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Abstract. In this article we survey the mathematical research of the late William (Bill)
Parry, FRS.

1. Introduction
In this brief survey we attempt to give an account of at least part of Bill Parry’s wide
ranging mathematical work during his long and distinguished career. Beyond his research
publications, Bill has also left a lasting legacy to the scientific community through his
books, and his role in both establishing the journal Ergodic Theory and Dynamical Systems
and a leading international school in ergodic theory at Warwick University where he
worked from 1968 until his retirement in 1999. During his career he had 20 PhD students,
the majority of whom were inspired to continue in academic careers.

Bill Parry was born on 3 July 1934 in Tile Hill, Coventry, UK and died on 20th August
2006 in Coventry, from cancer exacerbated by an infection. His career as a research
mathematician started as a PhD student (1956–1960) at Imperial College London, under
the supervision of Yael Dowker. It was there that Bill began his study of ergodic theory. He
had previously studied for an MSc at Liverpool, where he had developed his background
in measure theory. His first published paper in 1960 was typical of a recurring theme
throughout his career, namely the interaction between ergodic theory and number theory.
This was on β-expansions, whose study had been initiated by the Hungarian mathematician
Alfred Renyi.

Over his long career he made important contributions to a number of topics, within
both ergodic theory and related areas. Of these, perhaps the most influential was the
original construction of the measure of maximal entropy for topological Markov chains,
subsequently widely known as the Parry measure. In addition, he also made fundamental
contributions to the theory of affine transformations and nilflows, entropy theory, the
classification of subshifts of finite type and the theory of hyperbolic systems, their zeta
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functions and cocycles. Typically, his papers were characterized by their brevity, clarity
and insight, and were always the product of hard work and many revisions.

More details of Bill Parry’s life and career appear in the obituary for the Royal Society
of London (written by Mary Rees).

2. Early work
2.1. β-expansions and interval maps. In Bill Parry’s first paper [1], based on his PhD
thesis, he studied β-expansions of real numbers. More precisely, let β be an arbitrary
positive number greater than 1, which is not an integer. Every real number 0 < x < 1 has
a β-expansion of the form

x =

∞∑
k=1

εk

βk

where the coefficients εk = εk(x) take the values 0, 1, . . . , [β]. Bill Parry gave sufficient
conditions on a sequence (εk) of integers (0 ≤ εk ≤ [β], k = 1, 2, . . .) in order that it
should arise as a sequence of digits of a β-expansion. Those numbers for which the
β-expansion is finite (i.e. there exists N such that εn(1) = 0, for all n ≥ N ) were called
simple β-numbers and he showed that the set of such numbers is everywhere dense in
(1, +∞). He also showed that the set

Vβ := {εk(x) | x ∈ [0, 1)} ⊂ {0, . . . , [β]}
Z+

is a subshift of finite type if and only if the β is simple.
It was shown by Rényi in 1957 [118] that the transformation T : [0, 1) → [0, 1)

defined by T (x) = {βx} := βx − [βx] (the fractional part of βx) has a unique T -invariant
probability measure νβ equivalent to Lebesgue measure. Moreover, the measure νβ is
ergodic. Bill Parry showed that the Radon–Nikodym derivative has the particular form

dνβ

dx
(x) = C

∑
n:x<T n(1)

1
βn ,

for some normalization constant C > 0 (a result that was also discovered independently
by A. O. Gelfond). Four years later he revisited these ideas in the study of the more
general f -expansions of real numbers, in particular linear mod 1 transformations of the
form T (x) = {βx + α}, where β ≥ 1 and 0 ≤ α ≤ 1 [8].

Bill Parry’s second published paper [2] was written after he moved to his first job
at the University of Birmingham. It concerned a transformation, introduced by Henry
Daniels who was Professor of Statistics at Birmingham, which was later called the Parry–
Daniels map. Let 1 = {x = (x1, . . . , xn) ∈ Rn

| 0 ≤ xi ≤ 1, 0 ≤ i ≤ n,
∑n

i=1 xi = 1} be
the simplex in Rn . To almost every point x ∈ 1 there is a unique permutation π with
xπ(1) < xπ(2) < · · · < xπ(n) and we can define the map T : 1 → 1 by

T (x1, . . . , xn) =

(
xπ(1)

xπ(n)

,
xπ(2) − xπ(1)

xπ(n)

, . . . ,
xπ(n) − xπ(n−1)

xπ(n)

)
.

Daniels had found the density function for a T -invariant σ -finite measure on 1 and Bill
Parry showed in the case where n = 2 that T is ergodic by relating T to the Gauss map
x 7→ {1/x} used to study continued fractions. Many years later higher dimensional cases
were studied by Nogueira [107] and Schweiger [113].
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In 1966, Bill Parry published what proved to be a particularly far-sighted paper on the
topological classification of interval maps. More precisely, he gave conditions under which
a strongly transitive piecewise monotone transformation T : I → I of the unit interval onto
itself is conjugate to a piecewise linear transformation. Let {(ai , ai+1)} denote the open
intervals of monotonicity and assume that either:
(1) the sets T (ai , ai+1) ∩ T (a j , a j+1) 6= ∅ for two distinct intervals (ai , ai+1) and

(a j , a j+1); or
(2) the images T (ai , ai+1) are pairwise disjoint and T has no periodic points;
then T is topologically conjugate to a piecewise linear map S : I → I [14]. In particular,
the classical Poincaré–Denjoy theorem about homeomorphisms of the unit circle becomes
a corollary. The method of proof uses subshifts of finite type, and anticipates later work on
symbolic dynamics.

In later years the study of interval maps became the focus of considerable activity.

2.2. Infinite measure spaces. In 1962–1963, Bill Parry spent the academic year at Yale
University, and this gave him the opportunity to explore new ideas and to interact with other
mathematicians (including S. Kakutani, and his students Roy Adler and Joe Auslander,
who remained lifelong friends of Bill). During this period, he collaborated with Kakutani
on problems connected with the properties of infinite σ -finite measures. For example, if
a transformation T : X → X preserves a finite measure, then it is well known from work
of Halmos that T (k)

= T × · · · × T , the direct product of k copies of T , is ergodic for
any k ≥ 2 if and only if T (2) is ergodic. However, Kakutani and Parry showed that for
infinite measures the situation was very different. They gave, for each positive integer k,
an example of a transformation T which preserves a σ -finite infinite measure and such that
T (k) is ergodic but T (k+1) is not [3].

Ergodicity and the Kolmogorov property are invariants for isomorphism, even in the
σ -finite case. However, although it is known that for finite measures ergodicity is also
a spectral invariant, Bill Parry showed that the situation can be entirely different in
the σ -finite case, and that an ergodic transformation can be unitarily equivalent to a
non-ergodic one.

At about the same time, Bill also developed versions of Hurewicz’s ergodic theorem
and McMillan’s ergodic theorem without the hypothesis of the existence of an invariant
probability [7]. Interestingly, Hurewicz was Bill Parry’s ‘mathematical grandfather’.

2.3. Subshifts and the Parry measure. In 1964, Bill Parry published an article entitled
‘Intrinsic Markov chains’, which was to prove one of his most influential papers [5].
In modern language, this involved the study of subshifts of finite type and showed the
existence of a unique measure of maximal entropy for aperiodic subshifts of finite type.
More precisely, let A be a k × k matrix with entries either zero or one which is aperiodic
(i.e. An has all entries positive for some n ≥ 1) and let

6A =

{
(xn) ∈

∞∏
k=−∞

{1, . . . , k} | A(xn, xn+1) = 1, n ∈ Z
}
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and σ : 6A → 6A be the shift map. The topological entropy h(σ ) is equal to log λ, where
λ > 1 is the maximal eigenvalue of A guaranteed by the Perron–Frobenius theorem. If v is
the positive right eigenvector for A corresponding to the eigenvalue λ then one associates
a stochastic matrix P by P(i, j) = A(i, j)v j/(λvi ). If we let p be the probability vector
with pP = p then one can define the σ -invariant Markov measure m P by

m P [x0, . . . , xn−1] = px0 P(x0, x1) · · · P(xn−2, xn−1).

Bill Parry showed that m P is the unique measure for which the measure-theoretic entropy
hm P (σ ) is equal to the topological entropy h(σ ), all other σ -invariant probability measures
having strictly smaller entropy. This measure of maximal entropy has subsequently become
known as the Parry measure.

This original variational principle for entropy anticipated many of the developments in
thermodynamic formalism a decade later, including the variational principle for pressure
(proved for subshifts of finite type by David Ruelle [110], and for general continuous maps
on compact spaces by Walters [116]).

2.4. Entropy and generators. At the end of the 1950s, A. Kolmogorov and Ya. G. Sinai
introduced entropy as an invariant for isomorphism of measure-preserving transformations
of probability spaces. Let (X, B, m) be a Lebesgue space and Z the set of all countable
measurable partitions ξ of X whose entropy is finite [109].

If T : X → X is an invertible measure-preserving transformation, then a partition ξ

is called a generator if every B ∈ B is equal almost everywhere to a set in the smallest
σ -algebra containing all sets in the partitions T − jξ , j ∈ Z, and is called a strong generator
if every B ∈ B is equal almost everywhere to a set in the smallest σ -algebra containing
all sets in the partitions T − jξ , for j ≥ 0. Subsequently, V. A. Rohlin proved that if T
is aperiodic and has finite entropy then T possesses a countable generator with finite
entropy. Bill Parry extended this result for transformations with infinite entropy and even
proved that there is a countable strong generator [19, 20]. These results were also proved
independently by Rohlin [119].

Bill Parry gave a series of lectures on these, and related, results at Yale University in
1966, which became the basis of his elegant book Entropy and Generators in Ergodic
Theory [26]. Soon after, Ornstein proved that entropy is a complete isomorphism invariant
for Bernoulli transformations [108].

2.5. Affine maps, nilflows and G-extensions. During his visit to Yale in 1962–1963,
Bill Parry worked with Frank Hahn on topological discrete quasi-spectra which lead to
the study of affine transformations on compact abelian groups. He continued this work in
Birmingham with Howard Hoare. After learning of the importance of nilmanifolds from
Smale’s 1967 survey paper [115], Bill Parry studied ergodicity and minimality conditions
for affine transformations of nilmanifolds and for nilflows on nilmanifolds. This, together
with the work of Furstenberg, motivated his study of group extensions.

Bill Parry also proved one of the precursors of modern rigidity results. Assume Ti :

X i → X i are ergodic unipotent affine transformations of nilmanifolds X i onto themselves
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(i = 1, 2); then we say that (X1, T1) and (X2, T2) are algebraically conjugate if there is a
one-to-one affine transformation π of X1 onto X2 such that π ◦ T1 = T2 ◦ π . He showed
that if π is a measurable map of X1 onto almost all of X2 such that π(T1(x)) = T2(π(x))

almost everywhere, then there exists an affine transformation π ′ of X1 onto X2 such that
π = π ′ almost everywhere and π ′

◦ T1 = T2 ◦ π ′. This anticipated the later work of Ratner,
Margulis and others on more general unipotent flows [106].

A dynamical system T̂ : X̂ → X̂ commuting with the action of a compact group G
induces a factor T on the space X = X̂/G of orbits of the action, and T̂ is called a
G-extension of the system T . If G acts freely then any G-extension of T has the
form Ŝn(x̂) = Rθ(x,n)T̂ n(x̂), where Rg(x) = gx , for some fixed G-extension T̂ . The
G-valued function θ : X × Z → G is a cocycle satisfying gθ(x, n) = θ(gx, n), for g ∈ G
and θ(x, n + m) = θ(T n x, m)θ(x, n). We say that extensions Ŝ1 and Ŝ2 are isomorphic
if the cocycles are cohomologous, i.e. there exists a measurable function φ(x) such that
θ1(x, n) = φ(T n x)θ2(x, n)φ(x). Bill Parry studied topological properties of G-extensions
when G is abelian and obtained a structure theorem for the class of minimal transformation
with generalized discrete spectrum by representing such a map as an inverse limit of group
extensions [25].

Roger Jones and Bill Parry proved that cocycles with values in abelian compact groups,
homologous to the trivial cocycle, form a set of the first category in the group of cocycles
(with uniform or L1 topology) [35]. In particular, it follows that abelian G-extensions
typically inherit the dynamical properties of the base.

Some of the ideas from G-extensions have echoes in his later work on skew products
over hyperbolic systems.

2.6. Lebesgue spaces and Jacobians. Given a Lebesgue space (X, B, m), Bill Parry
and Peter Walters studied isomorphism invariants for non-invertible measure-preserving
transformations T : X → X . These included the index function iT (x), the sigma algebra
β(T ) and the jacobian jT (x), defined by jT (x) = 1/m(x |T −1T x). They showed that
these invariants are not sufficient to classify endomorphisms. More precisely, for two
endomorphisms S and T to be isomorphic one needs the two sequences of σ -algebras
{T −n B} and {S−n B} to be isomorphic. Parry and Walters showed that there are non-
isomorphic exact endomorphisms S and T with S2

= T 2, S−nB = T −nB for all n ≥ 0,
jS ≡ jT and β(S) = β(T ) [116].

More generally, the jacobian has proved a useful device for establishing the regularity of
conjugacies between expanding one-dimensional maps, for example in work of Mike Shub
and Dennis Sullivan on rigidity of conjugacies for expanding maps of the circle [114].

3. The middle period
There is no corresponding theory in topological dynamics to Ornstein’s for Bernoulli
measure-preserving transformations. For this reason variants of the conjugacy problem
(for both the topological conjugacy problem and related conjugacy problems) have been
considered in the particular setting of irreducible subshifts of finite type. Much of
Bill Parry’s work in this period (of nearly 15 years starting around 1970) concerned
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classifications of shifts of finite type and of Markov chains. It was motivated by three
breakthroughs that took place around 1970.
(1) The result of Don Ornstein and Nat Friedman on the measure-theoretic isomorphism

of Markov chains [102].
(2) The work of Roy Adler and Benjy Weiss on Markov partitions for toral

automorphisms [120], later generalized by Sinai and Rufus Bowen to Axiom A
diffeomorphisms [99], which led Adler, Parry and others to ask about common
extensions of subshifts of finite type.

(3) The work of Bob Williams, which we briefly describe below.
In the topological setting, Williams showed that two subshifts of finite type (6A, σ ) and

(6B, σ ) are topologically conjugate if and only if A and B are strong shift equivalent, i.e.
there are sequences of matrices R1, . . . , Rk and S1, . . . , Sk such that Ri Si = Si Ri (Ri , Si

not necessarily square matrices) with A = R1S1 and B = Sk Rk [117]. Furthermore, he
introduced the concept of shift equivalence, i.e. there exist matrices U, V and an integer
m such that U A = BU , AV = V B, U V = Bm , V U = Am . However, he also produced
an erroneous proof that shift equivalence of A and B implies topological conjugacy of the
associated subshifts of finite type. This claim subsequently became known as the Williams
conjecture. When Bill Parry discovered the mistake in Williams’s paper, he was motivated
(as were a number of others) to work on this conjecture. Indeed, he thought about this
problem, on and off, for many years, although it was Kim and Roush who eventually
produced a counter-example to the Williams’s conjecture in 1999 [103].

3.1. Shift equivalence of Markov measures. Given a subshift of finite type σ : 6A →

6A, let m P denote the Markov measure associated to a stochastic matrix P . Subshifts
associated with stochastic matrices P and Q are said to be block isomorphic if there exists
a topological conjugacy ϕ such that m Q = m Pϕ−1. One says that they are strong shift
equivalent if there exist stochastic matrices U1, . . . , Un , V1, . . . , Vn such that P = U1V1,
V1U1 = U2V2, . . . , VnUn = Q. Given a real number t , let P t denote the matrix of entries
P(i, j)t (with the convention 00

= 0). One says that they are shift equivalent if there exist
n, called the lag, and matrices V (t), U (t) consisting of entries which are non-negative
integral combinations of exponential functions eat , a ∈ R, such that V (t)P t

= Qt V (t),
P tU (t) = U (t)Qt , U (t)V (t) = P t

· · · P t (matrix multiplication n times), V (t)U (t) =

Qt
· · · Qt (n times). One says that they are adapted shift equivalent if P(l) is shift

equivalent to Q(l) with lag l, where P(l) and Q(l) are the stochastic matrices associated
with the l-block presentations of P and Q. For P t we define the beta function β(t) as
its maximum eigenvalue for each t ∈ R and the zeta function by ζ(s) = det(I − Ps)−1.
Bill Parry and Selim Tuncel showed the following chain of implications [58]: block
isomorphism ⇔ strong shift equivalence ⇔ adapted shift equivalence ⇒ shift equivalence
⇒ identical zeta functions ⇒ identical beta functions ⇒ identical topological entropies
and measure-theoretic entropies.

3.2. Finite equivalence. Another notion of equivalence of subshifts of finite type is
finite equivalence. In particular, two transitive subshifts of finite type are said to be finitely
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equivalent if they have a common finite-to-one continuous extension by a subshift of finite
type.

Bill Parry used the decomposition of a non-negative irreducible matrix into the product
of a division matrix and an amalgamation matrix, in the context of finite extensions, to
show that topological entropy is a complete invariant for finite equivalence of subshifts of
finite type. This was the first complete classification result for subshifts of finite type [46].

This construction was refined two years later by Roy Adler and Brian Marcus to
achieve a complete classification (by entropy and period) in the case of almost topological
conjugacy [121]. Bill Parry’s classification result concerned common extensions by finite-
to-one continuous maps whereas the Adler–Marcus classification result was by continuous
finite extensions that are one-to-one almost everywhere. In 1990, Jonathan Ashley proved
an elegant theorem that showed that (periodicity allowing) a continuous finite-to-one factor
map can be replaced by a one-to-one almost everywhere map [97].

The work of Don Ornstein led Bill Parry and others to ask about more effective
classifications (by maps that would be constructible in finite time, or by conditions that
could be checked via an algorithm) for Markov chains. Bill Parry wrote a number
of papers, some in collaboration, on invariants, and he sought to generalize Williams’s
theory and other results from subshifts of finite type (with the Parry measure) to arbitrary
Markov chains. Bill Parry and Selim Tuncel found a suitable setting [56, 59] for this.
After initially using exponentials, they subsequently realized that polynomials in several
variables provided an equivalent (but more useful) formulation. The use of polynomials
allowed Marcus and Tuncel to discover structures that established the main conjecture
of [56] (i.e. that the beta function is a complete invariant for finite equivalence) in the
case of polynomial beta functions, while giving a counter-example in the general case of
Markov chains [104].

3.3. Finitary isomorphisms. A measure-preserving isomorphism φ : 6A → 6B

between two subshifts of finite type takes the form (φ(x))n = φ0(σ
n x) where φ0 is a map

from 6A to the symbol space of 6B . An isomorphism φ between two subshifts of finite
type is said to be finitary provided that for almost all x ∈ 6A there exists a positive integer
Nx such that the φ0(x) and φ0(x ′) agree for almost all x ′

∈ 6A with xi = x ′

i for |i | ≤ Nx

(xi denotes the i th coordinate of the point x ∈ 6A), and similarly for φ−1.

Mike Keane and Meir Smorodinsky were motivated by the work of Ornstein to study
finitary isomorphism, culminating in their result that entropy and period are complete
invariants in this case as well [122]. Bill Parry then asked about finitary isomorphisms
with finite expected code length, and used invariants he had employed earlier to show
that this situation was very different [51]. This motivated a number of researchers
(Wolfgang Krieger, Klaus Schmidt, Selim Tuncel, in addition to Bill Parry) to work on
finitary isomorphisms with finite expected code length, and the closely related hyperbolic
isomorphisms.

The information cocycle of a shift σ is defined as Iσ = I (α|
∨

∞

i=1 σ−iα), where
α = {A1, . . . , Ak} and A j = {x | x0 = j}. It transpires that if φ is a finitary isomorphism
with finite expected code lengths between subshifts of finite type σ and τ , then there exists



328 M. Pollicott et al

a finite valued measurable g such that

Iσ = Iτ ◦ φ + g ◦ σ − g,

i.e. Iσ and Iτ ◦ φ are cohomologous. (A coboundary is a function of the form g ◦ σ − g.)
One way of extracting an invariant from this equality is to define the information variance

σ 2(σ ) = lim
n→+∞

1
n

∫
(Iσ + Iσ ◦ σ + · · · + Iσ ◦ σ n−1

− nh(σ ))2 dm

if this exists. Thus if φ is a finitary isomorphism with finite expected code lengths between
Markov shifts σ , τ then σ 2(σ ) = σ 2(τ ). It is a simple matter to produce examples with
h(σ ) = h(τ ) but σ 2(σ ) 6= σ 2(τ ). This idea was first introduced in [64] in connection with
the notion of regular isomorphism.

3.4. The β-function and natural invariants. As mentioned above any measure-
preserving isomorphism φ between two subshifts of finite type takes the form φ = (φ0 ◦

σ n), where φ0 is a map from the first shift space to the symbol space of the second space.
To say that an isomorphism φ between two such subshifts σ , τ is regular amounts to saying
that φ0 has bounded anticipation (but perhaps infinite memory) and that the corresponding
statement holds for φ−1.

Selim Tuncel introduced the so-called β-function which for a Markov shift σP equals
the exponential of the pressure of the function t log P(x0, x1), that is, βP (t) is the
maximum eigenvalue of P t (where P t (i, j) = (P(i, j))t ) and showed that when σP , σQ

are regularly isomorphic, βP = βQ [123]. A key fact in the proof is the boundedness of the
cobounding function g. However, there is no guarantee that g is bounded when σP , σQ are
finitary isomorphic with finite expected code lengths. Nevertheless, Parry and Schmidt [64]
showed that (modulo a null set) g assumes a countable number of values, which facilitates
the introduction of other invariants 0P , 1P and cP1P (to be defined shortly). In a
subsequent paper [111], Klaus Schmidt went on to show that a finitary isomorphism with
finite expected code lengths guarantees βP = βQ . In this connection, one should note that
the invariant βP contains topological entropy, measure-theoretic entropy and information
variance.

Wolfgang Krieger defined an invariant 1P of finitary isomorphism with finite expected
code length which gave an alternative method for producing counter-examples [124]. The
group 1P is defined as

1P =

{
P(i0, i1) · · · P(in−1, i0)

P(i0, j1) · · · P( jn−1, i0)

}
,

in other words 1P consists of ratios of (non-vanishing) weights of equal length cycles
beginning and ending in the same state. This is a readily computable group. This was
extended in [64] to the finitely generated group 0P defined as the multiplicative group
generated by all weights P(i0, i1) · · · P(in−1, i0) 6= 0. When P is aperiodic it was shown
that 0P/1P is cyclic with canonical generator cP1P and that there exists a positive vector
r with P(i, j)r j/ri ∈ 0P and P(i, j)r j/cPri ∈ 1P . In particular, 0P , 1P , cP1P and βP

are all invariants of finitary isomorphism.
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The question of whether βP , 1P and cP1P form a complete set of invariants remains
open.

3.5. Flow equivalence. One can also consider flows that are suspensions of subshifts of
finite type for which the periodic points are dense and there are uncountably many dense
orbits. Given a subshift of finite type σ : 6A → 6A, one can consider the suspension flow
σt : 61

A → 61
A defined on the space

61
A = {(x, u) ∈ 6A × [0, 1] | (x, 1) ∼ (σ x, 0)}

where σt (x, u) = (x, u + t), subject to the identification.
Two matrices A and B are flow equivalent if there is a homeomorphism between 61

A and
61

B carrying flow lines to flow lines with the proper direction. In 1975, Parry and Sullivan
showed that if A and B are flow equivalent then det(1 − A) = det(1 − B) [42]. Bowen and
Franks showed that the rings Zn/(I − An)Zn are invariants for flow equivalence and, in
1984, Franks showed that together the Bowen–Franks invariant [100] and (the sign of) the
Parry–Sullivan det(I − A) invariant form a complete invariant for flow equivalence [101].

4. The later years
4.1. Zeta functions and closed orbits. In 1983, Bill Parry returned to a favourite theme,
the connection between number theory and ergodic theory. Motivated by an undergraduate
lecture course he had given on the proof of the prime number theorem (i.e. that the number
of primes less than T was asymptotic to T/ log T ) he considered the analogous result for
certain suspended flows [61]. More precisely, given a subshift of finite type σ : 6A → 6A

and a continuous positive function r : 6A → R one defines

6r
A = {(x, u) ∈ 6A × R | 0 ≤ u ≤ r(x)}/ ∼

with the identification (x, r(x)) ∼ (σ x, 0). The suspended flow σ r
t : 6r

A → 6r
A is defined

by σ r
t (x, u) = (x, u + t), subject to the identification. The closed orbits τ for this

flow correspond to periodic orbits σ n x = x for the shift σ , with period λ(τ) = rn(x) :=

r(x) + r(σ x) + · · · + r(σ n−1x). The flow is topologically weak mixing if the lengths are
not all integer multiples of a constant.

The analogue with prime numbers comes from the countable set of (prime) closed orbits
with weights N (τ ) = ehλ(τ), where h > 0 is the topological entropy of the flow. In the
case of locally constant functions r : 6A → R, Bill Parry showed that for a weak mixing
suspension by a locally constant function the number π(t) of orbits τ with N (τ ) ≤ T
satisfies

π(T ) ∼
T

log T
as T → +∞

(i.e. limT →+∞ π(T )/(T/log T ) = 1) [64]. This was subsequently extended to Hölder
continuous functions r : 6A → R by Parry and Pollicott and thus, through the work
of Bowen on modelling hyperbolic flows by suspended flows, applied to weak mixing
hyperbolic flows (including Axiom A flows on basic sets and, in particular, geodesic flows
on negatively curved manifolds) [65]. Similar results had been proved by Margulis for
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Anosov flows, using a very different approach, and at the time his work was not widely
known in the West [105].

The basic approach was to study a dynamical zeta function introduced by Ruelle [125],

ζ(s) =

∏
τ

(1 − e−shλ(τ))−1.

The key idea was to establish results on its domain analogous to those which hold for the
Riemann zeta function and are used in the proof of the prime number theorem. In the case
of locally constant functions f (x) = f (x0, x1) one can associate a family of matrices Ps

(s ∈ C) defined by Ps(i, j) = A(i, j)e−sr(i, j) and then ζ(s) = det(I − Ps)−1. For general
Hölder continuous functions the analysis of the zeta function ζ(s) is more complicated with
Ruelle transfer operators replacing the matrices Ps .

Parry and Pollicott continued this analogy by establishing a dynamical analogue of
Chebatorev’s theorem from number theory, describing the equidistribution of closed
orbits for hyperbolic flows according to how they lift to finite covers [66]. They
were collaborating on another dynamical analogue of a number theoretic result, Bauer’s
theorem, at the time of Parry’s death [94].

Bill Parry also used the zeta function approach to develop an alternative proof of
Bowen’s well-known result on the equidistribution of closed orbits for an Axiom A flow
φt [65, 98]. More precisely, if µ denotes the measure of maximal entropy for the flow then
for any continuous function g and ε > 0,∑

T ≤λ(τ)≤T +ε

∫ λ(τ)

0 g(φt xτ ) dt∑
T ≤λ(τ)≤T +ε λ(τ)

→

∫
g dµ as T → +∞,

where xτ ∈ τ . He subsequently showed that if k is a Hölder continuous function and
λk(τ ) =

∫ λ(τ)

0 k(φt xτ ) dt then for any continuous function g and ε > 0,∑
T ≤λ(τ)≤T +ε

∫ λ(τ)

0 g(φt xτ )eλk (τ ) dt∑
T ≤λ(τ)≤T +ε λ(τ)eλk (τ )

→

∫
g dµk as T → +∞,

where µk denotes the unique equilibrium state associated to k, i.e. the unique invariant
probability measure for which h(µ) +

∫
k dµ is maximized [72].

4.2. Skew products and mixing. Given a hyperbolic diffeomorphism φ : X → X , a
compact group Lie group G and a Hölder continuous function f : X → G, we can consider
a skew product φ̂ : X × G → X × G defined by φ̂(x, g) = (φx, f (x)g). Let µ be an
equilibrium state (for a Hölder continuous function) and let λ be the normalized Haar
measure on G, then µ̂ = µ × λ is a φ̂-invariant measure. There is a well-known criterion
for ergodicity of φ̂ with respect to µ̂ due to Harvey Keynes and Dan Newton, namely, for
any unitary representation R : G → U (n), the equation R( f (x))u(x) = u(φx) has only
trivial solutions.

In the case that G = Td , Parry and Pollicott considered the genericity of functions
f : X → G for which the associated skew product is ergodic (or mixing) [87].
Subsequently, Mike Field and Bill Parry extended these results to the case of general
compact Lie groups G [90].
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4.3. Liv̌sic’s theorem and cocycles. Let φ : X → X be a mixing hyperbolic
diffeomorphism (or subshift of finite type). A. N. Liv̌sic’s original theorems gave criteria
for a Hölder continuous function f : X → R (or f : X → K , where K is a compact abelian
group) to be a coboundary [126]. More precisely, assume f : X → R so that whenever
φn x = x we have that

∑n−1
i=0 f (φi x) = 0 and then there exists a Hölder continuous u for

which f = u ◦ φ − u. Bill Parry showed that a version of Liv̌sic’s theorem for periodic
points (or homoclinic points) holds for finite non-abelian groups [91]. An alternative proof
was given by Schmidt [112].

In the context of higher rank abelian actions, Bill Parry published two related papers on
the triviality of cocycles [80, 84].

4.4. Unfinished work. At the time of his death, Bill Parry was still working on several
projects. This included an analogue of Bauer’s theorem from number theory for skew
products (with Mark Pollicott) [94] and work on Shannon entropy (with Doureid Hamdan
and Jean-Paul Thouvenot) [95]. Both articles appear in this volume.

Of the many other questions Bill was working on, one related to aperiodic subshifts
of finite type, continuous functions f : X A → G into finite abelian groups, and their
associated zeta functions

ζ(z) = exp
( ∞∑

n=1

zn

n

∑
σ n x=x

g(x)g(σ x) · · · g(σ n−1x)

)
.

The zeta function will clearly be the same for functions which differ by coboundaries or
which are related by automorphisms.

Question. Are there essentially only a finite number of inequivalent such f which give rise
to the same zeta function?

He left hand-written notes on this problem, including several carefully worked out
examples.

5. PhD students of William Parry
D. Newton (PhD, Birmingham, 1966)
M. Haque (DPhil, Sussex, 1967)
P. Walters (DPhil, Sussex, 1967)
S. Rudolfer (PhD, Imperial, 1968)
R. Thomas (PhD, Warwick, 1969)
P. Humphries (PhD, Warwick, 1971)
A. Mohamed (PhD, Warwick, 1975)
R. Felgett (PhD, Warwick, 1976)
S. M. Rees (PhD, Warwick, 1977)
M. R. Palmer (PhD, Warwick, 1979)
S. Tuncel (PhD, Warwick, 1981)
M. Pollicott (PhD, Warwick, 1984)
R. Nair (PhD, Warwick, 1986)
R. Cowen (PhD, Warwick, 1987)
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R. Sharp (PhD, Warwick, 1990)
S. Waddington (PhD, Warwick, 1992)
P. Araujo (PhD, Warwick, 1992)
M. S. M. Noorani (PhD, Warwick, 1993)
C. P. Walkden (PhD, Warwick, 1997)
L. Lambrou (PhD, Warwick, 1998)

6. Professional activities and honours
6.1. Editorships. Editor of Ergodic Theory and Dynamical Systems: 1981–2006 (as
Executive Editor (1986–1996) and as Managing editor (1997–2001)); and Editor (Ergodic
Theory) for the London Mathematical Society 1979–1983.

6.2. Addresses and honours. International Congress of Mathematicians, 1970; British
Mathematical Colloquium, 1970 and 1985; Bowen lectures (Berkeley), 1985. Elected
Fellow of the Royal Society of London, 1984.

7. Books
Bill Parry published four books. His first book Entropy and Generators in Ergodic Theory
is a very clearly written specialist account of the subject at that time [26]. The book Topics
in Ergodic Theory is an admirably concise introductory text based on lectures given at
Warwick University [53].

The book Classification Problems in Ergodic Theory (with Selim Tuncel) describes the
status of various classifications (of both subshifts of finite type and Markov chains) circa
1980 [58].

Finally, the book Zeta functions and the periodic orbit structure of hyperbolic dynamics
(with Mark Pollicott) is again based on courses given at Warwick by the authors [74].
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