
Size and boundary scattering controlled contribution of spectral phonons
to the thermal conductivity in graphene ribbons

Yulu Shen,1 Guofeng Xie,1,a) Xiaolin Wei,1 Kaiwang Zhang,1 Minghua Tang,1

Jianxin Zhong,1 Gang Zhang,2,a) and Yong-Wei Zhang2

1Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Faculty of Materials,
Optoelectronics and Physics, Xiangtan University, Hunan 411105, People’s Republic of China
2Institute of High Performance Computing, Singapore 138632, Singapore

(Received 16 October 2013; accepted 1 February 2014; published online 12 February 2014)

Although graphene holds great promise in thermal applications owing to its superior thermal

conductivity, an intriguing question remains as to which polarizations and frequencies are dominant

in its heat conduction. In this work, by incorporating the direction-dependent phonon-boundary

scattering and the special selection rule for three-phonon scattering into the linearized phonon

Boltzmann transport equation, we systematically investigate the relative contributions from

longitudinal-acoustic, transverse-acoustic, and out-of-plane acoustic (ZA) branches to the thermal

conductivity of graphene ribbons, focusing on the effects of their size and temperature. We find that

the relative contribution from ZA branch to heat conduction increases with decreasing the size,

specularity parameter, and temperature of graphene ribbons. Our analysis reveals that this change

arises from the huge difference in the phonon dispersion and in the phonon mean free path of

Umklapp process between in-plane and out-of-plane branches. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4865744]

I. INTRODUCTION

The thermal transport of graphene has attracted a great

deal of experimental1–6 and theoretical7–14 research interest.

It is well-known that there are six phonon polarization

branches in single layer graphene (SLG):15–17 (i) out-of-

plane acoustic (ZA) and out-of-plane optical phonons (ZO)

with the displacement vector along the Z axis perpendicular

to the graphene plane; (ii) transverse-acoustic (TA) and

transverse-optical (TO) phonons, which correspond to the

transverse vibrations within the graphene plane; and (iii)

longitudinal-acoustic (LA) and longitudinal-optical (LO)

phonons, which correspond to the longitudinal vibrations

within the graphene plane. In general, the numbers of

phonons in the optical branches (LO, TO, ZO) are at least an

order-of-magnitude smaller than those in the acoustic

branches over the entire temperature range. Combining with

the low group velocities, it has been widely recognized

that the contributions from the optical phonon branches to

the thermal conductivity are much less than those from the

acoustic branches.15,16,18

However, the relative contribution to heat conduction

by LA, TA or ZA phonons is still an intriguing question in

phonon transport of SLG.19,20 Due to the small phonon group

velocity, it was suggested that ZA phonons have a negligible

contribution to the thermal conductivity of SLG.15 A similar

conclusion was also reached based on the calculation of

thermal conductivity using linearized Boltzmann transport

equation (BTE) within relaxation time approximation

(RTA).7,16,21–23 Wang et al.3 suggested that the flexural

phonon modes contributed significantly to the thermal trans-

port of the suspended graphene since the experimentally

measured temperature dependence of thermal conductivity

of SLG followed a power law with an exponent of 1.4 6 0.1.

Through the full quantum mechanical calculations of both

normal and Umklapp three-phonon scattering processes,

Lindsay et al.6,24 obtained a selection rule for three-phonon

scattering, which strongly restricts the phase space for

Umklapp scattering of ZA phonons in SLG. By incorporat-

ing this selection rule in the linearized phonon BTE for SLG,

they found that the ZA modes could contribute as much as

77% and 86% of the total thermal conductivity at 300 K and

100 K, respectively. This result was based on the large den-

sity of flexural phonons associated with the quadratic ZA

branch dispersion and the reflection symmetry of ideal two-

dimensional graphene, thus significantly restricting the phase

space for phonon-phonon scattering of the flexural modes.

Although the relative contributions to the thermal con-

ductivity of SLG by different phonon branches were studied,

the effects of graphene ribbon size, boundary roughness, and

temperature on the thermal conductivity are still open ques-

tions. In this work, by introducing the direction-dependent

phonon-boundary scattering to the linearized phonon

Boltzmann transport equation, we investigate the effects of

size and temperature on the thermal conductivity of graphene

ribbons, as well as on the relative contributions by LA, TA

and ZA branches in graphene ribbons. Different from litera-

tures 7, 8, 15, and 21–23, the present model employs a

frequency dependent Gr€uneisen parameter for the ZA branch.

In addition, in calculating the scattering rate of Umklapp

phonon-phonon process of flexural phonons, the present

model includes a selection rule that any three-phonon scatter-

ing process in SLG must involve either no out-of-plane
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phonons or two out-of-plane phonons.6,24 Our calculations

reveal that the relative contribution of ZA branch to the heat

conduction increases with decreasing the size, specularity pa-

rameter, and temperature. Importantly, the contribution of

ZA mode should not be neglected (over 20%) in graphene

ribbons with small size (less than 1 lm) and rough boundary

(small specularity parameter less than 0.5), and at tempera-

ture lower than 50 K, the contribution of ZA even becomes

dominant.

II. THEORETICAL MODEL AND DERIVATION

Here, we formulate our theoretical model of the thermal

conductivity in graphene ribbons, which takes into account the

anharmonic three-phonon processes, together with the

direction-dependent phonon scattering from the ribbon edges

(see the schematic illustration of phonon scattering processes in

Fig. 1). According to linearized phonon BTE within RTA, the

thermal conductivity in branch k of graphene in the y direction

(the longitudinal direction of graphene ribbon) is derived as

jk ¼
S

ð2pÞ2
ð

cphv2
k;yskd~q

¼ S

ð2pÞ2
ðqmax

0

ð2p

0

kB

Sd
ð�hx=kBTÞ2e�hx=kBT

ðe�hx=kBT � 1Þ2
v2
k cos2 hskqdhdq; (1)

where k ¼ LA; TA; and ZA, and only acoustic branches are

considered.15,18 S is the area of the sample, vk;y is the y com-

ponent of the group-velocity vector in branch k, sk is the

averaged phonon relaxation time between successive scatter-

ing events of branch k, ~q is the wave vector, h (ranging from

0 to 2p) is the angle between the wave vector and y axis, and

cph is the volumetric specific heat of each mode, which is

given as

cph ¼
kB

Sd
ð�hw=kBTÞ2e�hw=kBT

ðe�hw=kBT � 1Þ2
; (2)

where kB is the Boltzmann constant, d ¼ 0:35 nm is the

thickness of graphene, �h is the reduced Planck constant, and

T is the absolute temperature.

In SLG, the LA and TA acoustic branches are linear,

whereas the ZA branch shows a quadratic dependence of the

frequency on the wave vector,15,16 so

xk ¼
vkq k ¼ LA; TA

aq2 k ¼ ZA:

(
(3)

Using this dispersion and the relationship vk ¼ dxk
dq , and

transforming the integral of wave vector (q) to frequency

(x), we can get

jk ¼

kB

4p2d

ðxD;k

0

ð2p

0

ð�hx=kBTÞ2e�hx=kBT

ðe�hx=kBT � 1Þ2
x cos2 hskðx; hÞdhdx k ¼ LA; TA

kB

2p2d

ðxD;k

0

ð2p

0

ð�hx=kBTÞ2e�hx=kBT

ðe�hx=kBT � 1Þ2
x cos2 hskðx; hÞdhdx k ¼ ZA;

8>>>>>>><
>>>>>>>:

(4)

where xD;k is the Debye frequency, which is given as

xD;k ¼
2vk

ffiffiffiffi
p
X

r
k ¼ LA; TA

4pa
X

k ¼ ZA;

8>>><
>>>:

(5)

where X is the primitive cell area.

According to Eq. (4), the expression of the averaged

phonon relaxation time s is the determinant of thermal con-

ductivity value in graphene ribbon. The Matthiessen’s rule,

which assumes that different scattering mechanisms are in-

dependent, is applied to combine the effects of Umklapp

phonon-phonon scattering (sU) and phonon-boundary

scattering (sB). In the present work, we do not consider other

scattering mechanisms such as defects, therefore

s�1 ¼ s�1
U þ s�1

B . Based on the time-dependent perturbation

theory, Roufosse and Klemens25 derived the scattering rate

for three-phonon processes. The relaxation time of Umklapp

phonon-phonon scattering was derived using an expression

from Refs. 22 and 26 but introducing separate lifetimes for

LA, TA, and ZA phonons,

sU;k ¼
Mv2

kxD;k

c2
kkBTx2

eHk=3T ; (6)

where M is the mass of a graphene unit cell, ck is the

Gr€uneissen parameter, which controls the strength of the

phonon-phonon scattering process for each branch, and Hk is
FIG. 1. Schematic illustration of phonon scattering processes in graphene

ribbon.
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the Debye temperature for each branch. The proper treatment

of phonon-boundary scattering rate is critical in nanoscale

system, especially when the characteristic size of the system

is close to or less than the phonon mean free path. Here, we

introduce the direction-dependent averaged relaxation time

of phonon-boundary scattering sBðhÞ, and according to the

Matthiessen’s rule, the averaged phonon relaxation time is

derived as

skðx; hÞ ¼
sU;kðxÞsB;kðhÞ

sU;kðxÞ þ sB;kðhÞ
: (7)

As shown in Fig. 1, the phonon-boundary scattering in

graphene ribbons includes end boundaries scattering and lat-

eral boundaries scattering. For a rectangular graphene rib-

bon, the averaged relaxation time of phonon-boundary

scattering sB is given as

sB;kðh; nÞ ¼
ll=vk if ll < le and n > P

le=vk if ll � le or n � P;

(
(8)

where le is the averaged distance traveled ballistically by a

phonon before hitting the end boundary, and ll is the aver-

aged distance traveled ballistically by a phonon before hit-

ting the lateral boundary. P is the specularity parameter,

which is defined as the probability of phonon’s specular

reflection at the lateral boundaries, and n is a random number

ranging from 0 to 1. If n � P, the phonon boundary scatter-

ing is specular, otherwise the scattering is diffuse. The spec-

ular reflections of phonons at lateral boundaries mean that all

phonons scatter at the boundary elastically preserving their

momentum along the length. Such scattering events do not

contribute to the thermal resistance of the sample. Therefore

for the phonons along the propagation direction (h) that are

reflected specularly at the lateral boundaries, the averaged

relaxation time of boundary scattering should be derived as

le=vk, instead of ll=vk, even though the scattering takes place

at the lateral boundaries. Based on the assumption that the

spatial distribution of phonons in the rectangular ribbon is

uniform, le and ll are given as follows:

leðhÞ ¼
1

Ljcos hj

ðL

0

ydy ¼ L

2jcos hj; (9)

llðhÞ ¼
1

Wjsin hj

ðW

0

xdx ¼ W

2jsin hj; (10)

where L is the length of the graphene ribbon, and W is the

width of the ribbon. With this improved method, which

allows for the calculation of the direction dependent phonon-

boundary scattering rate, we can explore not only width de-

pendence but also length dependence of thermal conductivity

of graphene ribbons.

The parameters for dispersion originate from Ref. 27,

the group velocity for LA and TA branches is 15 045 m/s and

10 640 m/s, respectively, and a ¼ 4:09� 10�7 m2=s for ZA
branch. The Gr€uneissen parameter for LA and TA is 2.0 and

1.0, respectively.7 Unlike the LA and TA branches, the

Gr€uneissen parameter for the ZA branch (cZA) has a very

strong dependence on wavevector,16,17 and the range of

cZAðqÞ is from �53 to �1.46, which is calculated by the first

principles in Ref. 16. The shape of cZAðqÞ curve of single

layer graphene in Ref. 16 is like quadratic, therefore we take

the simple assumption,

cZAðqÞ ¼ �1:46� 51:54

q2
max

ðq� qmaxÞ2: (11)

Substituting the quadratic dispersion of ZA phonons x ¼
aq2 in Eq. (11), the frequency-dependence of the Gr€uneissen

parameter cZAðxÞ is obtained. This simple assumption is

more reliable than the approximated constant of cZA in earlier

reported works due to the strong wavevector (or frequency)-

dependence of cZA.

For a flat graphene sheet lying in the x-y plane, the

reflection symmetry requires that the Hamiltonian be invari-

ant under z ! �z.6 Seol et al. obtained a selection rule for

three-phonon scattering, which requires that an even number

of ZA phonons is involved in each process. There are 12

processes in which ZA phonons are involved, according the

selection rule, only the following 4 processes can occur:

ZAþ ZA$ LA, ZAþ ZA$ TA, LAþ ZA$ ZA, and

TAþ ZA$ ZA. The processes in which any odd number of

ZA branches involved are forbidden, such as ZAþ ZA
$ ZA, ZAþ LA$ TA, LAþ TA$ ZA. Therefore, in our

model, the scattering rate of Umklapp phonon-phonon pro-

cess of flexural phonons is simply multiplied by a factor 1/3,

and the relaxation time of Umklapp phonon-phonon scatter-

ing in Eq. (6) for ZA branch is modified as

sU;ZAðxÞ ¼
Mv2

ZAðxÞxD;ZA

c2
ZAðxÞkBTx2

eHZA=3T � 3: (12)

Lindsay et al. found that about 60% of both the N-process

and U-process three-phonon scattering phase space of ZA

phonons are forbidden by the selection rule,24 which is con-

sistent with our analysis.

Based on these derivations, now we can calculate the

thermal conductivity of each branch and the total thermal

conductivity, which is the sum of these three acoustic

branches. The integral calculation of the thermal conductiv-

ity in graphene according to Eq. (4) cannot be carried out

analytically, but it can be performed by Monte Carlo sam-

pling method,28 which is given as

jk ¼

kBxD;k

2pd
� 1

N

XN

i¼1

gkðxi; hi; niÞ k ¼ LA; TA

kBxD;k

pd
� 1

N

XN

i¼1

gkðxi; hi; niÞ k ¼ ZA;

8>>>>><
>>>>>:

(13)

where N is the sampling number, and must be very large (for

example, N¼ 106) in order to improve the accuracy and

reduce the variance. gkðx; h; nÞ is the integral function,

which is expressed as

gkðx; h; nÞ ¼
ð�hx=kBTÞ2e�hx=kBT

ðe�hx=kBT � 1Þ2
x cos2 hskðx; h; nÞ: (14)

063507-3 Shen et al. J. Appl. Phys. 115, 063507 (2014)



x, h, and n are uniform distribution in the range of [0, xD;k],

½0; 2p�, and [0,1], respectively.

III. RESULTS AND DISCUSSIONS

We apply this model to investigate the effects of size,

boundary, and temperature on the thermal conductivity of

rectangular graphene ribbons. Fig. 2 shows the length

dependence of total thermal conductivity in graphene rib-

bons with different specularity parameters (0 � P � 1). The

width of the ribbons is 5 lm, and the temperature is 300 K. It

is obvious that the probability of specular reflection at lateral

boundaries has dominant influence on the length dependence

of thermal conductivity in graphene ribbons. At a short

length, the phonons with the mean free path (MFP) are lim-

ited by the length only, and thermal conductivity rapidly

increases with length. Due to the large phonon MFP in 2D

graphene, which is estimated to be of the order of 800 nm

near room temperature,2 the specularity parameter has little

influence on the thermal conductivity of graphene ribbons

with a short length. A further increase in length increases the

number of phonons that experience lateral boundary scatter-

ing, resulting in MFP being dependent on both end and

lateral boundary scattering, therefore the specularity parame-

ter has increasing influence on the thermal conductivity as

the length of the ribbon increases. The increasing slope of

the thermal conductivity versus length curve is also related

to the specularity parameter P: it decreases as the value of P
decreases in the same length regime. The finite value of

thermal conductivity results from the existence of diffuse

phonon-boundary scattering. With the specularity parameter

(P) decreases, the fraction of the diffusively scattered pho-

nons increases, leading to a reduction in thermal conductiv-

ity. Our calculations are in good agreement with various

experimental measurements which are plotted as scattering

points in Fig. 2, circles taken from Ref. 1, square taken from

Ref. 2 and rhomb taken from Ref. 4.

The length dependence of intrinsic thermal conductivity

(P¼ 1, purely specular boundary reflection) of individual

branch in graphene ribbons at room temperature is presented

in Fig. 3(a). The intrinsic thermal conductivity of LA and

TA branch has linear relationship with log L (where L is the

length of the ribbon), which is in consistent with the results

of Ref. 8, but the intrinsic thermal conductivity of ZA branch

converges with L. In LA and TA branches, the anharmonic

three-phonon scattering of the first-order alone is not suffi-

cient for obtaining the normal diffusion in graphene ribbons,

resulting in a divergent thermal conductivity. For convergent

thermal conductivity in graphene ribbons, other scattering

mechanisms must be included, such as diffuse boundary

scattering, multiple phonon processes, and crystal lattice

imperfections. The difference in the length dependence of

thermal conductivity between the in-plane branches (LA and

TA) and out-of-plane branch (ZA) stems from the different

phonon dispersion.

A fundamental understanding of the relaxation time of

phonons is essential to identify the influence of size on the

thermal conductivity of graphene ribbons. The averaged

relaxation time of phonons with different propagating direc-

tions in individual branch is derived as

skðxÞ ¼
X

skðx; hÞ
2p

¼ 1

2p

ð2p

0

sU;kðxÞsB;kðhÞ
sU;kðxÞ þ sB;kðhÞ

dh: (15)

Fig. 3(b) gives the frequency dependence of averaged relaxa-

tion time of LA, TA, and ZA phonons in graphene ribbons

FIG. 2. The length dependence of thermal conductivity of graphene ribbons

with different specularity parameters. Experimental data points from Ref. 1

(�), Ref. 2 (w), and Ref. 4 (�).

FIG. 3. (a) The length dependence of intrinsic thermal conductivity of LA,

TA, and ZA branches in graphene ribbon. (b) The frequency dependence of

relaxation time of LA, TA, and ZA phonons in graphene ribbons with differ-

ent lengths.
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with different length. Here the specularity parameter (P) is

1.0. The dashed lines indicate the relaxation time of phonons

in infinite graphene sheet (no boundary scattering) according

to Eqs. (6) and (12). The lines with solid symbols indicate

the averaged relaxation time of phonons in 5 lm long gra-

phene ribbon, and the lines with hollow symbols indicate

that in 20 lm long graphene ribbon. In LA and TA branches,

the relaxation time of phonons decreases sharply as the

frequency of phonons increases. However, the frequency

dependence is different in ZA branch. For ZA branch, the

relaxation time is determined by the phonon group velocity

and the Gr€uneissen parameter, thus it increases first, arrives

its maximum value, then decreases with increasing fre-

quency. In the case of P ¼ 1 (specular boundary reflection),

the relaxation time due to phonon-boundary scattering (sB) is

only determined by the length of the ribbon. If the length is

above micrometers, the relaxation time due to phonon-

boundary scattering (sB) is significantly larger than that due

to phonon-phonon Umklapp scattering (sU). According to

the Matthiessen’s rule s�1 ¼ s�1
U þ s�1

B , the length of the rib-

bon has weak effect on the phonon relaxation time, except

for LA and TA phonons at low frequency region.

Fig. 4 shows the relative contribution of individual

branch to thermal conductivity of graphene ribbons with dif-

ferent length at room temperature. Here, the width of ribbons

is 1 lm and the specularity parameter is 0.8. In this case, TA

branch has the maximal contribution because of the small

Gr€uneissen parameter (1.0). The relative contribution of TA

branch decreases with the length of the ribbon decreases;

while the relative contribution of ZA branch increases as the

length of the ribbon decreases. In the case of L < 1 lm, the

contribution of ZA branch could be over 20%, therefore it is

not negligible.

The diffuse phonon-boundary scattering suppresses the

thermal conductivity of graphene ribbons. The MFP due to

Umklapp phonon-phonon scattering of in-plane phonons is

significantly longer than that of out-of-plane phonons, which

is implied in Fig. 3(a). Therefore the suppression of thermal

conductivity by the diffusive phonon-boundary scattering in

LA and TA branches is more remarkable than that in ZA

branch, which is clearly shown in Fig. 5(a). When the specu-

larity parameter P decreases from 1 (purely specular reflec-

tion) to 0 (purely diffusive reflection), the thermal

conductivity of LA (TA) branch decreases from 1643 W/mK

to 950 W/mK (2582 W/mK to 1415 W/mK), while the contri-

bution from ZA mode only decreases from 480 W/mK to

390 W/mK. The frequency dependence of the averaged

relaxation time of LA, TA, and ZA phonons in graphene

ribbons with different specularity parameters is shown in

Fig. 5(b), which is helpful to understand the influence of the

boundary scattering on the thermal conductivity of graphene

ribbons. The width of the ribbon is 1 lm, and the length is

10 lm. The relaxation time of LA and TA branch phonons

decreases as the specularity parameter decreases according

to the Matthiessen’s rule s�1 ¼ s�1
U þ s�1

B . Furthermore,

because the relaxation time in the low-frequency regime is

much longer than that in the high-frequency regime, the

influence of the diffuse phonon-boundary scattering (or spec-

ularity parameter) on the relaxation time of LA and TA

branch phonons is more significant in the low-frequency

region. In ZA branch, the relaxation time of phonons in the

high-frequency region decreases as the specularity parameter

decreases, but the relaxation time of phonons at the low-

frequency region does not change with the specularity

parameter. For ZA phonons, due to the low phonon group

velocity and the large absolute value of Gr€uneissen
FIG. 4. The relative contributions from LA, TA, and ZA branches to the

thermal conductivity as a function of the graphene ribbon length.

FIG. 5. (a) The thermal conductivity of LA, TA, and ZA branches at room

temperature versus the specularity parameter. (b) The frequency dependence

of relaxation time of LA, TA, and ZA phonons in graphene ribbon with dif-

ferent specularity parameters.
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parameter (negative) at the low-frequency region, the

phonon-phonon Umklapp scattering dominates over the pho-

non boundary scattering, this leads to the relaxation time of

ZA phonons at the low-frequency region being insensitive

on the specularity parameter.

Both Figs. 5(a) and 5(b) demonstrate that the influence

of the specularity parameter on the thermal conductivity of

ZA branch is much less than that of LA and TA branches,

therefore the contribution of ZA mode to the thermal con-

ductivity (jZA

j ) increases as the specularity parameter

decreases, which is shown in Fig. 6. It is also shown in Fig. 6

that the contribution of ZA branch to the thermal conductiv-

ity is dependent on the ribbon width. With the same specu-

larity parameter, the contribution of ZA branch increases as

the ribbon width decreases. The underlying reason is that

when the ribbon width is smaller, the number of phonons

that experience lateral boundary scattering is larger, thus the

suppression of LA/TA branches is significantly stronger than

that of ZA branch due to the huge difference in phonon

relaxation time between the branches.

Fig. 7(a) gives the temperature dependence of thermal

conductivity of individual phonon branch in a 10 lm long

and 1 lm wide graphene ribbon. At high temperature, the

thermal conductivities of LA, TA, and ZA branches

approach a 1/T behavior, a characteristic of high temperature

three-phonon scattering. At the low temperature limit, the

thermal conductivity of LA and TA is proportional to T2, but

that of ZA is proportional to T1.5, due to linear dispersion in

LA and TA branch and quadratic dispersion in ZA branch. It

is evident in Fig. 7(b) that the TA mode has the largest con-

tribution to the thermal conductivity at room temperature,

but the ZA mode is dominant at temperatures below 50 K. In

the range from 0 to 100 K, the contribution of ZA decreases

rapidly, while the contributions of in-plane branches increase

rapidly. In the range above 200 K, the contribution of

TA/LA increases/decreases slightly, while that of ZA has lit-

tle change.

Fig. 8 gives the normalized accumulative distribution of

thermal conductivity as a function of phonon frequency in

LA, TA, and ZA branches at T¼ 300 K and T¼ 50 K,

respectively. The normalized accumulative distribution of

thermal conductivity is defined as
jkðxÞ

jk
, where jkðxÞ is the

accumulative thermal conductivity of phonons with fre-

quency from 0 to x, which is derived as

FIG. 6. The relative contribution of ZA branch to the thermal conductivity

as a function of the specularity parameter at different graphene ribbon

widths.

FIG. 7. (a) The temperature dependence of thermal conductivity of individ-

ual phonon branches in graphene ribbon. (b) The temperature-dependent rel-

ative contribution of individual phonon branches to the thermal conductivity

of graphene ribbons.

FIG. 8. The normalized accumulative distribution of thermal conductivity as

a function of phonon frequency in LA, TA, and ZA branches at T¼ 300 K

and T¼ 50 K.
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jkðxÞ ¼

kB

4p2d

ðx
0

ð2p

0

ð�hx=kBTÞ2e�hx=kBT

ðe�hx=kBT � 1Þ2
x cos2 hskðx; hÞdhdx k ¼ LA; TA

kB

2p2d

ðx
0

ð2p

0

ð�hx=kBTÞ2e�hx=kBT

ðe�hx=kBT � 1Þ2
x cos2 hskðx; hÞdhdx k ¼ ZA:

8>>>>>>><
>>>>>>>:

(16)

It is shown that at room temperature, near the first Brillouin

zone center (low-frequency region), the value of
jkðxÞ

jk
in ZA

branch is much lower than that of LA and TA branches, but

near the boundary of the first Brillouin zone (high-frequency

region), it is remarkably higher than that of LA and TA

branches because the group velocity and the Gr€uneissen

parameter (negative) increase with the frequency in ZA

branch. At T¼ 50 K, the contribution of high frequency pho-

nons to the thermal conductivity decreases, especially in LA

and TA branches, the phonons with frequency above 10 THz

almost have no contribution to the thermal conductivity,

because at low temperature, the number of high frequency

phonons sharply decreases according to the Bose-Einstein

distribution function. However, the group velocity and the

Gr€uneissen parameter (negative) remarkably increase with

the frequency in ZA branch, so the contribution of phonons

near the boundary of the first Brillouin zone in ZA branch is

much higher than that in LA and TA branches.

Above we have discussed the contributions of LA, TA,

and ZA branches to thermal conductivity of graphene. Next,

we explore the relative contribution of phonon branches with

different models. We denote the model that includes the

frequency dependent Gr€uneisen parameter and the special

selection rule in ZA branch as model-1, which was adopted

in the above calculation. This special selection rule6,24 in ZA

branch is obtained for flat graphene due to the reflection

symmetry of ideal two-dimensional structure. However, in

practical graphene devices, the geometry deformation29–31

and substrate32,33 will break this reflection symmetry, thus

this selection rule is invalid. The second model (model-2)

only considers the frequency dependence of Gr€uneisen

parameter but does not include the special selection rule in

ZA branch. As shown in Fig. 9, at room temperature

(300 K), the contribution to the thermal conductivity by ZA

branch in model-1 is 10.5%, while only 3.9% from model-2.

This demonstrates that the relative contribution to thermal

conductivity by ZA mode will be suppressed significantly in

geometrically deformed graphene or in the supported gra-

phene samples.

In the third model (model-3), the selection rule in ZA

branch is not considered, and the Gr€uneissen parameter of

ZA mode is set as a constant �1.5, which is adopted as the

averaging of mode-dependent Gr€uneissen parameter over

the relevant phonon wave-vector ranges in Ref. 34. As

shown in Fig. 9, compared to the results from model-2

(3.9%), the contribution to the thermal conductivity by ZA

branch in model-3 is 15.6% at 300 K. This demonstrates that

the thermal conductivity of graphene is very sensitive to

Gr€uneissen parameter. The frequency dependence of

Gr€uneissen parameter in ZA branch is much stronger than

that of LA and TA modes. From the first-principles calcula-

tions in Refs. 16 and 17, we suggest that the averaging of

mode-dependent absolute value of Gr€uneissen parameter in

ZA branch should be much larger than 1.5, so the contribu-

tion to the thermal conductivity by ZA branch in model-3 is

overestimated.

IV. CONCLUSION

In this work, we have developed a general expression

for the direction-dependent phonon-boundary scattering

rate, and incorporated this general expression together with

the special selection rule for three-phonon scattering of ZA

phonons into the linearized Boltzmann transport equation

in the relaxation time approximation. With this improved

model, we have systematically investigated the effects of

the size, boundary scattering and temperature of graphene

ribbons on the relative contributions of thermal conductiv-

ity from LA, TA, and ZA branches. The results reveal that

the size, boundary scattering mechanism, and temperature

have different influences on the thermal conductivity of

individual phonon branches due to the significant difference

in the phonon dispersion between the in-plane and out-of-

plane branches. The relative contribution of ZA branch to

the thermal conductivity increases with decreasing the size,

specularity parameter, and temperature of graphene rib-

bons. The contribution to the thermal conductivity by ZA

phonons cannot be neglected, especially in the graphene

ribbons with small size (less than 1 lm) and rough bound-

ary (small specularity parameter). At temperature lower

than 50 K, the contribution of ZA branch becomes

dominant.
FIG. 9. The temperature dependence of thermal conductivity of ZA branch

calculated using different models.
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