskos et al. [115]

Partially. In this approach, goal models are linked to class
diagrams and are used for the customization of applications.

Hui et al. [19]

7.3.8 Domain Specialization
The GoPF framework provides structures and methods for capturing the knowledge spe-

cific to a domain in the form of pattern families, where patterns highlight recurring prob-
lems and solutions. Furthermore, evolutionary mechanisms enable pattern families to
change over time and better reflect current problems and solutions in a specific domain.
In this sense, the objective of the GoPF framework, similar to that of domain engineering,
is to provide a source of reusable knowledge about the problems in the domain and facili-

tate reusing the solutions, while teaching and communicating with stakeholders.

Wang et al. have suggested a domain modeling framework for networked soft-
ware applications [20][111][112]. This framework uses five layers of ontologies for en-
capsulating the domain knowledge in different views. However, the main objective of
this approach is to bridge the gap between process descriptions and web services by reus-
ing the functionalities that are captured in the form of services. Similarly, an ontology-

based method suggested by Ciuksys and Caplinskas [16] facilitates reusing business pro-

Chapter 7. Evaluation - Comparison with Related Work 136

cesses in a domain. Filipowska et al. [113] also suggest an approach that leverages ontol-

ogies and captures the domain knowledge about business processes. However, the prima-

ry objective of the approaches of Filipowska et al. and of Ciuksys and Caplinskas is to

capture the domain knowledge about business processes. The GoPF framework on the

other hand captures the knowledge about goals/requirements of stakeholders and links

them with processes that realize those requirements. Table 16 compares the approaches

that enable capturing domain-specific knowledge.

Table 16 Summary of assessment based on the domain specialization dimension

Related Work Assessment of Related Work
Konard and Yes. The suggested approach captures can be specialized for a
Cheng [70] domain. However, it does not include goal models.

Andrade [79][80]

Yes. Andrade’s suggested approach for analysis patterns in
mobile system domain does not include goal models.

Markovic and
Kowalkiewicz [99]

Yes. Their approach attempts to improve Business Process
Management methodologies and enables querying the domain
knowledge. However, this knowledge is not captured in the form
of patterns.

Rimassa et
al. [100][101]

Yes. Their provided visual language (GO-BPMN) can be used
for capturing the goals and business processes for specific
domains. However, the models are limited and the approach does
not support organizing hierarchical knowledge.

Stirna et al. [94]

Yes. They proposed Enterprise Knowledge Patterns for capturing
the enterprise knowledge in the form of patterns. This is similar
to GoPF but their approach does not provide a formal foundation
for the suggested pattern. In addition, the organization of patterns
is informal and no mechanism is suggested for evolution of
patterns.

Wang et
al. [20][111][112]

Yes. This approach can be used for specific domains. However,
this work does not capture and organize the domain knowledge
in the form of patterns and families.

(:?iukéys and
Caplinskas [16]

Filipowska et
al. [113]

Yes. Their approaches attempt to reuse the domain knowledge
about business processes. However, this is the primary objective
and the approach does not attempt to extend the initial goal
model of the stakeholder.

Wen et al. [69]

Yes. Requirements patterns in this analysis framework capture
the domain knowledge by using i* models in combination with
problems frames. This knowledge is then used to address the
problems in a specific domain, namely medical information
security. However, no guideline is suggested for capturing the
patterns and for using them.

Chapter 7. Evaluation - Comparison with Related Work 137

7.3.9 Pattern and Family Creation
The GoPF framework provides a systematic way of eliciting goals/problems and captur-

ing recurring solutions of a specific domain. This method involves interactions with
stakeholders and domain experts as well as previous knowledge of PF analysts. In addi-
tion, this approach provides steps for building patterns from the elicited goal models and
related pairs of business processes and their effects. Finally, the approach takes the new
patterns as inputs for building new pattern families. Evolutionary mechanisms also enable
maintenance of a pattern family for a specific domain when new patterns in that domain

are built.

Wen et al. [69] suggest an approach for capturing requirements patterns contain-
ing the knowledge about the security problems in medical information system based on
the i* framework and on problem frames. However, they did not include systematic
guidelines for capturing patterns but underlined such guidelines as a desired extension of
their work. Stirna et al. [94] proposed guidelines for capturing patterns but the latter lack
the steps necessary for systematically organizing patterns into a collection. Table 17

summarizes these approaches.

Table 17 Summary of assessment based on the pattern and pattern family creation

dimension
Related Work Assessment of Related Work
Stirna et al. [94] Yes. Enterprise Knowledge Patterns include guidelines for

capturing the domain knowledge in the form of patterns. These
guidelines do not include systematic steps for organizing patterns
into a family. Furthermore, this approach does not include a
formal foundation for patterns.

Wen et al. [69] Partially. Their analysis framework highlights the general steps
needed for capturing requirements patterns by combining i*
models with problems frames. However, no guideline is
provided for systematically capturing the patterns and using
them.

7.4 Limitations and Threats to Validity

This section discusses several important limitations related to the GoPF framework and

threats to the validity of the work surrounding its development and evaluation.

Chapter 7. Evaluation - Limitations and Threats to Validity 138

7.4.1 Case Studies and Pattern Family Construction
The patient safety pattern family is based on goals and actual processes observed in sev-

eral units of one teaching hospital in Ontario [39]. However, the patterns would get
stronger by taking into account the PF users’ feedback when the patterns are used and by
observing how relevant healthcare processes are done at different hospitals, perhaps even
across provinces or countries, so that best practices spanning multiple organizations in
different healthcare contexts can be shared. Note that, in order to mitigate this threat to
some extent, informal discussions with adverse event researchers at another hospital in
Quebec (involved in the same research project) were held to ensure some level generality

in the pattern family.

For the second case study, the aviation security pattern family was built by ob-
serving the objectives and business processes of different departments of one Canadian
regulatory organization contributing to screening security. Similarly, the patterns in this
family would be stronger by observing other organizations contributing to screening se-

curity.

The patterns in both these families would also benefit from being collected and
reused by more than one person, to avoid common bias issues. At the moment, the thesis’
author is the only person who has created and used pattern families. Having other PF ana-
lysts would also help demonstrate the usability of the approach prescribed by the frame-
work. The framework is also meant to be usable by third-party, intermediary organiza-
tions (e.g., consultants) as they are more likely to be observing goals and processes across
organizations in a domain, but again it is premature to claim that this is beneficial to such

intermediary organizations.

Finally, the framework was applied to only two (albeit very different) domains so
far. More pattern families need to be created and used in other contexts in order to claim

generality in terms of the domains where the framework is applicable.

7.4.2 OCEM Limitations
The current algorithm for Organization-driven Customization and Extraction Method

(OCEM), namely Algorithm 5, does not necessarily guarantee that the best solution for

the target organization will be extracted from the pattern family, even if that family is

Chapter 7. Evaluation - Limitations and Threats to Validity 139

perfectly modeled. The selection of goal strategies (and hence of corresponding business
processes) depends on the quality of the input organizational goal model, and how sensi-
tive the algorithm is to that input has not been studied. In addition, the selection of the
best strategies for a pattern is based on local optimizations (in a step-by-step or decision-
by-decision basis) rather than based on a global optimization across all patterns at once.
The latter approach might indeed lead to better global solutions for the organization, but
it would be more computationally challenging and less modular than the current OCEM

approach.

OCEM was also only exercised for the patient safety pattern family, and this was
not done in the context of a real organization. More validation is hence required on that

side.

7.4.3 Precision of Goal Models in Patterns
Like for any goal model, one can question the precision and correctness of the contribu-

tion weights as well as initial satisfaction values in strategies. These can however be re-
fined and validated with time and experience. Moreover, the strategy selection method is
a comparative one (e.g., the algorithm chooses the “best” strategy amongst a few), SO
precise numbers are not always required in models. URN also allows modelers to start
with qualitative values, when knowledge is sparse and fuzzy, and then to refine these

links with more granular quantitative values as more precise knowledge is acquired.

7.4.4 Automation and Tool Support
Because the GoPF framework is using a profile mechanism to extend URN, current

URN-based tools such as JUCMNav can be used to model patterns and pattern families
through modeling their elements. However, modelers need to have a fair understanding of
the URN language. In addition, the available tools lack the ability to help modelers
evolve PFs (through the various evolution mechanisms seen in this thesis) and this cur-
rently limits the usability of the framework. The framework could benefit from GoPF-
customization of current URN modeling tools (e.g., JUCMNav) and from seeing its vari-
ous algorithms (Algorithms 1 to 5) integrated in them. The availability of Java implemen-
tations for the evolution algorithms [136] is a step towards this vision, but much work

remains to be done in order to have a complete modeling and analysis environment.

Chapter 7. Evaluation - Limitations and Threats to Validity 140

7.5 Summary

The GoPF framework was used for capturing knowledge in two different real-world do-
mains. This chapter evaluated the GoPF and its feasibility based on these two representa-
tive case studies. The patient safety case study, which has been an ongoing example
throughout the thesis, was briefly reviewed while the second case study about outcome-
based compliance in the aviation security domain was discussed with more details, espe-
cially in view of the use of indicators to measure goal satisfaction. In addition, different
dimensions of comparison were introduced, and the framework was compared to related
work along these dimensions. This comparison highlights that the GoPF framework is
quite unique in its formalization, manipulation, and usage of patterns and families that
exploit goals, business processes, and their relationships. Finally, the limitations of this
thesis as well as threats to its validity were discussed. Following the approach of Hevner
et al. [35] for the research methodology, the intentions of this chapter was to illustrate the

usefulness and applicability of the GoPF framework.

The next chapter will summarize the intentions and structure of the GoPF frame-
work and provide concluding remarks. It will also highlight future areas of research that

can extend or improve this thesis.

Chapter 7. Evaluation - Summary 141

Chapter 8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The value of software applications to an organization is based on how well business goals
are satisfied through their use. Successful software development for an organization in-
volves an accurate understanding of requirements, business goals, and (automated) busi-
ness processes that can satisfy them. Therefore, it is necessary to build goal and process
models that appropriately represent the requirements of stakeholders. However, defining
such models from scratch is challenging. In spite of similarities between problems and
solutions in a given domain, organizations often have difficulties in properly identifying,
documenting, organizing, and reusing goals, business processes, and the links between
these two views. In other words, capturing and reusing the domain knowledge is chal-
lenging and it is becoming increasingly difficult to ignore the benefits of knowledge re-
usability. Reusing domain knowledge captured in the form of patterns can often help

address this issue.

Furthermore, there is a gap between goals and business processes. Whereas much
attention has been devoted to the transition from business processes to supporting soft-
ware products, the gap between business goals and business processes has received far
less attention. Most approaches do not address the latter gap properly, and many even
ignore goals altogether. A significant number of software development projects, in
healthcare for example, yield disappointing results or are simply canceled because busi-
ness processes are not aligned properly with business goals. Modeling business goals and
processes separately is not sufficient to bridge this gap, and hence traceability must be

taken into account.

Motivated by the above challenges, this thesis introduced the Goal-oriented Pat-
tern Family (GoPF) framework, which is a pattern-based framework for capturing
knowledge about a domain, structuring it, and reusing it in other contexts. The patterns
contain the knowledge about recurring problems and solutions in the domain. They also
include the potential effects of alternative solutions on the goals. This knowledge is cap-

Chapter 8. Conclusions and Future Work - Conclusions 142

tured in the form of reusable goal model building blocks, business process building
blocks, links that define the realization relationships between them, and evaluation strat-
egy for alternative solutions. This structure of patterns indicates which business processes
alternatively realize particular business goals. Using the knowledge in the pattern along
with contextual conditions and requirements of a given organization enables selecting
and customizing known solutions for the organization. Hence, patterns help bridging the
gap between requirements of a particular organization and corresponding (existing) solu-
tions. These patterns are then organized in pattern families, i.e., collections of related
patterns, where refinement links capture potential refinement relationships amongst pat-
terns. The Framework Metamodel (FMM) lays down the foundation of pattern families
and formalizes the patterns that capture knowledge. FMM is formalized as a profile of the
standard URN modeling notation, which combines goals, processes, realization links be-
tween them, and potential effects of solutions, as well as refinement links in between pat-

terns.

The GoPF framework includes methods for capturing the domain knowledge by
locating recurrences and building patterns and pattern families through interaction with
stakeholders and domain experts. However, changes in the requirements and context of
stakeholders in a domain are unavoidable and therefore the problems and solutions within
a domain are always evolving. Furthermore, the knowledge about business requirements
in a domain is changing over time at a more rapid pace than for conventional software
design patterns. One benefit of using the GoPF framework for capturing knowledge is
that the patterns encapsulate recurring problems and solutions into loosely-coupled mod-
ules. Still, rapid changes in technologies, business environments, and concerns of stake-
holder have highlighted the need for evolving patterns and pattern families. This is essen-
tial for maintaining the accuracy and usefulness of patterns. Introducing evolutionary
mechanisms that systematically help maintaining pattern families is hence a necessity.
Adding new patterns, removing obsolete ones, modifying patterns, and combing pattern
families are core aspects of family evolution. GoPF is equipped with four automatable
evolutionary mechanisms for the extension, modification, elimination, and combination
of pattern families. According to the literature reviewed, this is the first attempt at de-

scribing and formalizing evolution mechanisms for patterns that integrate business goals

Chapter 8. Conclusions and Future Work - Conclusions 143

and processes. In order to demonstrate the feasibility of these mechanisms, a Java proto-
type application was developed that implements the four evolution algorithms. This ap-
plication was used to test the algorithms against various manipulations of the patient safe-

ty pattern family.

The GoPF framework also provides a customization and extraction method that
enables the selection of appropriate solutions in the context of a particular organization.
The framework facilitates extracting stakeholders’ business goals in the form of a hierar-
chical model and designing business processes with the help of reusable knowledge cap-
tured as patterns. This method uses the domain knowledge in the pattern families and an
initial organizational goal model as inputs and then assesses the impact of alternative
solutions for achieving the goals of stakeholders in a given organization with a step-by-
step, top-down approach. The result is a URN model where the business goals have been
refined based on the knowledge embedded in the patterns, where a suitable business pro-

cess was constructed, and where traceability links between the two views are document-

ed.

This thesis made the hypothesis that one can reuse and maintain, in a rigorous
way, the knowledge about business goals, business processes and the links between them,
captured as patterns to create suitable business processes in the context of a different or-
ganization. This hypothesis was demonstrated through the main contributions of this

work, which include:

e The GoPF framework itself, which includes a Family Metamodel that for-
malizes patterns and families using a URN profile. Pattern families capture

the knowledge of a given domain by including:

o Goal model and business process building blocks representing recurrent
problems (including indicators to measure them) and solutions, as well as

realization links between them;

o Effects of alternative solutions on stakeholders at the level of each pat-

tern; and

o Refinement links between patterns, hence capturing their hierarchy.

Chapter 8. Conclusions and Future Work - Conclusions 144

e A Goal-driven Method (GDM) that includes processes, mechanisms and al-
gorithms for the creation and evolution (through extensions, modifications,

eliminations, and combinations) of pattern families;

e An Organization-driven Customization and Extension Method (OCEM)
providing steps for building customized goal and process models for specif-

ic organizations by reusing the captured knowledge in the families; and

e Two case studies in which the GoPF framework was used for capturing and

reusing their relevant domain knowledge.

The validation was done through the above two realistic case studies (where real prob-
lems, organizations, and stakeholders were involved), but also through a comparison with
related work, which highlighted the uniqueness of the framework and its potential. The
GoPF framework is expected to have a positive impact on the scientific community
through the formalization, evolution, and reuse of patterns in domain-specific business
domains. From an industrial viewpoint, this framework will also help intermediary organ-
izations (such as consulting firms) who are required to repeatedly create and document

goal and process models for other organizations in their business domain.

8.2 Future Work

Several limitations of the GoPF framework and threats to the validity of the work were
identified in the thesis, especially in section 7.4. These issues lead to different opportuni-

ties for improving and completing this work in the future.

8.2.1 Customization and Extraction of Models (and Propagation)
OCEM currently uses a “locally optimal” approach (in the context of a pattern) for select-

ing the most satisfying solution for the stakeholders. This implies a breadth-first evalua-
tion of one level of strategies in the context of a specific pattern. However, alternative
algorithms could also be explored, including depth-first or hybrid traversals, the evalua-
tion of combined strategies from N levels deep in a look-ahead way, etc. There are also
research opportunities for changing OCEM and assessing it against the current method.
For instance, a constraint-oriented solving approach to goal evaluations suggested by Luo

and Amyot [144] may enable a “globally optimal” approach. Such approach can find the

Chapter 8. Conclusions and Future Work - Future Work 145

best solution in the context of the organization based on the possible evaluation strategies

outside the scope of a particular pattern.

Furthermore, OCEM currently starts from an empty business process, but another
possible start point could be the as-is organization business process, which PF users
would like to refine or extend through the framework.

8.2.2 Usage of GoPF in Different Domains and by Different People
The GoPF framework was used on two real-life examples. However, it would be valuable

for improving the framework to use it for capturing and reusing knowledge in other do-
mains. Analysis of its usefulness and difficulties will help improving GoPF’s metamodel

and methods, especially in terms of generality.

The framework should also be used by different people to avoid bias and enable
studying its usability. The experiments could be conducted by different PF analysts and

PF users, who respectively will be in charge of capturing and reusing domain knowledge.

8.2.3 Usage of GoPF in Different Organizations of a Given Domain
GoPF’s feasibility and usefulness was evaluated against different departments of two

large organizations. The departments in each of these organizations were also large and
had similar yet different requirements, which made them suitable candidates to play the
role of individual organizations in their domains. Domain experts underscored the bene-
fits of using the pattern families outside the scope of the examined organizations. Yet, a
broader experiment would be valuable. Therefore, one next step could be to use the GoPF
framework across multiple organizations (and not just departments) of a given domain.
Such experiments, in addition to helping with the assessment of the usefulness and gener-
ality of the framework, may improve the generality of the patterns and families them-

selves, leading to higher benefits for future users.

8.2.4 Evolution of Pattern Families
Another future work item is to monitor a domain and evolve its pattern family over long-

er periods (possibly years). Such research would examine the sufficiency of the evolu-
tionary mechanisms and incorporate learned lessons and emerging best practices. This

may potentially highlight the need for new or improved evolutionary mechanisms.

Chapter 8. Conclusions and Future Work - Future Work 146

8.2.5 Other Modeling Languages
At the time this research was started (in 2007), URN had advantages over similar alterna-

tives for goal and process modeling because it integrates these two views, and tool sup-
port was readily available. However, it would be interesting to evaluate the sufficiency
and completeness of URN-based goal and process models for organizations in different
domains and compare the results to similar experiments with alternative standards and
notations such as OMG’s BPMN [49] and/or BPDM [53]. Using such alternative lan-
guages might also enable transferring the benefits of GoPF outside of the URN world.

8.2.6 GoPF for Building Goal Models
This thesis focused on capturing and reusing the knowledge about business goals and

business processes. Currently, the GoPF framework is designed to reuse such domain
knowledge by extending the initial goal model to a full-blown goal model that fit stake-
holder requirements. The method in charge of building the goal model (OCEM) is simul-
taneously building a hierarchy of related business processes. Having both goal models
and relevant business processes is the desired outcome for many stakeholders. However,
there are domains, such as outcome-based compliance in general, in which some stake-
holders are mainly concerned with goal models, and not so much in business processes.
Thus, a future research item would be to customize the framework, and especially

OCEM, for building customized goal models.

8.2.7 Product Line Software Engineering
In this thesis, reusable business goals and processes are combined in patterns as the un-

derlying means of reusing domain knowledge. An interesting future work is to assess the
possibility of customizing some GoPF methods (e.g., evolutionary mechanisms) to be
used in product line software engineering. The research by Brown et al. [145], which

augments feature models with UCM diagrams, could be a start point for this purpose.

8.2.8 Tool Support
Currently, JUCMNav provides tool support for creating goal model and business process

building blocks in the form of GRL and UCM diagrams, respectively. Evaluation strate-
gies can also be captured. The refinement links and realization links are specified using

URN links. Finally, JUCMNav helps PF users build hierarchical goal and business pro-

Chapter 8. Conclusions and Future Work - Future Work 147

cess models for the stakeholder reusing pattern captured by PF analysts. The case studies
for patient safety and aviation security both made use of JUCMNav for capturing and
reusing knowledge. However, JUCMNav currently does not provide support for visuali-
zation of the structure of patterns and families, and evolutionary mechanisms and OCEM
are not integrated either. A tool more specialized for developing and using GoPF-based

patterns would benefit both PF analysts and PF users.

8.2.9 Run-Time Approach
The GoPF framework is mainly concerned with assisting requirements engineers and

business analysts by capturing domain knowledge and reusing it. Currently, reusing goals
and selecting the solutions that can better satisfy stakeholders happens at design time.
The framework is not attempting to dynamically reuse goals and processes at run-time, in
an adaptive way, but this could be the topic on interesting research. One challenge here is
providing a mechanism for applying the selected solution. For example, instead of having
only one sub-process (plug-in map) selected per stub and resolving everything at design
time, many sub-processes may be kept in dynamic stubs (which would allow for many
sub-processes) and be resolved at run-time according to the current context of the organi-
zation as monitored by the indicators. Pourshahid et al. [146] have recently published a
systematic literature review on business process adaptation that discusses work in that
area, including work involving URN and aspect-oriented extensions to URN. In addition,
the current GoPF framework captures the knowledge about the problems and solutions
for the stakeholders in the organizations. However, run-time approaches may also need to

capture patterns about actors outside the scope of organizations.

Chapter 8. Conclusions and Future Work - Future Work 148

REFERENCES

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]
[12]

[13]

E. Simchi-Levi and P. Kaminsky, Designing and managing the supply chain:
concepts, strategies, and case studies. Irwin/McGraw-Hill, 2003.

T. H. Davenport, Process innovation: reengineering work through information
technology. Harvard Business School Press, 1993.

D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow man-
agement: From process modeling to workflow automation infrastructure”, Dis-

tributed and Parallel Databases, vol. 3, no. 2, pp. 119-153, 1995.

R. K. Ko, S. S. Lee, and E. W. Lee, “Business process management (BPM) stand-
ards: a survey”, Business Process Management Journal, vol. 15, no. 5, pp. 744-
791, 2009.

F. Alencar, B. Marin, G. Giachetti, O. Pastor, J. Castro, and J. H. Pimentel, “From
i* Requirements Models to Conceptual Models of a Model Driven Development
Process”, in The Practice of Enterprise Modeling, LNBIP 39, Springer, pp. 99-
114, 2009.

Y. Huang, S. Kumaran, and K. Bhaskaran, “Platform-independent model tem-
plates for business process integration and management solutions”, in IEEE Inter-
national Conference on Information Reuse and Integration (IRI), IEEE CS, pp.
617-622, 2003.

D. Amyot and G. Mussbacher, “Bridging the requirements/design gap in dynamic
systems with use case maps (UCMSs)”, in Proceedings of the 23rd International
Conference on Software Engineering, IEEE CS, pp. 743-744, 2001.

OASIS, “Web Services Business Process Execution Language (WSBPEL), ver-
sion 2.0, April 2007.

D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Compu-
ting. Wiley, 2003.

D. C. Schmidt, “Model-driven Engineering”, IEEE Computer, vol. 39, no. 2, pp.
25-31, 2006.

M. Bensaou and M. Earl, “The right mind-set for managing information technolo-
gy”, Harvard Business Review, vol. 76, pp. 118-129, 1998.

T. Hoffman, “Study: 85% of IT departments fail to meet biz needs”, Computer
World, vol. 11, p. 24, Oct. 1999.

A. Lapouchnian, Y. Yu, and J. Mylopoulos, “Requirements-Driven Design and
Configuration Management of Business Processes”, in Business Process Man-
agement,5th International Conference, BPM 2007, LNCS 4714, Springer, pp.
246-261, 2007.

References 149

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

G. Mussbacher, D. Amyot, J. Aratijo, A. Moreira, and M. Weiss, “Visualizing
Aspect-Oriented Goal Models with AoGRL”, in 2nd Int. Workshop on Require-
ments Engineering Visualization, IEEE CS, p. 1, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

D. Ciuksys and A. Caplinskas, “Ontology-based approach to reuse of business
process knowledge”, Informacijos mokslai, no. 42, pp. 168-174, 2007.

J. Bézivin, “In search of a basic principle for model driven engineering”, Novatica
Journal, Special Issue on UML , vol. 5, no. 2, pp. 21-24, 2004.

J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, 1st ed. Wiley, 2004.

B. Hui, S. Liaskos, and J. Mylopoulos, “Requirements Analysis for Customizable
Software Goals-Skills-Preferences Framework”, in 11th IEEE International Con-
ference on Requirements Engineering, IEEE CS, p. 117, 2003.

J. Wang, K. He, B. Li, W. Liu, and R. Peng, “Meta-models of Domain Modeling
Framework for Networked Software”, in 6th Int. Conf. on Grid and Cooperative
Computing, IEEE CS, pp. 878-886, 2007.

G. Button, Technology in Working Order: Studies of Work, Interaction and Tech-
nology, 1st ed. Routledge, 1992.

K. Schneider and I. Wagner, “Constructing the ‘Dossier Représentatif””, Comput-
er Supported Cooperative Work (CSCW), vol. 1, no. 4, pp. 229-253, Dec. 1993.

J. Bowers, “Making it work: a field study of a CSCW network: Computer-
supported cooperative work”, The Information Society: An International Journal,
vol. 11, no. 3, pp. 189-207, 1995.

R. Atkinson, “Project management: cost, time and quality, two best guesses and a
phenomenon, it’s time to accept other success criteria”, International Journal of
Project Management, vol. 17, no. 6, pp. 337-342, 1999.

M. Berg, “Implementing information systems in health care organizations: myths
and challenges”, International Journal of Medical Informatics, vol. 64, no. 2, pp.
143-156, Dec. 2001.

M. Berg, Rationalizing Medical Work: Decision-Support Techniques and Medical
Practices. MIT Press, 1997.

M. F. Collen, A History of Medical Informatics in the United States, 1950 to
1990, 1st ed. American Medical Informatics Association, 1995.

E. B. Steen, D. E. Detmer, and I. O. Medicine, The Computer-Based Patient Rec-
ord: An Essential Technology for Health Care, Rev Sub. National Academy
Press, 1997.

W. Hasselbring, “Information system integration”, Communications of the ACM,
vol. 43, no. 6, pp. 32-38, 2000.

References 150

[30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Herold, A. Metzger, A. Rausch, and H. Stallbaum, “Towards Bridging the Gap
between Goal-Oriented Requirements Engineering and Compositional Architec-
ture Development”, in 2nd Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent, IEEE CS, p. 7, 2007.

S. S. Ostadzadeh, F. S. Aliee, and S. A. Ostadzadeh, “An MDA-Based Generic
Framework to Address Various Aspects of Enterprise Architecture”, in Advances
in Computer and Information Sciences and Engineering, Springer, pp. 455-460,
2008.

ITU-T — International Telecommunications Union, Recommendation Z.151
(10/12) User Requirements Notation (URN) — Language definition, Geneva, Swit-
zerland, 2012.

“URN Wiki”, http://www.usecasemaps.org/, Dec-2009. [Online]. Available:
http://www.usecasemaps.org/. [Accessed: 14-Sep-2009].

S. T. March and G. F. Smith, “Design and natural science research on information
technology”, Decision Support Systems, vol. 15, no. 4, pp. 251-266, Dec. 1995.

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research”, MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004.

“URN Virtual Library”, http://www.usecasemaps.org/urn/, May-2009. [Online].
Available: http://www.usecasemaps.org/urn/. [Accessed: 11-May-2009].

D. Amyot and G. Mussbacher, “User Requirements Notation: The First Ten
Years, The Next Ten Years”, Journal of Software (JSW), Vol. 6, No. 5, Academy
Publisher, pp. 747-768, May 2011.

ITU-T — International Telecommunications Union, Recommendation Z.150
(02/11), User Requirements Notation (URN) — Language Requirements and
Framework. Geneva, Switzerland, 2011.

S. A. Behnam, D. Amyot, A. J. Forster, L. Peyton, and A. Shamsaei, “Goal-
Driven Development of a Patient Surveillance Application for Improving Patient
Safety”, in 4th Int. MCeTech Conf. on eTechnologies, LNBPI 26, Springer, pp.
65-76, 2009.

M. Weiss and D. Amyot, “Business process modeling with URN”, International
Journal of E-Business Research, vol. 1, no. 3, pp. 63-90, 2005.

Z. Cai and E. Yu, “Addressing Performance Requirements Using a Goal and Sce-
nario-Oriented Approach”, in Proceedings of 14th international Conference on
Advanced Information Systems Engineering, LNCS 2348, Springer, pp. 706-710,
2002.

D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu,
“Evaluating Goal Models within the Goal-oriented Requirement Language”, In-
ternational Journal of Intelligent Systems (1JIS), vol. 25, issue 8, pp. 841-877,
2010.

References 151

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]
[54]
[55]
[56]
[57]

[58]

G. Mussbacher, D. Amyot, P. Heymans, “Eight Deadly Sins of GRL”, in Pro-
ceedings of 5th International i* Workshop (iStar 2011), Trento, Italy, CEUR-WS,
Vol-766, pp. 2-7, 2011

G. Mussbacher, “Evolving Use Case Maps as a Scenario and Workflow Descrip-
tion Language”, in 10th Workshop of Requirement Engineering (WER’07), pp.
56-67, Toronto, Canada, 2007.

OMG, “Object Constraint Language”, OMG Specification, Version 2.0, for-
mal/06-05, vol. 1, pp. 06-05, 2006.

D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher, “A Lightweight GRL Profile
for i* Modeling™, 3rd Int. Workshop on Requirements, Intentions and Goals in
Conceptual Modeling (RIGIM 2009), ER Workshops, LNCS 5833, Springer, pp.
254-264, 20009.

“jUCMNav v5.1.0”, http://softwareengineering.ca/jucmnav/. [Accessed: 9-Jul-
2012].

A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss, and A. J.
Forster, “Business process management with the user requirements notation”,
Journal of Electronic Commerce Research, vol. 9, no. 4, pp. 269-316, Dec. 20009.

Stephen A. White, Introduction to BPMN, July 2012 http://www.omg.org/bpmn/
Documents/Introduction_to_ BPMN.pdf.

Stephen A. White, BPMN Tutorial, Sep 2009, http://www.bpmn.org/Documents/
OMG BPMN Tutorial.pdf.

P. Wohed, W. M. van der Aalst, M. Dumas, A. H. Hofstede, and N. Russell, “On
the suitability of BPMN for business process modelling”, in Business Process
Management 2006, LNCS 4102, Springer, pp. 161-176, 2006.

C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M. van der Aalst, “From
BPMN process models to BPEL web services”, in Web Services, 2006. ICWS'06.
International Conference on, IEEE CS, pp. 285-292, 2006.

Object Management Group, Business Process Definition MetaModel (BPDM),
version 1.0, formal/2008-11-03, November 2008.

Object Management Group, BPDM - Common Infrastructure, September 2009,
http://www.omg.org/cgi-bin/doc?dtc/08-05-07.

C. Atkinson and T. Kuhne, “Model-Driven Development: A Metamodeling Foun-
dation”, IEEE Software, vol. 20, no. 5, pp. 36-41, 2003.

J. M. Favre, “Towards a basic theory to model model driven engineering”, in 3rd
Workshop in Software Model Engineering, WiSME, 2004.

S. Kent, “Model Driven Engineering”, in Integrated Formal Methods, Third In-
ternational Conference, LNCS 2335, Springer, pp. 286-298, 2002.

Object Management Group, Model Driven Architecture - Architecture Board -
ORMSC, Nov 2009, http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01,.

References 152

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast, MDA explained: the model
driven architecture: practice and promise. Addison-Wesley, 2003.

C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,
Buildings, Construction. Oxford University Press US, 1977.

J. Naish and L. Zhao, “Towards a generalised framework for classifying and re-
trieving requirements patterns”, in Requirements Patterns (RePa), 2011 First In-
ternational Workshop on, IEEE CS, pp. 42 -51, 2011.

M. Fowler, Analysis Patterns: reusable object models. Addison-Wesley, 2000.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture Volume 1: A System of Patterns. John Viley &
Sons Ltd, Chirchester, England, 1996.

J. Adams, S. Koushik, G. Galambos, and G. VVasudeva, Patterns for e-business: A
Strategy for Reuse. IBM Press, 2001.

“Cloud Computing Patterns”, July 2012, http://cloudcomputingpatterns.org/

R. P. Gabriel, Patterns of Software: Tales from the Software Community. Oxford
University Press, USA, 1998.

M. Weiss, “Modelling Security Patterns Using NFR Analysis”, Integrating Secu-
rity and Software Engineering: Advances and Future Visions, IGI Global, pp.
127-141, 2006.

M. Weiss, “Pay to play or requirements prioritization in collectives”, in Require-
ments Patterns (RePa), 2011 First International Workshop on, pp. 28 -31, 2011.

Y. Wen, H. Zhao, and L. Liu, “Analysing security requirements patterns based on
problems decomposition and composition”, in Requirements Patterns (RePa),
2011 First International Workshop on, IEEE CS, pp. 11 -20, 2011.

S. Konrad and B. H. C. Cheng, “Requirements Patterns for Embedded Systems”,
in 10th Anniversary IEEE Joint International Conference on Requirements Engi-
neering, IEEE CS, Washington, DC, USA, pp. 127-136, 2002.

G. Mussbacher, D. Amyot, and M. Weiss, “Formalizing Patterns with the User
Requirements Notation”, Design Pattern Formalization Techniques, IGI Global,
pp. 302-322, 2007.

J. Coplien, Software Patterns. SIGS, 1996.

T. Taibi and D. C. L. Ngo, “Why and how should patterns be formalized”, Jour-
nal of Object-Oriented Programming (JOOP), vol. 14, no. 4, pp. 8-9, 2001.

I. Aragjo and M. Weiss, “Linking non-functional requirements and patterns”, in
Conference on Pattern Languages of Programs (PLoP), 2002.

L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements
in software engineering. Kluwer Academic Publishers, 2000.

References 153

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

H. Y. Ong, M. Weiss, and 1. Aragjo, “Rewriting a pattern language to make it
more expressive”, Hot Topic on the Expressiveness of Pattern Languages,
ChiliPLoP, 2003.

D. Gross and E. Yu, “From Non-Functional Requirements to Design through Pat-
terns”, Requirements Engineering, vol. 6, no. 1, pp. 18-36, 2001.

L. Chung, S. Supakkul, and A. Yu, “Good Software Architecting: Goals, Objects,
and Patterns”, in Information, Computing & Communication Technology Sympo-
sium (ICCT-2002), UKC'02, pp. 8-11, 2002.

R. Andrade and L. Logrippo, “Reusability at the Early Development Stages of
Mobile Wireless Communication Systems”, in 4th World Multiconference on Sys-
temics, Cybernetics and Informatics (SCI 2000), pp. 11-16, 2000.

R. Andrade, Capture, Reuse, and Validation of Requirements and Analysis Pat-
terns for Mobile Systems, School of Information Technology and Engineering
(SITE), University of Ottawa, 2001.

E. Billard, “Patterns of agent interaction scenarios as use case maps”, |IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no.
4, pp. 1933-1939, 2004.

G. Mussbacher and D. Amyot, “A collection of patterns for Use Case Maps”, in
First Latin American Conference on Pattern Languages of Programming (PLoP
01), 2001.

S. Henninger and V. Corréa, “Software pattern communities: current practices
and challenges”, in 14th Conference on Pattern Languages of Programs, ACM,
pp. 1-19, 2007.

C. Zhao, J. Kong, J. Dong, and K. Zhang, “Pattern-based design evolution using
graph transformation”, Journal of Visual Languages and Computing, vol. 18, no.
4, pp. 378-398, 2007.

C. Zhao, J. Kong, and K. Zhang, “Design pattern evolution and verification using
graph transformation”, in 40th Annual Hawaii Int. Conf. on System Sciences,
IEEE CS, p. 290a, 2007.

J. Dong, S. Yang, and Y. Sun, “A Classification of Design Pattern Evolutions”,
International Journal of Object Technology, vol. 6, no. 10, pp. 95-109, Nov.
2007.

J. Dong, Y. Zhao, and Y. Sun, “Design pattern evolutions in QVT”, Software
Quality Journal, vol. 18, no. 2, pp. 269-297, 2010.

M. Aoyama, “Evolutionary Patterns of Design and Design Patterns”, in Principles
of Software Evolution, International Symposium on, IEEE CS, pp. 110-116, 2000.

T. Kobayashi and M. Sacki, “Software development based on software pattern
evolution”, in 6" Asia-Pacific Software Engineering Conference (APSEC99),
Takamatsu, Japan. IEEE CS, pp. 18-25, 1999.

References 154

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

R. E. Johnson and B. Foote, “Designing reusable classes”, Journal of Object-
Oriented Programming, vol. 1, no. 2, pp. 22-35, 1988.

H. lida and Y. Tanaka, “A Compositional Process Pattern Framework for Com-
ponent-based Process Modeling Assistance”, in 1st Workshop on Software Devel-
opment Process Patterns (SDPP’02), TUM-10213, Munich, Germany, 2002.

H. lida, “Pattern-Oriented Approach to Software Process Evolution”, in Int.
Workshop on the Principles of Software Evolution, Fukuoka, Japan, pp. 55-59,
1999.

H. Tran, Modélisation de Procédés Logiciels a Base de Patrons Réutilisables,
Thése de doctorat, Université de Toulouse-le-Mirail, France, 2007.

J. A. Bubenko Jr, A. Persson, and J. Stirna, User Guide of the Knowledge Man-
agement Approach Using Enterprise Knowledge Patterns, Deliverable D3, IST
Programme project HyperKnowledge—Hypermedia and Pattern Based Knowledge
Management for Smart Organisations, Stockholm, Sweden: Department, 2001.

J. Stirna, A. Persson, and L. Aggestam, “Building Knowledge Repositories with
Enterprise Modelling and Patterns-from Theory to Practice”, in European Confer-
ence on Information Systems (ECIS), Goteborg, Sweden, 2006.

A. Persson, J. Stirna, and L. Aggestam, “How to Disseminate Professional
Knowledge in Healthcare: The Case of Skaraborg Hospital”, Journal of Cases on
Information Technology, vol. 10, no. 4, pp. 41-64, 2008.

S. Ghanavati, D. Amyot, and L. Peyton, “A Systematic Review of Goal-oriented
Requirements Management Frameworks for Business Process Compliance”, in
4th Int. Workshop on Requirements Engineering and Law (RELAW). IEEE CS,
pp. 25-34, Aug. 2011.

A. Shamsaei, A. Pourshahid, and D. Amyot, “A Systematic Review of Compli-
ance Management Based on Goals and Indicators”, in 3rd Workshop on Govern-
ance, Risk and Compliance-Applications in Information Systems (GRCIS 2011),
CAISE 2011 Workshops. LNBIP 83, Springer, pp. 228-237, June 2011.

I. Markovic and M. Kowalkiewicz, “Linking Business Goals to Process Models in
Semantic Business Process Modeling”, in Proceedings of the 12th International
IEEE Enterprise Distributed Object Computing Conference, IEEE CS, pp. 332-
338, 2008.

G. Rimassa and B. Burmeister, “Achieving Business Process Agility in Engineer-
ing Change Management with Agent Technology”, in Workshop dagli Oggetti
agli Agenti WOA, Genova, ltaly, pp. 1-7, 2007.

D. Greenwood and G. Rimassa, “Autonomic Goal-Oriented Business Process
Management”, in 3rd International Conference on Autonomic and Autonomous
Systems, IEEE CS, pp. 43-48, 2007.

A. Pourshahid, G. Mussbacher, D. Amyot, and M. Weiss, “An Aspect-Oriented
Framework for Business Process Improvement”, in 4th International MCeTech

References 155

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Conference on eTechnologies (MCeTech09). LNBIP, vol. 26, Springer, pp. 290-
305, 2009.

T. R. Gruber, “Toward principles for the design of ontologies used for knowledge
sharing”, International Journal of Human Computer Studies, vol. 43, no. 5, pp.
907-928, 1995.

M. Sabetzadeh and S. Easterbrook, “View merging in the presence of incomplete-
ness and inconsistency”, Requirements Engineering, vol. 11, no. 3, pp. 174-193,
2006.

M. Hepp, F. Leymann, J. Domingue, A. Wahler, E. Wahler, and D. Fensel, “Se-
mantic Business Process Management: A Vision Towards Using Semantic Web
Services for Business Process Management”, in IEEE International Conference
on e-Business Engineering, IEEE CS, pp. 535-540, 2005.

H. Kaiya and M. Saeki, “Ontology Based Requirements Analysis: Lightweight
Semantic Processing Approach”, in 5th International Conference on Quality
Software, IEEE CS, pp. 223-230, 2005.

H. Kaiya and M. Saeki, “Using Domain Ontology as Domain Knowledge for Re-
quirements Elicitation”, in 14th IEEE International Requirements Engineering
Conference, IEEE CS, pp. 186-195, 2006.

R. Falbo, G. Guizzardi, and K. C. Duarte, “An ontological approach to domain
engineering”, in 14th international conference on software engineering and
knowledge engineering, ACM, pp. 351-358, 2002.

R. S. Pressman, Software engineering: a practitioner's approach, 5th ed.
McGraw-Hill New York, 2000.

G. Arango and R. Prieto-Diaz, “Domain Analysis Concepts and Research Direc-
tions”, in Domain analysis and software systems modeling, IEEE CS, pp. 9-32,
1991.

L. Wei, H. Ke-Qing, W. Jiang, and P. Rong, “Heavyweight Semantic Inducement
for Requirement Elicitation and Analysis”, in Semantics, Knowledge and Grid,
Third International Conference on, IEEE CS, pp. 206-211, 2007.

Y. He, K. He, J. Wang, and C. Wang, “Toward a Context Driven Approach for
Semantic Web Service Evolution”, in 3rd International Conference on Conver-
gence and Hybrid Information Technology, vol. 2, IEEE CS, pp. 1089-1094,
2008.

A. Filipowska, M. Kaczmarek, M. Kowalkiewicz, I. Markovic, and X. Zhou,
“Organizational ontologies to support semantic business process management”, in
4th International Workshop on Semantic Business Process Management, New
York, NY, USA, pp. 35-42 , 20009.

Y. Yu, S. Liaskos, J. Mylopoulos, and A. Lapouchnian, “Requirements-driven
configuration of software systems”, in Reverse Engineering To Requirements
(RETR05), Pittsburgh, USA. p. 18, 2005.

References 156

[115]

[116]
[117]

[118]

[119]
[120]

[121]

[122]
[123]

[124]

[125]
[126]

[127]

[128]
[129]

[130]

S. Liaskos, A. Lapouchnian, Yigiao Wang, Yijun Yu, and S. Easterbrook, “Con-
figuring common personal software: a requirements-driven approach”, in 13th
IEEE International Conference on Requirements Engineering, IEEE CS, pp. 9-18,
2005.

L. Northrop and P. C. Clements, A framework for software product line practice,
version 5.0, Software Engineering Institute, Pittsburgh, USA, 2007.

P. Clements and L. Northrop, Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

K. Lee, K. Kang, and J. Lee, “Concepts and guidelines of feature modeling for
product line software engineering”, Software Reuse: Methods, Techniques, and
Tools, LNCS 2319, Springer, pp. 62-77, 2002.

T. H. Davenport, Process innovation: reengineering work through information
technology. Harvard Business School Pr, 1993.

M. Penker and H. E. Eriksson, Business Modeling With UML: Business Patterns
at Work. John Wiley & Sons, 2000.

M. Dumas, W. van der Aalst, and A. Ter Hofstede, Process-aware information
systems: bridging people and software through process technology. Wiley-
Blackwell, 2005.

M. Hammer and J. Champy, Reengineering the corporation: A manifesto for
business revolution. Collins Business, 2003.

M. D. McGinnis and I. U., Bloomington, Polycentric games and institutions. Uni-
versity of Michigan Press, 2000.

L. M. Cysneiros, V. Werneck, and E. Yu, “Evaluating Methodologies: A Re-
quirements Engineering Approach Through the Use of an Exemplar”, in 7th
Workshop on Requirements Engineering, 2004, pp. 40-55.

R. E. Freeman, Strategic Management: A Stakeholder Approach. Pitman Publish-
ing, 1984.

“USE: UML-based Specification Environment”, http://www.db.informatik.uni-
bremen.de/projects/USE/, Sep 2011. [Online].

M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-based specification envi-
ronment for validating UML and OCL”, Science of Computer Programming, vol.
69, no. 1-3, pp. 27-34, 2007.

S.A. Behnam, FMM metamodel implementation in USE, http://www.eecs.
uottawa.ca/~damyot/pub/Behnam/FMM/, July 2012.

S.A. Behnam, Sample pattern family implementation in USE, http://www.eecs.
uottawa.ca/~damyot/pub/Behnam/PF-USE, July 2012.

J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd ed. Addison-Wesley Professional, 2003.

References 157

[131]

[132]

[133]

[134]

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

L. Eggertson, “Hospitals to report C. difficile and MRSA”. Canadian Medical
Association Journal (CMAJ), vol. 176 no. 10, pp. 1402-1403, May 2007.
http://www.cmaj.ca/content/176/10/1402.full

S.A. Behnam and D. Amyot, “Evolution Mechanisms for Goal-driven Pattern
Families used in Business Process Modeling”. Int. Journal of Electronic Business,
Inderscience Publishers, 2012 (to appear).

S.A. Behnam and D. Amyot, “Evolution of Goal-driven Pattern Families for
Business Process Modeling”, in 5" Int. MCETECH Conference on eTechnologies,
Les Diablerets, Switzerland, January 2011. LNBIP 78, Springer, pp. 46-61, 2011.

D. Alexandrou and G. Mentzas, “Research Challenges for Achieving Healthcare
Business Process Interoperability”, in eHealth, Telemedicine, and Social Medi-
cine, eTELEMED "09. International Conference on, IEEE CS, pp. 58-65, 20009.

S.A. Behnam, Patient Safety Pattern Family, http://www.eecs.uottawa.ca/
~damyot/pub/Behnam/PF, July 2012.

S.A. Behnam, Implementation of Evolutionary Mechanisms, http://www.eecs.
uottawa.ca/~damyot/pub/Behnam/EM-Java, July 2012.

S.A. Behnam, D. Amyot, G. Mussbacher, E. Braun, N. Cartwright, and M. Sauci-
er, “Using the Goal-Oriented Pattern Family Framework for Modelling Outcome-
Based Regulations”, in Second International Workshop on Requirements Patterns
(RePa), Chicago, USA, IEEE CS, pp. 35-40, September 2012.

Government of Canada, Audit of Aviation Security Regulatory Oversight, April
2011. http://www.tc.gc.ca/eng/corporate-services/aas-audit-870.htm

R. Tawhid, M. Alhaj, G. Mussbacher, E. Braun, N. Cartwright, A. Shamsaei, D.
Amyot, S.A. Behnam, and G. Richards, “Towards Outcome-Based Regulatory
Compliance in Aviation Security”, in 20th IEEE Int. Requirements Eng. Conf
(RE’12), IEEE CS, pp. 267-272, 2012.

Canadian Air Transport Security Authority, What We Do, June 2012.
http://www.catsa.gc.ca/Page.aspx?I1D=31

A. Shamsaei, A. Pourshahid, and D. Amyot, “Business Process Compliance
Tracking Using Key Performance Indicators”, in 6th Int. Workshop on Business
Process Design (BPD 2010), LNBIP 66, Springer, pp. 73-84, 2010.

S. A. Behnam, D. Amyot, and G. Mussbacher, “Towards a Pattern-Based Frame-
work for Goal-Driven Business Process Modeling”, in 8th Int. Conf. on Software
Engineering Research, Management and Applications (SERA2010), IEEE CS, pp.
137-145, 2010.

C. Kuziemsky, X. Liu, and L. Peyton, “Leveraging Goal Models and Performance
Indicators to Assess Health Care Information Systems”, in Quality of Information
and Communications Technology (QUATIC), 2010 Seventh International Confer-
ence on the, IEEE CS, pp. 222 -227, 2010.

References 158

[144] H. Luo and D. Amyot, “Towards a Declarative, Constraint-Oriented Semantics
with a Generic Evaluation Algorithm for GRL”, in 5th Int. i* Workshop, CEUR-
WS, Vol-766, pp. 26-31, 2011.

[145] J. Brown, R. Gawley, I. Spence, P. Kilpatrick, C. Gillan, R. Bashroush, and oth-
ers, “Requirements Modelling and Design Notations for Software Product Lines”,
in 1st Int. Workshop on Variability Modelling of Software-intensive Systems
(VaMoS), Limerick, Ireland, 2007.

[146] A. Pourshahid, D. Amyot, A. Shamsaei, G. Mussbacher, and M. Weiss, “A Sys-
tematic Review and Assessment of Aspect-oriented Methods Applied to Business
Process Adaptation”, Journal of Software (JSW), Vol. 7, No. 8, Academy Pub-
lisher, pp 1816-1826, August 2012.

References 159

Appendix A. OCL CONSTRAINTS FOR FMM

This appendix defines all the necessary OCL constraints implemented to ensure the integ-

rity of FMM-based models. These constraints are implemented along with FMM using
USE [126][127] and can be downloaded at [128]. Furthermore, the Increase Patient Safe-
ty pattern family introduced as an example in Section 5.2.4 is also used as an example for

evaluating the effectiveness of OCL constraints. Figure 62 illustrates the result of apply-

ing the OCL constraints on this example in the USE environment. The implementation of

this example in the USE environment can be downloaded from [129]. In the following,

constraints are categorized by the FMM classes they target (i.e., the OCL context), and

a brief description of their purpose is also provided.

& Class invariants e E
Inwariant Result
BusinessProcessBB: UnigueProcessElementNameinBPBB true
ElementLink:DifferentSourcelestination true
GoalModelBB::JustOneMainGoal true
GoalModelBB::UniqueElementLinkNameinGMBEB true
GoalModelBB::UniguelntenionMameinGWMBE true
Intention::AllPossibleRefiningLeafConnected true
Intention: :EitherMainGoalOrLeaf true
Intention: ElementsAreincludedinRelatedBSTs true
Intention: LeavesAreConnected true
Intention::LeavesBeingRefined true
Intention: LeavesHaveOneMainGoal true
Intention::MainGoalsAreConnected true
Intention::MainGoalsHaveAtLeastOneleaf true
Intention::MiddleGoaldreConnected true
Intention::NoDanglingMiddleintention true
Intention::NeMiddleintentionPossibleRefinement true
PF::UniqueEvalstrategyinPF true
PF::UniquePFName true
PF::UniguePatternMainGoalinPF true
PF::UniquePatternNamelnPF true
Pattern::CorrectLeafMainGoalRefinement true
Pattern::MoCircularDefiningPatternExist true
Pattern::MoLoopiLevel true
Pattern::NoQrphanPattern true
Pattern::OnlyLeavesRefine true
Pattern::UnigueBusinessStrategyNamelnPattern true

|Cnn3trahts ok.

100%

Figure 62 Results of checking the OCL constraints on the Increase Patient Safety PF

Appendix A

example

160

A.1 Constraints on PFs
Table 18 represents the four invariant constraints that must be evaluated to true for all

instances of PF. UniquePFName ensures that different patterns families are unique. Con-
sidering that, currently, the name is the unique identifying key of objects in GoPF mod-
els, there cannot exist two PFs with the same name. Similarly, UniquePatternNamelnPF
ensures that two patterns that have the same name cannot exist in a particular PF. Next,
UniquePatternMainGoallnPF ensures that each pattern in the family has a unique
mainGoal in their GoalModelBuildingBlock. Finally, UniqueEvalStrategyName ensures

that instances of EvaluationStrategy are unique within a pattern family.

Table 18 Invariant OCL constraints in the context of PatternFamily

OCL Constraints

inv UniquePFName:
PF.allInstances()->isUnique(name)

inv UniquePatternNameInPF:
self.pattern->isUnique(name)

inv UniquePatternMainGoalInPF:
self.pattern->isUnique(GT.mainGoal().name)

inv UniqueStrategyNameInPF:
self.pattern.businessStrategy.evaluationStrategy->isUnique(name)

A.2 Constraints on Patterns
Table 19 contains the implemented invariant constraints on Patterns. UniqueBusiness-

StrategyNamelnPattern guards the uniqueness of BusinessStrategies in a particular pat-
tern. OnlyLeavesRefined prevents a pattern to refine intentions, which are not leaves of
their respective GoalModelBuildingBlocks. CorrectLeafMainGoalRefinement limits the
refinement of intentions only to those patterns whose GoalModelBuildingBlocks’s
mainGoal is the same as the refined intention. NoOrphanPattern ensures that only one
root pattern exists in each pattern family. This means that all the patterns are connected
and therefore their usage in the extraction process is possible. NoCircularDefining-
PatternExist ensures refinement relationship between patterns is not circular. This pre-

vents both direct circular refinements and multi-level circular refinements.

Appendix A 161

Table 19 Invariant OCL constraints in the context of Pattern
OCL Constraints

inv UniqueBusinessStrategyNameInPattern:
self.businessStrategy->isUnique(name)

inv OnlylLeavesRefined:
self.refined->forAll(i|i.leaf)

inv CorrectlLeafMainGoalRefinement:
self.refined->forAll(i|i.name = self.GMBB.mainGoal().name)

inv NoOrphanPattern:
Pattern.allInstances()->one(p| p.refined->size()=0)

inv NoCircularDefiningPatternExist:
self.DefiningPatternSet()->excludes(self)

NoCircularDefiningPatternExist uses two operations, namely DefiningPatternSet() and
indirectly DownPatternSet() defined in Table 20, in order to support closure in circular

refinements.

Table 20 OCL operations of Pattern

businessStrategyCollection(): Set(BusinessStrategy) =
self.businessStrategy
isEqualTo(p:Pattern):Boolean =
((self.name = p.name) and
(self.GMBB.isEqualTo(p.GMBB)) and
(self.businessStrategy->forAll(bl|p.businessStrategy->
exists(b2|b2.isEqualTo(b1)))) and
(p.businessStrategy->forAll(bl|self.businessStrategy->
exists(b2|b2.isEqualTo(bl)))))
DownPatternSet(s:Set(Pattern)):Set(Pattern) =
if s->includesAll(s.GMBB.intention.patternDef->asSet())

then s

else DownPatternSet(s->union(s.GMBB.intention.patternDef->
asSet()))

endif

DefiningPatternSet():Set(Pattern) =

if self.GMBB.intention.patternDef->asSet()->size()>0

then DownPatternSet(self.GMBB.intention.patternDef-
>asSet())

else null

endif

Table 21 represents the post-conditions that make sure the result of businessStrategy-
Collection(), replaceGT(), addBizS(), and removeBizS() are as expected by the FMM.
These post-conditions are relatively simple, however their definition in OCL clarifies the

expected results and guides the correct implementation of these operations.

Appendix A 162

Table 21 Post-condition and preconditions in the context of Pattern

Context OCL Constraints
context Pattern:: post businessStrategyCollectionisDone:
businessStrategyCollection(): result = self.businessStrategy

Set(BusinessStrategy)

context Pattern:: post addGMBBisDone:
replaceGMBB(g:GoalModelBuildingBlock): |result = (self.GMBB=g)
Boolean
context Pattern:: post addBizSisDone:
addBizS(b:BusinessStrategy) :Boolean result = (self.businessStrategy
self.businessStrategy@pre->
including(b)
)
context Pattern:: post removeBizSisDone:
removeBizS(b:BusinessStrategy): result = (self.businessStrategy

Boolean =

self.businessStrategy@pre->
excluding(b)
)

A.3 Constraints on GoalModelBuildingBlocks
Table 22 defines the invariant constraints that guard the well-formedness of FMM-based

models. UniquelntenionNamelnGMBB and UniqueElementLinkNamelnGMBB respective-
ly ensure the uniqueness of Intentions and ElementLinks within a particular GoalModel-
BuildingBlock. JustOneMainGoal forces that only one of the Intentions in a particular

GoalModelBuildingBlock be a mainGoal.

Table 22 Invariant OCL constraints in the context of GoalModelBuildingBlock

OCL Constraints

inv UniqueIntenionNameInGMBB:
self.intention->isUnique(name)

inv UniqueElementLinkNameInGMBB:
self.EL->isUnique(name)

inv JustOneMainGoal:
self.intention->one(i|i.mainGoal)

In Table 23, the operations of GoalModelBuildingBlock are represented.

Appendix A 163

Table 23 OCL operations of GoalModelBuildingBlock

leafCollection(): Set(Intention) =
self.intention->select(i|i.leaf)

mainGoal(): Intention =
self.intention->select(i|i.mainGoal)->asSequence()->at(1)

isEqualTo(g:GoalModelBuildingBlock) : Boolean =
((self.name = g.name) and
(self.intention->forAll(il|g.intention->
exists(i2|i2.isEqualTo(il)))) and
(g.intention->forAll(il|self.intention->
exists(i2|i2.isEqualTo(il)))) and
(self.EL->forAll(el|g.EL->
exists(e2|e2.isEqualTo(el)))) and
(g.EL->forAll(el|self.EL->exists(e2|e2.isEqualTo(el)))))

Table 24 represents the post-conditions that make sure the results of leafCollection() and

mainGoal() are as expected.

Table 24 Post-condition and preconditions in the context of GoalModelBuildingBlock

Context OCL Constraints
context GoalModelBuildingBlock:: post leafCollectionisDone:
leafCollection(): Set(Intention) result = self.intention->select(i|i.leaf)
context GoalModelBuildingBlock:: post mainGoalisDone:
mainGoal(): Intention self.intention->
forAll(i|i.mainGoal implies result = i)

A.4 Constraints on Intentions
Table 25 defines the invariants in the context of Intention. LeavesBeingRefined ensures

that in patterns, only leaf intention may be refined. ElementsArelncludedinRelatedBSTs
guarantees that when an intention is realized by a ProcessElement, the ProcessElement
is related to at least one BuisnesProcessTemplate from the holding pattern. Either-
MainGoalOrLeaf ensures that an intention cannot be both leaf and mainGoal at the same
time. The LeavesAreConnected, MainGoalsAreConnected, and MiddleGoalsAre-
Connected constraints make sure that intentions at different levels of hierarchy are well
connected and that their respective links are also included in the GoalModelBuilding-
Block.

AllPossibleRefiningLeafConnected ensures that all potential refinement relations
are established. This is done by making sure that, when a pattern whose GoalModelBuild-

ingBlock’s mainGoal is equal to a leaf intention, then they are connected. NoMiddlelnten-

Appendix A 164

tionPossibleRefinement ensures that just leaf intentions may be potentially refined by
other patterns. NoDanglingMiddleIntention ensures that intentions in the middle of a hier-
archy are connected to one mainGoal though a chain of links. It also ensures that they are
connected to at least one leaf through a chain of links. LeavesHaveOne-MainGoal en-
sures that every leaf intention is connected to one mainGoal intention through a chain of
links. Similarly, MainGoalsHaveAtLeastOneLeaf ensures that through a chain of links,

each mainGoal is connected to at least one leaf intention.

Table 25 Invariant OCL constraints in the context of Intention

OCL Constraints

inv LeavesBeingRefined:
self.patternDef<>null implies self.leaf

inv ElementsAreIncludedInRelatedBSTs:
self.GMBB.pattern.businessStrategy.BPT.PE ->
includesAll(self.realizingElement)

inv EitherMainGoalOrLeaf:

not (mainGoal and leaf)

inv LeavesAreConnected:
self.leaf implies self.GMBB.EL->exists(e|e.fromLink()=self)

inv MainGoalsAreConnected:
self.mainGoal implies self.GMBB.EL->exists(e|e.toLink()=self)

inv MiddleGoalsAreConnected:
(not self.mainGoal and not self.leaf)
implies
self.GMBB.EL->
exists(el, e2|el.toLink()= self and e2.fromLink() = self
)

inv AllPossibleRefininglLeafConnected:
self.leaf
implies
Pattern.allInstances()->
forAll(p|(self.name = p.GMBB.mainGoal().name
and self.GMBB.pattern<>p
and self.GMBB.pattern.family.name=p.family.name)
implies
self.patternDef = p

)
inv NoMiddleIntentionPossibleRefinement:
Pattern.allInstances()->exists(p|self.name=p.GMBB.mainGoal().name)
implies (self.leaf or self.mainGoal)
inv NoDanglingMiddleIntention:
not (self.leaf or self.mainGoal) implies
(UpIntentionSetFromSelf()->one(i|i.mainGoal) and
DownIntentionSetFromSelf()->exists(i|i.leaf))
inv LeavesHaveOneMainGoal:
self.leaf implies UpIntentionSetFromSelf()->one(i|i.mainGoal)

inv MainGoalsHaveAtLeastOnelLeaf:
self.mainGoal implies
DownIntentionSetFromSelf()->exists(i|i.leaf)

Appendix A 165

Table 26 introduces the operations defined in the Intention class.

Table 26 OCL operations of Intention

isEqualTo(i:Intention) : Boolean =
(self.name = i.name and
self.mainGoal = i.mainGoal and
self.leaf = i.leaf)
UpIntentionSet(s:Set(Intention)):Set(Intention) =
if s ->includesAll(s.ELf.toLink()->asSet())
then s
else UpIntentionSet(s->union(s.ELf.toLink()->asSet()))
endif
UpIntentionSetFromSelf():Set(Intention) =
UpIntentionSet(Set{self})
DownIntentionSet(s:Set(Intention)):Set(Intention) =
if s ->includesAll(s.ELt.fromLink()->asSet())
then s
else DownIntentionSet(s->union(s.ELt.fromLink()->asSet()))
endif
DownIntentionSetFromSelf():Set(Intention) =
DownIntentionSet (Set{self})

A.5 Constraints on BusinessProcessBuildingBlocks
Table 27 represents an invariant for BusinessProcessBuildingBlock. UniqueProcess-

ElementNamelnBusinessProcessBuildingBlock ensures that ProcessElements are unique

in the context of BusinessProcessBuildingBlock.

Table 27 Invariant OCL constraint in the context of BusinessProcessBuildingBlock

OCL Constraint

inv UniqueProcesskElementNameInBusinessProcessBuildingBlock:
self.PE->isUnique(name)

A.6 Constraints on ElementLinks
Table 28 represents an invariant for ElementLinks. DifferentSourceDestination ensures

that instances of ElementLink are not linking intentions to themselves.

Table 28 Invariant OCL constraints in the context of ElementLinks

OCL Constraint

inv DifferentSourceDestination:
self.toLink<>self.fromLink

Appendix A 166

