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abstract: Intergenerational effects occur when an individual’s ac-
tions affect not only its own survivorship and reproduction but also
those of its offspring and possibly later descendants. In the presence
of intergenerational effects, short-term and long-term measures of
success (such as the expected numbers of surviving offspring and of
farther descendants, respectively) may be in conflict. When such
conflicts occur, life-history theory normally takes long-term measures
to predict the outcome of selection. This ignores the fact that, because
traits change in time—through mutation, sex, and recombination—
long-term relations disintegrate. We study this issue with numerical
simulations and analytical models combining intergenerational ef-
fects and evolutionary change. In the models, the parental investment
per offspring, as well as the total reproductive effort, stand for in-
vestments in future generations. The models show that the rate of
evolutionary change determines the level of those investments.
Higher rates of mutation and of sexual as opposed to parthenogenetic
reproduction favor lower parental investment per offspring and lower
total reproductive effort. It follows that the level of investment of
ancestors in descendants responds to the genetic relatedness between
the generations of the lineage, in a manner unaccounted for by
preexisting theory.

Keywords: offspring quality, parent-offspring conflict, inclusive fit-
ness, maternal effects, intergenerational effects, mutation-selection
balance.

The trade-off between offspring number and quality is an
important aspect of an organism’s reproductive strategy
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(Stearns 1992, pp. 158–159). Since the parental resource
is limited, increasing offspring number reduces the pa-
rental investment per offspring, which reduces offspring
quality and probability of survival (Lack 1947). Lack ob-
served this trade-off in various bird species and hypoth-
esized that natural selection optimized it—that is, that
natural selection favored clutch sizes that maximized the
expected number of surviving offspring (Lack 1947, 1954,
1966).

Smith and Fretwell (1974) isolated this trade-off from
the one between investing in current versus future repro-
duction (residual reproductive value; Williams 1966; Char-
nov and Krebs 1974): assume that at any point in time,
the organism’s energy budget can be divided into two
parts—one for current reproduction and one for survival
and future reproduction—such that the two parts are in
optimal balance. Using the current reproduction budget,
how many offspring should the organism make? (Exclude
cases where offspring from an early clutch help to provide
for offspring from a late clutch and where offspring from
subsequent clutches receive parental investment simulta-
neously [Smith and Fretwell 1974].)

Smith and Fretwell (1974) answered that natural selec-
tion maximized the product of offspring number and off-
spring “fitness.” They also invented a graphical model that
predicted the best clutch size for any given relationship
between the two (an analytical model was provided by
Lloyd [1987]). However, the fitness term must account for
long-lasting consequences of the offspring’s developmental
conditions shaped by the parental reproductive strategy
(maternal effects; Rossiter 1996; Mousseau and Fox 1998;
Lindström 1999). In this connection, an important issue
was ignored.

The parental reproductive strategy, through affecting
offspring quality, affects not only offspring survival but
also offspring reproductive success, which can affect the
next generation of offspring in turn, and so on. In mice,
Falconer (1965) observed that artificial selection for large
litters made small litters more common in the next gen-
eration and inferred that large litters increased offspring
competition for milk, reduced offspring size, and reduced
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offspring litters. In the collared flycatcher, Ficedula albi-
collis, larger clutches produce smaller offspring that suffer
higher mortality and make smaller first broods (Gustafsson
and Sutherland 1988). Experimentally adding an egg to a
mother’s clutch reduced her daughter’s clutch by 1/4 egg
on average (Schluter and Gustafsson 1993). In the para-
sitoid wasps Trichogramma, smaller clutches produce
larger offspring, among whom the female offspring have
more eggs in the oviducts at emergence and a longer life
span, which increases their lifetime fecundity (Waage and
Ng 1984). The larger wasp offspring also move faster, show
a lower frequency of brachyptery, and fly longer distances;
this may improve their ability to choose hosts for their
own clutches (Waage and Ng 1984). In the great tit, smaller
clutches produce bigger offspring, and bigger offspring not
only have higher survival rates but also are more dominant
and acquire better territories (Verhulst et al. 1997). Among
the great tit nestlings raised outside of Wytham Wood, a
mature deciduous woodland near Oxford, United King-
dom, that provides a good diet and enhances reproductive
success (Riddington and Gosler 1995), bigger offspring are
more likely to disperse into Wytham (Verhulst et al. 1997)
and, as a consequence, own a bigger resource with which
to support their offspring.

The above are intergenerational effects (Andersson
1978). Relatively few studies have incorporated intergen-
erational effects into life-history theory (Stearns 1992; but
see the illuminating contributions by Andersson [1978],
Kirkpatrick and Lande [1989], and McNamara and Hous-
ton [1992, 1996]; sex allocation theory is also inherently
intergenerational [Trivers and Willard 1973; Leimar
1996]). Intergenerational effects extend the trade-off be-
tween offspring number and quality: if offspring quality
influences not only the probability of offspring survival
throughout life but also offspring reproductive success,
then it is more important relative to offspring number
than it would have been otherwise.

Andersson (1978) formalized an instance of this idea
by assuming that decreased clutch size hastened offspring
maturity and increased the survival of offspring in adult-
hood from one breeding period to the next. He found that
the clutch size that maximized long-term population
growth rate in an annually breeding organism was sub-
stantially smaller than the Lack clutch size (as well as Char-
nov and Krebs’s [1974] clutch size accounting for the re-
sidual reproductive value). McNamara and Houston
(1992) further developed this idea with the powerful
framework of state-dependent life-history theory. They as-
sumed that an offspring’s quality affected the number and
quality of its own offspring through mechanisms involving
body size, foraging ability, territory quality, and parasite
load. They built a model that represented such mecha-
nisms generally and showed that the optimal clutch size

depended on the number of generations considered (Mc-
Namara and Houston 1992; such timescale dependence is
also in agreement with Lande and Kirkpatrick [1990]).

This is our point of origin. We begin by capturing it in
an analytical model that is focused specifically on resources
as carriers of the intergenerational effect in the clutch size
trait. As in the case of the great tit, we assume that the
clutch size affects both offspring survival and resources in
adulthood. This will help to show how different clutch
sizes maximize survival and reproduction over different
numbers of generations. Our main point then follows. We
incorporate the above into evolutionary models with mu-
tation or Mendelian segregation and show that, in this
context, a novel result emerges: the rates of mutation and
sexual reproduction affect the distribution of clutch size
strategies at equilibrium in a manner unaccounted for by
preexisting theory. Specifically, mutation and sex favor
larger clutches and smaller parental investment per off-
spring. Analogous complications are expected in other
traits, as we will demonstrate with a model of reproductive
effort.

We first present the mathematical models and then fol-
low with an intuitive, verbal explanation of the analytical
results (“Discussion”). Note that the models are “strate-
gic,” in the language of Holling (1968; see also May 1973);
they are general and serve mainly as a proof of principle.

Intergenerational Effects in the Clutch Size Trait

We maintain the simplifying assumption of equal distri-
bution to offspring made implicitly by Andersson (1978).
Explicitly, if the parental resource, Rt, is distributed equally
among n offspring, then the investment per offspring is
Rt/n. Since offspring survival increases with parental in-
vestment per offspring, the probability of survival of any
one offspring, S, is some nondecreasing function of Rt/n:
S(Rt/n). The expected number of surviving offspring is
simply nS(Rt/n).

We now define as the resource that any one of theRt�1

offspring grows to acquire in adulthood. As in the case of
the great tit, offspring that receive more from their parents
are more likely to become stronger adults and acquire
better territories and therefore to be able to give more to
their own offspring. Therefore, is a nondecreasingRt�1

function of Rt/n: g(Rt/n). For any fixed, sufficiently small
n, there is at least one stable (population-dynamic) equi-
librium value of R.1

Now, consider a lineage of a certain clutch size strategy,

1 We assume that g is bounded above, nonnegative, and continuously differ-

entiable. Furthermore, we restrict g such that there is a stable R for ton 1 1

prevent the population from crashing. A sufficient (though not a necessary)

condition for this is that the initial slope .′g (0) 1 1
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Figure 1: The probability of offspring survival, S, versus the reciprocal
of offspring number, 1/n, under each of two resources, Rh and Ri. Fol-
lowing the graphical method of Smith and Fretwell (1974), each straight
line through the origin represents ( ) pairs of equal expected numberS, n
of surviving offspring; the steeper the line, the higher the expected num-
ber of surviving offspring. Accordingly, the tangent p crosses S at the
best realizable ( ) pair, given Rh. Because, in this example, it crossesS, n
S at , nh maximizes the expected number of surviving offspringn p nh

under Rh. Specifically, since p is steeper than s ( ), nh is superior top 1 s
ni given Rh. However, unlike Smith and Fretwell (1974), the choice of n
influences the very S curve. Because ni leads to resource growth, it pushes
the S curve upward and becomes superior to nh in the long run ( ).r 1 p
Given Ri, nh is still superior to ni in the short term ( ), but it pushest 1 r
S back down. This contradiction between short-term and long-term suc-
cess occurs whenever the functional forms of g and S (the resource growth
function and the survivorship function respectively) yield .t 1 r 1 p 1 s

nh, and a corresponding stable resource level, Rh. When a
descendant to this lineage acquires a trait for laying a
smaller clutch, of size , each of its offspring receivesn ! ni h

and grows to acquire a resource . IfR /n 1 R /n R 1 Rh i h h 1 h

these offspring maintain the new clutch size strategy
(which is the case if the change is genetic and fully her-
itable), each of their offspring receives andR /n 1 R /n1 i h i

grows to acquire a resource . In this manner, R willR 1 R2 1

grow asymptotically toward a new, higher level, .R 1 Ri h

Because of this resource accumulation, and because the
resource affects offspring survivorship, it is possible that
after a certain number of generations, ni will surpass nh

in terms of the expected number of surviving offspring,
even if it had been inferior in those terms originally. This
is possible even in the case where nh maximizes the ex-
pected number of surviving offspring under Rh, as dem-
onstrated in figure 1. In the figure, while nh strikes a better
trade-off between offspring number and quality in the
short term, it is ni that is able to achieve and maintain the
larger resource and better survivorship in the long term,
through its investment in offspring quality. Thus, nh is
better in the short term and ni is better in the long term.

Generally speaking, which clutch size is best depends
on the timescale considered. This provides the basis for
our main argument. We will show that the timescale de-
pendence has an interesting consequence in an evolution-
ary context.

Mutation Favors Larger Clutches

To put the above in an evolutionary model, we make the
smaller- and larger-clutch strategies, ni and nh, heritable
and competing strategies with stable resources Ri and Rh,
respectively ( , ). Let us call these two strat-n ! n R 1 Ri h i h

egies “investor” and “spender,” respectively. The smaller
clutch strategy, ni, invests more per offspring and benefits
future generations, while the larger clutch strategy, nh,
spends its resource on immediate offspring production.

Consider, for simplicity, an asexual organism with an
entirely genetically determined clutch size trait, a single
reproductive event, and nonoverlapping generations. Im-
portantly, we need to represent evolutionary change in the
model. While change can be generated biologically in a
number of ways, we begin by adopting mutation as an
agent of change, for a pedagogical purpose. The effect of
mutation will not be strong, but it will be tractable. Later,
we will examine the case of sexual reproduction.

To represent mutation, we assume that a spender gives
birth to an investor with a small probability m, and vice
versa. Because of the intergenerational effect described, the
resource of an investor lineage emanating from a mutated
spender grows from Rh to Ri, and the resource of a spender
lineage emanating from a mutated investor declines from

Ri to Rh asymptotically. For simplicity, we assume that the
resource changes from Rh to Ri or vice versa in just one
generation. Figure 2 describes the model schematically.

To construct the analytical model, let , , , andH I Hh, t i, t i, t

be the fractions of spenders with resource Rh, investorsIh, t

with resource Ri, spenders with resource Ri (mutated off-
spring of investors), and investors with resource Rh (mu-
tated offspring of spenders) at generation t, respectively.
Based on figure 2, the population dynamics are

H n S(R /n )(1 � m) � H n S(R /n )(1 � m)h, t h h h i, t h i hH p , (1a)h, t�1 Q

I n S(R /n )(1 � m) � I n S(R /n )(1 � m)i, t i i i h, t i h iI p , (1b)i, t�1 Q

I n S(R /n )m � I n S(R /n )mi, t i i i h, t i h iH p , (1c)i, t�1 Q

H n S(R /n )m � H n S(R /n )mh, t h h h i, t h i hI p , (1d)h, t�1 Q
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Figure 2: Because there are two strategies, spender and investor, and
two resource sizes, Rh and Ri, we keep track of four categories: spenders
with a small resource, spenders with a large resource, investors with a
small resource, and investors with a large resource, with respective abun-
dances Hh, Hi, Ih, and Ii. An individual of one category can give birth to
an individual of another category if there is an arrow pointing from the
one to the other, with probability m or ( ) as shown. For example,1 � m

an investor born to a spender is part of a large clutch and therefore
grows to acquire the smaller resource, Rh; it belongs to category Ih then.
As another example, when this investor gives birth it has a small clutch.
Each of its offspring then receives more parental investment than it
received and grows to acquire the bigger resource, Ri. Those that do not
mutate belong to category Ii, and those that do mutate belong to category
Hi.

where Q, the normalization factor, is the sum of the
numerators.

Numerical simulations of these equations under certain
parameters show that, at low mutation rates, investors are
more abundant, while at high mutation rates, spenders are
more abundant (see app. E in the online edition of the
American Naturalist, fig. E1). Given the details of the
model, this reversal of abundance cannot be explained by
the classical mutation-selection balance (Crow and Kimura
1970, pp. 258–287). The latter is acting here only to equal-
ize the fractions of the two types. Yet another effect acts
to tip the balance from one type to the other. The dis-
tinction between mutation-selection balance (as is cur-
rently known) and the new effect will be clarified in the
next section. Interestingly, mutation here influences the
direction of selection, and it does so in a manner that has
not been addressed so far (e.g., in a manner different from
McNamara et al. [2004]).

To understand how this effect emerges, we simplify the
model (app. A in the online edition, eqq. [A2]–[A4]). It
turns out that

H P(1 � m) � I Tmh, t i, tH p , (2a)h, t�1 ′Q

I R(1 � m) � H Smi, t h, tI p , (2b)i, t�1 ′Q

where , , ,R p n S(R /n ) P p n S(R /n ) T p n S(R /n )i i i h h h h i h

, and Q ′ is the sum of the numerators ofS p n S(R /n )i h i

equations (2a) and (2b), divided by ( ). Under the1 � m

parameter range of interest, the ordering T 1 R 1 P 1 S
is satisfied. This ordering is not satisfied automatically;
rather, it is satisfied when one type is better in the short
term and the other is better in the long term, as explained
in the previous section. Indeed, reflects theT 1 R 1 P 1 S
ordering of the slopes in figure 1.t 1 r 1 p 1 s

We have now described the change of the two states Hh

and Ii in terms of those two states alone. It is now possible
to see why mutation actively favors spending: while spend-
ers mutating into investors are weighted by S, which is,
under the parameters used (see figs. 1, E1), the smallest
among the four terms T, R, P, and S, investors mutating
into spenders are weighted by T, the largest term. The
larger m is, the more this effect matters. This can be un-
derstood intuitively by looking at the chart (fig. 2). In the
absence of mutation, the investors benefit from the bigger
resource and the spenders suffer from the smaller resource.
However, mutation carries the larger resource from in-
vestors to spenders and carries the smaller resource from
spenders to investors. Hence mutation favors spending.

Here there is an analogy with the Prisoner’s Dilemma
(PD; Tucker 1950; M. Flood and M. Dresher, unpublished
data, 1950; see also Axelrod 1984). In the PD, each of two
players playing each other can choose either to cooperate
or to be selfish (to “defect”). If both players cooperate,
both get a reward, R; if both defect, both get a punishment,
P; if one cooperates and the other defects, the cooperator
gets a “sucker’s payoff,” S, and the defector gets a “temp-
tation payoff,” T, where . The general caseT 1 R 1 P 1 S
has been made that in an evolving population of individ-
uals playing the PD repeatedly with their neighbors, less
spatial mixing favors cooperation and more spatial mixing
favors defection (Axelrod and Hamilton 1981; Axelrod
1984). In our model, investors “cooperate” with their fu-
ture, spenders “defect” on their future, and mutation plays
a role over time that is similar to the role of mixing over
space. It therefore favors the “selfish” type—the spender
(see more on that point in the “Discussion”).

It is now possible to solve the model analytically (eqq.
[A5]–[A8] in the online edition). We find that the spenders
are more abundant than investors at equilibrium if and
only if
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R � P
m 1 . (3)T � S � R � P

This result can be interpreted as follows: is theR � P
advantage of investors and is the advantage givenT � S
by mutation to spenders. The right side of equation (3)
is therefore the proportional advantage of investors. If it
is smaller than the mutation rate, m, then spenders are
more abundant than investors at equilibrium. The smaller

and the larger are, the lower the mutation-R � P T � S
rate threshold for spender majority.

In passing, note two points about the methodology.
First, we assume that it takes only one generation for the
resource to stabilize. The resulting simple model suffices
for our purpose of demonstration. It would be worthwhile,
however, to allow the resource to change more gradually
and explore the effects of the rate at which it approaches
stability. One might expect more gradual change to favor
investors by reducing the flow between the different re-
source states. Second, the numerical results are intended
mostly as illustrations of the analytical results and a proof
of principle. Further work will be needed in order to ex-
plore the parameter ranges exhaustively.

Multiple Phenotypes Model

So far we have considered the two clutch size strategies,
nh and ni, and their corresponding stable equilibria re-
sources, Rh and Ri. We now consider a range of clutch size
strategies, nx, and their corresponding resources, Rx,

, where and for allx p 1, … , m n ! n R 1 R x !x�1 x x�1 x

. This will represent a range of phenotypes betweenm
spending and investing.

The purpose here is to clarify the novel aspect of the
result. By considering a range of phenotypes, we can find
the optimal phenotype. We can then see that the mutation
rate determines that optimum by shifting it to the left or
to the right. Thus, the mutation rate affects the direction
of selection. It will also be easy to pinpoint how the model
differs from the classical mutation-selection balance.

For this purpose we make a few assumptions. First, the
expected number of surviving offspring (henceforth “fit-
ness”) of an owner of a larger resource is bigger than that
of an owner of a smaller resource: n S(R /n ) 1x�1 x�1 x�1

, for all . Second, offspring grow to acquiren S(R /n ) x ! mx x x

the same resource their parent had unless their parent
mutated. If a mutant from a lineage of resource Rx lays a
clutch of size , smaller than the usual nx, it investsnx�1

more per offspring, , and would upgradeR /n 1 R /nx x�1 x x

the resource of its lineage from Rx to in one gener-Rx�1

ation. However, that mutant will pay a onetime cost in
fitness because . Conversely, ifn S(R /n ) ! n S(R /n )x�1 x x�1 x x x

a mutant of an Rx lineage makes more offspring, n 1x�1

, and invests less in each, , it would ben R /n ! R /nx x x�1 x x

downgrading the resource of its lineage from Rx to Rx�1

in one generation, while gaining a onetime benefit in fit-
ness; that is, . Third, let mu-n S(R /n ) 1 n S(R /n )x�1 x x�1 x x x

tation change the clutch size strategy by exactly one step
at a time, from nx to either or with the samen nx�1 x�1

probability, m/2, and exclude mutating up from nm or down
from n1. These assumptions parallel those of the simplified
version of the previous model (eqq. [A3a], [A3b] in the
online edition). Any pair of equilibrium resources (Rx and

) is now analogous to the pair (Rh and Ri) previouslyRx�1

discussed.
For simplicity, we now consider only a specific case of

the second assumption, namely, that in upgrading re-
sources by one step in the spectrum, all mutants, irre-
spective of their strategy, merely experience the same one-
time reduction factor, C, in fitness, and similarly, that in
downgrading resources, all mutants experience the same
onetime increase factor, B, in fitness. This restriction pro-
duces a simple model, given in appendix B in the online
edition (eqq. [B1]–[B4]).

A numerical simulation of this model for various pa-
rameters shows that, for generation 1,000, which approx-
imates the equilibrium distribution of strategies, higher
mutation rates shift the distribution toward the larger-
clutch strategies (online app. E, fig. E2). Because the larger-
clutch strategies spend more on immediate offspring pro-
duction and invest less in future generations through
offspring quality, the results imply that larger m favors
more spending. Thus, the optimal level of spending de-
pends on m.

This result differs from the classical mutation-selection
balance. In fact, the latter is a special case of the model,
with . In that case, increased mutation wouldB p C p 1
have flattened the distribution but would not have shifted
its peak as in figure E2.

Note that Lloyd’s (1987) general formulation of the
trade-off between quantity and quality does not take this
effect into account. According to Lloyd, if quantity is a
certain function, f(x), of trait x, and quality is another
function, g(x), of that trait, then natural selection will favor
the x that gives . However, the′ ′[f (x)]/f(x) p �[g (x)]/g(x)
trade-off between quantity and quality also reflects short-
term versus long-term success and will therefore be influ-
enced by the mutation rate. In summary, the optimal bal-
ance between offspring number and quality depends on
the mutation rate of the trait determining that balance.

Sexual Reproduction Favors Larger Clutches

Expression (3) shows that for the effect of interest to be
visible, the mutation rate has to be high. Indeed, the ef-
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fective mutation rate is high in some organisms. In plants,
the meristem cells divide many times before they create
the reproductive organs, and the cells accumulate muta-
tions in the process (Buss 1987). In the RNA viruses, in-
accurate replication mechanisms lead to high mutation
rates (Alberts et al. 1994, p. 251). Apart from such cases,
condition (3) is rather restrictive.

However, mutation is not the only mechanism that
causes traits to change in time. Sex and recombination,
for example, also cause change and can often make traits
change substantially in just one generation. We therefore
examine the clutch size trait in an evolutionary model with
sexual reproduction instead of mutation as the agent of
change. To do so, we make the following simplifying as-
sumption. Although, in reality, traits are often shaped by
the combined action of many genes and the environment,
in order to construct a tractable theoretical model we ex-
amine a case where the trait is controlled by a single gene,
in the hopes that the principle that arises from the model
applies in more complicated situations, albeit with
modifications.

Consider a population of random mating diploid in-
dividuals with a spender allele, H, and an investor allele,
I. A spender homozygote (HH) gives birth to a large clutch,
nh, and an investor homozygote (II) gives birth to a small
clutch, ni. The heterozygote (IH) gives birth to a large
clutch under spender dominance and to a small clutch
under investor dominance. In any event, the maternal re-
source, whether Rh or Ri, is divided equally among the
offspring (assume zero paternal investment for simplicity).
As in the first model, both survival and resource growth
are nondecreasing functions of the resulting investment
per offspring. Offspring from small clutches grow to ac-
quire the larger resource, Ri, and offspring from large
clutches grow to acquire the smaller resource, Rh.

Our purpose is to examine how the sex rate affects the
outcome of the evolution of the clutch size trait. Therefore,
consider a theoretical model organism that is capable of
both sexual and parthenogenetic reproduction, at rates X
and ( ), respectively. By varying the rate of sexual1 � X
reproduction, X, we can observe its effect.

In a sense, figure 2 still represents the workings of the
model, although because the transitions between types are
now caused by sexual reproduction instead of mutation,
their rates depend on the frequencies of the different types
and are therefore themselves dynamic. The analytical
model is now more complicated and is presented in ap-
pendix C in the online edition (eqq. [C1], [C2]).

Numerical simulations of this model show that sexual
reproduction favors the spender allele, whereas parthe-
nogenesis favors the investor allele. As an example, the
results for spender dominance are given in figure E3 in
the online edition. The figure shows that the investor

reaches fixation for low rates of sexual reproduction but
that the pure investor equilibrium loses stability at a critical
value of sexual reproduction (slightly above 0.2 in the
simulation), above which all three genotypes persist.

This effect can be validated with the help of an invasion
analysis (eqq. [C4]–[C10] in the online edition). It can be
shown that the condition for the invasion of an investor
population by a spender under spender dominance or co-
dominance is

R � P
X 1 2 , (4)T � P

where R, P, and T are defined as before. Indeed, it follows
from inequality (4) that, under the parameters used in the
simulation in figure E3, the threshold for invasion by
spenders is , in agreement with the simulation re-X 1 2/9
sults. More generally, inequality (4) shows that increasing
X favors spender invasion. Conversely, as shown in ap-
pendix C online (eq. [C10]), in the case where a spender
population is invaded by an investor under investor dom-
inance or codominance, increasing X opposes investor in-
vasion. In other words, a higher rate of sexual as opposed
to parthenogenetic reproduction favors spending. Thus,
the balance between offspring number and quality depends
on the effective Mendelian segregation rate of the trait
determining that balance. Since, in reality, X can be as low
as 0 and as high as 1, the model’s prediction is robust,
albeit the one-locus assumption.

In this model, the effective segregation rate was deter-
mined by the rate of sexual versus asexual reproduction.
However, a similar effect should emerge if it was deter-
mined by the rate of inbreeding or assortative mating.
Alternatively, one may consider a two-locus model with
recombination instead of segregation as the mechanism of
evolutionary change and again expect similar results.
When the trait under consideration is controlled by a
number of genes, genetic linkage, as well as the number
of genes involved, can affect the rate of change of the trait.

Sexual Reproduction Favors Smaller
Reproductive Effort

The result that the optimum of a trait can depend on the
evolutionary rate of change of the trait is not unique to
the clutch size trait but follows from the fact that different
clutch sizes dominate over different timescales. Thus, other
traits whose variants dominate over different timescales
should exhibit similar effects. So far we have considered
the balance between offspring quantity and quality given
a certain reproductive effort, that is, a certain fraction of
energy spent on all offspring together. Let us now consider
that reproductive effort. It has been discussed in the lit-
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Figure 3: Results of a simulation based on equations (D1) and (D2),
with parameters and , under spender dominance. Thec p 1/2 c p 6/10i h

simulation starts with a population of 99% homozygote investors and
1% heterozygotes at generation 1. The fractions of the three genotypes
at generation 1,000 are then calculated. This is done under various sex
rates. The figure shows that sex favors spending. A similar effect emerges
for investor dominance and for other .c 1 1/2h

erature as a trade-off between investing in the current
clutch versus investing in parental survival to improve the
parent’s chance of having future clutches (Williams 1966;
Charnov and Krebs 1974). However, even without future
reproduction, the parent’s survival is important because
during gestation, and in many species also after birth, the
parent protects the young; if the parent dies, the young
can also die. Therefore, investing in parental survival is
investing indirectly in immediate offspring survival, while
investing in offspring growth is investing in later offspring
success. This is also an intergenerational effect—a trade-
off between growth and survival of the lineage.

To put this effect in an evolutionary model, assume that
an adult acquires one unit of energy, consumes a fraction
of it, c, for survival up to birth giving, and saves the rest,

, for its offspring in yolk quality (divided equally1 � c
among offspring); furthermore, assume that the proba-
bility of parental survival to birth giving is proportional
to the amount consumed, and the probability of offspring
survival to adulthood is proportional to the amount saved.
A farsighted investor strategy then spreads survival chances
equally between parent and offspring ( ), whereasc p 1/2i

a shortsighted spender strategy spends more on parental
survival ( ), gaining a very short lasting benefit.c 1 1/2h

Consider a one-locus, two-allele model with a spender
allele and an investor allele, where individuals reproduce
either sexually or parthenogenetically. In sexual repro-
duction, let the two parents make together twice as many
offspring as each would have made parthenogenetically,
and let each parent divide its reproductive effort equally
among the offspring. A numerical simulation of this model
(given analytically in app. D in the online edition, eqq.
[D1], [D2]) shows that sexual reproduction favors the
spender allele whereas parthenogenesis favors the investor
allele (fig. 3). Furthermore, an invasion analysis can now
provide the evolutionarily stable strategy (ESS) in terms
of X (eqq. [D3]–[D9]). It turns out that the ESS (Maynard
Smith and Price 1973) is also convergence stable (CSS;
Eshel and Motro 1981; Apaloo 1997; Levin and Muller-
Landau 2000) and is of the form

2
C p . (5)ˆ ˆRR 4 � X

This expression shows that the convergence stable strat-
egy rises from in the absence of sexual repro-C p 1/2ˆ ˆRR

duction ( ) to when all reproduction isX p 0 C p 2/3ˆ ˆRR

sexual ( ). In other words, the higher the sex rate,X p 1
the more energy the CSS consumes and the less it saves
for offspring. Thus, sexual reproduction promotes spend-
ing. The balance between investing in self and investing
in offspring depends on the segregation rate of the trait
determining that balance.

We have now examined four models toward a common
purpose. The models employed population genetic analysis
vis-à-vis phenotypic analysis, as suggested by Eshel et al.
(1998), while addressing the question of intergenerational
effects in life-history theory, promoted by Stearns (1989,
1992) and McNamara and Houston (1996). They call for
further exploration of the effects that were found.

Discussion

We have focused on the trade-off between offspring num-
ber and quality. There, we found that different clutch size
strategies differed in their temporal orientation. We as-
sumed that investing in offspring quality improved not
only offspring survivorship but also offspring reproductive
success. A higher-quality offspring was more likely to have
higher-quality offspring of its own. By this assumption,
the investment in offspring quality was carried down the
generations. Therefore, a shift in the balance from quantity
to quality represented a shift in the strategic orientation
from short term to long term, and vice versa. It turned
out that because of this element, increased evolutionary
change through mutation or sexual reproduction favored
the short-term strategy—that is, the larger-clutch variant.
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We then found that the effect above applied not only
to the clutch size trait but also to the total reproductive
effort trait. There, the balance was between the chance of
parental survival up to birth giving and the chance of
offspring survival after birth. The short-term trait variant
invested more in parental survival relative to the long-
term variant. Again, it turned out that increased evolu-
tionary change favored the short-term strategy.

We can now suggest an intuitive, verbal description of
the workings of the mathematical models. The crucial el-
ement in the modeled traits is that they bear on a trade-
off between short-term and long-term survival of the line-
ages carrying them. The so-called spender and investor
trait variants are short-term and long-term strategies, re-
spectively. Investors donate more to descendants at a
higher short-term cost. Mutation and sexual reproduction
are two mechanisms of evolutionary change. With slow
evolutionary change, descendants inherit donations mostly
from same-type ancestors. In this case, investors fare better
in the long term as long as the benefits of the donations
outweigh the costs. With fast change, however, the cor-
relation in type between ancestors and descendants is re-
duced. Spenders inherit more similarly to investors but
pass less to future generations and therefore fare better.
Thus, intergenerational donations are more adaptive when
donor and recipient are more alike.

This is a cost-benefit analysis of altruism in light of
relatedness. In this sense, it is in accord with inclusive
fitness (Hamilton 1964). However, inclusive fitness implies
that parents may reduce the investment in an offspring
under relatedness considerations only to the extent that
they have a better way to invest in the next generation
through other offspring or relatives. Accordingly, the
parent-offspring conflict in its classical form (Trivers 1974;
Feldman and Eshel 1982; Godfray 1995) is about how to
allocate resources between born offspring, unborn off-
spring, and other relatives. Our results stand in contrast.
In the reproductive effort model, even though the parent
reproduces only once and is not given a choice to donate
to relatives other than its offspring, it still saves less for
all of its offspring together, the less related they are to it.
In the clutch size models, relatedness alone suffices to put
selection pressure on the clutch size trait, even while the
expected relatedness between the parent and each of its
offspring is identical. It appears from our models that
individuals evolve to act as though they favor earlier gen-
erations more and later generations less, the faster relat-
edness drops in time. This can be called “intergenerational
discounting” (to borrow a term from Schelling [1995]).

It is the combination of evolutionary change and in-
tergenerational trade-offs that allows intergenerational dis-
counting to evolve. Change, however, occurs by various
means, namely, mutation, sex, recombination, and envi-

ronmental influence. In addition, intergenerational trade-
offs exist in various traits.

We mentioned the clutch size trait in the great tit. A
parent that makes a smaller clutch invests more per off-
spring. The offspring then grow bigger and stronger and
become more dominant adults (Verhulst et al. 1997). This
enables them to acquire and defend territories of higher
quality in adulthood that ensure a better diet for their own
offspring (Riddington and Gosler 1995; Verhulst et al.
1997). The ability of the high-quality offspring to own
high-quality territories is the element through which the
investment in offspring quality percolates down the
generations.

In the parasitoid wasps Trichogramma, as mentioned,
the resource available per offspring has multiple long-term
consequences. Offspring from smaller clutches obtain a
larger share of the host. They grow bigger and healthier,
move faster and fly farther, and may be able to find better
hosts for their own offspring (Waage and Ng 1984). The
females among them also have more eggs in the oviducts
and a longer life span, which further promote their lifetime
reproductive success (Waage and Ng 1984).

The clutch size trait and the total reproductive effort
trait modeled are only two examples of traits that carry
intergenerational effects. In fact, there are many routes
through which an individual’s action can affect the fitness
of future generations down the line. The transfer of social
status to offspring is one case in point. In various group-
living mammalian species where food is monopolizable,
dominance relations emerge that give higher-ranking in-
dividuals and their kin better access to food and physical
protection (Silk 1987; Pusey et al. 1997). In addition, the
social rank is often transferred to offspring as a maternal
effect (Hausfater et al. 1982; Holekamp and Smale 1991).
Therefore, investing in rank acquisition and maintenance
has a long-term benefit: not only does it improve the
fitness of the focal individual, but through the transfer of
rank to offspring, it improves the fitness of the offspring
(McNamara and Houston 1996).

Pusey et al. (1997) relate the following three points
about female chimpanzees. First, dominance improves fit-
ness substantially: higher-ranking females experience far
less infant mortality due to better protection and nutrition
of the young, and, in addition, their daughters reach sexual
maturity earlier. Second, dominance is partly transferred
matrilineally, through the support that the mother and her
kin give the daughter in acquiring social rank. Third, the
social status can be improved independent of heritage
through aggression. This last point allows for variance in
the individuals’ tendencies to invest or take risks in order
to improve their social status (McNamara and Houston
1996). In combination, these points allow for the existence
of short-term and long-term variants in traits for invest-
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ment in status. They also seem generalizable to other apes
and to the hyenas. In female baboons, social rank, sociality,
and infant survival (which is a crucial fitness factor [Alt-
mann and Alberts 2003]) are all correlated (Silk et al.
2003). In addition, social rank is transferred to offspring
(Hausfater et al. 1982). In the spotted hyena, sons of high-
ranking females obtain preferential access to food and are
expected to benefit in maturity in terms of reproductive
success (Frank 1986b). Again, the social status is trans-
ferred to offspring reliably (Frank 1986a).

Even dispersal may bear on the intergenerational trade-
off, although it is a complicated case. Consider dispersal
in annual plants (Levin et al. 1984). In various species,
dispersing far necessitates morphological changes in the
seed that entail a cost (Motro 1982a; Levin and Muller-
Landau 2000). Far-dispersing seeds experience mortality
en route and in establishment (Rousset and Gandon 2002).
The fact that the parent plant is established suggests that
local conditions are favorable and that far-dispersing seeds
take an unfavorable risk (Hastings 1983; Olivieri et al.
1995). On the other hand, near dispersal leads to the pro-
liferation of the species within the local patch, intensifies
kin competition down the generations, and becomes a
source of inefficiency in the long term (Hamilton and May
1977; Comins et al. 1980). Other factors complicate the
problem, such as various sources of environmental sto-
chasticity (Roff 1975; Levin et al. 1984), inbreeding de-
pression (see, e.g., Bengtsson 1978), and genetic adaptation
to the local environment (see, e.g., Balkau and Feldman
1973).

Concentrating on kin competition, Comins et al. (1980,
p. 213) found that the dispersal strategy that maximized
the chance of establishment differed from the strategy that
maximized success farther into the future. Thus, there is
room for variability in the temporal orientation of dis-
persal traits. In this light, it is interesting that sexual se-
lection as opposed to parthenogenesis was found to reduce
the tendency to disperse to some extent (Hamilton and
May 1977; Comins et al. 1980; Motro 1982c). Although
Hamilton and May (1977) attributed this result to the
parent-offspring conflict in its classical form (Trivers
1974), which depends on the offspring being in control
of the dispersal trait (Hamilton and May 1977; Motro
1982b), it may be possible that, under some conditions
(such as multiple adults per site; Comins et al. 1980; Levin
et al. 1984), sexual reproduction would reduce dispersal
also due to intergenerational discounting, which is inde-
pendent of whether the parent or the offspring is in con-
trol. While some preliminary results (A. Livnat and S.
Levin, unpublished data, 2004) suggest that this is the case,
we have yet to explore this issue more thoroughly.

There are other traits that share elements with the traits
above but have additional elements as well that make them

more complicated. One such example is sexual reproduc-
tion. There, the cost of the search for mates applies im-
mediately, while the benefits of combining good mutations
seem to accumulate in the long run (Maynard Smith 1978;
Barton and Charlesworth 1998). As evidence of the long-
term consequences, selfers are more liable to extinction
than sexually reproducing species (Barrett et al. 1996).
However, unlike the cases discussed above, sexual repro-
duction plays a double role, in both being the focal trait
and affecting its own rate of evolution. This makes it an
intricate case.

The investment in biomass, through yolk or parental
care, the investment in social status as in apes and hyenas,
dispersal in plants, and even sexual reproduction are all
traits that reflect intergenerational trade-offs, where trait
variants can differ in their temporal orientation. These
variants make different investments that mature at differ-
ent schedules and pay different “interest rates” on the
intergenerational timescale. It appears that life-history
strategies provide plenty of opportunity for organisms to
adjust their contributions to grandchildren and further
descendants indirectly (contrary to Hamilton’s claim
[1964, p. 33]). This becomes crucial in combination with
evolutionary change due to mutation or sexual reproduc-
tion. With the help of analytical models and computer
simulations, we found that faster evolutionary change fa-
vors short-term over long-term strategies. In other words,
the tendency to invest in future generations decreases as
the relatedness to those future generations decreases. We
called this effect “intergenerational discounting.” Inciden-
tally, the original framework of inclusive fitness was de-
veloped to deal with interactions between relatives of the
same generation. Hamilton saw it as a first step toward a
general theory that would account for all kinds of relatives
(Hamilton 1964). In a sense, intergenerational discounting
extends the approach of inclusive fitness over the time
dimension.

As a matter of speculation, intergenerational discount-
ing may have an interesting consequence as follows. Be-
cause of evolutionary constraints, different traits within
the same organism evolve at different rates. It follows that
they evolve different discounting rates and, much as they
can mismatch in the degree of relatedness to a contem-
porary relative and the value of donating to it, they can
conflict over the value of a donation to the future.

Consider the following thought experiment. The out-
crossing rate in plants is shaped by a number of traits:
stigma-to-anther distance, flower size, and the timing of
sexual functions (Barrett and Eckert 1990). If outcrossing
reflected an intertemporal trade-off as mentioned, and if
the different outcrossing traits evolved at different rates,
then some could have evolved to push for more outcross-
ing and some could have evolved to push for less. This
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would have been an example of a biological conflict within
the organism over the future. It could also connect to the
question of why there are mixed mating systems (see, e.g.,
Lande and Schemske 1985; Yahara 1992).

As another thought experiment, consider a hypothetical
immune system whose different cell lines fighting different
pathogens compete for the body’s resources. There, the
long-lasting cell lines would be those that did not drain
their target pathogens but rather maintained them at some
optimal level. However, the evolution of those cell lines
would make them defect on their own future and thereby
cooperate with the future of their host. The spatial analog
is that in a mixed population of bacteria with a number
of species present, cheaters that do not produce colicins
(antibacterials) but retain the ability to resist them break
down the intraspecific cooperation in poisoning other spe-
cies and thereby reduce conflict on the interspecies level
(Durrett and Levin 1997; Riley and Gordon 1999; Kerr et
al. 2002). The analogy suggests that the breakdown of
cooperation over one timescale may promote cooperation
over another timescale. Thus, considerations of coopera-
tion and conflict over time may lead to a very complex
view of sex and recombination. Further theoretical work
and empirical testing would be needed to explore these
interesting possibilities.
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