From C to netlists:
hardware engineering for
software engineers?

by lan Alston and Bob Madahar

The software programmable multiprocessor architecture has been employed
extensively over the past two decades for embedded signal-processing applications.
However, the increased complexity of such systems has, in many cases, required the
use of hardware acceleration to meet the growing time-critical apsects of the design.
Today’s field-programmable gate arrays (FPGAs) offer an alternative or additional
acceleration platform, especially to an application-specific integrated circuit (ASIC).
However, the traditional low-level development methods, such as schematic capture
or hardware description languages (HDLs), employed to implement these hardware
accelerated parts of the design result in a design lifecycle mismatch between the
rapid development techniques available for the software programmable parts. This
paper presents high-level design languages that enable users to generate netlists for
FPGAs directly from high-level C-like languages, thereby offering an equivalent
programming solution to that available with microprocessors. It details how one of
these languages can be integrated into a high-level design flow for the rapid
development of heterogeneous embedded signal-processing systems and presents

results from a benchmark.

1 Introduction

The increasing complexity of digital signal-processing
(DSP) algorithms in embedded applications, including
image and control processing algorithms, requires high
processing power to satisfy the real-time constraints often
imposed by such applications. This processing power can
be achieved by parallel processing devices and parallel
multiprocessor architectures. For the latter, DSP
designers and commercial vendors have developed
high-performance (communications and processing),
modular, scalable, and low-latency architectures based on
commercial off the shelf (COTS) processors. For the
former, DSP designers have traditionally chosen to
implement the time-critical aspects of the design in an
application-specific integrated circuit (ASIC).

The significant growth in the performance and logic
capacity of today’s low cost’ field-programmable gate
arrays (FPGAs), however, now offers a competitive
alternative to ASICs and COTS processors in
multiprocessing architectures, especially for front-end
processing.

The FPGA is a reconfigurable device that allows
designers to build part, or all, of their design in hardware
rather than software. By exporting functionality and
embedding it into the hardware, significant performance

improvements can be realised because the functionality
doesn’t have to be split into individual instructions for the
central processing unit (CPU) to fetch, decode and apply.
It also provides the opportunity to exploit the inherent
concurrency of digital circuits, i.e. the device can be
configured, or partitioned, into multiple pipes or
subsystems all of which could run concurrently with each
other. In this way any inherent parallelism in the
algorithms can be exploited to its full extent.

What are however needed are high-level languages and
tools for rapid system design to support FPGAs in
heterogeneous architectures akin to the tool support for
COTS processors!. The low-level development methods,
such as schematic capture or hardware description
languages (HDLs), employed to implement FPGA
designs are wholly inappropriate (in terms of time, cost
and effort, including specialists) as system level tools for
rapid embedded-system development. Instead we need to
raise the design to higher levels of abstraction and
provide an integrated approach to software and hardware
design that supports heterogeneous systems.

In this paper we describe a maturing language
technology known as system-level design languages
which have the potential to describe both the software and
hardware elements of the design at a high abstraction
level using a common high-level language. These

ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002 165

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

Fig. 1 Handel-C design
flow

| ANSICspecification |

Y

| vHDLVeriog | | Handel-C |
!
| Modeisim | | smuiator |

A
Y

system

model

EDIF
VHDL
| RT level synthesis |
EDIF
Y

place and route

'

target device

languages are derived from traditional programming
languages such as C, C++ and Java, and hence allow
designers to use familiar language syntax for FPGAs.
They also enable the direct generation of the HDL code
and the netlists needed to ‘program’ the devices. Hence
we can attain equivalence with the programming
environment for microprocessors and benefit from
unified development environments.

We also provide examples of these languages, and the
results of our evaluations in terms of ease of use and
efficiency optimisation. An example design flow and
signal-processing function development employing one of
these languages is presented. This is completed with
measurements of the metrics to quantify the usefulness of
this type of approach in the rapid development of
embedded signal-processing applications.

2 System-level design languages

With the increased complexity of systems in terms of
functionality and processing platforms, the need for an
integrated approach to software and hardware design is
becoming more and more important. To ensure that
systems meet customer requirements, design decisions
need to be made at the system level and as early as
possible within the design process. Therefore, in order to
allow interaction between the various components of a
system, (system, hardware, and software) designers have
tended to create executable specifications for their
systems. For the most part, these are functional models

written in a language like C or C++. The use of these
languages has become ubiquitous for a number of
reasons. Firstly, they hide the hardware complexity of
the processing devices, are simple to use, and enable
users to rapidly develop compact and efficient system
descriptions, including the necessary control and data
abstractions, the external interfaces, the algorithms and
the processing. Secondly the languages are supported by
efficient compilers, across a broad range of devices, and
provide code portability. Thirdly there are a large number
of development tools and support tools associated with
them that help to improve the overall system software
engineering process. Finally they are familiar to new
engineers, who are taught these languages at university.
Hence it is logical to extend these developments to
include programmable logic devices as well as
microprocessors. However this is problematic as the
languages do not have the constructs necessary for
model timing, concurrency, and reactive behaviour, all of
which are needed to create accurate models of systems
containing both hardware and software.

To overcome these limitations, language developers
have adopted two approaches. The first relies on C/C++
syntax extensions and thus requires the development
of separate compilers to parse and process the new
syntax. The second approach relies on the addition of
class libraries to an extensible language, such as C++ or
Java, which model the hardware aspects of the design.
This approach has the advantage that standard
compilers and development tools can be used for the

166 ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

simulation of the design.
The following sections briefly describe the three most
common system-level design languages available today.

Handel-C?

The Handel-C language and supporting design
environment is developed by Celoxica (previously known
as Embedded Solutions Ltd. (ESL)), which was formed by
the University of Oxford in 1996 to commercialise its
research into the Handel-C high-level programming
language. It is based on the work on Communicating
Sequential Processes® and the supporting Occam
language?. Handel-C is aimed at compiling high-level
algorithms directly into gate level hardware. In order to
support the use of the language the vendor also supplies
a graphical design environment called DK1, which
incorporates simulator, debugger, compiler and
implementation generation, in either EDIF (Electronic
Design Interchange Format) netlist format or VHDL
(Very high speed integrated circuit Hardware Description
Language).

Handel-C uses the syntax of conventional C with the
addition of inherent parallelism. Sequential programs can
be written in Handel-C, but to gain maximum
performance benefit from the target hardware parallel
constructs have been added to the language. Handel-C is
designed to allow you to express your algorithm without
knowing how the underlying computation engine works.
This philosophy makes Handel-C a programming
language rather than a hardware description language.
That is, Handel-C is to FPGAs what a conventional high-
level language is to microprocessors. The design flow is
shown in Fig. 1.

It is important to note that the hardware design that
Handel-C produces is generated directly from the source
program. There is no intermediate ‘interpreting’ layer as
exists in assembly language when targeting general-
purpose microprocessors. The logic gates that make up
the final Handel-C circuit are the assembly instructions of
the Handel-C system. Unlike similar behavioural
synthesis tools that stop at the register transfer level
(RTL), Handel-C generates gate level (EDIF) netlists
ready for FPGA placement and routing using the tools
supplied by the FPGA vendor.

The Handel-C compiler provides estimates of the
design complexity and the simulator provides information
on the clock-cycle-based performance. The design of the
language and the compilation process ensures that all
assignments are performed in a single clock cycle.
Furthermore, the control logic of the various language
constructs imposes no additional clock cycles on the
implementation. Thus assignment takes exactly one clock
cycle and all other language statements add precisely
zero additional clock cycles, although they add to
the combinatorial delays, which can lengthen the
fundamental system clock cycle. The incorporation of the
language’s parallel construct—the PAR statement—
enables performance to be optimised with respect to area.
Special input/output (I/O) constructs, the Port and
Channel constructs, are provided to interconnect to

external interfaces and to parallel branches/segments,
respectively. As an example for the latter, one parallel
branch outputs data onto the channel and the other
branch reads data from the channel. Channels also
provide synchronisation between parallel branches
because the data transfer can only complete when both
sender and receiver are ready.

Hardware interfaces can be defined and the compiler-
generated EDIF netlist passed to the FPGA vendor’s
(Xilinx or Altera) place-and-route and timing analysis
tools. Interfaces (or plug-ins) are also available to link the
Handel-C simulator with other applications to provide a
co-simulation capability that supports system-on-chip
(SOC) development. This co-simulation environment
allows for hardware and software partitioning via
interfaces between the Handel-C simulator and software
simulation tools such as ARMulator® and Windriver’s SDS
SingleStep™ debugger®. Optional VHDL code generation
supports IP (intellectual property) integration through
interfaces with HDL development tools for co-simulation
(e.g. ModelSim?) and RTL synthesis (e.g. Mentor
Graphics’ LeonardoSpectrum™$ [formerly offered
through Exemplar Logic]).

Although Handel-C supports a rich subset of the
ANSI-C language, the following syntax restrictions are
imposed:

¢ Floating point is not supported.
e Functions may not be recursive.
e Variable-length parameter lists (...) are not supported.
e The union object is not supported.
¢ You may not change the width of a variable by casting.
e You cannot convert pointer types except to and from
void, between signed and unsigned and between
similar structs.
e Statements in Handel-C may not cause side-effects.
This has the following consequences:
o Local initialisations are not supported.
o The initialisation and iteration phases of loops must
be statements, not expressions.
e Shortcut assignments
(.e.+= —= *= /= %= <<= >>= &= |= "= ++)
must appear as standalone statements and not in
the middle of more complex expressions.
e Limited standard library.

While Handel-C does not provide any fixed-point analysis
it is possible to integrate other tools into the design flow
for this purpose.

In general the behavioural synthesis capability allows
software engineers to progress rapidly from C to gate
level without any knowledge of the underlying
hardware. This overall is the strongest point in favour of
using Handel-C. However, to create parallelism within
the design and thereby exploit the concurrency offered
by the hardware, manual editing of the code is required.
Hence an understanding of the code’s execution
sequencing is necessary to ensure that this doesn’t
result in a change to the functional behaviour of the
application.

ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002 167

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

system specification
embedded software

A|RT Library ANSI

hardware
resource
library

datapath resources
(arithmetic, memory)

legacy HDL
vendor HDL

A|RT Builder

I

map to architecture

source code

| schedule operations |

architecture

tuning

C performance analysis)

optimisation

| build RTL code

| A|RT Designer/Pro

| logic synthesis

I< IP core

Fig. 2 A|RT design flow

A|RT®

Frontier Design was spun out of the Mentor Graphics’
European Development Centre, Leuven (Belgium), in
1997. Frontier Design has applied its 15 years of
experience in transforming DSP algorithms (written in C
code) into working silicon to create a methodology that is
called ‘Algorithm to Register Transfer’, or A|RT. Within
this methodology are a number of tools that support the
translation of algorithms into implementation.

A|RT Designer is a tool that implements an algorithm
into digital synchronous hardware. The algorithm is
expressed in the C language and assists the designer in
the development of a processor or processor-like
architecture, customised for the algorithm that has to be
executed on this architecture. The generated processor
consists of a set of datapath resources, controlled by a
pipelined VLIW (very long instruction word) type
controller. These datapath resources may be shared over
different clock cycles. This means that A|[RT Designer is
able to apply resource sharing to operations in the source
description. The resulting modularity and parallelism of
the architecture can be used to create a design that is
optimised for specific needs regarding throughput, area
cost or power consumption.

During the translation of the C specification to the RTL,
the C source code is automatically analysed to determine
which C operators are used and to select a suitable
resource or resources from the ART hardware library
with which to implement them. Unless specified by the
user, only one instance of each resource type selected will
be included in the final processor architecture. A pragma

editor allows the user to modify the selection process, give
the resources more informative instance names and scan
the available libraries for additional resources. The user
can also write their own pragma statements, which offers
a powerful mechanism for design optimisation.

The A|RT Designer tool comes with two other tools:

e A|RT Library provides extensions to the C language for
fixed-point arithmetic and analysis. A|RT Library helps
the user to optimise the design by minimising the size
of variables and to detect errors that might occur when
converting from floating-point arithmetic.

e A|RT Builder is a C-to-HDL translation tool. It supports
the same fixed-point extensions as A|RT Designer and
a similar subset of the ANSI-C language. A|RT Builder
has its own graphical user interface (GUI) and can be
used to develop optimised cores for addition to the
A|RT Designer hardware resource libraries or for use
within an HDL development environment.

The design flow used by A|RT is shown in Fig. 2. Although
this figure implies that the system specification can be
written in ANSI-C, there are restrictions imposed by the
behavioural synthesis tools of ART Designer and A|RT
Builder. Nonetheless, the A|RT language is a rich subset
of the C language. The restrictions or features not
supported are:

o No floating point types.
e Functions may not be recursive.
e Variable-length parameter lists (...) are not supported.

168 ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

o The union object is not supported.

o The sizeof operator is not supported.

e Pointers and pointer arithmetic are not
supported. You should use indexing in an array
instead of a pointer.

e String literals are only supported for the
initialisation of A|RT Library type variables.

e Arrays with incomplete type descriptions (e.g.
a[]) are not supported.

e There is no support for division (/) and only
limited support for modulo (%).

e For shift operations, if the shift value is
negative, the left operand will be shifted in the
other direction.

e The goto statement is not supported.

e External functions are not supported.

e The declaration of variables as extern is not
supported.

e The standard C library is not supported.

As a C-based design tool, with provision for
fractional arithmetic, A|RT Designer and its

Standard channels
for various MOCs
Kahn process networks,
static dataflow, etc.

Methodology-specific
channels
Master/slave library, etc.

Elementary channels
Signal, timer, mutex, semaphore, FIFO, etc.

Core language Data types

Modules Logic type (01X2)

Ports Logic vectors

Processes Bits and bit vectors
Interfaces Arbitrary precision integers
Channels Fixed-point integers
Events

C++ language standard

associated tools are suited for embedding DSP
algorithms in hardware. The automated archi-
tectural synthesis and scheduling capabilities will
allow engineers to progress rapidly from C to HDL
without any knowledge of the underlying hardware.
Manual resource allocation and assignment is necessary,
however, to create parallelism within the design and
thereby exploit the concurrency offered by hardware.
Knowledge of the tool’s synthesis methodologies is
necessary to make full use of the optimisation features
(such as loop folding) which may require modification of
the source code to be effective.

The performance analysis features and quick run-time
of the tool made it very easy to determine the impact of
design changes on the performance in terms of clock
cycles. However, because the tool stops at the RT level the
impact on logic complexity and clock rate can’t be
determined without completing the logic synthesis step
and possibly the placement and routing as well.

Overall, we conclude that the A|RT Designer is more
suited to hardware engineers who wish to increase the
level of abstraction of their system designs.

SystemC°

SystemC is a modelling platform consisting of C++ class
libraries and a simulation kernel for design at the system-
behavioural and RT levels. There are abstract definitions
for the fundamental components of programmable
hardware such as communications, memory and
processing. Designers create models using SystemC and
standard ANSI C++. The Open SystemC Initiative (OSCI)
is a collaborative effort among a broad range of
companies to support and advance SystemC as a de facto
standard for system-level design. OSCI provides an
interoperable, modelling platform to exchange very fast
system-level C++ models and develop seamless tool
integration. The contributing EDA (electronic design
automation) vendors are thus able to create tools that are

Fig. 3 SystemC language architecture

automatically interoperable.

During the early days of this initiative, lack of co-
operation and patentright difficulties delayed progress.
However, these original difficulties have now been
resolved and the latest offering of the SystemC standard,
version 2.0, was released in 2001.

SystemC provides a set of modelling constructs that are
similar to those used for RTL and behavioural modelling
within an HDL, such as Verilog or VHDL. In a similar way
to HDLs, users can construct structural designs in
SystemC using modules, ports and signals. Modules can be
instantiated within other modules, enabling structural
design hierarchies to be built. Ports and signals enable
communication of data between modules, and all ports and
signals are declared by the user to have a specific data type.
Commonly used data types include single bits, bit vectors,
characters, integers, floating-point numbers, vectors of
integers, etc. SystemC also includes support for four-state
logic signals (i.e. signals that model 0, 1, X, and Z).

An important data type that is found in SystemC but not
in HDLs is the fixed-point numeric type. Fixed-point
numbers are frequently used in DSP applications that
target both hardware and software implementations,
since floating-point operations usually consume more
hardware resources. An example fixed-point operation
might be to add two signed numbers that have three bits
of integer precision and four bits of fractional precision
and assign the result to a similar fixed-point number.
Often users wish to specify rounding and overflow modes
(e.g. saturate or wrap on overflow) when using fixed-point
numbers. It is easy and natural to model fixed-point
numbers in SystemC, but this is very difficult to do in
HDLs. In SystemC, concurrent behaviours are modelled
using processes. A process can be thought of as an
independent thread of control that resumes execution

ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002 169

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

Fig. 4 Heterogeneous
platform design flow

Functional design/simulation

e.g. Ptolemy/Gedae

Y

Process
partitioning/mapping
. IP authoring tool,
processors FPGA < i R ©
— Y v
DSP linking < optimised
libs * libs
range of target hardware

when some set of events occurs or some signals change,
and then suspends execution after performing some
action. However there is a limited ability for specifying the
condition under which a process resumes execution—the
process can only be sensitive to changes of values of
particular signals, and the set of signals to which the
process is sensitive must be prespecified before
simulation starts.

Fig. 3 summarises the SystemC language architecture.
There are several important concepts to understand from
this diagram.

o All of SystemC builds on C++.

o Upper layers within the diagram are cleanly built on top
of the lower layers.

e The SystemC core language provides only a minimal
set of modelling constructs for structural description,
concurrency, communication, and synchronisation.

e Data types are separate from the core language and
user-defined data types are fully supported.

e Commonly used communication mechanisms such as
signals and FIFOs (first-in, first-out memories) can be
built on top of the core language. Commonly used
models of computation (MOCs) can also be built on top
of the core language.

o If desired, lower layers within the diagram can be used
without needing the upper layers.

Although the SystemC modelling platform is freely
available from the OSCI, routes to implementation rely on
the EDA vendor offerings. Though these will be driven by
the requirements of the SOC market, the technical
evolution is likely to have wider implications and
opportunities for the defence embedded-systems market.

3 Example design flow

The use of a rapid-prototyping methodology and its
supporting tools has been well documented and is
becoming a mature process. This process is based on the C
language and relies on optimised signal-processing libraries
in order to improve efficiency of the final implementation.
The development of system-level design languages, also
based on C, thus provides us with the ability to support
heterogeneous platforms, i.e. those consisting of DSPs,
general-purpose processors and FPGAs, within an extended
rapid-prototyping methodology. A typical extended design
flow for such heterogeneous platforms developed under the
ESPADON (Environment for Signal Processing Application
Development and Prototyping) project is shown in Fig. 41.
In this design flow the functional design tool is used to
partition and map the functional behaviour onto the
heterogeneous processing elements.

Mirroring the requirements of the conventional rapid-
prototyping flow (shown on the left of the diagram), the
route to FPGA relies on:

e extrapolating the functional specification to the highest
abstraction level in order to specify functional blocks as
domain-specific elements

e using a system-evel design language as an IP
integration platform and authoring tool

e having the ability to integrate optimised IP cores within
the system-level design language.

Within the ESPADON programme, a detailed evaluation
of Handel-C and A|RT Builder has been performed.
Although the Ilanguages and associated design
environments provide similar features, the previous

170 ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

discussions on the languages have
highlighted that the Handel-C
language allows software engineers to
progress rapidly from C to gate level
without any knowledge of the
underlying hardware. As such it was
chosen within the ESPADON
programme as it mirrors the rapid-
prototyping methodology employed
for general-purpose processors and
DSPs.

4 Example development

In keeping with the objectives of the
ESPADON demonstrator programme,
this design flow has been used to
implement a radar and sonar beam-
former targeted for a heterogeneous
platform. The initial element of the
algorithm to be placed on the FPGA
was chosen to be the fast Fourier
transform (FFT) used within the
beamforming process. A standard
complex radix-2 FFT example, written
in C, was selected so as to demon-
strate the design flow and to evaluate
the ease of porting standard C
applications to FPGAs. The only
modification to the original FFT code
made prior to entering the design flow
described above was to remove the
calculation of the FFT butterfly
coefficients from within the main FFT
loops. These only need to be
generated once per pass, and hence
the code was modified to use
precomputed ones. Though this type
of FFT algorithm is not the most
efficient to implement on an FPGA,
it was used to show how a
parameterisable function could be
generated using Handel-C.

The first steps in the porting
process were:

e removal of the floating-point data
types

e modification of the code to remove
the unsupported C features.

The final change to the code was
required due to a problem in the
multiply mechanism in the nested
loop within the FFT. During standard
multiplication the least significant bits
are chosen, but as one of the values to
be multiplied was a fraction the most
significant bits needed to be used.
This problem was overcome by

250000

200000

150000

gate count

100000

50000

16

32

number of points in FFT for 20 bit word length

64

Fig. 5 Gate count and FFT size

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

gate count

16

20

data width (bits) for 8 point FFT

24

Fig. 6 Gate count and word length

3500

3000

2500

2000

1500

clock cycles

1000

500

8

16

32

number of points in the FFT with 24 bit word length

Fig. 7 Execution speed for various FFT lengths

ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002

171

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

Fig. 8 Graph to show
the optimised results

250000 — — 3500
— 3000
200000 —
— 2500
€ 3
S 150000 — {2000 B
Q >
o 3]
° _ %
S 100000 |- U
o
— 1000
50000 —
— 500
0 | | | B
gate level 1 level 2 level 3
optimisation optimisation optimisation optimisation

32 point FFT with 24 bit word length

creating a function which would do the multiply and then
correctly choose the most significant bits of the result.

The performance characteristics of the FFT were
measured for different data lengths and different word
lengths as reported in the next subsections. Throughout
this porting process, the debugging capabilities of the tool
were found to be extremely useful in being able to single-
step through all the code as per a standard software-
debugging environment.

Performance results

The results that are shown in Figs. 5-7 were obtained
from the Handel-C simulator before either timing or size
optimisation. The devices targeted for the implementation
were the Xilinx 4000XV series of FPGAs.

Figs. 5 and 6 show how the complexity (gate counts) of
the FFT increases with the number of data points and the
word length, respectively. Fig. 7 shows how the speed of
operation of the FFT algorithm changes with the data
length of the FFT. The number of clock cycles was
obtained from the simulator by stopping the simulator at
the end of the simulation and viewing the master clock
cycles.

Optimising the code for speed

A number of optimisation steps were available for
improving the execution speed. These were applied to a
32-point FFT with a 24-bit word length as follows. The
overall results from the simulator are shown in Fig. 8.

e Level 1: The first step was to use the PAR parallel
construct to optimise the parallel execution of (@) the
add and subtract statements and (b) the variable
assignments within the main FFT routine. This had an
immediate and significant impact on execution speed
(Fig. 8, Level 1 optimisation) with only a small increase
in gate size.

e Level 2: The second step was to place the non-standard
multiply routines within a PAR statement. This meant
that the multiply routine had to be altered so that

172

there was an array of multipliers as opposed to a
single one. Consequently the execution speed
improved significantly but the gate count also
increased significantly.

o Level 3: The final step was to combine the optimisations
from Levels 1 and 2, giving a 39% reduction in clock
cycles with a 41% increase in gate count.

It should be noted that the optimisation was achieved in
only a few hours, thus demonstrating the strength of the
language and the simulation tools.

Practical use of the FFT implementation

Having completed the generation of a working
implementation of an FFT for an FPGA, the design flow
described in Section 3 was benchmarked with the
ESPADON sonar beamformer application. This particular
beamformer employs an 8-point FFT and a functional
model of the complete algorithm was available in the
Gedae tool!.

Gedae is a tool that enables users to design signal-
processing applications in a hierarchical data flow
structure. It provides a workstation environment to
develop applications, tools to support multiprocessor
scheduling and mapping, and a run-time environment to
execute efficiently on scalable embedded processors.

To use the FFT FPGA implementation, information
needs to be communicated between the Gedae data-flow
graph, executing either on the host platform or an
embedded processor, and the FPGA hardware. For
the particular embedded system available, VME
(Versa Module Eurocard) was the only interboard
communication medium available. Two additional
developments were made in order for the design
flow to be realised. Both were written in Handel-C:

o Gedae primitive functions were produced to send data
to and from the VME memory space. An additional
primitive function was also produced to poll the VME
space for a control register that indicated when the

ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

algorithm being processed on the FPGA hardware had
completed.

e An SRAM (static random access memory) controller
was developed to enable the FPGA FFT application
code to input and output data to memory and hence the
VME.

Fig. 9 shows the difference between the FFT executed on
a floating-point processor and the FPGA. Due to the fixed-
point implementation used on the FPGA the magnitude of
the FFT data was scaled to be of the order of 10¢ and this
resulted in an error from the two implementations of the
order of 10. These errors are entirely due to the differences
between floating-point and fixed-point implementations.

Comparison of the overall development time using
Handel-C and the process described in Section 3 with
conventional FPGA developments for the same
application shows an improvement of x7-5. That is, the
former is faster by a factor of 7.5, with commensurate
benefits in costs and the ability to iterate rapidly to
functionally correct solutions on heterogeneous
embedded systems. The disadvantage of using this
approach is that the resulting implementation is far less
efficient than one produced using VHDL. Work is
continuing to quantify the inefficiencies for real
applications. However, it has been shown that optimised
IP cores can be integrated into Handel-C and thus
efficiency can be regained where needed.

5 Conclusions

We have shown that a maturing technology known as
system-level design languages is becoming available
that enables FPGA hardware and software to be
co-designed and synthesised directly at higher levels of
abstraction compared to the conventional HDLs and
methods. The code can be optimised simply, and
in rapid steps, to improve the efficiency of the
implementation. From a wuser perspective, the
languages are ‘C like’ and the programming
environment analogous to the programming of
conventional microprocessors (hence we coined the
phrase ‘hardware engineering for software engineers’).
Therefore the same system functional models can be
used for heterogeneous architectures and any function
partitioned and mapped to the appropriate hardware
resource and the application code generated
automatically. This enables the rapid prototyping
of embedded systems and rapid trade-off analysis.
With the addition of optimised libraries for the system
as a whole, efficient implementations can be expected
enabling hard realtime requirements to be met. The
principal disadvantage at present is the same as that
experienced when high-level languages were emerging
for microprocessors. The high-level language ‘C to
netlist’ implementations are grossly inefficient, in terms
of resource utilisation and execution, compared to
hand-crafted code in HDL. As with microprocessors, we
expect these inefficiencies to be ameliorated in time,
especially because of the SystemC developments and

itestd scoped
fasb. testd Lrop 1w mag_fDost LS. Lo .

Fig. 9 Comparison FFT results

the interest of the EDA vendors, albeit for the SOC market.
Acknowledgments

The work reported in this paper has been carried out on
the ESPADON, EUCLID/Eurofinder programme, Project
RTP2.29, with support from the UK, French and Dutch
ministries of defence and participating companies. The
authors are grateful for this support and would like to
acknowledge the contributions of all the ESPADON team
members.

This paper was first presented at the internal BAE
SYSTEMS Signal and Data Processing Conference,
5th-7th March 2002, Dunchurch Park Conference
Centre, UK (Conference Proceedings p.2-1).

References

1 MADAHAR, B. K., et al.: ‘Environment for Signal Processing
Application Development and Rapid Prototyping—
ESPADON’. NATO IST Panel Symposium on COTS products
in defence: ‘The ruthless pursuit of COTS’, 3rd-5th April
2000, Brussels, Belgium

2 DK1 and Handel-C, Celoxica Limited. See http://
www.celoxica.com/

3 HOARE, C. A. R.: ‘Communicating sequential processes’
(Prentice-Hall Int. Series in Computer Science, 1985)

4 Inmos: ‘The occam2 programming manual’ (Prentice-Hall,
1988)

5 ARMulator, ARM Ltd. See http://www.arm.com/

6 SingleStep debugging solutions, WindRiver Systems Inc. See
http://www.windriver.com/

7 ModelSim, Model Technology. See http://www.model.com/

8 LeonardoSpectrum, Mentor Graphics. See http://www.
mentor.com/synthesis/

9 ART, Adelante Technologies. See http://www.adelante
technologies.com/

10 SystemC Version 2.0 User’s Guide. Available at http://www.
systemc.org/

11 Gedae: a graphical programming and autocode generation
tool for signal processing applications, Blue Horizon
Development Software. See http://www.gedae.com/.

©IEE: 2002
Received 11th April 2002

The authors are with BAE SYSTEMS Advanced Technology
Centre, Systems Department, West Hanningfield Road, Great
Baddow, Chelmsford, CM2 8HN, UK.

E-mail: ian.alston@baesystems.com;
bob.madahar@baesystems.com

ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL AUGUST 2002 173

Downloaded 27 Apr 2010 to 200.55.186.40. Redistribution subject to IET licence or copyright; see http://ietdl.org/copyright.jsp

