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Abstract

Based on the theory of difference equations, we derive necessary and sufficient conditions
for the existence of eigenvalues and inverses of Toeplitz matrices with five different diago-
nals. In the course of derivations, we are also able to derive computational formulas for the
eigenvalues, eigenvectors and inverses of these matrices. A number of explicit formulas
are computed for illustration and verification.
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1. Introduction

A Toeplitz matrix is a matrix with values constant along each (top-left to lower-
right) diagonal. Several properties of these matrices are now known, including their
eigenvalues, eigenvectors and inverses. In particular, in a recent paper [4] by Dow,
Toeplitz matrices of the form

Tn =

( b
a
0

c
b
a

0
c
b

0 •
0 ••
c

• 0

• 0
• 0

a
0
0

\a 0 0 0 b)

where the corner elements are the same, are discussed and their explicit inverses
are found. In many applications (such as boundary value problems for difference
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equations), Toeplitz matrices of the form An = Tn but with the a in the bottom left-
hand side comer replaced by /J, that is, [ani] = ft, where a ^ ft, are also encountered.
Therefore, it is of great interest to find out more about these matrices. In this paper,
we derive the eigenvalues and their corresponding eigenvectors as well as the inverse
of An when ac ^ 0 and at least one of the numbers a or fi is not zero. When
a — fi = 0, An reduces to the well-known tridiagonal matrix about which much is
known. For general information about Toeplitz matrices, the references in [4] can be
consulted.

For convenience, the set of integers, the set of nonnegative integers, the set of real
numbers and the set of complex numbers are denoted by 1, N, D& and C respectively.
The number V^T is denoted by i. We will also set

aT = {ma | m el}, a e C.

In particular, nl denotes the set {..., — 2n, —n, 0, n, In,...}.
Toeplitz matrices are intimately related to boundary value problems involving

difference equations. This relationship has been exploited in [2,10] for finding eigen-
values or inverses of matrices arising from difference operators. We will again base
our investigation here on the method of difference equations. For this reason, we
recall some terminologies used in [1]. Let /N be the set of complex sequences of the
form x = {xk}ket>t endowed with the usual linear structure. A sequence of the form
[a, 0 ,0 , . . . } is denoted by a (or by a if no confusion is caused), and the sequence
(0, 1, 0, 0 , . . .} is denoted by h. Given two sequences x = {xk} and v = [yk} in /N,
their convolution is denoted by x * y (or xy if no confusion is caused) and is defined by

1 jeN

It is easily verified that h2 = h * h = (0,0, 1, 0, 0, . . .} and h" = {h"j}jeN, n =
1, 2, . . . , is given by h" = 1 if n = j and h" = 0 otherwise. We will also set h° = I.

In the following discussions, we need, among other things, the well-known proper-
ties of the complex functions ez, sinz and cosz from the theory of complex analysis.
In particular, let z = x + iy € C where x, y € K. Then (i) sin z = 0 if and only if
y = 0 and x = kit for some k el, (ii) cos z = ±1 if and only if y — 0 and x = kn
for some k e 1, and (iii) if z ^ kn for any k e 1, then sinz ^ 0, cosz ^ ±1 ,
sin(z/2) £ 0 and cos(z/2) ^ 0.

2. Necessary conditions for the eigenvalues

Consider the eigenvalue problem Anu = Xu, where a, b, c and a, fi are numbers in
the complex plane C. We will assume that ac ^ 0. When ac = 0, the corresponding
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analysis is quite different and is treated elsewhere. To avoid trivial conditions, we will
also assume n > 3 in the following discussions.

Let A. be an eigenvalue (which may be complex) and (MI, . . . , «„)* a corresponding
eigenvector of An. We may view the numbers ut,u2, • • • ,un respectively as the first,
second, . . . , and the n-th term of an infinite (complex) sequence u = {«,}~0. Since
Anu = ku can be written as

au0 + bu\ + cu2 = kux — aun,

au\ + bu2 + CM3 = ku2,

(2.1)

a«n_2 + bun-i + cun = Aun_!,

a«n-i + bun + cun+i = Xun - y3u,,

Un+l = 0,

we see that the sequence u = [uk}^=0 satisfies u0 = 0, un+i = 0 and

+ buk + cuk+l = kuk + fk, k=l,2,..., (2.2)

where f\ = —aun and /„ = —flu\, while fk = 0 for it ^ l , n . Note that «„
and u\ cannot be 0 simultaneously, for otherwise from (2.1), u2 = 0 and inductively
M3 = M4 = • • • = un = 0, which is contrary to the definition of an eigenvector.

Let / = [fk}k*L0 be defined above. Then (2.2) can be expressed as

0 + b{uk+l)Z0 + "

By taking the convolution of the above equation with h2 = hh, and noting that

h{un+l] = h{uu M2, . . . } = {0, Mi, M2, . . . } = « - Mo

and

fi2{"»+2} = fi2{"2, "3 , • • • } = (0, 0, U2, M3, . . . } = U - Mo - UiH,

we have c(u — uo — u\K) + (b — k)h{u — M0) + ah2u = h(f — f 0 ) . Solving for u,
and substituting f0 = u0 = 0, we obtain

(ah2 + (b- k)h + c)u = (cii, + f)h.

Since c ^ 0, we can divide the above equation by ah2 + (b — k)h + c to obtain [1,
Theorem 24]

u= 2 ^ + f)H . (2.3)
ah2 + (b-k)h + c
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Let

Y ± = = 2 a

be the two roots of az2 + (b — \)z + c = 0, where co = (b — X)2 — 4ac, which may
or may not be zero.

Based on the value of co, there are two cases to be considered.
Case I. Suppose co ̂  0 so that y+ an^ Y- a r e distinct. Since y+Y- = c/a ^ 0,

we may write y± = e±w/p for some 0 in the strip {z € C | 0 < Rez < 2n], where
p = s/a/c and

cosG = Q,-b)/2pc. (2.4)

Since sin0 = y/oi/(lipc) ^ 0, we must also have 9 £ ?r2.
By the method of partial fractions, we can then write (2.3) in the form

1 / 1 1 \
u = —= I I

Jco\y--h y+-hj

_
(cu,

= -y={pj sinjd) * {CM,, -aun, 0, . . . , -fiuu 0 , . . . } .

By evaluating the convolution product, we obtain the y'-th term of u,

us = —^(cuxp1 sin j9 - aunp
J~l sin(y - 1)6

- H(J - n)PuiP
j-n sin(; - n)0) (2.5)

for j > 1, where H(x) is the unit step function defined by H(x) = 1 if x > 0 and
//(*) = ()if* < 0 .

In particular,

sin n9 - aunp
n~l sin(n - 1)9 (2.6)

a
and

—r«n+i = cuipn+l sin(« + 1)9 — aunp" sinn9 — fiuipsin9. (2.7)

By (2.6), we have

^ T - + ap"~x sin(n - 1)9 j un = 0, (2.8)
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and by (2.7), and the condition un+i = 0, we have

(cp"+l sin(n + 1)9 - pp sin0)«! - ap"(sin n9)un = 0. (2.9)

Since u \ and un cannot be both zero, we must necessarily have

\ u / = U,
cpn+i sin(« + 1)9 - Pp sin 9 -ap" sin n9

which leads to the necessary condition

acp2" sin0 - p"(acsin(n + 1)9 - ap sin(« - 1)9) +aP sin 9 = 0. (2.10)

Once we have found a 9 that satisfies (2.10), we obtain by (2.4)

k = b + 2pccos9, 6 £mn, mel. (2.11)

Case II. Suppose co = 0 so that y+ = y_. In this case, (A. — b)2 = Aac, and (2.3)
can be written as

(cZ7, + f)h 1 ph
U ~ c(\ - 2«k - b)/2c)h + ((X - b)/2c)2h2) pc (\ _ ph)

2 C" '

1 i ~ i
= — \jp i • w * {cMi, —aun, 0, . . . , — p « i , 0 , . . . } ,

p c l J^e N

where

p = (k- b)/2c = ±y/a/c = ±p. (2.12)

The 7-th term of u now becomes

M; = —(cu\jpJ — aun(j — l)pJ~l — H(j — n)Pui(j — n)pj~"), j > 1.
PC

(2.13)

In particular,

un = (cMinp*1 — aun(n — l)p"~')/pc (2.14)
and

un+i = 0 = (c«i(n -(- l)p"+1 — aunnp" — Puif))/pc. (2.15)

This leads to the necessary condition

acp2" - p"(ac(n + 1) - a0(n - 1)) + ap = 0. (2.16)
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Once we have found the pthat satisfies (2.16), then we obtain by (2.12)

k = b + 2pc. (2.17)

We remark that since (2.17) may be written as

k = b±2pc = b + 2pccos9, 9 = mn,me2,

we may combine (2.17) and (2.11) and assert that an eigenvalue A. of An is necessarily
of the form k = b + 2pc cos 9.

According to the above discussions, when A. is an eigenvalue of An, it is then
necessary that either (2.10) or (2.16) holds.

THEOREM 2.1. Let k be an eigenvalue of the matrix An and u = (uit..., «n)t its
corresponding eigenvector. If (2.10) is satisfied for some

9 e [z e C | 0 < Rez < 2n}\nl,

then (2.5) and (2.11) hold.

THEOREM 2.2. Let k be an eigenvalue of the matrix An and u = ( « ] , . . . , Mn)
t its

corresponding eigenvector. If (2.16) is satisfied for p = y/a/c orp = —*/a~Jc, then
(2.13) and (2.17) hold.

Recall that the first and last components u i and un cannot be zero simultaneously.
There are some other interesting properties for the eigenvector u if co ^ 0.

COROLLARY 2.3. Let k be an eigenvalue of the matrix An and u = (uit..., Mn)
T its

corresponding eigenvector such that a> — (b — A.)2 — Aac ^ 0. Let 6 be the number
found in Theorem 2.1.

(i) / / « , =0 , then a ^ 0 .
(ii) Ifun = 0 or «i = 0 then sinn6 = 0.

(iii) If sinnd = 0, then either un = 0 or a = ±ap~", and either u\ = 0 or
0 = ±cp".

(iv) IfP ^ ±Cpn, then un £ 0.
(v) If a £ ±ap-n, then M, ^ 0.

(vi) IfP £ ±cp" andux £ 0, then sinn0 ^ 0.
(vii) If a £ ±ap-" and un ^ 0, then sin n9 £ 0.

(viii) IfP j£ ±cp" and a ^ ±ap~", then U\ ^ 0, un ^=0 and sin n6 £ 0.

PROOF. If w, = 0, then by (2.8) y/w/(2i) + ap""1 sin(« - 1)0 = 0. Since co £ 0,
we must have a ^ O .



[7] Explicit eigenvalues and inverses of several Toeplitz matrices 79

If un = 0, then by (2.8) cp"u\ sin n6 = 0. Since cp"ux ^ 0, we must have
sinntf = 0. Similarly, if M( = 0 , then by (2.9) apnun sin n6 = 0. Since ap"un ^ 0,
we must have sin n9 = 0.

If sinnfl = 0, then by (2.8), either un = 0 or pcsin9 + ap"~l sin(n - 1)9 = 0.
Since sin(n — 1)0 = sin nd cos 0 — cos nO sin 9 = ^f sin 9 when sin nO = 0; the latter
implies pc = ±apn~l or a = ±ap7n. Similarly, if sinn9 = 0, then by (2.9), either
u, = 0 or cpn+l sin(n + 1)9 - 0p sin0 = 0. The latter implies P = ±cp".

Suppose p ^ ±cp". If un = 0, then sinn0 = 0. Since ux ^ 0, (iii) imphes
P = ±cp", which is a contradiction.

Suppose a ^ ±ap~n. If M, = 0 , then sin n9 = 0. Since un ^ 0, (iii) implies
a = ±ap~", which is a contradiction.

Suppose P ,£ ±cp" and ux ^ 0. If sinnfl = 0, then by (iii), either ux = 0 or
P = ±cpn. This is a contradiction.

Suppose a ^ ±ap~" and wn ^ 0. If sin n9 = 0, then by (iii), either un = 0 or
a = ±ap~". This is a contradiction.

The last assertion (viii) follows from (iv), (v) and (vi), (vii). •

3. Additional conditions for eigenvectors

Given an eigenvalue X of the matrix An and its corresponding eigenvector u =
( M I , . . . , un)\ suppose co ^ 0 and let 9 be the number found in Theorem 2.1. For
1 < j < n, we have by (2.5)

uj = —^(cuipi sin j9-aunp
i-lsinU-1)9), j = l,...,n. (3.1)

In the case when sin nd ^ 0, we may find u which are simpler in form. Indeed,
suppose sinn0 ^ 0, then from (2.8),

l ± " " " I o ' " ' - - " m
 n (3_2)

cp" sin n9
and from (2.9),

(cpn+i sin(n +1)9-Pp sin 9)
aun = — — u i. (3.3)

p" sin n9

Substituting (3.2) into (3.1), we have

1 / p' sin j9 , • , \
uj = — n . ApcsinO + ap"~l sin(n - \)9)un - aunp'-x sin(; - \)6

pcs\n9 \pnsinn0 )

{pcp'~n sin 9 sin j9 + apJ~l sin(n - j)9 sin 9)
pc sin 9 sin n9
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for j = 1,2,... ,n. By letting un = p" sin n6, we obtain

uj = p> sin j9 + -pJ+n sin(n - j)9, j = 1 , . . . , « , (3.4)

which defines an eigenvector corresponding to A. (if 9 is found). Similarly, substituting
(3.3) into (3.1), we may obtain

B .
-pJ~n sin(j -
B

u,: = pJ s i n (n + 1 - j)6 + - p J ~ n sin(j - 1)9, j = l,...,n. (3 .5)
c

Suppose co = 0. Then we have by (2.13)

uj = — (cujpj - aun(j - \)p'~l), j = \,...,n.

In view of (2.14) and (2.15), a similar argument leads to

Uj = pJj + pi+nHn-j), j = \,...,n (3.6)

and

Uj = pJ(n + l-j) + pJ-n^U-^, j = h...,n. (3.7)

4. Eigenvalues and eigenvectors of special Toeplitz matrices

Now we can apply the results of the previous sections to find the eigenvalues
and the corresponding eigenvectors of several Toeplitz matrices of the form An. For
motivation, consider the case where a = p = 0. Then (2.16) is reduced to

p"ac(n + 1) = 0

which is not possible so that, in view of Theorem 2.2, co ^ 0 and X cannot be of
the form b ± 2pc. In view of Theorem 2.1, (2.10) must hold for some 0 £ ni, or,
sin(n + 1)9 = 0 for some 9 $ nl. Consequently, 9 = kn/{n + 1) for some k € 2
and 9 £ nH. An eigenvalue Xk is then necessarily of the form

kk = b + 2pccos , k=\,...,n.
n+ 1

A corresponding eigenvector, from (3.4), is given by

p ^ j = l,...,n, (4.1)
' n + 1

which has also been obtained in [10] and elsewhere. Finally, by reversing the ar-
guments that lead to Theorem 2.1, we see that each kk is an eigenvalue of An and
the corresponding vector uik) = (wf, . . . . «^*))t defined by (4.1) is a corresponding
eigenvector.

By similar ideas, we may now derive the eigenvalues and the corresponding eigen-
vectors for matrices of the form An.
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4.1. The case where a = c = ±a and /? = 0, or a = 0 and a = c = ±fi We will
use [x] to denote the integral part of x € K. Note that [(it - l)/2] + [(it + 2)/2] = it
for any positive integer k.

THEOREM 4.1. Suppose a = a = c and fi = 0, or, a = 0 and f} = c = a. Then
the eigenvalues of An are given by

kk=b + 2acos—, k = 1,2,..., [(n - l)/2] (4.2)
n

and
Wn-0/2] = b + 2a cos —f—, m = 1, 2 , . . . , [(n + 2)/2]. (4.3)

n +1
The eigenvectors corresponding to (4.2) and (4.3) are given by

uf = sin— J—, y = l ,2 , . . . , / i (4.4)
n

and
(m+[(B-i)/2]) _ • (2wi — l ) (n + 1 — j)n

- s i n — , y _ l , 2 , . . . , n (4.5)

respectively for a = a = c and f! = 0,

M = s i n a n r f M s i n ) y i > 2 ) . . . , n
y n ' n + 2

respectively for a = 0 and f) = c = a.

PROOF. Suppose a = a = c and y3 = 0, or a = 0 and ft = c = a. Then (2.16)
is reduced to (±l)"(n + 1) = 1. This relation cannot be valid, and hence, in view of
Theorem 2.2, u> = 0 does not hold. In view of Theorem 2.1, (2.10) holds for some
9 i nl, or

sin — cos(^—— j9 = 0,

Hence (a) sin(n0/2) = 0 or (b) cos((n + 2)/2)0 = 0 for some 0 £ nl. In case (a),
we have

6 = 2kn/n, 9 i irZ, k e Z, (4.6)

so that an eigenvalue must be of the form

kk = b + l a c o s ( 2 k n / n ) , k = l [(« - l)/2].

Similarly, in case (b), we have

g = ( 2 m " 1 ) 7 r , 6tnZ,me2. (4.7)
n + 1
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so that an eigenvalue must be of the form

*«+[0.-i)/2] = b + la cos m~2
n> m = 1 , . . . , [ (« + 2)/2].

The corresponding eigenvectors may be obtained as follows. For a = a = c and
P = 0, since fi ^ rkcp", by Corollary 2.3 (iv) wn 7̂  0, while u\ may or may not be 0.
If u, = 0, then sin nd = 0. By (3.1)

Since sin(n + \ — j)6 = sinn#cos(./' —1)0—cosn#sin(./ —1)0 = ^sinO" —1)0 when
sinn# = 0, we may write uj = (±un/sin9) sin(n + 1 — j)6. Letting ±un = sin9,
we have

uj = sin(n + 1 - j)9, j = 1, 2 , . . . , n. (4.8)

If ui 7̂  0, then by Corollary 2.3 (vi), sinn# ^ 0. Hence we may apply (3.5), which
leads to the same result (4.8) since p = 1 and /J = 0. By substituting 9 given by (4.6)
or (4.7) into (4.8), we obtain the desired results (4.4) and (4.5).

For a = 0 and p = c = a, a similar argument leads to Uj = sin j9, j = 1 , . . . , n.
By substituting 9 given by (4.6) or (4.7), we obtain the desired results.

Once we have found the eigenvalues and their corresponding eigenvectors, we may
reverse the arguments leading to Theorem 2.1 and verify that they are indeed the true
eigenvalues and associated eigenvectors of An. The proof is complete. •

We may follow the same arguments to show the following.
Suppose —a = a = c and jS = 0, or a = 0 and — ft = c = a. Then the eigenvalues

of An are given by

^ (4.9)^ , , [(

and

*m+[o.+o/2] = b + 2a cos m~ n , m = l,2 [n/2]. (4.10)
n

The eigenvectors corresponding to (4.9) and (4.10) are given by

m . 2k(n + l-j)n .

and
s i n (2m - ! ) ( « + l - 7 > y- 1 2 n
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respectively for — a = a = c and p = 0, and

and
Am+un+l)/£» _ • v -sj— ; _ 1 9 „
1 n

respectively for a = 0 and —p = c = a.

4.2. The case where a = —p = a = c,or —a = p = a = c

THEOREM 4.2. Suppose a = —p = a = c, or —a = P = a = c. 77ien ;/ze
eigenvalues of An are given by

_\b + 2acos(kn/n), k = 1, 2 , . . . , n - 1,
* ~~ I » . ; 15 U )

I o, k = n.
The eigenvectors corresponding to (4.11) are given by

(t) Jsin(yA:^/n), fc odd,
; I sin((y — l)kn/n), k even,

and

sin(y'7r/2) + (a/a) sin((n - j)n/2), n odd,

sin(Jn/2), n = 6, 10, 14,. . . (4.13)

sin(a - l)n/2), n = 4, 8, 12, . . .

respectively for a = —p = a = c, j = 1, 2, . . . , n. For —a = P = a = c, only the
odd-even relation for k in (4.12) should be interchanged.

PROOF. Suppose a = — P = a = c, or — a = p = a = c, then p = 1, and (2.16)
is reduced to (±l)"2n = 0. This relation cannot be valid so that co = 0 does not hold.
By Theorem 2.1, (2.10) holds for some 9 £ nl, or sinn#cos0 =0,9 £ nl. In the
case where sin n9 = 0 for some 9 £ nl, we have 9 = (kn/n) £ nl,k € 2, and the
eigenvalue must be of the form kk = b + 2a cos(kn/n), k = 1, 2 , . . . , « — 1. In the
case where cos 9 = 0, we have kn = b.

The corresponding eigenvectors may be found as follows. For k = 1, ... ,n - 1,
suppose a = -p = a = c. Since sin n9 = sin&7r = 0 and cos n9 = cos kn = - 1
if k is odd and +1 if k is even, we have

csinfl +asin(« — 1)9 = a sin0(1 — cosn#) = 2a sin0 ^ 0, k odd, and

csin(n + 1)0 - Psin9 = c(cosn9 + l)sin0 = 2a sin9 ^ 0, it even.
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Hence if k is odd, by (2.8) un = 0 and in view of (3.1) an eigenvector must be of the
form

Uj = sin j9. (4.14)

If k is even, then by (2.9) u ̂  = 0 and an eigenvector must be of the form

Uj = sin(y - 1)0. (4.15)

By substituting 9 = kn/n, we have (4.12). Suppose —a = fl = a = c, then (4.14) is
for even k and (4.15) is for odd k.

For k = n, we have 9 = n/2 and sin n9 = sin(«7r/2) = ±1 ^ 0 if n is odd. We
may apply (3.4) to obtain

uf = sin Y + - sm "" , . / = 1,2, . . . , n .

Ifn is even, then sin n# = Oandcosnfl = - 1 ifn = 6, 10, . . . and + 1 ifn = 4, 8, . .
Hence by a similar argument as for k = 1,2,..., n — 1, we have for j = 1 , . . . , n

(n) = JsinO'Tr/2), for n = 6, 10, 14 , . . . ,
7 ~ |sin((; - 1)TT/2), f o r « = 4 , 8, 12

The proof is complete. •

4.3. The case where a = ±a and /J = ±c In the case where a = a and /J = c, An

is the well-known circulant matrix [3]. There are many results [3,5-9] concerning the
eigenvalues and inverses of such matrices. However, most of them are algorithmic in
nature. Here we will derive explicit formulas for the case where a = —a and fi = — c
based on our theorems, while those for a = a and /J = c will be listed only since they
are already known.

THEOREM 4.3. Suppose a = —a and 0 = — c in the matrix An. Then the eigenval-
ues and the corresponding eigenvectors of An are given by

Xk = b + {a + c) cos —
n

+ i ( a c ) s i n ^ A: = 1,2 n (4.16)

uf = ^ » - W " , j = 1, 2 , . . . , n (4.17)

()
n

and
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respectively. If a = c, an alternative formula for the eigenvectors is also given by

j = l,2,...,n, (4.18)

where C\ and Cj are two independent constants not both equal to 0. In particular, if
we take C\ = 1 and c2 = —/, we have (4.17) as its special case.

PROOF. Suppose the conditions in Theorem 2.1 hold. Then we must have A =
b + 2pc cos 9, where 9 is some number that satisfies

p"(sin(n + 1)61 - sin(n - 1)9) + (p2" + 1) sin6> = 0, 9 i nl,

or, since sin 9 # 0, p2" + 2pn cos n9 + 1 = 0, 9 £ it 2. This yields

p" = - cos n9 ± i sin n9 = -e*"8. (4.19)

Let p" = -einB, then since e
±m~X)* = - 1 , we may write p" = J^e-i<&-n*t so that

eie = pei(2k-i)n/n, e-'e = p-^-'O*-"*/- (4.20)

and

cos9 = -

- 1)TTIf/ 1\ (2k-l)n , .( \ \ . (2fc -
= x I P + - I cos + i I p sin

2 LV P) n \ P) n
Note that if a ^ c , then p ^ 1 and cos 9 £ ±1 for any it € 2. By noting that p2c = a
and that sin x and cos x are periodic functions, we have finally for k = 1 , . . . , n

kk = b + 2pccos9 = b + (a + c) cos \- i{a — c) sin ,
n n

which is (4.16). If a = c, then p = 1 and we have cos# = cos((2fc — l)n/n) ^ ±1
so that k £{n + l)/2 in (4.16). But then we have Theorem 2.2.

Suppose co = 0 and the conditions in Theorem 2.2 hold. Then (2.16) is valid for
a = — a and ft = —c. Thus

p2" + 2p" + 1 = 0, (4.21)

which holds if a = c, p = — 1 and n is odd. Furthermore, under these conditions, the
eigenvalue must be of the form A. = b — 2c, which can also be written as A.(n+u/2 in
(4.16). Hence (4.16) holds regardless of a = c or a ^ c.
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In case the negative sign in e*'"9 holds, then p" = —e~'"9 = e~'"9e-'W-mj ^ j lt

is easily seen that we may get the same result (4.16).
To find the corresponding eigenvectors, we first consider the case a ^ c. Then

p ^ 1 so that )S ^ ±cp" and a ^ ±ap~n. By Corollary 2.3 (viii), ux,u2 £0 and
sinntf ^ 0, so we may apply (3.4). Since by (4.20) e±ijB = p±;e±O(2*-i)*/<<) w e have

e±i(n-j)9 _ ±(n-j)e±i(.n-j)(.2k-l)n/n _ _ ±(n-j)

By substituting this and a = — a into (3.4),

+pJ+n (n''~je~ijm~i)l'/n — p~n+je'i(2k~l)"/''))

By dropping the constant factor (p2" — l)/2j, we obtain (4.17). Next suppose a = c.
By (4.19), p = 1 implies cosntf = — 1 and sinnfl = 0. The former implies 9 =
(2k — l)n/n £n~l so that k ^ (n + l)/2, the latter implies either one of the ux or Mn

may be zero. \iun = 0, then by (3.1) an eigenvector must be of the form w^' = siny'0.
If Mi = 0 , then an eigenvector must be of the form H'** = sin(y — 1)9. Hence the
linear combination

u(p = ki sin j9 + k2 sin(j - 1)9 = cx cos j9 + c2 sin j9

is an eigenvector of An corresponding to kk. After substituting 9 = (2k — \)n/n, we
have (4.18) for a = c and k ^ (n + l ) /2 .

For a = c and k = (n + l ) /2 , then 9 = n, which implies co = 0, and we already
have p" = p = — 1 from (4.21), hence we may apply either (3.6) or (3.7) to obtain

whichisoftheformu*n+l)/2in(4.18). Hence (4.18) is valid for a = candk = l,...,n.
The proof is complete. •

Now we may follow the same arguments to show the following: Suppose a = a
and ^ = c in the matrix An, then the eigenvalues and the corresponding eigenvectors
of An are given by

kk = b + (a + c) cos h i(a — c) sin , k = 1,2, . . . ,n
n n

and
2jkn

uf = e- " , j = 1,2, ...,n (4.22)
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respectively. If a = c, an alternative formula for the eigenvectors is also given by [2]

lts 2jkn . 2jkn
Uf = C\ cos V c2 sin , i = l , 2 n,1 n n

where C\ and c2 are two independent constants not both equal to 0. In particular, if we
take C\ = 1 and c2 = —i, we have (4.22) as its special case.

5. Necessary conditions for the inverse

The method used in the previous sections may also be used to find the inverse of
the matrix An under the condition ac ^ 0. Let the (unique) inverse of An, if it exists,
be denoted by

= (gil)\8(2)

g? i?
8?

rfV

(5.1)

Then AnGn = /„. We may view the numbers gf\ g(
2

k\..., glk) respectively as the
first, second and the n-th term of an infinite (complex) sequence gik) = [gf^jzN.
Since AnGn = /„ can be expanded as

ae{k) + be(k) 4- ceik) - hk - Bs(k)

with gg} = g(klx = 0, we have

agflt + bg? + cg^ = h) + fjk\ y = 1.2.

where

-fig? j=n,
0 otherwise.

Since c ^ 0, we may obtain

8 (5.2)
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Let r)± = {-b ± Vf)/2a be the two roots of az2 + bz + c = 0, where f = b2 - Aac.
As in Section 2, there are two cases to be considered.

Case I. Suppose £ ^ 0 so that rj+ and rj_ are two different numbers. Since r]+T]_ =
c/a ?£ 0 , we may write rj± = e±i4>/p for some 0 in the strip {z e C|0 < Re z < 2n],
where p = *Ja/c and

cos(j) = -b/2pc. (5.3)

We also have sin <p = ^/i[/(2ipc) £ 0.
By the method of partial fractions, we may write g(k) in the form

which gives the y'-th term of g(k):

gf = ^= [eg™pi s in;0 - a g < V - ' sin(; - 1)0

+ H(j - k)pj-k sint/ - k)4> - H{j - n)pg\k)pj-n sin(y - «)</>} (5.4)

for 7 > 1. In particular,

- a^ ' p " " 1 sin(n - 1)0 + p - * sin(n -

and
0 = cg(k)pn+l sin(/i + 1)0 — otg^p" si

— f}g\k)p s in0 + pn+l~k sin(n -

If the inverse exists, then g\k) and g^ form a unique solution pair and hence

cp" sinn0 -(vfV2i +ap"~[ sin(n - 1)0)A = cp"+1 sin(n + 1)0 — p> sin 0 —ap" sin «0
or

A = (p"(acsin(n + l)0 —orjSsin(« — 1)0) —(orcp^+a/S) sin0) sin 0 ^ 0 . (5.5)

Furthermore, if A ^ 0, then we have

g\k) = A,/A, gf - A,/A, (5.6)

where

A! = —ap2"~k sin(k — 1)0 sin0 — ap"~* sin(/i + 1 - fe)0sin0 and (5.7)

An = — cp2""1"' ~* sin &0 sin 0 — /3pn+l~* sin(n — )t)0sin0. (5.8)
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Case II. Suppose f = 0 so that r)± are two equal roots. In this case b2 = 4ac.
Furthermore, from (5.2), we have

8 (l - 2{-b/2c)h + (-bh/2c)2)
P\(cg\k) + hk + / « ) = -UP1) * (eg? + nk + / « ) ,

pc
n \,2(cg\ + h + / )

pc (1 — ph)2 pc

where p = —b/2c. The y-th term of gw is now

+ H(J - k)(j - k)pJ~k - H(J - n)f}g\k)(j - n)pj-"} . (5.9)

In particular, g(k) — (cg\k)npn - ag(k){n - \)pn~x + (ra - k)pn~k)/pc and

0 = - I (cgf\n + l)pn+1 - ag^np" + (n + 1 - k)p'+l~k - flg\k)p).

If the inverse exists, then g(k) and g^k) form a unique solution pair and hence we must
have

A = -acp1" + p" (ac(n + 1) - a/8(n - 1)) -afi^O, (5.10)

and

g ' ^ A . / A , ^» = An/A, (5.11)

where

A, =-p2n-ka(k- I) - p"-ka(n + I - k) and (5.12)

An = -pi"+x-kck - p " + | - ^ (n - *). (5.13)

THEOREM 5.1. Let the inverse of the matrix An be denoted by

Ifb2— 4ac ^ 0, then the necessary and sufficient condition for the inverse to exist
is that (5.5) holds for some (f> 6 (z € C | 0 < Rez < 2n) that satisfies (5.3).
Furthermore, if the inverse exists, then g(k\ 2 < j < n — 1, are given by (5.4), while
g(k) and g^k) are given by (5.6). If b2 — 4ac = 0, then the necessary and sufficient
condition for the inverse to exist is that (5.10) holds. Furthermore, if the inverse exists,
then gf\ 2 < j < n - 1, are given by (5.9), while gf} and g(

n
k) are given by (5.11).
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We remark that sufficient conditions for the existence of the inverse of An are added
in the above result. This is valid since the above arguments can be reversed. We remark
also that since cosz is 2n-periodic, the restriction 0 € (z e C | 0 < Rez < 2n) can
be relaxed to 0 e C. Furthermore, since if b2 £ 4ac, then cos0 =£ ±1 and 0 <£ nZ
automatically (cf. Theorem 2.1).

6. Inverses of some special Toeplitz matrices

We may now apply Theorem 5.1 for finding the inverses for several special Toeplitz
matrices. For motivation, consider the case where a = f} = 0 in An. Let gm be the
Jt-th column in the inverse Gn of An. lib1 = 4ac, then by substituting a — p = 0
into (5.10) to (5.12), we have A = p"ac(n + 1) ^ 0 and A, = -pn~ka{n + 1 - k).
Substituting these into (5.9), we obtain

g? = j c (cg\k)jPJ

~pi~k - J ^ " + 1-^' J<k>
pc(n + 1) X \k(n + 1 - j), j > k.

After finding g(k\ we may directly reverse the arguments leading to Theorem 5.1 and
conclude that Gn = (g(1) | gm | • • • | g(n)).

Now let us suppose that b2 ^ Aac. Suppose also that the inverse Gn of An exists
and is of the form (5.1). Then substituting a = @ = 0 into (5.5)-(5.7), in view of
Theorem 5.1, we necessarily have cos0 = —b/2pc, 0 e C,

A = p"acsin(n + l)0sin0 ^ 0 and Ai = — ap"~*sin(n + 1 — &)0sin0.

Substituting these into (5.4), we have

w l / -p ; -*sin. /0sin(n + l - k)<p .k . \
g) ' = r— I —.——— + H(j - k)pJ sin(y - k)cj> I

1 pcsin0 \ SUI(H + 1)0 /
—p'~k Isiny0sin(n + 1 — k)<p, j < k,

pcs in0 sin(n + 1)0 I sinit0sin(n + 1 — 7)0, j>k.

Once we have found gf\ then if sin(n + 1)0 ^ 0, we may reverse the arguments
leading to Theorem 5.1 and conclude that (g(l) | g(2) | • • • | gM) is our desired inverse.
On the other hand, if sin(n + 1)0 = 0, then A = 0 and by Theorem 5.1, the inverse
of An does not exist.
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6.1. The case where a = ±a and /? = 0

THEOREM 6.1. Suppose a = a and fi = 0 in the matrix An.

(i) Suppose b2 5̂  4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos0 = —b/2pc for some 0 € C and sin(n + 1)0 — p" sirup ^ 0. Furthermore, if
it exists, then

81 pc sin 0 (sin(/i + 1)0 — p" sin 0)

I sin j4> sin(« + 1 - k)<f> + p" sin(k - j)<f> sin 0, j < k,

sin k<(> sin(n + 1 — j)<f>, j > k.

(ii) Suppose b2 = Aac. Then the inverse Gn of An given by (5.1) exists if, and only
if, n + 1 — p" jL 0 anrf, if it exists,

6 2

PROOF. Suppose the inverse of An exists and is of the form (5.1). If b2 ^ Aac, then
substituting a = a and f$ = 0 into (5.5)—(5.8), we necessarily have cos0 = —b/2pc,
<P € C,

A = acp" (sin(n + 1)0 — p" sin0) sin0 ^ 0,

A! = —ap"~k (p" s\n(k — l)<p + sin(n + 1 — fc)</>) sin0 and

An = -cp^+ '^s inJ t^s in^ .

Substituting these into (5.4), we obtain

(t) pJ~k / p " sin(_/ — fc)0 sin 0 — sin(n + 1 — k)4> sin y</>
1 p c s i n 0 \ sin(n + !)</> — p" sin <j>

H(j-k)sin(j-k)<t>\

which is equivalent to (6.1).
Once we have found gf\ then if sin(n + 1)0 — p" sin 0 ^ 0, we may verify that Gn

is the inverse of An. On the other hand, if sin(« + 1)0 — p" sin 0 = 0, then the inverse
does not exist.

Ifb2 = Aac, then by substituting a = a, p = 0 into (5.10) to (5.13), we necessarily
have A = acp"(n + 1 - p") £ 0, A, = -apn~k{pn{k - 1) + (n + 1 - k)) and
An = -p2""1"1"*^. Substituting these into (5.9), we obtain

gf = ~— I — , / " . + HU ~k)(J - k ) \ ,
pc [ n + 1 — p" )
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which is equivalent to (6.2). Once we have found gf\ then if n + 1 — p" ^ 0, we
may verify that Gn is the inverse of An. On the other hand, if n + 1 — p" = 0, then
the inverse does not exist. The proof is complete. •

Suppose a = — a and ^ = 0 in the matrix An. We may follow the same arguments
to show the following, (i) Suppose b2 ^ 4ac, then the inverse Gn of An given by (5.1)
exists if, and only if, cos 0 = —b/2pc for some 0 e C and sin(/i +1)0 + p" sin 0 ^ 0.
Furthermore, if it exists, then

—n'~k

' pc sin 0 (sin(n + 1)0 + p" sin 0)

I sin j((> sin(>i + 1 - k)(j> - p" sin(k - j)<p sin 0 , j < k,

sinit0sin(/i + I — j)(j>, j > k.

(ii) Suppose b2 = 4ac, then the inverse Gn of An given by (5.1) exists if, and only if,
n + 1 + p" ^ 0 and, if it exists,

8j
\k(n+ 1 - y ) ,

As we have seen, the derivation of the explicit formulas from Theorem 5.1 are
straightforward. Theoretically, we can obtain formulas for arbitrary a and /3, though
in most cases those formulas may be complicated in form. But at least we can obtain
elegant formulas for some special combinations of a and p. Some of the results
are presented below without proof for comparison and quick reference. The proof is
simple and may be obtained in a way similar to that of Theorem 6.1.

6.2. The case where a = 0 and fi = ±c

THEOREM 6.2. Suppose a = 0 and ft =c in the matrix An.

(i) Suppose b2 ^ 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos <p = —b/lpcfor some (p € C and p" sin(n + 1)0 — sin </> ^ 0. Furthermore, if
it exists, then

.« =
; pc sin 0 (sin(n + 1)0 — p~" sin 0)

I sin j<p sin(n + 1 — k)<f>, j < k,

sinifc0sin(n + 1 — j)(p + p~" sin(y — it)0sin0, j > k.(ii) Suppose b2 = Aac. Then the inverse Gn of An given by (5.1) exists if, and only
ifp"(n + l)-l ^ 0 and, if it exists,

~P'~k
 x \j(n + 1 - k), j < k,

X \8j ~ x

pc(n + I - p-») X \k(n+ l-j)
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Suppose a = 0 and fi = — c in the matrix An.

(i) Suppose b2 ^ Aac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos0 = —b/2pc for some <f> e C and p" sin(n + 1)0 + sin0 ^ 0. Furthermore, if
it exists, then

8) =
pc sin 0 (sin(/i + 1)0 + p~" sin 0)

I sin y'0 sin(n + 1 — &)0, j < k,

sinA:0sin(« + 1 — y)0 — p~n sin(y — A:)0sin0, j > k.
(ii) Suppose b2 = 4ac. T/ien the inverse Gn of An given by (5.1) exists if, and only

if, p"(n + 1) + 1 ̂  0 and, if it exists,

8j

6.3. The case where a = ±a, /? = ±c

THEOREM 6.3. Suppose a = a and f) = c in the matrix An.

(i) Suppose b2 ^ Aac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos0 = —b/2pcfor some <j> € C and p2" — 2p" cos n<p + 1 ^ 0 . Furthermore, if
it exists, then

pc sin 0 (pn — 2 cos n<p + p~n)

p" sin(A: — j)d> + sin(n + j — k)<p, j < k,
x <

• sin(n + k — j)<f>, j > k.

In particular, when a = c,

ik) _ sin(|fc - j | 0 ) + sin(« - \k - j
' 2asin0(l — cos/i0)

(ii) Ifb2 = Aac and p" ^ I, then the inverse Gn given by (5.1) exists and

w = Pj~k .\p"(k-j) + (n + j-k), j<k,
8j pc(p»-2 + p-»)X \p-»(j-k) + (n + k-j), j>k.

In particular, whenb — 2a = 2c and n is odd, theng^ = (—l)j~k(n — 2\k — j\)/4a.
Ifb = 2a = 2c and n is even, orb = —2a = —2c, then p" = 1 and the matrix An is
singular.
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Suppose a = — a and f) = —c in the matrix An.

(i) Suppose b2 ^ Aac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos0 = —b/lpcfor some <p e C and p2" + 2p" cos n<f> + 1 ^ 0 . Furthermore, if
it exists, then

ik)

' pc sin (}> (pn+2 cos n<p + p~n)

p" sin(k — j)<p - sin(n + j — k)<p, j < k,x \
p " sin(y — k)(p — sin(/i + k — ;')</>, / > k.

In particular, when a = c,

- j\4>)-sin(n-\k-j\
' 2a si

(ii) Ifb2 = 4ac and p" ^ — 1, then the inverse Gn of An exists and

W = Ps~k
 x \p"(lc-j)-{n + j-k), j<k,

8j pC(p» + 2 + p-»)X \p-(j-k)-(n + k-j), j>k.

In particular, ifb = —2a = —2c, then

gf) = (2\k-j\-n)/4a. (6.4)

Ifb = 2a = 2c and n is even, then

gf = (-iy-*(n - 2\k - j\)/4a. (6.5)

Ifb = 2a = 2c and n is odd, then p" = — 1 and the matrix An is singular.

1. Examples

We give two applications of our explicit formulas.

EXAMPLE 1. In the synchronisation problems of artificial neural networks [11], we
encounter the tridiagonal Toeplitz matrix with a = c = I, b = —2 with the corners
a = p = — 1. Theorem 4.3 gives the eigenvalues and eigenvectors for such matrices.
As a numerical example, consider the following matrix:

(7.1)

- 1 0 1 -2)
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By Theorem 4.3, we have

k = 1 , 2 , 3, 4,

which gives k\ = k4 = —2 + -J2 and A.2 = X3 = —2 — \/2. Since a = c, the
eigenvectors may be obtained by either (4.17) or (4.18). By (4.17), we have

(1) (V2 .V2 . V2 .V2 V

By (4.18), if we take c, = 1 and c2 = 0, then «(1) = (V2/2,0, -V2/2 , - l ) f ; if we
take c, = 0 and c2 = 1, then «(l) = (V2/2, 1, V2/2, 0)f. It can be easily checked
that they are the correct eigenvectors corresponding to kt.

We remark that our theorem is also applicable when b = 2. An inspection of (4.16)
to (4.18) reveals that only kk depends on b. Thus the eigenvalues of the matrix

S4 =

are given by kt = k4 = 2 + \f2 and k2 = X3 = 2 — \/2, with the corresponding
eigenvectors unchanged.

The inverses of (7.1) and (7.2) may be obtained by (6.4) and (6.5) in Theorem 6.3
as

/ - 2 — 1 0 1 \ / 2 —1 0 1 \

V = z

respectively.

- 1 - 2 - 1 0 . „_, 1 - 1 2 -1 0
0 - i _ 2 - 1 I a n d ^ " = 2 1 0 - 1 2 - 1

0 - 1 - 2 / V 1 0 - 1 2 /

EXAMPLE 2. Consider the following three-point boundary value problem [12] of
the form

\Auk.l+uk = f(uk), * = l , 2 , . . . , n ,

u0 = aui, «n+i = 0 .

In matrix form, this may be written as

Anu = F(u),
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where u = ( « , , . . . , un)\ F(u) = ( / ( « , ) , . . . . /(«„))* and

/ -I 1 0
1 -1 1
0 1 -1

0
0

0
0

a
0
0

0
0

0
0
0

[24]

0
0

- 1 1
1 - 1

A necessary condition for the system (7.3) to be solvable is that An is invertible. In
the case where I = n and a = ± 1 , Theorem 6.1 offers some help. As a numerical
example for / = n = 6 and a = — 1, since p = 1,

, 1 n , / . TT\ / 77T . TT\ 3 , „
0 = c o s ' - = - and (^myj I sin— + sin - 1 = - ^ 0,

we see that the inverse exists and is given by (6.3) as

which yields

/ - I
1
0
0
0
0

1
-1
1
0
0
0

0
0

. jn . (7 - k)n . (Ic - j)n . n
sin — sin sin sin —

. kn . (7 - j)n
sin — sin

3 3

j < k,

j > k,

0 0
1 0

-1 1
1 -1

1
0

0
0
0
1

-1
1

— 1 \
0
0
0
1

- 1 /

-1

1
~ 2

(o
1
1
0

- 1

\-\

2
1
1
0

- 1
- 1

2
2
0
0
0
0

0
1
1
0
1
1

- 2
- 1
1
2
1
1

-2
0
2
2
0)
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