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Original Article

A train air brake force model: Locomotive
automatic brake valve and brake pipe flow
formulations

Stefano Specchia1, Ali Afshari1, Ahmed A Shabana1

and Nelson Caldwell2*

Abstract

The goal of this study is to integrate an air brake model with efficient algorithms for train longitudinal force calculation that

are based on trajectory coordinate formulations. The air brake model, developed in this investigation and presented in this

paper and a companion paper, consists of the locomotive automatic brake valve, air brake pipe and car control unit (CCU).

The proposed air brake force model accounts for the effect of the air flow in long train pipes as well as the effect of leakage

and branch pipe flows. This model can be used to study the dynamic behavior of the air flow in the train pipe and its effect

on the longitudinal train forces during brake application and release. The governing equations of the air pressure flow are

developed using the general fluid continuity and momentum equations, simplified using the assumptions of one-dimen-

sional isothermal flow. Using these assumptions, one obtains two coupled air velocity/pressure partial differential equa-

tions that depend on time and the longitudinal coordinate of the brake pipes. The partial differential equations are

converted to a set of first-order ordinary differential equations using the finite element method. The resulting air

brake ordinary differential equations are solved simultaneously with the train’s second-order non-linear dynamic differ-

ential equations of motion that are based on the trajectory coordinates. The train car non-linear dynamics is defined using

a body track coordinate system that follows the car motion. The body track coordinate system translation and orientation

are defined in terms of one parameter that describes the distance traveled by the car. The configuration of the car with

respect to its track coordinate system is described using two translation coordinates and three Euler angles. The oper-

ation modes of the brake system considered in this investigation are the brake release mode and the brake application

mode that includes service and emergency brakes. A detailed model of the locomotive automatic brake valve is presented

in this investigation and used to define the inputs to the air brake pipe during the simulation. A simplified model of this

valve is also proposed in order to reduce the computational time of the simulation. In a companion paper, the detailed

CCU formulation is presented. The coupling between the air brake, locomotive automatic brake valve, CCUs and train

equations is established and used in the companion paper in the simulation of the non-linear dynamics of long trains. The

air brake formulations presented in the two companion papers are implemented in a computer code called Analysis of

Train/Track Interaction Forces (ATTIF) which is developed for the analysis of longitudinal train forces.
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Introduction

Railroad vehicle systems are among the most com-
monly used methods of transportation, both for pas-
sengers and goods. Their widespread use has sparked,
over the years, continuous technological develop-
ments, with the objective of achieving higher operat-
ing speeds in order to minimize cost and
transportation time. Higher operating speeds, how-
ever, require a better and more sophisticated
approach for the design of the railroad vehicle systems
in order to avoid derailments and reduce the vibration
and noise levels. Therefore, the development and use

of accurate computer models for simulation of rail-
road vehicle systems subjected to different loading
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conditions, operating speeds, track geometries, brak-
ing and traction scenarios are necessary. Using these
accurate computer models, it is possible to build vir-
tual prototypes for the simulation and analysis of the
non-linear dynamic behavior of long trains or for the
simulation of detailed single or multiple car models.1–
10 Such studies will contribute significantly to a better
understanding of the causes of derailments and acci-
dents, and to a better understanding of the vibration,
stability, dynamic characteristics and longitudinal
shock loads of railroad vehicle systems.

Most trains operating in North America still
employ pneumatic brakes.11 For the most part, the
automatic air brake system of a freight train consists
of a locomotive control unit, a car control unit (CCU)
located in each car and a pipe connecting all these
elements as shown in Figure 1. This pipe that transfers
both flowing air and brake signals will be referred to
as the brake pipe, and the locomotive automatic brake
valve will be simply called the automatic brake valve in
this paper. The function of the automatic brake valve
is to control the air pressure in the brake pipe for on-
car compressed air storage as well as brake applica-
tion and release for all cars. Such a control action
provides the pressure control signal that propagates
along the brake pipe serially reaching one car after
another. In addition to the pressure in the brake
pipe, the controlling locomotive’s equalizing and
emergency reservoir pressures are also controlled. By
varying the position of the handle of the automatic
brake valve, different scenarios and states of the brake
system can be achieved. These states include the brake
release mode in which the pressure in the brake pipe is
increased in order to release the brakes and recharge
the CCU’s compressed air storage reservoirs, the ser-
vice mode in which the pressure must be reduced in
order to apply the brakes with a pressure reduction (at
a service rate) that is determined by the handle pos-
ition with respect to the full service position and the
emergency mode that allows the pressure in the brake
pipe to be quickly reduced by venting the air in the
brake pipe to the atmosphere (The latter two, service
and emergency modes, are referred to as the brake
application mode.) Therefore, an accurate air brake
model must be able to predict the response of the
air flow in the brake pipe to the changes made in
response to the position of the handle of the auto-
matic brake valve. The brake valve that is modeled
in this investigation is the 26C valve, which is used in
trains in North America. The 26C valve also has an

independent brake valve function that is not modeled
in this study.

Many studies have focused on the pneumatic or air
brake that is commonly used in trains in North
America.11–16 Shute et al. 17 investigated the effect of
leakage on brake pipe gradients and flow rates. In all
of these studies, different aspects of a train’s air brake
were investigated using a one-dimensional flow assump-
tion. Gauthier18 and Wright19 studied the pneumatic
control valve systems using a similar assumption. Wei
and Lin 20 developed a computer model for the ‘‘120’’
control valve that is used in Chinese Railroads. In this
study, the train’s longitudinal dynamics due to brake
application is not discussed. However, there have been
studies that investigated the effect of the air brake on the
train’s longitudinal dynamics. Nasr and Mohammadi21

studied the effect of the brake’s delay time on the train’s
longitudinal forces. They employed a one-dimensional
motion assumption for the train dynamics and used a
simple model for the air brake. Sanborn et al.8 used a
simple brake model in which a constant propagation
speed is assumed for the brake signal. Such an assump-
tion of constant air propagation speed cannot be justi-
fied in many applications and does not allow for
accurately predicting car coupler forces in severe brak-
ing scenarios.

There are also computer programs that simulate
the dynamic behavior of railroad vehicle systems. For
instance, TrainDy is a program developed by the
International Union of Railways that can model a
train’s air brake system. An equivalent parameterization
of the control valve is used in TrainDy instead of a com-
plete pneumatic model of the brake system.22 TOES is
another program used in such simulations. However, it
only allows for one degree of freedom for the cars. The
programused in the present investigation, calledATTIF,
allows for six degrees of freedom and can efficiently solve
fully non-linear dynamic equations that are based on
trajectory coordinate formulations.

The objective of this investigation is to integrate a
dynamic air brake model with efficient non-linear lon-
gitudinal force algorithms for the train based on tra-
jectory coordinate formulations. The proposed air
brake force model used in this investigation employs
continuity and momentum equations and accounts
for the effect of the air flow in long train pipes as
well as the effect of leakage and branch pipe flows.
This model can be effectively used to study the
dynamic behavior of the air flow in the train pipe
and its effect on the longitudinal train forces during

Figure 1. Main air brake components.
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brake application and release. The continuity and
momentum equations are simplified by using the
assumptions of one-dimensional isothermal flow, lead-
ing to two coupled air velocity/pressure partial differ-
ential equations that depend on time and the
longitudinal coordinate of the brake pipe.
The resulting partial differential equations for the air
brake are converted to a set of first-order ordinary dif-
ferential equations using finite element discretization.
These first-order ordinary differential equations are
solved simultaneously with the train’s second-order
non-linear dynamic differential equations of motion
that are based on the trajectory coordinates. In this
investigation, the train car dynamics is defined using
a body track coordinate system that follows the car
motion. The translation and orientation of this coord-
inate system are defined in terms of one geometric tra-
jectory parameter that describes the distance traveled
by the car. The configuration of the car with respect to
its track coordinate system is described using two
translation coordinates and three Euler angles.23 The
non-linear trajectory coordinate formulation used in
this study allows for the use of an arbitrary track
geometry. The operation of the brake system, including
brake application and release, is controlled by the auto-
matic brake valve that defines the input to the air brake
system during the dynamic simulation. A simplified
valve model is also proposed in order to reduce the
simulation’s computation time. The procedure for cou-
pling the air flow in the brake pipe, the automatic
brake valve, CCU and the train equations is estab-
lished and used in the simulation of the non-linear
dynamics of long trains.

Air flow equations

In this section, thebasic continuummechanics equations
used in this investigation to study the air flow dynamics
in a train’s brake pipes are presented. These equations
include the momentum, continuity and constitutive
equations. In the following section, the general three-di-
mensional equations presented in this section are simpli-
fied to the case of one-dimensional isothermal flow. It
shouldbe noted that for the caseof high-speedair propa-
gation, the assumption of an adiabatic process is more
realistic than an isothermal process. Nonetheless, the
actual process is neither of these types. In fact, the
actual process is polytropic. However, in this investiga-
tion, the isothermal flow assumption, employed in
previous investigation, is used.11

Continuity equation

The general continuity equation for a fluid can be
written as10,24,25Z

V

@�

@t
dVþ

Z
S

�v � ndS ¼ 0 ð1Þ

In this equation, V is the volume which is assumed to
remain constant for the brake pipe, and therefore, no
distinction is made between the volumes in the refer-
ence and current configurations; S is the surface area,
� is the mass density, v is the velocity vector and n is
the normal to the surface. Using the divergence the-
orem, the continuity equation can be written as

@�

@t
þ r �vð Þ ¼ 0 ð2Þ

In this equation, r is the divergence operator. Since
air flow is considered in this study, the density �
cannot be treated as a constant, and therefore, the
assumption of incompressibility is not used in this
study.

Momentum equation

The differential form of the momentum equation or
the partial differential equation of equilibrium can be
written in the following form10

�a ¼ rpð ÞTþ fb ð3Þ

In this equation, a is the acceleration vector, p is the
symmetric Cauchy stress tensor and fb is the vector of
body forces per unit volume. The first term of the
preceding equation, which represents the inertia
force, can be rewritten in a different form, which is
more convenient to use when dealing with compress-
ible fluids. Multiplying the continuity equation of
equation (2) by the velocity vector v, one obtains

@�

@t
vþ r �vð Þv ¼ 0 ð4Þ

Using the expression for the total derivative of
the velocity vector v, the inertia term �a can be
written as

�a ¼ �
dv

dt
¼ �

@v

@t
þ � rvð Þv ð5Þ

Substituting equation (5) into equation (3) and adding
equation (4), one obtains

@ �vð Þ

@t
þ � rvð Þ þ r �vð Þð Þv ¼ rpð ÞTþ fb ð6Þ

This equation is an alternate form of the momentum
equation of equation (3).

Navier–Stokes equations

In order to obtain the fluid equations of motion, the
constitutive equations of isotropic fluids are combined
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with the partial differential equations of equilibrium
of equation (6). This leads to

@ �vð Þ

@t
þ � rvð Þ þ r �vð Þð Þv ¼ �r pIð Þ þ r �tr Dð ÞIð Þ

�
þr 2�Dð Þ

�T
þ fb ð7Þ

where p is the hydrostatic pressure, � is the mass dens-
ity, T is the temperature, D is the rate of deformation
tensor, and � and � are viscosity coefficients that
depend on the fluid density and temperature. The pre-
ceding equation represents the general three-dimen-
sional partial differential equations of motion
for isotropic fluids. If the fluid is assumed to be
Newtonian the preceding equation reduces to

@ �vð Þ

@t
þ � rvð Þ þ r �vð Þð Þv ¼ �r pIð Þ þ �r tr Dð ÞIð Þ

�
þ2�r Dð Þ

�T
þfb ð8Þ

One-dimensional model

The assumption of one-dimensional air flow used in
this study implies that the flow, at any cross-section,
has only one direction along the longitudinal axis of
the pipe, that is, the velocity components in the other
directions are not considered. Furthermore, the mag-
nitude of the flow velocity is assumed to be uniform at
any cross-section. Consequently, shear stresses are
neglected, and as a result, the off-diagonal elements
of the Cauchy stress tensor are assumed to be zero.

In the case of one-dimensional air flow, the con-
tinuity equation of equation (2) reduces to

@�

@t
þ
@ �uð Þ

@x
þ L ¼ 0 ð9Þ

In this equation, x is the longitudinal spatial pipe
coordinate, L is the air leakage and u is the velocity
component along the longitudinal x-coordinate of the
brake pipe. Note that the preceding equation is a par-
tial differential equation that depends on both time t
and the spatial coordinate x. The effect of air flowing
through the pipe branches can also be introduced sys-
tematically to the continuity equation in order to
account for the mass flow rate. In the case of multiple
branches connected to the main air pipe, a term can
be added to the continuity equation as discussed in
the companion paper in which the car control unit
model is developed.26

In the case of one-dimensional inviscid flow, the
Navier–Stokes equation of equation (8) becomes

@ �uð Þ

@t
þ
@ �u2
� �
@x
¼ �

@p

@x
þ fb ð10Þ

Using the assumption of isothermal flow, one has
the following relationship25

p

�
¼ RgY ð11Þ

In this equation, Rg is the gas constant which has
units J/(kgK), and Y is the local temperature (K). The
relationship in equation (11) can be used to eliminate
the air density � from the continuity and momentum
equations leading to the following system of pressure/
velocity coupled equations

@p

@t
þ
@ puð Þ

@x
þ �tL ¼ 0

@ puð Þ

@t
þ
@ pu2
� �
@x
þ �t

@p

@x
¼ �tfb

9>>=
>>; ð12Þ

In this equation, �t ¼ RgY. Given the boundary and
initial conditions, the preceding system of coupled
partial differential equations can be solved for the
pressure and velocity distributions using numerical
methods as discussed in the following section.

Finite element formulation

In this study, a finite element procedure is used
to transform the partial differential equations of
equation (12) into a set of coupled first-order ordin-
ary differential equations. These ordinary differential
equations can be solved using the method of numer-
ical integration to determine the pressure and vel-
ocity for different braking scenarios. It is worth
mentioning that an approach based on the finite dif-
ference method can also be employed to solve the
ordinary differential equations of the air flow in
the brake pipe. However, previous studies have
shown that the finite element formulation leads to
a more accurate solution than the finite difference
method.11 Moreover, in the finite element formula-
tion, one can use different element types and higher
orders of interpolation.

Let q ¼ pu be a new variable. Using this definition,
equation (12) can be rewritten as

@p

@t
þ
@q

@x
¼ ��tL

@q

@t
þ
@ quð Þ

@x
þ �t

@p

@x
¼ �tfb

9>>=
>>; ð13Þ

In thefinite elementanalysis, thebrakepipe is assumed
to consist ofm finite elements. The domain of the element
is defined by the spatial coordinate x ¼ xe, 05 xe 5 le,
where le is the length of the finite element. Over
the domain of the finite element, the variables p and
q are interpolated using the following field

pe x, tð Þ ¼ Se
pp

e, qe x, tð Þ ¼ Se
qq

e, e ¼ 1, 2, . . . ,m

ð14Þ
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where Se
p and Se

q are appropriate shape functions, and
pe and qe are the vectors of nodal coordinates.
Multiplying the first equation in equation (13) by
the virtual change �pe and the second equation by
the virtual change �qe, integrating over the volume,
using the relationship dVe ¼ Aedxe, where Ae is the
cross-sectional area; and using equation (14); one
obtains the following system of first-order ordinary
differential equations for the finite element e

Me _ee ¼ Qe, e ¼ 1, 2, . . . ,m ð15Þ

In this equation,

ee ¼
pe

qe

" #
, Qe ¼

Qe
p

Qe
q

2
4

3
5, Me ¼

Me
pp Me

pq

Me
qp Me

qq

2
4

3
5
ð16Þ

where

Me
pp¼

Zle
0

AeSep
TSepdx, Me

pq¼M
e
qp¼0,

Me
qq¼

Zle
0

AeSeq
TSeqdx

Qe
p¼�

Zle
0

AeSep
T
@Seq

@x
dx

0
B@

1
CAqeþZ

le

0

AeSep
Tdx�et L

e

0
B@

1
CA

Qe
q¼�

Zle
0

AeSeq
T
@Seq

@x
uedx

0
B@

1
CAqe� Zle

0

AeSeq
TSeq

@ue

@x
dx

0
B@

1
CAqe

��t

Zle
0

AeSeq
T
@Sep

@x
dx

0
B@

1
CApeþZ

le

0

AeSeq
Tdx�tfb

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð17Þ

The finite element equations of equation (15) can
be assembled using a standard finite element assembly
procedure. This leads to the first-order ordinary dif-
ferential equations of the brake pipe system which can
be written in the following matrix form

M_e ¼ Q ð18Þ

In this equation, e is the vector of nodal coordinates,
M is the brake pipe’s global coefficient matrix that
results from assembling the Me element matrices
and Q is the right-hand side vector that results from
the assembly of the Qe element vectors. Using the
position of the handle of the automatic brake valve,
the initial conditions and inputs for equation (18) can
be defined and used with numerical integration

methods to solve for the pressure and the velocity
distribution. Using the approach described in this sec-
tion in which the new variable q ¼ pu is introduced,
one obtains constant symmetric Me and M matrices.
Therefore, one needs to define the LU factors of M
only once at the start of the simulation. The effect of
the air leakage in the finite element formulation pre-
sented in this section can be considered by introducing
this effect at the nodal points using the isotropic
approach or the average density approach.11 The
latter is the approach adopted in this investigation
using a general finite element formulation that can
be applied to different element types. However, in
this study, linear finite elements are used to model
the air flow in the brake pipe. Furthermore, although
a train’s brake pipe is often very long, it can be shown
that relatively larger elements can be used to accur-
ately model the air flow along the brake pipe. This is
demonstrated in the numerical results that are pre-
sented in the companion paper.26

Another alternate approach to equation (13) is
to use the same assumptions as well as equation (11)
(� ¼ p=�t) and combine the continuity equation (9)
with the one-dimensional form of the momentum
equation of equation (3) to obtain the following
coupled system of first-order partial differential
equations

@p

@t
þ
@ puð Þ

@x
þ �tL ¼ 0

p
@u

@t
þ pu

@u

@x
þ �t

@p

@x
¼ �t fb

9>>=
>>; ð19Þ

As an alternative to introducing the variable
q ¼ pu, one can use p and u instead of using p and
q. One can, however, show that the use of equation
(19) instead of equation (13) will not lead to a con-
stant coefficient matrix.

Wall friction forces

A simple expression for the pipe’s wall friction force
FS is used in this study. In the case of duct flow, one
may assume that the force FS is only related to the
wall shear stress as11

FS ¼ ��d ð20Þ

where d is the hydraulic diameter, and � is the one-
dimensional flow shear stress. They are defined as11

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
Aavg

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

��x

Zxþ�x

x

Adx

vuuut , � ¼ fw
�u2

8

u

uj j

� �

ð21Þ

where Aavg is the average area, and the wall friction
factor fw is a function of the local Reynolds number
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Re. The following relation between fw and Re is often
used

fw ¼ a Reð Þb ð22Þ

where a and b are selected to give a good fit to data for
different flow regimes; laminar, transition and turbu-
lent. The expression for the friction force FS can be
introduced to the momentum equation. If the area of
the pipe is constant, then Aavg ¼ A ¼ constant.

Non-linear dynamic equations for a train

The mathematical models of the air flow in the brake
pipe and the commands of the automatic brake valve
can be used to define the braking scenarios that affect
the train’s longitudinal dynamics. In this section, the
non-linear dynamic equations of the train cars are
developed using trajectory coordinates. It is assumed
that rail vehicle dynamics has no effect on the air flow
in the brake pipe, whereas the braking forces can have
a significant effect on the train’s longitudinal forces.

Position, velocity and acceleration

In order to develop the non-linear dynamic equations
of motion of the train, the global position vector of an
arbitrary point on a car body is first defined. The
position vector ri of an arbitrary point on body i
with respect to the global coordinate system can be
defined as shown in Figure 2 as27

ri ¼ Ri þ Ai �ui ð23Þ

where Ri is the global position vector of the origin of
the body coordinate system, �ui is the position vector of
the arbitrary point on the body with respect to the local
coordinate system and Ai is the rotation matrix that
defines the orientation of the local coordinate system
with respect to the global system. In rigid-body dynam-
ics, �ui is constant and does not depend on time.
Differentiating equation (23) with respect to time, one
obtains the absolute velocity vector defined as

_ri ¼ _R
i
þ ui � ui ð24Þ

where ui is the absolute angular velocity vector
defined in the global coordinate system, and
ui ¼ Ai �ui. The absolute acceleration vector is obtained
by differentiating the preceding equation with respect
to time, leading to

€ri ¼ €R
i
þ ai � ui þ ui � ui � ui

� �
ð25Þ

where 	i is the angular acceleration vector of body i.
The preceding equation can also be written in the fol-
lowing alternate form

€ri ¼ €R
i
þ Ai �ai � �ui þ �ui � �ui � �ui

� �� �
ð26Þ

where ai ¼ Ai �ai and ui ¼ Ai �ui. The angular velocity
vectors defined, respectively, in the global and
body coordinate systems can be written in terms of
the time derivatives of the orientation coordinates hi

as follows

ui ¼ Gi _h
i
, �ui ¼ �G

i _h
i

ð27Þ

where Gi and �G
i
can be expressed in terms of the

orientation parameters hi.23

Trajectory coordinates

The trajectory coordinate formulation is suited for the
study of the train’s longitudinal force dynamics since
the degrees of freedom of the car body can be system-
atically reduced to a set that can be related to the
track geometry. A centroidal body coordinate
system is introduced for each of the railroad vehicle
components. In addition to the centroidal body
coordinate system, a body/track coordinate system
that follows the motion of the body is introduced.
The location of the origin and the orientation of the
body/track coordinate system are defined using one
geometric parameter si that defines the distance tra-
veled by the body along the track. The body coordinate
system is selected such that it has no displacement in
the longitudinal direction of motion with respect to
the body/track coordinate system. Two transla-
tional coordinates, yir and zir; and three angles,
 ir, 
ir and �ir, are used to define the position and
orientation of the body coordinate system with respect
to the body/track coordinate system XtiYtiZti,
as shown in Figure 3. Therefore, for each body i in
the system, the following six trajectory coordinates
can be used:

pi ¼ ½ si yir zir  ir 
ir �ir �T ð28Þ

Figure 2. Coordinate systems.23
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In terms of these coordinates, the global position
vector of the center of mass of body i can be written as

Ri ¼ Rti þ Ati �uir ð29Þ

where �uir is the position vector of the center of mass
with respect to the body/track coordinate system, Rti

is the global position vector of the origin of the tra-
jectory coordinate system, and Ati is the matrix that
defines the orientation of the body/track coordinate
system and is a function of three predefined Euler
angles  ti,
ti and �ti which are used to define the
track geometry. The vector Rti and the matrix Ati

are functions of only one time-dependent arc length
parameter si. For a given si, one can also determine
the three Euler angles hti si

� �
¼  ti si

� �
�ti si
� �	


ti si
� �
�
T that enter into the formulation of the rotation

matrix Ati.23 The vector �uri can be written as

�uir ¼ ½ 0 yir zir �T ð30Þ

The matrix Air that defines the orientation
of the body coordinate system with respect to the
body/track coordinate system can be expressed in
terms of the three time-dependent Euler angles
hir ¼ ½ ir �ir 
ir �T previously defined.

Equations of motion

A velocity transformation matrix that relates the abso-
lute Cartesian accelerations to the trajectory coordin-
ate accelerations can be systematically developed.
Using the velocity transformation and the Newton–
Euler equations that govern the spatial motion of the
rigid bodies, the equations of motion of the car bodies
expressed in terms of the trajectory coordinates can be
developed. The following form of the Newton–Euler
equations is used in this investigation27

miI 0

0 �I
i

��

" #
¼

€R
i

�ai

" #
¼

Fi
e

�M
i

e � �ui � �I
i

�� �ui

 �

2
4

3
5
ð31Þ

where mi is the mass of the rigid body; I is a 3� 3
identity matrix; �I

i

�� is the inertial tensor defined with
respect to the body coordinate system; Fi

e is the result-
ant of the external forces applied on the body defined
in the global coordinate system; and �M

i

e is the result-
ant of the external moments acting on the body
defined in the body coordinate system. The forces
and moments acting on the body include the effect
of gravity, braking forces, coupler forces, and tractive
effort and motion resisting forces. Coupler forces, in
particular, have a significant effect on longitudinal
train dynamics, and therefore, accurate computer
models must be developed for these forces.8,28

If ai is the vector of absolute Cartesian acceler-
ations of the body, one can use the kinematic descrip-
tion given in this section to write the Cartesian
accelerations in terms of the trajectory accelerations
as

ai ¼ Bi €pi þ � i ð32Þ

In this equation, ai ¼ €R
iT �aiT

h iT
, Bi is a velocity

transformation matrix and � i is a quadratic velocity
vector.23 Substituting equation (32) into equation (31)
and pre-multiplying by the transpose of the velocity
transformation matrix Bi, one obtains the dynamic
equations expressed in terms of the trajectory coord-
inates, as described in detail in Shabana et al.23

Automatic brake valve model

The air pressure in the brake pipe system is controlled
by the automatic brake valve. The mathematical
model of the 26C automatic brake valve developed
by Abdol-Hamid,11 is used in this investigation. The
valve and its main components are shown in Figure 4.
The primary function of the automatic brake valve is
to control the air pressure in the brake pipe allowing
for the application or release of the train and locomo-
tive brakes. By changing the position of the handle of
this valve, the air pressure can be reduced (venting air
to the atmosphere) or increased (recharging) at a con-
trolled rate to apply or release the brakes, respectively.
The main components of the 26C automatic brake
valve are the regulating valve, relay valve, brake pipe
cut-off valve, vent and emergency valves, and suppres-
sion valve. The main function of the regulating valve is
to control the pressure in the equalizing reservoir
which has a value that depends on the position
assumed by the handle of the automatic brake valve.
This pressure controls the relay valve which controls
the air pressure along the brake pipe for the purpose
of brake application or release. The brake pipe cut-off
valve is located between the relay valve and the
brake pipe, and its function is to allow communica-
tion with the pipe only when a threshold pressure
value is reached. The vent and emergency valves
are activated only in case of emergency and their func-
tion is to vent the air in both the brake pipe and the

Figure 3. Trajectory coordinates.23
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equalizing reservoir to the atmosphere. The resulting
sudden drop in the air pressure leads to a faster
brake application. The suppression valve is used to
control the communication between the equalizing
and the main reservoirs. In this investigation, only
the mathematical models of the first three valves;
relay valve, regulating valve and brake pipe cut-off
valve, are developed. As in Abdol-Hamid,11 a variable
or a component yi, j of the automatic brake valve
denotes variable or component number j associated
with valve i; for the relay valve, i ¼ 1; for the regulat-
ing valve, i ¼ 2; and for the brake pipe cut-off
valve, i ¼ 3:

In order to be able to develop the valve equations,
several basic thermodynamics relationships must be
used.24,25 The first is the universal law of gases for a
volume Vf of a component f given by

PfVf ¼ mfRgYf ð33Þ

where Pf is the absolute pressure inside the volume
(N/m2), Vf is the volume (m3), mf is the mass (kg),
Rg is the gas constant (J/(kg K)) and Yf is the tem-
perature (K). Differentiating the preceding equation

with respect to time and assuming isothermal process
(Yf ¼ Y is constant), one obtains

dPf

dt
¼

1

Vf
RgY

dmf

dt
� Pf

dVf

dt

� �
ð34Þ

There are different formulas for calculating the rate
of mass flow through orifices.11,24,25 In this investiga-
tion, the following equation is used for air

_mair ¼ 0:6APd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
ð35Þ

In this equation, A is the area, r ¼ Pu=Pd, and
Pu and Pd are, respectively, the pressure upstream
and downstream of the orifice. As reported in Abdol-
Hamid,11 the difference between different formulas is
always less than 10%, which can be less than the error
in calculating the geometric area of the orifice. The
preceding equation, however, is simpler to use because
it is valid for any value of the pressure ratio r (sonic or
subsonic), while using other formulas requires a check
of the value of r against the critical pressure ratio

Figure 4. A schematic diagram of a 26C valve.
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rc ¼ 1:893 that defines whether the flow is sonic or
subsonic.

Regulating valve operation

The main function of the regulating valve, shown
in Figure 5(a), is to control the equalizing reservoir
pressure which controls the operation of the relay
valve that regulates the air pressure in the brake
pipes. The regulating valve is controlled by one
cam mounted on the shaft of the handle of the auto-
matic brake valve. The valve has a self-lapping
feature that provides an automatic control of the
equalizing reservoir pressure Peq against leakage or
overcharge.11

Brake application and release

When the handle of the automatic brake valve is in
the release/recharge position, the air pressure of the
brake pipe Pbp must increase and the equalizing res-
ervoir must be recharged. In this scenario, the cam
rotates to a higher position allowing the supply
valve seat A2, 3 to move left away from the handle,
and causing the exhaust valve A2, 2 to be sealed. As
a result, the air from the main reservoir with pressure
Pmr flows through the supply valve A2, 3 and supply

orifice AEQVS reaching the inner diaphragm chamber
V2, 1, through the equalizing reservoir cut-off valve to,
finally, the equalizing reservoir Veq. The equalizing
reservoir pressure Peq increases causing the supply
valve to start closing.

When the handle is within the service mode sector,
the air pressure of the brake pipe Pbp has to decrease
in order to apply the car brakes. The regulating valve
has to reduce the equalizing reservoir pressure Peq

which controls the relay valve that regulates the air
flow to and from the brake pipe. The pressure reduc-
tion depends on the position of the handle of the auto-
matic brake valve relative to the full service position.
In the case of brake application, the cam rotates to a
lower position allowing the regulating valve spool to
move towards the handle (right), while the supply
valve A2, 3 is sealed and the exhaust valve A2, 2 is
opened. At the same time, the air pressure Pmr from
the main reservoir is removed, causing the equalizing
reservoir cut-off valve to close. This allows the air to
flow only from the equalizing reservoir to the regulat-
ing valve, preventing any possible increase of the
equalizing reservoir pressure Peq during the entire
application. Thus, the air flows from the equalizing
reservoir Veq through the cut-off valve, the inner dia-
phragm chamber V2, 1, the exhaust valve A2, 2 and its
orifice AEQVE to reach finally the atmosphere. As the
pressure in the equalizing reservoir Peq decreases, the
exhaust valve seat moves right, causing the exhaust
valve to start closing. The fluid network diagram of
the regulating valve is shown in Figure 5(b). From this
figure, one can see the two orifice areas (AEQVS and
AEQVE), which are fixed, and the A2, 2 and A2, 3 areas
of the exhaust and supply valve, respectively, which
are variable and controlled by the handle position and
air flow. The equalizing reservoir is connected to the
outer chamber of the relay valve, and therefore, the
pressure P1, 1 inside the relay valve’s outer chamber
can be controlled by the equalizing reservoir pressure
Peq. The pressure P1, 1 is used to control the oper-
ations of the relay valve which controls the pressure
in the brake pipe. The operation of the relay valve is
discussed in more detail in the section ‘Relay valve
operation’.

Pressure rate

In order to evaluate the rate of change of the pressure
in the outer chamber of the relay valve P1, 1, the mass
flow rate _m1, 1 through the feedback orifice A1, 1 must
be calculated. The rate of change of equalizing reser-
voir pressure Peq depends on the rate of the mass flow
_m1, 1 to the relay valve through A1, 1, plus the mass
flow rate _m2, 1 through either the regulating supply
valve or the exhaust valve depending on the braking
scenario. Let PREG denote the pressure inside the reg-
ulating valve, and AREG denote the equivalent areas
for both the supply and the exhaust valve connec-
tions. The equivalent area for the supply valve used

Figure 5. A 26C regulating valve11 (a) schematic diagram of

the valve, (b) fluid network and (c) valve areas.
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in the case of brake release can be obtained assuming
series connection as

AREG ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=A2
EQVS


 �
þ 1=A2

2, 3


 �r ¼
AEQVSA2, 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

EQVS þ A2
2, 3

q
ð36Þ

where A2, 3 is variable depending on the handle
position, while AEQVS is constant (see Appendix).
In the case of brake application, the exhaust valve
is used. In this case, the equivalent area for this
valve connection is given, assuming again a series con-
nection, as

AREG ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=A2
EQVE


 �
þ 1=A2

2, 2


 �r ¼
AEQVEA2, 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

EQVE þ A2
2, 2

q
ð37Þ

In this equation, A2, 2 can vary depending on the
handle position; while AEQVE is constant.

Applying equation (34) to the rate of change of Peq

and assuming the volume Veq to be constant, one
obtains

dPeq

dt
¼

Rg

Veq

dm2, 1

dt
�
dm1, 1

dt

� �
ð38Þ

Using equation (35), the mass flow rate _m2, 1 can be
written as

_m2, 1 ¼ 0:6AREGPeq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
ð39Þ

where r ¼ PREG=Peq and PREG ¼ Pmr in the case of
brake release and PREG ¼ Pa in the case of brake
application, where Pa is the atmospheric pressure.

Relay valve operation

Figure 6(a) shows a schematic diagram of the relay
valve and its components. The diaphragm chamber
is divided into two parts; the outer chamber with
volume V1, 1 and pressure P1, 1, and the inner chamber
with volume V1, 2 and pressure P1, 2. The displacement
of the diaphragm causes the diaphragm rod to move,
thereby controlling the relay supply valve A1, 6

and the relay exhaust valve A1, 4. As shown in
Figure 6(b), there is always a gap X0 between the dia-
phragm rod and one of the two relay valves (supply
and exhaust); X0 is the gap between the diaphragm rod
and the supply valve when the diaphragm is in its rest
position. The displacement of the diaphragm is mea-
sured by the variable X1, 1 along the longitudinal axis
of the diaphragm rod; X1, 1 ¼ 0 in the diaphragm rest

position. When the diaphragm moves to the right, it
pushes the rod which reaches the supply valve after a
displacement X0; when moving to the left, instead,
the diaphragm is free until a displacement of
X1, 1 ¼ �XI where it starts to pull the rod and open
the exhaust valve. Moving right opens the supply
valve A1, 6 (fully open when the maximum right dis-
placement, controlled by stops, X1, 1 ¼ XS is reached);
and moving left controls the opening of the exhaust
valveA1, 4 (fully open when the maximum left displace-
ment, controlled by stops, X1, 1 ¼ �XE is reached).
Because the gap is always present between the rod
and at least one of the valves, only one (or none) of
the two valves can be open at the same time. Through
the feedback orificeA1, 1 of the equalizing reservoir, the
air can enter or leave the outer chamberV1, 1, adjusting
the value of the pressure P1, 1. This pressure exerts a
force F1, 1 on the outer sideA1, 2 of the diaphragm caus-
ing it to move. This force is opposed, at the other side
of the diaphragm A1, 2, by the force F1, 2 exerted by the
pressure P1, 2 of the inner chamber V1, 2. The other
forces acting are those of the springs; the exhaust
valve spring force S1, 1, the supply valve spring
force S1, 3 and the diaphragm rod spring force S1, 2.
The effect of the stiffness of the diaphragm can also
be considered.

Figure 6. The relay valve11 (a) schematic diagram of the valve,

(b) free body diagram and (c) the fluid network.
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Brake release and application

During the brake release/charge mode, the equalizing
reservoir pressure Peq is increased by the action of the
regulating valve, as previously explained.
Consequently, P1, 1 also increases so that the net
force acting on the diaphragm makes it move to the
right causing the supply valve to start to open. The air,
from the main reservoir with pressure Pmr, flows
through the supply valve to the intermediate volume
V1, 3 (located between the inner chamber V1, 2 and the
brake pipe cut-off valve). If the air pressure at the brake
pipe cut-off valve is large enough to overcome the valve
spring preload, the valve opens and the air can flow to
the brake pipe, increasing its pressure Pbp causing the
brakes to release. The pressure on both sides of the
diaphragm (P1, 1 of the outer chamber and P1, 2 of the
inner chamber) increases with almost the same rate.
When the brake pipe cut-off valve opens, P1, 2 in the
inner chamber drops: this causes the diaphragm rod to
move to the right, increasing the opening of the supply
valve, and causing more air to flow through this valve,
compensating for the pressure drop. Slowly the brake
pipe pressure Pbp and the pressure P1, 2 of the inner
chamber reach the value of P1, 1 (very close to the
value of Peq) causing the diaphragm to move left
towards its lap position (X1, 1 ¼ X0) and the supply
valve starts closing.

In the case of brake application, the regulating valve
causes the equalizing reservoir pressure Peq to
decrease, and consequently, the value of the pressure
P1, 1 in the outer chamber decreases. As a result, the net
force on the diaphragm reverses its direction and the
diaphragm and its rod starts moving to the left opening
the exhaust valve. The air flows from the brake pipe
through the exhaust valve opening A1, 4 and its orifice
A1, 5 to the atmosphere. As a result, the brake pipe
pressure Pbp drops at a service rate of application caus-
ing the brake application. In the steady state case, the
pressures P1, 1,P1, 2 and Pbp are approximately equal to
the equalizing reservoir pressure Peq. In the case of an
emergency braking procedure, the pressure in the
brake pipe decreases rapidly (at an emergency rate of
application) to the atmospheric pressure. To avoid the
situation in which the relay valve goes into the release
mode, the vent valve is used to vent the air in the equal-
izing reservoirVeq to the atmosphere, causing the pres-
sure Peq to decrease and, consequently, the pressure
P1, 1 also decreases.

Simplified model

In order to develop a more efficient computational
relay valve model, several assumptions can be
made.11 First, the effect of the diaphragm’s inertia
forces md1 du1, 1=dt

� �
can be neglected. Second, the

outer chamber pressure P1, 1 can be assumed equal to
the equalizing reservoir pressure Peq, that is,
P1, 1 � Peq. Third, the pressure P1, 3 in the intermediate

chamber can be assumed equal to the inner chamber
pressure P1, 2, that is, P1, 3 � P1, 2. Fourth, the inter-
mediate chamber volume V1, 3 is small and can be
assumed equal to zero (V1, 3 � 0). Using the first
three assumptions, one can show that the displacement
X1, 1 takes the following form

X1, 1 ¼

XS H0 5DP

B0 DP �H1ð Þ þ X0 H1 5DP4H0

X0 H2 5DP4H1

B1 DP �H3ð Þ H3 5DP4H2

0 05DP4H3

B2DP H4 5DP40
�XI H5 5DP4H4

B3 DP �H5ð Þ � XI H6 5DP4H5

�XE H6 4DP

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð40Þ

where

B0 ¼
A1, 1

K1, 2 þK1, 3 þKD
, B1 ¼

A1, 2

K1, 2 þKD
,

B2 ¼
A1, 2

KD
, B3 ¼

A1, 2

K1, 1 þK1, 2 þKD

H0 ¼
XS �X0

B0
þH1, H1 ¼

L1, 3

A1, 2
þH2,

H2 ¼
X0

B1
þH3, H3 ¼

L1, 2

A1, 2

H4 ¼ �
XI

B2
, H5 ¼

L1, 2 � L1, 1

A1, 2
þH4,

H6 ¼
XI �XE

B3
þH5, DP ¼ Peq � P1, 3

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

ð41Þ

Note that P1, 3 ¼ Pbp for �XI4X1, 14X0. The nine
cases presented in equation (40) correspond, respect-
ively, to the scenarios of the supply valve fully open
XS, supply valve opening, X0, both valves closed, dia-
phragm rest position, diaphragm free movement, start
exhaust valve opening �XI and exhaust valve fully
open �XE. In order to determine X1, 1 of equation
(40), one must determine P1, 3 which enters in the for-
mulation of DP. By using the assumption _m1, 3 ¼ _m1, 4,
one can show that11

P1, 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
bpA

2
3, 3 þ P2A2

A2
3, 3 þ A2

s
ð42Þ

where A and P can be either A1, 6 and Pmr (for the
supply valve) or AEX and Pa (for the exhaust valve),
respectively.

Brake pipe cut-off valve operation

The brake pipe cut-off valve is shown in Figure 7(a).
The forces acting on the piston are the forces exerted
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by the pressure P3, 1 (P3, 1 ¼ P1, 3) which act on the
upper side of the piston A3, 2; the force exerted by
the atmospheric pressure Pa which acts on the lower
side A3, 1; and the spring force S3, 1 ¼ K3, 1X3, 1 (plus
pre-load). The valve opens if P3, 1 overcomes the
resultant of the pressure Pa force and the spring pre-
load force. Figure 7(b) shows how the pressure P3, 1

coming from the relay valve through the orifice A3, 3,
controls the opening of the valve, allowing or prevent-
ing the air flow to the brake pipe.

In order to calculate the mass flow rate through the
brake pipe cut-off valve _m3, 1, the flow area A3, 3 needs
to be evaluated. This orifice is controlled by the pres-
sure P3, 1 ¼ P1, 3

� �
acting on the inner side of the piston

A3, 2, which determines the piston and the valve dis-
placement. The piston in the brake pipe cut-off valve
has a very small mass which can be neglected. Using
the valve free body diagram shown in Figure 7(c), the
equilibrium equation is

P3, 1A3, 2 � PaA3, 1 þ K3, 1X3, 1 þ L3, 1

� �
¼ 0 ð43Þ

where K3, 1 is the valve spring rate, X3, 1 is the pis-
ton displacement and L3, 1 is the spring pre-load.

The valve opens when the force due to the pressure
P3, 1 overcomes the forces generated by the atmos-
pheric pressure Pa and the spring pre-load force
L3, 1, that is, when P3, 1A3, 25PaA3, 1 þ L3, 1. This con-
dition can be rewritten as P3, 15PB, where
PB ¼ PaA3, 1 þ L3, 1

� �
=A3, 2.

Note that the area A3, 3 of the annular ring created
by the displacement X3, 1 and the diameter D3, 3 is
A3, 3 ¼ �D3, 3X3, 1. In order to calculate this area, one
needs to evaluate X3, 1 using equation (43) as

X3, 1 ¼ 0 P3, 14PB

X3, 1 ¼ A3, 2
P3, 1 � PB

K3, 1
PB4P3, 1 5PB þ "

X3, 1 ¼ XB P3, 15PB þ "

9>>>=
>>>;
ð44Þ

In this equation, PB þ " is the value of pressure
that makes the piston reach the maximum displace-
ment XB (cut-off valve fully open). These two values
depend on the dimensions of the brake pipe cut-off
valve.

Integration of models of the automatic
brake valve, brake pipe and the train’s
dynamics

The second-order non-linear dynamic equations for
the train can be converted to a set of first- order ordin-
ary differential equations that can be integrated using
a standard numerical integration method. As shown
in this paper, the first-order ordinary differential
equations that govern the air flow in the brake pipe
can be written in the form M_e ¼ Q (see equation
(18)). For a given value of the right-hand side vector
Q and a set of initial conditions e0, the air flow in the
differential equations for the brake pipe can be solved
numerically with the differential equations for the
train to determine the air pressure and density as a
function of time. In this section, two different scen-
arios will be discussed in order to demonstrate the
integration of the equations describing the air flow
in the brake pipe and automatic brake valve with
the non-linear dynamic equations for the train. The
first scenario is a brake release after a train stop;
whereas the second scenario is a brake application
while the train is in motion. It should be noted that
a complete air brake model must also include a CCU
that will be discussed in the companion paper.26

Brake release

The steps of the algorithm used in this study for the
brake release are summarized as follows.

1. Before the train starts moving, one has the follow-
ing conditions: the air pressures in the brake pipe
and equalizing reservoir are equal to the full

Figure 7. Brake pipe cut-off valve11(a) schematic diagram of

the valve, (b) the fluid network and (c) the free body diagram.
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service brake pipe pressure, while the air flow vel-
ocity in the brake pipe is equal to zero; the brake
pipe cut-off valve is closed; and the relay valve is in
the intermediate state, that is, P1, 3 ¼ Pbp.

2. For a given set of initial conditions for the train
car body, the train’s dynamic equations are for-
mulated as a set of first-order ordinary differential
equations that can be solved using a standard
numerical integration method. These equations
are solved simultaneously with the air flow differ-
ential equations (equation (18)), the intermediate
chamber pressure differential equation (equation
(53)), the equalizing reservoir pressure differential
equation (equation (38)) and the equations for the
CCU presented in the companion paper for the
given initial conditions defined in the previous
step.26

3. For the case of a brake release, the handle of the
automatic brake valve is moved to the release pos-
ition causing the supply valve of the regulating
valve to open. Depending on the value of XREG

as defined in the Appendix, equation (38) given by

dPeq

dt
¼

Rg

Veq

dm2, 1

dt
�
dm1, 1

dt

� �

can be numerically solved with the train’s
dynamic equations. For the case of the simplified
relay valve model, _m1, 1 ¼ 0, and _m2, 1 can be
determined using equation (39) which is function
of AREG that depends on XREG of equation (49).
Therefore, equation (38) can be solved for the
pressure in the equalizing reservoir Peq. The cur-
rent value of the pressure Peq is monitored in
order to check on the relay valve state.

4. As the equalizing reservoir pressure Peq reaches a
certain value, the relay supply valve starts open-
ing. The supply valve’s area which is a function of
DP ¼ Peq � P1, 3 is defined in equation (61) (X1, 1

that appear in this equation can be determined
using equation (40)). The pressure P1, 3 of the
intermediate chamber starts to increase due to
the incoming flow of air from the main reservoir.
If the simplified relay valve model is used, the pres-
sure P1, 3 can be determined using the equation.

P1, 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
bpA

2
3, 3 þ P2

mrA
2
1, 6


 �
= A2

3, 3 þ A2
1, 6


 �r
At the same time, the brake pipe cut-off valve
remains closed, and therefore, A3, 3 ¼ 0.

5. When the pressure P1, 3 becomes larger than
the pressure PB by the equation PB ¼

PaA3, 1 þ L3, 1

� �
=A3, 2, the brake pipe cut-off valve

starts opening, and the air starts to flow to the
brake pipe. The area of the brake pipe cut-off
valve A3, 3 can be determined using equation (62)
in the Appendix. Using the current values of P1, 3

and A3, 3, the mass flow rate of equation (55) is

used to determine _m1, 4, which is used in the air
flow equations of the brake pipe, to close the
brake pipe cut-off valve. Note that the procedure
used in this algorithm is based on equation (42)
and equation (61) in the Appendix. An alternate
procedure can be developed based on equation
(63) presented in the Appendix.

6. As the air pressure Pbp of the brake pipe increases,
the brake shoes begin to separate from the wheel
axles, until the brake release process is completed.
The process, thus, ends with the relay supply valve
closed (with the assumption of no leakage) and the
brake pipe cut-off valve fully open. At this config-
uration, P1, 3 ¼ Pbp. Note that the value of the
pressure P1, 2, which is equal to P1, 3 in the simpli-
fied model, that determines the closing of the
supply valve is controlled by the regulating
valve; as XREG reaches a specified known value,
the pressure Peq of the equalizing reservoir
increases and reaches its maximum value, the reg-
ulating supply valve closes, and no more air flows
into the equalizing reservoir. Recall that the
motion of the relay valve’s diaphragm depends
on the pressure P1, 1 of the relay valve’s outer
chamber which is connected to the equalizing res-
ervoir which has the pressure Peq. As P1, 1 reaches
its maximum value, the relay supply valve closes;
and the air no longer flows from the main reser-
voir to the intermediate chamber of the relay
valve.

7. When the relay supply valve closes, A1, 6 ¼ 0, and
equation (42) shows that P1, 3 ¼ Pbp. This means
that the pressure in the intermediate chamber will
assume the value of the pressure in the brake pipe.

Brake application

The steps of the algorithm for the case of service
brake application can be summarized as follows.

1. For a given set of initial conditions for the train
car body and track geometry, the train’s non-
linear dynamic equations are formulated as a set
of first-order ordinary differential equations that
can be solved using a standard numerical integra-
tion method. These equations are solved simultan-
eously with the differential equations describing
the air flow (equation (18)), the equalizing reser-
voir pressure differential equation (equation (38)),
the intermediate chamber pressure differential
equation (equation (53), and CCU’s equations
(discussed in the companion paper26 for a given
set of initial conditions. The dynamic simulation
of the train subject to different forces continues
until the brakes are applied.

2. Before the brake application, the brake system has
the following conditions: the pressure Pbp in the
brake pipe is equal to the pressure reached after
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the recharge; the velocity u in the brake pipe rela-
tive to the train is equal to zero (steady state, with
the assumption of no leakage); the brake pipe cut-
off valve is fully open, and P1, 3 � Pbp. The pres-
sure Peq of the equalizing reservoir is assumed to
be equal to the pressure P1, 3 of the intermediate
chamber.

3. When the handle is moved towards the application
position, the exhaust valve of the regulating valve
is opened. Depending on the value of XREG, equa-
tion (38) given by

dPeq

dt
¼

Rg

Veq

dm2, 1

dt
�
dm1, 1

dt

� �

can be solved along with the train’s differential
equations to evaluate the equalizing reservoir
pressure Peq using the procedure described in
the case of the brake release except for the initial
condition and the use of the parameters of the
exhaust valve instead of those of the supply
valve. The initial condition for this first-order
ordinary differential equation is Peq ¼ P1, 3.
Note also that in the simplified model _m1, 1 ¼ 0.

4. When the pressure Peq is sufficiently low, the relay
exhaust valve starts opening, letting the air flow
from the brake pipe to the intermediate chamber
through the brake pipe cut-off valve and then
to the atmosphere through the exhaust valve.
The exhaust valve’s area which is a function of
DP ¼ Peq � P1, 3 is defined in equation (69) of the
Appendix. If the simplified model is used, the pres-
sure P1, 3 starts to decrease according to the
equation

P1, 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
bpA

2
3, 3 þ P2

aA
2
EX


 �
= A2

3, 3 þ A2
EX


 �r
(equation (42)), as described in the Appendix.
During this process, the brake pipe cut-off valve
remains fully open, that is, A3, 3 ¼ C2 as shown in
the Appendix by equation (62).

5. Using the current values of P1, 3 and A3, 3, the mass
flow rate of equation (53) of the Appendix is used
to determine _m1, 4 which is used in the air flow
equations for the brake pipe. The pipe’s pressure
reduction activates the brake application mode of
the CCUS (described in the companion paper26)
and this can result in brake force application on
the car wheels.

6. As the pressure P1, 3 continues to decrease, the
exhaust valve closes. The brake application pro-
cess, thus, ends with the relay supply valve closed
and with the brake pipe cut-off valve fully open.
The value of the pressure P1, 3 that determines the
closing of the exhaust valve is controlled by the
regulating valve in a similar manner as in the case
of the brake release; as XREG reaches a specified
known value, Peq decreases reaching its minimum

value, the regulating exhaust valve closes. The
minimum value of Peq corresponds to a minimum
value of the pressure P1, 1 that controls the closure
of the relay exhaust valve.

7. When the relay exhaust valve closes, AEX ¼ 0, and
equation (42) shows that P1, 3 ¼ Pbp. This means
that the pressure in the intermediate chamber will
assume the value of the pressure in the brake pipe.

Since the right-hand side of equation (42) also
depends on the pressure P1, 3, this pressure can be
obtained by solving iteratively the non-linear equation
or it can be calculated using the values of Pbp and AEX

from the previous time step. The value of AEX from
the previous step is updated with the new value of P1, 3

as described in the Appendix.
It is important to point out that while in the model

developed in this study the above-mentioned steps are
valid for both the service and emergency brake appli-
cation modes, in the emergency mode, the air in the
brake pipe vents to the atmosphere not only through
its cut-off valve but also through the emergency por-
tion of the CCU. Furthermore, it should be men-
tioned that, in order to include the CCU model in
the discussed cases, the time derivative of the pres-
sures associated with the CCU have to be integrated
with the locomotive valve, the brake pipe and the
train’s dynamic equations. These parameters are
introduced and discussed in the companion paper.26

In that companion paper, it is shown that the pro-
posed air brake model can be used to accurately
model different brake scenarios. This is demonstrated
using numerical examples with different initial condi-
tions, element numbers and track geometry. The
results of these examples are validated using analytical
and experimental results reported in the literature.

Summary and conclusions

The objective of this work was to integrate an air
brake model that was developed using the trajectory
coordinates with a non-linear dynamic model of a
train. To this end, an air brake model that included
three main parts: the automatic brake valve, the brake
pipe and the CCU; was developed. In this study, the
three main valves of a 26C automatic brake valve; the
regulating valve, the relay valve and the brake cut-off
valve; were considered. The general equations govern-
ing fluid behavior, including the continuity and the
momentum equations, were used to develop the
model of air flow in the brake pipe. Using the assump-
tion of one-dimensional flow, one obtains two first-
order partial differential equations expressed in terms
of the pressure and velocity. Using the finite element
method, the two partial differential equations can be
converted to a system of first-order ordinary differen-
tial equations with a constant coefficient matrix. The
two main scenarios that describe brake release and
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application were discussed and the computational
algorithms for the simulation of these scenarios
were presented. In a companion paper26 the CCU
and its operation during the brake release and appli-
cation are discussed. The companion paper also
includes numerical results that demonstrate the use
of the proposed formulations and algorithms and
their implementation in the computer program
ATTIF developed to study the train longitudinal
forces.
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Appendix

Calculation of the area of the regulating valve

The equations for the regulating valve presented in
this paper are expressed in terms of areas that will
be evaluated in this section of the Appendix. As dis-
cussed in the paper, the regulating valve areas A2, 3

and A2, 2 are functions of the valve displacement;
denoted as X2, 1 (see Figure 5(c)). Assume that there
are only two variable surface areas created by the
relative movement of the valve with respect to its
seat. One of these areas is perpendicular to the valve
movement direction X, called Ax; while the other
is tangent to the valve movement, called Ar. For Ax,
one has

Ax ¼ � r20 � r2 X2, 1

� �� �
ð45Þ
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where r0 is the radius of the valve seat, and r X2, 1

� �
is

the inner radius of the annular orifice which varies
with the valve displacement. The radius r X2, 1

� �
can

be defined as

r X2, 1

� �
¼

r0 l� X2, 1

� �
l

ð46Þ

If 	 ¼ 45�, then l ¼ r0, and r X2, 1

� �
is given in this

special case by r X2, 1

� �
¼ r0 � X2, 1; and the area in this

special case reduces to Ax ¼ A0 � � r0 � X2, 1

� �2
. For

Ar, one has

Ar ¼ �DIX2, 1 ð47Þ

where DI is the diameter of the inner area of the valve
seat. Assuming that Ax and Ar are in series, the
equivalent area AEQV can be defined as

AEQV ¼
AxArffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
r

p ð48Þ

AEQV can be A2, 2 for the exhaust valve and A2, 3 for
the supply valve.

Equilibrium of the diaphragm of the
regulating valve

Because the areas A2, 2 and A2, 3 are functions of
the valve displacement XREG, it is important to
evaluate this displacement. It can be determined
by studying the equilibrium of the diaphragm of
the regulating valve which is subjected to two forces;
one on each of its sides. The first force is due to
the equalizing pressure Peq and is equal to
F1 ¼ �PeqA2, 1. The second force is due to the spring
force and is defined as F2 ¼ S2, 1 ¼ K2, 1XREG þ L2, 1,
where K2, 1 is the spring stiffness and L2, 1 is the
spring’s pre-load force. Neglecting the effect of
the inertia of the diaphragm, the equilibrium
condition of the diaphragm is F1 þ F2 ¼ 0, which
defines XREG as

XREG ¼
PeqA2, 1 � L2, 1

K2, 1
ð49Þ

The displacement XREG and the geometry of
the supply and exhaust valves can be used to evaluate
the areas A2, 2 ¼ A2, 2 XREGð Þ and A2, 3 ¼ A2, 3 XREGð Þ.11

The areas A2, 2 and A2, 3 can then be substituted into
equation (39), which in turn is substituted into equa-
tion (38), demonstrating that the right-hand side of
equation (38) depends non-linearly on the equalizing
reservoir pressure Peq.

The valve starts to close when XREG is less than a
certain value XC, which is the maximum effective
opening made by the valves obtained when the equal-
izing reservoir pressure Peq reaches a cut-off value of
PC which is the final steady state value of Peq.

Therefore, as an alternative to using equation (49),
one can use the following equation

X2, 1 ¼
Peq � PC

�� ��A2, 1

K2, 1
ð50Þ

with the assumption that Peq � PC

�� ��4K2, 1XC=A2, 1.
In the preceding equation, XREG is renamed X2, 1.
Comparing equations (49) and (50), one can show
that PCA2, 1 ¼ L2, 1 þ K2, 1 XREG � X2, 1

� �
.11 Starting

with an initial value for Peq, equation (38) can
be integrated to determine the value of the equal-
izing reservoir pressure Peq as function of time and
the position of the handle of the automatic brake
valve.

Mathematical model of the relay valve

The rate of change of the outer chamber pressure P1, 1

is due to the mass flow rate _m1, 1 from the equalizing
reservoir through the feedback orifice A1, 1. Keeping
in mind that V1, 1 is not constant; the use of equation
(34) leads to

dP1, 1

dt
¼

1

V1, 1
RgY

dm1, 1

dt
� P1, 1

dV1, 1

dt

� �
ð51Þ

Considering the fact that V1, 2 is not always con-
stant, the rate of change of P1, 2 in the inner chamber,
due to the mass flow rate through the inner chamber
orifice A1, 3 is

dP1, 2

dt
¼

1

V1, 2
RgY

dm1, 2

dt
� P1, 2

dV1, 2

dt

� �
ð52Þ

The rate of change of the pressure P1, 3 in the inter-
mediate constant volume V1, 3 is due to the mass flow
rates � _m1, 2 through the inner chamber orifice A1, 3

(mass flow from the inner chamber); _m1, 3 through
the supply valve A1, 6 or through the exhaust valve
A1, 4 (plus the exhaust orifice A1, 5); and _m1, 4 through
the brake pipe cut-off valve A3, 3 (mass flow from the
brake pipe). Therefore, the equation for the pressure
P1, 3 is

dP1, 3

dt
¼

RgY
V1, 3

dm1, 3

dt
þ
dm1, 4

dt
�
dm1, 2

dt

� �
ð53Þ

The rates of change of the two chamber volumes
depend on the diaphragm’s velocity u1, 1 ¼ dX1, 1=dt
and are defined as

dV1, 1

dt
¼ A1, 2u1, 1,

dV1, 2

dt
¼ �A1, 2u1, 1 ð54Þ
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The mass flow rates that appear in the preceding
equations are defined as

_m1, 1 ¼ 0:6A1, 1P1, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
, r ¼

Peq

P1, 1

_m1, 2 ¼ 0:6A1, 3P1, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
, r ¼

P1, 3

P1, 2

_m1, 3 ¼ 0:6A1, 6P1, 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
, r ¼

Pmr

P1, 3

X04X1, 14XS supply valve openð Þ

_m1, 3 ¼ 0:6AEXP1, 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
, r ¼

Pa

P1, 3

otherwiseð Þ

_m1, 4 ¼ 0:6A3, 3P1, 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
�� ��
RgY

s
r� 1j j

r� 1
, r ¼

Pbp

P1, 3

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð55Þ

where AEX ¼ A1, 4A1, 5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1, 4 þ A2
1, 5

q
is the equivalent

area of the exhaust valve and the orifice. In order to
determine the velocity u1, 1, the equation of motion of
the diaphragm must be used. Using Figures 6(b) and
6(c), one can show that the diaphragm’s equation of
motion can be written as

md1
du1, 1
dt
¼ F1, 1 � F1, 2 � S1, 1 � S1, 2 � S1, 3 � KDX1, 1

ð56Þ

where F1, 1 is the force due to the action of pressure
P1, 1 in the outer chamber V1, 1; F1, 2 is the force gen-
erated by pressure P1, 2 in the inner chamber V1, 2; S1, 1

is the exhaust spring force; S1, 2 is the diaphragm rod
spring force; S1, 3 is the supply spring force; KD is the
spring constant of the diaphragm of the relay valve;
and md1 is the equivalent mass of all the relay valve
moving parts. Clearly, md1 depends on the displace-
ment of the diaphragm since not all the parts of the
relay valve are always in motion, depending on which
parts are in contact with the rod. The mass md1 can be
written as

md1 ¼ md1, 1 þmd1, 2 þmd1, 3 �XE4X1, 14� XI

md1 ¼ md1, 1 �XI4X1, 140

md1 ¼ md1, 1 þmd1, 3 04X1, 14X0

md1 ¼ md1, 1 þmd1, 3 þmd1, 4 X04X1, 14XS

9>>>>=
>>>>;

ð57Þ

where md1, 1,md1, 2,md1, 3 and md1, 4 are the masses
of, respectively, the diaphragm, the exhaust valve,
the diaphragm rod and the supply valve. In the pre-
ceding system of equations, the first equation is used
when the diaphragm is moving left, opening the

exhaust valve; the second equation is used in the
small range in which the diaphragm moves freely;
the third equation is used during the gap X0 that the
rod has to travel before reaching the supply valve; and
the last equation is used during the opening of the
supply valve. The expressions for the forces that
appear in equation (46) are presented in the reminder
of this Appendix.

Forces of the relay valve’s diaphragm

In this section of the Appendix, the expressions for the
forces that appear in equation (56) are developed. As
previouslydiscussed during the movement of the dia-
phragm not all the force components are active. The
forces F1, 1 ¼ P1, 1A1, 2 and F1, 2 ¼ P1, 2A1, 2 are always
present, whereas the force S1, 2 takes the following
values in the specified ranges

S1, 2 ¼

L1, 2 þ K1, 2X1, 1 04X1, 14XS

L1, 2 þ K1, 2 X1, 1 þ XI

� �
�XE4X1, 14�XI

0 otherwise

8><
>:

ð58Þ

When the supply valve is open, S1, 1 ¼ 0, and

S1, 3 ¼ L1, 3 þ K1, 3 X1, 1 � X0

� �
X04X1, 14XS

ð59Þ

When the exhaust valve is open, S1, 3 ¼ 0, and

S1, 1 ¼ �L1, 1 þ K1, 1 X1, 1 þ XI

� �
�XE4X1, 14� XI

ð60Þ

where K1, 1, K1, 2, K1, 3 are the spring constants; and
L1, 1, L1, 2, L1, 3 are the spring pre-loads.

For the relay valve, there are two variable areas,
the supply A1, 6 and the exhaust A1, 4, that depend on
the displacement X1, 1. Note that A1, 6 ¼ 0 when
X1, 1 5X0, and A1, 6 ¼ �D1, 6 X1, 1 � X0

� �
for

X0 5X1, 1 5XS. On the other hand, A1, 4 ¼ 0 when
X1, 1 4 � XI and A1, 4 ¼ ��D1, 4 X1, 1 þ XI

� �
for

�XE 5X1, 1 5 � XI. Recall that the supply valve is
open only when the displacement is greater than X0,
whereas the exhaust valve is open when it is less than
�XI.

Relay valve states

The relay valve has different modes of operations
defined mainly by the difference between the equaliz-
ing reservoir pressure Peq and the intermediate cham-
ber pressure P1, 3. The three possible modes of
operation are the supply state, the intermediate state
and the exhaust state. Figure 8(a) shows the relation-
ship between the relay valve states and the difference
between the two pressures acting on the diaphragm
surfaces, while Figure 8(b) shows the configuration of
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the relay supply valve, the brake pipe cut-off valve
and the relay exhaust valve as a function of the
value assumed by pressure P1, 3. By examining these
figures, one can better understand the three modes of
operation of the relay valve which are summarized in
the remainder of this Appendix.

Supply state. The opening of the supply valve can be
activated during any of the brake pipe modes (appli-
cation, release/recharge, emergency). In order for the
relay valve to maintain the pre-selected pressure value
against the brake pipe leakage, the lapping position is
considered as part of the supply state, for any of the
above mentioned modes. The values of the pressure P
and the area A used in equation (42) are P ¼ Pmr, and
A ¼ A1, 6. As previously mentioned, A1, 6 is a function
of the valve displacement X1, 1, which is again a func-
tion of the pressure P1, 3. As shown in the previous
section, A1, 6 can be determined using the following
equation

A1, 6 ¼ �D1, 6 X1, 1 � X0

� �
ð61Þ

Note that X1, 1 can be determined using equa-
tion (40). Also the brake pipe cut–off valve area A3, 3

(dependent on the valve displacement X3, 1) is function
of P1, 3 (which is equal to P3, 1). Equation (44) also
leads to

A3, 3 ¼

0 ðclosed Þ P1,34PB, X3, 1 ¼ 0

�D3,3A3,2
P3,1�PB

K3,1
PB4P1, 35PBþ ",

X3, 1 ¼ A3,2
P3,1�PB

K3, 1

�D3,3XB ¼ C2 P1,35PBþ ", X3,1 ¼ XB

8>>>>><
>>>>>:

ð62Þ

Substituting the obtained values for P and A,
equation (42) can in general be written in the follow-
ing form

f ¼
X4
n¼0

�n P1, 3

� �n
¼ 0 ð63Þ

This non-linear equation can be solved iteratively
using a Newton–Raphson algorithm to determine the
pressure P1, 3. It is important to point out that f is not
a well behaved function because of the non-linearity
of the coefficients �0,�1,�2,�3 and �4; these coeffi-
cients are non-linear functions of P1, 3 and Peq, and
have different values in different regions.11

Figure 9 can be used to better understand the dif-
ferent regions and the problems associated with the
non-linearity of equation (63). By increasing the pres-
sure P1, 3, first the supply valve fully opens, while the
brake pipe cut-off starts opening. This defines Region
I. When P1, 3 reaches the threshold value, the cut-off
valve is held fully open, defining Region II. In Region
III, P1, 3 is high enough to overcome all the other
forces in the relay valve, and as a consequence, the
supply valve starts closing. Region IV begins when the
supply valve is completely closed. Before providing
more details about these regions, the following vari-
ables are introduced

	1 ¼ ��D1, 6B0, 	2 ¼ �D3, 3B0 Peq �H1

� �
	3 ¼ �D3, 3

A3, 2

K3, 1
, 	4 ¼ ��D3, 3

A3, 1

K3, 1
PB

9>=
>;
ð64Þ

For Region I, one has PB4P1, 3 5PB þ " (the
brake pipe cut-off valve moves), and H04DP

(supply valve is fully open). The values of A, A3, 3

and �i to be used in equation (63) are as follows

A¼A1,6¼C1, A3,3¼�D3,3A3,2
P3,1�PB

K3,1
¼ 	3P3,1þ	4,

�0¼�	
2
4P

2
bp�C2

1P
2
mr

�1¼�2	3	4Pbp, �2¼C2
1þ	

2
4�	3P

2
bp,

�3¼ 2	3	4, �4¼ 	
2
3

9>>>>>>>=
>>>>>>>;

ð65Þ

For Region II, one has P1, 35PB þ " (brake pipe
cut-off valve fully open), and H04DP (supply valve
fully open). The values of A, A3, 3 and �i to be used in
equation (63) are as follows

A ¼ A1, 6 ¼ C1, A3, 3 ¼ C2 ¼ �D3, 3XB

�0 ¼ �C
2
1P

2
mr � C2

2P
2
bp, �2 ¼ C2

1 þ C2
2,

�1 ¼ �3 ¼ �4 ¼ 0

9>=
>;
ð66Þ

For Region III, one has, P1, 35PB þ " (brake pipe
cut-off valve fully open), and H1 5DP 5H0 (supply

Figure 8. (a) Valve states and (b) configurations of the supply

valve, brake pipe cut-off valve and exhaust valve.11
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valve moves). The values of A, A3, 3 and �i to be used
in equation (63) are as follows:

A ¼ A1, 6 ¼ �D1, 6B0 DP �H1ð Þ ¼ 	1P1, 3 þ 	2,

A3, 3 ¼ C2

�0 ¼ �	
2
2P

2
mr � C2

2P
2
bp, �1 ¼ �2	1	2P

2
mr,

�2 ¼ C2
2 þ 	

2
2 � 	

2
1P

2
mr �3 ¼ 2	1	2, �4 ¼ 	

2
1

9>>>>=
>>>>;
ð67Þ

For Region IV, P1, 35PB þ " (brake pipe cut-off
valve fully open), and DP4H1 (supply valve closed).
Furthermore, the exhaust valve is closed, and there-
fore, the function f is equal to zero.

Region V, represents another scenario, which is not
shown in Figure 9. In this region, the system may
operate such that both the supply and the brake
pipe cut-off valves are moving. This happens if
PB þ " is high, or if H0 is low; with values that
depend on the valve construction, design and on the
spring pre-loads. In this region, PB4P1, 3 5PB þ ",
and H1 5DP 5H0. The values of A, A3, 3 and �i to
be used in equation (63) are as follows

A¼A1,6¼	1P1,3þ	2, A3,3¼	3P3,1þ	4,

�0¼�	
2
2P

2
mr�	

2
4P

2
bp

�1¼�2	1	2P
2
mr�2	3	4P

2
bp, �2¼	

2
2þ	

2
4�	

2
1P

2
mr

�	23P
2
bp

�3¼2	1	2þ2	3	4, �4¼	
2
1þ	

2
3

9>>>>>>>>=
>>>>>>>>;
ð68Þ

By using the appropriate parameters for each
region, equation (63) can be solved numerically to
determine the pressure P1, 3.

Intermediate state. This state can be activated during
any of the brake pipe modes (application, release/
recharge) and may include the lapping position pro-
vided that there is no leakage in the entire air brake
system. During this state, both the supply and the
exhaust valve are completely closed, that is,
A1, 6 ¼ A1, 4 ¼ A ¼ 0. It follows that P1, 3 ¼ Pbp.

Exhaust state. This state can only be activated
during the brake application mode. As previously
shown, the equivalent exhaust area is AEX ¼

A1, 4A1, 5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1, 4 þ A2
1, 5

q
, where A1, 4 is a function of

P1, 3. This functional relationship is clear from the
following equation

A1, 4 ¼

0 ðclosed Þ DP5H5, X1, 15� XI

��D1, 4 X1, 1 þ XI

� �
H6 5DP 5H5,

�XE 5X1, 1 5 � XI

�D1, 4 XE � XIð Þ ¼ C3 DP4H6, X1, 1 ¼ �XE

8>>>>>><
>>>>>>:

ð69Þ

During this state the brake pipe cut-off valve is
always fully open. Due to the fact that A1, 5 is very
small as compared with the brake pipe cut-off area,
P1, 3 is very close to the value of Pbp; instead of solving
equation (42) iteratively using the values presented in
the preceding equation, one may use the values from
the previous time step to calculate P1, 3, that is,

Pj
1, 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
bpC

2
2 þ P2

aA
2
EX


 �
= C2

2 þ A2
EX

� �r� �j�1

;

where subscript j refers to the current time step, while
subscript j� 1ð Þ refers to the previous time step.

Figure 9. Supply state regions.11
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