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problem in molecular physics. The X̃ 2�+

u BNB case revisited
Apostolos Kalemosa)

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens,
Panepistimiopolis, Athens 157 71, Greece

(Received 1 March 2013; accepted 20 May 2013; published online 11 June 2013)

The X̃2�+
u BNB state considered to be of symmetry broken (SB) character has been studied by high

level multireference variational and full configuration interaction methods. We discuss in great detail
the roots of the so-called SB problem and we offer an in depth analysis of the unsuspected reasons
behind the double minimum topology found in practically all previous theoretical investigations. We
argue that the true reason of failure to recover a D∞h equilibrium geometry lies in the lack of the
correct permutational symmetry of the wavefunctions employed and is by no means a real effect.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4809527]

I. INTRODUCTION

Symmetry1 has played a decisive role in the development
of classical mechanics since the early 17th century with the
work of Kepler2 and Galilei.3 But it was only until 1918 that
the complete set of continuous symmetries compatible with
the structure of the Newtonian space-time were unified so glo-
riously in the celebrated Noether’s theorem.4

In addition to the continuous symmetries associated to
the Galilei group, transformations of discrete character are
also applicable in quantum mechanics such as permutations
of identical particles, inversion of space-spin coordinates,
and time reversal. Permutations of indistinguishable parti-
cles (in the clamped nuclei approximation we are only con-
cerned with electrons) are the most important ones among
the discrete symmetries and their connection to the spin-
statistics theorem places them at the very heart of physical
sciences.

The molecular wavefunction � may belong to any rep-
resentation of the symmetric group, being degenerate or
not. Coupled to the Pauli exclusion principle, we limit
ourselves to states that are not degenerate under permu-
tations and for a fermionic system belong to the anti-
symmetric irreducible representation of the associated sym-
metric group. Thus, any physically realizable state should
satisfy two eigenvalue problems, the Schrödinger equation
and a second one, P� = (−1) p�, P being any permutation
of the symmetric group SN. This second eigenvalue problem
can be considered as a constraint5 that every wavefunction
must satisfy before being submitted to the Schrödinger equa-
tion. Long ago, it has been shown by Wigner6 that the exact
electronic wavefunction satisfying the Pauli principle and be-
ing simultaneously an eigenfunction of S2 and Sz should be
written as (within the Coulombic approximation, the molec-
ular Hamiltonian is spin free, thus, 〈S2〉 is conserved for any
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stationary state)
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less Schrödinger equation, �i(σ 1, σ 2, . . . , σ N) are spin eigen-
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N is the number of
all linearly independent spin eigenfunctions generated by N
electrons with a total spin value S. It is clear that every trial
function (within the Coulombic approximation) should be of
the form given by Wigner.6 By considering a Hartree prod-
uct, being the simplest approximate spatial function, we find
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with A = (N !)−1 ∑
P

(−1)P P, P = P rP σ , and US(P) be-

ing the antisymmetrizer and representation of the sym-
metric group generated by the spin functions �S,M;k,
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k = 1, 2, . . . , f S
N , respectively. If the approximate wavefunc-

tion cannot be cast in the above form, the electrons will not be
treated as indistinguishable particles. Since there are f S

N spin
functions to span the full space of the irreducible representa-
tions of the symmetric group that means we should consider
them all. By considering them all, we are forced to consider
f S

N spatial functions that generate the dual representation of
the symmetric group. Any failure to do that is effectively to
fail considering indistinguishability properly, that is, to break
the permutational symmetry.7

We will show in the present work that the symmetry
breaking (SB)8 problem is related to the lack of the “correct”
permutational symmetry6 of the wavefunctions adopted to at-
tack the problem and is by no means a real effect.

II. THE BNB SAGA

The X̃ 2�+
u BNB state seems to be the prototype system

for the study of SB effects in molecular physics perhaps due
to its rather small number of valence electrons (11e−). The
very first paper on BNB is a 1989 Hartree-Fock (HF)/6-31 G*
study by Martin et al.,9 while the latest one is a 2012 fixed-
node Diffusion Monte Carlo (DMC) study by Al-Saidi.10

In a B3N2, B2N3, and BN4 theoretical study, Martin
et al.11 examined the linear BNB radical by complete
active space self-consistent filed (CASSCF)/cc-pV(D,T)Z
computational methods and found that it “exhibits defi-
nite symmetry breaking.” Since then, numerous theoretical
investigations10–19 have appeared that favor an asymmetric
geometry with the exception of a 2004 study by Kalemos
et al.14

Although it seems that an asymmetric (C∞v) geometry is
a rather comfortable situation since calculations tell us so, it is
rather surprising that the double minimum nature of BNB is a
recurring study case questioning in this way our confidence on
the available computational methods. Such a persistence on
something that seems logical to most of us is not compatible
with a definitive explanation of such phenomena jeopardizing
our general understanding of the subtle issues involved.

The pertaining literature up to 2003 is presented in
Ref. 14 but for reasons of completeness we feel obliged to
remind the most important points of both experimental and
theoretical investigations.

The first experimental work is a matrix isolation ESR
study by Knight et al.20 Their results indicate a ground
electronic state of X̃ 2�+

u symmetry with the spin den-
sity located on a boron spσ orbital. Geometry optimization
(MP4/SDTQ/6-31G*) conducted in association with hyper-
fine calculations predict a BN bond length of re = 1.338 Å,
while the insensitivity of the magnetic g and A parameters
in three different rare-gas matrices revealed a strong internal
bonding in BNB.

In a matrix infrared (IR) study, Andrews et al.21 identi-
fied both a cyclic B2N (C2v) and a linear BNB (D∞h) species
and assigned the values of 882.3 and 1736.5 cm−1 to the anti-
symmetric stretching (as) fundamental of the cyclic and linear
11B2

14N isotopologue, respectively.
Through CASSCF(7e−/8orb or 11e−/12orb)/cc-

pV(D,T)Z calculations, Martin et al.11 found a C∞v

geometry arguing that the SB is physical and not an artifact
of the calculations. In an anion photoelectron spectroscopy
investigation of B2N−, Asmis et al.12 assigned the value of
1143 ± 40 cm−1 to the symmetric stretching (ss) mode of
the X̃ neutral B2N species while they observed a similar
progression (855, 1197, and 1239 cm−1) to that found in the
IR spectra of Andrews et al.21 that was initially assigned
to the 2B2 state of the cyclic B2N molecule. Based on the
large variations of an asymmetry parameter β for some of
the observed peaks and on the non-existence of a cyclic 2B2

state at the B3LYP and (coupled cluster + single + double
+ perturbative connected triples) CCSD(T)/aug-cc-pVTZ
levels of theory, they revised the previous interpretation and
assigned the above progression to the non-totally symmetric
vibration of the linear BNB species. The appearance of odd
quanta transitions for this vibrational mode was interpreted
as a breakdown of the Franck–Condon approximation and
that was explained on the basis of vibronic coupling between
the X̃ 2�+

u and Ã 2�+
g states along the “as” coordinate.

The linear BNB X̃ state was found to be of D∞h symmetry
with harmonic ω(ss) frequencies of 1196 and 1143 cm−1 at
the B3LYP and CCSD(T) levels of theory, respectively, in
excellent agreement with their experimental value of 1143
± 40 cm−1. The B3LYP ω(as) frequency of 1327 cm−1 was
not compatible though with the 855 cm−1 value attributed
to the fundamental frequency of that particular vibrational
mode while problems were encountered during the CCSD(T)
calculations due to the double minimum topology of the
curve along the “as” coordinate. The vibrational levels of a
Brueckner type orbital CCSD(T) “as” curve with either a
single or double minima were both in very good agreement
with the observed progression, so an asymmetry of the equi-
librium geometry could not be inferred by such calculations.
Based on a simple 2 × 2 linear vibronic coupling (LVC)
model and making a number of approximations,22 they have
fitted the observed progression to the parameters of the LVC
problem. A C∞v structure resulted for the X̃ BNB state
being lower than the D∞h one by only 18 cm−1. They finally
concluded that the X̃BNB state is quasi-symmetric with
respect to inversion based only on the LVC model but not on
the CCSD(T) calculations.

In 2001, Gwaltney and Head-Gordon13 concluded on the
basis of Brueckner type orbital CC/DZP calculations that the
linear ground BNB state undergoes a real second order Jahn-
Teller (SOJT) distortion along the “as” coordinate with the
C∞v structure (	r = 0.09 Å) lying 161 ± 20 cm−1 lower
than the D∞h one.

On the basis of state averaged SACASSCF + PT2 (and
+1+2)/cc-pVQZ calculations, Kalemos et al.14 found a D∞h

equilibrium geometry and thoroughly discussed the SB prob-
lem in terms of valence-bond Lewis (vbL) structures. Ac-
cording to their study, one of the terminal B atoms is in an
in situ 4P state while the other is in its ground 2P state. A
Hartree-Fock or single state CASSCF wavefunctions cannot
cope (generally speaking) with a g/u combination of the two
vbL structures that can be written (vide infra) and conse-
quently any correlation treatment built on a SB reference fails.

A few months later, Russ et al.15 studied the ability of
HF, density functional theory (DFT), and CC methods to
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describe the SOJT effect in both BNB and C3
+ linear species.

Although their primary goal was not to provide a definitive
answer on the ground state’s geometry nor to simulate their
spectra, they obtained wavefunctions that display a SB char-
acter at all CC variants and a stable D∞h structure at the DFT
and MPn (n = 2, 4) levels of theory but with unphysical ω(as)
frequencies.

Two years later, Ding et al.23 in a resonant two photon
ionization spectroscopy (R2PI) experiment recorded vibronic
bands in the range 470–510 nm. Analysis of the spectrum
leads to a r0(X̃ 2�+

u ) = 1.312 41(10) Å24 for the 11B14N11B
isotopologue, while its spectrum displays a nuclear spin statis-
tics pattern compatible with two equivalent 11B nuclei. They
could not deduce on the perfect- or quasi-linearity or centro-
symmetric nature of BNB but in case of a barrier to a D∞h

structure, they asserted it would not be high.
In a reduced multireference (RMR) CCSD(T) study, Li

and Paldus16 found a C∞v structure separated from the D∞h

one by ∼100 cm−1, while a full configuration interaction
FCI(11e−)/STO-3G calculation predicted a “real” SB effect
with a barrier of 2.45 mEh (= 538 cm−1). Based also on
a 2R(eference)-CCSD(T)/cc-pV(D,Q)Z potential well along
the “as” coordinate, they found the vibrational levels in close
agreement with the ones found by Asmis et al.12 Although all
their calculations predict a double well curve, the barrier to
the centrosymmetric structure is smaller than the zero point
energy (ZPE) so no definitive conclusion could be drawn on
the existence of such a barrier based on the existing experi-
mental data. But at the level of theory used in their study the
“symmetry breaking in BNB is real.”

In 2009, the Boggs group17 investigated the SB problem
by employing a series of multireference methods based on a
SACASSCF reference wavefunction and concluded that the
double well topology of the ground state’s potential curve is
real with a suggested barrier of 20 cm−1. They have fitted their
ab initio results to a 2 × 2 LVC model and extracted numer-
ical values for the pseudo Jahn-Teller parameters employed
that were subsequently used as an a posteriori physical ex-
planation of the SB effect.25

In a 2010 CC study, a new parameter enters the rather
obscure scene of the BNB problem. Stanton19 published a
paper entitled “An unusually large nonadiabatic error in the
BNB molecule.” He constructed adiabatic “as” potentials for
the X̃ 2�+

u and Ã 2�+
g

26 states by equation of motion coupled
cluster EOMIP-CCSDT/[4s3p2d1f] calculations based on the
HF orbitals of the anion BNB− (X̃ 1�+

g ) system. The X̃ curve
displayed a double well topology as was also found in all
previous CC studies but the purpose of his report was rather
to assess the errors introduced by the adiabatic approxima-
tion than to enter in the seemingly endless quarrel of whether

BNB is SB or not. He fitted his ab initio curves on a three pa-
rameter 2 × 2 LVC model used in a subsequent non-adiabatic
calculation.27 Although the experimental values12 of the fun-
damental (855 ± 40 cm−1) and first overtone (2052 ± 40
cm−1) are in better agreement with his adiabatic (890.5 and
2061.7 cm−1) than with his nonadiabatic (812.5 and 1978.3
cm−1) results, he mysteriously claimed the greatest impor-
tance of nonadiabatic effects in the BNB case than “. . . to do
better and better old-fashioned quantum chemistry” and that
without even reporting the energies of the higher vibrational
levels in both adiabatic and nonadiabatic regime that could be
compared with the existing experimental data. He then con-
cluded his report by suggesting that nonadiabaticity might be
important even in cases where the energy separation (5638.6
cm−1 in the present case) between the pseudo JT couple of
interacting curves is quite large and where there are no cross-
ings or avoided crossings nearby.

The latest work on the BNB problem is a fixed node
DMC study10 where an asymmetric structure is found to lie
lower that the symmetric one by only 22(62) cm−1 in agree-
ment with the results of Ref. 17. The trial wavefunctions used
in the fixed node DMC calculations were all subjected to the
SB problem so it is not a surprise that a double minimum
topology was found.

The above account on the ground state of the BNB rad-
ical reveals a thrilling story. Is it SB or not? Experimental
data are not sufficient enough to conclude definitely while
practically all theoretical calculations point to an asymmetric
structure separated by the symmetric one by only a few wave
numbers. Traditionally, this sort of problems were tackled ei-
ther by non-orthogonal configuration interaction (CI) wave-
functions despite the extra labor or by carefully designed or-
thogonal CI wavefunctions that mimic the resonance of all
SB structures entailed.28 A common point of the above “solu-
tions” in chemical terms is that they take into account the “res-
onance,” “charge separation,” and “orbital relaxation” energy
through the “orbital doubling.” We will show in the present
study that by enlarging the active space we restore the permu-
tational symmetry6 not present in the HF and insufficiently
designed MCSCF wavefunctions. Respecting the fundamen-
tal symmetries of the problem at hand is the most secure way
to deal with any molecular system for which a valence-bond
reading may not be possible.

III. RESULTS AND DISCUSSION

In 2004, Kalemos et al.14 have shown that the X̃ 2�+
u

BNB state can be written in chemical terms as the resonance
of two vbL icons
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TABLE I. Energy (Eh) and internuclear distances rB1N , rB2N (Å) of the
X̃2�+

(u) BNB state at the (SA)CASSCF, (SA)CASSCF+1+ 2(= MRCI),
ACPF, and MRCI+Q/cc-pVTZ levels of theory.

Method −E rB1N rB2N

9e−/11orb[ = (2s + 2p)B × 2 + (2p)N]
CASSCF 103.878 400 1.3854 1.2716
SACASSCFa 103.866 236 1.3296 1.3296
MRCI(9e−)b 104.009 545 1.3227 1.3227
MRCI(9e−)+Qc 104.018 967 1.3213 1.3213

11e−/12orb[ = (2s + 2p)B × 2 + (2s + 2p)N]
CASSCF 103.904 481 1.4030 1.2744
MRCI(11e−) 104.089 343 1.3861 1.2787
MRCI(11e−)+Q 104.101 130 1.3845 1.2815
ACPF(11e−)d 104.099 702 1.3845 1.2814
SACASSCFa 103.894 051 1.3739 1.3006

11e−/13orb[ = (2s + 2p)B × 2 + (2s + 2p + s′)N]
CASSCF 103.917 461 1.3976 1.2745
SACASSCFa 103.908 589 1.3606 1.3057
MRCI(11e−)e 104.091 809 1.3558 1.3023
MRCI(11e−)f 104.073 225 1.3371 1.3371
MRCI(11e−)g 104.087 950 1.3310 1.3310

aA two state SACASSCF wavefunction. The two states of 2A1 symmetry correlate to
X̃ 2�+

u and Ã 2�+
g at D∞h nuclear configurations.

bNine out of the total number of 11 valence electrons are correlated. For the MRCI
expansion, we used the natural orbitals of the SACASSCF wavefunction.
c+Q refers to the Davidson correction.
dAveraged coupled pair functional calculations based on CASSCF natural orbitals.
eThe reference space consists of 246 972 configuration functions (CF), all single and
double replacements generate 851 071 095 CFs internally contacted to 22 087 269 CFs.
fFor the MRCI expansion, we used the natural orbitals of a SACCASCF wavefunction by
state averaging 12A1(2) + 12B1(4) + 12B2(4) + 12A2(5) states. Very tight convergence
criteria were imposed during the geometry optimization; the optimized BN internuclear
distances are identical at 7 decimal places. The MRCI energy rises by 9.37 × 10−5, 3.59
× 10−4, 8.47 × 10−4, 0.002, 0.010, and 0.060 Eh at 	r = 0.025, 0.05, 0.075, 0.10, 0.20,
and 0.40 bohr.
gFor the MRCI expansion, we used the natural orbitals of a SACCASCF wavefunction
by state averaging 12A1(2) + 2A1(2) states.

Each one of the building blocks is composed of an in situ
B atom in its ground 2P state (the curved lines connecting
the ∼ 2sB orbital with the empty 2px and 2py ones indicate
the GVB type correlation of the ∼ 2s2

B electrons within the
space provided) while the other terminal B atom is found in its
excited 4P atomic state. The above vbL scheme is also consis-
tent with the spin distribution revealed in the ESR investiga-
tion by Knight et al.20 From a different but completely equiv-
alent point of view, we can visualize the diabatic formation
of the X̃2�+

u state as resulting from the linear approach of a
B(2P) atom to the BN(A 3�+) state;14 the X 3
 BN state fa-
vors rather a C2v B2N molecule than a linear BNB one, while
the a 1�+ BN state, quasi-degenerate to the X one, is a “solid”
closed shell molecule that does not offer a docking place to an
incoming B atom.14 In the vbL description, we can see 9 out
of the 11 valence electrons, the rest being the ∼ 2s2

N not es-
sential (pictorially) for the formation of the σ and π bonds
between the N and the terminal B atoms.

In order to understand the physics of the so-called SB
problem, we will analyze the results presented in Table I ob-
tained with MOLPRO 2010.129 and by employing a Dunning
cc-pVTZ basis set30 on both B and N atoms.

When we optimize the geometry of one state of
X̃ 2�+

(u)(
2A1) symmetry (all calculations have been done un-

der C2v symmetry restrictions) with a CASSCF[9e−/11orb
= (2s + 2p)B × 2 + (2p)N] wavefunction, we get a SB
structure with rB1N = 1.3854 Å and rB2N = 1.2716 Å that
corresponds to any one of the vbL resonance structures of
the X̃ 2�+

u state (vide supra). The geometry optimization of
the first root in a two state (X̃ 2�+

(u) + Ã 2�+
(g)) SACCASCF

wavefunction with the same specifications as above gives rise
to the perfectly symmetric D∞h structure with rB1N = rB2N

= 1.3296 Å. The active space employed is good enough
for the so-called “angular” correlation of the ∼ 2s2

B electron
pairs (see the vbL diagram above), the true effect being the
restoration of the permutational symmetry through the assign-
ment of every electron of our 9e−/11orb problem to a differ-
ent spatial function.6, 31 In the first case (CASSCF) not only
the optimized geometry is of C∞v symmetry but the solu-
tion is of SB character since at a D∞h nuclear configuration
the wavefunction is of C∞v nature (at 	r( = rB1N − rB2N )
= 0.0 bohr, the 〈μ〉 = 4.00 D).

We subsequently performed a geometry optimization at
the CASSCF [11e−/12orb = (2s + 2p)B × 2 + (2s + 2p)N,
one state of 2�+ symmetry] and SACASSCF [11e−/12orb
= (2s + 2p)B × 2 + (2s + 2p)N, two states of 2�+ symmetry]
levels of theory. In both cases, a C∞v geometry was obtained
with an asymmetry geometrical parameter 	r = 0.1286 and
0.0733 Å, respectively; see Table I. It is interesting though
to notice that although both wavefunctions predict a double
minimum curve along the “as” coordinate, the SACASSCF
wavefunction is not SB (at 	r = 0.0 bohr the 〈μ〉 = 0.00 D)
while the CASSCF one is SB (at 	r = 0.0 bohr the 〈μ〉
= 3.91 D), thus any correlation treatment should be based
only on a SACCASCF reference.14

The natural thing to ask is why a SACASSCF(9e−/11orb)
calculation gives such a different result than the
SACASSCF(11e−/12orb) one. The answer can be given
after a careful inspection of the vbL description of the X̃ 2�+

u

state. By distributing the ∼ 2s2
N electrons in the chosen active

space (2s + 2p)N,B, we might have expected to “correlate”
them in an angular way. Certainly, the B 2p orbitals will not
do the job since correlation (Coulomb law) is a local effect
while the N 2p related orbitals being singly occupied (N is in
a 4Su state) do not offer the necessary space for even a GVB
type “correlation.” Single excitations of local type (2s22p3

→ 2s12p4) would result in an in situ atom not in the 4Su

state and that will eventually break the total symmetry of the
wavefunction.

At this point, we should comment on the FCI results by Li
and Paldus.16, 18 In Ref. 16, they employed a STO-3G minimal
basis set and correlated all 11 valence electrons. They found a
barrier of 2.45 mEh ( = 538 cm−1) between the C∞v and D∞h

structures. In Ref. 18, they employed a cc-pVDZ basis set
yielding 45 molecular orbitals (MO). They used “truncated”
spaces for the FCI expansion and correlated 3 (in 38/45 MOs),
5 (in 39/45 MOs), and 7 (in 33/45 MOs) electrons out of the
total number of 11. They found a double minimum curve with
barriers of 2040, 1603, and 542 cm−1, respectively.

We have performed a geometry optimization of the first
root of 2�+ symmetry at the SACASSCF(9e−/11orb, two
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states of 2�+ symmetry) level of theory in a series of ba-
sis sets whose quality ranges from STO-3G to cc-pVnZ (n
= 2–6). At the SACASSCF(9e−)/STO-3G level of theory
(equivalent to a FCI(9e−/STO-3G)), we obtained a C∞v struc-
ture with geometrical parameters rB1N = 1.4065 Å, rB2N

= 1.2860 Å, and E = −102.462 180 Eh. When using the cc-
pVnZ, n = 2–6, basis sets, we obtained a perfect centrosym-
metric molecule with internuclear distances rB1N = rB2N

= 1.3374, 1.3296, 1.3268, 1.3265, and 1.3264 Å, respectively,
while the harmonic frequencies with the largest cc-pV6Z ba-
sis set are ω(ss)/ω(as)/ω(b) = 1182/1568/68 cm−1. The com-
plete disagreement between the STO-3G and any of the cc-
pVnZ (n = 2–6) SACASSCF(9e−/11orb) calculations is as
expected. The “elementary” STO-3G([2s1p]) basis set can-
not describe simultaneously both 2P(2s22p1) and 4P(2s12p2)
B states that are necessary for the formation of the X̃2�+

u

BNB state (vide supra). The smallest basis set that should be
used is a [3s1p] (the s and p functions are taken from the cc-
pVDZ basis set). At the SACASSCF(9e−/11orb)/[3s1p] level
of theory, we obtained a D∞h geometry with rB1N = rB2N

= 1.4165 Å and E = −103.744 224 Eh. Qualitatively, the
same result was obtained when we considered a [3s2p] ba-
sis set (rB1N = rB2N = 1.3498 Å and E = −103.813 299 Eh)
while the smallest basis set that could “correlate” the ∼ 2s2

N

electrons is a [3s2p/N 3s1p/B]. Based on the above analysis,
the FCI(11e−/STO-3G) results of Ref. 16 is hardly a surprise
(at the SACASSCF(11e−)/STO-3G level of theory, equiva-
lent to FCI(11e−/STO-3G), we obtained rB1N = 1.4237 Å,
rB2N = 1.2810 Å, and E = −102.488 179 Eh). In Ref. 18, the
choice of the cc-pVDZ basis set was correct but the choice
of the electrons to be correlated was rather unfortunate. From
the vbL description of the X̃ 2�+

u state (vide supra), we see
that at least 9e− play a fundamental role in the formation of
the σ and π bonds in both resonant structures. By consider-
ing less electrons (3, 5, or 7) than this “absolutely” necessary
number, we deliberately discriminate and break the symme-
try of the problem from the very beginning (this is also ev-
ident from the trend of the barrier height 	E(D∞h ← C∞v)
when they correlated 3(2040 cm−1), 5(1603 cm−1), and 7(542
cm−1) electrons; see Ref. 18). Also the elimination of some
of the highest lying MOs can break the cylindrical symmetry
if unwisely chosen. We have performed FCI(9e−)/[3s1p] and
FCI(9e−)/[3s2p] calculations based on the natural orbitals of
a two state SACASSCF(9e−/11orb) wavefunction. The mini-
mum of the “ss” curve is located at rB1N = rB2N = 1.4136 and
1.3504 Å, respectively, with EFCI([3s1p]) = −103.756 981
Eh and EFCI([3s2p]) = −103.858 007 Eh. By asymmetrically
stretching the linear molecule by 	r = 0.01, 0.02, 0.03, 0.05,
and 0.1 bohr, the FCI/[3s1p]([3s2p]) energy rises by 1.57 ×
10−5 (2.04 × 10−5), 6.09 × 10−5 (7.87 × 10−5), 1.29 × 10−4

(1.67 × 10−4), 3.08 × 10−4 (4.01 × 10−4), and 9.0 × 10−4

(0.001) Eh, respectively. So, there is no trace of SB in our
FCI(9e−) calculations. We believe that the SB FCI results in
Refs. 16 and 18 are an artifact due to the combination of small
basis sets and the number of correlated electrons and not a real
effect.

Thus, the root of the problem lies in the inadequate
reference wavefunction due to the lack of permutational
invariance.6 In order to solve the problem, we need to en-

large our active space by at least one orbital that should be
of the appropriate “shape” for a GVB like “correlation” of
the ∼ 2s2

N electron pair. For reasons of computational conve-
nience, we have chosen to add only one orbital of σ symme-
try giving rise to a reference SACASSCF[11e−/13orb = (2s
+ 2p)B × 2 + (2s + 2p + s′)N] wavefunction. In order to
enforce the GVB shape of that additional orbital, a number
of 12� states32 was included in the SACASSCF optimization.
Based on such orbitals, a geometry optimization at the mul-
tireference configuration interaction (MRCI) level resulted
in a perfect D∞h geometry, rB1N = rB2N = 1.3310 Å, with
E = −104.087 950 Eh; see Table I. The MRCI energy rises
by 3.08 × 10−6, 1.35 × 10−5, 7.29 × 10−5, 2.29 × 10−4,
and 0.001 Eh at 	r = 0.01, 0.02, 0.04, 0.06, and 0.10 bohr,
respectively.

A last comment on the geometrical parameters found is
in order. The optimized internuclear distance rB1N = rB2N

= 1.331 Å is found in much better agreement with the value
re = 1.338 Å reported by Knight et al.20 than with the R2PI
value of r0(X̃ 2�+

u ) = 1.312 41(10) Å by Ding et al.23, 24 It
is interesting though to notice that the optimized geometry at
the RHF + 1 + 2/cc-pVTZ33 level of theory, rB1N = rB2N

= 1.3130 Å (E = −104.035 978 Eh and ω(ss)/ω(as)/ω(b)
= 1222/2176/58 cm−1) is in perfect agreement with the R2PI
value.

IV. CONCLUSIONS

The X̃ 2�+
u BNB state has been studied by

MRCI(11e−)/cc-pVTZ and FCI(9e−)/[3s2p] methods.
We have analyzed its bonding characteristics in terms of
vbL structures and by respecting the electronic permuta-
tional symmetry we have carefully constructed a reference
wavefunction upon which true dynamical correlation has
been extracted. We have checked our MRCI results by
FCI(9e−)/[3s2p] calculations and we found no trace of sym-
metry breaking in qualitative disagreement with practically
all previous theoretical investigations that predicted a barrier
to a centrosymmetric structure either of 20 cm−1 (based
on MRCI methods)17, 34 or 100–160 cm−1 (based on CC
methods).13, 16, 19, 35 We have also shown that it is indeed
possible to solve such SB problems with “conventional”
electronic structure packages but a deep understanding of the
subtleties entailed is necessary at least for the time being,
perhaps such peculiarities will not be a problem in the future
when “intelligent” programs do the thinking for us.36

The computational strategy that should be adopted in re-
lated SB problems can be synopsized as follows. By consider-
ing that molecular orbitals do not have to sort out as symmetry
orbitals in a completely unconstrained optimization process,37

we should average all symmetry related SB structures in a
SACASSCF step that is equivalent to a spatially projected
wavefunction. That was done in our SACASSCF(9e−/11orb)
wavefunction. When valence electrons not directly used in
bond formation (the ∼2s2

N in our case) are distributed in
the active space, then the active space should be such that
the additional electrons should be singly occupied or can be
“correlated,” so that the correct permutational symmetry is
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respected.6 That was done in our SACASSCF(11e−/13orb)
wavefunction.

In summary, we have explicitly shown in this study where
the SB problem is hidden and offered the most general way to
circumvent this sort of peculiarities and this is perhaps the
most important feature of this work. We simply cannot expect
something to be symmetrical when the fundamental symme-
tries are not respected from the very beginning. Although ex-
isting experimental data are in line with an equal bond length
BNB structure, we strongly believe that additional experimen-
tal work is in order to unambiguously clarify the nature of its
equilibrium geometry.
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