
Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 - 136 (2013)

SYSTEMS ENGINEERING

Three-Step method to tightly integrate data mining tasks
into a relational database system

INGENIERÍA DE SISTEMAS

Método Tres-Pasos para integrar fuertemente tareas de
mineria de datos en un sistema de base de datos relacional

§ Ricardo Timarán-Pereira

Departamento de Sistemas, Facultad de Ingeniería, Universidad de Nariño,
San Juan de Pasto, Colombia

§ ritimar@udenaKedu.co

(Recibido: 22 de Abril de 2103-Aceptado: 15 de Julio de 2013)

Abstract
In this paper, a result of the research project that aimed to define new algebraic operators and new SQL primitives for
knowledge discovery in a tightly coupled architecture with a Relational Database Management System (RDBMS)
is presented. In order to facilitate the tight coupling and to support the data mining tasks into the RDBMS engine,
the three-step approach is proposed. In the first step, the relational algebra is extended with new algebraic operators
to facilitate more expensive computationally processes of data mining tasks. In the next step and with the aim that
the SQL language is relationally complete, these operators are defined as new primitives in the SELECT clause. In
the last step, these primitives are unified into new SQL operator that runs a specific data mining task. Applying this
method, new algebraic operators, new SQL primitives and new SQL operators for association and classification
tasks were defined and were implemented into the PostgreSQL DBMS engine, giving it the capacity to discover
association and classification rules efficiently.

Keywords: Three-Step Method, Tight Coupling, Data Mining Tasks, Relational Database Management System.

Resumen
En este artículo se presenta uno de los resultados del proyecto de investigación cuyo objetivo fue definir nuevos
operadores algebraicos y nuevas primitivas SQL para el Descubrimiento de Conocimiento en una arquitectura
fuertemente acoplada con un Sistema Gestor de Bases de Datos Relacional (SGBDR). Se propone el método tres-
pasos con el fin de facilitar el acoplamiento fuerte y soportar tareas de minería de datos al interior del motor de un
SGBDR. En el primer paso, se extiende el álgebra relacional con nuevos operadores algebraicos que faciliten los
procesos computacionales más costosos de las tareas de mineria de datos. En el siguiente paso y con el fin de que
el lenguaje SQL sea relacionalmente completo, estos operadores son definidos como nuevas primitivas SQL en la
cláusula SELECT. En el último paso, estas primitivas son unificadas en un nuevo operador SQL que ejecuta una
tarea específica de minería de datos. Aplicando este método, se definieron nuevos operadores algebraicos, nuevas
primitivas y operadores SQL para las tareas de Asociación y Clasificación y fueron implementados al interior
del motor del SGBD PostgreSQL, dotándolo de la capacidad para descubrir reglas de asociación y clasificación
eficientemente.

Keywords: Método Tres-pasos, Acoplamiento Fuerte, Tareas de Minería de Datos, Gestor de Base de Datos
RelacionaL

125

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125-136 (2013)

1. Introduction

Researches on data mining were initially
eoneentrated on defining new pattems of
discovery operations and developing algorithms
for them. Subsequent researches (Agrawal and
Shim, 1996), (Meo et al., 1998a), (Sarawagi et
al., 2000), (Netz et al.,2000) have been focused
on issues related to integrating data mining
with database systems, producing as a result the
systems and tools development of data mining
whose architectures can be classified in one of
three eategories: loosely coupled, mildly coupled
and tightly coupled with a database management
system (DBMS) (Timarán, 2001).

Most data mining systems are loosely coupled
with a DBMS. In this architeeture, data mining
algorithms are found outside the kemel of the
DBMS. Integration is provided through an interfaee
which function, in most cases, is limited to the
commands "read from" and "write to" (Imielinski
and Virmani, 1999). Their main disadvantages
are poor scalability and performance. The first
one arises when large data sets do not fit into the
available memory and cannot therefore be mined
efficiently. Poor performance arises when records
are carried from the database address space to the
application address space (Chaudhuri, 1998). To
solve these problems, mining algorithms should
be integrated into the DBMS engine as a primitive
in a tightly coupled architecture (Timarán, 2001),
(Boulicaut &Masson, 2010).

Many approaches to implement this kind of
systems have been proposed. Expressing certain
data mining operations as a series of SQL queries
(Thomas & Chakravarthy, 1999), (Sarawagi et al.,
2000),(Yoshizawa et al., 2000), (Rantzau,2004);
extending SQL language with unified operators
which support certain pattem discovery tasks:
DMQL (Han et al., 1996) , M-SQL (Imielinski
and Virmani, 1999), MINE RULE (Meo et
al , 1998b); and, defining SQL generic primitives
which facilitate the knowledge diseovery process
without supporting a particular task: NonStop
SQL/MX primitives (Clear et al., 1999), Count

by Group primitive (Freitas and Lavington,
1997), FilterPartition, ComputeNodeStatistics
and PredictionJoin primitives (Sattler and
Dunemann,2001).

A major drawback of the first approach of
integration is poor performance, due mainly to
the fact that the rather simple SQL operations like
join, group and aggregation are not sufficient for
efficiently executing data mining tasks (Sarawagi
et al., 2000). One of the most important approaches
to efficiently support the knowledge discovery in
databases is to extend a DBMS engine with new
operators and primitives. Meoetal. (1998a, 1998b)
propose a unifying model to discover association
mies. The model is based on a new operator,
named MINE RULE, designed as an extension
of the SQL language with a formal semantics
for this operator. The semantics is described by
means of an extended relational algebra with new
operators: Group by, Unnest, Extend, Substitute,
Rename, Powerset, which transform a relational
table into an object-relational table (i.e. table
with multivalued attributes) in order to discover
association mies. MINE RULE is supported by
tightly coupled arehitecture, where data mining
is integrated within a classieal SQL server.
The differences between this approach and the
proposed approaeh in this paper, is that the former
does not propose SQL primitives that could be
used in other discovery tasks. On the other hand,
the new proposed algebraic operators conserve
the closure property of the relational model and
use relations with atomic attributes.

In (Clear et al., 1999) the implementation
of a set of new SQL primitives: Transpose,
Vertical Partitioning, Round-robin, Horizontal
Partitioning, sequence fimctions, sampling,
whieh were added to NonStop SQL/MX, a
parallel, object-relational DBMS from the
Tandem Division of Compaq; is reported. These
primitives, along with other high-performance
features of the SQL/MX engine enable basie
knowledge discovery tasks to be performed in a
scalable, efficient and parallel manner. Therefore,
this type of integration is a very specific solution

126

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 - 136 (2013)

to a tightly coupled problem, since others that are
not parallel to the DBMS could possibly not use
these primitives. Also, these primitives do not
have a formal definition in the relational algebra
like the proposed primitives.

In this paper, one of the results of the research
project that aimed to define new algebraic operators
and new SQL primitives for knowledge discovery
in a tightly coupled architecture with a Relational
Database Management System (RDBMS)
is presented. In order to facilitate the tightly
coupled and to support the data mining tasks into
the RDBMS engine, the three-step approach is
proposed. In the first step, the relational algebra is
extended with new algebraic operators to facilitate
more expensive computationally processes of data
mining tasks. In the next step and with the aim
that the SQL language is relationally complete,
these operators are defined as new primitives
in the SELECT clause. In the last step, these
primitives are unified into a new SQL operator
that mns a speeific data mining task. Applying
this method, new algebraic operators, new SQL
primitives and new SQL operators for association
and classification tasks were defined and were
implemented into the PostgreSQL DBMS engine,
giving it the capacity to discover association and
classification mies efficiently.

The rest of the paper has been organized as
follows: In section 2, the methodology used
to provide PostgreSQL DBMS capacities to
knowledge discovery is presented. In section 3,
new relational algebraic operators and new SQL
primitives for association and classification tasks
are described. Finally, in section 4 the conclusions
are presented.

2. Methodology

The current database systems are designed
primarily to support business applications. The
success of the SQL language is linked to the small
number of enough primitives to support the vast
majority of these applications. Unfortunately,

these primitives are not sufficient to support the
emerging family of new applications dealing with
Knowledge Discovery in Databases (KDD).

To support the data mining tasks into the Relational
Database Management System (RDBMS) engine,
the tree-step approach is used. This approach
facilitates the tight coupling with a DBMS. In the
first step, the relational algebra is extended with
new operators that execute the most expensive
processes of association and classification tasks.
In the second step, SQL language is extended with
new primitives in the SQL SELECT clause that
implement the new relational algebraic operators.
Finally, in the last step, the new SQL primitives
are unified into new SQL operators, that allow the
extraction of association and classification mies,
in the new SQL clause.

3. Resnits and discnssion

3.1 New operators of relational algebra for
data mining tasks

A data mining architecture tightly coupled with
DBMS, a new algebraic operator should execute
the most expensive processes of data mining
tasks to guarantee efficiency in the data mining
operations.

For an association task, the overall performance
of mining association mies is determined by the
discovery of large itemsets, i.e., the sets of itemsets
that have their support above a pre-determined
minimum support (Han and Kamber, 2001). For
a classification task by decision tree induction,
a decision tree classifier is built in two phases: a
growth phase and a pmning phase. In the growth
phase, the tree is built by recursively partitioning
the data until all members belong to the same
class. The tree growth is computationally much
more expensive than the pmning phase. In the first
phase, to compute the attribute selection measure
is the most expensive part of the algorithm since
finding the best split for a node requires evaluating
the attribute selection measure for each attribute
at each possible split point (Wang et al, 1998).

127

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

3.1.1 Algebraic operators for an association task

The process of extracting association mies is
facilitated extending the Relational Algebra
with the following new operators proposed in
(Timarán, 2005):

3.1.1.1 Ássociator (a)

The Associator operator (a) generates, for each
tuple of the relation R, all their possible subsets
(itemsets) of different size. The Associator takes
each tuple t oí R and two numbers IS and ES as
input, and retums, for each tuple t, the different
combinations of attributes Xi from size IS until
size ES, as tuples in a new relation. In each tuple
Xi, only the attributes that are combined have
values, the rest of attributes are null. The order
of the attributes in the R scheme determines the
order of the attributes in the subsets.

Formally, let A = {A^, ...,AJ be the set of attributes
of relation R; n and m are degree and cardinality
OÍR respectively; IS y ES are the initial and final
size of the subsets to obtain respectively:

ç /, V, V, (X., = <v,
(i < (2" -1) * m),

<AJ

a(IS; ES; R) = { u„„ X | x
(A),v.(A),null..,vß]),null>,
(k = IS.'ES)), andA<A< ...

Example 1. Let R (A, B, C) be the relation in
Figure la. Let RI = a(2; 3; R) be the operation.
The output of the Associator is shown in Figure lb.

3.1.1.2 EquiKeep (j)

EquiKeep (x) is a unary algebraic operator that
as the Selection(G) operator, evaluates a logical
expression from a relation R, but EquiKeep applies
the logical expression to the columns (attributes)
of R. This operator restricts the attribute values
of each one of the tuples of a specified relation
to only the attribute values that satisfy a specified
condition, making the rest of attribute values
null. EquiKeep takes each tuple t of a relation R
and a logical expression P as input, and retums a
new relation with the same R scheme, in which,
each new tuple / is formed by the attribute values

that satisfy the expression P. The rest of attribute
values are made null. EquiKeep eliminates the
empty tuples, i.e. the tuples with all the attribute
values null.

Formally, let A= {A^,.... A^} be the set of attributes
of relation Ä; «and m, degree and cardinality of
R respectively. Let P be a logical expression:

X/R)={ tß) I ViVy (p(vß))= v/Aj) if p =true
andp(v.(A))= null andp =]false), i=l...m',
j=l...n, m'<m}

Example 2. Let R (A, B, C) be the relation in
Figure la. Let A=al v B=bl v C=c2, the logical
expression to evaluate. The result of Rl=XA=aiv

is shown in Figure lc.
B=bi vc=c2

3.1.1.3 Describe associator (ßa)

A Describe Associator is a unary algebraic
operator that takes as input the resulting
relation of the Associator and for each tuple
of this relation, it generates, from not null /
attributes of the tuple, all the different subsets
of specific size like {{a},{l-a},s}, wbere
{a} is named antecedent subset and {1-a}
consequent subset. Subsets {a} and {1-a} are
subset of / attributes. The s is the size of the
antecedent subset {a}.

Formally, let A = {Al, ..., An} be the set of
attributes of relation R; n and m are degree and
cardinality of Ä respectively. Let LR be the size of
the subsets to obtain.

v/AJOnull), (i < (2" -2) * m), LR <n }

The ß operator applied to R produces a new
relation with degree LR+1, cardinality / < (2"
-2) and the schema R (Y), Y= (Y,, Y2,..Y^^, S},
where S is the length of antecedent subset. The
Describe Associator facilitates the generation of
one-dimensional or multidimensional association
mies [HaKaOl].

128

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

Example 3. Let R (A, B, C) be the relation in
Figure la to obtain all subsets of size 3. The result
of ßa^(7?j is shown in Figure Id.

3.1.2 Algebraic operators for classification task

The process of extracting classification mies is
facilitated extending the Relational Algebra with
the following new operators proposed by Timarán
(2005):

3.1.2.1 Mate (ix)

The Mate operator (|i) generates, for each tuple
of relation R, all their possible combinations of
the not null attribute values from an attributes
list denominated Condition Attributes, with the
not null Class Attribute value. This process is
executed in a single passing on the relation.

Formally, let A ={Ai, . . ., A^} be the set of
attributes of relation R\ n and m are degree and
cardinality of R respeetively; LC cz A, LC^i^
the Condition Attributes list and n' the size of
LC, \LC\= n',n'<«. Let Ac eA , Ac nLC =
(j) be the Class Attribute. The Mate operator (|a.)
is defined this way:

\LC \= n',n '
\M=LC U AC,

, Ac&A, Ac nLC = ^, ti=Xi,
A.

m'= , V V / X
v.(A)v.(Ac)i^nuH),

Example 4. Let R (A, B, Q be the relation in
figure la. Let Rl= MAa;c(R) be the operation. The
output of Mate is shown in Figure le.

A
al

imU
al
al

MMTI

al

B
mu
m
bl

mH
W.
1>2

C
d
a
el
c2
a
a

al
M.
Cl
«A

là

i i
-•0
»1
al
c2

W
aL

U
Ci
<i

aL
al

m
a

c l

a
mc l

la
pi

la

s i

1
l
1
a
1

1
i'
2
2
2

Figura 1. Algebraic operators, a) Relation R b)Output ofAssociator operator c) Output ofEquiKeep operator d) Output of

Describe Associator operator e) Output of Mate operator

129

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

3.1.2.2 Aggregate operator Entro

The Entro allows to calculate the entropy measure
of a relation R with regard to a condition attribute
and a class attribute.

Formally, let A ={A^, . . ., AJ be the set of
attributes of relation R] n and m are degree and
cardinality of R respectively. Suppose the class
attribute Ac, Ac e R(A), has / distinct values
defining / distinct classes, C. (1< i<.t). Let r be
the number of tuples ofR in Ci class. Let q be the
number of distinct values {v/AJ,v/AJ,..,v^fAJ}
of condition attribute A^^, A^e R(A), which can be
used to partition R into q subsets {5'̂ ,5'„ ...S^\,
where S. contains those tuples in R that have a
value v.('y4J of attribute/4,. Let s. be the number
of tuples of C class in a subset Sj. EntroiA^^; Ac;
R), retum the entropy of R regarding attribute A^^,
in this way:

Entro(A^;Ac; R)={y\y = -

where pij= sJ I SJ is the probability that a tuple in
S. belongs to C. elass.

Entropy of R regarding attribute Ac class is:
Entro {Ac;Ac; R)={y\y = - Up, ^ogjj?), 1< i<.t,
p.= r./m}

3.1.2.3 Aggregate operator Gain

Gain allows calculating the reduction in entropy
caused by knowing the value of attribute A,̂ . Gain
is defined as following:

Gain {A^jAc; R)={y \ y = Entro(Ac;Ac; R) -
Entro{Ai^;Ac; R)} where Entro {Ac; Ac; R) is the
entropy of relation R regarding class attribute Ac
and Entro {A^,; Ac; R) is the entropy of relation
R regarding the condition attribute Â^

3.1.2.4 Describe classifier

A Describe Classifier (ß^) is a unary operator
that takes the resulting relation of the operators

Mate, Entro and Gain as input, and retums a new
relation with the attribute values that will form the
different nodes of the decision tree.

Formally, let A= {A^, .., A^E,G} be the set of
attributes of relation R; n+2 and m are degree
and cardinality of R respectively. The Describe
Classifier (ßfi) operator is defined this way:
ß(R)'= {t,(Y)| Y={N,P,A,V,C}

where,

t=<val(N),null,val(A),null,null> if t. is a root
node,

t=<val(N),val(P),val(A),val(V),val(C)> if / . i s a
leaf node

t=<val(N),val(P),val(A),val(V),null> if /. is
other node

The Describe Classifier operator facilitates the
constmction of the decision tree and consequently
the generation of classification mies.

3,2 New SQL primitives for data mining
tasks

The previous algebraic operators extend the
Relational Algebra for support data mining tasks.
With the aim that SQL language is relationally
complete and also able to support data mining
task, it is necessary to implement these operators
like SQL primitives.

3.2.1 SQL primitives for association task

The algebraic operators Associator, and EquiKeep
are implemented in SQL language with the
following new SQL primitives proposed by
Timarán (2005):

3.2.1.2 Primitive associator range

The primitive Associator Range in the SQL
SELECT clause implements the Algebraic
operator Associator. In the SELECT clause, this
primitive has the following syntax:

130

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 - 136 (2013)

SELECT <AttributeListDataTable> [INTO
<AssociatorTableName>]
FROM <DataTableName>
WHERE <WhereClause>
ASSOCIATOR RANGE<«MmZ)er 1> TO
<number 2>
GROUP BY <AttributeListAssociatorTable>

The ASSOCIATOR RANGE clause determines the
size of different subsets that are generated by this
primitive, starting from an initial size < number I
>, until <T0> a final size < number 2 >. The other
clauses are standard SQL clauses and therefore
their functions are very well known for all.

The ASSOCIATOR RANGE primitive facilitates
the calculation of the large itemsets for discovery
assoeiation mies in multicolumn tables (Rajamani
etal., 1999).

Example 5. Let Students (PROGRAM, AGE,
GENDER, STRATUM, AVERAGE) be table
in figure 2a. Get large itemsets of size 2 and
3, formed by the PROGRAM, GENDER and
STRATUM attributes with minimum support
greater than or equal to 2 and store them in the
table AssoStudents.

The SQL query is:
SELECT program, gender, stratum, count(*)
AS support INTO AssoStudents
FROM Students
ASSOCIATOR RANGE 2 UNTIL 3
GROUP BY program, gender, stratum
HAVING count(*)>=2

The final result of this query is shown in figure 2b.

3.2.1.2 Primitive EquiKeep On

The primitive EquiKeep On in the SQL SELECT
clause implements the algebraie operator
EquiKeep. In the SELECT clause, EquiKeep On
has the following syntax:

SELECl<AttributeListDataTable>{mi:O
<EquiKeep TableName>]
FROM <DataTableName> WHERE
< WhereClause>
EQUIKEEP ON < Condition >

EQUIKEEP ON < Condition > clause keeps
the values of the attributes of the table
<AttributeListDataTable>, maintaining in each
record of the table <EquiKeepTableName>
only the atfribute values that satisfy a specified
condition <condition>. The rest of attribute values
of the table <EquiKeepTableName> become null.
The primitive EQUIKEEP ON facilitates the
generation of large itemsets in the discovery of
Association Rules, to keep in each record of the
table only the values of the frequent attributes.
Example 6. Keep in each record of the table
Students of figure 2a, only the values of the
attributes that satisfy the following conditions:
PROGRAM like Systems or Languages, AGE
like 21..25, GENDER like F, STRATUM like 2
or 4 and AVERAGE like regular or low. Store the
result in the table EquiStudents.

The SQL statement is:
SELECT* INTO EquiStudents
FROM Students
EQUIKEEP ON program in
('Systems','Languages), age like'21..25',
gender = 'F' , stratum in (2,3), average in
('Regular','Low')

The result of this statement is shown in figure 2c

3.2.2 SQL Primitives for classification task

The algebraic operator Mate, together with
the aggregate operators EntroQ and Gain{) are
implemented in SQL language with the following
new SQL primitives:

3.2.2.1 Primitive mate by with

The primitive Mate by in the SQL SELECT implements
the algebraic operator Mate. This primitive has the
following syntax in the SELECT clause:

SELECT <AttributeListDataTable> [INTO
<MateTableName>]
FROM <DataTableName>
WHERE <WhereClause>
MATE BY<ConditionAttributesList> WITH
<ClassAttribute>
GROUP BY < AttributeListDataTable>

131

Ingeniería y Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

b} Table Asso^t^nis
FKDOILAM GSMSSEM.
S3^stHa F
¡Syitipfgi BQII

adl F

STRIILTGM SnPFOKT
Bdl 2
2 2
3 î
3 :

-Tabíe SíuámEs

FROCSAM

Sys^ms

ACE

21-15
21...25

GBKDER
M
F
F
M
F

STRATUM
2
1

ï
4

AVERAGE

Regola

On
c)

PROGRAM
S ŝfesns

JBll

iUGE
nril

21..25
1 ^

21_25
2Î.J3

GENDEK
s d l
F
F

mûl
F

SIRATfM
2
3
3
2

ATERAGi:
HBII

leptar

Figura 2. SQL Primitives for Association Task a) Table Student h)Resuh ofAssociator Range c) Result of EquiKeep On

MATE BY<ConditionAttributesList> WITH
<ClassAttribute> determines the set of attributes
<ConditionAttributesList> with which the
attribute class <ClassAttribute> is combined.

The primitive MATE BY facilitates the
classification task and the construction of
a decision tree. This primitive calculates
together with aggregate ñanctions Gain ()
and Entro (), in each partition and for each
attribute, the information gain and entropy
respectively.

Example 7. Let Symptoms (SID, PAIN, FEVER,
INFLUENZA) be table in figure 3a. Perform
different combinations between attributes PAIN
and FEVER with attribute INFLUENZA, obtain
their occurrences and store the result in the table
ClasSymptoms.

The SQL command that performs this query is:

SELECT pain, fever, infiuenza, count(*) AS
support INTO ClasSymptoms
FROM Symptoms

MATE BY pain,/ever WITH infiuenza
GROU? BY pain, fever, infiuenza

The result of this query is shown in figure 3b.

3.2.2.2 Aggregate function Entro()

The Algebraic aggregate operator EntroQ is
implemented by the aggregate fiinction EntroQ
in the SQL SELECT. This function has the same
syntax as the primitive MATE BY WITH:

SELECT <AttributeListDataTable>,
Count(*). Entro(*) [INTO
<MateTableName>]
FROM <DataTableName>
WHERE <WhereClause>
MATE BY<ConditionAttributesList>
WITH <ClassAttribute>
GROUP BY < AttributeListDataTable>

The aggregate function Entro () calculates,
together with the primitive Mate By with, the
entropy of each of the combinations of the
condition attributes with the attribute class. SQL

132

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

TaMs

TAW KFLÜEílZA SuïfOlT

sm
2
1
4
5
§

PADf

not
yes
m*

ym
not

lEVER IF

ntild

ŒLIMNZai

Y«
} M
Y «
Y «
M(t

MafáBy

Yes
Yes
Yes
Yes
Na
Ifo
No
N»
No

adQ
mU
aoll

5 «

a d i

nur
Dot

BHU Bot
yes

Figura 3. SQL Primitives for Classification Task a) Table Sympotms bJResult of Mate By

1
1
I
1
t
I
1
I
I
I"
I,
1
I
2

EntroO must be run together with the aggregate
function count ().

3.2.2.3 Aggregate function Gain ()

The Algebraic aggregate operator Gain () is
implemented by aggregate function Gain () in the
SQL SELECT. This function has the same syntax
as primitive MATE BY WITH :

SELECT <AttributeListDataTable>, Count
(*), Entro(*), Gain(*)
[INTO <MateTableName>]
FROM <DataTableName>
WHERE <WhereClause>
MATE BY<ConditionAttributesList>
WITH <ClassAttribute>
GROUP BY < AttributeListDataTable>

The aggregate function Entro () calculates,
together with the primitive Mate By with, the gain
of information of each of the combinations of the
condition attributes with the attribute class. SQL
Gain 0 must be mn together with the aggregate
functions count () and EntroQ.

3.3 New SQL Operators for data mining tasks

The SQL language has been extended with
primitives for Association and Classification
tasks that are expressed in the SQL SELECT

elause. These primitives facilitate the most
computationally expensive processes of these
tasks. Now, it is necessary to unify these primitives
into SQL operators that allow extracting
association and classification mies efficiently.
These new operators are:

3.3.1 SQL Operator for association task

The SQL operator that unifies association
primitives is called Describe Association Rules.
This SQL operator implements the algebraic
operator Describe Associator in a new SQL
clause. The Describe Association Rules generates
association mies with a specific length from large
itemsets.

The operator Describe Association Rules has the
following syntaxis:

DESCRIBE ASSOCIATION RULES INTO
<AssociationRulesTable>
FROM <LargeItemsetsTable>
WITH CONFIDENCE <valorl>
LENGTH <valor2 >
[DO <LargeItemsetsSubquery>]
< LargeltemsetsSubquery >::=<SFWEAG>
<SFWEAG> := <SELECT FROM WHERE
EQUIKEEP ASSOCIATOR GROUP BY>

133

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

The elause INTO < AssocíatíonRulesTable >
allows storing in a table < AssociationRulesTable
> the association mies for future querys.

The clause FROM <LargeItemsetsTable> specifies
the name of the data table <LargeItemsetsTable>
where the large itemsets for the extraction mies are

The optional clause DO <LargeItemsetsSubquery>
allows defining together with the describe clause,
the subquery <LargeItemsetsSubquery> that
computes the large itemsets with the association
primitives.

Example 8. From the table Students of figure
2a, find the assoeiation mies of length 3 with a
minimum support of 2 and a minimum confidence
of 30. The generated mies are stored in the table
AssorulesStudents.

The SQL eommand that performs this query is:

DESCRIBE ASSOCIATION RULES INTO
AssorulesStudents
FROM Assostudents
WITH CONFIDENCE 30 LENGTH 3
DO SELECT program, gender, stratum,
countf*) AS support INTO Assostudents
FROM Students
EQUIKEEP ON program in
('Systems','Languages), age like'21..25',
gender = 'F' , stratum in (2,3), average in
('Regular','Low')
ASSOCIATOR RANGE 2 UNTIL 3
GROUP BY program, gender, stratum
HAVING count(*)>=2

3.3.2 SQL Operator for classification task

The SQL operator that unifies classification
primitives is called Describe Classification Rules.
This SQL operator implements the algebraic
operator Describe Classifier in a new SQL
clause. The Describe Association Rules builds the
decision tree and generates classification mies.
The operator Describe Classification Rules has a
similar syntaxis of Describe Association Rules:

DESCRIBE CLASSIFICATION RULES
[INTO <ClassificationRulesTable>]
FROM <TreeNameTable>
USING <MetricNameTable>
[DO <MetricCalculationSubquery>]

where

< MetricCalculationSubquery >::=<SFWMG>
<SFWMG> ::= <SELECT FROM WHERE
MATE BY GROUP BY>

Example 9. The table Symptoms of figure 3 a,
generate the classification mies and they are
stored in the table ClassrulesSymptoms.

The SQL command that performs this query is:

DESCRIBE CLASSIFICATION RULES
INTO Classrulessymptoms
FROM Treenodes
USING Gainsymptoms

SELECT pain, fever, influenza, count(*),
Entro{*), Gain{*) INTO Gainsymptoms
FROM Symptoms
MATE BY pain, fever WITH influenza
GKO\]? BY pain, fever, influenza

DO

In this example from gainsymptoms table, the
operator Describes Classiflcation Rules builds
the table treenodes and with it generates the
elassification mies and stores them in the table
classrulessymptoms.

3.4 Implementation of new SQL primitives and
SQL Operators for data mining tasks

The new SQL primitives and new SQL operators
for Association and Classification tasks were
implemented into the engine of PostgreSQL
DBMS. This process involved the modification of
the stmctures, functions and the creation of new
nodes in some components of the architecture
of Postgres. The Parser was modified to build,
transform and attach to the stmctures of the
compiler a list with the new primitives and
operators. The Planner / Optimizer was modified

134

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

to receive the parser tree and recognize the new
primitives and operators, in which case new nodes
were added to Query plan. The Executor was
modified to evaluate the new nodes and deliver a
set of tuples, according to query. As a result of this
process PostgresKDD, a database system with the
capacity to support the discovery of association
and classification mies in large data sets, was
obtained.

4. Conclusions

The three-steps approach was applied to
integrate in a tight coupling, the association and
classification tasks into a relational database
system. The Relational Algebra was extended
with the new operators: Associator., Equikeep,
Describe Associator, Mate, Entro, Gain and
Describe Classifier The SQL was extended
with the primitives Associator Range, EquiKeep
On, Mate by and the aggregate functions Gain()
and EntroQ. Also, SQL was extended with
the operators Describe Association Rules and
Describe Classification Rules. These primitives
and operators for data mining tasks were
implemented into PostgreSQL engine.

The future works in this area include following
this method to define new algebraic operators
and primitives for different data mining tasks and
their implementation in PostgreSQL DBMS and
extend the query optimizer of this DBMS, so that
it executes a data mining query efficiently.

5. References

Agrawal R.& Shim, K. (1996). Developing
Tightly-Coupled Data Mining Applications on
a Relational Database System. In proceedings
of The Second Intemational Conference on
Knowledge Discovery and Data Mining, Portland,
Oregon, USA, p. 287-290.

Boulieaut, JF., Masson, C. (2010). Data Mining
Query Languages. Data Mining and Knowledge
Discovery Handbook. Second Edition, Springer,
p. 655-664, ISBN: 978-0-387-09823-4.

Chaudhuri, S. (1998). Data Mining and Database
Systems: Where is the Intersection?. Bulletin of
the Technical Committee on Data Engineering 21

Clear, J., Dunn, D., Harvey, B., Heytens, M.,
Lohman, P., Mehta, A., Melton, M., Rohrberg, L.,
Savasere, A., Wehrmeister, R. & Xu, M. (1999).
NonStop SQL/MX Primitives for Knowledge
Discovery. In proceedings of KDD-99, San Diego,
USA.

Freitas, A.,& Lavington, S. (1996). Using SQL
Primitives and Parallel DBServers to Speed
Up Knowledge Discovery in large relational
databases. In proceedings of XIII European
Meeting on Cybemetics and Systems Research,
Vienna, Austria, p. 955-960.

Han, J., Fu, Y, Wang, W, Koperski, K. &
Zaiane, O. (1996). DMQL: A Data Mining
Query Language for Relational Databases. In
proceedings of SIGMOD 96 Workshop, On
research issues on Data Mining and Knowledge
Discovery DMKD 96, Montreal, Canada.

Han, J., Kamber, M. (2001). Data Mining
Concepts and Techniques. San Francisco,
Califomia, USA: Morgan Kaufmann Publishers.

Imielinski, T & Virmani, A. (1999). MSQL: A
Query Language for Database Mining. Data
Mining and Knowledge Discovery, Kluwer
Academic Publishers, 3 (4), 373-408.

Meo, R., Psaila G. & Ceri S. (1998a). A Tightly-
Coupled Architecture for Data Mining. In
proceedings of 14th. Intemational Conference on
Data Engineering ICDE98.

Meo R., Psaila G. & Ceri S. (1998b). An
Extension to SQL for Mining Association Rules.
Data Mining and Knowledge Discovery, Kluwer
Academic Publishers, 2 (2), 195-224.

Netz, A., Chaudhuri, S., Bernhardt, J. & Fayyad
U. (2000). Integration of Data Mining and

135

Ingenieríay Competitividad, Volumen 15, No. 2, p. 125 -136 (2013)

Relational Databases. In Proeeedings of the
26thlntemational Conference on Very Large
Databases, Cairo, Egypt.

Rantzau, R. (2004). Frequent Itemset Discovery
with SQL Using Universal Quantification.
Database Support for Data Mining Aplications,
Lecture Notes in Computer Science, Springer,
2682, 194-213.

Rajamani, K., Cox, A., Iyer, B. & Chadha,
A.(l 999). Efficient Mining for Association Rules
with Relational Database Systems. In proceedings
of Intemational Database Engineering and
Aplication Symposium, Montreal, Canada, p.
148-155.

Sarawagi, S., Thomas, S. & Agrawal, R. (2000).
Integrating Association Rule Mining with
Relational Database Systems: Altematives and
Implications. Data Mining and Knowledge
Discovery, Kluwer Academic Publishers, 4 (2/3),
89-125.

Sattler, K & Dunemann, 0.(2001). SQL Database
Primitives for Decision Tree Classifiers. In
proceedings of Conference on Information and
Knowledge Management, Atlanta, Georgia, USA.

Timarán, R. (2001). Arquitecturas de Integración del
Proceso de Descubrimiento de Conocimiento con

Sistemas de Gestión de bases de datos: un Estado
del Arte. Revista Ingeniería y Competitividad,
Universidad del Valle, 3 (2), 45-55.

Timarán, R. (2005). Nuevas Primitivas SQL
para el Descubrimiento de Conocimiento en
Arquitecturas Fuertemente Acopladas con un
Sistema de Gestión de Bases de Datos. Tesis
doctoral. Doctorado en Ingeniería, Escuela de
Ingeniería de Sistemas y Computación, Facultad
de Ingenierias, Universidad del Valle, Cali,
Colombia.

Thomas, S. & Chakravarthy, S. (1999).
Performance Evaluation and Optimization of
Join Queries for Association Rule Mining. In
Proceedings of First Intemational Conference on
Data Warehousing and Knowledge Diseovery ,
DAWAK.

Wang, M., Iyer, B. & Scott, V. (1998). Scalable
Mining for Classification Rules in Relational
Databases. In proceedings of Intemational
Database Engineering and Application
Symposium, Cardiff, U.K., p. 58-67.

Yoshizawa, T, Pramudiono, I. & Kitsuregawa,
M. (2000). SQL Based Assoeiation Rule
Mining using Commercial RDBMS (IBM DB2
UDB EEE). Data Warehousing and Knowledge
Discovery, Springer, 1874, 301-306.

136

Copyright of Ingeniería y Competitividad is the property of Universidad del Valle and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

