
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2012, Article ID 949746, 28 pages
doi:10.1155/2012/949746

Research Article

Specifying Process Views for a Measurement, Evaluation,
and Improvement Strategy

Pablo Becker,1 Philip Lew,2 and Luis Olsina1

1 GIDIS Web, Engineering School, Universidad Nacional de La Pampa, General Pico, Argentina
2 School of Software, Beihang University, Beijing, China

Correspondence should be addressed to Luis Olsina, olsinal@ing.unlpam.edu.ar

Received 24 August 2011; Revised 12 November 2011; Accepted 8 December 2011

Academic Editor: Osamu Mizuno

Copyright © 2012 Pablo Becker et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Any organization that develops software strives to improve the quality of its products. To do this first requires an understanding
of the quality of the current product version. Then, by iteratively making changes, the software can be improved with subsequent
versions. But this must be done in a systematic and methodical way, and, for this purpose, we have developed a specific strategy
called SIQinU (Strategy for understanding and Improving Quality in Use). SIQinU recognizes problems of quality in use through
evaluation of a real system-in-use situation and proposes product improvements by understanding and making changes to the
product’s attributes. Then, reevaluating quality in use of the new version, improvement gains can be gauged along with the changes
that led to those improvements. SIQinU aligns with GOCAME (Goal-Oriented Context-Aware Measurement and Evaluation), a
multipurpose generic strategy previously developed for measurement and evaluation, which utilizes a conceptual framework (with
ontological base), a process, and methods and tools. Since defining SIQinU relies on numerous phase and activity definitions, in
this paper, we model different process views, for example, taking into account activities, interdependencies, artifacts, and roles,
while illustrating them with excerpts from a real-case study.

1. Introduction

Even though software product launches now may consist
of “continuous beta,” users expect more and better func-
tionality, combined with increased quality from the user’s
perception. Methodically improving the perceived quality,
that is, its quality in use (QinU) particularly for web applica-
tions (WebApps), is not an easy job. WebApps—a kind
of software applications—are no longer simple websites
conveying information. Rather, they have become fully
functional software applications often with complex business
logic and sometimes critical to operating the business. Users,
in addition, are becoming more demanding and diverse
in their requirements. Consequently, WebApp quality and
especially the quality in use, namely, the perceived quality
by the end user has taken on increased significance as
web and now cloud deployment have become mainstream
delivery methods. Systematic means for evaluating QinU
is important because it enables understanding the quality
satisfaction level achieved by the application and provides

useful information for recommendation and improvement
processes in a consistent manner over time. Coincident with
consistent and systematic evaluation of WebApp quality, the
main goal is to ultimately improve its QinU.

This leads to our strategy with the objectives of
understanding and improving the QinU—as nonfunctional
requirements—of WebApps. QinU is currently redefined in
the ISO 25010 standard [1], which was reused and enlarged
by the 2Q2U (internal/external Quality, Quality in use, actual
Usability, and User experience) quality framework—see [2]
for an in-depth discussion. QinU from the actual usability
standpoint (that embraces performance or “do” goals in
contrast to hedonic or “be” goals [3]) is defined as the degree
to which specified users can achieve specified goals with
effectiveness in use, efficiency in use, learnability in use, and
accessibility in use in a specified context of use [2].

Utilizing 2Q2U quality models, we developed SIQinU as
an integrated means to evaluate and find possible problems
in QinU which are then related to external quality (EQ)
characteristics and attributes (by doing a mapping between



2 Advances in Software Engineering

Reuses

SIQinU
process

WebQEM,
parser tool,

code restructuring,
refactoring,

others.

SIQinU strategy

conceptual
framework

Process Methods/
tools

conceptual
framework

Process Methods/
tools

GOCAME WebQEM,

GOCAME strategy

C-INCAMI

C-INCAMI

C-INCAMI tool

M & E

M & E

M & E process

Figure 1: Allegory of the three GOCAME pillars, which are reused to a great extent by SIQinU.

QinU problems and EQ). This is followed by evaluating
the application from the EQ standpoint and then making
recommendations for improvements if necessary. The new
version, based on recommended improvements, is reevalu-
ated to gauge the improvement gain from both the EQ and
QinU point of views. One aspect of SIQinU’s uniqueness
is that it collects user usage data from WebApps in a real
context of use whereby code snippets are inserted (or using
similar techniques) to gather data related to the task being
executed by users at the subtask level enabling nonintrusive
evaluations.

It is worth mentioning that SIQinU aligns with the
GOCAME strategy [4]. GOCAME, a multipurpose goal-
oriented strategy, was previously developed for supporting
measurement and evaluation (M&E) programs and projects.
Its rationale is based on three main pillars or principles,
namely, (i) a conceptual framework utilizing an ontological
base; (ii) a well-defined measurement and evaluation pro-
cess; (iii) quality evaluation methods and tools instantiated
from both the framework and process. This is allegorically
depicted in Figure 1.

GOCAME’s first principle is that designing and imple-
menting a robust M&E program require a sound conceptual
framework. Often times, organizations conduct start and
stop measurement programs because they do not pay enough
attention to the way nonfunctional requirements, contextual
properties, metrics, and indicators should be designed,
implemented, and analyzed. Any M&E effort requires an
M&E framework built on a sound conceptual base, that
is, on an ontological base, which explicitly and formally
specifies the main agreed concepts, properties, relationships,
and constraints for a given domain. To accomplish this,
we utilize the C-INCAMI (Contextual-Information Need,

Concept model, Attribute, Metric, and Indicator) framework
and its components [4, 5] based on our metrics and
indicators ontology.

GOCAME’s second principle requires a well-established
M&E process in order to guarantee repeatability in per-
forming activities and consistency of results. A process
prescribes a set of phases, activities, inputs and outputs,
interdependencies, sequences and parallelisms, check points,
and so forth. Frequently, process specifications state what to
do but do not mention the particular methods and tools
to perform specific activity descriptions. Thus, to provide
repeatability and replicability in performing activities, a
process model for GOCAME was proposed in [6], which is
also compliant with both the C-INCAMI conceptual base
and components. Finally, methods and tools—the third
pillar in the GOCAME strategy—can be instantiated from
both the conceptual framework and process, for example, the
WebQEM (Web Quality Evaluation) methodology [7] and its
tool called C-INCAMI tool [4].

SIQinU utilizes the above three GOCAME principles
while also reusing the C-INCAMI conceptual base and
process. However, since SIQinU is a specific-purpose goal-
oriented strategy, it has specific processes, methods, and
procedures that are not specified in GOCAME. Since the
process aspect is critical in specifying SIQinU, given of
its numerous interrelated phases and activities, this work
defines its process model in detail through illustration with
excerpts of a real case study. This case study was thoroughly
illustrated in [8], and also aspects of its internal and external
validity were considered in [9] as well.

Note that processes can be modeled taking into account
different views [10] such as (i) functional that includes the
activities’ structure, inputs, and outputs; (ii) informational



Advances in Software Engineering 3

that includes the structure and interrelationships among
artifacts produced or consumed by the activities; (iii)
behavioral that models the dynamic view of processes; (iv)
organizational that deals with agents, roles, and responsi-
bilities. Additionally, a methodological view is described in
[11], which is used to represent the process constructors
(e.g., specific methods) that can be applied to different
descriptions of activities. In order to specify all these views,
different modeling languages can be used. However, no
modeling language fits all needs and preferences. Each has
its own strengths and weaknesses, which can make it more
suitable for modeling certain views than others [12].

This paper using UML 2.0 activity diagrams [13] and
the SPEM profile [14] stresses the functional, informational,
organizational, and behavioral views for the SIQinU process.
Modeling its process helps to (i) ease the repeatability
and understandability among practitioners, (ii) integrate
and formalize different activities that are interrelated in
different phases, and (iii) promote the learnability and
interoperability by reusing the same ontological base coming
from the C-INCAMI framework. This paper is an extension
of the work presented in [15] elaborating on new aspects
and views (e.g., informational and organizational) for both
GOCAME and SIQinU process, as we remark later on.
Summarizing, the main contributions of this paper are

(i) a six-phased strategy (SIQinU) useful for under-
standing and improving the QinU for WebApps,
which is specified and illustrated from the process
viewpoint regarding activities (i.e., the functional
view), interdependencies (behavioral view), arti-
facts (informational view), and roles (organizational
view).

(ii) foundations for reusing a multipurpose goal-
oriented strategy (i.e., GOCAME) to derive and
integrate more specific-purpose strategies (e.g.,
SIQinU) regarding its conceptual M&E framework,
methods, and process views.

The remainder of this paper is organized as follows. Section 2
gives an overview of the six-phased SIQinU strategy.
Section 3 provides the GOCAME rationale considering its
three pillars, which are to a great extent reused by SIQinU;
particularly, in Section 3.4, we discuss why SIQinU is in
alignment with GOCAME regarding its conceptual M&E
framework (Section 3.1), its process views (Section 3.2), and
its methods (Section 3.3). Section 4 models and illustrates
the six-phased SIQinU process from the above-mentioned
process views. Section 5 analyzes related work considering
the two quoted contributions, and, finally, in Section 6,
concluding remarks as well as future work are discussed.

2. Overview of the SIQinU Strategy

SIQinU is an evaluation-driven strategy to iteratively and
incrementally improve a WebApp’s QinU by means of
mapping actual system-in-use problems—that happened
while real users were performing common WebApp tasks—
to measurable EQ product attributes and by then improving

the current WebApp and assessing the gain both at EQ and
QinU levels. SIQinU can be implemented in an economic
and systematic manner that alleviates most of the problems
identified with typical usability testing studies which can
be expensive, subjective, nonrepeatable, time consuming,
and unreliable due to users being observed in an intrusive
way. This is accomplished through utilizing server-side
capabilities to collect user usage data from log files adding,
for example, snippets of code in the application to specifically
record data used to calculate measures and indicator values
for QinU in a nonintrusive way.

Note that SIQinU can apply to systems in use other
than WebApps if data can be collected for analysis regarding
user activities. This may be possible in client-server network
environments where the developer has control over the server
code and the activities of users at their client workstations
can be collected. Therefore, the major constraint is in
collecting easily large amounts of data in a nonintrusive
manner from which to measure and evaluate the QinU
serving as the basis for improvement.

The SIQinU strategy uses quality models such as those
specified in the ISO 25010 standard [1] and its enhancement,
that is, the 2Q2U quality framework [2]. Once the QinU
model has been established, the data collected, and metrics
and indicators calculated, a preliminary analysis is made.
If the agreed QinU level is not met, then EQ requirements
are derived considering the application’s QinU problems and
its tasks, subtasks, and associated screens. In turn, taking
into account the derived EQ requirements, an evaluation of
the WebApp attributes is performed by inspection. Thus a
product analysis regarding the EQ evaluation is performed,
and changes for improvement are recommended. If the
improvement actions have been implemented, then the new
version is reevaluated to gauge the improvement gain both
from the EQ and the QinU standpoint. Ultimately, SIQinU
is a useful strategy not only for understanding but also—and
most importantly—for improvement purposes.

SIQinU uses the concepts for nonfunctional require-
ments specification, measurement, and evaluation design,
and so forth, established in the C-INCAMI framework as we
will see in Section 3.1. Also, SIQinU has an integrated, well-
defined, and repeatable M&E process, which follows to great
extent the GOCAME process as we will discuss in Sections
3.2 and 3.3. Specifically, the SIQinU process embraces six
phases as shown in Figure 2, which stresses the main phases
and interdependencies.

Additionally, Table 1 provides, with Phase (Ph.) reference
numbers as per Figure 2, a brief description of each phase,
the involved activities, and main artifacts. Section 4 thor-
oughly illustrates phases, activities, interdependencies, arti-
facts, as well as roles taking into account aspects of the func-
tional, behavioral, informational, and organizational views.

Lastly, in the Introduction, we stated as contribution that
GOCAME—a previously developed strategy—can be reused
to derive and integrate more specific-purpose strategies (as
is the case of SIQinU) regarding its conceptual M&E frame-
work, process, and methods. Therefore, in the following
section, the GOCAME strategy regarding these principles is
outlined.



4 Advances in Software Engineering

Specify requirements

and evaluation criteria

for QinU (Ph. I)

Perform QinU
evaluation
(Ph. II/VI)

[else]

[true]

Were improvement actions
performed for the product?

Derive/specify
requirements and

evaluation criteria for
EQ (Ph. III)

[else] [else]

[true]

Should improvement actions
be performed for the product?

Perform EQ evaluation
and analysis (Ph. IV)

Recommend and perform
improvement actions for

EQ (Ph. V)

Conduct improvement
actions analysis (Ph. VI)

Conduct preliminary
analysis (Ph. II)

Does product’s QinU
satisfy requirements?

Do you want to derive/specify other

requirements for EQ?

[true]

[else]

[true]

Ph.: phase
EQ: external quality
QinU: quality in use

≪ decision input ≫

≪ decision input ≫

≪ decision input ≫

≪ decision input ≫

Figure 2: Process overview of SIQinU stressing phases and interdependencies.

3. GOCAME Strategy

GOCAME is a multipurpose M&E strategy that follows
a goal-oriented and context-sensitive approach in defining
projects. It allows the definition of M&E projects including
well-specified context descriptions, providing therefore more
robust evaluation interpretations among different project
results at intra- and interorganization levels.

GOCAME is based on the three above-mentioned pillars,
namely, a conceptual framework (described in Section 3.1); a
M&E process (Section 3.2); methods and tools (Section 3.3).
Finally, in Section 3.4, we discuss why SIQinU is in alignment
with GOCAME regarding these capabilities.

3.1. C-INCAMI Conceptual Framework. The C-INCAMI
framework provides a domain (ontological) model defining
all the concepts and relationships needed to design and
implement M&E processes. It is an approach in which the
requirements specification, M&E design, and analysis of
results are designed to satisfy a specific information need in
a given context. In C-INCAMI, concepts and relationships
are meant to be used along all the M&E activities. This way,
a common understanding of data and metadata is shared
among the organization’s projects lending to more consistent
analysis and results across projects.

Following the main activities of the process (shown in
Section 3.2), the framework—that is, the related concepts
and relationships—is structured in six components or
modules, namely,

(i) measurement and evaluation project definition;

(ii) nonfunctional requirements specification;

(iii) context specification;

(iv) measurement design and implementation;

(v) evaluation design and implementation;

(vi) analysis and recommendation specification.

For illustration purposes, Figure 3 shows the main concepts
and relationships for four components (i.e., from (ii) to (v)),
and Table 2 defines the used terms, stressed in italic in the
following text). The entire modeling of components can be
found in [4, 5].

Briefly outlined, the GOCAME strategy follows a goal-
oriented approach in which all the activities are guided
by agreed Information Needs; these are intended to satisfy
particular nonfunctional requirements of some Entity for a
particular purpose and stakeholder’s viewpoint. The non-
functional requirements are represented by Concept Models
including high-level Calculable Concepts, as in ISO 25010’s
quality models [1], which, in turn, measurable Attributes
of the entity under analysis are combined. The instantiated
quality models are the backbone for measurement and
evaluation. Measurement is specified and implemented by
using Metrics, which define how to represent and collect
attributes’ values; Evaluation is specified and implemented
by using Indicators, which define how to interpret attributes’
values and calculate higher-level calculable concepts of the
quality model.

Since each MEProject does not occur in isolation, we
therefore say that measurement and evaluation should be
supported by Context; thus, context specifications may be



Advances in Software Engineering 5

Table 1: SIQinU phases, activities, and artifacts.

Phases (Ph.) Phase description and activities involved Artifacts (work products)

Ph. I
Specify requirements
and evaluation
criteria for QinU

Taking into account the recorded data of the WebApp’s usage, we
reengineer QinU requirements. This embraces designing tasks,
defining user type, specifying usage context and characteristics.
Activities include (see Figure 8) (i) establish information need; (ii)
specify project context; (iii) design tasks; (iv) select QinU concept
model; (v) design QinU measurement and evaluation; (vi) design
Preliminary Analysis

(1) Information Need
specification

(2) Context specification
(3) Task/subtasks specification
(4) QinU NFR tree
(5) QinU metrics and indicators

specification
(6) Analysis design

Ph. II
Perform QinU
evaluation and
conduct preliminary
analysis

As per Ph. I, data is collected purposely targeting QinU attributes for
improvement. Depending on the WebApp’s data collection
capabilities, we collect data such as the date/time, the data is gathered,
errors, task, and subtask completion and accuracy, and so forth. It
includes (see Figure 12) (i) collect and parse data pertaining to tasks
with their subtasks; (ii) quantify QinU attributes; (iii) calculate QinU
indicators; (iv) conduct preliminary analysis

(1) Parsed data file
(2) Measure and indicator values

for QinU
(3) QinU preliminary analysis

report

Ph. III
Derive/Specify
Requirements and
Evaluation Criteria
for EQ

Based on Ph. I and II, we derive EQ requirements, that is,
characteristics and attributes, with their metrics and indicators in
order to understand the current WebApp’s quality. Activities include
(see Figure 13) (i) select EQ concept model; (ii) design EQ
measurement; (iii) design EQ evaluation

(1) EQ NFR tree
(2) EQ metrics and indicators

specification

Ph. IV
Perform EQ
evaluation and
analysis

Activities include (see Figure 15) (i) quantify EQ attributes; (ii)
calculate EQ indicators; (iii) conduct an EQ analysis and identify
parts of the WebApp that need improvement

(1) Measure and indicator values
for EQ

(2) EQ analysis report (and new
report after reevaluation)

Ph. V
Recommend, perform
improvement actions,
and reevaluate EQ

Using the EQ attributes that require improvement, we make
improvement recommendations for modifying the WebApp, that is,
version 1 to 1.1. Activities include (see Table 9) (i) recommend
improvement actions; (ii) design improvement actions; (iii) perform
improvement actions; (iv) evaluate improvement gain to note
improvement from benchmark in Ph. IV. Note that once changes
were made on the WebApp (Phase V), evaluators could detect that
other EQ attributes (from problems identified in QinU) should be
derived—under the premise that if further EQ improvement in these
new attributes will result in greater impact on the improvement gain
in QinU. This concern is taken into account in the process as shown
in Figure 2

(1) EQ recommendations report
(2) Improvement plan
(3) New application version

Ph. VI
Reevaluate QinU and
analyze improvement
actions

Once the new version has been used by real users, we evaluate QinU
again to determine the influence of what was improved for the
WebApp’s EQ on QinU. This provides insight to further develop the
depends-on and influences relationships [8]. Activities include (i)
evaluate QinU again to determine level of improvement from Ph. II;
(ii) conduct improvement action analysis, which includes developing
depends-on and influences relationships between EQ improvements
and QinU

(1) New measure and indicator
values for QinU

(2) QinU improvement analysis
report

(3) EQ/QinU attribute
relationship table (see Table 11)

provided in order to support sounder analysis, interpreta-
tions, and recommendations. A summarized description for
each component is provided below.

3.1.1. M&E Project Definition Component. This component
defines and relates a set of Project concepts needed to articu-
late M&E activities, roles, and artifacts.

A clear separation of concerns among Nonfunctional
Requirements Project, Measurement Project, and Evaluation
Project concepts is made for reuse purposes as well as for

easing management’s role. The main concept in this compo-
nent is a measurement and evaluation project (MEProject),
which allows defining a concrete requirement project with
the information need and the rest of the nonfunctional
requirements information. From this requirement project,
one or more measurement projects can be defined and
associated; in turn, for each measurement project, one
or more evaluation projects could be defined. Hence, for
each measurement and evaluation project we can manage
associated subprojects accordingly. Each project also has
information such as responsible person’s name and contact



6 Advances in Software Engineering

Table 2: Some M&E terms—see [4] for more details.

Concept Definition

Project terms

Evaluation project
A project that allows, starting from a measurement project and a concept
model of a nonfunctional requirement project, assigning indicators, and
performing the calculation in an evaluation process.

Measurement project
A project that allows, starting from a nonfunctional requirements project,
assigning metrics to attributes, and recording the values in a measurement
process.

MEProject (i.e., measurement and evaluation
project)

A project that integrates related nonfunctional requirements, measurement and
evaluation projects, and then allows managing and keeping track of all related
metadata and data.

Project
Planned temporal effort, which embraces the specification of activities and
resources constraints performed to reach a particular goal.

Nonfunctional requirements project
A project that allows specifying nonfunctional requirements for measurement
and evaluation activities.

Nonfunctional requirements terms

Attribute (synonyms: property, feature) A measurable physical or abstract property of an entity category.

Calculable concept (synonym: characteristic,
dimension)

Abstract relationship between attributes of entities and information needs.

Concept model (synonyms: factor, feature model)
The set of subconcepts and the relationships between them, which provide the
basis for specifying the concept requirement and its further evaluation or
estimation.

Entity A concrete object that belongs to an entity category.

Entity category (synonym: object) Object category that is to be characterized by measuring its attributes.

Information need Insight necessary to manage objectives, goals, risks, and problems.

Requirement tree
A requirement tree is a constraint to the kind of relationships among the
elements of the concept model, regarding the graph theory.

Context terms

Context

A special kind of entity representing the state of the situation of an entity,
which is relevant for a particular information need. The situation of an entity
involves the task, the purpose of that task, and the interaction of the entity with
other entities as for that task and purpose.

Context property (synonyms: context attribute,
feature)

An attribute that describes the context of a given entity; it is associated to one
of the entities that participates in the described context.

Measurement terms

Calculation method
A particular logical sequence of operations specified for allowing the realization
of a formula or indicator description by a calculation.

Direct metric (synonyms: base, single metric)
A metric of an attribute that does not depend upon a metric of any other
attribute.

Indirect metric (synonyms: derived, hybrid metric)
A metric of an attribute that is derived from metrics of one or more other
attributes.

Measure
The number or category assigned to an attribute of an entity by making a
measurement.

Measurement An activity that uses a metric definition in order to produce a measure’s value.

Measurement method (synonyms: counting rule,
protocol)

The particular logical sequence of operations and possible heuristics specified
for allowing the realization of a direct metric description by a measurement.

Metric The defined measurement or calculation method and the measurement scale.

Scale

A set of values with defined properties. Note. The scale type depends on the
nature of the relationship between values of the scale. The scale types mostly
used in software engineering are classified into nominal, ordinal, interval, ratio,
and absolute.

Unit
A particular quantity defined and adopted by convention, with which other
quantities of the same kind are compared in order to express their magnitude
relative to that quantity.



Advances in Software Engineering 7

Table 2: Continued.

Concept Definition

Evaluation terms

Decision criterion (synonym: acceptability level)
Thresholds, targets, or patterns used to determine the need for action or
further investigation, or to describe the level of confidence in a given result.

Elementary indicator (synonyms: elementary
preference, criterion)

An indicator that does not depend upon other indicators to evaluate or
estimate a calculable concept.

Elementary model (synonym: elementary criterion
function)

Algorithm or function with associated decision criteria that model an
elementary indicator.

Evaluation (synonym: calculation)
Activity that uses an indicator definition in order to produce an indicator’s
value.

Global indicator (synonyms: global preference,
criterion)

An indicator that is derived from other indicators to evaluate or estimate a
calculable concept.

Global model (synonyms: scoring, aggregation
model, or function)

Algorithm or function with associated decision criteria that model a global
indicator.

Indicator (synonym: criterion)
The defined calculation method and scale in addition to the model and
decision criteria in order to provide an estimate or evaluation of a calculable
concept with respect to defined information needs.

Indicator value (synonym: preference value)
The number or category assigned to a calculable concept by making an
evaluation.

information, starting and ending date, amongst other rele-
vant information. Ultimately, this separation of concerns for
each MEProject facilitates the traceability and consistency for
intra- and interproject analysis.

3.1.2. Nonfunctional Requirements Specification Component.
This component includes concepts and relationships needed
to define the nonfunctional requirements for measurement
and evaluation. One key concept is the Information Need,
which specifies (see Figure 3)

(i) the purpose for performing the evaluation (which
can be for instance “understand,” “predict,”
“improve,” “control,” etc.);

(ii) the focus concept (CalculableConcept) to be assessed
(e.g., “operability,” “quality in use,” “actual usability,”
etc.);

(iii) the category of the entity (EntityCategory) that will
be assessed, for example, a “Web application” (which
its superCategory is a “product” or “information
system”) and the concrete Entities (such as “JIRA,”
“Mantis” WebApps, etc.). Other super categories for
entities can be “resource,” “process,” “information
system-in-use” (e.g., as a Web application-in-use),
and “project”

(iv) the userViewpoint (i.e., the intended stakeholder as
“developer,” “final user,” etc.) from which the focus
concept (and model) will be evaluated;

(v) the Context that characterizes the situation defined by
the previous items to a particular MEProject.

The focus concept constitutes the higher-level concept of the
nonfunctional requirements; in turn, a calculable concept
and its subconcepts are related by means of a Concept Model.

This model may be a tree-structured representation in terms
of related mid-level calculable concepts and lower-level
measurable Attributes, which are associated to the target
entity. Predefined instances of metadata for information
needs, entities, and entity categories, calculable concepts,
attributes, and so forth, and its corresponding data can
be obtained from an organizational repository to support
reusability and consistency in the requirements specification
along the organizational projects.

3.1.3. Context Specification Component. This component
includes concepts and relationships dealing with the context
information specification. The main concept is Context,
which represents the relevant state of the situation of the
entity to be assessed with regard to the stated information
need. We consider Context as a special kind of Entity in
which related relevant entities are involved. Consequently,
the context can be quantified through its related entities. By
relevant entities, we mean those that could affect how the
focus concept of the assessed entity is interpreted (examples
of relevant entities of the context may include resources as a
network infrastructure, a working team, lifecycle types, the
organization, or the project itself, among others).

In order to describe the situation, attributes of the
relevant entities (involved in the context) are used. These
are also Attributes called Context Properties and can be
quantified to describe the relevant context of the entity under
analysis. A context property inherits the metadata from
the Attribute class such as name, definition, and objective,
and also adds other information (see Figure 3). All these
context properties’ metadata are meant to be stored in
the organizational repository, and, for each MEProject, the
particular metadata and its values are stored as well. A
detailed illustration of context and the relationship with
other C-INCAMI components can be found in [5].



8 Advances in Software Engineering

requirements characterizedBy

InformationNeed

purpose
userViewpoint

relatedEntity1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

specifies

focus

CalculableConcept

name

definition

references

subconcept

object

EntityCategory

name

description

superCategory

Entity

name

description

combines

evaluates

ConceptModel

name
specification
references
constraints

Attribute

name
definition
objective

quantifies

context

Context

actualContext

describedBy

ContextProperty

weight

relevance

evaluation
evaluates

GlobalModel

interpretedUsing interpretedUsing

modeledBy

GlobalIndicator

operator

DecisionCriterion

name

description

lowerThreshold

upperThreshold

ElementaryModel

relatedIndicators

IndicatorValue

value

modeledBy

ElementaryIndicator

Indicator

name
weight
author
version

contains

relatedTo

produces

Evaluation

timestamp

measurement

MeasurementMethod CalculationMethod

measuredUsing

DirectMetric

Method

name
specification
references

calculatedUsing

IndirectMetric

formula

relatedMetric

refersTo

Measurement

timeStamp
dataCollectorName
collector ContactInfo

contains

Scale

scaleType

Unit

name

description

acronym

produces

Measure

value

expressedIn

includes

relatedTo

Metric

name

objective

author

version

described by

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

1..∗

1..∗

1..∗

1..∗

1..∗ 1..∗
1..∗

1..∗

1..∗

1..∗

1..∗

1..∗ 2..∗

1..∗1..∗

associated with

belongs to

relatedContextProperty

represneted by

Figure 3: Main concepts and relationships of the C-INCAMI framework. Four out of six C-INCAMI components are depicted as packages,
namely, nonfunctional requirements specification, context specification, measurement design and implementation, and evaluation design
and implementation.

3.1.4. Measurement Design and Implementation Compo-
nent. This module includes the concepts and relationships
intended to specify the measurement design and imple-
mentation, for instance, the concrete Entities that will be
measured, the selected Metric for each attribute, and so on.

Regarding measurement design, a metric provides a
Measurement specification of how to quantify a particular
attribute of an entity, using a particular Method, and how to
represent its values, using a particular Scale. The properties
of the measured values in the scale with regard to the
allowed mathematical and statistical operations and analysis
are given by the scaleType [16]. Two types of metrics are
distinguished. Direct Metrics are those for which values are
obtained directly from measuring the corresponding entity’s
attribute, by using a Measurement Method. On the other
hand, Indirect Metrics’ values are calculated from others
direct metrics’ values following a function specification and
a particular Calculation Method.

For measurement implementation, a Measurement spec-
ifies the activity by using a particular metric description in

order to produce a Measure value. Other associated metadata
is the data collector name and the timestamp in which the
measurement was performed.

3.1.5. Evaluation Design and Implementation Component.
This component includes the concepts and relationships
intended to specify the evaluation design and implemen-
tation. Indicator is the main term, which allows specifying
how to calculate and interpret the attributes and calculable
concepts of nonfunctional requirement models.

Two types of indicators are distinguished. First, Ele-
mentary Indicators that evaluate lower-level requirements,
namely, attributes combined in a concept model. Each
elementary indicator has an Elementary Model that pro-
vides a mapping function from the metric’s measures (the
domain) to the indicator’s scale (the range). The new scale
is interpreted using agreed Decision Criteria, which help
analyze the level of satisfaction reached by each elemen-
tary nonfunctional requirement, that is, by each attribute.
Second, Partial/Global Indicators, which evaluate mid-level



Advances in Software Engineering 9

and higher-level requirements, that is, subcharacteristics and
characteristics in a concept model. Different aggregation
models (GlobalModel), like logic scoring of preference mod-
els, neuronal networks models, and fuzzy logic models, can
be used to perform evaluations. The global indicator’s value
ultimately represents the global degree of satisfaction in
meeting the stated information need for a given purpose and
user viewpoint.

As for the implementation, an Evaluation represents the
activity involving a single calculation, following a partic-
ular indicator specification—either elementary or global—
producing an Indicator Value.

It is worthy to mention that the selected metrics are
useful for a measurement process as long as the selected
indicators are useful for an evaluation process in order to
interpret the stated information need.

3.1.6. Analysis and Recommendation Specification Compo-
nent. This component includes concepts and relationships
dealing with analysis design and implementation as well
as conclusion and recommendation. Analysis and recom-
mendation component uses information coming from each
MEProject (which includes requirements, context, measure-
ment, and evaluation data and metadata). By storing all
this information and by using different kinds of statistical
techniques and visualization tools, stakeholders can analyze
the assessed entities’ strengths and weaknesses with regard to
established information needs, and justify recommendations
in a consistent way. Note this component is not shown in
Figure 3. However, it is shown in Table 5 from the process
specification standpoint.

3.2. GOCAME Measurement and Evaluation Process. When
modeling a process, often engineers think more about what
a process must do rather than how activities should be
performed. In order to foster repeatability and reproducibil-
ity, a process specifies (i.e., prescribes or informs) a set of
phases and activities, inputs and outputs, interdependencies,
among other concerns. Also, to deal with the inherent
complexity of processes, process views—also quoted in
process modeling literature as perspectives—are used. A view
is a particular model or approach to represent, specify, and
communicate regarding the process. For instance, according
to [10], a process can be modeled taking into account four
views, namely, functional, behavioral, informational, and
organizational.

Considering these process views, the functional per-
spective for GOCAME represents what activities and tasks
(instead of the often-used term “task” in process modeling,
which represents a fine grained or atomic activity, we will use
the term “sub-activity” in the rest of the text, since, in
Section 4, for QinU modeling, the term task has a very
specific meaning) should be specified, what hierarchical
activities structure (also known as task breakdown structure)
there exists, what conditions (pre- and postconditions)
should be accomplished, and what inputs and outputs
(artifacts) will be required. Taking into account the termi-
nology and components used in the C-INCAMI framework
(Section 3.1), the integrated process of GOCAME embraces

the following core activities: (i) Define Non-Functional
Requirements; (ii) Design the Measurement; (iii) Design the
Evaluation; (iv) Implement the Measurement; (v) Implement
the Evaluation; (vi) Analyze and Recommend as shown in
Figure 4. In addition, in Table 3, we enumerate these six
activities, their involved subactivities, and the main output
artifacts.

The behavioral view represents the dynamics of the
process, that is, the sequencing and synchronization of activ-
ities, parallelisms, iterations, feedback loops, beginning and
ending conditions, among other issues. The core GOCAME
activities as well as sequences, parallelisms, main inputs,
and outputs are depicted in Figure 4. The �datastore�
stereotype shown in the figure represents repositories; for
instance, the Metrics repository stores the metadata for the
previously designed metrics. More details for the GOCAME
functional and behavioral process views can be found in [6].

On the other hand, the informational view is concerned
with those artifacts produced or required (consumed) by
activities, the artifact breakdown structure, strategies of con-
figuration management, and traceability models. For exam-
ple, for illustration purpose, in Figure 5, the structure for
the Non-Functional Requirements Specification, and Metrics
Specification documents, which are outputs of A.1 and A.2
activities (see Table 3) is modeled. As the reader can observe
in Figure 5(a), the Non-Functional Requirements Specification
artifact is composed of the Information Need Specification,
the Context Specification and the Non-Functional Require-
ments Tree documents. Besides, the Metrics Specification arti-
fact (Figure 5(b)) is composed of a set of one or more Metric
Specification, which in turn is composed of a Scale and a
Calculation or Measurement Method descriptions. Note that,
aimed at easing the communication among stakeholders
these models can complement the textual specification made
in the third column of Table 3.

Finally, the organizational view deals with what agents
and their associated resources participate-plan-execute-
control what activities; which roles (in terms of respon-
sibilities and skills) are assigned to agents; what groups’
dynamic and communication strategies are used, among
other aspects. To illustrate this, Figure 6 depicts the different
roles and their associated GOCAME activities. In Table 4,
each role definition and its involved activities are also listed.
Note that we have used italics in the definition column (in
Table 4) to show the terminological correspondence between
the process role definition and the C-INCAMI conceptual
framework. It is important to remark that a role can be
assumed by a human or an automated agent. And a human
agent can be embodied by one or more persons, that is, a
team.

In order to combine the above views, Table 5 presents
a template which specifies just the Analyze and Recommend
activity. The template specifies the activity name, objective
and description, the subactivities and involved roles, input
and output artifacts, pre- and postconditions. Also a diagram
representing the Analyze and Recommend activity is attached
as well to enable understanding and communicability.

Summarizing, the GOCAME M&E process can be
described as follows. Once the nonfunctional requirements



10 Advances in Software Engineering

Define

requirements

Design the
measurement

Design the
evaluation

Implement the
measurement 

Implement the
evaluation

Analyze and
recommend

(A1)
(A2)

(A4)

(A3)

(A5) (A6)

[Metrics]

[Indicators]

[Metrics
specification]

[Indicators

specification]

[Nonfunctional

requirements specification]

[Measures]

[Indicators’ values]

[Goal/problem/risk]

[Conclusion/

recommendation

report]

nonfunctional

≪ information≫ ≪ datastore ≫ ≪ datastore ≫

≪ datastore ≫

≪ datastore ≫

Figure 4: Overview of the GOCAME measurement and evaluation process.

Table 3: GOCAME core activities and main output artifacts.

Activities (A.) Subactivities Artifacts (Work Products)

A.1 Define
Nonfunctional
requirements

Subactivities include (i) establish information need; (ii) specify
project context; (iii) select a concept model.
Note that these (and below) subactivities can in turn be broken
down in new ones—see [6] for more details.

Nonfunctional requirements
specification (this artifact is composed
of (i) information need specification;
(ii) context specification; (iii)
nonfunctional requirements tree)

A.2 Design the
measurement

Subactivities include (i) establish entity (optional); (ii) assign one
metric to each attribute.

Metrics specification

A.3 Implement the
measurement

Subactivities include (i) establish entity; (ii) measure attributes Measure values

A.4 Design the
evaluation

Subactivities include (i) identify elementary indicators; (ii) identify
partial and global indicators.

Indicators specification (this artifact is
composed of (i) elementary indicators
specification; (ii) partial/global
indicators specification)

A.5 Implement the
evaluation

Subactivities include (i) calculate elementary indicators; (ii)
calculate partial and global indicators

Indicator values

A.6 Analyze and
recommend

Subactivities include (i) design the analysis; (ii) implement the
analysis; (iii) elaborate the conclusion report; (iv) perform
recommendations.

Conclusion/recommendation report
(this artifact is composed of (i)
analysis specification; (ii) analysis
report; (iii) conclusion report; (iv)
recommendations report)

project has been created by the nonfunctional requirements
manager, then, the define non-functional requirements activity
has a specific goal or problem (agreed with the evaluation
requester) as input and a nonfunctional specification document
as output. Then, in the design the measurement activity, the
metrics expert identifies the metrics to quantify attributes.
The metrics are selected from a metrics repository, and
the output is the metric specification document. Once the
measurement was designed—taking into account raised
issues for the evaluator requester, for example, the precision
of metrics, and so forth—the evaluation design and the

measurement implementation activities can be performed in
any order or in parallel as shown in Figure 4. Therefore,
the design the evaluation activity is performed by the indi-
cators expert who allows identifying elementary and global
indicators and their acceptability levels (agreed also with the
evaluation requester). Both the measurement design and the
evaluation design are led by the measurement and evaluation
managers accordingly. To the implement the measurement
activity, the data collector uses the specified metrics to
obtain the measures, which are stored in the measures
repository. Next, the implement the evaluation activity can be



Advances in Software Engineering 11

 requirements
specification

Information
need

specification

Context
specification

 requirements
tree

Nonfunctional

Nonfunctional

(a)

Metrics
specification

Metric specification

Name
Objective
Author
Version

Method

Name

Specification

Reference

Scale

Scale type

Unit

1..∗

(b)

Figure 5: Excerpt of the informational view for A.1 and A.2 in Table 3, regarding artifact composition. (a) Nonfunctional requirements
specification documents; (b) metrics specification document.

Design the
measurement

(A2)

Evaluation
manager

Measurement
manager

Nonfunctional
requirements

manager

Metrics
expert

Results
communicator

Recommender

Evaluation
requester Data

collector
Indicators

expert
Data

analyzer
Indicator
calculator

Implement the
measurement

(A3)

Define
nonfunctional
requirements

(A1)

Analyze and
recommend

(A6)

Design the
evaluation

(A4)

Implement the
evaluation (A5)

Analysis
designer

QA manager

Figure 6: The organizational view: roles assigned to the GOCAME activities.

carried out by the indicator calculator—this role usually is
enacted by a tool. Finally, analyze and recommend activity is
performed by analysis designer, data analyzer, recommender,
and results communicator roles. This activity has as inputs
measures and indicators values (i.e., data), the requirements
specification document, and the associated metrics and
indicators specifications (i.e., metadata) in order to produce
a conclusion/recommendation report.

3.3. GOCAME Methods and Tools: WebQEM and C-
INCAMI Tool. While activities state “what” to do, methods
describe “how” to perform these activities accomplished by
agents and roles, which in turn can be automated by tools.
In addition, a methodology is a set of related methods.
Since the above M&E process includes activities such as
specify the requirements tree and identify metrics, we have
envisioned a methodology that integrates all these aspects
and tools that automate them; that is, a set of well-defined

and cooperative methods, models, techniques, and tools that,
applied consistently to the process activities, produces the
different outcomes.

Particularly, the WebQEM and its associated tool the so-
called C-INCAMI Tool (see screenshots in Figure 7) were
instantiated from the conceptual framework and process.
The methodology supports an evaluation-driven approach,
relying on experts and/or end users to evaluate and analyze
different views of quality such as EQ and QinU for software
and system-in-use applications. Note that GOCAME strategy
and its methodology can be used to evaluate not only
software/WebApps but also other entity categories, such as
resources and processes.

In addition to the above-mentioned views, a method-
ological view is presented in [11]. This represents the process
constructors to be applied to the different descriptions of
activities in a given process. Note that, for a specific activity
description, we can have one or more methods that give



12 Advances in Software Engineering

Table 4: GOCAME role definitions and involved activities.

Role name Definition/comment Activities (as per Figure 4)

Quality Assurance
(QA) Manager

Responsible for leading a measurement and evaluation project
(MEProject in Table 2) regarding the requester needs. Note this role is
specified by three subroles as per Figure 5.

Note this role is responsible of
the activities involved in three
specific subroles as per Figure 5.

Nonfunctional
requirements
manager

Responsible for the nonfunctional requirements project. This role
should be played by a nonfunctional requirement engineer.

(i) Define non-functional
requirements

Measurement
manager

Responsible for leading a measurement project.
(i) Design the measurement
(ii) Implement the measurement

Evaluation manager Responsible for leading an evaluation project.
(i) Design the evaluation
(ii) Implement the evaluation

Evaluation requester
Responsible for requesting an evaluation. Note that this role can be
accomplished by a human or an organization.

(i) Define nonfunctional
requirements
(ii) Design the measurement
(iii) Design the evaluation

Metrics expert
Responsible for identifying the appropriate metrics from a catalogue
for each attribute of the requirements tree, based on the established
information need.

(i) Design the measurement

Data collector
Responsible for gathering measures of the attributes using the metrics
specification. Note that the data collector role can be accomplished by
either a human agent or an automatic agent.

(i) Implement the measurement

Indicators expert

Responsible for identifying the most appropriate indicators from a
catalogue and to define decision criteria for each attribute and
calculable concept of the requirements tree based on the established
information need.

(i) Design the evaluation

Indicator calculator
Responsible for calculating the indicators values using the indicators
specification. Note this role usually is accomplished by an automatic
agent.

(i) Implement the evaluation

Analysis Designer

Responsible for identifying the appropriate data analysis methods
and techniques to be used regarding scales, scale types, and the
project/business commitment in addition to visualization and
documentation techniques.

(i) Analyze and Recommend

Data analyzer
Responsible for conducting the data analysis based on the design of
the analysis. Note this role can be accomplished by either a human
agent or an automatic agent or both.

(i) Analyze and recommend

Recommender
Responsible for conducting the recommendations based on the
conclusion report and taking into account the business commitment.

(i) Analyze and recommend

Results
communicator

Responsible for communicating the evaluation results and
recommendations to the evaluation requester.

(i) Analyze and recommend

support to the same activity, and, for a given method, we
can have one or more tools that enact it. For instance, in
Table 3, for the A.5 activity, and particularly for the calculate
the partial/global indicators subactivity, many methods can
accomplish this such as “linear additive scoring method,”
“neural network method,” among others.

3.4. Why Is SIQinU in Alignment with GOCAME? As we have
indicated in the last paragraph of Section 2, SIQinU also
relies on the three GOCAME principles above outlined and
depicted in Figure 1. In fact, SIQinU utilizes the C-INCAMI
conceptual base, underlying process and methods as we
discuss in Section 4. However, since SIQinU is a specific-
purpose goal-oriented strategy, it has specific activities,
some particular methods, and procedures that are not taken
into account in GOCAME. Moreover, while GOCAME is a

multipurpose strategy regarding the strategy aim, SIQinU is
a specific-purpose strategy. This is so, because in GOCAME
the information need purpose can be “understand,” “pre-
dict,” “improve,” “control”—as indicated in Section 3.1.2—
while, in SiQinU, the purposes are just “understand” and
ultimately “improve.” In addition, GOCAME was designed
to allow assessing different calculable concepts and enti-
ties such as the EQ or QinU of any product (including
WebApps), the cost of a product, the capability quality of a
resource, among others. Meanwhile, SIQinU was designed
to evaluate specifically QinU of systems in-use (in a non-
intrusive way) and EQ of systems, as for example, WebApps.
Even more in SiQinU, from the nonfunctional requirements
standpoint, QinU is evaluated from the “do goals” or
pragmatic view, rather than from the “be goals” (subjective
view), as thoroughly discussed in [2].



Advances in Software Engineering 13

Table 5: Process template in which information and views are documented for the Analyze and Recommend activity.

Activity: analyze and recommend Code (in Figure 4): A6

Objective: elaborate and communicate a conclusion report and (if necessary) a recommendation report for a decision-making
process.

Description: identify and select procedures, techniques and tools to be used in order to analyze data, metadata, and information,
coming from metrics and indicators, for a given information need. Based on the analysis results, a conclusion report is produced,
and, a recommendations report, if necessary, is yielded as well. All these reports are communicated to the evaluation requester.

Design the

analysis (A6.1)

Implement the

analysis (A6.2)

Elaborate the

conclusion

report (A6.3)

Perform

recommendations

(A6.4)

[Metrics

specification]

[Indicators

specification]

[Conclusion

report]

[Analysis

report]

[Non-functional

requirements specification]

[Recommendations
report]

[Indicator’s values][Measures]

[Project/business
commitment]

Are recommendations needed?

[Analysis

specification]

[true]

[else]

Analysis designer Data analyzer Results
communicator

Recommender

≪ datastore≫≪ datastore≫

≪ information≫

≪ decision input≫

Subactivities:

(i) Design the analysis (A6.1)

(ii) Implement the analysis (A6.2)

(iii) Elaborate the conclusion report (A6.3)

(iv) Perform recommendations (A6.4)

Involved roles:

(i) Analysis designer

(ii) Data analyzer

(iii) Recommender

(iv) Results communicator

Input artifacts: Output Artifacts:

(i) Nonfunctional requirements specification Conclusion/Recommendation report.

(ii) Metrics specification Note that this artifact is composed of

(iii) Indicators specification (i) Analysis specification;

(iv) Measures (ii) Analysis report;

(v) Indicators values (iii) Conclusion Report; and

(vi) Project/business commitment (iv) Recommendations report.

Preconditions: a MEProject must be implemented.

Postconditions: the MEProject finishes when the
conclusion and/or recommendation report is
communicated and agreed on between the QA manager
and the requester of the evaluation.

Considering the process, SIQinU also reuses the
GOCAME activities. For example, the GOCAME A1, A2,
A4 activities, and, to some extent, the A6 activity (recall
Figure 4) are included in SIQinU Ph. I and Ph. III (recall
Figure 2). Likewise, the A3 and A5 activities are included
in Ph. II and Ph. IV phases. However, there are particular
activities in SIQinU that are not included into GOCAME.
For example, in Phase V, we have activities devoted to
produce WebApp improvements, as well as in Phase II,
there exist activities for data filtering and collection, since
SIQinU proposes utilizing server-side capabilities to gather,
in a nonintrusive way, user usage data.

Considering the conceptual framework, SIQinU reuses
totally C-INCAMI, that is, the ontological M&E conceptual
base and its six components commented in Section 3.1. As
above-mentioned SIQinU extends GOCAME activities, there
are new activities (e.g., in Ph V for improvement techniques,
and those related to nonintrusive data filtering in Ph. II),
which lack the ontological root in C-INCAMI. Note that
C-INCAMI concepts and components deal primarily with
nonfunctional requirements, measurement, and evaluation

issues, rather than functional aspects for design refactoring,
code programming or restructuring, and so forth, which
implies other domain scope and model. Note that C-
INCAMI is a flexible framework that can be extended and
linked with other domain models and frameworks to deal,
for example, with functional aspects.

Also measurement and evaluation methods as com-
mented in Section 3.3 are reused. However, other methods
and techniques that are not included in GOCAME such as
those for changing the current WebApp version (in Phase
V) are needed. Finally, all the roles defined in Table 4 are
totally reused as well, adding new ones for the activities of
Ph V as, for example, the “Maintenance Project Manager”
role (i.e., the responsible for leading a maintenance project
and identifying the appropriate methods, techniques, and
tools to be used for change—improve—the application) and
the “Developer” role (i.e., the responsible for conducting the
software/web application changes).

Despite the mentioned similarities with GOCAME, the
modeling of the functional and behavioral views in SIQinU
is necessary given the amount of involved phases, activities,



14 Advances in Software Engineering

Figure 7: Snapshots of the C-INCAMI tool.

subactivities, and their workflows. These issues will be
highlighted in the next section.

4. A Process Model View for SIQinU

Process modeling is rather a complex endeavor. Given the
inherent complexity of the process domain, a process can
be modeled taking into account different views as analyzed
in Section 3.2 for GOCAME. With the aim to model the
SIQinU phases and activities, their inputs and outputs,
sequences, parallelism, and iterations, we specify below using
UML activity diagrams and the SPEM profile [14], the
functional view taking into account behavioral concerns as
well. Aspects of the organizational and informational views
are to a lesser extent specified in the following diagrams,
since as indicated in Section 3.4 many of the roles and
artifacts are reused from the GOCAME strategy. Note that,
in order to facilitate the communication, automation, and
collaboration, different modeling languages and tools can be
used to specify all the views. Each has its own strengths and
weaknesses, which can make it more suitable for modeling
certain views than others [12]. However, nowadays, SPEM
is widely used and according to [17] can be adopted by
researchers and practitioners for different disciplines, not
just software engineering.

Also in Section 2 (Figure 2 and Table 1), we depicted the
SIQinU phases, so below we concentrate on the specifications
of activities and their descriptions. In order to illustrate
the SIQinU process, excerpts of a case study conducted in
mid-2010 are used (see details of the case study in [8]).
This case study examined JIRA (http://www.atlassian.com/),
a defect reporting WebApp in commercial use in over 24,000
organizations in 138 countries around the globe. JIRA’s
most common task, Entering a new defect, was evaluated
in order to provide the most benefit, since entering a new
defect represents a large percentage of the total usage of the
application. We studied 50 beginner users in a real work
environment in their daily routine of testing software and
reporting defects in a software testing department of ABC,
a company (with fictitious name but real one) specializing in
software quality and testing. The beginner users were testers

which were the majority of users. Although there are other
user categories such as test managers, QA managers, and
administrators, testers are the predominant user type, so we
chose beginner testers as our user viewpoint.

4.1. Phase I: Specify Requirements and Evaluation Criteria
for QinU. Once the requirements project has been created,
using the data of the WebApp’s usage recorded in log files,
we reengineer and establish QinU requirements, that is,
characteristics with measurable attributes, with the objective
of not only understanding but also improving the system-
in-use with real users. From observations of the actual
WebApp, this phase embraces defining user type, designing
tasks, specifying usage context and dimensions for QinU
(e.g., actual usability) and their attributes. Based on these
specifications, metrics (for measurement) and indicators (for
evaluation) are selected. Below we describe the seven core
activities (see the flow in Figure 8) involved in Ph. I.

4.1.1. Establish Information Need. This activity, according to
the C-INCAMI framework (recall requirements package in
Figure 3), involves Define the purpose and the user viewpoint,
establish the object and the entity under study, and identify
the focus of the evaluation (see Figure 9). These activities
are accomplished by the NFR manager role considering the
evaluation requester’s needs. In the case study, the purpose
for performing the evaluation is to “understand” and
“improve” the WebApp being used from the userViewpoint
of a “beginner tester.” The category of the entity (i.e., the
object) assessed was a “defect tracking WebApp” while the
entity being studied was “JIRA” (called in our study JIRA v.1).
The focus (CalculableConcept) assessed is “actual usability”
and its subcharacteristics, “effectiveness in use,” “efficiency in
use,” and “learnability in use” [2].

4.1.2. Specify Project Context. Once the information need
specification document is yielded, we optionally can Specify
Project Context as shown in Figure 8. It involves the Select
relevant Context Properties subactivity—from the organiza-
tional repository of context properties [5], and, for each



Advances in Software Engineering 15

Establish
information

need

Specify project
context

Select
concept model

Design tasks

Design
measurement

Design
evaluationDesign preliminary

analysis

[Information need
specification]

[Context specification] [Tasks/subtasks specification]

[QinU NFR
tree]

[QinU metrics
specification]

[QinU
indicators

specification]

[Goal/problem/risk] [Context properties] [Concept models]

[Metrics][Indicators]

[Analysis

design]

[define context]

[else]

≪ information≫ ≪ datastore ≫ ≪ datastore ≫

≪ datastore ≫≪ datastore ≫

Figure 8: Overview for the specify requirements and evaluation criteria for QinU process (Ph. I).

Establish information need

Define purpose Define user
viewpoint

Establish object Establish entity Identify focus

≪Workdefinition ≫

Figure 9: Activities for establish information need.

selected property, the Quantify Context Property activity
must be performed—based on the associated metric. In the
end, we get as output a context specification document for
the specific project.

4.1.3. Design Tasks. In this activity, the most common and
representative task or tasks should be designed. It is also
important to choose a task that is performed for which
sufficient data can be collected. In our case study, the selected
task by the evaluation requester was “entering a new defect,”
as indicated above. This JIRA task included 5 subtasks
specified by the task designer, namely: (i) Summary, steps,
and results; (ii) Add Detail Info; (iii) Add Environment Info;
(iv) Add Version Info; (v) Add Attachment (see details of
tasks and screens in [8]).

4.1.4. Select QinU Concept Model. It involves both Select
a Model and Edit the Model subactivities. Concept models
are chosen from an organizational repository regarding the

quality focus. For example, in our case study, the NFR
manager based on the previously stated information need
and taking into account the concept focus to evaluate actual
usability, he instantiated a concept model for the “do goals”
of the user [2]. Then, if the selected model is not totally
suitable, for example, some subcharacteristics or attributes
are missing, it is necessary to Edit the Model, adding or
removing subconcepts, and/or attributes accordingly.

Finally, a requirements tree where attributes are the leaves
and the concept focus is the root is yielded. For the selected
concept model and regarding the information need and
task at hand, the NFR manager instantiated the model as
shown in Table 6 (attributes are in italic). Basically, the NFR
manager, in the end, needs to satisfy the objectives of the
sponsoring organization, that is, the evaluation requester.

4.1.5. Design QinU Measurement. For each attribute of
the requirements tree—highlighted in italic in Table 6—we
Identify a Metric to quantify them. The appropriate metrics



16 Advances in Software Engineering

Table 6: Instantiated QinU NFR tree for JIRA case study.

1. Actual usability

1.1. Effectiveness in use

1.1.1. Subtask correctness

1.1.2. Subtask completeness

1.1.3. Task successfulness

1.2. Efficiency in use

1.2.1. Subtask correctness efficiency

1.2.2. Subtask completeness efficiency

1.2.3. Task successfulness efficiency

1.3. Learnability in use

1.3.1. Subtask correctness learnability

1.3.2. Subtask completeness learnability

1.3.3. Task successfulness learnability

are selected from a repository. In the C-INCAMI framework,
two types of metrics are specified, a direct metric which
applies a measurement method, that is, our data collection
procedures from log files, and an indirect metric which uses
a formula (based on other direct and/or indirect metrics)
and calculation method (recall measurement package in
Figure 3). If the metric is indirect, it is necessary identify
related metrics and identify attributes quantified by related
Metrics (see Figure 10). These two subactivities allow identi-
fying the extra attributes and metrics for the indirect metric
so that data collector may later gather the data accordingly.

In the JIRA case study, the metrics used to measure
attributes were selected by the metrics expert from a metric
catalogue which contains over 30 indirect metrics and their
associated direct metrics. Below we illustrate the selected
indirect metric for the subtask completeness efficiency
(coded 1.2.2 in Table 6) attribute:

Metric: average ratio of subtasks that are completed
incorrectly or correctly per unit of time to do it
(AvgRCput).

Interpretation: 0 <= AvgRCput, more is better.

Objective: calculate the overall average proportion of
the subtasks that are completed, whether correct or
incorrect, per time unit (usually seconds or minutes).

Calculation Method (Formula): AvgRCput =
AvgRC/AvgTC

AvgRC = Average ratio of subtasks that are
completed incorrectly or correctly
AvgTC = Average time for a complete subtask,
correct or incorrect

Scale: numeric

Type of Scale: ratio

Unit (type, description): subtasks effectiveness/time,
subtask completeness effectiveness per time unit
(usually seconds or minutes).

As final output of these activities, we get the QinU
metrics specification document.

4.1.6. Design QinU Evaluation. Once the metric specifica-
tions have been completed, we can design an indicator for
each attribute and calculable concept of the requirements
tree. Taking into account the C-INCAMI framework (recall
evaluation package in Figure 3), there are two indicator
types: elementary and global indicators. The elementary
Indicators evaluate attributes and map to a new scale based
on the metric’s measures. The new scale is interpreted to
analyze the level of satisfaction reached by each attribute.
On the other hand, the global indicators (also called
partial indicator if it evaluates a subcharacteristic) evaluate
characteristics in a concept model and serve to analyze the
level of global (or partial) satisfaction achieved.

Following the activities flow depicted in Figure 11, for
each attribute of the requirements tree, the indicators expert
should specify an elementary indicator by means of the next
iterative activities: establish the elementary model, establish the
calculation method (optional), and identify the scale.

The first activity (establish the elementary model) involves
establishing a function to map between measure and
indicator values and define the associated decision criteria
or acceptability levels (see Section 3.1.5). In our case, the
indicators expert and the evaluation requester defined three
acceptability ranges in the indicator percentage scale, namely,
a value within 70–90 (a marginal—bold—range) indicates
a need for improvement actions; a value within 0–70
(an unsatisfactory—italic—range) means changes must take
place with high priority; a score within 90–100 indicates
a satisfactory level—bold italic—for the analyzed attribute.
The acceptance levels in this case study were the same for all
indicators, both elementary and partial/global, but could be
different depending on the needs of the evaluation requester.

Note that the establish the calculation method activity is
not mandatory because usually the model used is an easily
interpreted function. In other cases, the calculation method
should be specified.

Regarding to the partial/global indicators, these are
specified in a similar way to the elementary indicators, as we
can see in Figure 11. For example, in the JIRA case study,
a global (linear additive) aggregation model to calculate
the requirements tree was selected, with equal weights for
their elements. This approach was used given that it was
an exploratory study. Different weights would be assigned
based on the requester’s objectives to reflect the different
levels of importance relative to one another. For example, for
effectiveness in use, some organizations may weigh mistakes
or correctness more heavily than completeness depending
on the domain. A pharmacy or accounting application, for
example, may have a higher weighting for accuracy.

The final output for the QinU evaluation design is
an indicators specification document for quality in use.
An artifact hierarchy (i.e., the informational view) of the
indicators specification document is shown in Figure 12.

4.1.7. Design Preliminary Analysis. Taking into account the
underlying SIQinU improvement objective, the specific
QinU requirements for the project, the task, the metrics and
indicators specifications, as well as the data properties with



Advances in Software Engineering 17

[attributes]

[QinU NFR

tree]

Identify
a metric

[is indirect metric]

[QinU metrics

specification]Identify

attributes

quantified by

related metrics

Identify

related

metrics

[else]

[Metric]

[Metric]

≪ iterative≫
≪ datastore ≫

Figure 10: Design QinU Measurement activity.

[QinU NFR tree]

Establish the
calculation method

Identify
the scale

Establish the

partial/global model

Establish the
calculation method

Identify

the scale
Assign values

to the
parameters of

the model

Establish the
elementary model

[QinU elementary

indicators
specification]

[QinU

partial/global

indicators

specification]

Do you want specify
the calculation method?

Do you want specify

the calculation method?

[Indicators]

[QinU metrics

specification]

[attributes]

[true]

[else]

[concepts]

[else]

[true]

≪iterative≫ ≪iterative≫

≪decision input≫ ≪decision input≫

≪ datastore≫

Figure 11: Design QinU evaluation activity.

regard to the scale, a preliminary analysis design should be
drawn by the analysis designer role. This activity involves
deciding on the allowable mathematical and statistical
methods and techniques for analysis regarding the scale type,
dataset properties, and so forth, the suitable tools for the
kinds of analysis at hand, the presentation, and visualization
mechanisms, and so forth.

4.2. Phase II: Perform QinU Evaluation and Analysis. This
phase involves the basic activities to accomplish the first
purpose of the SIQinU strategy, namely, understand the
current QinU satisfaction level of the actual WebApp in use.
To achieve this, the next four activities (see Figure 13) should
be performed.

4.2.1. Collect Data. Taking into account the tasks specifica-
tion, the log files with the user usage data are analyzed and
the relevant data is filtered and organized to facilitate the
measurement for each attribute in the next activity. Note that
a tool can be used to process the log file for extracting the
relevant data from user records.

4.2.2. Quantify Attributes. After collecting the data, we
derive measurement values for each attribute in the QinU
requirements tree. The values are obtained based on the
measurement or calculation methods specified in QinU met-
rics specification according to the design QinU measurement
activity (Figure 10).

4.2.3. Calculate Indicators. Taking into account the measures
(values) and the indicators specification, the indicators
values are calculated by the indicators calculator. The global
indicator value ultimately represents the degree of satisfac-
tion in meeting the stated information need for a concrete
entity, for a given purpose, and user viewpoint. Within the
calculate indicators activity, first, the calculate elementary
indicator activity should be performed for each attribute
of the requirements tree, and then, using these indicators’
values and the specified partial or global model, the partial
and global indicators are calculated by performing the
Calculate Partial/Global Indicator activity for each calculable
concept. Table 7, columns 2 and 3, shows each element of the
QinU nonfunctional requirements tree evaluated at task level



18 Advances in Software Engineering

Elementary
indicator

specification

Indicators

specification

Partial
indicator

specification

Global
indicator

specification

Scale

Scale type
unit

Decision
criterion

specification

Name

Description

Lower threshold

Upper threshold

Elementary model

Global model

Model

Name
specification

Indicator
specification

Name
objective

1..∗

1..∗

Figure 12: An informational view of the QinU indicators specification document.

This activity implies

data filtering and

organization

[Parser tool]

Collect data Quantify

attributes

[Parsed

data file]

[QinU measures]

[QinU metrics

specification] [QinU indicators’ values]

Calculate
indicators

[QinU NFR tree] [QinU indicators
specification]

Conduct
preliminary

analysis

[Tasks/subtasks

specification]

[QinU
preliminary

analysis
report]

[Log files]
≪ datastore ≫

≪ datastore ≫

≪ datastore ≫

Figure 13: Overview for the perform QinU evaluation and analysis phase (Ph. II).

with elementary, partial and global indicators for the current
version of JIRA (i.e., v.1).

4.2.4. Conduct Preliminary Analysis. After calculating indi-
cators at all levels, that is, elementary, partial, and global,
a preliminary analysis on the current JIRA WebApp task
is conducted by the data analyzer role. Basically, it follows
the analysis design (produced in the design preliminary
analysis activity, in Ph. I), that is, implementing the designed
procedures and planned tools, and storing results according
to established formats in order to produce the preliminary
analysis report. The analysis allows us to understand how the
application performs overall (globally) and also with respect

to each particular attribute for each part of the task (i.e., at
subtask levels) being executed by a given user group type.

In the case study, the preliminary analysis was conducted
for the above-mentioned task, its five subtasks, and their
associated screens in JIRA, for the beginner user type. This
allows the recommender to gauge more specifically where
users had difficulty, for example, low task successfulness, low
completion rate in using the application, among others.

4.3. Phase III: Derive/Specify Requirements and Evaluation
Criteria for EQ. Taking into account the preliminary analysis
report yielded in Phase II for QinU and the requirements
tree defined in Phase I, in Phase III, a requirements tree for



Advances in Software Engineering 19

Table 7: QinU evaluation of JIRA, both before (v.1) and after implementing improvements (v.1.1). EI stands for elementary indicator; P/GI
stands for partial/global indicator.

Characteristics and attributes
JIRA v.1 JIRA v.1.1

EI P/G I EI P/G I

1. Actual Usability 53.3% 67.0%

1.1. Effectiveness in use 73.2% 86.7%

1.1.1. Subtask correctness 86.4% 91.9%

1.1.2. Subtask completeness 87.9% 95.5%

1.1.3. Task successfulness 45.5% 72.7%

1.2. Efficiency in use 29.3% 42.8%

1.2.1. Subtask correctness efficiency 37.4% 44.3%

1.2.2. Subtask completeness efficiency 37.5% 47.3%

1.2.3. Task successfulness efficiency 13.1% 36.8%

1.3. Learnability in use 57.3% 71.6%

1.3.1. Subtask correctness learnability 78.8% 75.1%

1.3.2. Subtask completeness learnability 26.4% 77.3%

1.3.3. Task successfulness learnability 66.7% 62.5%

EQ is derived. This requirements tree is tailored considering
those product features that would need improvement with
potential positive impact in QinU, mainly for those problems
found in Phase II. In this phase, metrics and indicators
are specified in order to evaluate the WebApp through its
inspection involving three main activities (see Figure 14),
namely, select EQ concept model, design EQ measurement, and
design EQ evaluation. Note that these activities are similar
to Phase I activities (recall Figure 8), but now from the EQ
viewpoint.

4.3.1. Select EQ Concept Model. Given the preliminary anal-
ysis report performed in Phase II which may have reported
potential problems of the actual WebApp, EQ characteristics
and attributes possibly related to those QinU dimensions are
identified, resulting then in a new requirements tree. The
activities to be performed by the NFR manager are select a
model and edit the model.

In the case study, in this activity, the requirements tree for
the EQ viewpoint was established using 2Q2U (as in Phase I),
instantiating the characteristics operability and information
quality to determine possible effects on effectiveness in
use, efficiency in use, and learnability in use. Those EQ
characteristics and attributes that are possibly related to
those QinU dimensions with potential problems have been
instantiated resulting in the requirements tree shown on the
left side of Table 8.

4.3.2. Design EQ Measurement. Following Figure 14, once
the EQ model was instantiated in a requirements tree, the
measurement should be designed to produce the metric
specifications to perform Phase IV. As can be seen in
Figure 15, this activity is similar to designing the QinU
measurement (recall Figure 10 in Phase I) and is performed
by the metrics expert, but now the process is executed for
EQ attributes. In addition, next to identify a metric for an
attribute from the repository and its related metrics and

attributes (if the selected metric is an indirect metric), the
select a tool activity can be performed to choose a tool that
automates the metric method.

In the case study, for each attribute from the EQ require-
ments tree shown in Table 8, a metric was identified by the
metrics expert. For instance, for the attribute navigability
feedback completeness (coded 1.1.1.1), the metric is as
follows.

Indirect Metric: task navigability feedback complete-
ness (TNFC).

Objective: calculate the average of completeness
considering the navigational feedback completeness
level for all subtask screens for the given task.

Calculation method (formula):

TNFC =
j=n∑

j=1

⎛
⎝
i=m∑

i=1

NFCi j /m

⎞
⎠/n, (1)

for j = 1 to n, where n is the number of subtasks
of the given task,

for i = 1 to m, where m is the number of screens
for subtask j.

Interpretation: 0 <= TNFC <=3, more is better.

Scale: numeric.

Scale type: ratio.

Unit: completeness level (Note: this metric can be
converted to percentage unit, i.e., TNFC/0.03).

As this is an indirect metric, related metric and attribute
were identified:

Attribute: screen navigation feedback.



20 Advances in Software Engineering

Select concept
model

Design
measurement

Design
evaluation

[EQ NFR tree]
[EQ metrics

specification]

[EQ indicators

specification]

[Concept models] [Metrics] [Indicators]

[QinU

preliminary
analysis report]

≪ datastore ≫ ≪ datastore ≫ ≪ datastore ≫

Figure 14: Overview for the derive/specify requirements and evaluation criteria for EQ process (Ph. III).

[EQ NFR tree]

[attributes]

[EQ metrics

specification]Identify related

metrics

Identify attributes

quantified by

related metrics
[Metric] [is indirect metric]

[else]

Identify
a Metric

[else]

Is there a tool that
automates the method?

Select a
tool

[Metrics]

[true]

≪ datastore ≫

≪ decision input ≫

≪ iterative≫

Figure 15: Activity flow involved in design external quality measurement activity.

Direct metric: navigation feedback completeness
level (NFC).

Objective: determine the screen meets the criteria
for navigation feedback completeness. Note: This
metric is similar to the breadcrumb or path capability
available in many WebApps.

Measurement method (type: objective): the screen is
inspected to determine the rating (0–3), where eval-
uators through inspection observe the availability of
the previous (backward), current, and next location
(forward) mechanism. Screens should support the
completeness of this navigation feedback.

Scale: numerical.

Scale type: ratio.

Allowed values: (0) has none; (1) has one of them; (2)
has two of them; (3) has all of them.

Unit: completeness level.

4.3.3. Design EQ Evaluation. Similar to Phase I, one indicator
per each attribute and concept of the EQ requirements

tree should be identified by the indicators expert. In our
case, when elementary, partial, and global indicators were
designed, new acceptability ranges (DecisionCriterion in
Figure 3) were agreed between the evaluation requester and
the indicators expert. The three acceptability ranges in the
indicator percentage scale were as follows: a value within 60–
80 (a marginal—bold—range) indicates a need for improve-
ment actions; a value within 0–60 (an unsatisfactory—
italic—range) means changes must take place with high
priority; a score within 80–100 indicates a satisfactory
level—bold italic—for the analyzed attribute. Note that
this indicator mapping does not necessarily have to be the
same as the QinU mapping (e.g., may have different range
thresholds) but rather should meet the information need and
goals of the evaluation requester.

4.4. Phase IV: Perform EQ Evaluation and Analysis. Based on
metric and indicator specifications obtained in Phase III, the
measurement and evaluation of the EQ requirements and the
analysis of the current product situation are performed. This
phase is similar to Phase II, but now for EQ. The involved



Advances in Software Engineering 21

activities are shown in Figure 16. Note the similarity with
Phase II (recall Figure 13), but, for Phase IV, the collect data
activity is not performed, that is, it is just carried out in Phase
II to obtain user data usage from log files in a nonintrusive
way. In this phase, the measurement and evaluation activities
are done by inspection.

Once each attribute is measured by the data collector in
quantify attributes activity, and all indicators are calculated
in calculate indicators activity, the data analyzer role should
conduct EQ analysis. The latter activity generates an EQ
analysis report with information that allows us to identify,
for instance, parts of the application that needs improvement
from the EQ viewpoint. In Table 8 (columns 2 and 3),
we can see the EQ evaluation results from JIRA (v.1) case
study. Note, for example, that some attributes such as
error prevention (coded 1.2.2.1.) and context-sensitive help
availability (coded 1.1.2.1) need improvement with high
priority. Also, we can observe that, for some elementary
indicators (attributes), no improvement is needed, for
example, stability of main control (coded 1.2.1.2).

4.5. Phase V: Recommend, Perform Improvement Actions,
and Reevaluate EQ. Considering the previous EQ analysis
report generated in Conduct EQ Analysis activity (Phase
IV), we make recommendations to improve the application
for those EQ attributes that needed improvement. After
the recommended changes were completed in the current
WebApp and a new version generated, we reevaluate the EQ
to determine the improvement gain between both product
versions. The activities for this phase are shown in Table 9
and described below.

4.5.1. Recommend Improvement Actions. Based on the EQ
analysis report generated in Phase IV, the recommend
improvement actions activity is carried out by the recom-
mender in order to produce a recommendations report. This
document has a set of recommendations for which attributes
of the WebApp can be improved. For instance, a ranking
of elementary indicators scored from weaker—that is, that
fell in the unsatisfactory acceptability level—to stronger, but
which did not fall in the satisfactory or bold italic levels can
be listed.

Then, the evaluation requester can prioritize recommen-
dations made for improvement action. Considering the case
study, in this activity, some of the recommendations listed in
the recommendations report were the following:

(i) for increasing the satisfaction level of defaults
attribute (1.2.3.1) change fields to have default and
make mandatory because they are critical defect
description correctness and completeness;

(ii) for increasing the satisfaction level of Error Preven-
tion attribute (1.2.2.1) add context sensitive help and
eliminate nonvalid platform combinations.

4.5.2. Design Improvement Actions. Based on the previous
recommendations report, the maintenance project manager

produces an improvement plan indicating how to actu-
ally change the application. This “how” implies planning
methods and techniques to be used to actually accomplish
the improvement actions in the next activity (perform
improvement actions). Methods and techniques for changing
the WebApp can range from parameterized reconfigurations,
code restructuring, refactoring (as made in [18]) to archi-
tectural redesign. The eventual method employed depends
on the scope of the improvement recommendation as well
as the resources of the evaluation requester and the desired
effect. The expected effect may include an application easier
to operate and learn, faster to run, more secure, among many
other aspects.

For example, taking into account the two improvement
recommendations listed in the above activity, the improve-
ment plan included the following.

(i) Recommendation: add context sensitive help to
improve the error prevention (1.2.2.1) attribute.
Action taken: defect steps moved to next screen on
add detail info, with help, examples shown to aid user.

(ii) Recommendation: eliminate nonvalid platform com-
binations to improve error prevention (1.2.2.1).
Action taken: help provided and invalid combinations
not allowed.

(iii) Recommendation: change fields to have default and
make mandatory because they are critical defect
description correctness and completeness to improve
the defaults (1.2.3.1) attribute. Action taken: done
where possible.

4.5.3. Perform Improvement Actions. With the improvement
plan, the developer of the WebApp performs changes accord-
ingly, resulting in a new application version (see the activity
flow in Table 9). The ABC developer of our JIRA case study
made some of the recommended changes, including those
shown above, resulting in a new product version termed JIRA
v.1.1. This new JIRA version had many other improvements
not shown, one of which was the reduction of workload
through eliminating one subtask and moving more related
items together to make the overall task design more efficient.
Thus, JIRA v.1.1 only has 4 subtasks, instead of 5. Because
JIRA does not give access to its source code, the developer
could not enact all the changes that were recommended;
so only some improvements were made. Rather, through
changing its configuration, they were able to perform most
of the changes. Note that some recommended changes that
could not be made were due to the application under study,
and not due to SIQinU.

4.5.4. Evaluate Improvement Gain. Once changes were made,
the WebApp can be reevaluated by inspection to determine
which attributes have been improved, which have not, and
get a score which can be compared to the outcomes of
Phase IV. The activities involved are quantify attributes,
calculate indicators, and conduct EQ analysis. The output
is a new EQ analysis report in which the changes made



22 Advances in Software Engineering

Quantify
attributes

Calculate
indicators

Conduct
analysis

[EQ metrics

specification]

[EQ NFR tree] [EQ indicators
specification]

[EQ measures]

[EQ indicators’ values]

[EQ analysis

report]

≪ datastore ≫

≪ datastore ≫

Figure 16: Overview for perform EQ evaluation and analysis phase (Ph. IV).

Table 8: EQ evaluation of JIRA, both before (v.1) and after (v.1.1) implementing improvements.

JIRA v.1 JIRA v.1.1

Characteristics and attributes EI P/G I EI P/G I

External Quality 38% 74%

1. Operability 30% 60%

1.1. Learnability 26% 59%

1.1.1. Feedback suitability 38% 38%

1.1.1.1. Navigability feedback completeness 33% 33%

1.1.1.2. Task progress feedback appropriateness 30% 30%

1.1.1.3. Entry form feedback awareness 50% 50%

1.1.2. Helpfulness 15% 80%

1.1.2.1. Context-sensitive help availability 20% 80%

1.1.2.2. Help completeness 10% 80%

1.2. Ease of use 34% 61%

1.2.1. Controllability 80% 80%

1.2.1.1. Permanence of main controls 60% 60%

1.2.1.2. Stability of main controls 100% 100%

1.2.2. Error management 0% 30%

1.2.2.1. Error prevention 0% 30%

1.2.3. Data entry ease 23% 73%

1.2.3.1. Defaults 10% 50%

1.2.3.2. Mandatory entry 10% 80%

1.2.3.3. Control appropriateness 50% 90%

2. Information quality 45% 88%

2.1. Information suitability 45% 88%

2.1.1. Consistency 40% 90%

2.1.2. Information coverage 50% 85%

2.1.2.1. Appropriateness 50% 90%

2.1.2.2. Completeness 50% 80%

between the WebApp versions are compared to determine the
improvement gain.

In Table 8 (columns 4 and 5), we can see the results
obtained when JIRA v.1.1 was evaluated from EQ viewpoint.
As can be seen from comparing the 2 evaluations (columns
2 and 3 with 4 and 5), the overall partial indicator for
ease of use improved significantly from 34% to 61% with
improvements in many of the individual attributes and

an overall improvement in the global indicator from 38%
to 74%. The next and final phase examines how these
improvements in EQ affect QinU in a real context of use.

4.6. Phase VI: Reevaluate Quality in Use and Analyze Improve-
ment Actions. Once the new application version (generated
in Phase V, particularly in perform improvement actions
activity) has been used by the same user group type in its



Advances in Software Engineering 23

Table 9: Process template in which information and views are documented for the recommend, perform improvement actions, and reevaluate
EQ activities.

Activity: recommend, perform improvement actions, and reevaluate EQ code (in Figure 2): Ph. V

Objective: improve the current application version and determine the improvement gain from the EQ standpoint.

Description: Considering the EQ analysis report generated in conduct EQ analysis activity (Phase IV), the recommender makes
recommendations to improve the current application, and the maintenance project manager produces an improvement plan to enhance
the current WebApp. After the recommended changes were implemented by the developer and a new version generated, a reevaluation of
the EQ is performed to determine the improvement gain between both application versions.

Recommend
improvement

actions

Perform
improvement

actions

Evaluate
improvement

gain

[Recommendations
report]

[Improvement
Plan]

[EQ analysis
report]

[New EQ
analysis report]

Design
improvement

actions

[New
application

version]

[Current
application

version]

It implies re-evaluation,
i.e., performing again the

phase IV activities

Should improvement

action be performed

again for the product?

[true]

[else]

Recommender Maintenance
project manager

Developer Data analyzer

≪decision input≫

Subactivities:

(i) Recommend improvement actions

(ii) Design improvement actions

(iii) Perform improvement actions

(iv) Evaluate improvement gain (i.e., in Phase IV)

Involved roles:

(i) Recommender

(ii) Maintenance project manager

(iii) Developer

(iv) Data analyzer

Input artifacts: Output artifacts:

(i) EQ analysis report (i) EQ recommendations report

(ii) Current application version (ii) Improvement plan

(iii) New application version

(iv) New EQ analysis report (from Phase IV)

Preconditions: there are EQ attributes with low level of satisfaction met, so
improvement actions are needed to enhance the current software/web
application version.

Postconditions: the Phase V finishes when the EQ
attributes met the agreed satisfaction level.

same real context of use that the previous version, then,
we are able to perform the QinU reevaluation (in a similar
way to Phase II, recall Figure 13) to determine if what was
improved from the EQ viewpoint had a positive quality-in-
use effect using the identical tasks.

The activities involved are the same that in Phase II
(see Figure 2), namely, collect data, quantify attributes and
calculate indicators. Finally, conduct improvement actions
analysis activity is performed to determine the improvement
gain and also to hypothesize EQ/QinU relationships. These
activities are described below according to the JIRA case
study.

4.6.1. Collect Data, Quantify Attributes, and Calculate Indica-
tors. When JIRA v.1.1 was evaluated from the EQ viewpoint,
and its satisfaction level was achieved, then this new release
was used by real users in the same real context of use as JIRA
v.1. After 12 weeks (the same time period), we performed
the QinU reevaluation (using the same nonfunctional
requirements, metrics, and indicators designed in Phase I) to
determine if what was improved from the EQ viewpoint had
a positive quality-in-use effect with the same task (Entering
a new defect). Following the SIQinU activities involved in
Phase VI, we collect the data (i.e., the data collector using

the same parser tool), quantify the attributes, and calculate
all the indicators in a similar way as in Phase II. In Table 7,
columns 4 and 5, we show the evaluation results for JIRA
v.1.1.

4.6.2. Conduct Improvement Actions Analysis. Once all indi-
cators were calculated, data analyzer looks at each particular
attribute’s change for each part of the task being executed by
the user group noting the difference to calculate quantified
improvement between both WebApp versions from the QinU
viewpoint. Table 10 shows the attributes and indicator values
regarding the QinU requirements tree depicted in Table 6 for
JIRA v.1 and JIRA v.1.1 with the right most columns showing
the change.

As we can see from Table 10, all attributes noted improve-
ment with the exception of task successfulness learnability
and subtask correctness learnability. A possible explanation
for this is that due to metric design with data collected over a
12-week period that the learning process did not improve as
much as expected. Remembering our earlier comments that
temporal analysis over time is important as user behavior
can change over time, these beginning users possibly were
not able to ramp up their learning during this time period.
And, on the other hand, if the case study had been longer, we



24 Advances in Software Engineering

may have seen different behavior and hence measurements.
However, their negative change was small compared to the
positive changes in the other attributes resulting in an overall
average change of attributes evaluation of 13.7%. While the
indicators show that most of the attributes in JIRA v.1.1
still need some or significant improvement, there has been
notable improvement from JIRA v.1. Again, as previously
mentioned, due to the limitations in changing code in
JIRA, configurations changes enabled many changes and
improvements, but not all, it is possible that JIRA v.1.1 could
be even better if more changes could be made. In other
instances, depending on the software under evaluation, the
tools/methods available to the maintenance project manager,
and the time/resources available, more improvements could
be made.

4.6.3. Develop “Depends-on” and “Influences” Relationships.
A final action of Ph. VI (recall Table 1) is to develop depends-
on and influences relationships between EQ improvements
and QinU, which outputs the EQ/QinU attribute relation-
ship table. These come also from the “influences” and
“depends-on” relationships stated in the ISO 25010 standard.
Table 11 summarizes the relationships found in this first
case study. We discovered through our EQ evaluation, that
some attributes could be improved and lead to specific
improvements in QinU given the context of testers executing
the specific task of entering a new defect in JIRA. In
carrying out SIQinU, we were able to map EQ attributes
to QinU attributes with the goal of ultimately achieving
real improvement not only for JIRA but for WebApps and
software design in general.

The weakness of our analysis is that we are only able to
hypothesize the precise relationships between EQ and QinU
attributes, but we cannot quantify the exact contribution
from each because we made more than one change at a
time. If we made only one change and then measured
QinU for JIRA v.1.1, then we could make a more precise
hypothesis for a one-to-one or one-to-many relationship.
Most likely, those uncovered would be one-to-many, as one-
to-one relationships probably are rare in this situation.

Regarding the hypothetical EQ/QinU relationships
found in the JIRA case study, they can be further validated
through additional case studies; case studies that can be
carried out using our proposed SIQinU strategy grounded
on a conceptual M&E framework (C-INCAMI), processes,
and methods, which ensure repeatability and consistency of
results. By doing this, we can generalize the conclusions of
found relationships, that is, whether real improvements can
be achieved not only for JIRA but for WebApps and software
systems in general.

On the other hand, we are aware that this paper does
not answer, from the experimental software engineering
standpoint, the question of the effectiveness of the proposed
strategy to accomplish similar or better objectives and results
than using, for example, other strategies for improvement.
The JIRA case study was made in a real context of a company,
where beginner testers were performing their daily task and
experts using SIQinU, as a first study. An experimental study
to compare the effectiveness of SIQinU with another strategy

should be performed as future work. Nevertheless, we can
state that SIQinU is quite scalable in terms of amount of
tasks and users performing tasks, and amount of metrics and
indicators as well. Once the nonfunctional requirements are
developed and data collection procedure is set, that is, the
parser tool that filter and organize data from log files which
serve as input to get the metrics values, then any number
of metrics (and indicators) can be determined across an
unlimited number of users. That is the scalability power of
this nonintrusive strategy versus using usability observation
and heuristic techniques.

5. Related Work

In recent years, the ISO/IEC has worked on a new project,
called SQuaRE (Software product Quality Requirements and
Evaluation), that proposes integrating many ISO standards
related to quality models, M&E processes, and so forth.
Although ISO 25000 [19] has guidelines for the use of the
new series of standards, the documents aimed at specifying
M&E processes are not issued yet. So the standards for
software measurement process (ISO 15939 [20]) and the
process for evaluators (ISO 14598-5 [21]) are still in
effect and considered the most recent. Taking into account
these standards, the process for measurement has two core
activities, namely, plan the measurement process and perform
the measurement process [20].The evaluation process involves
five activities: establishment of evaluation requirements, speci-
fication of the evaluation, design of the evaluation, execution of
the evaluation plan, and conclusion of the evaluation [21]. We
have observed that there is so far no single ISO standard that
specifies in an integrated way the M&E process and approach
as a whole.

Other work, worthy to mention, is the CMMI (capability
maturity model integration) [22] de facto standard, which
provides support for process areas such as measurement
and analysis, among others. It aligns information needs
and measurement objectives with a focus on goal-oriented
measurement—following to some extent the GQM (goal
question metric) [23] approach and the [20] measurement
process. Although CMMI specifies (specific/generic) prac-
tices to accomplish the given process area goals, a process
model itself is not defined. To a certain extent, it represents
practices (i.e., actions/activities) without explicitly establish-
ing sequences, parallelisms, control points, and so forth.
Some specific practices for measurement and analysis are for
example, establish measurement objectives, specify measures,
obtain measurement data, and analyze measurement data.
However, a clear distinction between M&E processes is
missing in addition to lacking a robust conceptual base for
its terms.

Regarding improvement strategies for evaluation of
WebApps, we can consider the work in [18], where authors
present an approach for incremental EQ improvement
whereby the results from EQ evaluation were used to make
changes and improvements in a WebApp through WMR
(web model refactoring) in a systematic way. But although
a set of activities is considered, the underlying process is



Advances in Software Engineering 25

Table 10: QinU attributes satisfaction level for JIRA v.1 and JIRA v.1.1 with improvements.

Attributes v.1 v.1.1 Change

1.1.1. Subtask correctness 86.4% 91.9% 5.5% ↑
1.1.2. Subtask completeness 87.9% 95.5% 7.6% ↑
1.1.3. Task successfulness 45.5% 72.7% 27.2% ↑
1.2.1. Subtask correctness efficiency 37.4% 44.3% 6.9% ↑
1.2.2. Subtask completeness efficiency 37.5% 47.3% 9.8% ↑
1.2.3. Task successfulness efficiency 13.1% 36.8% 23.7% ↑
1.3.1. Subtask correctness learnability 78.8% 75.1% −3.7% ↓
1.3.2. Subtask completeness learnability 26.4% 77.3% 50.9% ↑
1.3.3. Task successfulness learnability 66.7% 62.5% −4.2% ↓

Average change 13.7%

Table 11: Summary of the influence relationships between EQ and QinU attributes.

EQ attribute QinU attribute

1.1.2.2 Operability.Learnability.Helpfulness.HelpCompleteness Learnability in Use. Subtask completeness learnability

2.1.1 Information Quality.InfoSuitability.Consistency

1.2.1.2 Operability.EaseOfUse.Controllability.StabilityMainControls Effectiveness in Use. Task Successfulness

1.1.1.2 Operability.Learnability.Feedback
Suitability.TaskProgressFeedbackAppropriateness

1.1.1.3 Operability.Learnability.Feedback
Suitability.EntryFormFeedbackAwareness

1.1.2.1 Operability.Learnability.Helpfulness.Context-sensitiveHelpAvailability

1.2.3.1 Operability.EaseOfUse.DataEntryEase.Defaults Efficiency in Use. Subtask completeness efficiency

1.2.3.2 Operability.EaseOfUse.DataEntryEase.MandatoryEntry

1.2.3.3 Operability.EaseOfUse.DataEntryEase.ControlAppropriateness

2.1.1 Information Quality.InfoSuitability.Consistency Effectiveness in Use.Subtask completeness

1.1.2.2 Operability.Learnability.Helpfulness.HelpCompleteness

1.2.2.1 Operability.EaseOfUse.Error Mgmt.Error Prevention

1.2.3.1 Operability.EaseOfUse.DataEntryEase.Defaults

1.2.3.3 Operability.EaseOfUse.DataEntryEase.ControlAppropriateness Effectiveness in Use.Sub-task correctness

2.1.2.2 Information quality.InfoSuitability.InfoCoverage.Completeness

2.1.2.2 Information quality.InfoSuitability.InfoCoverage.Appropriateness

neither well defined nor modeled regarding process views.
On the other hand, in [24], a systematic approach to specify,
measure, and evaluate QinU was discussed. However, the
process used is not explicitly shown, and the outcomes were
used just for understanding the current situation of the
QinU for an e-learning application, without proposing any
improvement strategy.

With the aim of developing quality software, there are
several works that focus on improving and controlling the
development process and the intermediate products because
the quality of the final product is strongly dependent on
the qualities of intermediate products and their respective
creation processes. For example [25], deal with the use of a
software project control center (SPCC) as a means for on-line
collecting, interpreting, and visualizing measurement data in
order to provide purpose- and role-oriented information to
all involved parties (e.g., project manager, quality assurance
manager) during the execution of a development project. On

the other hand, in [26], the authors considered introducing
usability practices into the defined software development
process. With this goal in mind, authors offer to software
developers a selection of human-computer interface (HCI)
techniques which are appropriate to be incorporated into a
defined software process. The HCI techniques are integrated
into a framework organized according to the kind of software
engineering activities in an iterative development where
their application yields a higher usability improvement. Also,
in the usability field, in [27], authors explore how some
open source projects address issues of usability and describe
the mechanisms, techniques, and technology used by open
source communities to design and refine the interfaces
to their programs. In particular, they consider how these
developers cope with their distributed community, lack of
domain expertise, limited resources, and separation from
their users. However, in SIQinU, we start identifying prob-
lems in systems in-use, that is, with running applications



26 Advances in Software Engineering

used by real users in a real context. Therefore, SIQinU is
not focused on early stages of the development process but
on how we can understand the current application-in-use’s
QinU and how we can change the attributes of a software
system to improve its QinU.

Taking into account the complexity of processes, in [28],
authors propose the use of an electronic process guide to
provide a one-off improvement opportunity through the
benefits of declaring a defined, systematic, and repeatable
approach to software development. An electronic process
guide offers several advantages over a printed process
handbook, including easy access over the web for the most
up-to-date version of the guide, electronic search facilities
and hypernavigation to ease browsing information. In this
work, authors combine the electronic process guide with the
experience management, which refers to approaches to struc-
ture and store reusable experiences. It aims at reducing the
overhead of information searching that can support software
development activities. Experience management also appears
to be more effective when it is process centric. Thus, the two
concepts have a symbiotic relationship in that the process
guide is more useful when supported by experiences and the
experience base is more useful when it is process focused. The
electronic process guide/experience repository (EPG/ER) is
an implementation of this relationship and supports users
through provision of guidance that is supplemented by
task-specific experiences. However, our process specification
is devoted specifically to represent the different views (as
proposed in [10]) for measurement and evaluation activities
rather than software development activities.

Regarding integrated strategies for M&E, it is worthy to
mention the GQM+ Strategies [29]—which are based on
the GQM approach—as an approach that allows defining
and assessing measurement goals at different organization
levels, but it does not specify formal process views to conduct
the evaluation and improvement lifecycle as we have shown
as an integral component of SiQinU. Also, since issued,
the GQM model was at different moments enlarged with
proposals of processes and methods. However, [30] pointed
out GQM is not intended to define metrics at a level of detail
suitable to ensure that they are trustworthy, in particular,
whether or not they are repeatable. Moreover, an interesting
GQM enhancement, which considers indicators, has recently
been issued as a technical report [31]. This approach uses
both the balanced scorecard and the goal-question-indicator-
measurement methods, in order to purposely derive the
required enterprise goal-oriented indicators and metrics. It
is a more robust approach for specifying enterprise-wide
information needs and deriving goals and subgoals and then
operationalizing questions with associated indicators and
metrics. However, this approach is not based on a sound
ontological conceptualization of metrics and indicators as in
our research. Furthermore, the terms “measure” and “indi-
cator” are sometimes used ambiguously, which inadvertently
can result in datasets and metadata recorded inconsistently,
and so it cannot assure that measurement values (and the
associated metadata like metric version, scale, scale type,
unit, measurement method, etc.) are trustworthy, consistent,
and repeatable for further analysis among projects.

Finally, in [32], authors propose the CQA approach,
consisting of a methodology (CQA-Meth) and a tool that
implements it (CQA-Tool). They have applied this approach
in the evaluation of the quality of UML models such as
use cases, class, and statechart diagrams. Also authors have
connected CQA-Tool to the different tools needed to assess
the quality of models. CQA-Tool, apart from implementing
the methodology, provides the capacity for building a cata-
logue of evaluation techniques that integrates the evaluation
techniques (e.g., metrics, checklists, modeling conventions,
guidelines, etc.), which are available for each software
artifact. Compared with our strategies, the CQA approach
lacks for instance an explicit conceptual framework from a
terminological base. On the other hand, other related work in
which authors try to integrate strategic management, process
improvement, and quantitative measurement for managing
the competitiveness of software engineering organizations
is documented in [33]. In this work, a process template to
specify activities from different views is considered. However,
the integration of the three capabilities as made in GOCAME
and SIQinU is not explicit and formalized.

6. Concluding Remarks

Ultimately, the main contribution of this paper is SIQinU,
an integrated specific-purpose strategy—that is, for under-
standing and improving QinU—whose rationale is based on
well-defined M&E processes, founded on a M&E conceptual
framework backed up by an ontological base, and supported
by methods and tools.

In this paper, we have specified the process of the
SIQinU strategy modeled stressing the functional, informa-
tional, organizational, and behavioral views. Moreover, to
illustrate the SIQinU process, excerpts from a JIRA case
study were used where real users were employed to collect
data and ultimately prove the usefulness of the strategy in
improving the application in a process-oriented systematic
means. We have also shown SIQinU, to be a derivation of
GOCAME, based on three foundations, namely, the process,
the conceptual framework, and methods/tools. Relying on
the GOCAME foundation, SIQinU has been defined as a
systematic approach with the appropriate recorded metadata
of concrete projects’ information needs, context proper-
ties, attributes, metrics, and indicators. This ensures that
collected data are repeatable and comparable among the
organization’s projects. Otherwise, analysis, comparisons,
and recommendations can be made in a less robust, noncon-
sistent, or even incorrect way.

SIQinU, although reusing the general principles of
GOCAME, is a specific-purpose goal-oriented strategy with
specific activities and methods that are not taken into
account in GOCAME. Where GOCAME is a multipurpose
strategy with general purposes such as “understand,” “pre-
dict,” “improve,” and “control,” SiQinU objectives are tar-
geted to “understand” and ultimately “improve.” In addition,
as discussed in Section 3.4, SIQinU was specifically designed
to evaluate QinU and EQ for WebApps, from the “do goals”
perspective rather than from the “be goals.”



Advances in Software Engineering 27

As future work, we are planning to extend SIQinU to
include processes and methods not only to gather data in
a nonintrusive way (as currently it does) but also to gather
data using more traditional intrusive methods such as video
recording, observations, and questionnaires. This could not
only help to add robustness to Phase III particularly in the
derivation process from QinU problems to EQ attributes but
also supplement the analysis in Phase II and VI.

Acknowledgment

This work and line of research is supported by the PAE
2007 PICT 2188 project at UNLPam, from the Science and
Technology Agency, Argentina.

References

[1] ISO/IEC CD 25010.3. Systems and software engineering.
Systems and software Quality Requirements and Evaluation
(SQuaRE). System and software quality models, 2009.

[2] P. Lew, L. Olsina, and L. Zhang, “Quality, quality in use, actual
usability and user experience as key drivers for web application
evaluation,” in Proceedings of the 10th International Conference
on Web Engineering (ICWE ’10), vol. 6189 of Lecture Notes
in Computer Science, pp. 218–232, Springer, Vienne, Austria,
2010.

[3] N. Bevan, “Extending quality in use to provide a framework
for usability measurement,” in Proceedings of the 1st Interna-
tional Conference on Human Centered Design (HCD ’09), vol.
5619 of Lecture Notes in Computer Science, pp. 13–22, Springer,
San Diego, Calif, USA, 2009.

[4] L. Olsina, F. Papa, and H. Molina, “How to measure and
evaluate web applications in a consistent way,” in Web
Engineering: Modeling and Implementing Web Applications,
G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds., HCIS,
chapter 13, pp. 385–420, Springer, London, UK, 2008.

[5] H. Molina and L. Olsina, “Assessing web applications consis-
tently: a context information approach,” in Proceedings of the
8th International Conference on Web Engineering (ICWE ’08),
pp. 224–230, Yorktown Heights, NJ, USA, July 2008.

[6] P. Becker, H. Molina, and L. Olsina, “Measurement and eval-
uation as quality driver,” Journal ISI (Ingénierie des Systèmes
d’Information), vol. 15, no. 6, pp. 33–62, 2010.

[7] L. Olsina and G. Rossi, “Measuring Web application quality
with WebQEM,” IEEE Multimedia, vol. 9, no. 4, pp. 20–29,
2002.

[8] P. Lew, L. Olsina, P. Becker, and L. Zhang, “An integrated
strategy to understand and manage quality in use for web
applications,” Requirements Engineering Journal, vol. 16, no. 3,
2011.

[9] E. Mendes, “The need for empirical web engineering: an
Introduction,” in Web Engineering: Modelling and Implement-
ing Web Applications, G. Rossi, O. Pastor, D. Schwabe, and
L. Olsina, Eds., HCIS, chapter 14, pp. 421–447, Springer,
London, UK, 2008.

[10] B. Curtis, M. Kellner, and J. Over, “Process modelling,”
Communications of the ACM, vol. 35, no. 9, pp. 75–90, 1992.

[11] L. Olsina, “Applying the flexible process model to build
hypermedia products,” in Proceedings of the Hypertext and
Hypermedia: Tools, Products, Methods (HHTPM ’97), pp. 211–
221, Hermes Ed., Paris, France, 1997.

[12] S. Acuña, N. Juristo, A. Merona, and A. Mon, A Software
Process Model Handbook for Incorporating People’s Capabilities,
Springer, 1st edition, 2005.

[13] UML.Unified Modeling Language Specification, Version 2.0.
Document/05-07-04, 2004.

[14] SPEM. Software Process Engineering Metamodel Specifica-
tion. Doc./02-11-14., Ver.1.0, 2002.

[15] P. Becker, P. Lew, and L. Olsina, “Strategy to improve quality
for software applications: a process view,” in Proceedings of the
International Conference of Software and System Process (ICSSP
’11), pp. 129–138, ACM, Honolulu, Hawaii, USA, 2011.

[16] N. E. Fenton and S. L. Pfleeger, Software Metrics: a Rigorous
and Practical Approach, PWS Publishing Company, 2nd
edition, 1997.

[17] F. Garcı́a, A. Vizcaino, and C. Ebert, “Process management
tools,” IEEE Software, vol. 28, no. 2, pp. 15–18, 2011.

[18] L. Olsina, G. Rossi, A. Garrido, D. Distante, and G. Canfora,
“Web applications refactoring and evaluation: a quality-
oriented improvement approach,” Journal of Web Engineering,
Rinton Press, US, vol. 7, no. 4, pp. 258–280, 2008.

[19] ISO/IEC 25000. Software Engineering—Software product
Quality Requirements and Evaluation (SQuaRE)—Guide to
SQuaRE, 2005.

[20] ISO/IEC 15939. Software Engineering—Software Measure-
ment Process, 2002.

[21] ISO/IEC 14598-5. International Standard, Information
technology—Software product evaluation—Part 5: process
for evaluators, 1999.

[22] CMMI Product Team. CMMI for Development Version 1.3
(CMMI-DEV, V.1.3) CMU/SEI-2010-TR-033, SEI Carnegie-
Mellon University, 2010.

[23] R. Basili, G. Caldiera, and H. D. Rombach, “The goal question
metric approach,” in Encyclopedia of Software Engineering, J. J.
Marciniak, Ed., vol. 1, pp. 528–532, John Wiley & Sons, 1994.

[24] G. Covella and L. Olsina, “Assessing quality in use in a
consistent way,” in Proceedings of the International Conference
on Web Engineering (ICWE ’06), pp. 1–8, ACM, San Francisco,
Calif, USA, July 2006.

[25] J. Munch and J. Heidrich, “Software project control centers:
concepts and approaches,” Journal of Systems and Software, vol.
70, no. 1-2, pp. 3–19, 2004.

[26] X. Ferre, N. Juriste, and A. M. Moreno, “Framework for
integrating usability practices into the software process,” in
Proceedings of the 6th International Conference on Product
Focused Software Process Improvement (PROFES ’05), vol. 3547
of Lecture Notes in Computer Science, pp. 202–215, Springer,
2005.

[27] D. M. Nichols and M. B. Twidale, “Usability processes in open
source projects,” Software Process Improvement and Practice,
vol. 11, no. 2, pp. 149–162, 2006.

[28] F. Kurniawati and R. Jeffery, “The use and effects of an elec-
tronic process guide and experience repository: a longitudinal
study,” Information and Software Technology, vol. 48, no. 7, pp.
566–577, 2006.

[29] V. R. Basili, M. Lindvall, M. Regardie et al., “Linking software
development and business strategy through measurement,”
Computer, vol. 43, no. 4, pp. 57–65, 2010.

[30] B. A. Kitchenham, R. T. Hughes, and S. G. Linkman,
“Modeling software measurement data,” IEEE Transactions on
Software Engineering, vol. 27, no. 9, pp. 788–804, 2001.

[31] W. Goethert and M. Fisher, Deriving Enterprise-Based Mea-
sures Using the Balanced Scorecard and Goal-Driven Mea-
surement Techniques. Software Engineering Measurement
and Analysis Initiative, CMU/SEI-2003-TN-024, 2003.



28 Advances in Software Engineering

[32] M. Rodrı̀guez, M. Genero, D. Torre, B. Blasco, and M. Piattini,
“A methodology for continuos quality assessment of software
artefacts,” in Proceedings of the 10th International Conference
on Quality Software (QSIC ’10), pp. 254–261, Zhangjiajie,
China, July 2010.

[33] J. G. Guzmán, H. Mitre, A. Seco, and M. Velasco, “Integration
of strategic management, process improvement and quan-
titative measurement for managing the competitiveness of
software engineering organizations,” Software Quality Journal,
vol. 18, no. 3, pp. 341–359, 2010.



Copyright of Advances in Software Engineering is the property of Hindawi Publishing Corporation and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


