Taguchi's Quality
Engineering

introduction

Most of the body of knowledge associated with the quality sciences was developed in
the United Kingdom as design of experiments and in the United States as statistical
quality control. More recently, Dr. Genichi Taguchi has added to this body of know]-
edge. In particular, he introduced the loss function concept, which combines cost, tar-
get, and variation into one metric with specifications being of secondary importance.
Furthermore, he developed the concept of robustness, which means that noise factors
are taken into account to ensure that the system functions correctly. Noise factors are
uncontrollable variables that can cause significant variability in the process or the prod-
uct. Taguchi is a mechanical engineer and has won four Deming Awards.

Loss Function

Taguchi has defined quality as the loss imparted to society from the time a product is
shipped. Societal losses include failure to meet customer requirements, failure to meet
ideal performance, and harmful side effects. Many practitioners have included the
losses due to production, such as raw material, energy, and labor consumed on unusable
products or toxic by-products.

The loss-to-society concept can be illustrated by an example associated with the pro-
duction of large vinyl covers to protect materials from the elements. Figure 7.1 shows
three stages in the evolution of vinyl thickness. At (1), the process is just capable of
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Total loss = Producer's loss + Customer's loss

LSL E;
Vinyl thickness

Figure 7.1 Loss to Society
Reproduced, with permission, from Taguchi Methods: Introduction to Quality Engineering (Allen Pak,
Mich.: American Supplier Institute, Inc., 1991). ‘

meeting the specifications (USL and LSL); however, it is on the target fau, 7.' After con-”
siderable effort, the production process was improved by reducing the variability aboul
the target, as shown at (2). In an effort to reduce its production costs, the organization
decided to shift the target closer to the L.SL, as shown at (3). This action did resultina |
substantial improvement by lowering the cost to the organization; however, the vinyl !
covers were not as strong as before. When farmers used the covers to protect wheat from
the elements, they tore and a substantial loss occurred to the farmers. In addition, the cog
of wheat increased as a result of supply-and-demand factors, thereby causing an increas
in wheat prices and a further loss to society. The company’s reputation suffered, which
created a loss of market share with its unfavorable loss aspects.

Assuming the target is correct, losses of concern are those caused by a product’s crit
ical performance characteristics deviating from the target. The importance of concer-
trating on “hitting the target” is documented by Sony. In spite of the fact that the desipn
and specifications were identical, U.S. customers preferred the color density of shippd
TV sets produced by Sony—Japan over those produced by Sony—USA. Investigation
of this situation revealed that the frequency distributions were markedly different, »
shown in Figure 7.2 . Even though Sony—1Japan had 0.3% outside the specifications,

! Taguchi uses the symbol m for the target.
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Figure 7.2 Distribution of Color Density for Sony- USA and Sony - Japan
Source: The Asahi, April 17, 1979.

the distribution was normal and centered on the target. The distribution of the Sony—
USA was uniform between the specifications with no values outside specifications. It
was clear that customers perceived quality as meeting the target (Japan) rather than just
meeting the specifications (USA). Ford Motor Company had a similar experience with
transmissions.

Out of specification is the common measure of quality loss. Although this concept
may be appropriate for accounting, it is a poor concept for all other areas. It implies that
all products that meet specifications are good, whereas those that do not are bad. From
the customer’s point of view, the product that barely meets specification is as good (or
bad) as the product that is barely out of specification. It appears we are using the wrong
measuring system. The loss function corrects for the deficiency described above by
combining cost, target, and variation into one metric.

Nominal-the-Best

Although Taguchi has developed more than 68 loss functions, many situations are
approximated by the quadratic function which is called the nominal-the-best type. Fig-
ure 7.3 (a) shows the step function that describes the Sony—USA situation. When the
value for the performance characteristic, y, is within specifications the loss is $0, and
when it is outside the specifications the loss is $A. The quadratic function is shown at
17.3 «(b) and describes the Sony—1Japan situation. In this situation loss occurs as soon
as the performance characteristic, y, departs from the target, 7.


Administrator
Figure 7.2  Distribution of Color Density for Sony- USA and Sony - Japan

Administrator
7.3

Administrator
7.3


USL
4
) A
2
3
0 i >y
T—A T T+A
Performance characteristic
(a) Step function (Sony — USA)
L LSL USL
4
@ A
2
3
0 s
T-A

Performance characteristic
(b) Quadratic function (Sony — Japan)

Figure 7.3 Step and Quadratic Loss Functions

The quadratic loss function is described by the equation

L=ky—n7)?

where L = cost incurred as quality deviates from the target
y = performance characteristic
T = target

k = quality loss coefficient

The loss coefficient is determined by setting A = (y — 7), the deviation from the tar
get. When A is at the USL or LSL, the loss to the customer of repairing or discarding

the product is $A. Thus,

k= Aly — 7)? = AIA?
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EXAMPLE PROBLEM

If the specifications are 10 * 3 for a particular quality characteristic and the average repair
cost is $230, determine the loss function. Determine the loss at y = 12.

k = A/A? = 230/3? = 25.6

Thus, L = 25.6 (y — 10)> and at y = 12,

L=25.6(y — 10y
=25.6(12 — 10y
=$102.40

Average Loss

The loss described here assumes that the quality characteristic is static. In reality, you
can’t always hit the target, 7. It is varying due to noise, and the loss function must
reflect the variation of many pieces rather than just one piece. Noise factors are classi-
fied as external and internal, with internal being further classified as unit-to-unit and
deterioration.

A refrigerator temperature control will serve as an example to help clarify the noise
concept. External noise is due to the actions of the user, such as the number of times
the door is opened and closed, amount of food inside, the initial temperature, etc. Unit-
to-unit internal noise is due to variation during production such as seal tightness, con-
trol sensor variations, etc. Although this type of noise is inevitable, every effort should
be made to keep it to a minimum. Noise due to deterioration is caused by leakage of
refrigerant, mechanical wear of compressor parts, etc. This type of noise is primarily
a function of the design. Noise factors cause deviation from the target, which causes a
loss to society.

Figure 7.4 shows the nominal-the-best loss function with the distribution of the
noise factors. An equation can be derived by summing the individual loss values and
dividing by their number to give

L=k[o*+ (F — 1)

where L = the average or expected loss.

Because the population standard deviation, o, will rarely be known, the sample stan-
dard deviation, s, will need to be substituted. This action will make the value somewhat
larger; however, the average loss is a very conservative value.

The loss can be lowered by first reducing the variation, o, and then adjusting the
average, y, to bring it on target, 7. The loss function speaks the language of things,
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Figura 7.4 Average or Expected Loss

Reproduced, with permission, from Madhav S. Phadke, Quality Engineering Using Robust Design 1
(Englewood Cliffs, N.J.: Prentice Hall, 1989). j

which is engineering’s measure, and money, which is management’s measure. Exam-
ples where the nominal-the-best loss function would be applicable are the performance
characteristics of color density, voltage, dimensions, etc.

EXAMPLE PROBLEM

Compute the average loss for a process that produces steel shafts. The target value is 6.40 mm
and the coefficient is 9500. Eight samples give 6.36, 6.40, 6.38, 6.39, 6.43, 6.39, 6.46, and

6.42.
s =00315945 = 6.40375
L=Hs+(5-1] | |
= 9500[0.03159452 + (6.40375 - 6.40)2]
= $9.62
Other Loss Functions 3

There are two other loss functions that are quite common, smaller-the-better and larger- -
the-better. Figure 7.5 illustrates the concepts.

As can be seen by the figure, the target value for smaller-the-better is 0 and there are
no negative values for the performance characteristic. Examples of performance char-
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Figure 7.5 Smaller-the-Better and Larger-the-Better Loss Functions

TABLA 7.1
Summary of the Equations for the
Three Common Loss Functions

Nominal-the-best L=k(y— 17 where k = A/A?
L=+k(MSD)  where MSD =[S (y — 7)%/n
L =kl[o? + (¥ — 7]

Smaller-the-better L=ky where k = Aly?
L=k(MSD)  where MSD = [Sy?l/n
[ = k[y? + o2
Larger-the-better L= k(1/y? where k = Ay?

L=k(MSD)  where MSD = [3(1/y3)]/n
I = k[=(/y3)/n

acteristics are radiation leakage from a microwave appliance, response time for a com-
puter, pollution from an automobile, out of round for a hole, etc.

In the larger-the-better situation, shown in Figure 7.5 (b), the target value is , which
gives a zero loss. There are no negative values and the worst case is at y = 0. Actually,
larger-the-better is the reciprocal of smaller-the-better, and because of the difficulty of
working with %, some practitioners prefer to work with the reciprocal. Thus, a larger-the-
better performance characteristic of meters/second becomes a smaller-the-better perfor-
mance characteristic of seconds/meter. Examples of performance characteristics are bond
strength of adhesives, welding strength, automobile gasoline consumption, etc.

Summary of the Equations

Table 7.1 gives a summary of the equations for the three common loss functions. It
also shows the relationship of the loss function to the mean squared deviation (MSD).
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These three common loss functions will cover most situations. After selecting oneof ]
the loss functions, one point on the curve needs to be determined in order to obtain the
coefficient. It is helpful to work with accounting to obtain this one point. Knowing the 3
coefficient, the equation is complete and can be used to justify the use of resources and
as a benchmark to measure improvement. It is much easier to use the loss functionto
obtain cost information than to develop an elaborate quality cost system. Cost dataare -
usually quite conservative; therefore, it is not necessary for the loss function to be per-
fect for it to be effective. )

Sometimes the loss function curves are modified for particular situations. For exam-
ple, larger-the-better can be represented by one-half the nominal-the-best curve.
Another situation occurs where the performance characteristic is weld strength. In such
a case the larger-the-better curve can terminate at the strength of the parent metal rather
than oo, If the three common loss functions do not seem to be representative of a par-
ticular situation, then individual points can be plotted.

Orthogonal Arrays?

Orthogonal arrays (OA) are a simplified method of putting together an experiment. The
original development of the concept was by Sir R. A. Fischer of England in the 1930s.
Taguchi added three OAs to the list in 1956, and the National Institute of Science and
Technology (NIST) of the United States added three.

An orthogonal array is shown in Table 7.2 . The 8 in the designation OAS repre-
sents the number of rows, which is also the number of treatment conditions (TC) and
the degrees of freedom. Across the top of the orthogonal array is the maximum number
of factors that can be used, which in this case is seven. The levels are designated byl |
and 2. If more levels occur in the array, then 3, 4, 5, etc., are used. Other schemes such
as —, 0, and + can be used.

The orthogonal property of the OA is not compromised by changing the rows or the
columns. Taguchi changed the rows from a traditional design so that TC 1 was com-
posed of all level 1s and, if the team desired, could thereby represent the existing cor  §
ditions. Also, the columns were switched so that the least amount of change occursin
the columns on the left. This arrangement can provide the team with the capabilityto
assign factors with long setup times to those columns. Orthogonal arrays can handle
dummy factors and can be modified. The reader is referred to the bibliography for these
techniques.

2 Orthogonal arrays, interaction tables, and linear graphs in this chapter are reproduced, with permission,
from Taguchi Methods: Introduction to Quality Engineering (Allen Park, Mich.: American Supplier lnst- -
tute, Inc., 1991). N ]
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TABLE 7.2 oz
Orthogonal Array (OA8)* S

TC 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2 .
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

*Taguchi uses a more elaborate system of identification
for the orthogonal arrays. It is the authors’ opinion that l'
a simple system using OA is more than satisfactory. oL 1

To determine the appropriate orthogonal array, use the following procedure:

1. Define the number of factors and their levels. i
2. Determine the degrees of freedom. I
3. Select an orthogonal array. i

4. Consider any interactions.

The first step is completed by the project team.

Degrees of Freedom

The number of degrees of freedom is a very important value because it determines the
minimum number of treatment conditions. It is equal to the sum of

(Number of levels — 1) for each factor ‘
(Number of levels — 1)(number of levels — 1) for each interaction
One for the average

An example problem will illustrate the concept.
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EXAMPLE PROBLEM

Given four two-level factors, A B, C, D, and two suspected interactions, BC and CD, :
determine the degrees of freedom, df. What is the answer if the factors are three-level?

=42 -DH+22-D2-1D+1=7
df=43-1D+23-D@B-1DH+1=17

At least seven treatment conditions are needed for the two-level, and 17 for the
three-level. As can be seen by the example, the number of levels has considerable inflo-
ence on the number of treatment conditions. Although a three-level design provides a
great deal more information about the process, it can be costly in terms of the number
of treatment conditions.

The maximum degrees of freedom is equal to

df = I/
where ! = number of levels
J = number of factors

For the example problem with two levels, df = 2* = 16. Table 7.3 i shows the max-
imum degrees of freedom.

In the example problem, it was assumed that four of the two-factor interactions (A3,
AC, AD, and BD), four of the three-factor interactions (ABC, ABD, ACD, and BCD), and
the four-factor interaction (ABCD) would not occur. Interactions are discussed later in
the chapter.

TABLE 7.3

Maximum Degrees of Freedom
for a Four-Factor, Two-Level
Experimental Design

Design Space df
A B C D 4
AB AC AD BC 6
BD (@)]
ABC ABD ACD BCD 4
ABCD
Average 1

Sum 16
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Selecting the Orthogonal Array

Once the degrees of freedom are known, the next step, selecting the orthogonal array
(OA), is quite easy. The number of treatment conditions is equal to the number of rows
in the OA and must be equal to or greater than the degrees of freedom. Table 7.4
shows the orthogonal arrays that are available, up to OA36. Thus, if the number of
degrees of freedom is 13, then the next available OA is OA16. The second column of
the table has the number of rows and is redundant with the designation in the first col-
umn. The third column gives the maximum number of factors that can be used, and the
last four columns give the maximum number of columns available at each level.
Analysis of the table shows that there is a geometric progression for the two-
level arrays of OA4, OA8, OA16, OA32, ..., which is 2%, 23,24 2% . .., and for the

TABLE 7.4
Orthogonal Array Information
Number Maximum MAXIMUM NUMBER OF COLUMNS
of Number of

OA Rows Factors 2-Level 3-Level 4-Level 5-Level

OA2 4 3 3 — — —

0A8 8 7 7 — — —

OA9 9 4 — 4 — —_
OA12 12 11 11 — — —
OA16 16 15 15 —_ — —
OA16’ 16 5 — — 5 —
OA18 18 8 1 7 — —
OA25 25 6 —_ — — 6
OA27 27 13 — 13 — —
OA32 32 31 31 — — —
OA32’ 32 10 1 — 9 —_
OA36 36 23 11 12 —_ —
OA36’ 36 » 16 3 13 — —_

Adapted, with permission, from Madhav S. Phadke, Quality Engineering Using Robust Design
(Englewood Cliffs, N.J.: Prentice Hall, 1989).
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three-level arrays of OA9, OA27, OA81, ..., whichis 32, 3%, 34, . ... Orthogonal arrays
can be modified, and the reader is referred to the references for that information.

Interaction Table

Confounding is the inability to distinguish among the effects of one factor from another
factor and/or interaction. In order to prevent confounding, we need to know which
columns to use for the factors. This knowledge is provided by an interaction table,
which is shown in Table 7.6 . The orthogonal array (OAS) is repeated in Table 7.5 |
for the convenience of the reader.

Let’s assume that factor A is assigned to column 1 and factor B to column 2. If there
is an interaction between factors A and B, then column 3 is used for the interaction, AB.

TABLE 7.5
Orthogonal Array OAS8
TC 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
TABLE 7.6
Interaction Table for OA8
Column 1 2 3 4 5 6 7
1 (1) 3 2 5 4 7 6
2 (2) 1 6 7 4 5
3 (3 7 6 5 4
4 (4) 1 2 3
5 (5) 3 2
6 6 1
7 7)
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Figure 7.6 Linear Graphs for OA8

Another factor, say, C, would need to be assigned to column 4. If there is an interaction
between factor A (column 1) and factor C (column 4), then interaction AC will occur in
column 5. The columns that are reserved for interactions are used so that calculations
can be made to determine whether there is a strong interaction. If there are no interac-
tions, then all the columns can be used for factors. The actual experiment is conducted
using the columns designated for the factors, and these columns are referred to as the
design matrix. All the columns are referred to as the design space.

Linear Graphs

Taguchi developed a simpler method of working with interactions using linear graphs.
Two are shown in Figure 7.6 for OA8. They make it easier to assign factors and inter-
actions to the various columns of an array. Factors are assigned to the points. If there is
an interaction between two factors, then it is assigned to the line segment between the
two points. For example, using the linear graph on the left in the figure, if factor B is
assigned to column 2 and factor C is assigned to column 4, then interaction BC is
assigned to column 6. If there is no interaction, then column 6 can be used for a factor.

The linear graph on the right would be used when one factor has three two-level
interactions. Three-level orthogonal arrays must use two columns for interactions,
because one column is for the linear interaction and one column is for the quadratic
interaction. The linear graphs—and, for that matter, the interaction tables—are not
designed for three or more factor interactions, which rarely occur. Linear graphs can be
modified; the reader is referred to the references for modification techniques. Use of the
linear graphs requires some trial-and-error activity, and a number of solutions may be
possible, as shown by the example problem.

EXAMPLE PROBLEM

An experimental design has four two-level factors (4, B, C, D) where only main effects
are possible for factor D and there is no BC interaction. Thus, only interactions AB and AC
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are possible, and they can be assigned the line segments 3 and 5, 3 and 6, or 5 and 6, with
their apex for factor A. Factors B and C are then assigned to the adjacent points. Column
7 or a line segment that does not have an interaction is used for factor D. A number of solu- 4
tions are possible; one is shown here. The one chosen might well be a function of the setup 3
time when the experiment is run. Column 5 is not used, so it is given the symbol UX for “
unexplained, and calculations for this column should show no effect (very small variation). §

Orthogonal Array OA8

B A AB (o Ux AC D
7C 1 2 3 4 5 6 7
T o1 1 1 111
- 2 |1 1 2 2 2
3|1 2 2.1 1 2 2
al 1 2 2 2 2 1 1
5 12 1 2 1 2 1 2
6 |2 1 2 2 1 2 1
7012 2 1 1 2 2 1
g |2 2 1 2 1 1 2
B
1
D
AB3 5 7
°
2 6 4
A AC C

Interactions

The fourth step in the procedure is to consider interactions. Figure 7.7  shows thc'
graphical relationship between two factors. At (a) there is no interaction because the 4
lines are parallel; at (b) there is some interaction; and at (c) there is a strong interaction. §
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