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1. INTRODUCTION 

In this paper we will analyse single object auctions with interdependent values. 
We recommend the reader to read our previous paper1 that deals with private 
value auctions. However we will reconsider the most important points of 
auction theory which are essential for this paper.  

In private value auctions it is assumed that each bidder assigns a value to the 
object being auctioned, and his value is his private information. This value could 
be regarded as a bidder's reserve price or the maximal amount he is willing to 
pay for the item. Each bidder determines a bid at the auction which depends on 
his value. 

We will consider the four most commonly used auction types. The first two are 
known as open auctions because bidders publicly submit their bids. The most 
commonly used auction form is the English auction, in which the auctioneer 
starts the auction with a low price and raises that price gradually until only one 
bidder expresses a willingness to buy at that price. The last bidder who stays in 
is the winner and he gets the object and pays the price at which the previous 
bidder dropped out. The other form of open auction is the Dutch auction. The 
auctioneer starts the auction with a high price and lowers that price gradually. 
The first bidder who indicates an interest in buying the item at the price posted 
by the auctioneer wins the auction and pays that price. The other two auction 
forms are known as sealed-bid auctions, because bidders submit their bids in 
sealed envelopes. In a first-price sealed-bid auction the bidder who has 
submitted the highest bid is the winner and he pays his bid. In a second-price 
auction the bidder who has submitted the highest bid is the winner, but he pays 
the second highest bid. In this paper we will consider two additional forms of 
sealed-bid auction. The first is the all-pay auction in which the bidder with the 
highest bid obtains the object, but all bidders pay their bids. The second is the 
war of attrition in which the bidder with the highest bid gets the object but he 
pays the second highest bid, whereas each losing bidder pays his bid.  

                                                 
1 Trifunović (2010).  
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Bidders can have private, interdependent, or common values for the object. In 
the case of private values a value that a particular bidder assigns to the object is 
independent of the values of the other bidders. If a value that a particular bidder 
assigns to the object depends on the other bidders' values we have the 
interdependent value case. A special case of interdependent values is called the 
common value model, in which bidders have the same value for the object.  

We can distinguish between single object auctions in which there is a single 
object for sale and multiple object auctions when there are several objects for 
sale. 

Finally, there are two sometimes conflicting criteria that an auction mechanism 
has to achieve. The first is efficiency, which means that the object has to be sold 
to the bidder who has the highest value. The second is maximization of the 
seller's expected revenue from the sale. 

This paper deals with single object auctions with interdependent values. We will 
assume that each bidder has only an estimate of the value, and we will call this 
estimate a signal. For example, bidders who compete for the right to exploit oil 
from some area might have different estimates of the amount of oil in the soil 
and the value of the right depends on the signals of all bidders. It is natural to 
assume that these signals are postitively correlated. In fact we will assume that 
signals are affiliated which means that a high value of one bidder's signal makes 
it more likely that other bidders have high signals as well. We will assume that 
bidder i's signal Si  is distributed on some interval ],0[  . The value of the object 
for bidder i V i  is a function of signals of all N bidders ),...,,( 21 SSSvV Nii  , 
where vi  is bidder i's valuation function which is increasing in all N signals. 
When valuation functions for bidders are identical we have the case of common 
values ),...,,( 21 SSSvV N . For example, if bidders compete for an object which 
they plan to resell in the future, the resale price represents the common value. 
Even though this value is the same for all bidders they only have some estimate 
of that value. Each bidder bids according to a bidding function )(Sbb ii   which 
maps his signal into a bid.  
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In the majority of models in this paper we will assume that bidders are 
symmetric. In the case of interdependent values there are two aspects of 
symmetry. The first aspect requires that bidders' signals are distributed 
according to the same distribution function on the same support. The second 
aspect concerns the symmetry of the valuation functions. For example, if there 
are three bidders, and value functions are symmetric, they might have the 
following form: 

SSSV 3211 2
1

2
1

 , SSSV 3122 2
1

2
1

 , SSSV 2133 2
1

2
1

  (1) 

The symmetry of the value functions means that the signals of bidders 2 and 3 
can be interchanged without affecting the value of bidder 1, and the same holds 
for other bidders. In other words, if there are N bidders the value function for 
bidder i is symmetric if it is symmetric in all N-1 signals of his competitors. In 
the common value model the value function is the same for all bidders. For 
example, when there are three bidders the value function might have the 
following form, which is the same for all bidders SSSV 321  .  

When one of the two above assumptions is not met we have the asymmetric 
case. For example, if valuations are such that: 

SSSV 3211 2
1

3
1

 , SSSV 3122 2
1

3
1

 , SSSV 2133 2
1

3
1

 , (2) 

we are dealing with the asymmetric case. In this case if for one bidder the signals 
of his rivals are interchanged, his value will change. 

One more problem arises in the interdependent value case that was not present 
in the private value case. This is the phenomenon of the winner’s curse. We will 
show below that a bidding strategy of each bidder is increasing in his signal and 
the bidder with the highest signal wins the auction. But after that bidder wins he 
might discover that the value of the object is less than his bid and this 
phenomenon represents the winner’s curse. The bidder who wins has the most 
optimistic estimate of the value and winning the auction brings bad news that 
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other bidders have lower signals. In other words, the winning bidder’s 
conditional estimate of the value upon winning is lower than his conditional 
estimate before the auction ends2. In order to avoid the winner’s curse each 
bidder has to shade his bid. The winner’s curse is more severe in common value 
auctions than in auctions with interdependent values. 

We have mentioned the natural assumption that in the interdependent value 
case bidders’ signals are affiliated. This term was coined by Milgrom and Weber 
(1982) in their seminal paper. Affiliation means that if one bidder has a high 
signal, then it is more likely that other bidders have high signals as well. We will 
define this term more formally. Suppose that signals S1  and S2  are affiliated and 
take two realizations of these signals such that ss 11 '  and ss 22 '  and denote by 

)(f  the joint density of the two signals. Affiliation implies that it is more likely 
that both signals have high or low value than that one signal has a high and 
other a low value. Formally, affiliation implies that 

)','(),()',(),'( 21212121 ssfssfssfssf  .  

As we will see soon, bidding strategies in this environment are more 
complicated than in the private value case, because each bidder has to condition 
his bid on his signal and on the signals of other bidders. In sealed-bid auctions 
bidders cannot obtain the information about signals of other bidders, so each 
bidder’s best estimate is that other bidders have received the same signal as he 
obtained. The same holds for a Dutch auction which ends when one bidder 
accepts the price. In the private value case, the English and a second-price 
auction are strategically equivalent. However in English auction with 
interdependent values bidders drop one by one from the auction and the 
remaining bidders obtain valuable information about the signals of non-active 
bidders by observing the prices at which they drop out. Because of this effect 
English auction is no longer strategically equivalent to a second-price auction. 
On the other hand a Dutch and a first-price auction continue to be strategically 
equivalent because in both the signal inference is impossible.  

                                                 
2 Milgrom (1981b) discusses in more detail the impact of bad news on the conditional 

expectation of the value.  
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The rest of the paper is organized as follows. In the second part we derive 
equilibrium bidding strategies in second-price, first-price, and English auctions. 
In the third part we will see how some auction forms can be ranked in terms of 
expected revenue accruing to the seller and how the seller can affect his expected 
revenue by revealing his private information. The fourth part deals with reserve 
prices and entry fees. In the fifth part we analyse some conditions that are 
needed for an English auction to allocate efficiently. In the sixth part we analyse 
common value auctions. The last section concludes the discussion.  

2. EQUILIBRIUM BIDDING STRATEGIES 

In this section we will derive bidding strategies in second-price, first-price, and 
English auctions, and we will see that the strategies in a second-price and an 
English auction are quite different. We will show that these strategies take into 
account the effect of the winner's curse.  

Second-price auction 

In a second-price auction bidders submit bids in sealed envelopes. The bidder 
who has submitted the highest bid wins and he pays the price that is equal to the 
second highest bid. Equilibrium bidding strategies in a second-price auction are 
derived in Milgrom (1981a) and in Milgrom and Weber (1982). Consider 
bidder 1 who has a signal sS 1  and suppose that the highest signal of other 
bidders is SY iimax 11  . Define the following function 

],|[),( 111 yYsSVEysv  . This function represents the conditional expected 
value of bidder 1 when he has a signal sS 1  and the highest signal of other 
bidders is y . This conditional expectation is strictly increasing in the 
arguments3 s , y . We argue that bidder 1 will bid according to the symmetric 
equilibrium strategy ),()( ssvsb  , which means that he will assume that the the 
highest signal of his rivals is equal to his signal. In order to prove this result, 
suppose that other bidders follow conjectured bidding strategies and we will 
prove that bidder 1 does not have an incentive to deviate from this strategy. 
Bidder 1 will win the auction if )()( 1ybsb  . Denote the optimal bid of bidder 1 

                                                 
3 A formal proof of this statement can be found in Menezes and Monteiro (2004) p. 62-63 and 

in Milgrom (1981a). 
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as )(sbb  . If he wins the auction, he pays the second highest bid. The bidding 
function ),()( ssvsb   is strictly increasing, because the conditional expectation 
of the value is increasing in s, and we can find the inverse of the bidding 
function )(1 bbs  . The expected profit of bidder 1, who has a signal s , bids b , 
and pays )(yb , whereas his competitors follow the proposed strategy, is: 




 
)()( 11

00
)|()),(),(()|())(),((),(

bbbb
dysygyyvysvdysygybysvsb , (3) 

where )|( syg  is the conditional density of Y1  given sS 1  and the second 
equality follows from the fact that the bidder with the second highest bid follows 
the conjectured equilibrium strategy ),()( yyvyb  . Since the value function is 
increasing in s , for ys  , 0),(),(  yyvysv  and for ys   , 

0),(),(  yyvysv  and the integral is maximized for sbb  )(1 . Thus, if other 
bidders follow the proposed strategy, bidder 1 cannot do better than to follow 
the strategy ),()( ssvsb  , and since the same argument holds for each bidder 
these strategies constitute a Nash equilibrium. 

The intuition behind the equilibrium strategy is as follows. Bidder 1 who has a 
signal s  bids an amount ),()( ssvsb   that would make him indifferent to 
winning or losing if the bidder with the second highest bid has the same signal 

sY 1 . In that case the winner would be determined by flipping a coin and 
bidder 1 would infer that the other bidder has a signal sY 1  and the value of 
the object for him after learning the rival’s signal would be 

],|[),( 111 sYsSVEssv  . Since his rival followed the strategy ),()( ssvsb  , 
bidder 1 would pay a price ),( ssv  upon winning and his ex-post profit would be 
equal to zero. Thus by following the equilibrium strategy bidder 1 will just break 
even at worst, and he can obtain a positive profit if the second highest signal is 
lower than his signal. In the latter case ys   and bidder 1’s ex post value would 
be ),( ysv  and he would obtain a positive profit 0),(),(  yyvysv , because his 
competitor bids ),()( yyvyb   which represents the price that bidder 1 pays.  

Milgrom (1981a) noted that the above equilibrium is an ex post equilibrium 
when there are two bidders, but the argument is more extensively explained in 
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Milgrom (2004). In an ex post equilibrium a bidder does not regret using his 
strategy ),( ssv  even after learning the signals of other bidders. Suppose that 
bidder 1 has a signal s  and that he learns that the second highest signal is y  
and that the second highest bid is ),()( yyvyb  . After learning that signal, 
bidder 1 updates the value for the object at ),( ysv  and he maximizes the 
following profit function: 

1)],(),([max )( ybb
b

yyvysv  , (4) 

where 1 )( ybb  is an indicator function that has a value 1 if )(ybb   and 0 
otherwise. If ys  , then any bid )(ybb   maximizes bidder 1’s profit, including 
the bid )()( ybsb  , because b only affects the indicator function and )(b  is an 
increasing function. Similarly, if ys  , then any bid )(ybb   maximizes the 
profit function, including the bid )()( ybsb  . Thus, even after learning his rival's 
type, bidder 1 does not regret using his previous strategy, i.e. he does not want 
to change his strategy. The same argument applies to bidder 2, and the 
equilibrium of the second-price auction is an ex post equilibrium because no 
bidder will change his strategy even after learning the other bidder's signal. The 
equilibrium has the property that the equilibrium bidding strategy depends only 
on the bidder's signal and not on the signals of his competitors. Therefore 
bidders do not have an incentive to expend resources to determine the other 
bidder's signal and a second-price auction with two bidders is strategically 
simpler than a first-price auction, where each bidder could benefit by knowing 
his competitors' signals. Unfortunately, once there are more than two bidders, 
they might regret using the previously described strategies, which means that 
the equilibrium of the second-price auction might not be an ex post 
equilibrium.  

Harstad and Levin (1985) study a special class of auction in which the highest 
signal represents a sufficient statistic for all other signals. In other words the 
highest signal gives the same information about the value of the object as the 
entire vector of signals. Denote by s  the highest signal and by y  the second 
highest signal. In this case for any y  and 'y  such that ys   and 'ys   the 
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following equality holds ),(),( 'ysvysv  . This implies that only the highest 
signal is important for the valuation of the object. Harstad and Levin (1985) 
show that for this class of auction the Nash equilibrium in bidding strategies 
discussed above represents an equilibrium in dominant strategies. In other 
words, a bidder with signal s  cannot benefit from bidding lower than ),( ssv  
nor by bidding higher than ),( ssv  and bidding ),( ssv  represents the dominant 
strategy. It is important to note that this is a very restrictive class of auction.  

First-price auction 

Wilson (1969, 1977) was the first to study equilibrium bidding strategies in first-
price auctions. However we will follow the approach of Milgrom and Weber 
(1982), which is more intuitive. Denote by )|( syG  the conditional distribution 
of SY iimax 11   given sS 1  and by )|( syg  the corresponding density. 
Suppose that bidder 1 has a signal s  and suppose that other bidders follow the 
increasing strategy )(b . The expected profit of bidder 1 with a signal sS 1  who 
bids as if his signal is zS 1  is: 

)|()()|(),()|())(),((),(
00

szGzbdysygysvdysygzbysvsz
zz

   . (5) 

By using Leibnitz's rule for differentiating integrals, we obtain the following first 
order condition: 

0)|()()|())(),(( '  szGzbszgzbzsv . (6) 

It is not difficult to prove that in equilibrium bidder 1 will find it optimal to set 
sz  , but we omit the proof. By setting sz  , the first order condition 

becomes: 

)|(
)|())(),(()('

ssG
ssgsbssvsb  . (7) 

By solving this differential equation, we obtain the equilibrium bidding strategy. 
Note that it is necesarry that 0)(),(  sbssv , since otherwise the expected 
profit would be negative and the bidder would be better off by bidding 0. The 
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solution to this differential equation by using the method of the integrating 
factor is given in appendix A, and the equilibrium bidding strategy can be 
written as: 


s

sydLyyvsb
0

)|(),()(* , (8) 

where 









 

s

y
dt

ttG
ttgsyL
)|(
)|(exp)|( . (9) 

Integrating (8) by parts, we obtain an alternative form of the bidding strategy: 


s

yydvsyLssvsb
0

),()|(),()(* . (10) 

The last expression is more intuitive, because it tells us that a bidder in a first-
price auction bids lower than in a second-price auction, where his bid is 

),()(* ssvsb  . This result is intuitive, since in a first-price auction a bidder pays 
his bid and in a second-price auction he pays the second highest bid, and he 
places a lower bid in a first-price auction because his bid determines his 
payment. Thus the integral in (10) could be considered as bid-shading, i.e. the 
amount by which a bidder lowers his bid relative to his estimate of the value.  

One important property of the bidding strategy is worth noting. It can be shown 
that the equilibrium bid is less than the expected value conditional on winning, 
because a bidder wants to avoid the winner's curse. The winner's curse is not 
present in private value auctions, but is very important in auctions with 
interdependent values. The bidder who wins the auction has the highest signal, 
and after winning the auction he learns that other bidders have lower signals. 
Since values are affiliated, his ex post value conditional on winning is lower than 
his conditional estimate of the value before the auction ends. In other words, the 
bidder who wins the auction was over optimistic and it might happen that he 
payed more than the ex post value of the object, and if this is the case he suffers 
the winner's curse. The severity of the winner's curse increases with the number 
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of bidders, because if a bidder wins the auction with several competitors he can 
conclude that he was too optimistic, but if he wins the auction with 100 bidders 
he can conclude that he was extremly optimistic. In order to avoid the winner's 
curse a bidder places a bid that is lower than the expected value conditional on 
winning both in first-price and second-price auctions. This result is formally 
proved in appendix B.  

English auction 

In deriving equilibrium bidding strategies in an English auction we will in fact 
use a so-called Japanese version of the English auction. In this auction the price 
is continuously raised on an electronic display and bidders show their 
willingness to buy by pressing a button. When a bidder releases the button he 
drops out from the auction and he cannot re-enter the auction later on. The 
current price, the number of active bidders, and the prices at which non-active 
bidders dropped out are commonly known. The last bidder who stays in is the 
winner and he pays the price at which the next-to-last bidder dropped out.  

Since signals are affiliated the additional information obtained during the 
auction influences the active bidders' values. In other words, when one bidder 
drops out the other bidders can infer his signal and update their estimates of the 
value. This implies that English and second-price auctions are no longer 
strategically equivalent, because signal inference is impossible in a sealed-bid 
second-price auction. These two auctions are equivalent when there are two 
bidders because when one bidder drops out the auction is over, or when the 
number of active bidders and prices at which non-active bidders have dropped 
out from English auction are not revealed.  

The strategy of a bidder in an English auction is to determine the price at which 
he will drop out. His strategy is a function of his signal, the number of active 
bidders, and the prices at which non-active bidders have quit. Suppose that 
there are N bidders and denote by k  the number of active bidders, by 

ppp Nkk   ...21  the prices at which the N-K bidders have dropped out, and 
by s the signal of an active bidder. Therefore the strategy of an active bidder is to 
determine the price at which he will drop out ),...,( 1 ppsb Nk

k
 .  
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When all N bidders are active the strategy for each bidder is to drop out when 
the price reaches his conditional expectation of the value. At this stage the 
signals of other bidders are not known to a particular bidder and he assumes 
that his competitors have the same signal. Consider bidder 1 who has the 
highest signal sS 1  and denote by Y1 ,Y 2 ,...,Y N 1  the highest, second highest, 
and so on, signal of his competitors. Therefore, when all N bidders are active, 
the bidding strategy of bidder 1 is: 

],...,,|[)( 1111 sYsYsSVEsb N
N   . (11) 

Suppose that bidder N with a signal sN  drops out when the price on the 
electronic display reaches pN . The conditional expectation is strictly increasing 
in its first argument, and the bidding strategy is increasing in the bidder's signal 
as well. Since )(sb N

N  is strictly increasing in sN , there exists a unique sN , such 
that )(sbp NN

N , which means that the remaining bidders can infer the signal of 
the N-th bidder who has dropped out by inverting the bidding function. Now 
the remaining N-1 bidders update their estimates of the value and bidder 1 
follows the strategy: 

],,...,,|[)( 12111
1 sYsYsYsSVEsb NNN

N  
 . (12) 

The price is then raised on the electronic display, and suppose that bidder N-1 
with a signal sN 1  drops out when the price reaches pp NN 1 . The remaining 
N-2 bidders can infer his signal and update their estimates of the value. The 
equilibrium bidding strategy of bidder 1 now becomes: 

],,,...,,|[)( 1123111
2 sYsYsYsYsSVEsb NNNNN

N  
 . (13) 

Proceeding in this way we can conclude that after N, N-1,...,k+1 bidders have 
dropped out at prices ppp Nkk   ...21 , the bidding strategy of bidder 1 
when there are k active bidders becomes: 

],...,,,...,,|[)( 121111 sYsYsYsYsSVEsb NNkkk
k   . (14) 
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Finally, when only two bidders remain they in fact engage in a second-price 
auction and bidder 1's strategy is: 

],...,,,|[)( 132111
2 sYsYsYsSVEsb NN   . (15) 

Since bidder 1 has the highest signal, bidder 2 drops out and bidder 1 wins. 
Bidder 1 can infer that bidder 2's signal is sY 21  , and his ex post expected value 
becomes ],...,,,|[ 1322111 sYsYsYsSVE NN   . Bidder 2 dropped out at the 
price ],...,,,|[)( 132212122

2 sYsYsYsSVEsb NN    and bidder 1 pays 
exactly that price, so the expected profit of the winning bidder is: 

],...,,,|[],...,,,|[)( 132212121322111 sYsYsYsSVEsYsYsYsSVEs NNNN   . (16) 

To verify that the strategies described above represent equilibrium strategies, 
note that the expected profit is positive if ss 2  and since bidder 1 cannot affect 
the price he pays, he cannot do better than to follow the proposed strategies. On 
the other hand if ss 2 , but bidder 1 decides to stay in after the price has 
reached his estimate of the value, his profit would be negative. Thus he cannot 
do better than to follow the proposed strategies.  

We have seen that the bidding strategy is increasing in the bidder's signal and 
when bidders are symmetric they drop out in order of their signals, which 
means that the bidder with the lowest signal drops out first, followed by the 
bidder with the second lowest signal, and so on. The bidder with the highest 
signal is the winner. However when bidders are asymmetric they might not need 
to drop out in the increasing order of their signals. Furthermore the bidder with 
the highest signal need not be the bidder with the highest value, and the 
allocation might be inefficient even when bidders are symmetric. We will 
examine these problems in more detail below.  

The intuition behind the bidding strategies can be understood in the following 
way. Suppose that all bidders are active and that bidder 1 follows the strategy 

],...,,|[)( 1111 sYsYsSVEsb N
N   . In determining this strategy, bidder 1 

asks himself will he be happy if all other bidders drop out instantly. If this 
happens, he infers that all other bidders have the same signal 
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yYYY N  121 ... . The ex post value for bidder 1 would be 
],...,,|[ 1111 yYyYsSVE N    and he would pay the price equal to 
],...,,|[ 111 yYyYySVE Ni   . His expected profit is positive if ys   and 

negative if ys   and equal to zero when all other bidders have the same signal 
as bidder 1, i.e. when ys  . Thus, the bidding strategy demands that the bidder 
stay active until the price reaches the point when he is merely indifferent to 
winning or losing at that price. By following this strategy he can obtain a profit 
of zero at worst.  

Since all signals are revealed in the course of the auction the winning bidder 
does not regret winning. On the other hand a losing bidder does not regret 
losing, because if he had won the auction it would have been at a price that was 
higher than his ex post expected value of the object. Thus bidders would not 
change their behaviour even if all signals were common knowledge, and the 
equilibrium of the English auction is an ex post equilibrium.  

3. THE LINKAGE PRINCIPLE 

The linkage principle refers to the fact that the seller's expected revenue rises 
when the price paid by the winning bidder is more closely linked to his signal. 
This effect stems from the fact that signals are affiliated. Therefore auctions 
which lead to revelation of signals during the course of the auction, or have the 
property that the price paid by the winning bidder is more closely related to his 
signal, lead to a higher expected revenue for the seller, because he can extract 
more surplus from the winning bidder. The same holds for the seller's 
information. Disclosing that information could be to the seller's benefit. 
Milgrom (1989) synthesizes the linkage principle in the following way. If the 
price paid by the winning bidder could be linked to the signals of other bidders 
or the seller, which are affiliated with the winning bidder's signal, then the 
winning bidder in such an auction is made worse off and the seller better off.  

Expected revenue ranking 

As we have explained, due to the linkage principle auctions that reveal other 
bidders’ signals during the course of the auction lead to a higher expected 
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revenue for the seller. We have seen that in English auction a bidder specifies 
the price at which he will drop out. When one bidder drops out the remaining 
bidders infer his signal and update their values. Therefore the value that the 
winning bidder attaches to the object depends on all signals. The intuition 
underlying this result is that additional information about competitors' signals 
obtained during the auction weakens the winner's curse and a bidder bids more 
aggressively. On the other hand the signal inference is impossible in a second-
price auction and a bidder will bid more cautiously than in an English auction 
in order to avoid the winner's curse. This result shows that the expected revenue 
of the seller is higher in an English than in a second-price auction, and we have 
shown above that the equilibrium strategies in these two auctions are different. 
Thus an English and a second-price auction are equivalent in the weak sense, i.e. 
they are equivalent only with private values, and in the case of interdependent 
values they are equivalent only when there are two bidders, because when one 
bidder drops out the auction is over and the winning bidder cannot benefit from 
inferring his rival's signal. When there are more than two bidders the 
equivalence fails and the English auction gives higher expected revenue to the 
seller than a second-price auction.  

Note that the Dutch and the first-price auction are equivalent even with 
interdependent values, because the Dutch auction is over when one bidder 
accepts the price and other bidders cannot benefit from inferring his signal. The 
same holds for a first-price auction, which by its very nature makes the signal 
inference impossible. Since in both auctions the winning bidder pays his bid he 
faces the same problem, and his strategy in these two auctions is the same. This 
result implies that the Dutch and the first-price auction are equivalent in the 
strong sense, i.e. they are equivalent with both private and interdependent 
values. Thus the expected revenue of the seller is the same in a Dutch and a first-
price auction. 

Finally we have to compare the expected revenue in a first-price and a second-
price auction. In a first-price auction the winning bidder pays his bid which 
depends only on his signal. On the other hand the expected price paid by the 
winning bidder in a second-price auction depends on his signal and the second 
highest signal. Klemperer (2004) gives the intuitive explanation of why a 
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second-price auction yields higher expected revenue than a first-price auction. 
The winning bidder's profit stems from his private information (his signal). 
When the price paid depends on the other bidders' information it is more 
closely related to the winning bidder's information because signals are affiliated, 
which reduces his expected profit. Since the seller's expected revenue comes at 
the expense of the expected profit of the winning bidder, this reduction of the 
winning bidder's expected profit leads to a higher expected revenue for the 
seller. An alternative explanation is that the winner's curse is reduced for the 
winning bidder since he pays the second highest bid, which makes him bid less 
cautiously. We have provided the formal proof of the expected revenue ranking 
between a second-price and a first-price auction in appendix B.  

Now we can summarize our findings. We have shown that with interdependent 
values the English auction leads to a higher expected revenue accruing to the 
seller than in a second-price auction, which in turn leads to a higher expected 
revenue than in a first-price or Dutch auction. Milgrom (1989) argues that the 
expected revenue ranking might explain the dominant use of the English 
auction in practice.  

War of attrition and all-pay auctions 

Krishna and Morgan (1997) derive equilibrium bidding strategies in the two 
special forms of sealed-bid auctions: war of attrition and all-pay auctions. In an 
all-pay auction bidders submit bids in sealed envelopes and the bidder with the 
highest bid obtains the item, but all bidders pay their bid. In the war of attrition 
all bidders pay their bid except the winning bidder, who pays the second-highest 
bid. Thus the all-pay auction could be referred to as a first-price all-pay auction 
because of its analogy with a first-price auction, whereas the war of attrition 
could be referred to as a second-price all-pay auction, because it has some 
resemblance to the second-price auction. For example, lobbying activities could 
be considered as all-pay auctions, because all agents pay something and only the 
agent who has provided the highest amount can achieve his objectives in 
lobbying activities. The other example is a patent race, when all companies have 
expenditures in research and developement and only the most successful 
company will realise a profit from its research. Krishna and Morgan (1997) 

140

Economic Annals, Volume LVI, No. 188 / January – March 2011



show that with affiliated signals the war of attrition yields higher expected 
revenue to the seller than a second-price auction (see appendix C). The same 
holds for an all-pay auction which yields higher expected revenue to the seller 
than a first-price auction (see appendix D).  

The intuition for this result is as follows. Recall that a second-price auction 
yields higher expected revenue than a first-price auction because the price paid 
by the winning bidder is more closely linked to his signal, which reduces his 
expected profit and increases the seller's expected revenue. This effect could be 
called the second-price effect. On the other hand in a war of attrition and an all-
pay auction all bidders pay a positive amount. When signals are affiliated each 
bidder concludes that if he has a high signal it is more probable that other 
bidders have high signals as well, and this raises the probability that he will lose 
the auction and that he will have to pay his bid without receiving the item. In 
order to avoid this outcome each bidder bids higher in an all-pay auction and a 
war of attrition than he bids in an auction in which only the winner pays. This 
bid increase could be considered as the losing bid effect. Therefore an all-pay 
auction out-performs a first-price auction because of the losing bid effect. On 
the other hand the war of attrition out-performs a second-price auction because 
it includes both effects, while a second-price auction includes only the second-
price effect. Furthermore the war of attrition out-performs first-price, second-
price, and all-pay auctions because it includes both effects, while second-price 
and all-pay auctions include only one effect and first-price auctions do not 
include either effect. Finally, an all-pay auction cannot be ranked with a second-
price auction, because each comprises one effect and it is not clear in advance 
which effect will dominate.  

We can conclude that the war of attrition yields the highest expected revenue of 
all four sealed-bid auctions, an all-pay auction yields higher expected revenue 
than a first-price auction, and the comparison between all-pay and second-price 
auctions is ambiguous.  

One might wonder why all-pay auctions and the war of attrition are rarely seen 
in practice, despite the fact that these two forms turn out to be revenue superior 
than standard sealed-bid auctions. One possible explanation is that the 
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competition from other sellers might preclude the use of these two auction 
forms.  

Informed seller 

Now assume that the seller possesses information that is valuable to bidders. It 
could be for example an expert's estimate of the value of the object. Denote the 
seller's signal by Ŝ  and suppose that Ŝ  is affiliated with other bidders' signals. 
Each bidder now takes this signal into consideration, and his valuation function 
becomes ),...,,,ˆ( 21 SSSSvV Nii  , where the value function is symmetric in the 
last N-1 arguments.  

The same principle described in the expected revenue ranking applies here. The 
winning bidder's profit decreases when the price is more highly linked to his 
information. Since the seller's signal is affiliated with the winning bidder's 
signal, revealing that information links more strongly the price paid with the 
wining bidder's information, and reduces his expected profit. Thus the optimal 
policy of the seller who possesses information about the object is to reveal that 
information, since this strategy increases his expected revenue. Milgrom and 
Webber (1982) formally prove that in English, first-price, and second-price 
auctions the seller's expected revenue increases when he reveals his private 
information. The result relies on the law of iterated expectations and is not 
difficult to prove. However we omit the proof in this paper. In addition 
Milgrom and Webber (1982) prove that the seller should always reveal his 
information and that censoring information is useless. For example, if the seller 
reveals his signal Ŝ  when it is higher than some threshold value, the absence of 
signal revelation will be interpreted by bidders as a bad signal.  

This result about the impact of public information on the seller's expected 
revenue could be applied to the expected revenue ranking of an English and a 
second-price auction. Recall that in a symmetric English auction bidders drop 
one by one in the increasing order of their signals. The last two remaining 
bidders actually engage in a second-price auction, and the preceding part of the 
English auction could be considered as a stage when public information is 
released. Since we know that the release of public information leads to a higher 
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expected revenue for the seller, the English auction, which incorporates a stage 
of information revelation before the last two bidders compete as in a second-
price auction, will yield higher expected revenue for the seller than an ordinary 
second-price auction.  

Perry and Reny (1999) provide an example in which the seller's expected 
revenue in a second-price auction with two asymmetric bidders decreases when 
he releases his information. The intuition behind their result is as follows. In a 
second-price auction the losing bids are based on underestimates of the other 
bidders' signals. On the other hand the winning bid is based on an overestimate 
of the other bidders' signals. When the seller reveals his information, on average 
the losing bidders become more confident and they increase their bids. On the 
other hand the winning bidder becomes more cautious, and on average 
decreases his bid. In the case of two bidders, if the previously winning bid falls 
below the previously losing bid, the revenue of the seller decreases when he 
reveals his information in a second-price auction.  

Failures of the linkage principle 

It is important to note that the expected revenue ranking relies on the 
assumption that bidders are symmetric. At the begining of our paper we 
explained that in auctions with interdependent values there are two aspects of 
symmetry. First, bidders’ signals have to be distributed according to the same 
density function at the same interval. Second, a bidder's value function has to be 
symmetric in the signals of other bidders, meaning that if the signals of other 
bidders are interchanged the value remains the same. When one of the aspects 
of symmetry is relaxed the expected revenue ranking result might not hold. For 
example, it might happen that the expected revenue in a second-price auction is 
higher than in an English auction. Hence, similarly to the case of private values 
where the symmetry was crucial for the revenue equivalence, in the case of the 
interdependent values the symmetry is crucial for the expected revenue ranking.  

Perry and Reny (1999) established that the predominant use of the English 
auction is based on its superiority in terms of the seller's expected revenue when 
the values are interdependent. On the other hand in our previous paper we have 
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shown that second-price and English auctions are more vulnerable to collusive 
behaviour than first-price auctions. Since objects with interdependent values are 
more frequently auctioned than objects with private values the negative effect of 
collusive behaviour seems to be outweighed by the linkage principle. Perry and 
Reny (1999) prove by means of a counter example why the linkage principle 
does not extend from single object auctions to multiple object auctions. Their 
argument is beyond the scope of this paper, since it deals with multiple object 
auctions. However this result shows us that we should be cautious when 
extrapolating conclusions from single object to multiple object auctions.  

4. RESERVE PRICES AND ENTRY FEES 

The reserve price is a price below which the seller is not willing to sell the object. 
We have shown in the private value case that the reserve price increases the 
seller's expected revenue. In a second-price auction the gain stems from the 
event that the reserve price is higher than the second-highest value. On the 
other hand if the reserve price is higher than the highest value the object 
remains unsold and the seller suffers a loss. For a small reserve price the 
expected gain outweighs the expected loss and the seller's expected revenue 
increases when he posts a reserve price. However when signals are affiliated the 
highest and second-highest values are closer to each other than with private 
values and the event that the reserve price is higher than the second highest 
value and lower than the highest value is less likely to occur. Hence, while the 
expected loss remains the same as in the private value case, the expected gain is 
lower. When the affiliation is too strong the expected gain can outweigh the 
expected loss and the reserve price reduces the seller's expected revenue.  

We have seen that with private values the optimal reserve price is independent 
of the number of bidders and the seller posts a reserve price that is higher than 
his value for the object. Levin and Smith (1996) show that with affiliated signals, 
as the number of bidders increases the optimal reserve price converges to the 
seller's value for the object. The intuition for this result is that with affiliated 
signals, as the number of bidders increases the difference between the highest 
and second-highest value becomes infinitesimal, and the expected gain from 
posting a reserve price that is higher than the seller's value tends to zero. Thus 
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while the expected loss is positive the expected gain tends to zero, and the seller 
lowers the reserve price towards his value. If the seller's value is zero, then it is 
clear that it is not optimal to set the reserve price. We have seen in the private 
value case that when the seller sets a higher reserve price than his value, it is 
possible that the highest value is lower than the reserve price while it is higher 
than the seller's value, which means that the seller retains the item even though 
he does not have the highest value. Clearly this allocation is inefficient. However 
when values are interdependent, the possibility that the outcome of the auction 
with the reserve price is inefficient decreases as the number of bidders increases, 
and at the limit when the number of bidders tends to infinity the probability of 
inefficient allocation tends to zero, since the reserve price tends to the seller's 
value. This suggests that with interdependent values competition enchances 
efficiency as in ordinary markets.  

An entry fee represents an amount that a bidder has to pay to participate in the 
auction. Milgrom and Weber (1982) prove that when the seller uses both reserve 
prices and entry fees, the strategy of setting high entry fees and low reserve 
prices leads to higher expected revenue accruing to the seller. More precisely, 
Milgrom and Weber (1982) define the screening level as the lowest possible 
signal, *s , that would make a bidder participate in the auction. If a bidder's 
signal exceeds this threshhold level *s  a bidder will participate in the auction, 
otherwise he will not participate. They show that the two combinations of 
different reserve prices and entry fees that lead to the same screening level yield 
different expected revenues to the seller. In particular the auction with high 
entry fees and low reserve prices outperforms the auction with low entry fees 
and high reserve prices. This result is formally proved in appendix E.  

One particular problem that might arise in the presence of entry fees is that the 
auction is not regular, meaning that some bidders with a signal higher than *s  
will find it optimal not to participate. This problem complicates the analysis 
significantly.  
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5. THE EFFICIENCY OF ENGLISH AUCTIONS WITH ASYMMETRIC BIDDERS 

An allocation is efficient if the bidder with the highest value obtains the object. 
Formally, an allocation is efficient if for all signals ),...,( 1 ss N , bidder i gets the 
object when the following inequality holds ),...,(),...,( 11 ssvssv NjNi  , for all j. In 
the previous discussion we have shown that the bidder with the highest signal 
obtains the object in the English auction. In this part of the paper we study 
whether English auction results in an efficient allocation. The general answer is 
no, even when bidders are symmetric. In other words the bidder with the 
highest signal need not be the bidder with the highest value. For example, if 
there are two symmetric bidders with signals s1  and s2  and value functions: 

ssv 211 4
3

4
1

  and ssv 212 4
1

4
3

 , (17) 

and if ss 21  , then vv 12  . Thus the bidder with the highest signal has a lower 
value and the allocation is clearly inefficient. What went wrong in this example? 
The problem is that each bidder’s signal has a higher influence on the value of 
the other bidder than on bidder’s own value. When each bidder’s signal has a 
higher impact on his value than on the other bidder's value, the allocation with 
symmetric bidders is efficient. We will refer to this condition as the single 
crossing condition.  

When bidders are asymmetric the problem with efficiency can be even worse. 
We will illustrate this problem with the following two examples concerning 
first-price and second-price auctions, taken from Dasgupta and Maskin (2000).  

Suppose that there are two bidders in a first-price auction and that the first 
bidder has a signal s1  distributed on ]1,0[  and the second bidder has a signal s2  
distributed on ]10,0[ . In this auction it must be the case that )10()1( 21 bb  . To 
see why, suppose that )10()1( 21 bb  , then bidder 2 with value 10 can reduce his 
bid towards )1(1b  and still win with probability 1. But, when )10()1( 21 bb  , 
bidder 2 with a value slightly less than 10, will bid less then )1(1b  and will lose 
the auction, even though he has a higher value.  
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Consider the following example that deals with a second-price auction. Suppose 
that there are three bidders with value functions: 

sssv 3211 4
1

2
1

 , sssv 3122 2
1

4
1

  and sv 33  . (18) 

Suppose that 121  ss . If for some small  , s3  is equal to  13s , then 
vvv 321  . But if  13s , then vvv 312  . Hence the efficient allocation 

between bidders 1 and 2 depends on the signal of bidder 3. But, as we have seen 
from the previous discussion, a bidder submits a bid in a second-price auction 
that depends only on his signal and in this example the efficient allocation 
between bidders 1 and 2 depends on bidder 3's signal, which is clearly 
inefficient. 

Dasgupta and Maskin (2000) prove that when the bidders' value functions 
satisfy the single crossing condition, the allocation is efficient. For all i and j, the 
single crossing condition can be defined in the following way: 

s
v

s
v

i

j

i

i






 , (19) 

when vvv kkji max . The single crossing condition implies that when the 
values of the bidders i and j are equal and maximal, the signal of bidder i has a 
higher impact on his value than on the value of bidder j.  

The single crossing condition is not sufficient to guarantee efficiency when there 
are three or more bidders. Krishna (2003) shows that in this case the average 
crossing condition is necessary to achieve efficiency. This condition requires that 
the impact of the signal of each bidder on the average value is higher than the 
impact of that signal on some other's value. If there are N bidders, the average 
value is defined as: 

 i iv
N

v 1 . (20) 
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Denote by 
s
v

v
i

i



  the derivative of the average value with respect to si  and by 

s
v

v
i

j
ji




  the derivative of bidder j's value with respect to si . For any vector of 

signals s , such that values of all N bidders are equal and maximal, the average 
crossing condition requires that the following inequality is satisfied: 

vv jii  . (21) 

The intuition behind the average crossing condition is that the impact of bidder 
i's signal on his value is higher than the impact on the average value, since the 
impact of i's signal on values of other bidders must be below average.  

We can define the single and average crossing condition by using the so-called 
influence matrix, in which i,j entry represents the influence of j's signal on i's 
value. For example, when there are three bidders the influence matrix has the 
following form: 

















vvv
vvv
vvv

333231

232221

131211

, (22) 

where v11  represents the impact of bidder 1's signal on his value, v12  the impact 
of bidder 2's signal on bidder 1's value, and so on. 

The single crossing condition requires that any element on the main diagonal is 
higher than any off-diagonal element. The average crossing condition requires 
that any element on the main diagonal is larger than the average of the elements 
in that column. For example, for bidder 1 this condition is satisfied if 

3/)( 312111111 vvvvv  . Since the impact of some bidder's signal on his value 
is larger than the impact of his signal on some other bidder's value, the average 
crossing condition implies that vvv 12111   and vvv 13111  .  
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Finally Krishna (2003) shows that if values satisfy the cyclical crossing condition, 
the English auction is efficient. This condition requires that for any two bidders 
i and i+1, every signal s j , with the exception of si 1 , has a greater influence on 
vi  than on vi 1 . In our example with three bidders, the cyclical crossing 
condition implies that signal s1  has a higher influence on bidder 1's value than 
on bidder 2's value and a higher influence on bidder 2's value than on bidder 3's 
value: vvv 312111  . In the same fashion, signal s2  has a higher impact on 
bidder 2's value than on bidder 3's value and a higher impact on bidder 3's value 
than on bidder 1's value: vvv 123222  . The same arguments imply that for 
signal s3  vvv 231333  . We will illustrate the cyclical crossing condition with 
the following influence matrix, where arrows stands for the inequality >. 

































vvv

vvv

vvv

333231

232221

131211

 

It is important to note that when there are two bidders both the average and 
cyclical crossing conditions reduce to the single crossing condition. However 
when there are three or more bidders and the average crossing condition is 
satisfied, bidders need not drop out in increasing order of their values in an 
English auction, even though the bidder with the highest value wins the auction. 
We will illustrate this phenomenon by using the example from Krishna (2002).  

Suppose that signals are distributed on ]1,0[  and that there are three bidders 
with values: 

ssv 211 3
1

 , ssv 212 3
1

 , ssv 323 3
1

 . (23) 

The average value is: 

][
9
4

321 sssv  . (24) 
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First note that the influence of each bidder's signal on his value is higher than 

the influence on the average value since 
9
41  vv iii . For signal s1  we have 

the following inequalities: 

3
1

9
41 21111  vvv  and 0

9
41 31111  vvv . (25) 

Thus the average crossing condition is satisfied for s1 . By using the same 
procedure it can be shown that the average crossing condition is satisfied for 
signals s2  and s3 , as well.  

Now suppose that the realized values of the signals are 









10
9,

10
1,

100
1),,( 321 sss . At the begining of the auction each bidder knows 

only his signal. We have shown that the equilibrium strategy for bidder 1 when 
all bidders are still active in an English auction is to drop out when the price 

posted by the auctioneer reaches 0133,0
3
4),,(),,( 11111111

3
1  ssssvsssb . Bidder 

2 will drop out when the price reaches 133,0
3
4),,(),,( 22222222

3
2  ssssvsssb , 

while bidder 3 will drop out at the price 2,1
3
4),,(),,( 33333333

3
3  ssssvsssb . 

Therefore bidder 1 will drop out first, followed by bidder 2, while bidder 3 will 
win the auction.  

By using the realized values of the signals we can conclude that 31,01 v , 
1033,02 v , and 95,03 v . Therefore bidder 3 has the highest ex post value and 

he wins the auction, which is efficient. On the other hand bidder 1 has a higher 
ex post value than bidder 2, but he quits the auction before bidder 2. This 
example shows us that when the average crossing condition is satisfied the 
allocation is efficient but it is possible that bidders do not drop out in order of 
increasing ex post values.  
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6. COMMON VALUE AUCTIONS 

In the common value auctions all bidders have the same value for the object, but 
they only have an imprecise signal of that value. For example, if a bidder plans 
to resell the item, the resale price could be considered as a common value which 
is the same for all bidders but is unknown at the time of the auction. The 
winner's curse is particulary severe with common values. As we will see below, 
the bidding strategy is increasing in the bidder's signal and the bidder with the 
most optimistic signal wins the auction. But after the auction ends he learns the 
common value of the object, and he might discover that his signal was too 
optimistic and that the value of the object is lower than his bid. Hence rational 
bidders would shade their bids to avoid the winner's curse. Bazerman and 
Samuelson (1983) conducted an experiment in which they auctioned off jars 
filled with coins to MBA students at Boston University in a first-price auction. 
Each jar contained $8, and this represents the common value of the object. They 
dicovered that the average bid was $5.13 but the average winning bid was 
$10.01, and winners suffered from the winner's curse.  

We will consider the simplest case when the common value of the item ( v ) is 
the sum of two bidders' signals ssv 21 , where s1  and s2  are signals of 
bidders 1 and 2. For example, if the two bidders compete for a right to exploit 
oil in some area, s1  could be an estimate of the amount of oil in one part of that 
area, and s2  an estimate of the amount of oil in another part of that area. 
Suppose that the signals are independently and identically distributed according 
to uniform distribution at the interval ]1,0[ .  

First-price auction 

We will first derive equilibrium bidding strategies in a first-price auction by 
following Menezes and Monteiro (2004). Suppose that bidder 2 follows a strictly 
increasing strategy )( 2sb  and that bidder 1, who has a signal sS 1 , bids as if his 
signal is zS 1 , i.e. )(zb . Bidder 1 pays his bid if he wins, and his expected profit 
is: 

zzbzzb zsz
y

sydyzbysz
zz

)()(
2

|
2

))(()(
2

0

2

0
   . (26) 
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By using the first order condition with respect to z, we obtain: 

0)()( '  zzbzbzs . (27) 

In a symmetric equilibrium bidder 1 sets sz   which implies: 

0)()( '2  ssbsbs , (28) 

sssb 2'))((  . (29) 

Integrating both sides of this differential equation from 0 to s, we obtain: 

sbsbs
s ydy 2

0
2)0(0)(   . (30) 

By solving the last equation, we obtain the equilibrium bidding strategy ssb )( . 
In other words, each bidder submits a bid equal to his signal and the bidder with 
the higher signal wins the auction. Since the common value of the object cannot 
be higher than his bid, the winning bidder does not suffer from the winners 
curse. We can conclude that bidding strategies in a setting with uniformly 
distributed signals are immune to the winner's curse. Unfortunately this result 
does not extend to some other signal distributions.  

In the previous discussion we have analyzed the case with two bidders, but the 
severity of the winner's curse increases with the number of bidders, because 
having the highest signal among N+1 bidders is worse news than having the 
highest signal among N bidders. In fact Wolfstetter (1996) identifies two 
opposing effects when the number of bidders increases. The first effect is the 
competitive effect. When the number of bidders increases each bidder has an 
incentive to reduce bid shading, in order to increase his chances of winning the 
auction. The second effect is the winner's curse effect. It means that the severity 
of the winner's curse increases with the number of bidders and each bidder has 
an incentive to increase bid shading in order to avoid the winner's curse.  

By following the logic described above Bulow and Klemperer (2002) point out 
the paradoxical result that increased competition can lead to lower prices due to 
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the winner's curse. Contrary to common economic logic, preventing entry of 
some bidders or increasing the number of units sold reduces the winner's curse 
and might increase the seller's expected revenue.  

Second-price auction 

Now we will derive equilibrium bidding strategies in a second-price auction by 
following Menezes and Monteiro (2004). Suppose that bidder 2 follows a strictly 
increasing strategy )( 2sb  and that bidder 1, who has a signal sS 1 , bids as if his 
signal is zS 1 , i.e. )(zb . Bidder 1 pays the bid of the other bidder if he wins, 
and his expected profit is: 

 
z dyybysz

0
))(()( , (31) 

By using Leibnitz's rule we have the following first-order condition: 

0)(  zbzs . (32) 

In a symmetric equilibrium a bidder sets sz  , which implies that the 
equilibrium bidding strategy is ssb 2)(  . 

Now let us consider the properties of this bidding strategy. The distribution of 
bidder 2's signal conditional on bidder 1 having the highest signal is: 

s
y

sF
yFysyF 
)(
)()|( , (33) 

where the last equality follows from the fact that signals are uniformly 
distributed. Thus the expected value of the object conditional on bidder 1 
having the highest signal is: 

ss
s

s
s

ysvE
ss dyysysydFys

2
3

2
11]|[

2

00
)()|()(    . (34) 
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The winning bidder bids higher than the the expected value of the object 
conditional on winning, but this does not mean that he suffers from the 
winner’s curse because the winning bidder pays the second highest bid: 

ss
ss

P
ss ydyysydFyb   

2
22 2

00
)|()( , (35) 

where the second equality follows from the fact that bidder 2 bids according to 
yyb 2)(   and the definition of the conditional distribution. Thus the 

equilibrium bidding strategy in a second-price auction is immune to the 
winner's curse as well, since the expected payment of the winning bidder is 
lower than the expected value conditional on winning.  

Finally, note that the expected payment of the winning bidder in both auctions 
is the same and equal to s. This result is not a coincidence, since the revenue 
equivalence holds for the case of common values when bidders are risk neutral, 
symmetric, and signals are independently distributed. Hence the revenue 
equivalence extends to the case of interdependent values when signals are 
independent. Recall that we have assumed that signals were affiliated in the case 
of interdependent value, and that is why the revenue equivalence failed.  

When signals are affiliated in the common value auction, the expected revenue 
ranking from the interdependent value case applies. The expected revenue from 
a second price auction is higher than the expected revenue from a first price 
auction because in a second price auction the winning bidder pays the second 
highest bid, whereas in a first-price auction he pays his bid and bids more 
cautiously. Thus the seller's expected revenue is higher in a second-price 
auction.  

Finally, it is important to note that the issue of efficiency is unimportant in the 
common value case, since all bidders have the same value.  

The wallet game 

Klemperer (1998) uses the strategy in a second-price auction derived above in 
the so-called Wallet game. The two players have the amounts s1  and s2  of 
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money in their wallets distributed according to )( 11 sF  and )( 22 sF . Each player 
knows the amount of money in his wallet, but does not know the amount of 
money in the other player's wallet. The auctioneer performs an English auction 
in which he raises the price gradually. When one player quits the winner obtains 
the combined contents of the two wallets and pays the auctioneer the price at 
which his runner-up dropped out. Thus the common value of the object is 

ssv 21 . Each bidder chooses a price at which to drop out conditional on his 
signal )( 1

2
1 sb  and )( 2

2
2 sb . The payoff of the winning bidder is 

))(),(min( 221121 sbsbss  . Since there are two bidders the English auction 
is strategically equivalent to a second-price auction and bidders use the same 
strategies as in a second-price auction. In other words a bidder stays in until the 
price reaches ssb iii 2)(  . Suppose that bidder 1 is the winner and that bidder 2 
quits at )( 22 sb . The value of the object for bidder 1 would be )(5,0 221 sbsv   
and he pays the auctioneer )( 22 sb . Bidder 1 obtains a positive payoff if 

)()(5,0 22221 sbsbs  . By solving the last inequality we obtain that bidder 1's 
payoff is positive if ssb 122 2)(  . This justifies the use of the strategy ssb 111 2)(   
because when the price surpasses ssb 111 2)(   the best strategy for bidder 1 is to 
quit the auction. The equilibrium described above is a unique symmetric 
equilibrium. 

However there are many asymmetric equilibria in this auction when bidders use 
asymmetric bidding strategies. For example, bidder 1 might stay in until the 

price reaches ssb 111 10)(   whereas bidder 2 quits at ssb 222 9
10)(  . To verify that 

these strategies constitute an equilibrium, suppose that bidder 1 wins. Then the 

value of the object for bidder 1 would be )(
10
9

221 sbsv  . Bidder 1 obtains a 

positive payoff if )()(
10
9

22221 sbsbs  . By solving the last equation we can 

conclude that bidder 1 is pleased with winning if ssb 122 10)(  , and he prefers to 
quit when the price reaches s110 . On the other hand, if bidder 2 wins, the value 

of the object would be )(
10
1

112 sbsv  . Bidder 2's payoff is positive if 
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)()(
10
1

11112 sbsbs  , which implies that bidder 2 is pleased with winning when 

ssb 211 9
10)(  .  

In this asymmetric equilibrium bidder 1 wins more often than in the symmetric 
equilibrium and when he wins he finds more money in bidder 2's wallet than in 
the symmetric equilibrium. Thus bidder 1's payoff is higher in the asymmetric 
equilibrium than in the symmetric equilibrium. On the other hand bidder 2 
wins less often than in the symmetric equilibrium, and finds less money in 
bidder 1's wallet when he wins. Thus bidder 2's payoff is lower in the 
asymmetric than in the symmetric equilibrium. Finally, the seller is worse off in 
the asymmetric equilibrium. Klemperer (1998) reports the results of the 
simulation analysis in which bidder 1 wins 94% of the time and the seller's 
expected revenue is 20% lower than in the symmetric equilibrium.  

Klemperer (1998) studies one more case of asymmetric equilibrium and 
discusses how the apparently small advantage of one player can be transformed 
into a large difference in bidding strategies in the English auction. Suppose that 
if bidder 1 wins he obtains a small bonus prize of 1, whereas bidder 2 does not 
obtain the bonus prize when he wins. This apparently small difference has a 
tremendous impact on equilibrium outcome, because bidder 1 always wins in 
equilibrium. In this case bidder 1 will bid more aggressively since he obtains an 
additional amount of 1 when he wins. In other words he bids as if his signal is 

11 s . But now the winner's curse is intensified for bidder 2 because when he 
wins he will find an amount of 1 less in his rival's wallet. Hence winning against 
a more aggressive bidder is worse news than winning against a less aggressive 
bidder. In order to avoid the winner's curse bidder 2 will bid less aggressively, as 
if his signal is 12 s . But now bidder 1's winner's curse is reduced and he knows 
that he will find an additional amount of 1 in bidder 2's wallet when he wins, 
and he bids as if his signal is 21s . This magnifies the winner's curse further for 
bidder 2, and he will bid as if his signal is 22 s , and so on. The small bonus 
prize of 1 translates into a large competitive advantage for bidder 1 in an English 
auction, and the seller's expected revenue could apparently be lower in this case 
than in symmetric equilibrium. In the above example bidder 1 always stays in. 
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Klemperer (1998) argues informally that in this case the seller should use a first-
price auction, because bidders cannot condition their behaviour on other 
bidders' behaviour and cannot follow strange strategies such as staying in until 
the opponent quits. Therefore the asymmetric equilibrium of a first-price 
auction is close to symmetric equilibrium and a first-price auction yields higher 
expected revenue for the seller than an English auction. The case of asymmetric 
bidders is also examined by Bulow and Klemperer (2002), using a more formal 
approach.  

Bikhchandani (1988) studies the case of repeated second-price common value 
auctions with two asymmetrically informed bidders. The first bidder is an 
ordinary bidder, whereas the second bidder is a strong bidder with probability 
 . and an ordinary bidder with probability 1 . Bidder 2's type is his private 
information and the auction game is repeated finitely many times. Due to the 
effect explained earlier, it pays for bidder 2 to establish a reputation as an 
aggressive bidder in a second-price auction, even though he is an ordinary 
bidder. More precisely by bidding aggressively bidder 2 intensifies bidder 1's 
winner's curse, forcing him to bid more cautiously, which increases bidder 2's 
chances of winning. The winning bidder pays the second highest bid and since 
bidder 1 bids more cautiously, bidder 2 pays a lower price and the seller obtains 
a lower than expected revenue. Maintaing the reputation of an aggressive bidder 
is profitable in a repeated second-price auction. On the other hand it is costly 
for bidder 2 to maintain the reputation of an aggressive bidder in a first-price 
auction since he pays his bid. Thus a first-price auction is preferable over a 
second-price auction by the auctioneer in repeated auctions with 
asymmetrically informed bidders.  

7. CONCLUDING REMARKS 

Auction theory is an interesting and growing field of microeconomics. It shows 
us how abstract game theory models can be applied to practical auction design. 
Auctions are now widely used in some countries to sell antiquities, art objects, 
spectrum rights, pollution allowances, airport landing slots, oil drilling rights, 
etc. In recent years internet auctions have become very popular, particularly 
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auctions on eBay. This phenomenon has motivated a substantial interest among 
theoretical researchers.  

The assumption of interdependent values is more realistic than the assumption 
of private values, but auctions with interdependent values are more challenging 
from the modelling point of view. However in practical auction design 
affiliation is not such an important aspect as collusion, entry, or asymmetry 
between bidders.  
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APPENDIX 
A. Derivation of equilibrium bidding strategies in a first-price auction4 

First note that the equilibrium bidding strategy must satisfy the boundary 
condition 0)0,0()0(  vb . Denote by: 

)|(
)|()(

syG
sygy  . (A1) 

By substituting (A1) in (7), we obtain the following differential equation: 

)(),()()()(' sssvssbsb   . (A2) 

Define the integrating factor as: 

 



s
duus )(exp)( . (A3) 

By differentiating the expression )()( ssb  , we obtain: 

)()()()()()()()()()]()([ '''' sbssssbssbssbssb    , (A4) 

where the second equality follows from the fact that )()()(' sss   , where 
we have used Leibnitz's rule.  

On the other hand, by multiplying (A2) with )(s , we obtain: 

)()(),()()()()()(' ssssvsssbssb   . (A5) 

The left hand side of (A5) is equal to the right hand side of (A4), which implies: 

)()(),()]()([ ' ssssvssb    . (A6) 

                                                 
4 This proof follows Menezes and Monteiro (2004).  
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By integrating the last equation between 0 and s , and by using the boundary 
condition 0)0,0()0(  vb , we have that: 

dyyyyvyssb
s

)(),()()()(
0

   . (A7) 

By using the fact that )()()( sssd   , it is obvious that: 

 
s

ydyyvsb s
0

1 )(),()( )]([  . (A8) 

Substituting  



s
duus )(exp)(  and 





 




y
duuy )(exp)(  in the last 

expression, we obtain that: 


s

sydLyyvsb
0

)|(),()(* , (A9) 

where 









 

s

y
dt

ttG
ttgsyL
)|(
)|(exp)|( . (A10) 

Finally, note that )|( sL   can be considered as a distribution function with the 
support ],0[ s . It can be shown that 0)|0( sL , 1)|( ssL  and that )|( sL   is 
non-decreasing, which implies that )|( sL   is a distribution function. ■  

B. Proof that equilibrium bidding strategies in first-price and second-price auctions 
are immune to the winner's curse5 

Denote by )|( syK  conditional distribution of the second highest signal Y1  
conditional on sS 1  and sY 1 . By construction,  

)|(
)|()|(

ssG
syGsyK  . (B1) 

                                                 
5 This proof is based on Krishna (2002).  
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Since values are affiliated, it follows that for any two values st  , the 
conditional distribution )|( sG   dominates )|( tG   in terms of the reverse hazard 
rate: 

)|(
)|(

)|(
)|(

stG
stg

ttG
ttg
 . (B2) 

We can integrate the last expression from s  to y , for sy  , which gives us: 









   )|(

)|(ln)|(ln)|(ln))|((ln
)|(
)|(

)|(
)|(

ssG
syGssGsyGdtstG

dt
ddt

stG
stgdt

ttG
ttg s

y

s

y

s

y
. (B3) 

Applying the exponential function to both side of the last inequality, we obtain: 

)|(
)|()|(

)|(
)|(exp)|(

ssG
syGsyKdt

ttG
ttgsyL

s

y









  . (B4) 

Therefore the conditional distribution )|( syK  dominates the conditional 
distribution )|( syL  in terms of first order stochastic dominance. 

We know that equilibrium bidding strategy in a first-price auction is: 

]|[ 111 ,)|(),()|(),()|(),()(*
000

sYsSsydKysvsydKyyvsydLyyvsb VE
sss

   . (B5) 

The first inequality follows from the fact that )|( syK  dominates )|( syL  
according to first order stochastic dominance, second from the fact that the 
value function is strictly increasing and that sy   , and the final equality 
follows from the fact that )|( syK  represents the conditional distribution of the 
second highest value Y1  conditional on sS 1  and sY 1 . Hence from (B5) it 
follows that equilibrium bid in a first-price auction is lower than the expected 
value conditional on winning and the bidding strategy is immune to the 
winner's curse.  
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The expected payment of the winning bidder in a second-price auction is 
],|),([ 11 sYsSyyvE  , since the winning bidder pays the second highest bid 

which is equal to ),( yyv . Therefore, by using the same arguments given above, 
we have that: 

]|[ 11111 ,)|(),()|(),(],|),([
00

sYsSsydKysvsydKyyvsYsSyyvE VE
ss

   .(B6) 

The last result shows us that the expected payment of the winning bidder in a 
second-price auction is lower than the expected value conditional on winning, 
which implies that bidding strategies in a second-price auction are immune to 
the winner's curse as well. 

One more result is worth noting. From (B5) and (B6) it follows that:  

],|),([)|(),()|(),()(* 1100
sYsSyyvEsydKyyvsydLyyvsb

ss
  . (B7) 

The last results shows us that the expected payment of the winning bidder is at 
least as high in a second-price auction as in a first-price auction, and we have 
formaly proved the expected revenue ranking of these two auctions. ■ 

C. Expected revenue ranking of the war of attrition and a second-price auction6 

We will first derive bidding strategy in the war of attrition. Consider bidder 1 
who has a signal sS 1  and submits a bid b , whereas other bidders follow the 
increasing strategy )(b . Bidder 1's expected payoff is: 

bG sbbdysygybysvsb
bb

 


 ]1[ )|)(()|())(),((),( 1)(1

0
, (C1) 

where the first term represents the profit of the bidder if he wins and pays the 
second highest bid, whereas the second term represents the case when he loses 
the auction and pays his bid. 

                                                 
6 This proof is based on Krishna and Morgan (1997).  
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Maximizing the profit function with respect to b, and using Leibnitz's rule, we 
obtain the following first order condition: 

0)]|)((1[
))((

1)|)((
))((

1)|)((
))((

1)|)(())(,( 1
1

1
1

1
1

11

'''
 








 sbbG

bbb
sbbgb

bbb
sbbgb

bbb
sbbgbbsv   (C2) 
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1

11

'
 


  sbb

bbb
sbbgbbsv G . (C3) 

In a symmetric equilibrium, bidder 1 bids according to )(sbb  , and we obtain 
the following differential equation: 

)|(),(
)|(1

)|(
),()(' ssssv

ssG
ssg

ssvsb 


 , (C4) 

where )|( ss  represents the hazard rate. Integrating the last expression between 
0 and s, we obtain: 

dyyys
s

yyvb )|()(
0

),(  . (C5) 

The expected payment of a bidder in the war of attrition is: 

)(]1[ )|()|()()(
0

sbG ssdysygybsP
sw  . (C6) 

Integrating the integral by parts, we obtain: 

 
ss

dysyGybssdysyGybsssP sbsbGGsbw
00

)|()(')|()|()(')|()( )()(]1[)( . (C7) 

By substituting (C5) in the last expression, we obtain: 

 






 


sss
dy

syg
syGsygyyyyvdysyGyyyyvyyvsP dyyyw

000 )|(
)|(1)|()(),()|()(),(),()( ||)|(   (C8) 

By using the definition of the hazard rate, we obtain: 
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 









s
dy

sy
yysygyyvsPw

0 )|(
)|()|(),()(


 . (C9) 

On the other hand, we have proved that a bidder with a signal s  will bid 
),()( ssvsb   in a second-price auction. His expected payment is:  


s

dysygyyvsPII
0

)|(),()( . (C10) 

It can be shown that due to the affiliation for any ys   the hazard rate is 
decreasing )|()|( yysy   , which implies that the expected revenue in the war 
of attrition is higher than the expected revenue in a second-price auction. ■  

D. Expected revenue ranking of an all-pay auction and a first-price auction7 

We will first derive bidding strategy in the all-pay auction. Consider bidder 1 
who has a signal sS 1  and submits a bid b , whereas other bidders follow the 
increasing strategy )(b . Bidder 1's expected payoff is: 

b
bb

dysygysvsb 



)(1

0
)|(),(),( , (D1) 

where the first term represents his value of the object if he wins and the second 
term represents the payment that he has to make regardless of whether he wins 
or not.  

Maximizing the profit function with respect to b, and using Leibnitz's rule, we 
obtain the following first order condition: 

01
)( )(

1)|)(())(,(
1

11

'





bbb
sbbgbbsv . (D2) 

In a symmetric equilibrium, bidder 1 bids according to )(sbb  , and we obtain 
the following differential equation: 

                                                 
7 This proof is based on Krishna and Morgan (1997).  
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)|(),()(' ssgssvb s  . (D3) 

Integrating the last expression between 0 and s, we obtain the bidding strategy 
in the all-pay auction: 

dtttgs
s

ttvb )|()(
0

),( . (D4) 

The equilibrium bidding strategy in a first-price auction can be written as: 


s

sydLyyvsb
0

)|(),()(* , (D5) 

where 









 

s

y
dt

ttG
ttgsyL
)|(
)|(exp)|( . (D6) 

The expected payment of a bidder in a first-price auction is: 


s

I sydLyyvssGsbssGsP 0
)|(),()|()(*)|()( . (D7) 

Differentiating (D6), we obtain: 

  


















sI dydt
ttG
ttg

yyG
ssGyygyyvsP

s

y0 )|(
)|(exp

)|(
)|()|(),()( . (D8) 

Due to the affiliation, for any yt  : 

)|(
)|(

)|(
)|(

ytG
ytg

ttG
ttg
 . (D9) 

Integrating the last inequality from y  to s  and multiplying by (-1), we obtain: 
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)|(ln)|(ln)|(ln)|(ln
)|(
)|(

)|(
)|(

ssGyyGysGyyG
s

y

s

y
dt

ytG
ytgdt

ttG
ttg

   ,(D10) 

where the last inequality follows from the fact that )|( sG  is non-increasing in 
the second argument due to the affiliation. Taking the exponent of both sides of 
(D10), we have that: 
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On the other hand, the expected payment in the all-pay auction is: 

dyyygsP
s

A yyv ),()(
0

),( . (D13) 

By using (D8) and (D12), we obtain that: 
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Hence, the expected payment in the all-pay auction is higher than in a first-price 
auction. ■ 

E. Comparison of different levels of reserve prices and entry fees8 

Define the screening level as the lowest possible signal that would make bidder 1 
participate in the auction, when he faces the pair of a reserve price r  and an 
entry fee e , has a signal sS 1 , and the second highest signal is Y1 : 

}]|)[(|inf{* 1{1 1 }1 esSrVEss sY   . (E1) 

                                                 
8 The proof follows Milgrom and Weber (1982). 
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We call a pair ),( er  a regular pair if all bidders with a screening level higher 
than *s  participate in the auction. Consider another regular pair ),( er  that lead 
to the same screening level, such that rr   and ee  .  

Denote by ),( szP  the expected payment of a bidder 1 in the ),( er  auction when 
his signal is sS 1  but he bids as if his signal is z  and other bidders follow their 
equilibrium strategies. Define ),( szP  in the same way for the ),( er  auction.  

In a first price auction the expected payments of a bidder are 
eszGsbszP  )|()(),( and eszGsbszP  )|()(),( , where )|( sG   is the 

distribution function of the second highest signal conditional on sS 1 . We 
have seen in appendix A that equilibrium bidding strategies in a first-price 
auction are obtained after solving a differential equation. Note that )(sb  and 

)(sb  are obtained as a solution to the same differential equation and a bidder 
whose signal is equal to the screening level submits a bid equal to the reserve 
price *)(*)( sbrrsb  , which implies that )(sb  and )(sb  cannot cross and 

)()( sbsb  . By finding the partial derivative of the expected payment function 
with respect to z  at a point zs  , we obtain the following equation: 

0)|()]()([),(),(














 szG
s

sbsb
s

szP
s

szP
zs , (E2) 

where the last inequality follows from the fact that )()( sbsb   and from the fact 
that the distribution function )|( zG  is non-increasing, due to affiliation. By 
using the boundary condition, *)(*)( sbsb   and by using (E2), it follows that 

),(),( szPszP  .  

In a second-price auction a bidder's expected payment is only affected when he 
pays the reserve price, and by mimicking the arguments used in the preceding 
proof we obtain that: 

0)|(][),(),(














 szG
s

rr
s

szP
s

szP
zs , (E3) 

168

Economic Annals, Volume LVI, No. 188 / January – March 2011



and ),(),( szPszP  .  

Since the expected payment of a bidder in a first-price and a second-price 
auction is higher in the ),( er  auction than in the ),( er  auction, it follows that 
the seller's expected revenue is higher in the ),( er  auction. ■  
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