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Abstract. This paper obtains solitons as well as other solutions to a few nonlinear evolution equa-
tions that appear in various areas of mathematical physics. The two analytical integrators that are
applied to extract solutions are tan–cot method and functional variable approaches. The soliton
solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1)
dimensions.
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1. Introduction

Nonlinear evolution equations (NLEEs) form the most fundamental fabric in mathemat-
ical physics. These equations govern various physical phenomena in industry and nature
[1–25]. The dynamics of shallow water waves, propagation of pulses through optical
fibres, solitons in plasmas, nuclear physics and Davydov solitons in α-helix proteins are
all dictated by NLEEs. Therefore, it is mandated to take a deeper look at these NLEEs
from a different perspective.

Exact solutions to NLEEs will always add elite material in this literature. While numer-
ical simulations always give a pictorial view to these equations, it is always an analytical
or exact solution that adds extra flavour to this area of research. Therefore, it is imperative
to investigate various tools of integration that extract various forms of analytical solutions
to these equations. This paper is devoted to the search of analytical solutions to several
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NLEEs that appear in various spheres of life. Two integration tools are applied to obtain
these solutions. They are tan–cot functional method and functional variable method. The
overwhelming results will be widely applicable in mathematical physics wherever these
equations are studied.

There are several equations that will be studied in this paper. They are: Jaulent–
Miodek hierarchy [1], the Kadomtsov–Petviashvili Benjamin–Bona–Mahony (KP-BBM)
equation [2], the nonlinear Zakharov–Kuznetsov Benjamin–Bona–Mahony (ZK-BBM)
equation [3], the Calogero–Degasperis (CD) [4] and potential Kadomstev–Petviashvili
(pKP) equations [5,6].

These equations are studied frequently in mathematical physics and they originate from
various physical phenomena in daily life. Jaulent–Miodek equation is yet another NLEE
that models the dynamics of shallow water waves [7]. KP-BBM equation is used to study
bidirectional waves in an offshore structure, where fluid flow is relatively unbounded [8].
ZK-BBM equation is studied in the context of plasma physics. It is well known that ZK
equation models are weakly nonlinear ion-acoustic waves in strongly magnetized lossless
plasmas. ZK-BBM equation is the conjunction of ZK equation and BBM equation that
models shallow water waves, for order to modify the dispersion term for ZK equation [9].
CD equation describes (2+1)-dimensional interaction of a Riemann wave propagating
along the y-axis with a long wave along the x-axis [10]. Finally, the pKP equation is
another model for studying the shallow water waves in (2+1) dimensions. This model
serves as a two-dimensional extension of the potential KdV equation that studies shallow
water waves in (1+1) dimensions [10–12].

1.1 Governing equations

The governing equations for the model are, respectively, given by

wt + 1

4
(wxx − 2w3)x + 3

4

(
1

4
∂−1
x wyy +wx∂

−1
x wy

)
= 0, (1)

(ut + ux − a(un)x − b(un)xxt )x + kuyy = 0, (2)

ut + ux + a(un)x + b(uxt + uyy)x = 0, (3)

ut − 4uxuxx − 2uyuxx + uxxxy = 0 (4)

and

uxt + 3

2
uxuxx + 1

4
uxxxx + 3

4
uyy = 0. (5)

The two subsequent sections will devote to integrate these equations sequentially. The
integration algorithm will be first described in both of these sections and will then be
applied to extract exact solutions to these equations. The solutions are of various types
ranging from singular periodic solutions to solitary wave solutions.

2. Tan–cot functional method

Consider the nonlinear partial differential equation in the form

F(u, ut , ux, uy, utt , uxx, uxy, uyy , ...) = 0, (6)
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where u(x, y, t) is a travelling wave solution of nonlinear partial differential equation.
We use the transformations u(x, y, t) = f (ξ), where

ξ = x + y + λt. (7)

This enables us to use the following changes:

∂

∂t
(·) = λ

d

dξ
(·) , ∂

∂x
(·) = d

dξ
(·) ,

∂

∂y
(·) = d

dξ
(·) , ∂2

∂t2
(·) = λ2 d2

dξ2
(·) . (8)

Use eq. (7) to transfer the nonlinear partial differential equation, eq. (6), to nonlinear
ordinary differential equation

Q(f, f ′, f ′′, f ′′′, ...) = 0. (9)

The ordinary differential equation (9) is then integrated as long as all terms contain
derivatives, where we neglect the integration constants. The solutions of many nonlinear
equations can be expressed in the forms [13]

f (ξ) = α tanβ (μξ) , |ξ | ≤ π

2μ
(10)

or

f (ξ) = α cotβ (μξ) , |ξ | ≤ π

2μ
, (11)

with the derivatives of eq. (10):

f ′(ξ) = αβμ
{
tanβ−1 (μξ)+ tanβ+1 (μξ)

}
,

f ′′(ξ) = αβμ2{(β − 1) tanβ−2 (μξ)+ 2β tanβ (μξ)+(β + 1) tanβ+2 (μξ)
}
,

f ′′′(ξ) = βμ3α{(β − 1)(β − 2) tanβ−3 (μξ)+ (3β2 − 3β + 2) tanβ−1 (μξ)

+(β + 1)(β + 2) tanβ (μξ)+ 2β2 tanβ+1 (μξ)

+(β + 1)(β + 2) tanβ+2 (μξ)},
where α, μ and β are parameters to be determined, μ and λ are the wavenumber and
the wave speed, respectively. We substitute eq. (10) into the reduced equation, eq. (9), to
balance the terms of the tan functions and solve the resulting system of algebraic equations
by using computerized symbolic packages. We next collect all terms with the same power
in tank (μξ) and set to zero their coefficients to get a system of algebraic equations among
the unknowns α, μ and β, and solve the subsequent system.

2.1 Applications

2.1.1 Jaulent–Miodek hierarchy. The equation generates by the Jaulent–Miodek hierar-
chy is in the form [1]:

wt + 1

4
(wxx − 2w3)x + 3

4

(
1

4
∂−1
x wyy +wx∂

−1
x wy

)
= 0. (12)
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Wafaa et al [1] proposed the (G′/G)-expansion method for constructing more general
exact solutions of the nonlinear (2 + 1)-dimensional equation generated by the Jaulent–
Miodek hierarchy. To remove the integral term, assume

w(x, y, t) = ux(x, y, t). (13)

This recasts eq. (12) to

uxt + 1

4
uxxxx − 3

2
u2
xuxx +

3

16
uyy + 3

4
uxxuy = 0. (14)

Let u(x, y, t) = u(ξ), where ξ is defined in eq. (7) and eq. (14) becomes

λu′′ + 1

4
u′′′′ − 3

2
(u′)2u′′ + 3

16
u′′ + 3

4
u′′u′ = 0. (15)

Equation (15) can be written as

λu′′ + 1

4
u′′′′ − 1

2
((u′)3)′ + 3

16
u′′ + 3

8
[(u′)2]′ = 0. (16)

Integrating eq. (16) with respect to ξ once with zero constants yields

λu′ + 1

4
u′′′ − 1

2
(u′)3 + 3

16
u′ + 3

8
(u′)2 = 0. (17)

Assume

u′ = v. (18)

Substituting eq. (18) into eq. (17), we obtain an ordinary differential equation as follows:(
λ+ 3

16

)
v + 1

4
v′′ − 1

2
v3 + 3

8
v2 = 0. (19)

Seeking the solution of the form (10), we get(
λ+ 3

16
+ 1

2
β2μ2

)
tanβ(μξ)

+1

4
βμ2

[
(β − 1) tanβ−2 (μξ)+ (β + 1) tanβ+2(μξ)

]

−1

2
α2 tan3β (μξ)+ 3

8
α tan2β(μξ) = 0. (20)

Equating the exponents of some terms in eq. (20),

3β = β + 2 ⇔ β = 1. (21)

From the following system of equations

μ2 − α2 = 0,

λ+ 3

16
+ 1

2
μ2 = 0, (22)

one obtains

α = ∓μ, λ = −1

2

(
3

8
+ μ2

)
. (23)
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Then the solution of eq. (19) is

v(ξ) = ∓μ tan(μξ) , |ξ | ≤ π

2μ
. (24)

Integrating eq. (24) with respect to ξ, gives

u(ξ) = ∓ ln[cos(μξ)] + c (25)

or

u(ξ) = ∓ ln

[
cos

(
μ

(
x + y − 1

2

(
3

8
+ μ2

)
t

))]
+ c. (26)

Then the solution of eq. (12) is

w(x, y, t) = ∓μ tan

[
μ

(
x + y − 1

2

(
3

8
+ μ2

)
t

)]
,

(
x + y − 1

2

(
3

8
+ μ2

)
t

)
≤ π

2μ
. (27)

For μ = 1, t = 0.1

w(x, y, 0.1) = ∓ tan

(
x + y − 3

160

)
, x + y ≤ 1.589546. (28)

2.1.2 Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation. The Kadomtsev–
Petviashvili Benjamin–Bona–Mahony (KP-BBM) equation is of the form in eq. (2).
Wazwaz [2] used the extended tanh method to solve it. The tan–cot method will be applied
now to solve the KP-BBM equation.

Let u(x, y, t) = u(ξ), where ξ is defined in eq. (7), then eq. (2) becomes

(λu′ + u′ − a(un)′ − λb(un)′′′)′ + ku′′ = 0. (29)

Integrating eq. (29) twice with zero constant:

λu+ u− aun − λb(un)′′ + ku = 0. (30)

Equation (30) can be written as

(λ+ k + 1) u− aun − λbn(n− 1)un−2(u′)2 − λbnun−1u′′ = 0. (31)

Seeking the solution in (10), eq. (31) becomes

(λ+ k + 1)α tanβ (μξ)− aαn tannβ (μξ)− λbn(n− 1)αnβ2μ2

×[tan(nβ−2) (μξ)+ 2 tannβ (μξ)+ tan(nβ+2) (μξ)]
− λbnαnβμ2[(β − 1) tan(nβ−2) (μξ)+ 2β tannβ (μξ)

+ (β + 1) tan(nβ+2) (μξ)] = 0. (32)
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Equating the exponents of some terms in eq. (32),

nβ − 2 = β ⇔ β = 2

n− 1
, n �= 1. (33)

We next collect all terms with the same power and set their coefficients to zero to get a
system of algebraic equations:

(λ+ k + 1)(n− 1)− 2λbn

[
2μ2 + μ2

(
3 − n

n− 1

)]
αn−1 = 0,

aαn + 2λbnαn 4

(n− 1)
μ2 + 2λbnαn 4

(n− 1)2
μ2 = 0,

4λbnαnμ2 + 2λbnαnμ2

(
n+ 1

n− 1

)
= 0. (34)

Solving system (34), then:

α =
[

4n(λ+ k + 1)

a(n+ 2)

]1/(n−1)

, μ = ∓i
n− 1

2n

√
a

2λb
,

u(x, y, t)=
[

4n(λ+ k + 1)

a(n+ 2)

]1/(n−1)

× tan2/(n−1)

(
∓i

n− 1

2n

√
a

2λb
(x+y+λt)

)
(35)

or

u(x, y, t)= ∓i

[
4n(λ+ k + 1)

a(n+ 2)

]1/(n−1)

× tanh2/(n−1)

(
n− 1

2n

√
a

2λb
(x+y+λt)

)
. (36)

For n = 1
3 , a = 2, k = b = λ = 1, t = 0.5

u(x, y, t) = ∓i

[
7

6

]3/2

coth3 (x + y + 0.5) . (37)

2.1.3 Zakharov–Kuznetsov Benjamin–Bona–Mahony equation. The Zakharov–Kuznetsov
Benjamin–Bona–Mahony (ZK-BBM) equation is of the form in eq. (3) [2]. Mahmoudi
et al [3] studied and solved this equation by using the exp-function method, while Wazwaz
[2] used the extended tanh method to solve it. The tan–cot method will be applied now to
solve the ZK-BBM equation.

Let u(x, y, t) = u(ξ), where ξ is defined in eq. (7), and eq. (3) becomes

λu′ + u′ + a(un)′ + b(λu′′ + u′′)′ = 0. (38)

Integrating eq. (38) once with zero constant:

(λ+ 1)u+ aun + b(λ+ 1)u′′ = 0. (39)
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Seeking the solution as the form given by (10), eq. (39) becomes

(λ+ 1)α tanβ (μξ)+ aαn tannβ (μξ)

+ b(λ+ 1)αβμ2
[
(β − 1) tanβ−2 (μξ)+ 2β tanβ (μξ)

+ (β + 1) tanβ+2 (μξ)
] = 0. (40)

Equating the exponents of some terms in eq. (40),

β + 2 = nβ ⇔ β = 2

n− 1
, n �= 1. (41)

We next collect all terms with the same power and set their coefficients to zero to get a
system of algebraic equations:

aαn + 2b(λ+ 1)αμ2 (n+ 1)

(n− 1)2
= 0,

(λ+ 1)+ 2b(λ+ 1)β2μ2 = 0. (42)

Solving system (42), gives

α =
[
(λ+ 1)

(n+ 1)

4a

]1/(n−1)

, μ = ∓i

√
1

2b

(n− 1)

2
, (43)

u(x, y, t)=
[
(λ+1)

(n+1)

4a

]1/(n−1)

× tan2/(n−1)

(
∓i

√
1

2b

(n−1)

2
(x + y + λt)

)
(44)

or

u(x,y, t) =∓i

[
(λ+1)

(n+1)

4a

]1/(n−1)

× tanh2/(n−1)

(
∓i

√
1

2b

(n−1)

2
(x+y+λt)

)
. (45)

For n = 2, a = 2, b = 0.5, λ = 1, t = 0.5

u(x, y, t) = ∓i
3

4
tanh2

(
1

2
(x + y + 0.5)

)
. (46)

2.1.4 Calogero–Degasperis equation. The Calogero–Degasperis (CD) equation, also
known as breaking soliton equation, is used to describe the (2+1)-dimensional interaction
of a Riemann wave propagating along the y-axis with a long wave along the x-axis [4].
Solitary waves are wave packets or pulses which propagate in nonlinear dispersive media.
Due to dynamical balance between the nonlinear and dispersive effects, these waves retain
a stable waveform. A soliton is a very special type of solitary wave, which also keeps its
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waveform after collision with other solitons. Anwar et al [6] solved the CD equation by
using tanh–coth method.

The tan–cot method is applied in this paper to solve the CD equation as in the following:
Let u(x, y, t) = u(ξ), where ξ is defined in eq. (7), eq. (4) becomes

λu′ − 6u′u′′ + u′′′′ = 0. (47)

Equation (47) can be written as

λu′ − 3[(u′)2]′ + u′′′′ = 0. (48)

Integrating eq. (48) once with zero constants

λu− 3(u′)2 + u′′′ = 0. (49)

Seeking the solution in (10), eq. (49) becomes

λ tanβ (μξ)−3αβ2μ2 [
tan2β−2 (μξ)+ 2 tan2β (μξ)+ tan2β+2 (μξ)

]
+ βμ3[(β−1)(β − 2) tanβ−3 (μξ)+ (

3β2 − 3β + 2
)

tanβ−1 (μξ)

+ (β + 1)(β + 2) tanβ (μξ)+ 2β2 tanβ+1 (μξ)

+ (β + 1)(β + 2) tanβ+2 (μξ)] = 0. (50)

Equating the exponents of some terms in eq. (50),

β = 2β − 2 ⇔ β = 2. (51)

Collecting all terms with the same power and set their coefficients to zero to get a system
of algebraic equations:

λ− 12αμ2 + 24μ3 = 0,

−α + μ = 0. (52)

Solving system (52), then gives

λ = −12μ3, α = μ. (53)

u(x, y, t) = μ tan2
[
μ

(
x + y − 12μ3t

)]
. (54)

For μ = 1, t = 0.5

u(x, y, t) = tan2 (x + y − 6) . (55)

2.1.5 Potential Kadomtsev–Petviashvili equation. New soliton solutions are obtained
for (2+1)-dimensional potential Kadomtsev–Petviashvili (PKP) equation by using the
tanh–coth method by Anwar et al [6]. The tan–cot method is applied in this paper to
solve the PKP equation as follows:

Let u(x, y, t) = u(ξ), where ξ is defined in eq. (7), eq. (5) becomes

λu′′ + 3

2
u′u′′ + 1

4
u′′′′ + 3

4
u′′ = 0. (56)
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Equation (56) can be written as

λu′ + 3

4
[(u′)2]′ + 1

4
u′′′′ + 3

4
u′′ = 0. (57)

Integrating eq. (57) once with zero constants

λu+ 3

4
(u′)2 + 1

4
u′′′ + 3

4
u′ = 0. (58)

Seeking the solution in (10), eq. (58) becomes

4λ tanβ (μξ) + 3αβ2μ2 [
tan2β−2 (μξ)+ 2 tan2β (μξ)+ tan2β+2 (μξ)

]
+ βμ3[(β−1)(β−2) tanβ−3 (μξ)+(

3β2−3β+2
)

tanβ−1 (μξ)

+ (β + 1)(β + 2) tanβ (μξ)+ 2β2 tanβ+1 (μξ)

+ (β + 1)(β + 2) tanβ+2 (μξ)] + 3βμ[tanβ−1 (μξ)

+ tanβ+1 (μξ)] = 0. (59)

Equating the exponents of some terms in eq. (59),

β = 2β − 2, β = 2β + 2 ⇔ β = 2. (60)

Collect all terms with the same power and set their coefficients to zero to get a system of
algebraic equations:

4λ+ 12αμ2 + 24μ3 = 0,

24αμ2 + 24μ3 = 0,

16μ3 + 6μ = 0. (61)

Solving system (61), then gives

λ = ∓ 9

16

√
3

2
i, α = ± i

2

√
3

2
, μ = ∓ i

2

√
3

2
. (62)

Then

u(x, y, t) = ± i

2

√
3

2
tan2

(
∓ i

2

√
3

2

(
x + y ∓ 9

16

√
3

2
it

))
(63)

or

u(x, y, t) = ±
√

3

8
tanh2

(
∓

√
3

8

(
x + y ∓ 9

16

√
3

2
it

))
. (64)

3. Functional variable method

The functional variable method, which is a direct and effective algebraic method for the
computation of compactons, solitons, solitary patterns and periodic solutions, was first
proposed by Zerarka et al [14]. This method was further developed by many authors in

Pramana – J. Phys., Vol. 83, No. 4, October 2014 465



Anwar Ja’afar Mohamad Jawad, M Mirzazadeh and Anjan Biswas

[10,15–17]. We now summarize the functional variable method, established by Zerarka
et al [14], the details of which can be found in [10,15–17] among many others.

Consider a general nonlinear PDE in the form

P

(
u,

∂u

∂t
,
∂u

∂y
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂y2
,
∂2u

∂x2
,
∂2u

∂t∂x
, ...

)
= 0, (65)

where P is a polynomial in u and its partial derivatives. Using a wave variable, ξ =
α0t + α1x + α2y + δ, so that

u(x, y, t) = U(ξ), (66)

eq. (65) can be converted to an ordinary differential equation (ODE) as

Q
(
U,U ′, U ′′, U ′′′, ...

) = 0, (67)

where Q is a polynomial in U = U(ξ) and prime denotes derivative with respect to ξ. If
all terms contain derivatives, then eq. (67) is integrated, where integration constants are
considered zeros.

Let us make a transformation in which the unknown function U(ξ) is considered as a
functional variable in the form

Uξ = F(U), (68)

and some successively derivatives of U are

Uξξ = 1

2
(F 2)′,

Uξξξ = 1

2
(F 2)′′

√
F 2,

Uξξξξ = 1

2
[(F 2)′′′F 2 + (F 2)′′(F 2)′], (69)

where ′ = d/dU.

The ODE (67) can be reduced in terms of U, F and their derivatives upon using the
expressions of eq. (69) into eq. (67) give

R(U,F, F ′, F ′′, F ′′′, ...) = 0. (70)

The key idea of this particular form of eq. (70) is of special interest, because it admits
analytical solutions for a large class of nonlinear wave-type equations. After integration,
eq. (70) provides the expression of F , and this together with eq. (68), give the relevant
solutions to the original problem.

Remark

The functional variable method definitely can be applied to nonlinear PDEs which can be
converted to a second-order ordinary differential equation (ODE) through the travelling
wave transformation.

3.1 Applications

In this section, we present two examples to illustrate the applicability of the functional
variable method to establish compactons, solitons and periodic solutions of nonlinear
PDEs.
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3.1.1 (3+1)-Dimensional generalized Kadomtsev–Petviashvili equation. The (3 + 1)-
dimensional generalized Kadomtsev–Petviashvili (gKP) equation, given by [18,19]

(qt + 6qnqx + qxxx)x + 3qyy + 3qzz = 0, (71)

describes the dynamics of solitons and nonlinear waves in plasma physics and fluid
dynamics [20].

Under the travelling wave transformation

u(x, y, t) = U(ξ), ξ = ax + by + cz− vt, (72)

we have

a(−vU ′ + 6aUnU ′ + a3U ′′′)′ + 3b2U ′′ + 3c2U ′′ = 0, (73)

where U = U(ξ) and prime denotes derivative with respect to ξ .
Integrating eq. (73) twice with respect to ξ and neglecting the constants of integration,

yields

(3(b2 + c2)− av)U + 6a2

n+ 1
Un+1 + a4U ′′ = 0. (74)

Then, we use the transformation

Uξ = F(U), (75)

that will convert eq. (74) to

(3(b2 + c2)− av)U + 6a2

n+ 1
Un+1 + a4

2
(F 2(U))′ = 0. (76)

Thus, we get from eq. (76), the expression of the function F(U) which reads as

F(U) =
√
av − 3(b2 + c2)

a2
U

√
1 − 12a2

(av − 3(b2 + c2))(n+ 1)(n+ 2)
Un.

(77)

After making the change of variables

Z = 12a2

(av − 3(b2 + c2))(n+ 1)(n+ 2)
Un, (78)

and using the relation (75), the solution of eq. (74) is in the following form:

U(ξ) =
{
(av − 3(b2 + c2))(n+ 1)(n+ 2)

12a2

×sech2

(
n
√
av − 3(b2 + c2)

2a2
(ξ + ξ0)

)}1/n

. (79)

Using the travelling wave transformation (72), we obtain the following soliton solutions
of the (3 + 1)-dimensional gKP equation:

q1(x, y, z, t) =
{
(av − 3(b2 + c2))(n+ 1)(n+ 2)

12a2

×sech2

(
n
√
av−3(b2+c2)

2a2
(ax+by+cz−vt+ξ0)

)}1/n

(80)
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and

q2(x, y, z, t) =
{
(3(b2 + c2)− av)(n+ 1)(n+ 2)

12a2

×csch2

(
n
√
av−3(b2+c2)

2a2
(ax+by+cz−vt+ξ0)

)}1/n

.

(81)

It is easy to see that solutions (80) and (81) can reduce to singular periodic solutions as
follows:

q3(x, y, z, t) =
{
(av − 3(b2 + c2))(n+ 1)(n+ 2)

12a2

×sec2

(
n
√

3(b2 + c2)− av

2a2
(ax+by+cz−vt+ξ0)

)}1/n

(82)

and

q4(x, y, z, t) =
{
(av − 3(b2 + c2))(n+ 1)(n+ 2)

12a2

×csc2

(
n
√

3(b2+c2)−av

2a2
(ax+by+cz−vt+ξ0)

)}1/n

.

(83)

3.1.2 Generalized Benjamin equation. We consider nonlinear generalized Benjamin
equation which is given by

(qm)tt + a(qnqx)x + β(qm)xxxx = 0, (84)

where α and β are constants.
When m = 1, we have the following equation [18,19]:

qtt + a(qnqx)x + βqxxxx = 0. (85)

This kind of equation is one of the most important NLPDEs, used in the analysis of long
waves in shallow water [21].

To look for the exact solutions of eq. (84), we make transformation

q(x, t) = U(ξ), ξ = α0t + α1x + δ, (86)

and generate the reduced nonlinear ODE in the form

α2
0(U

m)′′ + aα2
1(U

nU ′)′ + βα4
1(U

m)′′′′ = 0. (87)
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Integrating (85) twice with respect to ξ and setting the constants of integration to be zero,
we find

α2
0U

m + aα2
1

n+ 1
Un+1 + βα4

1(U
m)′′ = 0. (88)

We use the transformation

U(ξ) = V 1/m(ξ), (89)

that will reduce eq. (88) into the ODE

α2
0V + aα2

1

n+ 1
V (n+1)/m + βα4

1V
′′ = 0. (90)

Following eq. (69), it is easy to deduce from (90) the expression of the function F(V )

which reads as

F(V ) =
√
− α2

0

βα4
1

V

√
1 + 2amα2

1

(n+ 1)(n+m+ 1)α2
0

V (n+1−m)/m. (91)

Using the change of variables

Z = − 2amα2
1

(n+ 1)(n+m+ 1)α2
0

V (n+1−m)/m, (92)

and using the relation (68), the solution of eq. (90) is in the following form:

V (ξ) =
{
− (n+ 1)(n+m+ 1)α2

0

2amα2
1

×sech2

(
n+ 1 −m

2m

√
− α2

0

βα4
1

(ξ + ξ0)

)}m/(n+1−m)

. (93)

Using the transformation (89), we can obtain the following soliton solutions of eq. (84):

q1(x, t) =
{
− (n+ 1)(n+m+ 1)α2

0

2amα2
1

×sech2

(
n+ 1 −m

2m

√
− α2

0

βα4
1

(α0t+α1x+δ+ξ0)

)}1/(n+1−m)

,

(94)

q2(x, t) =
{
(n+ 1)(n+m+ 1)α2

0

2amα2
1

×csch2

(
n+ 1 −m

2m

√
− α2

0

βα4
1

(α0t+α1x+δ+ξ0)

)}1/(n+1−m)

.

(95)
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It is easy to see that solutions (94) and (95) can reduce to singular periodic solutions as
follows:

q3(x, t) =
{
− (n+ 1)(n+m+ 1)α2

0

2amα2
1

×sec2

(
n+ 1 −m

2m

√
α2

0

βα4
1

(α0t + α1x + δ + ξ0)

)}1/(n+1−m)

,

(96)

q4(x, t) =
{
− (n+ 1)(n+m+ 1)α2

0

2amα2
1

×csc2

(
n+ 1 −m

2m

√
α2

0

βα4
1

(α0t + α1x + δ + ξ0)

)}1/(n+1−m)

.

(97)

4. Conclusions

This paper obtained soliton, singular periodic as well as other solutions to several NLEEs
that appear in mathematical physics. While several integration architectures are available,
only two of them were employed in this paper. These results are going to be extremely
useful in various areas of future research.

Several perturbation terms will be considered to integrate the perturbed versions of
these equations. The soliton perturbation theory will be developed for these equations.
In addition to deterministic perturbation terms, stochastic perturbation terms will also be
taken into account. The Langevin equation will also determine the mean free soliton
speed. These results will be discussed in detail in future publications and will be reported
later.
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